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CHANGE POINT TESTING FOR THE DRIFT PARAMETERS OF A
PERIODIC MEAN REVERSION PROCESS

HEROLD DEHLING, BRICE FRANKE, THOMAS KOTT, AND REG KULPERGER

Abstract. In this paper we investigate the problem of detecting a change in the drift
parameters of a generalized Ornstein-Uhlenbeck process which is defined as the solution of

dXt = (L(t)− αXt)dt+ σdBt

and which is observed in continuous time. We derive an explicit representation of the
generalized likelihood ratio test statistic assuming that the mean reversion function L(t)
is a finite linear combination of known basis functions. In the case of a periodic mean
reversion function, we determine the asymptotic distribution of the test statistic under the
null hypothesis.

1. Introduction

The problem of testing for a change in the parameters of a stochastic process has been an
important issue in statistical inference for a long time. Initially investigated for i.i.d. data,
change point analysis has more recently been extended to time series of dependent data. For
a general review of change-point analysis, see e.g. the book by Csörgő and Horvath [3].

In the present paper, we investigate the problem of detecting changes in the parameters of
a diffusion process. Diffusion processes are a popular and widely studied class of models with
applications in economics, finance, physics and engineering. Statistical inference for diffusion
processes has been investigated by many authors, see e.g. the monographs by Liptser and
Shiryaev [12] and by Kutoyants [11]. However, change-point analysis for diffusion processes
has found little attention up to now.

In our paper, we focus on change-point analysis for a special class of diffusion processes,
namely for so-called generalized Ornstein-Uhlenbeck processes. These processes are defined
as solutions to the stochastic differential equation

(1) dXt = (L(t)− αXt)dt+ σdBt, t ≥ 0,

where α and σ are positive constants and where the mean-reversion function L(t) is non-
random. (Bt)t≥0 denotes standard Brownian motion andX0 is a square-integrable real-valued
random variable that is independent of (Bt)t≥0. If L(t) ≡ µ is a constant, we obtain the
classical Ornstein-Uhlenbeck process, introduced by Ornstein and Uhlenbeck [14]. Ornstein-
Uhlenbeck processes are popular models for prices of commodities that exhibit a trend of
reversion to a fixed mean level. Generalized Ornstein-Uhlenbeck processes can be used as
models for the evolution of prices with a trend or seasonal component L(t).

Dehling, Franke and Kott [5] have studied the problem of parameter estimation of a gener-
alized Ornstein-Uhlenbeck process if the mean-reversion function L(t) is a linear combination

Key words and phrases. Time-inhomogeneous diffusion process, change point, generalized likelihood ratio
test.
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of known basis functions ϕ1(t), . . . , ϕp(t), i.e. when

(2) L(t) =

p∑
i=1

µiϕi(t)

In this model, the unknown parameter vector is θ = (µ1, . . . , µp, α)t. We denote the corre-
sponding parameter space by Θ, and observe that

Θ = Rp × (0,∞).

As is usual in the statistical inference for the drift of a time-continuously observed diffusion
process, the diffusion parameter σ is supposed to be known. This can be justified by the
fact that the volatility σ can be computed by the quadratic variation of the process.

We are interested in testing whether there is a change in the values of the parameters
µ1, . . . , µp and α, in the time interval [0, T ] during which the process is observed. In the first
step, we will consider this problem assuming that the change-point τ ∈ (0, T ) is known. For
the asymptotic analysis, when T → ∞, we write τ = s T , where s ∈ (0, 1) is known. The
generalized Ornstein-Uhlenbeck process with change-point τ = s T is given by

(3) dXt = (S(θ, t,Xt)1{t≤τ} + S(θ′, t, Xt)1{t>τ})dt+ σdBt, 0 ≤ t ≤ T,

where

(4) S(θ, t,Xt) =

p∑
i=1

µiϕi(t)− αXt,

and where 1A denotes the indicator function of the set A. The test problem of interest can
be formulated as

(5) H0 : θ = θ′ (no change) vs. HA : θ 6= θ′ (change at time point τ) .

We want to study the generalized likelihood ratio test for this test problem. We denote
by PX the measure induced by the observable realizations XT = {Xt, 0 ≤ t ≤ T} on
the measurable space (C[0, T ],B[0, T ]), C[0, T ] being the space of continuous, real-valued
functions on [0, T ] and B[0, T ] the associated Borel σ-field. Moreover, let PB be the measure
generated by the Brownian motion on (C[0, T ],B[0, T ]). Then the likelihood function L
of observations XT of the process with stochastic differential (3) is defined as the Radon-
Nikodym derivative, i.e.

L(θ, θ′, XT ) :=
dPX
dPB

(XT ).

The generalized likelihood ratio R(XT ) is given by

(6) R(XT ) =
supθ∈Θ L(θ, θ,XT )

supθ,θ′∈Θ L(θ, θ′, XT )
.

Note that this likelihood ratio depends on the suspected change point τ = sT , where s ∈
(0, 1). Eventually, we will study the log-transformed likelihood ratio

ΛT (s) := −2 log(R(XT )).

We will give an explicit expression of the process (ΛT (s))0≤s≤1 and study the asymptotic
distribution of this process as T →∞.

The outline of the paper is as follows. In Section 2, we will first derive an explicit repre-
sentation of the log-transformed generalized likelihood ratio test statistic (ΛT (s))0≤s≤1. We
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then formulate two theorems concerning the asymptotic distributions of sup-norm function-
als of (ΛT (s))0≤s≤1. It turns out that sup0≤s≤1 ΛT (s) does not have a non-degenerate limit
distribution, as T →∞. In Theorem 1, we will prove convergence of sups1≤s≤s2 ΛT (s), when
0 < s1 < s2 < 1 are fixed constants. In Theorem 2, we will show that there exist centering
and norming sequences aT and bT such that (sup0≤s≤1 ΛT (s) − bT )/aT converges towards
an extreme value distribution. The proofs of these theorems are given in Section 3 and
Section 4, respectively.

2. Generalized likelihood ratio test

In this section, we will derive an explicit representation of ΛT (s). In order to do so, we
need to calculate the maxima in the numerator and denominator in (6). Note that this is
achieved by the corresponding maximum likelihood estimators. A corollary to Girsanov’s
theorem, see Theorem 7.6 in Lipster and Shiryayev [12], gives an explicit expression of the
likelihood function of a diffusion process provided that

(7) IP

(∫ T

0

S(θ, t,Xt)
2dt <∞

)
= 1

for all 0 ≤ T <∞ and all θ.

Lemma 2.1. Let L(θ,XT ) denote the likelihood function of the observations XT = {Xt, 0 ≤
t ≤ T} of the generalized Ornstein-Uhlenbeck process (Xt)t≥0, defined in (1), with mean
reversion function (2). If the drift term (4) satisfies condition (7) then

arg max
θ
L(θ,XT ) = θ̂ML = Q−1

T R̃T .

Here QT ∈ R(p+1)×(p+1) and R̃T ∈ Rp+1 are defined as

QT =

(
GT −aT
−atT bT

)
,

R̃T =

(∫ T

0

ϕ1(t)dXt, . . . ,

∫ T

0

ϕp(t)dXt,−
∫ T

0

Xt dXt

)t
,

where GT = (
∫ T

0
ϕj(t)ϕk(t)dt)1≤j,k≤p ∈ Rp×p, aT = (

∫ T
0
ϕ1(t)Xt dt, . . . ,

∫ T
0
ϕp(t)Xt dt)

t and

bT =
∫ T

0
X2
t dt.

Remark 1. Note that the integrals in R̃T can be rewritten as∫ T

0

ϕi(t)dXt =

∫ T

0

ϕi(t)(L(t)− αXt) dt+ σ

∫ T

0

ϕi(t)dBt

where the latter is a well-defined Itô integral.

Proof. The likelihood function L of a general diffusion process

dXt = S(θ, t,Xt)dt+ σdBt, 0 ≤ t ≤ T,

is given by

(8) L(θ,XT ) =
dPX
dPB

(XT ) = exp

(
1

σ2

∫ T

0

S(θ, t,Xt)dXt −
1

2σ2

∫ T

0

S(θ, t,Xt)
2dt

)
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if condition (7) is fulfilled; see Theorem 7.6 in Lipster and Shiryayev [12]. The maximum
likelihood estimator is defined as the maximum of the functional θ 7→ L(θ,XT ) and the
partial derivatives of the logarithm of this functional are

(9)
∂

∂θi
ln(L(θ,XT )) =

1

σ2

∫ T

0

∂

∂θi
S(θ, t,XT )dXt −

1

σ2

∫ T

0

S(θ, t,Xt)
∂

∂θi
S(θ, t,Xt)dt.

The derivatives of the drift function specified in (4) can be computed to be

∂

∂θi
S(θ, t,Xt) =

{
ϕi(t), i = 1, . . . , p;
−Xt, i = p+ 1.

Setting the partial derivatives of the log-likelihood function in (9) equal zero gives a system
of linear equations which yields the assertion. �

Due to the linearity of the drift term, the log-likelihood function of the process (3) is given
by

ln
(
L(θ, θ′, XT )

)
=

1

σ2

(∫ τ

0

S(θ, t,Xt)dXt +

∫ T

τ

S(θ′, t, Xt)dXt

)
− 1

2σ2

(∫ τ

0

S(θ, t,Xt)
2dt+

∫ T

τ

S(θ′, t, Xt)
2dt

)
.

Hence, defining Xτ,T = {Xt, τ ≤ t ≤ T}, we can write the generalized likelihood ratio (6) as

(10) R(XT ) =
supθ L(θ,XT )

supθ∗ L(θ∗, Xτ ) supθ′ L(θ′, Xτ,T )

where L(θ,XT ) is given in (8) with drift function specified in (4). The terms L(θ∗, Xτ ) and
L(θ′, Xτ,T ) are defined analogously as integrals with integration regions 0 to τ and τ to T ,
respectively. It follows from Lemma 2.1 that

(11) R(XT ) =
L(θ̂TML, X

T )

L(θ̂τML, X
τ )L(θ̂τ,TML, X

τ,T )

where the maximum likelihood estimates θ̂TML, θ̂τML and θ̂τ,TML are computed from the total,
the pre- and post-change sample, respectively. This representation of the likelihood ratio is
used to prove the following proposition.

Proposition 2.2. The log-transformed generalized likelihood ratio test statistic ΛT (s) =
−2 ln(R(XT )) of the test problem (5) can be represented under the null hypothesis as

ΛT (s) = −Rt
TQ
−1
T RT +Rt

τQ
−1
τ Rτ + (RT −Rτ )

t(QT −Qτ )
−1(RT −Rτ )

where QT is given in Lemma 2.1 and

RT =

(∫ T

0

ϕ1(t)dBt, . . . ,

∫ T

0

ϕp(t)dBt,−
∫ T

0

XtdBt

)t
.

Proof. Our aim is to compute an explicit expression of the ratio given in (11). Note that the
likelihood function in the numerator of (10) can be represented as

L(θ,XT ) = exp

(
1

σ2
θtR̃T −

1

2σ2
θtQT θ

)
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where R̃T and QT are given in Lemma 2.1. Denoting by θ0 the true value of θ, the represen-
tations

θ̂TML = Q−1
T R̃T and R̃T = QT θ0 + σRT ,

where the latter can be obtained by plugging in the initial SDE (1) and (2), lead to

L(θ̂TML, X
T ) = exp

(
1

2σ2
R̃t
TQ
−1
T R̃T

)
= exp

(
1

2σ2
θt0QT θ0 +

1

σ
Rt
T θ0 +

1

2
Rt
TQ
−1
T RT

)
.

The same procedure yields an analog expression for L(θ̂τML, X
τ ). The additivity of the

integrals provides

θ̂τ,TML = (QT −Qτ )
−1(R̃T − R̃τ )

and
R̃T − R̃τ = (QT −Qτ )θ0 + σ(RT −Rτ )

such that

L(θ̂τ,TML, X
τ,T ) = exp

(
1

2σ2
θt0(QT −Qτ )θ0 +

1

σ
(RT −Rτ )

tθ0

+
1

2
(RT −Rτ )

t(QT −Qτ )
−1(RT −Rτ )

)
.

Under the null hypothesis, cancelation of several terms in (11) proves the assertion. �

For the rest of our investigations, we study periodic functions

(12) ϕj(t+ ν) = ϕj(t)

where ν is the period observed in the data. Under the null hypothesis of no change, this
implies periodicity of the mean reversion function, i.e. L(t + ν) = L(t). We assume that
we observe the process over some integer multiple of periods, i.e. T = nν, n ∈ N. By
Gram-Schmidt orthogonalization we may assume without loss of generality that the basis
functions ϕ1(t), . . . , ϕp(t) form an orthonormal system in L2([0, ν], 1

ν
dλ), i.e. that

(13)

∫ ν

0

ϕj(t)ϕk(t)dt =

{
ν, j = k
0, j 6= k.

Under these assumptions, the matrixQT appearing in the test statistic ΛT (s), see Proposition
2.2, simplifies to

QT =

(
T Ip×p aT
atT bT

)
.

Theorem 1. Let XT = {Xt, 0 ≤ t ≤ T} be observations of the mean reversion process
(1) with mean reversion function of the form (2), satisfying (12) and (13). Denote by
ΛT (s) = −2 ln(R(XT )) the log-transformed generalized likelihood ratio test statistic for the
test problem (5). Then, for any fixed 0 < s1 < s2 < 1, under the null hypothesis,

sup
s∈[s1,s2]

ΛT (s)
D−→ sup

s∈[s1,s2]

‖W (s)− sW (1)‖2

s(1− s)

as T →∞. Here ‖ · ‖ denotes the Euclidean norm and W is a (p+ 1)-dimensional standard
Brownian motion.
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The result stated in Theorem 1 is not satisfactory in application: First, it is not clear
how to choose the interval [s1, s2] potentially containing a change point if no information
about the location of the change is available. Second, the distribution of the limit which is
the squared length of a multi-dimensional Brownian bridge is not explicitly given such that
further analysis or a simulation study are necessary in order to specify the limit distribution
explicitly. In order to avoid this inconvenience it is possible to consider the exact test statistic
sup0<s≤1 ΛT (s). It turns out that, by means of some appropriate normalizing terms aT and
bT , the distribution of the expression (sup0<s≤1 ΛT (s) − bT )/aT converges to the Gumbel
distribution.

Theorem 2. Under the same assumptions as in Theorem 1 it holds under the null hypothesis
that (

sup
0<s≤1

ΛT (s)− bT
)
/aT

D−→ G,

as T →∞, where G denotes a real-valued random variable satisfying

IP(G ≤ x) = exp(−2e−x/2).

Here bT =
(
2 ln ln T

ν
+ p+1

2
ln ln ln T

ν
− ln Γ(p+1

2
)
)2
/(2 ln ln T

ν
), aT =

√
bT/(2 ln ln T

ν
) where Γ

is the gamma function.

3. Proof of Theorem 1

Before we can complete the proof of Theorem 1, we have to establish some auxiliary results.
First, we will study the asymptotic behavior of ΛT (s) in the case of a periodic mean reversion
function, see (12) and (13). Note that by Proposition 2.2 we have the representation

ΛT (s) = −Rt
TQ
−1
T RT +Rt

sTQ
−1
sTRsT + (RT −RsT )t(QT −QsT )−1(RT −RsT ).

The first term,

Rt
TQ
−1
T RT =

1√
T
Rt
T

( 1

T
QT

)−1 1√
T
RT ,

has already been studied by Dehling, Franke and Kott [5]. The following proposition sum-
marizes the results of Proposition 4.5, 5.1 and 5.2 in Dehling et al. [5].

Proposition 3.1. We have that

1√
T
RT

D−→ N(0,Σ)

and
1

T
QT → Σ, almost surely,

as T →∞. The matrix Σ is given by

(14) Σ =

(
ν Ip×p Λ

Λt ω

)
where Λi =

∫ ν
0
ϕi(t)h̃(t)dt, i = 1, . . . , p, ω =

∫ ν
0

(h̃(t))2dt + νσ2

2α
and where h̃ : [0,∞) → R is

defined by

(15) h̃(t) = e−αt
p∑
j=1

µj

∫ t

−∞
eαsϕj(s)ds.
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Here, N(0,Σ) denotes a normally distributed random vector with zero-mean and covariance
matrix Σ.

Now we want to investigate the second term of ΛT (s) which we rewrite as

Rt
sTQ

−1
sTRsT =

1√
T
Rt
sT

( 1

T
QsT

)−1 1√
T
RsT .

We will show that the process
(

1√
T
RsT

)
s∈[s1,s2]

converges in distribution to a Gaussian process

on [s1, s2], and that 1
T
QsT converges in probability uniformly on [s1, s2].

We need the following functional version of the asymptotic normality proved in [5]

Proposition 3.2. As T →∞, the sequence of processes (R
(T )
τ )0≤τ≤1, where

R(T )
τ :=

1√
T
RτT ,

converges in distribution to a (p + 1)-dimensional Wiener-process R∗ with R∗s ∼ N(0, sΣ)
and where Σ is defined in (14). Thus the covariance function of R∗ is of the form

Cov
(
R∗i (s), R

∗
j (t)
)

= (s ∧ t)Σij; for i, j = 1, . . . , p+ 1.

Proof. Note that the vector-valued processes

R
(n)
t :=

(
1√
n

∫ nνt

0

ϕ1(s)dBs, ...,
1√
n

∫ nνt

0

ϕp(s)dBs,
1√
n

∫ nνt

0

XsdBs

)
are martingales with respect to the filtrations F (n)

t := σ(Bs; s ≤ nνt). The associated
covariance processes are given by

〈R(n), R(n)〉t =


1
n

∫ nνt
0

ϕ1ϕ1ds ... 1
n

∫ nνt
0

ϕ1ϕpds
1
n

∫ nνt
0

ϕ1Xds
...

...
...

1
n

∫ nνt
0

ϕpϕ1ds ... 1
n

∫ nνt
0

ϕpϕpds
1
n

∫ nνt
0

ϕpXds

1
n

∫ nνt
0

ϕ1Xds ... 1
n

∫ nνt
0

ϕpXds
1
n

∫ nνt
0

X2ds

 .

As was shown in [5] (see p.184), these matrices converge for n → ∞ almost surely towards
the matrix 

t
∫ ν

0
ϕ1ϕ1ds ... t

∫ ν
0
ϕ1ϕpds t

∫ ν
0
ϕ1h̃ds

...
...

...

t
∫ ν

0
ϕpϕ1ds ... t

∫ ν
0
ϕpϕpds t

∫ ν
0
ϕph̃ds

t
∫ ν

0
ϕ1h̃ds ... t

∫ ν
0
ϕph̃ds t

(∫ ν
0
h̃2ds+ νσ2

2α

)

 = tΣ.

The functional central limit theorem for continuous martingales (p.339 in [6]) now implies

that the sequence of continuous F (n)
t -martingales R(n) converges in distribution toward the

unique continuous Gaussian martingale with covariance function tΣ. �

Proposition 3.3. Let Qt be defined as in Lemma 2.1. Then, as T →∞,

1

T
QsT −→ sΣ

almost surely uniformly on [0, 1], where Σ is given in (14).
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Proof. By Proposition 3.1, we know that, almost surely, 1
T
QT → Σ as T →∞ . Thus, given

ε > 0, there exists a T0 such that for all T ≥ T0

‖ 1

T
QT − Σ‖ ≤ ε.

Let B := sup0≤s≤T0 ‖Qs‖. Then we get for any T ≥ T0 and T0/T ≤ s ≤ 1

‖ 1

T
QTs − sΣ‖ = s‖ 1

Ts
QTs − Σ‖ ≤ ε.

For s ≤ T0/T we obtain

‖ 1

T
QTs − sΣ‖ ≤

1

T
B +

T0

T
‖Σ‖ ≤ ε,

for T large enough. The last two inequalities together show that for T large enough, we have
‖ 1
T
QTs − sΣ‖ ≤ ε, and this proves the statement of the proposition. �

We can finally finish the proof of Theorem 1.

Proof of Theorem 1. By Slutsky’s theorem and Propositions 3.1, 3.2 and 3.3 we obtain

ΛT (s) = −Rt
TQ
−1
T RT +Rt

sTQ
−1
sTRsT + (RT −RsT )t(QT −QsT )−1(RT −RsT )

D−→ −‖W (1)‖2 +
‖W (s)‖2

s
+
‖W (1)−W (s)‖2

1− s

=
‖W (s)− sW (1)‖2

s(1− s)
in C[s1, s2]. Here we have used the fact that the process W (t) := Σ−1/2R∗t is a Brownian
motion with covariance matrix Ip+1, where Ip+1 is the (p+ 1)× (p+ 1) identity matrix, and
that (R∗t )

tΣ−1R∗t = ‖W (t)‖2. The assertion about the supremum of ΛT (s) is justified by the
continuous mapping theorem. �

4. Proof of Theorem 2

The proof of Theorem 2 is motivated by the proof of an analogous result for discrete time
AR processes, given by Davis et al. [4]. We need the following result which is proved in in
Davis et al. [4] and which relies on Lemma 2.2 in Horváth [7]).

Proposition 4.1 (Corollary A.2 in Davis et al. [4]). Let Y1, Y2, . . . be an i.i.d. sequence
of (p + 1)-dimensional random vectors with IE[Y1] = 0 and IE[Y1Y

t
1 ] = Ip+1. Define Sk =∑k

i=1 Yi. If max1≤i≤p+1 IE|Yi,1|2+r <∞ for some r > 0, then(
max

1≤k≤n
‖Sk‖2 − bn

)
/an

D−→ G∗,

as n→∞, where G∗ denotes a real-valued random variable satisfying

P (G∗ ≤ x) = exp(−e−x/2).

Thereby, it is bn =
(
2 ln lnn+ p+1

2
ln ln lnn− ln Γ(p+1

2
)
)2
/(2 ln lnn), an =

√
bn/(2 ln lnn).

Recall that

ΛT (s) = −Rt
TQ
−1
T RT +Rt

sTQ
−1
sTRsT + (RT −RsT )t(QT −QsT )−1(RT −RsT )

and T = nν, ν fixed. Let us assume for a moment that ν = 1. We write Λn(s), Rn and Qn

for ΛT (s), RT and QT , respectively, since the asymptotic framework is n→∞.
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Assume further that the solution of the stochastic differential equation (1) is stationnary.
Note that this is not a constraint for our purposes since we may alternatively consider the
stationary process

X̃t := h̃(t) + Z̃t

with

h̃(t) := e−αt
∫ t

−∞
eαsh(s)ds

and

Z̃t = σe−αt
∫ t

−∞
eαsdB̃s

where

B̃s := B̌s1R+(s) + B̂−s1R−(s)

is bilateral Brownian motion defined through two independent standard Brownian motions
(B̌t)t≥0 and (B̂t)t≥0. The process (X̃t)t≥0 is stationary and does not depend on X0. Fur-

thermore, it was proved in [5] (Lemma 4.4) that one has |X̃t − Xt| → 0, almost surely, as
t→∞.

The following proposition is essential for the proof of Theorem 2. First, define for two
σ-algebras A and B the quantities

α(A,B) = sup
A∈A,B∈B

|IP(A ∩B)− IP(A)IP(B)|

and

ρ(A,B) = sup
F∈L2(A,IP),G∈L2(B,IP)

Corr(F,G).

It is known that

α(A,B) ≤ 1

4
ρ(A,B).

For a stationnary sequence of random variables (ζk)k∈N define the mixing coefficient αζ by

αζ(n) = sup
k∈N

α
(
σ(ζi; i ≤ k), σ(ζi; i ≥ k + n)

)
.

The sequence (ζk)k∈N is called strongly mixing if αζ(n)→ 0 as n→∞.

Proposition 4.2. The sequence of random vectors (rk)k∈N defined by

∆Rk := (Rk −Rk−1) =

(∫ k

k−1

ϕ1(t)dBt, . . . ,

∫ k

k−1

ϕp(t)dBt,−
∫ k

k−1

XtdBt

)t
is strongly mixing with mixing coefficient α of order

α∆R(n) = O(e−α(n−1)).

Proof. Define the C[0, 1]-valued stochastic process (ξ(k))k∈N by

ξ(k) :=

(
X(k)

B(k)

)
:=

(
(Xt+k)t∈[0,1]

(Bt+k)t∈[0,1]

)
.
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The process (ξ(k))k∈N is both a Markov and a Gaussian process. Hence, by making use of
the Markov property and by applying the correlation inequality for Gaussian processes from
Lemma 4.3 we obtain

αξ(n) ≤ sup
t∈R

α
(
σ(ξ(k); k ≤ m), σ(ξ(k); k ≥ m+ n)

)
= sup

m∈R
α
(
σ(ξ(m)), σ(ξ(m+n))

)
≤ sup

m∈N
sup

a,b,c,d∈L2[0,1]

Corr(〈a,B(m)〉+ 〈b,X(m)〉, 〈c, B(m+n)〉+ 〈d,X(m+n)〉)

≤ e−α(n−1) sup
a,b,c,d,∈L2[0,1]

Corr(〈a,B(1)〉+ 〈b,X(1)〉, 〈c, B(2)〉+ 〈d,X(2)〉)

= O(e−α(n−1))

where the last equality is stated in Lemma 4.4. Note that each ∆Rk may be represented as

∆Rk = fk(ξ
(k))

where fk : C[0, 1]× C[0, 1]→ R is a measurable function. Since the σ-algebra generated by
fk(ξ

(k)) : Ω → R is smaller or equal the σ-algebra generated by ξ(k) : Ω → C[0, 1] × C[0, 1],
the bound for αξ(n) established above is also valid for α∆R(n). �

Lemma 4.3. Let (H, 〈., .〉) be separable Hilbert-space and (X, Y ) be a pair of random vari-
ables with Gaussian joint law. Then one has

ρ(σ(X), σ(Y )) ≤ max
a,b∈H

Corr(〈a,X〉, 〈b, Y 〉).

Proof. Let (ei)i∈N be a system of orthonormal basis vectors for the Hilbert space H. If we
set Vi := 〈X, ei〉 and Wj := 〈Y, ej〉 then we have the representations

X =
∞∑
i=1

Viei and Y =
∞∑
j=1

Wjej.

Note that σ(X) = σ(V1, V2, ...) and σ(Y ) = σ(W1,W2, ...). It follows from Prop. 3.18 and
Thm. 9.2 in [2] that

ρ(σ(X), σ(Y )) = lim
n→∞

ρ(σ(V1, .., Vn), σ(W1, ...,Wn))

= lim
n→∞

sup
a1,...,an,b1,...,bn∈R

Corr
( n∑
i=1

aiVi,
n∑
j=1

bjWj

)
.

Since the correlation is homogeneous we can assume without loss of generality that
∑
a2
i = 1

and
∑
b2
j = 1 holds. From this then follows

ρ(σ(X), σ(Y )) ≤ sup
(ai)i∈N,(bj)j∈N:

∑
a2i =

∑
b2j=1

Corr
( ∞∑
i=1

aiVi,
∞∑
j=1

bjWj

)
≤ sup

a,b∈H:‖a‖=‖b‖=1

Corr
(
〈a,X〉, 〈b, Y 〉

)
.

The second inequality follows since one has for a ∈ H and ai := 〈a, ei〉 that

〈a,X〉 =
∞∑
i=1

aiVi.
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This finishes the proof of the lemma. �

Lemma 4.4. For all a, b, c, d ∈ L2[0, 1] we have

Corr(〈a,B(m)〉+ 〈b,X(m)〉, 〈c, B(m+n)〉+ 〈d,X(m+n)〉)
= e−α(n−1)Corr(〈a,B(m)〉+ 〈b,X(m)〉, 〈c, B(m+1)〉+ 〈d,X(m+1)〉).

Proof. Since B(m+n) is independent from σ(B(m), X(m)) we have that

Corr(〈a,B(m)〉+ 〈b,X(m)〉, 〈c, B(m+n)〉+ 〈d,X(m+n)〉)
= Corr(〈a,B(m)〉+ 〈b,X(m)〉, 〈d,X(m+n)〉)

=
Cov(〈a,B(m)〉+ 〈b,X(m)〉, 〈d,X(m+n)〉)√

Var(〈a,B(n)〉+ 〈b,X(n)〉)
√

Var(〈d,X(m+n)〉)

=
Cov(〈a,B(m)〉+ 〈b,X(m)〉, 〈d,X(m+n)〉)√
Var(〈a,B(n)〉+ 〈b,X(n)〉)

√
Var(〈d,X(n)〉)

.

Note that we used the fact that the sequence (X(m))m∈N is stationary.
We will use the fact that (Xt)t≥m is the unique solution of the SDE (1) with initial condition

Xm to see that X(m+n) has the representation

Xm+n+s = e−α(n+s)Xm + h(n+ s) + σe−α(n+s)

∫ n+s

0

eαrdBm+r.

This representation follows from Lemma 4.2 in Dehling, Franke, Kott (2010). We use this
fact to compute the covariance in the above formula:

Cov(〈a,B(m)〉+ 〈b,X(m)〉, 〈d,X(m+n)〉)

= e−αnCov

(
〈a,B(m)〉+ 〈b,X(m)〉,

∫ 1

0

c(s)e−αsXmds

)

+Cov

(
〈a,B(m)〉+ 〈b,X(m)〉,

∫ 1

0

c(s)h(n+ s)ds

)

+e−αnCov

(
〈a,B(m)〉+ 〈b,X(m)〉,

∫ 1

0

c(s)σe−αs
∫ 1

0

eαrdBm+rds

)

+e−αnCov

(
〈a,B(m)〉+ 〈b,X(m)〉,

∫ 1

0

c(s)σe−αs
∫ n+s

1

eαrdBm+rds

)

Note that the second term on the right vanishes, since the right entry in the covariance
is deterministic. Further, the fourth term vanishes, since the Brownian increments on the
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interval [m+ 1,m+ n+ s] are independent with respect to σ(B(m), X(m)). We thus have

Cov(〈a,B(m)〉+ 〈b,X(m)〉, 〈d,X(m+n)〉)

= e−αnCov

(
〈a,B(m)〉+ 〈b,X(m)〉,

∫ 1

0

c(s)e−αsXmds

)

+e−αnCov

(
〈a,B(m)〉+ 〈b,X(m)〉,

∫ 1

0

c(s)σe−αs
∫ 1

0

eαrdBm+rds

)
.

The result follows since we can do the same reasoning for n = 1. �

Corollary 4.5. There exists an iid-sequence of Rp+1-valued Gaussian random variables
ζi; i ∈ N such that for Uk :=

∑k
i=1 ζi one has

Rk − Uk = O(k1/2−λ) for some λ > 0 as k →∞.

Proof. This follows from Proposition 4.2 and the theorem from Kuelbs and Philipp on strong
approximation of mixing random sequences (see [9]). �

Remark 2. In the following we will denote by Γp+1 the covariance matrix of the Gaussian
random variable ζ1. It then follows that the sequence of random variables Γ−1

p+1R[nt]/
√
n; t ∈

[0, 1] converges in distribution toward a p+ 1-dimensional Brownian motion with covariance
matric Ip+1. Here Ip+1 denotes the identity matrix with p+1 rows. It follows from Proposition
3.2 that Γp+1 = Σ.

Proposition 4.6. For all δ > 0 one has as u→ 0:

lim sup
T→∞

IP

(∣∣∣ sup
0<s≤u

ΛT (s)− sup
0<s≤u

Rt
sTQ

−1
sTRsT

∣∣∣ > aT δ

)
→ 0

and

lim sup
T→∞

IP

(∣∣∣ sup
1−u<s≤1

ΛT (s)− sup
1−u<s≤1

(RT −RsT )t(QT −QsT )−1(RT −RsT )
∣∣∣ > aT δ

)
→ 0.

Proof. It holds that

a−1
T

∣∣ sup
0<s≤u

ΛT (s)− sup
0<s≤u

Rt
sTQ

−1
sTRsT

∣∣
≤ sup

0<s≤u
a−1
T

∣∣ΛT (s)−Rt
sTQ

−1
sTRsT

∣∣
= sup

0<s≤u
a−1
T

∣∣(RT −RsT )t(QT −QsT )−1(RT −RsT )−Rt
TQ
−1
T RT

∣∣
D−→ sup

0<s≤u

∣∣∣∣‖W (1)−W (s)‖2

1− s
− ‖W (1)‖2

∣∣∣∣ (as T →∞)(16)

→ 0, almost surely,
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as u → 0, where the convergence in (16) is implicated by the proof of Theorem 1 and the
fact that aT → 1. Analogously, one has

a−1
T

∣∣∣∣ sup
1−u<s≤1

ΛT (s)− sup
1−u<s≤1

(RT −RsT )t(QT −QsT )−1(RT −RsT )

∣∣∣∣
≤ sup

1−u<s≤1
a−1
T

∣∣Rt
sTQ

−1
sTRsT −Rt

TQ
−1
T RT

∣∣
D−→ sup

1−u<s≤1

∣∣∣∣‖W (s)‖2

s
− ‖W (1)‖2

∣∣∣∣ (as T →∞)

→ 0, almost surely,

as u→ 0. �

Proposition 4.7. Under the framework of Theorem 1 it holds under the null hypothesis that

1

aT

(
sup

0<s≤u
Rt
sTQ

−1
sTRsT − bT

)
D−→ G∗

and
1

aT

(
sup

1−u<s≤1
(RT −RsT )t(QT −QsT )−1(RT −RsT )

)
D−→ G∗,

as n→∞, where G∗ denotes a real-valued random variable satisfying

IP(G∗ ≤ x) = exp(−e−x/2)

and where aT and bT are given in Proposition 4.1.

Proof. The reasoning follows the lines of the proof of remark A3 presented in [4] (see page
297). We first note that

Rt
sTΓ−1

p+1RsT − U t
[sT ]Γ

−1
p+1U[sT ] = Rt

sTΓ−1
p+1(RsT − U[sT ]) + (Rt

sT − U t
[sT ])Γ

−1
p+1U[sT ].

The law of iterated logarithm implies U t
[sT ]Γ

−1
p+1 = O(([sT ] log[sT ])1/2) and Corollary 4.5 then

implies Rt
sTΓ−1

p+1 = O(([sT ] log[sT ])1/2). Using those facts and Corollary 4.5 again yields

Rt
sTΓ−1

p+1RsT − U t
[sT ]Γ

−1
p+1U[sT ] = O([sT ]1−λ

′
)(17)

for some λ′ > 0 as T →∞.
Since by Proposition 3.3 one has QsT/sT → Γp+1 it follows that

Rt
sTQ

−1
sTRsT −

1

sT
RsTΓ−1

p+1RsT =
Rt
sT

(sT )1/2
sTQ−1

sT

(
Γp+1 −

QsT

sT

)
Γ−1
p+1

RsT

(sT )1/2
−→ 0.

This relation together with Equation (17) implies that as T →∞ one has

Rt
sTQ

−1
sTRsT − U t

[sT ]Γ
−1
p+1U[sT ]/[sT ] −→ 0.(18)

Proposition 3.3 and the continuous mapping theorem yield

sup
s∈[u,1]

Rt
sTQ

−1
sTRsT

D−→ sup
s∈[u,1]

‖W (s)‖2

s
.

It thus follows that

sup
s∈[u,1]

Rt
sTQ

−1
sTRsT = OP (1)
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Moreover we have

sup
s∈(0,u]

Rt
sTQ

−1
sTRsT

P−→∞.

Thus with propability closer and closer to one the supremum is achieved in the interval (0, u]
and not in [u, 1]. It then follows that

IP
(

sup
s∈(0,1]

Rt
sTQ

−1
sTRsT = sup

s∈(0,u]

Rt
sTQ

−1
sTRsT

)
−→ 1.(19)

We also note that for a fixed M > 0 one has

IP
(

sup
s∈(0,1]

Rt
sTQ

−1
sTRsT = sup

s∈(M/T,1]

Rt
sTQ

−1
sTRsT

)
−→ 1.(20)

and

IP
(

sup
s∈(0,1]

U t
[sT ]Γ

−1
p+1U[sT ] = sup

s∈(M/T,1]

U t
[sT ]Γ

−1
p+1U[sT ]

)
−→ 1.(21)

Let
RT (M) := sup

s∈(M/T,1]

Rt
sTQ

−1
sTR

t
sT − sup

s∈(M/T,1]

U t
[sT ]Γ

−1
p+1U

t
[sT ]

/
[sT ].

From Equation (18) we have

|RT (M)| =
∣∣∣ sup
s∈(M/n,1]

Rt
sTQ

−1
sTR

t
sT − sup

s∈(M/n,1]

U t
[sT ]Γ

−1
p+1U

t
[sT ]

/
[sT ]

∣∣∣(22)

≤ sup
s∈(M/n,1]

∣∣∣Rt
sTQ

−1
sTR

t
sT − U t

[sT ]Γ
−1
p+1U

t
[sT ]

/
[sT ]

∣∣∣
which goes to zero as M → ∞ uniformly in T ≥ ν. It now follows from Eq.(19) and
Proposition 4.1 that

lim
T→∞

IP
(

sup
s∈(0,u]

Rt
sTQ

−1
sTRsT ≤ aTx+ bT

)
= lim

T→∞
IP
(

sup
s∈(0,1]

Rt
sTQ

−1
sTRsT ≤ aTx+ bT

)
= lim

M→∞
lim
T→∞

IP
(

sup
s∈(M/T,1]

Rt
sTQ

−1
sTRsT ≤ aTx+ bT

)
= lim

M→∞
lim
T→∞

IP
(

sup
s∈(M/T,1]

U t
[sT ]Γ

−1
p+1U

t
[sT ]

/
[sT ] ≤ aTx+ bT +RT (M)

)
= lim

T→∞
IP
(

sup
s∈(0,1]

U t
[sT ]Γ

−1
p+1U

t
[sT ]

/
[sT ] ≤ aTx+ bT

)
= lim

T→∞
IP
(

sup
s∈(0,1]

‖S[sT ]‖2/[sT ] ≤ aTx+ bT

)
−→ exp

(
− e−x/2

)
.

This proves the first statement of the proposition. The second one is proved in an analogous
way. �

Proof of Theorem 2. Since for fixed x ∈ R one has aTx+ bT →∞ as T →∞ it follows from
Theorem 1 for all u ∈ (0, 1/2) that

IP
(

sup
u<s<1−u

ΛT (s) ≤ aTx+ bT

)
−→ 1.
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Therefore, one has as T →∞ that

IP
(

sup
0≤s≤1

ΛT (s) ≤ aTx+ bT

)
= IP

(
sup

0≤s≤u
ΛT (s) ≤ aTx+ bT , sup

1−u≤s≤1
ΛT (s) ≤ aTx+ bT

)
.

By Proposition 4.6 this has for T →∞ the same limit as

IP

(
sup

0<s<u
Rt
sTQ

−1
sTRsT ≤ aTx+ bT , sup

1−u<s<1
(RT −RsT )t(QT −QsT )−1(RT −RsT ) ≤ aTx+ bT

)
.

Proposition 4.7 yields that this last expression converges toward exp(−2e−x/2) since the two
sequences

sup
0<s<u

Rt
sTQ

−1
sTRsT

and

sup
1−u<s<1

(RT −RsT )t(QT −QsT )−1(RT −RsT )

are asymptotically independent by Proposition 4.2. �
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[7] L. Horváth (1993): The Maximum Likelihood Method for Testing Changes in the Parameters of

Normal Observations. Annals of Statistics 21, 671–680.
[8] I. Karatzas and S. E. Shreve (1988): Brownian Motion and Stochastic Calculus. Springer-Verlag,

Berlin.
[9] J. Kuelbs and W. Philipp (1980): Almost Sure Invariance Principles for Partial Sums of Mixing

B-Valued Random Variables. Annals of Probability 8, 1003-1036.
[10] H. H. Kuo (2006): Introduction to Stochastic Integration. Springer-Verlag.
[11] Y. A. Kutoyants (2004): Statistical Inference for Ergodic Diffusion Processes. Springer Verlag, Lon-

don.
[12] R. S. Lipster and A. N. Shiryayev (1977): Statistics of Random Processes I. Springer-Verlag, Berlin.
[13] B. Øksendal (2003): Stochastic Differential Equations. Springer-Verlag, Berlin.
[14] L. S. Ornstein and G. E. Uhlenbeck (1930): On the Theory of Brownian Motion. Physical Review

36, 823–841.

Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
E-mail address: herold.dehling@ruhr-uni-bochum.de
E-mail address: thomas.kott@ruhr-uni-bochum.de



16 H. DEHLING, B. FRANKE, T. KOTT, AND R. KULPERGER
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