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Abstract

We use a recently proposed fluctuation-type procedure for detecting breaks in

spatial regions to distinguish between hard and soft areas of inhomogeneous min-

eral subsoil like additives, air pockets and adhesion. For a proper application,

some refinements of the procedure are necessary. Both simulation evidence of the

refinement and the application on the subsoil yield favorable results.
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1. Introduction

This paper refines a procedure from Arnold and Wied (2012) for detecting structural

changes in spatial regions and applies it on inhomogeneous mineral subsoil in order to

detect shifts from adhesion to additives or air pockets. Different levels of force signals

allow to distinguish between hard and soft regions. The basic idea of the procedure is to

transform the spatial data into a virtual time series by obtaining an ordering of spatial

data which is mostly not natural in spatial contexts.

While e.g. López et al. (2010) or Mur et al. (2010) identify different regimes by performing

Lagrange multiplier tests for different spatial classifications, Arnold and Wied (2012)

propose an ordering approach based on spatial autoregressive modeling. The present

paper extends this with a polygonal approach for detection of star-shaped regions in

order to take the specific structure of inhomogeneous mineral subsoil into consideration.

Whereas Euclidean or spatial approaches always detect regions which are point-symmetric

around the assumed starting point, the polygonal approach turns out to be more robust

against false starting point specification.

After obtaining an ordering, standard CUSUM methods from time series literature are

applied on the transformed sequence. The “virtual” transformation into a ordered one-

dimensional series guarantees spatially connected regions. Moreover, in contrast to Chow-

like tests, we do not have to assume the position of potential change points to be known

a priori.

The paper is organized as follows. In Section 2, we present the practical problem and

discuss the interest in distinguishing between hard and soft material areas. Section 3

presents the break detection method under the assumption that an ordering has already

been found, Section 4 presents methods to find spatial orderings, Section 5 gives simu-

lation evidence of the refined method and Section 6 presents the application on mineral

subsoil. Finally, we give an outlook on possible further research in Section 7.
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Figure 1: Two different materials. Left: homogeneous additive-free concrete. Right: inhomo-
geneous multi-phase material concrete.

2. Description of the problems in concrete machining

In general tools used in concrete machining operations are not adapted to the particular

machining processes, whereas tool wear and production time are the main cost causing

factors. A geometrical simulation model describing cutting forces and wear of both di-

amond and workpiece was proposed in the past (Raabe et al., 2011). This model takes

the abrasive nature of the machined material into account by modeling the microparts of

diamond and workpiece as delaunay tessellations of points randomly distributed within

the workpiece and simulating the process iteratively. By fitting the model to a series of

force signals measured during real experiments the general appropriateness of the model

was shown.

An implicit assumption of these fittings is that the connected processes are stationary.

However, after investigating real process data in the time domain it turns out that this

assumption does not hold. Instead, the forces are obviously affected by material hetero-

geneity, which is not taken into account in the first stage model. To fill this gap, we

now introduce an extension of the simulation model, where the material heterogeneity is

modeled and simulated by Gaussian Random Fields.

However, by modeling the material heterogeneity by Random Fields the heterogeneity is

implicitly assumed to be continuous. While this assumption is fulfilled for comparably

homogeneous materials like additive-free concrete, the case is different for more complex

composites like inhomogeneous multi-phase material concrete due to its contained mineral

additives and air pockets (compare Figure 1). For this reason a procedure has to be

developed to automatically detect shifts from adhesion to additives or air pockets.
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Figure 2: a) Simulated workpiece, b) Course of diamond during process, c) Cylindric bore hole,
d) Cylinder cut free (left) and unrolled (right).

The heterogeneity-affected force signals measured during the machining processes are

time series in nature. However, by considering their origination from a rotation around

the center of the produced hole with fixed radius, rotational frequency and feed, these

time series can be matched to the cylindric hole wall and by unfolding the wall to a

two-dimensional image (compare sketch in Figure 2).

These 2D-images then can be used as a basis for the detection of spatial regions corre-

sponding to additives or air pockets which are mean shifted in comparison to the concrete

adhesion. The following sections describe the procedure we propose to solve this task.
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3. A method for detecting structural breaks in spatial

regions

This section shortly describes the change point detection procedure from Arnold and

Wied (2012) under the assumption that a spatial order is available. In Section 4, we

discuss methods to find this order.

For i = 1, . . . , n, let yi ∈ R be force signals observed at locations l1, . . . , ln ∈ R2 in a 2-

dimensional space which is equipped with a distance measure dij := d(li, lj) (the choice of

the distance measure is discussed in the following subsection). Assuming that yi = µi+ εi

with εi ∼ (0, σ2)∀ i = 1, . . . , n, where µi and σ2 are scalar constants, the basic idea of

the procedure (which is described in more detail in Arnold and Wied, 2012) is to localize

changes in the expectations µi.

To this end, let l0 be a starting point which need not coincide with one of the li’s. The

locations are ordered with respect to their distance to the starting point such that l(i)

denotes the location with the i-th smallest distance to l0. Thus for l(i) we have that

i = ]{k ∈ {1, . . . , n} : dk0 ≤ di0}.

The observation taken at location l(i) shall be denoted by y{i}.

We make the assumption that the expectations are constant in a surrounding area of the

starting point l0, but different for locations with larger distances from l0, so that

µi =

 µ1, di0 ≤ d∗

µ2, di0 > d∗,

for some d∗ ∈ R and µ1 6= µ2. Localizing the change in expectations is then equivalent

to estimating d∗. However, as there are only n observations available, it is not possible

to consistently estimate this parameter. Instead, our goal is the estimation of s∗ =

limn→∞
n1

n
(the limit is assumed to exist), where n1 is the number of observations which
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are taken at locations with di0 ≤ d∗. d∗ is uniquely related to s∗ so that separation of S

into the two subareas with different expectations can be achieved by consistent estimation

of s∗.

The main tool for the estimation of s∗ is the function

Wn(s) :=
[sn]√
nσ̂

(
µ̂[sn] − µ̂n

)
. (1)

Here,

µ̂j :=
1

j

j∑
i=1

y{i}

is the estimator for µ from the j observations which are closest to the starting point and

σ̂ =

√√√√ 1

n− 1

n∑
i=1

(yi − µ̂n)2

estimates the standard deviation σ.

A natural estimator for s∗ is then provided by the point where
∣∣∣Wn(s)√

n

∣∣∣ is largest, that

means

ŝ = argmax
s∈[0,1]

∣∣∣∣Wn(s)√
n

∣∣∣∣ . (2)

Under additional assumptions, this estimator is consistent for s∗.

4. Finding spatial orderings

Section 3 describes the break detection procedure under the assumption that an ordering

of the data points has already been found. This section presents several ways how the

locations can be ordered. While the two first approaches (Euclidean distances, spatial

autoregressive modeling) have already been discussed in detail in Arnold and Wied (2012),

the third subsection proposes a refined polygonal approach for detection of star-shaped

regions in order to take the specific structure of inhomogeneous mineral subsoil into

consideration.
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4.1. Euclidean distances An obvious way is provided by standard distance measures

like Euclidean distance:

||li − l0|| =

(
2∑
j=1

∣∣∣[(li − l0)]j∣∣∣2
) 1

2

. (3)

4.2. Spatial autoregressive modeling A second way to obtain such an ordering

relies on spatial autoregressive modeling. A spatial autoregressive model with different

kinds of spatial dependencies is fit to the observations, and the shape of regions is then

determined by the amount of the different spatial dependencies in the data.

The spatial autoregressive model for the force signals is

y = ρ1W1y + ρ2W2y + ρ3W3y + ρ4W4y + ε, (4)

where y is the n-vector of observed force signals, Ww, w = 1, 2, 3, 4, are (n×n)-dimensional

spatial weighting matrices, ε are n-dimensional vectors of innovations with E(ε) = 0

and Cov(ε) = σ2
εIn and the scalar parameters ρ1, ρ2, ρ3 and ρ4 have to be estimated

from the data. The so called spatial lags ρwWwy capture dependencies in four different

directions: horizontal, vertical both diagonals. A large value for ρ1 e.g. corresponds to

strong horizontal dependence and will produce regions with large horizontal extent. The

formal implementation arranges locations in terms of correlations to the starting point.

The unknown parameters ρw can be estimated by generalized method of moments (GMM).

Since

E(εTWwε) = tr(σ2
εWw) = 0,

GMM-estimates for the ρw are given by

(ρ̂1, ρ̂2, ρ̂3, ρ̂4)
T = argmin

(ρ1,ρ2,ρ3,ρ4)∈U

∑4
w=1

[
yT (In − ρ1W1 − ρ2W2 − ρ3W3 − ρ4W4)

T

Ww(In − ρ1W1 − ρ2W2 − ρ3W3 − ρ4W4)y]2 .
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These estimates provide a plug-in estimate for Cor(y). In the final step, the locations are

ordered with respect to their estimated correlation to l(1).

This approach can further be generalized to (i) more than one-dimensional observations,

(ii) more than two-dimensional locations and (iii) situations where the locations do not

form a regular grid (compare Arnold and Wied, 2012 for details).

The spatial approach is more flexible than Euclidean distances in the sense that it can

also detect non-circular regions. However, both approaches assume the inner region to

be point-symmetric around the starting point which will rarely be known in applications.

The next subsection suggests a way how to circumvent this drawback.

4.3. Two-dimensional extension for detection of star-shaped regions The

originally proposed method for the detection of spatial structural changes has some crucial

assumptions. Basically, the area is assumed to be point symmetric due to one specific

metric around the starting point, which has to be known. As these assumptions are

not realistic in the case of inhomogeneous subsoil, we now propose a two-dimensional

extension for a wider class of area shape which furthermore is robust for starting point

shift.

For this extension, first the assumption of point symmetric areas is weakened to star

shaped areas, i.e. each consecutive area A for all possible rays starting from center

(l1;s, l2;s) intersects the area borders exactly once. The idea of our extension is to equally

distribute rays around the starting point and to determine the intersection point of border

and ray in each rays direction. By connecting the crossing points to a polygon the true

area border can then be approximated to any precision. If the assumption for the area

shape is relaxed to convex shapes - a realistic assumption for concrete additives and air

pockets - the shape can be approximated even when the starting point is not the center,

as long as it is an inner point of the area.

Practically this approximation is obtained as follows. Consider the data set y1, ..., yn

with two-dimensional spatial coordinates (l1;i, l2;i), ..., (l1;n, l1;n). Set the starting point to
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(l1;s, l2;s), the number of polygon vertices to P and γP = 2π/P . Next the data set is

subdivided into P subsets where observation i is assigned to subset j, if

(j − 1) · γP < γi ≤ j · γP with γi = asin

(
l1;i − l1;s√

(l1;i − l1;s)2 + (l2;i − l2;s)2

)
.

Now, the method described in the previous section is applied to each of the P subsets

using Euclidean distance and the same starting point (l1;s, l2;s) for all subsets. By this,

for each subset i a radius di of the inner area is obtained. The approximating polygon is

then determined by connecting the P points

(p1;j, p2;j) = (di · sin[(i− 0.5) · γP ], di · cos[(i− 0.5) · γP ]), i = 1, ..., P.

The data set finally is classified by assigning each inner point of the polygon to the inner

area.

In a modified version of the extension, a finer polygon is obtained by not only subdividing

the data set once. Instead, the reference angle of the subdivision is subsequently varied

and, for each reference angle, the data set is subdivided and the method is applied to each

temporary subset. By this, formally, the polygon is defined by Pm points, (m1;i,m2;i), i =

1, ..., Pm, which are obtained by setting

(m1;j,m2;j) = dm;j · sin[(j − 0.5) · γPm ], dm;j · cos[(j − 0.5) · γPm ]), j = 1, ..., Pm,

where γPm = 2π/Pm and dm;j is the radius that results from applying the original pro-

cedure using Euclidean distance and the j-th subset, consisting of the observations i for

which

γPm · j − γP/2 < γi ≤ γPm · j + γP/2

holds.
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Figure 3: Visualization of the method extension. The symbols denote the eight subsets, the
dark gray lines are the subset borders and the starting point is depicted in black. The color
scale from yellow (low) to red (high) reflects the values of yi. The black line shows the true
area border, the approximating polygons are in green for the unmodified and in light gray for
the modified extension.

Figure 3 visualizes the extension described here.

5. Simulation Study

The introduced method is analyzed on the basis of an extensive simulation study. For

this, the following two factors are varied.

• The true shape of the inner area on two levels. The first level is circle-shaped, the

second level is star-shaped, where the radius set is a realization of a Gaussian Ran-

dom Field with exponential covariance function with parameters mean 0, variance

1, nugget 0 and scale 5.

• The (mean) radius of the areas on levels 1 and 1.5.

For all 4 factor combinations 20 data sets are generated by using a normal distribution

for yi with mean 10 and variance 1 for the inner and mean 5 and variance 1 for the outer
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area. The coordinates (l1;i, l2;i) are given by a regular quadratic 30× 30-grid with values

between −3 and 3.

For each of these 80 data sets areas are estimated by the original procedure using Eu-

clidean distance and spatial autoregressive modeling, the unmodified and the modified

polygonal extension. For the polygonal extensions the parameter P is varied between 8

and 16, where the parameter Pm for the modified extension are fixed to 64. For each data

set the starting point is estimated by taking the point for which the sum of y-values in a

local neighborhood of size 0.5 is maximal.

By this in total 480 (2 true shapes, 2 shape radii, 4 estimation types, 2 resolutions for two

of the estimation types, 20 repetitions) estimations are obtained. The misclassification

rates of these estimations are analyzed in the following.

The data is analyzed by a logistic regression model with the misclassification of each single

point yi being the regressand. The factors of simulation and estimation are included as

fixed effects, the distance between true center and estimated starting point as covariate

and the specific data sets as random effect. Where possible, two-fold interactions are

included. The results of this logistic regression model are summarized in Table 1.

The table shows that the majority of the coefficients is statistically significant on the

level 5%. However, as two-way interactions are involved, signs and p-values cannot be

interpreted directly. Therefore, specific contrasts are now investigated more closely.

Table 2 shows the odds ratio of misclassification rate between the four estimation methods

under variation of each of the interacting factors and covariates. Figure 4 visualizes these

contrasts by interaction plots.

All contrasts in the table except of the one between Polygonal mod. and Polygonal for

true shape Circle are statistically significant on the level 5%.

As can be seen from the interaction plots, for nearly all factor/covariate combinations,

the order from worst to best estimation type w.r.t. misclassification is Spatial, Euclid,

Polygonal, Polygonal mod. This order is violated only once, namely for small distances

between the estimated starting point and the true center. There, the unmodified Polyg-
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Regressor Coefficient p-Value
Intercept −2.9067 < 0.0001

Estimation type Spatial 0.8418 < 0.0001
Estimation type Polygonal −0.1214 0.1600

Estimation type Polygonal mod. 0.3966 < 0.0001
True shape Star 0.3351 < 0.0001
Shape radius 1.5 0.7458 < 0.0001

P = 16 −0.011 < 0.0001
Distance to true center 0.3525 < 0.0001

Est. type Spatial / distance to true center −0.1716 < 0.0001
Est. type Polygonal / distance to true center 0.2987 < 0.0001

Est. type Polygonal mod. / distance to true center −0.0246 0.4238
Est. type Spatial / True shape Star −0.0319 < 0.0001

Est. type Polygonal / True shape Star 0.0412 0.2552
Est. type Polygonal mod. / True shape Star −0.139 0.00018

Est. type Spatial / Shape radius 1.5 −1.2304 < 0.0001
Est. type Polygonal / Shape radius 1.5 −1.4607 < 0.0001

Est. type Polygonal mod. / Shape radius 1.5 −0.3374 < 0.0001

Table 1: Results of logistic misclassification regression model.

Interacting Level Spatial Euclid Polygonal
Factor/Covariate → Euclid → Polygonal → Polygonal mod.

Distance to true center
0 −0.4724 −1.3106 0.1075
1 −0.3009 −1.0119 −0.2158

True shape
Circle −0.3627 −1.1051 0.0207
Star −0.3307 −1.0638 −0.1596

Radius
1 −0.3307 −1.0638 −0.1596

1.5 −0.1620 −1.679 −0.2747

Table 2: Misclassification rate odds ratio contrasts between estimation types.

onal extension outperforms the modified one slightly. This implies that the modification

increases robustness w.r.t. starting point deviations.

Most of the misclassification rate shifts between levels have the same sign for all estimation

types. The only exception here is that for higher radii misclassification increases for the

original version, where it decreases in the case of the two extension variants. So, for

vaster inner areas the polygonal extension is even more preferable as compared to the

original version than for smaller areas.
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Figure 4: Interaction plots of logistic misclassification regression model. Black: Spatial, Red:
Euclid, Green: Polygonal, Blue: Polygonal mod. Factors/Covariates which are not varied were
fixed to 0.8261 (empirical mean) for distance to true center, Star for shape and 1 for radius.

6. Application of the procedure on inhomogeneous mineral

subsoil

The procedure described in the previous sections is now applied to data measured during

real grinding processes. As the true areas in the real data are not known, it therefore is a

mere unsupervised method. To give an impression of how well the method works in the

real application, we therefore apply it to a superposed image of a sample taken from a

process of grinding into additive free basalt and a high area simulated as in the previous

section. Figure 5 shows the superposed image.

Next our procedure is applied to this data using the modified extension with parameters

P = 6 and Pm = 64. Figure 6 shows a comparison of the true area and the estimated

polygon. Replications of the procedures to different samples and series show similar

results like Figure 6. It turns out that true areas are detected even with low signal to

noise ratios, when identification by eye is difficult (compare 5).

Furthermore, the procedure turns out to be robust against the high spatial correlation

caused by the material heterogeneity. This heterogeneity is subject of another part of the
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Figure 5: Superposed image of grinding data and simulated additive.

Figure 6: True area border (black) and polygon estimated by modified procedure extension
(blue).

project the grinding data is taken from. One of the next steps in the project is to lead

the identification of additives presented in this work and the modeling of heterogeneity

together and to implement the results to a simulation model of the grinding process. Due

to the robustness of the area identification it is straightforward to realize the combination

of the two subjects by first identifying additives and then fitting material heterogeneity.

As up to now for our procedure only one active consecutive area is assumed, the major

task for the implementation will be the extension to multiple areas. A promising approach

to solve this task is the pre-identification of additive centers by dense-based clustering

methods.
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7. Summary and Discussion

In this paper, we use a recently proposed fluctuation-type procedure for detecting breaks

in spatial regions to distinguish between different areas of inhomogeneous mineral sub-

soil. In these regions which correspond to additives or air pockets, force signals are mean

shifted in comparison to the concrete adhesion. For a proper application, some refine-

ments of the procedure are necessary. New polygonal approaches are more favorable

than approaches based on Euclidean or spatial distances. The superiority of the polygo-

nal approaches is presumably due to robustness against false starting point specifications.

While both simulation evidence of the refinement and the application on the subsoil yield

favorable results, there are still some issues to be left for further research, e.g. it would

be interesting to consider a setting with more than one break.
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