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1 Introduction

1.1 Overview

The construction of quasi-morphisms on the group of Hamiltonian diffeomor-
phisms using spectral invariants coming from Floer homology and the construction
of symplectic quasi-integrals on the space of continuous functions with compact sup-
port has become an increasingly interesting subject in symplectic topology in the
last years since the existence of these functions possesses various applications to a
variety of topics.

In the first part of this work we construct a family of functions on the group of
Hamiltonian diffeomorphisms of a cotangent bundle of a closed connected manifold,
where each function possesses properties including those of a partial quasi-morphism.
The family is obtained in terms of Lagrangian spectral invariants from Lagrangian
Floer homology and gives rise to a family of functionals on the space of compactly
supported smooth functions, where each functional has properties analogous to those
of a partial symplectic quasi-integral. On cotangent bundles of tori we prove that
the partial quasi-morphisms are equivalent to Viterbo’s symplectic homogenization,
and with this observation we define the latter for more general cotangent bundles.
Moreover, we deduce various applications from the existence and properties of the
partial quasi-morphisms and the partial symplectic quasi-integrals such as to Hofer
geometry, Aubry-Mather theory, Banyaga’s fragmentation norm, and symplectic
rigidity.

In the second part of this work we compare two particular symplectic quasi-
integrals in two dimensions. On the one hand, we prove the existence of a genuine
symplectic quasi-integral on T ∗S1 which is uniquely characterized by its additional
properties. On the other hand, there exists a quasi-state on S2 due to Entov and
Polterovich which is uniquely characterized by its additional properties as well. We
compare the two symplectic quasi-integrals on an open neighborhood of the zero
section in T ∗S1 and give a necessary and sufficient condition for them to be equal.
The comparison has to do with the general question of uniqueness of symplectic
quasi-integrals. Moreover, it will turn out that the unique symplectic quasi-integral
on T ∗S1 is closely related to Viterbo’s symplectic homogenization in two dimensions.
In fact, using this quasi-integral, we can prove the existence and uniqueness of an
operator on T ∗S1 which has the properties of symplectic homogenization by an
axiomatic approach. To prove the existence of the symplectic quasi-integral on
T ∗S1, its uniqueness, as well as the comparison theorem for the symplectic quasi-
integrals, we introduce the notion of quasi-integrals and topological measures on
locally compact Hausdorff spaces and develop a representation theory for them which
is a generalization of Aarnes’ representation theory for compact Hausdorff spaces.

1.2 Partial quasi-morphisms and partial symplectic quasi-
integrals

In symplectic geometry, the notions of (partial) quasi-morphisms and (partial)
symplectic quasi-states for closed symplectic manifolds were introduced and first
studied by Entov and Polterovich [EP1], [EP2]. In general, the notion of homoge-
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neous quasi-morphisms is a group-theoretic one; a homogeneous quasi-morphism on
a group is a homomorphism up to a bounded error. If a group does not admit a
nontrivial homomorphism to the reals, a homogeneous quasi-morphism is the best
approximation to a homomorphism one can try to construct. We refer to [Ca] for an
introduction to the theory of homogeneous quasi-morphisms. The notion of symplec-
tic quasi-states1) and quasi-integrals is related to the one of quasi-states on compact
Hausdorff spaces which was adapted from the theory of quantum mechanics, and
introduced and first studied by Aarnes [Aa1]. In symplectic geometry, a symplectic
quasi-integral is a certain real-valued functional on the set of all continuous func-
tions with various algebraic properties involving, in particular, the structure which
is given by the Poisson bracket. Thus, the theory of symplectic quasi-integrals can
be interpreted as a connection between symplectic geometry and functional analysis.

Entov and Polterovich constructed the first homogeneous quasi-morphisms and
symplectic quasi-states on closed symplectic manifolds. In fact, they proved the
existence of homogeneous quasi-morphisms on the universal cover of the group of

Hamiltonian diffeomorphisms H̃am for certain closed symplectic manifolds which
descends to the group of Hamiltonian diffeomorphisms Ham for some particular

manifolds. The homogeneous quasi-morphisms on H̃am yield the existence of sym-
plectic quasi-states on these manifolds [EP1], [EP2]. The construction was thereby
motivated by the fact that the (universal cover of the) group of Hamiltonian diffeo-
morphisms of a closed symplectic manifold is perfect according to Banyaga [Ba], and
therefore does not admit a nontrivial homomorphism to the reals. In contrast, when
the symplectic manifold is open and the symplectic form is exact, the (universal
cover of the) group of Hamiltonian diffeomorphisms admits a homomorphism to the
reals, the Calabi homomorphism. Now, if one covers a closed symplectic manifold
by sufficiently small open disks, one can consider the collection of Calabi homo-
morphisms on these disks and ask whether it is possible to extend this collection
to a global homomorphism. This is, of course, not possible according to Banyaga’s
result, but for certain closed symplectic manifolds it is possible to extend the Calabi
homomorphisms to a homogeneous quasi-morphism on the (universal cover of the)
group of Hamiltonian diffeomorphisms.

In particular, Entov and Polterovich constructed a homogeneous quasi-morphism

µEP : H̃am→ R on the universal cover of the group of Hamiltonian diffeomorphisms
for any closed spherically monotone symplectic manifold whose even-dimensional
quantum homology (which is a commutative algebra with the quantum product) sat-
isfies the algebraic condition of semi-simplicity. The homogeneous quasi-morphisms
coincide with the Calabi homomorphism on any open and displaceable subset and are
therefore known under the name Calabi quasi-morphisms. They yield the existence
of a symplectic quasi-state ζEP : C(M) → R, referred to as Calabi quasi-state, on
any such manifold. In particular, the construction applies to the complex projective

space CP n; there exists a Calabi quasi-morphism on H̃am(CP n) which yields a sym-
plectic quasi-state on CP n. Moreover, the former descends to a homogeneous quasi-
morphism on Ham(CP n). On more general closed symplectic manifolds (on any
strongly semi-positive closed connected symplectic manifold) Entov and Polterovich

1)A symplectic quasi-state is a normalized symplectic quasi-integral on a compact symplectic
manifold.
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proved the existence of a partial quasi-morphism on H̃am which yields the exis-
tence of a partial symplectic quasi-state. Thereby, both notions were introduced
by Entov and Polterovich and are weaker than the ones of genuine homogeneous
quasi-morphisms and genuine symplectic quasi-states.

The (partial) quasi-morphisms are constructed by homogenizing a certain spec-
tral invariant coming from Hamiltonian Floer homology which is, in this setting,
isomorphic to the quantum homology of the symplectic manifold. It depends on
the algebraic structure of the even-dimensional quantum homology whether one can
extract genuine homogeneous or partial quasi-morphisms and genuine or partial
symplectic quasi-states.

The existence and properties of the (partial) quasi-morphisms and (partial) sym-
plectic quasi-states coming from Hamiltonian spectral invariants due to Entov and
Polterovich on closed symplectic manifolds possess various applications, see [EP1],
[EP2], [EP3], [EPZ], [BEP], [EP4], [EPP], [EPZ]. In particular, the quasi-morphisms
lead to applications to Banyaga’s fragmentation norm, the commutator norm, Pois-
son brackets, and restrictions on partitions of unity. The symplectic quasi-states
yield applications to symplectic rigidity; the latter is a phenomenon in symplectic
topology meaning that certain subsets of symplectic manifolds cannot be completely
displaced from itself by a Hamiltonian diffeomorphism while they can be displaced
by a genuine diffeomorphism.

Starting with Entov’s and Polterovich’s works, the construction of (partial)
quasi-morphisms and (partial) symplectic quasi-integrals using Floer theory on sym-
plectic manifolds has become an increasingly interesting subject. Several authors
generalized and adapted the construction of quasi-morphisms on certain symplectic
manifolds using Hamiltonian spectral invariants and deduced several applications.
Usher, for instance, generalized Entov’s and Polterovich’s construction to more gen-
eral closed symplectic manifolds under certain conditions on the homology using
deformed spectral invariants [Us]. Lanzat generalized it to certain non-closed sym-
plectic manifolds [La]. For certain convex strongly semi-positive compact symplectic
manifolds, as well as for certain open convex symplectic manifolds, in particular, for

cotangent bundles, Lanzat constructs partial quasi-morphisms on H̃am and par-
tial symplectic quasi-integrals using a version of Hamiltonian Floer homology for
compactly supported Hamiltonians and quantum homology. Under certain condi-

tions on these manifolds he proves that the partial quasi-morphisms on H̃am are
not homogeneous quasi-morphisms and that they descend to Ham. In particular,
the above applies to cotangent bundles T ∗N of closed connected manifolds under
the assumption that N does admit a nowhere vanishing closed 1-form; in this case

Lanzat constructs a partial quasi-morphism on H̃am which descends to Ham and
gives rise to a partial symplectic quasi-integral.

In the context of symplectic geometry, quasi-morphisms and symplectic quasi-
integrals can be viewed as an algebraic way of encoding certain information of Hamil-
tonian diffeomorphisms contained in spectral invariants respectively contained in
Floer homology. In fact, spectral invariants coming from Floer homology are the
only known way to construct quasi-morphisms on the (universal cover of the) group
of Hamiltonian diffeomorphisms and symplectic quasi-integrals on symplectic man-
ifolds with dimension higher than two.
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In general, there are certain types of spectral invariants on symplectic manifolds
which are interesting objects in themselves; they can be interpreted as “homologi-
cally visible” critical values of a certain functional associated to homology classes.
More precisely, there are spectral invariants coming from filtered Floer homology
and spectral invariants coming from generating function theory.

For instance, Schwarz defines Hamiltonian spectral invariants associated to ho-
mology classes for certain types of closed symplectic manifolds (for aspherically
symplectic manifolds) using filtered Hamiltonian Floer homology [Sch]. The latter
can be viewed as infinite-dimensional Morse theory of the classical action functional
corresponding to a given Hamiltonian on a certain path space, and is, in this set-
ting, isomorphic to the standard homology of the manifold. In the Floer theoretic
context, Hamiltonian spectral invariants are critical values of the action functional.
Using these spectral invariants Schwarz defines, for instance, a bi-invariant metric on
the group of Hamiltonian diffeomorphisms and deduces several applications such as
to Hofer geometry and Hofer-Zehnder capacity. On more general closed symplectic
manifolds, Hamiltonian Floer theory involves quantum effects and uses a Novikov
ring; it is isomorphic to the quantum homology of the manifold. In this context Oh
defines and studies Hamiltonian spectral invariants which are associated to quan-
tum homology classes [Oh3], [Oh4]; these are the ones which were used by Entov
and Polterovich to construct the quasi-morphisms. Moreover, there is a version of
Hamiltonian Floer homology for certain non-closed symplectic manifolds using a
particular class of compactly supported Hamiltonians. Frauenfelder and Schlenk
constructed Floer homology for weakly exact convex symplectic manifolds and de-
duced Hamiltonian spectral invariants which are associated to homology classes [FS];
in particular, their construction applies to cotangent bundles. Lanzat generalized
the latter construction to strongly semi-positive compact convex symplectic mani-
folds; he obtains Hamiltonian spectral invariants associated to quantum homology
classes which he uses to construct his quasi-morphisms [La].

In case of open symplectic manifolds given by cotangent bundles Viterbo de-
fines Lagrangian spectral invariants using the theory of generating functions for
Lagrangian submanifolds [Vi1]. He associates a critical value of a generating func-
tion of a Lagrangian submanifold which is Hamiltonian isotopic to the zero section
to each homology class. On R2n and T ∗Tn Viterbo uses his spectral invariants to
define a norm on the group of Hamiltonian diffeomorphisms and a norm on the set
of Lagrangian submanifolds which are Hamiltonian isotopic to the zero section. Mo-
tivated by Weinstein’s observation that the classical action functional corresponding
to a given Hamiltonian H is a generating function of the Lagrangian submanifold
which is obtained by the image of the zero section under the time-1 map of H,
Oh developed a Floer theoretic approach to Viterbo’s construction [Oh1], [Oh2].
He constructs Lagrangian Floer homology for cotangent bundles which is isomor-
phic to the standard homology of the manifold and defines Lagrangian spectral
invariants by replacing the generating function by the classical action functional.
Milinković and Oh related Viterbo’s finite-dimensional approach and Oh’s infinite-
dimensional approach to the construction of Lagrangian spectral invariants; they
proved that both Lagrangian spectral invariants coincide under some natural as-
sumptions [MO1], [MO2].

However, spectral invariants do not automatically give rise to the construction
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of quasi-morphisms and symplectic quasi-integrals; they need to possess additional
algebraic properties in order to do so.

In this work we use several versions of spectral invariants. The family of func-
tions on the group of Hamiltonian diffeomorphisms of cotangent bundles of closed
connected manifolds is defined in terms of Lagrangian spectral invariants coming
from Lagrangian Floer homology which were introduced by Oh [Oh1], [Oh2]. To
be able to construct the functions we prove some additional properties of these
Lagrangian spectral invariants. Moreover, we compare the Lagrangian spectral in-
variants with the Hamiltonian spectral invariants on cotangent bundles defined by
Frauenfelder and Schlenk [FS]. We obtain an inequality between the Lagrangian and
Hamiltonian spectral invariants which allows to prove that the functions we obtain
are quasi-morphisms and which yields a vanishing property for the partial quasi-
morphisms. To prove the equivalence between Viterbo’s symplectic homogenization
and the partial quasi-morphisms on cotangent bundles of tori, we make use of the
equality between the Lagrangian spectral invariants coming from Lagrangian Floer
homology due to Oh and the Lagrangian spectral invariants coming from generat-
ing function theory due to Viterbo [Vi1] established by Milinković and Oh [MO1],
[MO2]. Moreover, we give a very short overview about the construction of Hamil-
tonian spectral invariants associated to quantum homology classes of certain closed
symplectic manifolds according to Oh [Oh3], [Oh4] in order to introduce the Calabi
quasi-morphism and the Calabi quasi-state due to Entov and Polterovich.

1.2.1 Construction of partial quasi-morphisms and partial symplectic
quasi-integrals on T ∗N

Let N be a closed connected n-dimensional manifold and consider its cotan-
gent bundle (T ∗N,ω = dλ) as a symplectic manifold. Let C(T ∗N) be the space
of continuous functions on T ∗N and Cc(T

∗N) ⊂ C(T ∗N) the subspace of all con-
tinuous functions with compact support. On Cc(T

∗N) we use the C0-norm given
by ‖F‖C0 = supT ∗N |F (x)|. Denote by C∞c (T ∗N) the space of all compactly sup-
ported smooth functions. Two such functions F,G ∈ C∞c (T ∗N) are said to Poisson
commute if their Poisson bracket vanishes, i.e. {F,G} = 0. Denote by Ham(T ∗N)
the group of compactly supported Hamiltonian diffeomorphisms on T ∗N and by ρ
Hofer’s metric on Ham(T ∗N). A subset S ⊂ T ∗N is called displaceable if there is a
Hamiltonian diffeomorphism φ ∈ Ham(T ∗N) such that φ(S) ∩ S = ∅, it is said to
be dominated by an open subset U ⊂ T ∗N if there is a Hamiltonian diffeomorphism
ϕ ∈ Ham(T ∗N) such that S ⊂ ϕ(U). We denote by ‖φ‖U Banyaga’s fragmentation
norm for a Hamiltonian diffeomorphism φ ∈ Ham(T ∗N) relative to a family U of
open subsets. We refer to Subsection 1.5 for details concerning the above definitions
and preliminaries of symplectic geometry.

We are interested in (partial) quasi-morphisms on the group of Hamiltonian
diffeomorphisms Ham(T ∗N) and formulate:

Definition 1.1. A quasi-morphism on Ham(T ∗N) is a function µ: Ham(T ∗N)→ R
for which there is a constant D, called the defect of µ, such that

|µ(φψ)− µ(φ)− µ(ψ)| ≤ D
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for all φ, ψ ∈ Ham(T ∗N). A quasi-morphism µ is called homogeneous if µ(φk) =
kµ(φ) for all φ ∈ Ham(T ∗N) and k ∈ Z.

Definition 1.2. A partial quasi-morphism on Ham(T ∗N) is a function µ: Ham(T ∗N)→
R such that the following properties hold:

(i) Controlled quasi-additivity2): For any open and displaceable subset U ⊂ T ∗N
there is a constant R which only depends on U such that for all φ, ψ ∈
Ham(T ∗N), where ψ is generated by a Hamiltonian whose support is dom-
inated by U , we have

|µ(φψ)− µ(φ)− µ(ψ)| ≤ R ;

(ii) Semi-homogeneity : µ(φk) = kµ(φ) for any k ∈ Z≥0.

We construct a family of functions

µa: Ham(T ∗N)→ R

parameterized by the first real cohomology H1(N ;R), where any function µa with
a ∈ H1(N ;R) is a partial quasi-morphism and has various additional properties
which are listed in Theorem 3.5 in Section 3. For instance, they include:

· for any collection U of open and displaceable subsets with finite spectral dis-
placement energy3) e(U) <∞ we have

|µ0(φψ)− µ0(ψ)| ≤ e(U) ‖φ‖U ;

· µa is invariant under conjugation in Ham(T ∗N);

· µa is Lipschitz continuous with respect to Hofer’s metric;

· µa vanishes on Hamiltonian diffeomorphisms which are generated by Hamil-
tonians with displaceable support;

· µa(φ) = c (≥ c,≤ c) if φ is generated by a Hamiltonian whose restriction to
the graph of a closed 1-form in the class a is = c (≥ c,≤ c).

The partial quasi-morphisms µa are thereby obtained by homogenizing a certain
Lagrangian spectral invariant coming from Lagrangian Floer homology. The La-
grangian spectral invariants were thereby defined by Oh. In [Oh1], [Oh2] Oh proves
that one can extract spectral invariants `(A,H) for any Hamiltonian H and any
A ∈ H∗(N ;Z2) via Lagrangian Floer homology. In this work we prove that Oh’s La-
grangian spectral invariants satisfy some additional properties which allow to define
the functions µa and which guarantee that the µa are partial quasi-morphisms with
the properties listed above. For instance, we prove that the Lagrangian spectral
invariants satisfy

2)Our definition of controlled quasi-additivity is actually weaker than the original one introduced
by Entov and Polterovich but it suffices for our purposes; in particular, it suffices to extract partial
symplectic quasi-integrals from partial quasi-morphisms.

3)We refer to Remark 2.11 in Section 2 for the precise definition of the spectral displacement
energy e(U).
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· a version of Poincaré duality for the top and the point spectral invariant;

· a sharp triangle inequality;

· the independence of isotopy.

In addition, we deduce an inequality between the Lagrangian spectral invariants and
the Hamiltonian spectral invariants on cotangent bundles which were introduced and
studied by Frauenfelder and Schlenk [FS]. It is needed to prove that the functions
µa satisfy the controlled quasi-additivity property and the vanishing property. The
precise statements and the precise properties of the function

`(A, ·): Ham(T ∗N)→ R ,

where A ∈ H∗(N ;Z2), are summarized in Theorem 2.14 in Section 2. With the La-
grangian spectral invariants we define the partial quasi-morphism µ0: Ham(T ∗N)→
R by

µ0(φ) = lim
k→∞

`+(φk)

k
,

where `+(·) = `([N ], ·) with [N ] ∈ Hn(N ;Z2) denotes the top Lagrangian spectral
invariant. For any a ∈ H1(N ;R) the partial quasi-morphisms µa are then obtained
from µ0 via

µa(φ) = µ0(T−αφTα) ,

where Tα: T ∗N → T ∗N is the symplectomorphism given by Tα(q, p) = T (q, p+α(q))
for any α ∈ a.

The family of partial quasi-morphisms µa gives rise to a family of functionals

ζa: C
∞
c (T ∗N)→ R

via ζa(F ) = µa(φF ), where φF denotes the time-1 map of F . Each functional ζa
has properties analogous to those of a partial symplectic quasi-integral. Thereby,
we formulate:

Definition 1.3. A functional ζ: Cc(T
∗N)→ R is called a symplectic quasi-integral

if it satisfies:

(i) Monotonicity : ζ(F ) ≤ ζ(G) for all F,G ∈ Cc(T ∗N) with F ≤ G;

(ii) Lipschitz continuity : For every compact subset K ⊂ T ∗N there is a number
NK ≥ 0 such that |ζ(F )− ζ(G)| ≤ NK ‖F −G‖C0 for all F,G ∈ Cc(T

∗N)
with support contained in K;

(iii) Strong quasi-additivity : ζ is linear on Poisson commutative subspaces of C∞c (T ∗N).

Definition 1.4. Let ζ: Cc(T
∗N) → R be monotone and Lipschitz continuous as

above. ζ is called a partial symplectic quasi-integral if it satisfies:

(i) Partial quasi-additivity : ζ(F + G) = ζ(F ) for all F,G ∈ C∞c (T ∗N) such that
the support of G is displaceable and {F,G} = 0;

(ii) Semi-homogeneity : ζ(λF ) = λζ(F ) for all λ ∈ R≥0.

7



If the underlying symplectic manifold is closed and the (partial) symplectic quasi-
integral ζ is normalized such that ζ(1) = 1, it is called a (partial) symplectic quasi-
state.

The partial symplectic quasi-integrals ζa have some additional properties, which
are listed in Theorem 3.10 in Section 3, which follow directly from the ones of the
partial quasi-morphisms µa; they include:

· ζa is invariant under the natural action of Ham(T ∗N);

· ζa vanishes on Hamiltonians with displaceable support;

· ζa(F ) = c (≥ c,≤ c) if F = c (≥ c,≤ c) when restricted to the graph of a
closed 1-form in the class a.

The existence and the properties of both, the family of partial quasi-morphisms
µa and the family of partial symplectic quasi-integrals ζa on T ∗N , lead to various
applications; an overview is given in the following subsections.

1.2.2 Symplectic homogenization

Recently, Viterbo introduced the notion of symplectic homogenization for Hamil-
tonan diffeomorphisms on cotangent bundles of tori [Vi4]. Motivated by the classi-
cal homogenization his aim was to define a symplectic notion of homogenization for
Hamiltonian diffeomorphisms on T ∗Tn. In fact, associated to a Hamiltonian H ∈
C∞c ([0, 1]×T ∗Tn) he considers the “rescaled” Hamiltonian Hk(t, q, p) = H(kt, kq, p)

and asks whether Hk converges to some Hamiltonian Ĥ which only depends on the
fiber variable p. The convergence is thereby understood as a convergence of the
time-1 maps of Hk in the sense that the limit of the time-1 maps of Hk with respect
to Viterbo’s metric is, in a certain precise sense, generated by the q-independent
Hamiltonian Ĥ. Viterbo’s construction is based on the theory of Lagrangian spec-
tral invariants coming from generating functions [Vi1], and he defines symplectic
homogenization as an operator

H: C∞c ([0, 1]× T ∗Tn)→ Cc(Rn)

which indeed sends a Hamiltonian H to a continuous functions Ĥ which is related
to the rescaled Hamiltonian Hk and only depends on the fiber variable. In addition
to its existence Viterbo claims in [Vi4] that the operator H has various properties
which, for instance, include a notion of convergence of the time-1 maps of Hk to
the time-1 map of Ĥ and Lipschitz continuity in Viterbo’s metric. Moreover, he
claims that the operator H gives rise to a notion of a symplectic homogenization
operator for time-independent Hamiltonians which has various properties including,
for instance, monotonicity and strong quasi-additivity.

However, in [Vi4] Viterbo uses his (still unproven) conjecture concerning a cer-
tain bound on Lagrangian spectral invariants on T ∗Tn from time to time. Viterbo
claims that the quantity `+(φ)+`+(φ−1), where `+ denotes the top Lagrangian spec-
tral invariant coming from Lagrangian Floer homology, is bounded by a constant
depending only on the Riemannian metric on Tn for any Hamiltonian diffeomor-
phism φ with support contained in the unit disk cotangent bundle [Vi3]. A careful
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consideration of Viterbo’s constructions and proofs in [Vi4] shows that the Viterbo
bound is not needed to give the definition of the symplectic homogenization oper-
ator but to prove some of its properties; we will explain this in more detail where
appropriate.

In this work we prove that the family of partial quasi-morphisms µa is equivalent
to Viterbo’s symplectic homogenization. More precisely, we prove that, if we identify
H1(Tn;R) = Rn, we have

H(H)(a) = µa(φH)

for any a ∈ Rn, see Theorem 4.13 in Section 4. The equivalence is thereby based
on the assertion due to Milinković and Oh that the Lagrangian spectral invariants
coming from Lagrangian Floer homology introduced by Oh, which we use to define
the functions µa, and the Lagrangian spectral invariants coming from generating
functions introduced by Viterbo, which Viterbo uses to define H, coincide under
some natural assumptions.

The above equivalence on T ∗Tn leads to a definition of symplectic homogeniza-
tion for more general cotangent bundles T ∗N , where N is a closed connected mani-
fold, as an operator

H: C∞c ([0, 1]× T ∗N)→ Cc(H
1(N ;R)) .

The various properties of the symplectic homogenization operator can then be ex-
tracted from the properties of the partial quasi-morphisms µa. Moreover, we can
define a symplectic homogenization operator for time-independent Hamiltonians us-
ing the partial symplectic quasi-integrals ζa, and the properties of the latter yield
the ones of the symplectic homogenization operator. The precise statements are
given in Section 4.

It will turn out that our observations concerning the Viterbo bound are consis-
tent with the equivalence between symplectic homogenization and the partial quasi-
morphisms in the following sense: The equivalence can be interpreted as a way to
define symplectic homogenization, and the properties of symplectic homogenization,
which are just the extracted ones of the partial quasi-morphisms, are precisely the
properties in whose proofs Viterbo does not use his bound.

Moreover, in Section 6 we give an axiomatic proof of the existence and uniqueness
of the above symplectic homogenization operator in two dimensions; we refer to the
sequel for a more detailed description of the two-dimensional case.

In the proof of the equivalence between symplectic homogenization and the par-
tial quasi-morphisms we use the equality between Oh’s Lagrangian spectral invari-
ants coming from Floer homology and Viterbo’s spectral invariants coming from
generating functions, and thus one could ask whether it is possible to define the
partial quasi-morphisms µa in terms of Viterbo’s Lagrangian spectral invariants. In
this context one should note that we prove various properties of the functions µa
which explicitly follow from the Floer theoretic approach to Lagrangian spectral
invariants. For instance, the notions of displaceability, spectral displacement energy
and Poisson commutativity, which are essentially contained in the definition and
properties of the partial quasi-morphisms, are more naturally contained in a Floer
theoretic approach rather than in an approach using generating functions.
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1.2.3 Applications

In addition to the equivalence to symplectic homogenization there are several
other applications (some of them appeared in the existing literature and we indicate
the connections where appropriate) which stem from the existence and properties
of the families µa and ζa such as to Banyaga’s fragmentation norm, Hofer geometry,
and symplectic rigidity:

· we get lower bounds on Banyaga’s fragmentation norm for Hamiltonian dif-
feomorphisms relative to displaceable subsets, see Proposition 5.1;

· we are able to construct either an isometric embedding of R into Ham(T ∗N)
or an isometric embedding of (Cc((0, 1)), osc) into Ham(T ∗N), depending on
whether N admits a nowhere vanishing closed 1-form or not, see Proposition
5.9;

· we can deduce inequalities like osca∈H1(N ;R) ≤ ρ(φ), where ρ(φ) denotes the
Hofer norm of φ, see Proposition 5.8;

· following the ideas of Entov and Polterovich we can prove rigidity results using
the partial symplectic quasi-integral ζ0 and, in particular, extract examples of
non-displaceable subsets in T ∗N , see Proposition 5.18.

Moreover, there is a relation between Aubry-Mather theory and the partial quasi-
morphisms µa. Aubry-Mather theory originally dealt with action minimizing orbits
in Hamiltonian systems in two dimensions, and was generalized by Mather to a
theory of action minimizing invariant measures, instead of orbits, for certain convex
Hamiltonian systems on cotangent bundles T ∗N of higher dimension [Ma]. In the
latter context Mather associates a function βH : H1(N ;R)→ R, called beta function,
to each Tonelli Hamiltonian, where its value can be interpreted to represent the
minimal average Lagrangian action needed to carry out motions with a given rotation
vector. The associated conjugate function αH : H1(N ;R)→ R is known as Mather’s
alpha function.

We can define the functions µa for Hamiltonians with complete flow, and if such
a Hamiltonian is Tonelli, we prove that Mather’s alpha function is equivalent to the
partial quasi-morphisms, that is, we prove

αH(a) = µa(φH)

for any a ∈ H1(N ;R), see Proposition 5.3. This result was first established by
Viterbo for T ∗Tn in the language of symplectic homogenization [Vi4] and provides a
relation between the dynamical view of Aubry-Mather theory and symplectic topol-
ogy. Moreover, it gives a new proof of the invariance of the alpha function under
Hamiltonian diffeomorphisms.

In addition, we are able to extract a connection between Aubry-Mather theory
and Hofer geometry. As done in [Sib1] we can relate the minimum of the alpha
function to the Hofer norm of the Hamiltonian in question, see Proposition 5.10.
Similar to the above this result can be interpreted as to relate the dynamical and
the geometrical approach to the study of Hamiltonian systems.
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1.3 Comparison of symplectic quasi-integrals in two dimen-
sions

The existence of the partial symplectic quasi-integrals ζa on cotangent bundles
leads to a particular case of the general question concerning the uniqueness of quasi-
integrals. Certain cotangent disk bundles, such as those of tori Tn, admit symplectic
embeddings into closed symplectic manifolds (CP n, for instance) which themselves
admit (partial) symplectic quasi-states. These functionals can be pulled back to yield
(partial) symplectic quasi-integrals on the disk bundle and one can ask whether this
pull-back coincides with the restriction of the partial symplectic quasi-integral ζa on
T ∗Tn.

In this work we present a result in this direction in two dimensions; we con-
sider the case where a cotangent disk bundle of T ∗S1 is embedded into S2. On
S2 there exists a symplectic quasi-state, the Calabi quasi-state ζEP , due to Entov
and Polterovich which is uniquely characterized by its additional properties [EP1],
[EP2]. On T ∗S1 we can prove the existence of a genuine symplectic quasi-integral η0

which is uniquely characterized by its additional properties as well, see Proposition
6.19. More precisely, we prove the existence of a unique symplectic quasi-integral

η0: Cc(T
∗S1)→ R

which has the following additional properties:

· it is invariant under Hamiltonian diffeomorphisms;

· it has the Lagrangian property, i.e. η0(F ) = c if F ∈ Cc(T ∗S1) is such that
F |S1×{0} = c ∈ R.

We compare the two symplectic quasi-integrals η0 and ζEP , which both are uni-
versal in some sense, on an open neighborhood of the zero section in T ∗S1. More
precisely, for r ∈ (0, 1

2
] we consider a symplectic embedding

jr: S
1 × (−r, r)→ S2

such that jr(S
1×{0}) is the equator, where the symplectic forms are such that the

area of S2 is 1 and the area of S1 × (−r, r) ⊂ T ∗S1 is 2r. By pulling ζEP back to
Cc(S

1 × (−r, r)) via this embedding

ζr = j∗r ζEP ,

we can compare it with the restriction of η0 to Cc(S
1× (−r, r)). In fact, we provide

a necessary and sufficient condition for the symplectic quasi-integrals to be equal;
in Theorem 6.26 we prove

η0|Cc(S1×(−r,r)) = ζr ⇔ r ∈ (0,
1

4
] .

For the proof of the existence of the symplectic quasi-integral η0 and the proof of
the comparison of the symplectic quasi-integrals we introduce the notion of quasi-
integrals and topological measures on locally compact Hausdorff spaces and develop
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a representation theory for quasi-integrals in terms of topological measures, see
Theorem 6.6. It is a generalization of the representation theory for quasi-states and
topological measures on compact Hausdorff spaces due to Aarnes [Aa1]. Since every
symplectic quasi-integral is a quasi-integral, we can make use of this representation
theory and prove the main statements in terms of topological measures. Moreover,
we introduce a reduction argument for topological measures and prove a statement
about the symplecticity of quasi-integrals on surfaces without boundary; both are
needed in the proofs of the main statements.

In addition, it will turn out that the quasi-integral η0 on T ∗S1 is closely related to
Viterbo’s symplectic homogenization. In fact, using the existence and the properties
of η0 we prove that there exists a unique operator

H: Cc(T
∗S1)→ Cc(R)

which has the properties of symplectic homogenization, where partial quasi-additivity
is replaced by strong quasi-additivity, by an axiomatic approach, see Theorem 6.20.
This operator allows to define symplectic quasi-integrals ησ on T ∗S1 by integration
against Radon measures σ. More precisely, we prove that the functionals given by

ησ(F ) =

∫
R
H(F ) dσ

are symplectic quasi-integrals for any Radon measure σ, see Proposition 6.22. If we
take the Radon measure σ to be the Dirac measure centered at zero, we obtain a
quasi-integral η0 via η0(F ) = H(F )(0) which turns out to be the unique symplectic
quasi-integral on T ∗S1.

1.4 Organization

The rest of this section is devoted to necessary preliminaries and definitions of
symplectic geometry.

In Section 2 we review Lagrangian Floer homology, introduce the Lagrangian
spectral invariants and prove their additional properties. A summary is given in
Theorem 2.14 in Subsection 2.4.

In Section 3 we define the partial quasi-morphisms µa: Ham(T ∗N)→ R and the
partial symplectic quasi-integrals ζa: C

∞
c (T ∗N)→ R and prove their properties, see

Theorem 3.5 and Theorem 3.10.
In Section 4 we give an overview about Viterbo’s symplectic homogenization

and state the equivalence between symplectic homogenization and the partial quasi-
morphisms on T ∗Tn in Theorem 4.13. Moreover, we give a general definition of a
symplectic homogenization operator and list its properties.

In Section 5 we formulate and prove the various applications following from the
existence and properties of the partial quasi-morphisms µa and the partial symplectic
quasi-integrals ζa.

In Section 6 we develop a representation theory for quasi-integrals and topological
measures on locally compact Hausdorff spaces, Theorem 6.6. Using the representa-
tion theory we prove the existence of a symplectic quasi-integral η0 on T ∗S1 which is
uniquely characterized by its additional properties, see Proposition 6.19, and relate
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it to Viterbo’s symplectic homogenization in the sense that we prove the existence
and uniqueness of an operator H: Cc(T

∗S1) → Cc(R) which has the properties of
symplectic homogenization, see Theorem 6.20. In Subsection 6.5 we give an overview
about the definition and construction of the Calabi quasi-state on S2 due to Entov
and Polterovich. In Subsection 6.6 we compare the two symplectic quasi-integrals.

Parts of this work are based on the article [MZ] and results obtained in [MVZ].

1.5 Preliminaries of symplectic geometry

In this subsection we give a short overview about the basic concepts in symplectic
geometry and introduce the relevant notation for the sequel of this work. We refer
to [McS1] for a detailed introduction to symplectic geometry.

Symplectic manifolds and Hamiltonian vector fields

A symplectic manifold is a pair (M,ω), where M is a smooth manifold (through-
out we assume that M has no boundary) and ω is a non-degenerate closed 2-form
on M , called the symplectic form. A symplectic manifold (M,ω) is necessarily of
even dimension 2n, and the form ωn = ω∧· · ·∧ω defines a volume form on M . The
standard example of a symplectic manifold is the 2n-dimensional Euclidean space
R2n with the so-called canonical symplectic form ω0 = dp ∧ dq =

∑n
i=1 dpi ∧ dqi.

According to Darboux’s theorem, any symplectic manifold (M,ω) looks locally like
(R2n, ω0), that is, there are always local coordinates in which the symplectic form is
given by the canonical symplectic form ω0.

A diffeomorphism ϕ: M → M ′ on symplectic manifolds (M,ω) and (M ′, ω′) is
said to be symplectic (a symplectomorphism) if it preserves the symplectic forms
in the sense that ϕ∗ω′ = ω. The set Symp(M,ω) of all symplectomorphisms with
compact support on (M,ω) is a group with respect to composition.

A submanifold L ⊂ M is said to be Lagrangian if its dimension is n and ω|L =
0. An embedding i: Ln → M2n is called Lagrangian if i∗ω = 0. A Lagrangian
submanifold in (R2n, ω0) is, for example, given by {(q, p) ∈ R2n | p = 0}. Moreover,
if (M,ω) is a symplectic manifold, then so is the product (M ×M,ω ⊕−ω), where
the overline indicates that the sign of the symplectic form is the negative of the usual
one. The graph Γϕ ⊂M ×M of a symplectomorphism ϕ: M →M is a Lagrangian
submanifold in (M ×M,ω ⊕ −ω). In particular, the diagonal ∆ of M ×M is a
Lagrangian submanifold.

If (M,ω) is a symplectic manifold, the symplectic form ω establishes an isomor-
phism between vector fields X and 1-forms on M given by X 7→ ιXω = ω(X, ·). A
vector field X is called symplectic if the corresponding 1-form is closed, it is called
Hamiltonian if the corresponding 1-form is exact. If H: M → R is a smooth function
on M , called a Hamiltonian, such that ιXω = −dH, the unique vector field X = XH

is called the Hamiltonian vector field of H.
A time-dependent Hamiltonian is a smooth function H: [0, 1]×M → R. By Ht

we denote the function H(t, ·) ∈ C∞(M). To a time-dependent compactly supported
Hamiltonian H ∈ C∞c ([0, 1]×M), that is, a Hamiltonian such that Ht has compact
support for any t, one can associate a time-dependent Hamiltonian vector field XH

13



which is given by the equation

ιXHtω = −dHt .

It gives rise to a flow on M , which is called the Hamiltonian flow generated by H,
via

d

dt
φtH = XHt ◦ φtH , φ0

H = idM .

The time-t map of the flow of H is denoted by φtH , while φH denotes its time-1 map;
these maps are symplectic. Moreover, we define φtH := φt−kH φkH for t ∈ [k, k + 1],
where k ∈ Z; here φkH := (φH)k. Whenever H is defined for all t ∈ R and is
1-periodic in t, the time-t flow of H equals φtH .

The Poisson bracket of two Hamiltonians F,G ∈ C∞c (M) is given by {F,G} =
ω(XF , XG) = −dF (XG) = dG(XF ) ∈ C∞(M). If {F,G} = 0, we say that F and
G Poisson commute, and in this case the Hamiltonian flows φtF and φtG commute.
The space C∞c (M) of compactly supported smooth Hamiltonians on M forms a Lie
algebra with respect to the Poisson bracket.

The group of Hamiltonian diffeomorphisms and Hofer’s metric

To define the group of Hamiltonian diffeomorphisms of a symplectic manifold
(M,ω) we consider a special classH(M) of Hamiltonians: If the symplectic manifold
(M,ω) is open, H(M) is defined to be the set of all compactly supported Hamiltoni-
ans H: [0, 1]×M → R such that there exists a compact subset of M which contains
the supports of the functions Ht, t ∈ [0, 1], simultaneously. If (M,ω) is closed, the
set H(M) consists of Hamiltonians H: [0, 1]×M → R which are normalized in the
sense that

∫
M
Ht ω

n = 0 for all t. Both assumptions on the Hamiltonians require
that the map which sends a Hamiltonian in H(M) to its Hamiltonian vector field is
injective, that is, a Hamiltonian vector field determines the corresponding Hamilto-
nian uniquely. The set of Hamiltonian diffeomorphisms Ham(M) = Ham(M,ω) of
(M,ω) is then defined to be the set of all diffeomorphisms which are generated by
H ∈ H(M), i.e.

Ham(M) = {φ: M →M |φ = φH for some H ∈ H(M)} .

The set Ham(M) forms a group with respect to composition. Moreover, Ham(M)
is a Lie subgroup of the group of all diffeomorphisms of M , and the Lie algebra
of Ham(M) can be identified with the set of all time-independent Hamiltonians in
H(M).

For an open subset U ⊂M we let Ham(U) be the subgroup of Ham(M) where an
element φ ∈ Ham(M) lies in Ham(U) if and only if it is generated by a Hamiltonian
H ∈ H(M) with compact support contained in U , i.e. suppHt ⊂ U for all t. We

let H̃am(M) be the universal cover of Ham(M); its elements are smooth paths in
Ham(M) based at the identity, considered up to homotopy with fixed end points.

The group Ham(M) carries a non-degenerate bi-invariant metric, the Hofer met-
ric. For H ∈ C∞c ([0, 1]×M) let oscHt = maxHt −minHt be the oscillation of Ht.
For φ ∈ Ham(M) consider

ρ(φ) = inf
H

∫ 1

0

oscHt dt ,
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where the infimum goes over all Hamiltonians in H(M) generating φ. Thus, ρ(φ)
can be interpreted to describe the minimal amount of energy needed to generate a
given φ ∈ Ham(M). The latter defines a norm, and by

ρ(φ, ψ) = ρ(φψ−1)

one can extend it to a bi-invariant metric on Ham(M), the Hofer metric. Thereby,
it is a highly nontrivial fact that ρ is indeed non-degenerate. It was first established
for M = Rn by Hofer [Ho] and then proved for all symplectic manifolds by Lalonde
and McDuff [LaMc]. By the triangle inequality of the Hofer metric, the Hofer norm
is subadditive, and the asymptotic Hofer norm on Ham(M) given by

ρ∞(φ) = lim
k→∞

ρ(φk)

k

is well-defined. We refer to [Po] for details about the group Ham(M) and Hofer
geometry.

Cotangent bundles

Important examples of symplectic manifolds are cotangent bundles. In this work
we will mainly consider the following situation: Let N be an n-dimensional closed
connected manifold and T ∗N = {(q, p) | p ∈ T ∗qN} its cotangent bundle. There is a
canonical 1-form λ on T ∗N , called the Liouville form, which induces a symplectic
form ω = dλ on T ∗N . It is given by the following construction: Denote by π: T ∗N →
N the natural projection (q, p) 7→ q. For any (q, p) ∈ T ∗N the map π induces a map

π∗(q, p): T(q,p)T
∗N → Tπ(q,p)N = TqN ,

and for any (q, p) ∈ T ∗N and ξ ∈ T(q,p)T
∗N the Liouville form λ is given by

λ(q, p)(ξ) = 〈p, π∗(q, p)ξ〉 ,

where 〈·, ·〉 denotes the natural pairing between T ∗N and TN . In local coordinates
(q1, . . . , qn, p1, . . . , pn) on T ∗N the Liouville form is given by

λ =
n∑
i=1

pi dqi = p dq .

Therefore, ω = dλ = dp∧dq is a symplectic form and (T ∗N,ω = dλ) is a symplectic
manifold.

We set T ∗rN = {(q, p) | ‖p‖ ≤ r} for r > 0. Thereby, we fix an auxiliary Rie-
mannian metric on N and measure the lengths of cotangent vectors relative to this
metric.

There are several important examples of Lagrangian submanifolds in (T ∗N,ω =
dλ). The zero section ON = {(q, 0) ∈ T ∗N | q ∈ N} of T ∗N is a Lagrangian
submanifold; it is denoted by ON or N . A Lagrangian submanifold L ⊂ T ∗N is
said to be Hamiltonian isotopic to the zero section if there is φ ∈ Ham(T ∗N) such
that φ(N) = L. If α is a 1-form on N , its graph Γα = {(q, α(q)) | q ∈ N} ⊂ T ∗N
is a Lagrangian submanifold if and only if α is closed. Moreover, let M ⊂ N be
a closed connected submanifold. Its conormal bundle ν∗M ⊂ T ∗N is a Lagrangian
submanifold in T ∗N . It is given by ν∗M = {(q, p) ∈ T ∗N | q ∈M, p ∈ ν∗qM}, where
ν∗qM = {p ∈ T ∗qN | 〈p, v〉 = 0 for all v ∈ TqM}.
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2 Lagrangian spectral invariants

Lagrangian spectral invariants arise from Lagrangian Floer homology of cotan-
gent bundles relative to closed connected submanifolds; both were introduced and
first studied by Oh [Oh1], [Oh2]. In Subsection 2.1 we give a very short overview
about the construction of Lagrangian Floer homology and Lagrangian spectral in-
variants; the general reference for this is Oh’s works [Oh1], [Oh2]. Here we use
different sign conventions than Oh; we follow the philosophy that the Floer theory
of the action functional is a perturbation of the Morse theory of a function on a
closed manifold. The effect of the different sign conventions is that our invariants
are “dual” to Oh’s; this is discussed in Subsection 4.1.2 in detail.

In Subsection 2.2 we prove some properties of the Lagrangian spectral invari-
ants arising from Floer homology with respect to the zero section. In particular, in
Subsection 2.2.2 we prove a notion of Poincaré duality for the top and the point La-
grangian spectral invariants, in Subsection 2.2.3 we prove a sharp triangle inequality
from which we conclude in Subsection 2.2.4 that the Lagrangian spectral invariants
descend to functions on Ham(T ∗N). Moreover, in Subsection 2.3 we compare the
Lagrangian spectral invariants with the Hamiltonian spectral invariants in cotan-
gent bundles which were introduced and studied by Frauenfelder and Schlenk [FS].
In Subsection 2.4 we summarize the properties of the functions on Ham(T ∗N) given
by the Lagrangian spectral invariants.

The various properties of the Lagrangian spectral invariants allow to define the
family of partial quasi-morphisms µa: Ham(T ∗N) → R by homogenizing a cer-
tain Lagrangian spectral invariant as well as the family of partial symplectic quasi-
integrals ζa: C

∞
c (T ∗N)→ R, and to prove some additional properties of these func-

tions, see Section 3.
In Subsection 2.5 we extend the definition of the Lagrangian spectral invariants

to Hamiltonians which are not compactly supported but have complete flow.
In Subsection 2.6 we prove a product formula for these extended spectral invari-

ants which, in particular, gives a product formula for the partial quasi-morphisms
µa and the partial symplectic quasi-integrals ζa; the latter can be used to prove
rigidity results, see Subsection 5.4.

In the sequel we fix a closed connected n-dimensional manifold N and a Rie-
mannian metric on N , and consider the symplectic manifold (T ∗N,ω = dλ), where
λ = p dq is the Liouville form. We identify N with the zero section via the embed-
ding N → T ∗N . Unless otherwise mentioned, all homology is with Z2 coefficients,
and all moduli spaces are counted modulo 2.

2.1 Lagrangian Floer homology and Lagrangian spectral in-
variants

Let H ∈ C∞c ([0, 1] × T ∗N) be a compactly supported time-dependent Hamilto-
nian. Floer homology of the Hamiltonian H can be viewed as Morse homology of
the action functional AH corresponding to H. Here, the classical action functional
AH corresponding to the Hamiltonian H is a functional on the space of smooth
paths

Ω = {γ: [0, 1]→ T ∗N | γ(0) ∈ N}
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given by

AH(γ) =

∫ 1

0

Ht(γ(t)) dt−
∫
γ∗λ .

Let M ⊂ N be a closed connected submanifold and denote by ν∗M ⊂ T ∗N the
conormal bundle of M in N . Note that in case M = N , the conormal bundle ν∗N
equals the zero section N . Consider the space of paths

Ω(M) = {γ ∈ Ω | γ(1) ∈ ν∗M}

and let AH:M be the restriction of AH to Ω(M). The set Crit(H : M) = CritAH:M

of critical points of the action functional on Ω(M) is precisely the set of solutions
γ of the Hamiltonian equation γ̇ = XH(γ) with boundary conditions dictated by
Ω(M). Therefore, there is a one-to-one correspondence between the set of critical
points Crit(H : M) and the intersection points of φH(N) ∩ ν∗M , the map Crit(H :
M) → φH(N) ∩ ν∗M given by γ 7→ γ(1) is a bijection. Let the action spectrum of
H relative to M be the set

Spec(H : M) = {AH:M(γ) | γ ∈ Crit(H : M)} ⊂ R .

It is a compact nowhere dense subset, and it only depends on the time-1 map φH of
H. Therefore, for φ ∈ Ham(T ∗N) we denote Spec(φ : M) = Spec(H : M), where H
is any Hamiltonian generating φ.

Consider the vector space CF (H : M) spanned over Z2 by the set Crit(H : M),
and for a /∈ Spec(H : M), the subspace CF<a(H : M) ⊂ CF (H : M) spanned by
critical points with action < a, and the quotient space CF>a(H : M) := CF (H :
M)/CF<a(H : M). For a generic choice of H, the intersection φH(N) ∩ ν∗M is
transverse and so Crit(H : M) is finite, and the various spaces CF are all finite-
dimensional; we refer to such a Hamiltonian as regular.

For any critical point there is an integer-valued index mH:M : Crit(H : M)→ Z,
the Conley-Zehnder index. We normalize it as follows: Let f0: M → R be a Morse
function. Denote by νNM the normal bundle of M in N ; it is a vector bundle
over M . Identify a neighborhood of M ⊂ N with a disk bundle π0: DM → M
in the normal bundle νNM . Extend the function π∗0f0 to a smooth function f on
N and let H = π∗f : T ∗N → R. The elements of Crit(H : M) are in one-to-one
correspondence to the critical points of f |M = f0. We normalize mH:M so that it
coincides with the Morse index of f0 under this correspondence. We let CFk(H : M)
denote the subspace of CF (H : M) spanned by elements of index mH:M = k.

To study the negative gradient flow of AH:M on Ω(M), define an L2-type metric
on Ω(M) as follows: Let J : [0, 1]→ End(TT ∗N) be a path of almost complex struc-
tures on T ∗N compatible with the symplectic structure in the sense that ω(·, Jt·) is
a path of Riemannian metrics on T ∗N . For γ ∈ Ω(M) and ξ, η ∈ TγΩ(M) define

〈ξ, η〉 =
∫ 1

0
ω(ξ(t), Jtη(t)) dt. Then the gradient of AH:M relative to this metric reads

∇AH:M(γ(t)) = Jt(γ(t))
(
γ̇(t)−XH(γ(t))

)
.

The corresponding negative gradient flow equation for u: R(s) → Ω(M) is Floer’s
equation (which is a perturbed Cauchy-Riemann equation with Lagrangian bound-
ary conditions) given by

∂u

∂s
+ Jt(u)

(
∂u

∂t
−XH(u)

)
= 0 .
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For critical points γ± ∈ Crit(H : M) we denote byM(γ−, γ+) the set of solutions u
of this equation such that u(±∞, ·) = γ±. This set admits a natural action of R by

translation in the s variable, and we let M̂(γ−, γ+) =M(γ−, γ+)/R be the quotient

if γ+ 6= γ−, and M̂(γ−, γ−) = ∅.
If the path of almost complex structures Jt is chosen generically, the moduli

spaces M(γ−, γ+) and M̂(γ−, γ+) are finite-dimensional smooth manifolds for any
γ± ∈ Crit(H : M); we call such a J regular for H. Moreover, for regular J and H
we have dimM(γ−, γ+) = mH:M(γ−)−mH:M(γ+).

If the path of almost complex structures Jt is chosen such that it coincides
with the almost complex structure induced by the Riemannian metric on the base
outside of a compact subset of T ∗N , the zero-dimensional component of the mod-
uli space M̂(γ−, γ+) becomes compact, while the one-dimensional component be-
comes compact up to breaking. Indeed, for mH:M(γ−) = mH:M(γ+) + 1 we have

dimM̂(γ−, γ+) = 0 and M̂(γ−, γ+) is a compact smooth manifold. Therefore, de-
fine

∂: CFk(H : M)→ CFk−1(H : M)

by the linear extension of

∂γ− =
∑

mH:M (γ+)=k−1

#M(γ−, γ+) γ+ .

According to the boundary conditions of the compactification of the one-dimensional
components of M̂(γ−, γ+), the map ∂ is a differential, i.e. ∂2 = 0. We denote the
corresponding Floer homology groups by HF∗(H : M).

Since elements of M̂(γ−, γ+) are negative gradient flow lines of the action func-
tional, it decreases along any such element; hence ∂ induces a differential on the
subspace CF<a

∗ (H : M), as well as on the quotient space CF>a
∗ (H : M). We

denote the corresponding relative Floer homology groups by HF<a
∗ (H : M) and

HF>a
∗ (H : M), and let

ia∗: HF
<a
∗ (H : M)→ HF∗(H : M)

and
ja∗ : HF∗(H : M)→ HF>a

∗ (H : M)

be the induced maps on homology.

Remark 2.1. The various Floer homology groups HF are canonically isomorphic
for different choices of the regular almost complex structure J , and therefore we
suppressed J from the notation. Moreover, these isomorphisms induce canonical
commuting diagrams relating the (filtered) Floer homology groups and the maps
ia∗, j

a
∗ , and thus the maps ia∗, j

a
∗ are independent of J .

If K is another regular Hamiltonian, there is a canonical continuation isomor-
phism HF∗(H : M) = HF∗(K : M). Moreover, the Floer homology HF∗(H : M) of
any regular H is canonically isomorphic to the singular homology H∗(M). Indeed,
let f be a function on N constructed as above and H = π∗f . Then the Floer com-
plex of H degenerates into the Morse complex of f0, including grading. Therefore,
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for such H, the Floer homology HF∗(H : M) is canonically isomorphic to the singu-
lar homology H∗(M). In summary, using the above continuation isomorphism, the
Floer homology HF∗(H : M) is canonically isomorphic to the singular homology
H∗(M) for any regular Hamiltonian H, i.e.

HF∗(H : M) = H∗(M) .

Using the identification between HF∗(H : M) and H∗(M) one can define Lagrangian
spectral invariants `(A,H : M) for any regular H and A ∈ H∗(M) by

`(A,H : M) := inf{a |A ∈ im ia∗} .

These have the following properties proved by Oh [Oh1], [Oh2]:

(i) `(A,H : M) ∈ Spec(H : M), in particular, any spectral invariant is a finite
number;

(ii) if Hk is a sequence of regular Hamiltonians which tends to 0 in the C1-topology,
then `(A,Hk : M)→ 0;

(iii)
∫ 1

0
min(Ht − Kt) dt ≤ `(A,H : M) − `(A,K : M) ≤

∫ 1

0
max(Ht − Kt) dt; in

particular, the spectral invariants are Lipschitz continuous with respect to the
C0-norm.

We refer to property (iii) as the continuity of the spectral invariants.
Similarly to the above one can define spectral invariants associated to cohomol-

ogy classes of M . Consider the dual Floer complex CF ∗(H : M) = Hom(CF∗(H :
M),Z2) ≡ (CF ∗(H : M))∗. The universal coefficient theorem implies that the coho-
mology of this complex taken with the dual differential ∂∗ is canonically isomorphic
to (H∗(M))∗. The latter with coefficients in a field is the same as the singular
cohomology H∗(M).

The dual complex is similarly filtered by action; the action increases along the
differential. Consider the subcomplex CF ∗>a(H : M) generated by orbits of action >
a and the quotient complex CF ∗<a(H : M) = CF ∗(H : M)/CF ∗>a(H : M). Here we
identify the basis of CF∗ with the dual basis of CF ∗, and as a result we have canonical
identifications CF ∗>a(H : M) = (CF>a

∗ (H : M))∗ and CF ∗<a(H : M) = (CF<a
∗ (H :

M))∗, and the same for (co)homology. Let j∗a: HF
∗
>a(H : M) → HF ∗(H : M) and

i∗a: HF
∗(H : M) → HF ∗<a(H : M) be the maps induced on cohomology by the

inclusion and projection maps. The short exact sequence of cochain complexes

0→ CF ∗>a(H : M)→ CF ∗(H : M)→ CF ∗<a(H : M)→ 0

is dual to the short exact sequence of chain complexes

0→ CF<a
∗ (H : M)→ CF∗(H : M)→ CF>a

∗ (H : M)→ 0 ,

and the induced long exact sequence of cohomologies

· · · → HF k−1
<a (H : M)→ HF k

>a(H : M)
jka−→ HF k(H : M)

ika−→ HF k
<a(H : M)→ . . .
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is dual to the long exact sequence of homologies

· · · → HF>a
k+1(H : M)→ HF<a

k (H : M)
iak−→ HFk(H : M)

jak−→ HF>a
k (H : M)→ . . . .

The spectral invariant corresponding to v ∈ H∗(M) is

`(v,H : M) = sup{a | i∗a(v) = 0} .

If H ∈ C∞c ([0, 1] × T ∗N) is an arbitrary compactly supported Hamiltonian,
it can be approximated by regular Hamiltonians Hk in the C∞-sense. From the
continuity of the spectral invariants it follows that `(A,Hk : M) is a convergent
sequence and that its limit only depends on H. Therefore, spectral invariants can
be uniquely extended to the set of all compactly supported Hamiltonians. These
extended invariants satisfy the spectrality axiom (see [Oh4])

`(A,H : M) ∈ Spec(H : M) ,

and they are continuous in the sense of property (iii) above, and so they are Lipschitz
continuous with respect to the C0-norm.

Remark 2.2. In the sequel we need to use Hamiltonians defined on [0, τ ] × T ∗N
with τ different from 1 from time to time. All the preceding constructions are
modified in the obvious way, for example, the action functional is now defined on
paths γ: [0, τ ] → T ∗N by A(γ) =

∫ τ
0
Ht(γ(t)) dt −

∫
γ∗λ, and so on. We will not

mention this modification explicitly, and the context will always make clear the
domain of definition of Hamiltonians, paths, and action functionals.

2.2 Properties of Lagrangian spectral invariants

In this subsection we prove some additional properties of the Lagrangian spectral
invariants arising from Floer homology relative to the zero section N of T ∗N which
include a notion of Poincaré duality for the top and the point spectral invariants,
a sharp triangle inequality, and the independence of isotopy. These properties are
needed in order to define the family of functions µa and to extract the properties of
the functions µa in Section 3.

We assume M = N in the rest of this subsection and denote the corresponding
Lagrangian spectral invariants by `(A,H) for any A ∈ H∗(N) and `(v,H) for any
v ∈ H∗(N). Moreover, we set

`+(H) = `([N ], H) and `−(H) = `(pt, H) ,

where [N ] ∈ Hn(N) and pt ∈ H0(M) are generators.

2.2.1 Lagrangian property

We have the following observation which turns out to be crucial for many appli-
cations of Lagrangian spectral invariants. We refer to it as Lagrangian property.
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Lemma 2.3. Let H ∈ C∞c ([0, 1]×T ∗N) be such that H|N = c (respectively H|N ≥ c,
H|N ≤ c) for some c ∈ R. Then `(A,H) = c (respectively `(A,H) ≥ c, `(A,H) ≤ c),
for any A ∈ H∗(N) \ {0}.

Proof. Assume H|N = c. According to the spectrality property, `(A,H) is a critical
value of the action functional which means that it equals AH(γ) for some γ ∈
Crit(H : N). The latter set consists of Hamiltonian trajectories beginning and
ending on N . Since N ⊂ T ∗N is Lagrangian and H is constant on it, XH is tangent
to it, and so any element of Crit(H : N) is contained inN which means that its action
equals c. This shows that `(A,H) = c, as claimed. If H|N ≥ c, there is another
time-dependent Hamiltonian K with compact support which satisfies H ≥ K and
K|N = c. The claim then follows from the above consideration and the continuity
of the spectral invariants. The other inequality is proved similarly.

2.2.2 Poincaré duality

Proposition 2.4. For any Hamiltonian H ∈ C∞c ([0, 1]× T ∗N) we have

`±(H) = −`∓(H) ,

where H is defined by H(t, x) = −H(1− t, x).

Proof. Assume that the Hamiltonian H is regular, that is, φH(N) intersects N
transversely. By standard duality considerations (see [Sch] for example) we obtain

`(pt, H) = `(1, H) and `([N ], H) = `(µN , H) ,

where pt ∈ H0(N), [N ] ∈ Hn(N), 1 ∈ H0(N), µN ∈ Hn(N) are generators. In
order to prove the claim we make use of the above duality by comparing the filtered
Floer cohomology of H with the filtered Floer homology of H. The Hamiltonian
H generates the isotopy φt

H
which is obtained from the one generated by H by

retracing it backwards, i.e.
φt
H

= φ1−t
H φ−1

H .

The sets of critical points of AH and AH are in one-to-one correspondence, the
bijection is given by the involution Ω(N)→ Ω(N), γ 7→ γ = γ(1− ·). Moreover, we
have mH:N(γ) = n−mH:N(γ). In summary, there is a canonical isomorphism

CF ∗(H : N) = CFn−∗(H : N) .

Since we have AH(γ) = −AH(γ), the filtrations are reversed for every a /∈ Spec(H :
N), i.e.

CF ∗AH>a(H : N) = CF
AH<−a
n−∗ (H : N) .

Moreover, if J is a compatible almost complex structure which is regular for H,
J(t, ·) = J(1 − t, ·) is a compatible almost complex structure which is regular for

H, and there is a natural identification of the moduli spaces M̂(γ−, γ+, H, J) and

M̂(γ+, γ−, H, J) given by u 7→ u, u(s, t) = u(−s, 1− t). In summary, we conclude

`(pt, H) = `(1, H) = −`([N ], H) ,
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and similarly we have

`([N ], H) = `(µN , H) = −`(pt, H) .

Due to the continuity of spectral invariants both equalities continue to hold if we
replace H by an arbitrary smooth Hamiltonian, and the claim is proved.

2.2.3 Triangle inequality

Let H,H ′: [0, 1]× T ∗N → R be such that H(1, ·) = H ′(0, ·). The concatenation
H]H ′: [0, 2]× T ∗N → R of the two Hamiltonians is defined to be

H]H ′(t, x) =

{
H(t, x) , if t ≤ 1
H ′(t− 1, x) , if t ≥ 1

.

Note that if H,H ′ are smooth and H(1, ·) = H ′(0, ·) with all the time derivatives,
then H]H ′ is smooth as well.

Proposition 2.5. Let H,H ′ ∈ C∞c ([0, 1]×T ∗N) be such that H(1, ·) = H ′(0, ·) with
all the time derivatives. Then

`(A ∩B,H]H ′) ≤ `(A,H) + `(B,H ′)

for all A,B ∈ H∗(N) with A ∩ B 6= 0, where ∩: Hj(N) × Hk(N) → Hj+k−n(N)
denotes the intersection product in homology.

In the proof of the above proposition we will use a certain procedure, which we
call smoothing, which allows to replace any given time-dependent Hamiltonian by a
Hamiltonian that vanishes for values of time close to 0 and 1 (see [Po] for instance).
We will see that this procedure leaves intact all the spectral invariants of the original
Hamiltonian. Moreover, if H and K are such that H]K is smooth, then the spectral
invariants of H]K are precisely the spectral invariants of the concatenation of any
two smoothed versions of the Hamiltonians H and K.

Remark 2.6 (Smoothing). Let H ∈ C∞c ([0, 1]× T ∗N) be a time-dependent Hamil-
tonian with compact support. Let f : [0, 1] → [0, 1] be a smooth function with
f ′(t) ≥ 0 for any t ∈ [0, 1] and f(t) ≡ 0 for t near 0 and f(t) ≡ 1 for t near 1. Then
the function Hf defined by

Hf (t, x) = f ′(t)H(f(t), x)

is a compactly supported smooth Hamiltonian which equals 0 for t near 0 and 1.
The flows of H and Hf satisfy φt

Hf = φ
f(t)
H .

Moreover, if H is a regular Hamiltonian, then so is Hf . If J is an almost
complex structure regular for H, then Jf = J(f ′(·), ·) is for Hf , with an obvious
identification between the various moduli spaces relative to H, J and Hf , Jf . For
the various spectral invariants we have the following:

(i) The above procedure of smoothing leaves intact all the spectral invariants.
Indeed, for H ∈ C∞c ([0, 1] × T ∗N) and a smooth function f : [0, 1] → [0, 1]
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with f ′(t) ≥ 0 for any t ∈ [0, 1] and f(0) = 0, f(1) = 1 consider the function

Hf . Since the flows of H and Hf satisfy φt
Hf = φ

f(t)
H , there is a bijection

between the sets of solutions of the corresponding Hamiltonian equations with
boundary conditions dictated by Ω(N). The bijection is given by Crit(H :
N) → Crit(Hf : N), γ 7→ γf , where γf (t) = γ(f(t)), and it preserves the
corresponding actions, i.e. AH(γ) = AHf (γf ). Therefore, if fτ : [0, 1]→ [0, 1],
τ ∈ [0, 1], is a continuous family of smooth functions with f0 = id[0,1], f1 = f
and fτ (0) = 0, fτ (1) = 1, f ′τ ≥ 0, then the action spectrum Spec(Hfτ : N) is
independent of τ , and consequently, by spectrality, so is any spectral invariant.
Thus, the spectral invariants of H and Hf coincide.

(ii) Consider two Hamiltonians H and K as in the above proposition and note that
their concatenation H]K is smooth. Denote by Hf and Kg the corresponding
smoothed Hamiltonians; the concatenation Hf ]Kg is smooth as well. The
spectral invariants of Hf ]Kg are independent of the functions f, g used for
smoothing, and the spectral invariants of H]K coincide with those of Hf ]Kg.

Proof (of Proposition 2.5). Let H,H ′ ∈ C∞c ([0, 1]×T ∗N) be two Hamiltonians as in
the proposition; in particular, the concatenation H]H ′ is smooth. According to the
continuity of the spectral invariants we can assume that H and H ′ are regular. Using
the above smoothing procedure we can replace H and H ′ by smoothed Hamiltonians
which are regular as well without altering the corresponding spectral invariants of
H,H ′ and H]H ′. Therefore, we can assume that H,H ′ are regular and smoothed, i.e.
H = H ′ = 0 for times t near 0, 1. Let ε > 0. Consider the concatenationH ′′0 = H]H ′.
It may not be regular anymore, so we perturb it to a regular Hamiltonian H ′′ such
that ‖H ′′ − H ′′0‖C0 < ε. We choose an additional smooth function K: R × [0, 2] ×
T ∗N → R such that

K(s, t, ·) =


H(t, ·) , s ≤ 1 , t ∈ [0, 1]

H ′(t− 1, ·) , s ≤ 1 , t ∈ [1, 2]

H ′′(t, ·) , s ≥ 2 , t ∈ [0, 2]

and for s ∈ [1, 2] we have
∣∣∂K
∂s

∣∣ < ε for all t. Moreover, we fix a t-dependent almost
complex structure J , defined for t ∈ [0, 2], which coincides with the almost complex
structure induced by the Riemannian metric outside of a compact subset in T ∗N .

Denote by Υ the strip with a slit appearing in [AS]. This Υ is a Riemann surface
with boundary which is conformally equivalent to a closed disk with three boundary
punctures which can be described as a strip with a slit: Take the disjoint union
R× [0, 1]∪R× [1, 2] and identify (s, 1−) with (s, 1+) for every s ≥ 0. The resulting
object is a Riemann surface with interior R×(0, 2)\(−∞, 0]×{1} endowed with the
complex structure of a subset of R2 = C. The complex structure at each boundary
point of the components R × {0} and R × {2} is induced by the inclusion in C.
The conformal coordinate near the point (0, 1) is given by the square root. Thus,
Υ carries a global coordinate z = s + it which is holomorphic everywhere with
exception of the point (0, 1); see [AS] for details.

Let γ, γ′, γ′′ be critical points of AH , AH′ , AH′′ , respectively. We consider the
moduli space M(γ, γ′; γ′′) of solutions u: Υ → T ∗N with coordinates (s, t), where
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t ∈ [0, 2], of the equation

∂u

∂s
(s, t) + Jt(u)

(
∂u

∂t
(s, t)−XK(s, t)

)
= 0

with boundary conditions u(∂Υ) ⊂ N and asymptotic conditions u(−∞, ·) = γ,
u(−∞, · − 1) = γ′, u(∞, ·) = γ′′. For a generic choice of J , the moduli space
M(γ, γ′; γ′′) is a smooth manifold of dimension mH:N(γ)+mH′:N(γ′)−mH′′:N(γ′′)−n
which is compact in dimension 0 [AS]. This allows to define a bilinear map

CFj(H : N)× CFk(H ′ : N)→ CFj+k−n(H ′′ : N)

by the linear extension of

(γ, γ′) 7→
∑
γ′′

#M(γ, γ′; γ′′) γ′′ .

This map is a chain map (according to the boundary conditions of the compacti-
fication of the one-dimensional components of M(γ, γ′; γ′′)) and hence descends to
homology,

HFj(H : N)×HFk(H ′ : N)→ HFj+k−n(H ′′ : N) .

We claim that, under the natural identification HF∗ = H∗(N), this map corresponds
to the intersection product in homology. Postponing the proof of this claim for a
moment, we conclude: A computation shows (see [AS]) that if u ∈ M(γ, γ′; γ′′),
then

AH(γ) +AH′(γ′)−AH′′(γ′′) ≥ E(u)− ε ,

where E(u) =
∫

Υ
|∂su|2 ds dt ≥ 0 is the energy of u. It follows that the above chain

map restricts to a map on filtered subcomplexes,

CF<a
j (H : N)× CF<b

k (H ′ : N)→ CF a+b+ε′

j+k−n (H ′′ : N)

for any a, b, ε′ such that a /∈ Spec(H : N), b /∈ Spec(H ′ : N), ε′ > ε, and a+ b+ ε′ /∈
Spec(H ′′ : N). This implies

`(A ∩B,H ′′) ≤ `(A,H) + `(B,H ′) + ε .

Since H ′′ was chosen ε-close to the concatenation H]H ′, passing to the limit as
ε→ 0, we obtain the desired triangle inequality

`(A ∩B,H]H ′) ≤ `(A,H) + `(B,H ′) .

To prove the remaining claim about the correspondence between the above map and
the intersection product in homology we note the following: In [Oh2] Oh proved that
a different version of the above Υ-product corresponds to the cup product in singular
cohomology. In his version, the Hamiltonian K on the strip with a slit vanishes for
s near 0. If we use such a Hamiltonian in the definition of our moduli space, we will
obtain the same map on homology. Indeed, one can define the corresponding moduli
space of paths of solutions to the above equation, where the Hamiltonian depends
on the variable of the path, say Kτ . Studying the boundary of the one-dimensional

25



component of the moduli spaces, one can see that counting the zero-dimensional
moduli spaces amounts to a chain homotopy between the chain maps constructed
from Hamiltonians K0 and K1. This implies that they define the same map in
homology. Thus, it is immaterial whether to use our Hamiltonian K, “glued” from
H,H ′, H ′′, or Oh’s Hamiltonian which vanishes for s near 0. In Oh’s sign conven-
tions his Floer homologies are isomorphic to H∗(N) (see Subsection 4.1.2). Passing
to our sign conventions amounts to applying the Poincaré duality in each variable.
This transforms the cup product on cohomology into the intersection product on ho-
mology and therefore, in summary, our map corresponds to the intersection product
in homology, proving the claim.

2.2.4 Independence of isotopy

As a consequence of the triangle inequality we can prove that the spectral in-
variants are independent of the Hamiltonian isotopy generated by H; in particular,
they descend to the group of Hamiltonian diffeomorphisms Ham(T ∗N).

Proposition 2.7. Let H,H ′ ∈ C∞c ([0, 1]× T ∗N) be such that φH = φH′. Then the
spectral invariants of H,H ′ coincide, i.e. `(A,H) = `(A,H ′) for any A ∈ H∗(N).

Notation 2.8. For any φ ∈ Ham(T ∗N) we denote by `(A, φ) the value `(A,H) for
any H generating φ. In particular, we still denote

`+(φ) = `([N ], φ) and `−(φ) = `(pt, φ)

for generators [N ] ∈ Hn(N) and pt ∈ H0(N).

For the proof of the proposition we need the following statement:

Lemma 2.9. Let H ∈ C∞c ([0, 1]× T ∗N) be a Hamiltonian which generates a loop,
i.e. φH = id. Then its spectral invariants all vanish.

Proof. With the above smoothing procedure we can replace H by a smoothed
Hamiltonian (still denoted by H) such that φH is still the identity map without
altering the spectral invariants. Any spectral invariant `(A,H) is, by spectrality, the
action of a Hamiltonian arc γ ∈ Ω(N). Since H generates a loop and is smoothed,
this arc is a smooth closed orbit. Now, a classical computation shows (see, for
instance, [Sch]) that the actions AH(γx) of γx(t) = φtH(x) are all the same, that is,
independent of the choice of x. Since we can take x to be outside the support of H,
the actions are all zero. Thus, we have AH(γ) = AH(γγ(0)) = 0 as claimed.

Proof (of Proposition 2.7). Let H,H ′ be such that φH = φH′ . Again, we can
assume that H and H ′ are smoothed so that both equal 0 near t = 0 and near t = 1.
Suppose for a moment that we can show

`(A,H) = `(A,H]H ′]H ′) ,

where H ′(t, x) = −H ′(1− t, x). Then we have

`(A,H) = `(A ∩ [N ], H]H ′]H ′) ≤ `(A,H ′) + `([N ], H]H ′) .
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Since H]H ′ generates a loop, its spectral invariants all vanish, and we obtain

`(A,H) ≤ `(A,H ′) .

The reverse inequality follows by exchanging H and H ′.
Therefore, it remains to prove `(A,H) = `(A,H]H ′]H ′) in order to prove the

proposition. Recall that the flow of H ′ is generated by the flow of H ′ by retracing
it backwards. Thus, the Hamiltonian H ′]H ′ generates a contractible loop. Let Kτ

be the Hamiltonian which generates the contraction, that is, the Hamiltonian Kτ

generates a loop based at the identity for every τ ∈ [0, 1] and K0 = 0 and K1 =
H ′]H ′. We have φH]Kτ = φH for every τ . Since the action spectrum Spec(H]Kτ : N)
only depends on the time-1 map of H]Kτ , it is independent of τ . The spectrality
and the continuity of the spectral invariants imply that `(A,H]Kτ ) is a continuous
function of τ which takes values in the fixed compact and nowhere dense subset
Spec(H : N). Thus, it is constant.

2.3 Comparison of Lagrangian and Hamiltonian spectral in-
variants

Besides the Lagrangian spectral invariants there are well-defined spectral invari-
ants in cotangent bundles coming from a version of Hamiltonian Floer homology
which were introduced and studied by Frauenfelder and Schlenk [FS]. In this sub-
section we compare the Hamiltonian and Lagrangian spectral invariants; in fact,
we prove an inequality between them which allows to prove that the functions µa
which we introduce in Section 3 are partial quasi-morphisms and that they vanish
on Hamiltonian diffeomorphisms with displaceable support.

In order to be able to state and prove the inequality between the spectral invari-
ants in Subsection 2.3.2 we give a short review of the construction of Hamiltonian
Floer homology and Hamiltonian spectral invariants in cotangent bundles in Sub-
section 2.3.1.

2.3.1 Hamiltonian spectral invariants

Hamiltonian spectral invariants arise from Hamiltonian Floer homology. In gen-
eral, Hamiltonian Floer homology for a Hamiltonian H can be viewed as Morse
theory of the action functional associated to H in an infinite-dimensional setting.
On several closed symplectic manifolds (on monotone, or aspherically, or weakly
exact closed symplectic manifolds, for instance), Hamiltonian Floer homology is
well-defined and isomorphic to the singular homology of the manifold. The Floer
chain complex is thereby generated by the 1-periodic orbits of the Hamiltonian flow
which are in one-to-one correspondence with the critical points of the action func-
tional, and the Floer differential counts perturbed pseudo-holomorphic cylinders
connecting two 1-periodic orbits of index difference one. Originally, Floer homology
is due to Floer, see [Fl1], [Fl2], [Fl3] for instance. On closed symplectic manifolds
as above, where Floer homology is isomorphic to the singular homology of the man-
ifold, one can associate Hamiltonian spectral invariants to homology classes, see
[Sch] for instance. On more general closed symplectic manifolds, Hamiltonian Floer
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homology involves quantum effects and uses a Novikov ring; it is isomorphic to the
quantum homology of the manifold; see [HS], [McS2], [Oh3], [Oh4] for the construc-
tion of Hamiltonian Floer homology on more general closed symplectic manifolds
and the definition of spectral invariants. We also refer to Subsection 6.5 for a very
short overview.

In case of non-closed or open symplectic manifolds, in particular, in case of cotan-
gent bundles, one can set up a version of Hamiltonian Floer homology for compactly
supported Hamiltonians. Standard Floer homology cannot be correctly defined for
compactly supported Hamiltonians since they are degenerate, but following the work
of Frauenfelder and Schlenk [FS], one can circumvent this difficulty on cotangent
bundles by considering Hamiltonians which have support in some fixed cotangent
ball bundle and a certain prescribed behavior near the boundary. In fact, in [FS]
the authors define Hamiltonian Floer homology on weakly exact convex symplectic
manifolds (note that any T ∗rN and T ∗N =

⋃
r∈N T

∗
rN are exact convex symplectic

manifolds) by considering such types of Hamiltonians, provide an isomorphism be-
tween Floer homology and the homology of the manifold, and define Hamiltonian
spectral invariants. Lanzat generalized this construction to strongly semi-positive
compact convex symplectic manifolds [La].

In this subsection we present a sketch of the construction for cotangent bundles,
referring to the aforementioned paper for details.

The class of Hamiltonians which is used to define Hamiltonian Floer homology
on T ∗N is given by the following: Fix R > 0 and let ε > 0. Let h: (−ε,∞)→ R be a
smooth function such that h(t) = 0 for t ≥ 0 and h′(t) ≥ 0 for t ≤ 0. Moreover, h′(t)
should be small enough so that the flow of h(‖p‖ − R) does not have non-constant
periodic orbits of period ≤ 1 for ‖p‖ ∈ (−ε, 0). Let Ht ∈ C∞c (T ∗N) be such that

Ht(q, p) = h(‖p‖ −R)

for ‖p‖ ≥ R− ε. The Floer complex CF (H) is the vector space spanned over Z2 by
the 1-periodic orbits of H inside T ∗<RN ; all of them are non-degenerate and CF (H)
is well-defined. It is graded by the Conley-Zehnder index4) mH . The boundary
operator lowers the degree by 1 and counts Floer cylinders connecting two of such
orbits. Thereby, the behavior of H near ‖p‖ = R guarantees that all Floer cylinders
are contained in T ∗≤R−εN . In summary, the Floer homology of CF∗(H), which we
denote by HF∗(H;h,R), is well-defined. It is identified with the homology of T ∗N ,
i.e.

HF∗(H;h,R) = H∗(T
∗N) .

Since HF∗(H;h,R) is filtered by action via the action functional AH , one can
define spectral invariants in the standard fashion. Denote by HF<a

∗ (H;h,R) the
homology of the subcomplex CF<a

∗ (H) in CF∗(H) spanned by orbits of action < a,
and consider the inclusion morphism

ia: HF<a
∗ (H;h,R)→ HF∗(H;h,R) .

For A ∈ H∗(T ∗N) one can define

c(A,H;h,R) = inf{a |A ∈ im ia} .
4)It is normalized to equal the Morse index of critical points of a C2-small Hamiltonian, consid-

ered as 1-periodic orbits.
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These spectral invariants satisfy all the standard properties, including Lipschitz
continuity, the triangle inequality, and spectrality. Moreover, they can be defined
for arbitrary compactly supported Hamiltonians. Indeed, let H ∈ C∞c ([0, 1]× T ∗N)
be such a Hamiltonian. It can be C0-approximated by non-degenerate Hamiltonians
Hk, k ∈ N, whose behavior for ‖p‖ ∈ [R− εk,∞) is prescribed by the function h as
above, and εk → 0. Then the sequence c(A,Hk;h,R) is a Cauchy sequence and one
can declare its limit to be the spectral invariant c(A,H;h,R).

It can be shown that the spectral invariants are independent of the choices,
that is, independent of h and R, and it is proved in [FS] that the Hamiltonian
spectral invariants only depend on the time-1 map φH of H. Therefore, for any
φ ∈ Ham(T ∗N) and A ∈ H∗(T ∗N) one can extract Hamiltonian spectral invariants
which we denote by c(A, φ). In particular, we denote

c−(φ) = c(pt, φ) and c+(φ) = −c−(φ−1) ,

where pt ∈ H0(T ∗N).

Remark 2.10. In [FS] the authors prove that Γ: Ham(T ∗N)→ R given by

Γ(φ) = c+(φ)− c−(φ)

is a norm on Ham(T ∗N) which is invariant under conjugation (in fact, Γ is invari-
ant under conjugation with compactly supported symplectomorphisms); it is called
spectral norm. It gives rise to a bi-invariant metric on Ham(T ∗N), referred to as
spectral metric, via Γ(φ, ψ) = Γ(φψ−1). Similarly to the Hofer norm there is an
asymptotic version of the spectral norm given by

Γ∞(φ) = lim
k→∞

Γ(φk)

k
.

It is shown in [FS] that if φ ∈ Ham(U), where U ⊂ T ∗N is an open and dis-
placeable subset and ψ ∈ Ham(T ∗N) is such that ψ(U) ∩ U = ∅, then it is true
that

−Γ(ψ) ≤ c−(φ) ≤ c+(φ) ≤ Γ(ψ) .

Remark 2.11. For future use we introduce the spectral displacement energy of an
open and displaceable subset S ⊂ T ∗N ; it is given by

e(S) = inf{Γ(ψ) |ψ(S) ∩ S = ∅} .

The spectral displacement energy of a family S = {Si}i of subsets is given by
e(S) = supi e(Si). Note that the spectral displacement energy of a subset S is
invariant under Ham(T ∗N) in the sense that e(S) = e(ϕ(S)) for any ϕ ∈ Ham(T ∗N).

2.3.2 Comparison of Lagrangian and Hamiltonian spectral invariants

Proposition 2.12. For any φ ∈ Ham(T ∗N) we have

`−(φ) ≥ c−(φ) .
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This implies the following chain of inequalities

c−(φ) ≤ `−(φ) ≤ `+(φ) ≤ c+(φ) ,

where the rightmost inequality follows by duality.

Proof. The proof is essentially contained in [Al]. There the author provides a
comparison homomorphism between Lagrangian and Hamiltonian Floer homology
for certain degrees on closed symplectic manifolds and Lagrangian submanifolds
under certain assumptions which guarantee that both, Hamiltonian and Lagrangian
Floer theory, are well-defined.

The point of difference is that in [Al] the theory is restricted to closed symplectic
manifolds. Albers’ proofs rely on certain compactness arguments of moduli spaces
of perturbed pseudo-holomorphic curves which are valid in the closed case. In our
case there are no additional compactness issues beyond the closed case since the
almost complex structure is assumed to coincide with the one coming from the
Riemannian metric outside of a large compact set. Moreover, since the symplectic
form is exact in our case, there is no bubbling off of spheres or disks, and the proofs
are actually simpler. In particular, the homomorphisms which are constructed by
Albers for certain degrees are defined for all degrees and are isomorphisms in our
case. Therefore, we only present a sketch of the argument pointing out the essential
steps for the comparison of the spectral invariants.

Let H ∈ C∞c ([0, 1] × T ∗N) be a compactly supported time-dependent Hamilto-
nian. Albers defines a map

ι: CF∗(H : N)→ CF∗(H)

as follows: First, one can assume that the Hamiltonian H is time-independent near
t = 0, 1, and that the Floer homology for it is defined as above. Denote by Υ′ the
Riemann surface conformal to a closed disk with one boundary and one interior
puncture which is obtained from the above strip with a slit Υ through identifying
the top and the bottom boundary components. Let γ be a Hamiltonian arc and x
a periodic orbit of H. Consider the moduli spaceM(γ, x) consisting of solutions of
the Floer equation defined on Υ′, that is, solutions to

∂u

∂s
+ Jt(u)

(
∂u

∂t
−XH

)
= 0 ,

where the boundary puncture is asymptotic to γ and the interior puncture is asymp-
totic to x, while the boundary is mapped to the zero section. The above equation
is well-defined because of the existence of global conformal coordinates (s, t) on Υ′.
Albers shows that the moduli space M(γ, x) is a smooth manifold of dimension
mH:N(γ)−mH(x) which is compact in dimension 0. He also shows that ι, which is
the linear extension of

ι(γ) =
∑

mH(x)=mH:N (γ)

#M(γ, x)x ,

is a chain map. The canonical identifications HF∗(H : N) = H∗(N) and HF∗(H) =
H∗(T

∗N) intertwine it with the isomorphism H∗(N) → H∗(T
∗N) induced by the

inclusion of the zero section into T ∗N .
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Now, for an element u ∈M(γ, x) there is a sharp action-energy identity

AH(γ)−AH(x) = E(u) ≥ 0 .

Hence, ι maps CF<a
∗ (H : N) → CF<a

∗ (H) for a /∈ Spec(H) ∪ Spec(H : N), and it
follows that c−(H) ≤ `−(H). By the continuity of the spectral invariants we conclude
that this inequality holds for arbitrary compactly supported smooth Hamiltonians.

Proposition 2.12 and the inequality obtained by Frauenfelder and Schlenk given
in Subsection 2.3.1 immediately imply:

Corollary 2.13. Let U be an open subset which is displaceable by ψ ∈ Ham(T ∗N).
Then we have

−Γ(ψ) ≤ `−(φ) ≤ `+(φ) ≤ Γ(ψ)

for any φ ∈ Ham(U).

2.4 Lagrangian spectral invariants - summary

In summary, the Lagrangian spectral invariants have the following properties:

Theorem 2.14. Let N be a closed connected manifold. To each A ∈ H∗(N) \ {0}
we associate a function `(A, ·): Ham(T ∗N)→ R such that:

(i) `(A, φ) ∈ Spec(φ : N);

(ii) if H, K generate φ, ψ, then∫ 1

0

min(Ht −Kt) dt ≤ `(A, φ)− `(A,ψ) ≤
∫ 1

0

max(Ht −Kt) dt ;

(iii) `(A ∩B, φψ) ≤ `(A, φ) + `(B,ψ) for any A,B ∈ H∗(N) such that A ∩B 6= 0;
in particular, `+(φψ) ≤ `+(φ) + `+(ψ);

(iv) `−(φ) ≤ `(A, φ) ≤ `+(φ);

(v) `±(φ) = −`∓(φ−1), and thus `−(φψ) ≥ `−(φ) + `−(ψ);

(vi) if H generates φ and H|N = c (respectively H|N ≥ c, H|N ≤ c) for some
c ∈ R, then `(A, φ) = c (respectively `(A, φ) ≥ c, `(A, φ) ≤ c);

(vii) if U ⊂ T ∗N is an open and displaceable subset and ψ ∈ Ham(T ∗N) is such
that ψ(U) ∩ U = ∅, then

−Γ(ψ) ≤ `−(φ) ≤ `+(φ) ≤ Γ(ψ)

for any φ ∈ Ham(U);

(viii) |`(A, φ)− `(A,ψφψ−1)| ≤ `+(ψ)− `−(ψ) for any ψ ∈ Ham(T ∗N);

(ix) `+(φ) + `−(ψ) ≤ `+(φψ).
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Proof. With the exception of (iv), (viii), and (ix) the statements are proved in the
previous subsections.
(iv) The triangle inequality and the fact that `(A, id) = 0 imply

`(A, φ) = `(A ∩ [N ], id ◦φ) ≤ `(A, id) + `([N ], φ) = `+(φ) .

(viii) With the triangle inequality we conclude

`(A,ψφψ−1) = `(A ∩ [N ], ψφψ−1)

≤ `(A,ψφ) + `+(ψ−1)

≤ `(A, φ) + `+(ψ) + `+(ψ−1)

= `(A, φ) + `+(ψ)− `−(ψ) ,

which gives ∣∣`(A,ψφψ−1)− `(A, φ)
∣∣ ≤ `+(ψ)− `−(ψ) .

(ix) The triangle inequality implies `+(φ) = `+(φψψ−1) ≤ `+(φψ) + `+(ψ−1) and
with −`+(ψ−1) = `−(ψ) we have `+(φ) + `−(ψ) ≤ `+(φψ).

2.5 Lagrangian spectral invariants for Hamiltonians with
complete flow

We can define the various Lagrangian spectral invariants `(A,H : M) for Hamil-
tonians H with complete flow, that is, for Hamiltonians whose flow exists for all
times, and any closed connected submanifold M ⊂ N .

Lemma 2.15. Let H,H ′ ∈ C∞c ([0, 1] × T ∗N) and assume that there are two open
subsets U ⊂ V ⊂ T ∗N such that N ⊂ U , φtH(U), φtH′(U) ⊂ V for all t ∈ [0, 1], and
H|[0,1]×V = H ′|[0,1]×V . Then the spectral invariants of φH and φH′ coincide.

Proof. The claim follows from the fact that H can be continuously deformed into H ′

such that the action spectrum stays intact during the deformation. More precisely,
let Hτ = τH ′ + (1 − τ)H. Then Hτ is a smooth Hamiltonian whose flow sends U
into V for all times, and which coincides with H and H ′ when restricted to V . It
follows that Hτ has the same set of Hamiltonian orbits in Ω(M) regardless of τ , and
those have actions independent of τ .

If H has complete flow, there is R > 0 such that φtH(N) ⊂ T ∗<RN for all t ∈
[0, 1]. Any two compactly supported cutoffs H ′, H ′′ of H outside T ∗<RN satisfy the
assumptions of the lemma and so have identical spectral invariants. The spectral
invariant `(A,H : M) is defined to be the common value `(A,H ′ : M) = `(A,H ′′ :
M). Thus, for any Hamiltonian H with complete flow and any A ∈ H∗(M) \ {0}
the number `(A,H : M) is well-defined as the corresponding spectral invariant of
any suitable cutoff of H. Moreover, the spectral invariants for Hamiltonians with
complete flow share the properties of the usual ones, that is, spectrality, continuity,
and the triangle inequality. In particular, we have

· `(A,H : M) ∈ Spec(H : M);
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· if H,H ′ have complete flow and if V ⊂ T ∗N is an open subset such that
φtH(N), φtH′(N) ⊂ V for all t ∈ [0, 1], then

1∫
0

inf
V

(Ht −H ′t) dt ≤ `(A,H : M)− `(A,H ′ : M) ≤
1∫

0

sup
V

(Ht −H ′t) dt ;

· if H,H ′ are Hamiltonians with complete flow such that the concatenation
H]H ′ is smooth, then

`(A ∩B,H]H ′) ≤ `(A,H) + `(B,H ′)

for A,B ∈ H∗(N) with A ∩B 6= 0.

Remark 2.16. For Hamiltonians with complete flow it is no longer true that the
corresponding spectral invariants only depend on the time-1 map. For instance, the
constant Hamiltonians H = 1 and H ′ = 0 generate the same time-1 map, while we
have `(A,H) = 1 and `(A,H ′) = 0 for all A ∈ H∗(N) \ {0}.

Lemma 2.17. Let H be a time-dependent Hamiltonian with complete flow, and
assume that the flow keeps the zero section inside an open subset U for all times.
Let G be any cutoff of H outside U . Then we have `(A, φtH : M) = `(A, φtG : M) for
any t.

Remark 2.18. In general it is not true that one can consistently define the Floer
complex for a Hamiltonian with complete flow; moduli spaces of Floer trajectories
may fail to be compact without some additional assumptions on the behavior of
the Hamiltonian at infinity. Nevertheless, the Floer complex of any cutoff of the
Hamiltonian is well-defined. But it is not true that the Floer complexes of two
different cutoffs are isomorphic. They are related by canonical chain maps which
descend to level preserving isomorphisms on homology.

2.6 The product formula

In this subsection we prove a product formula for the Lagrangian spectral invari-
ants. It yields a product formula for the partial quasi-morphisms µa and the partial
symplectic quasi-integrals ζa which we define in Section 3; the latter is important
for applications to symplectic rigidity which we state in Subsection 5.4.

Let H,H ′ be time-dependent Hamiltonians on symplectic manifolds Z,Z ′. The
direct sum H ⊕H ′ on Z × Z ′ is the time-dependent Hamiltonian given by

(H ⊕H ′)(t, z, z′) = H(t, z) +H ′(t, z′) ,

for z ∈ Z, z′ ∈ Z ′. Note that whenever H and H ′ have complete flows, so does
H ⊕H ′.

Theorem 2.19. Let H,H ′ be time-dependent Hamiltonians with complete flows on
T ∗N , T ∗N ′, respectively. For any A ∈ H∗(N) \ {0} and A′ ∈ H∗(N ′) \ {0} we have

`(A⊗ A′, H ⊕H ′) = `(A,H) + `(A′, H ′) ,

where A⊗ A′ ∈ H∗(N)⊗H∗(N ′) = H∗(N ×N ′).
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For the proof of the theorem we introduce and make use of the following algebraic
observation: In general, one can define spectral invariants for a filtered graded chain
complex V . A filtered graded chain complex V is a quadruple V = (V,~v,A, ∂), where
~v = {v1, . . . , vk} is a graded finite set, V = Z2⊗~v is the Z2-vector space spanned by
~v, A: ~v → R is a 1-1 function (called the action) and ∂: V → V is a differential which
lowers the grading by one. The corresponding homology is denoted by H(V, ∂). The
filtered chain complex is given by V <a = Z2 ⊗ (~v ∩ {A < a}) and the differential is
supposed to respect the filtration, that is, it is supposed to preserve V <a for every
a ∈ R. Spectral invariants `(A,V) of V can be defined for every homology class
A ∈ H(V, ∂) \ {0} in the standard fashion.

Given two such filtered graded chain complexes V = (V,~v,A, ∂) and V ′ =
(V ′, ~v′,A′, ∂′) one can define the product filtered graded chain complex V ′′ :=
V ⊗ V ′ = (V ′′, ~v′′,A′′, ∂′′), where V ′′ = V ⊗ V ′, ~v′′ = ~v ⊗ ~v′, ∂′′ = ∂ ⊗ idV ′ + idV ⊗∂′
and A′′ = A⊕A′ with (A⊕A′)(vi, v′j) = A(vi)+A′(v′j) if A′′ is still 1-1. It gives rise
to the product homology H(V ′′, ∂′′) = H(V, ∂) ⊗H(V ′, ∂′). For the corresponding
spectral invariants we have the following statement which is essentially contained in
Theorem 5.2 in [EP3]:

Lemma 2.20. Let V ,V ′,V ′′ be graded filtered chain complexes as above. For A ∈
H(V, ∂) \ {0}, A′ ∈ H(V ′, ∂′) \ {0} and A⊗ A′ ∈ H(V ′′, ∂′′) we have

`(A⊗ A′,V ′′) = `(A,V) + `(A′,V ′) .

Proof (of Theorem 2.19). Let H be an arbitrary Hamiltonian with complete flow
on T ∗N . We can perturb H such that the Floer complex of any cutoff of H is a
filtered graded chain complex; we refer to such a Hamiltonian as generic. Given two
arbitrary Hamiltonians with complete flow, we can perturb both of them such that
both perturbations and their direct sum are generic. Since spectral invariants are
continuous in the C0-norm, the above perturbations do not alter the correspond-
ing spectral invariants. Therefore, we can assume that the Hamiltonians H,H ′ on
T ∗N, T ∗N ′ and their direct sum H ⊕H ′ are generic. We would like to make use of
the above lemma. To wit, let G be a cutoff of H and G′ be a cutoff of H ′. Note
that we have `(A,H) = `(A,G) for any A ∈ H∗(N) and similar for H ′ and G′. The
direct sum G⊕G′ has complete flow. Let J be a regular almost complex structure
on T ∗N which coincides with the almost complex structure induced by the Rieman-
nian metric outside of a large compact set. Let J ′ be such a regular almost complex
structure on T ∗N ′. Let r be sufficiently large so that T ∗rN contains the images of
all the critical points of AG as well as all the Floer trajectories connecting critical
points of AG of index difference 1, and similarly for r′, T ∗N ′ and G′. Let R > 0 be
large enough such that T ∗R(N ×N ′) contains the product T ∗rN × T ∗r′N ′, and let G′′

be a cutoff of G ⊕ G′ outside T ∗R(N × N ′). Then G′′ is also a cutoff of H ⊕H ′, in
particular, they have the same spectral invariants

`(A′′, G′′) = `(A′′, H ⊕H ′) .

Moreover, G′′ is generic by construction and J ′′ = J⊕J ′ is a regular almost complex
structure. Thus, the Floer complex of G′′ relative to J ′′ is a filtered graded chain
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complex which is the product of the Floer complexes of G and G′ by construction.
Together with Lemma 2.20 we conclude

`(A⊗ A′, H ⊕H ′) = `(A⊗ A′, G′′) = `(A,G) + `(A′, G′) = `(A,H) + `(A′, H ′) .
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3 Partial quasi-morphisms and partial symplectic

quasi-integrals

In this section we define the family of functions µa: Ham(T ∗N) → R, parame-
terized by a ∈ H1(N ;R), where each function has properties including those of a
partial quasi-morphism. It is obtained by homogenizing a certain Lagrangian spec-
tral invariant. Using the family of partial quasi-morphisms µa we deduce a family
of functionals ζa: C

∞
c (T ∗N) → R, where each functional has properties analogous

to those of a partial symplectic quasi-integral. The properties of µa are summarized
in Theorem 3.5, the ones of ζa in Theorem 3.10.

Moreover, we prove a product formula for the partial quasi-morphisms µa and
the partial symplectic quasi-integrals ζa which we use in the sequel to extract rigidity
results. The applications following from the existence of both functions are discussed
in Sections 4 and 5.

3.1 Partial quasi-morphisms

We define a function µ0: Ham(T ∗N)→ R by

µ0(φ) = lim
k→∞

`+(φk)

k
,

where `+ = `([N ], ·) denotes the Lagrangian spectral invariant introduced in Nota-
tion 2.8 in Section 2.

Proposition 3.1. The function µ0: Ham(T ∗N)→ R is well-defined and invariant
under conjugation in Ham(T ∗N).

Proof. The above limit exists since the sequence {`+(φk)}k is subadditive according
to point (iii) in Theorem 2.14, it is finite because of property (ii) in Theorem 2.14,
and hence µ0 is well-defined. To prove the conjugation-invariance of µ0 we note that
according to point (viii) in Theorem 2.14 we have |`+(ψφψ−1)− `+(φ)| ≤ `+(ψ) −
`−(ψ) for any φ, ψ ∈ Ham(T ∗N) which implies∣∣`+((ψφψ−1)k)− `+(φk)

∣∣ =
∣∣`+(ψφkψ−1)− `+(φk)

∣∣ ≤ `+(ψ)− `−(ψ) .

Dividing by k and taking the limit k →∞ yields∣∣µ0(ψφψ−1)− µ0(φ)
∣∣ = 0 .

The conjugation-invariance of the function µ0 implies that we can construct a
well-defined function µa: Ham(T ∗N)→ R for any a ∈ H1(N ;R). For a ∈ H1(N ;R)
and a closed 1-form α ∈ a let Tα: T ∗N → T ∗N be the symplectomorphism given by

Tα(q, p) = (q, p+ α(q)) .

Note that for φ ∈ Ham(T ∗N) it is true that T−αφTα ∈ Ham(T ∗N). We define
µa: Ham(T ∗N)→ R by

µa(φ) = µ0(T−αφTα)

for any α ∈ a.
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Proposition 3.2. The function µa: Ham(T ∗N)→ R is well-defined, that is, inde-
pendent of the choice of α ∈ a.

Proof. For a ∈ H1(N ;R) and any α, α′ ∈ a we claim that µ0(T−αφTα) equals
µ0(T−α′φTα′). Assume that α−α′ = df for some f ∈ C∞(N). Let B be a cotangent
ball large enough to contain the support of a Hamiltonian generating T−α′φTα′ . Let
F be a compactly supported Hamiltonian obtained from π∗f by cutting it off outside
B. We then have T−dfT−α′φTα′Tdf = φFT−α′φTα′φ−F . Consequently

T−αφTα = T−dfT−α′φTα′Tdf = φFT−α′φTα′φ−F ,

and so
µ0(T−αφTα) = µ0(φF (T−α′φTα′)φ−F ) = µ0(T−α′φTα′) .

Remark 3.3. The functions µa are defined via µ0 which in turn is the homoge-
nization of the spectral invariant `+. An equivalent construction of the µa can be
achieved by “changing the zero section” in the construction of the spectral invari-
ants. More precisely, for a ∈ H1(N ;R) let α ∈ a and let Γα be the graph of α.
Define the 1-form λα = λ − π∗α. Then the Lagrangian submanifold Γα is exact
in (T ∗N, λα) and λα vanishes on Γα. By replacing the zero section by Γα we can
perform the construction of the Lagrangian spectral invariants in the same fashion.
This leads to spectral invariants `+,α, and homogenization gives rise to the same
functions µa.

Remark 3.4. For the next theorem and future use we introduce Banyaga’s frag-
mentation norm for Hamiltonian diffeomorphisms with respect to a family of open
subsets. Let V be an open covering of T ∗N . Banyaga’s fragmentation lemma [Ba]
states that any φ ∈ Ham(T ∗N) can be represented as a finite product φ =

∏
i φi,

where φi ∈ Ham(Vi) for some Vi ∈ V . The fragmentation norm ‖φ‖V relative to V
is the minimal number of factors needed to represent φ. If U is an arbitrary family
of open subsets, one can consider the open covering V consisting of all open subsets
V for which there is ψ ∈ Ham(T ∗N) such that ψ(V ) ∈ U . By ‖φ‖U we denote the
fragmentation norm relative to the covering V given by the family U .

The next theorem lists the properties of the functions µa. Recall the definition
of the spectral displacement energy e(U) of a family of subsets U from Remark 2.11.

Theorem 3.5. Let N be a closed connected manifold. For every class a ∈ H1(N ;R)
there is a function µa: Ham(T ∗N)→ R with the following properties:

(i) µa is semi-homogeneous, i.e. µa(φ
l) = lµa(φ) for all l ∈ Z≥0;

(ii) µa is invariant under conjugation in Ham(T ∗N);

(iii) if φ, ψ ∈ Ham(T ∗N) are generated by the Hamiltonians H,K, then∫ 1

0

min(Ht −Kt) dt ≤ µa(φ)− µa(ψ) ≤
∫ 1

0

max(Ht −Kt) dt ;

in particular, µa is Lipschitz continuous with respect to Hofer’s metric;
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(iv) if U ⊂ T ∗N is an open and displaceable subset, then µa|Ham(U) = 0;

(v) for any collection U of open subsets with e(U) <∞ we have

|µ0(φψ)− µ0(ψ)| ≤ e(U) ‖φ‖U ;

(vi) if φ ∈ Ham(T ∗N) is generated by a Hamiltonian H such that H = c (respec-
tively H ≥ c, H ≤ c) when restricted to the graph of a closed 1-form in the
class a, where c ∈ R, then µa(φ) = c (respectively µa(φ) ≥ c, µa(φ) ≤ c);

(vii) for commuting φ, ψ we have µa(φψ) ≤ µa(φ) + µa(ψ);

(viii) for fixed φ ∈ Ham(T ∗N) the function H1(N ;R)→ R, a 7→ µa(φ), is Lipschitz
continuous, the Lipschitz constant being given by a semi-norm.

Remark 3.6. The functions µa are partial quasi-morphisms in the sense of Defini-
tion 1.2: Let U ⊂ T ∗N be an open and displaceable subset and φ, ψ ∈ Ham(T ∗N),
where ψ is generated by a Hamiltonian whose support is dominated by U (recall from
Subsection 1.2.1 that a subset S ⊂ T ∗N is dominated by an open subset U if there
is ϕ ∈ Ham(T ∗N) such that S ⊂ ϕ(U)). For brevity we say that ψ is dominated by
U . Fix a ∈ H1(N ;R) and let U be the family of open subsets which consists of U
and all the shifts T−α(U), where α ∈ a. Note that any U ∈ U is displaceable. Since
the support of ψ is dominated by U , we have µa(ψ) = 0 according to property (iv),
and with property (ii) we conclude |µa(φψ)− µa(φ)− µa(ψ)| = |µa(φψ)− µa(φ)| =
|µa(ψφ)− µa(φ)|. Moreover, the definition of µa and property (v) yield

|µa(ψφ)− µa(φ)| = |µ0(T−αψφTα)− µ0(T−αφTα)|
= |µ0(T−αψTαT−αφTα)− µ0(T−αφTα)|
≤ e(U) ‖T−αψTα‖U .

Since ψ is dominated by U , the diffeomorphism T−αψTα is dominated by T−α(U),
and since we assumed T−α(U) ∈ U , we have ‖T−αψTα‖U = 1. Moreover, since
the spectral displacement energy is invariant under the symplectomorphisms Tα, we
have e(U) = e(U), and thus we conclude

|µa(φψ)− µa(φ)− µa(ψ)| ≤ e(U) .

Proof. (i) The claim for µ0 follows by definition. With µa(φ
l) = µ0(T−αφ

lTα) =
µ0((T−αφTα)l) we conclude for any µa with the semi-homogeneity of µ0.
(ii) For the conjugation-invariance of µa we consider µa(ψφψ

−1) = µ0(T−αψφψ
−1Tα)

and note that since µ0 is invariant under conjugation, the latter equals

µ0(T−αψ
−1TαT−αψφψ

−1TαT−αψTα) = µa(φ) .

(iii) We prove the upper bound for µ0; the rest follows similarly. According to (ii)
in Theorem 2.14 we have

`+(φ)− `+(ψ) = `+(H)− `+(K) ≤
∫ 1

0

max(Ht −Kt) dt .
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In order to pass to µ0 we need to homogenize and to this end to concatenate Hamilto-
nians. Let f be a smoothing function as in Remark 2.6 andHf , Kf the corresponding
smoothed Hamiltonians. Then

`+(H)− `+(K) = `+(Hf )− `+(Kf ) ≤
∫ 1

0

max(Hf
t −K

f
t ) dt .

For any ε > 0 there is such a smoothing function for which∫ 1

0

max(Hf
t −K

f
t ) dt ≤

∫ 1

0

max(Ht −Kt) dt+ ε .

It follows that

`+(φk)− `+(ψk)

k
=
`+

(
(Hf )]k

)
− `+

(
(Kf )]k

)
k

≤
∫ 1

0

max(Ht −Kt) dt+ ε ,

and passing to the limit k →∞, and then letting ε→ 0, we obtain

µ0(φ)− µ0(ψ) ≤
∫ 1

0

max(Ht −Kt) dt .

(iv) Let U ⊂ T ∗N be open and displaceable by ψ ∈ Ham(T ∗N). By point (vii) in
Theorem 2.14 we have

|`+(φ)| ≤ Γ(ψ)

for any φ ∈ Ham(U), and thus

|µ0(φ)| = lim
k→∞

|`+(φk)|
k

≤ lim
k→∞

Γ(ψ)

k
= 0 .

To prove the claim for µa it suffices to note that for a ∈ H1(N ;R) and α ∈ a we
have T−αφTα ∈ Ham(T−α(U)), where T−α(U) is displaceable by T−αψTα.
(v) Let U be a collection of open subsets with e(U) < ∞ and φ, ψ ∈ Ham(T ∗N).
Assume ‖φ‖U = 1. Then φ is generated by a Hamiltonian which has compact
support in some V ∈ V . Thus, by definition of V , the support of the Hamiltonian
is dominated by an open subset U ∈ U . For brevity we say that φ is dominated by
an open subset U ∈ U . If we define φj = ψjφψ−j, we have

(φψ)k = φ0φ1 . . . φk−1ψ
k

and point (ix) in Theorem 2.14 implies (using induction)

k−1∑
j=0

`−(φj) + `+(ψk) ≤ `+((φψ)k) ≤
k−1∑
j=0

`+(φj) + `+(ψk) .

Every φj is dominated by one of the elements of U which is displaceable and has
spectral displacement energy≤ e(U). Thus, with point (vii) of Theorem 2.14 and the
invariance of the spectral displacement energy under Hamiltonian diffeomorphisms
we conclude that for any φj we have

−e(U) ≤ `−(φj) ≤ `+(φj) ≤ e(U) .
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In summary, we get ∣∣`+((φψ)k)− `+(ψk)
∣∣ ≤ ke(U) .

Dividing by k and taking the limit k →∞ gives

|µ0(φψ)− µ0(ψ)| ≤ e(U) .

The claim follows by induction over ‖φ‖U .
(vi) It suffices to prove the claim for the zero section and a = 0. Let H be such
that, for example, H|N ≥ c. Following the proof of Lemma 2.3 let K be another
time-dependent compactly supported Hamiltonian with H ≥ K everywhere and
K|N = c. In order to conclude for µ0 we need to concatenate a smoothed version of
H with itself. Let f be a smoothing function as in Remark 2.6 and Hf and Kf the
corresponding smoothed Hamiltonians. We have Hf ≥ Kf since f ′ ≥ 0. Moreover,
recall that the spectral invariants of Hf and of Kf coincide with those of H and
of K, respectively. With the above considerations, the continuity of the spectral
invariants, and property (vi) in Theorem 2.14 we conclude

`+(φkH) = `+((Hf )]k) ≥ `+((Kf )]k) = kc .

Dividing by k and taking the limit k →∞ we obtain µ0(H) ≥ c.
(vii) For commuting φ and ψ we have (φψ)k = φkψk and the triangle inequality for
`+ yields

`+((φψ)k) = `+(φkψk) ≤ `+(φk) + `+(ψk) .

The claim follows by dividing by k and taking the limit k →∞.
(viii) We have

|µa(φH)− µb(φH)| = |µ0(T−αφHTα)− µ0(T−βφHTβ)| ,

where α ∈ a, β ∈ b. The right-hand side is bounded from above by∫ 1

0

‖Ht ◦ Tα −Ht ◦ Tβ‖C0 dt .

For any 1-form χ on N we have

max
T ∗N
|Ht −Ht ◦ Tχ| ≤ |dHt|(χ) ,

where we use the notation

|dHt|(χ) = max
(q,p)∈T ∗N

∣∣〈d(q,p)Ht|T vert
(q,p)

T ∗N , χ(q)
〉∣∣ ,

where we identified T vert
(q,p)T

∗N = T ∗qN and 〈·, ·〉 is the pairing between T ∗qN and TqN .
It follows that

|µa(φH)− µb(φH)| ≤ |dH|(a− b) ,
where |dH|: H1(N ;R)→ R is the semi-norm defined by

|dH|(a) = inf
α∈a

∫ 1

0

|dHt|(α) dt .

This means that a 7→ µa(φ) is Lipschitz continuous, the Lipschitz constant being
the semi-norm |dH|.
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If N is a torus, the partial quasi-morphisms µa are invariant under coverings for
any a ∈ H1(Tn;R) = Rn. More precisely, let ρk: T

∗Tn → T ∗Tn be the covering
given by ρk(q, p) = (kq, p). It allows to pull back Hamiltonian vector fields via
ρ∗k(X)(z) = (dzρk)

−1(X(ρk(z))), and thus defines a homomorphism

ρ∗k: Ham(T ∗Tn)→ Ham(T ∗Tn)

which allows to pull back Hamiltonian flows in the following sense: Let H be a time-
dependent Hamiltonian generating φ ∈ Ham(T ∗Tn), define Hk(t, q, p) = H(kt, kq, p)
and let φk be its time-1 map. The map φk can be viewed as the pull back of φk by
the covering ρk, i.e. φk = ρ∗kφ

k.

Proposition 3.7. Let N = Tn. Then the partial quasi-morphisms µa are invariant
under coverings, that is, for any k and φ ∈ Ham(T ∗Tn) we have µa(φk) = µa(φ),
where φk ∈ Ham(T ∗Tn) is defined as above.

The proof of the proposition is given in Subsection 4.3; it can be extracted from
the proof of the equivalence between Viterbo’s symplectic homogenization and the
partial quasi-morphisms on tori, Theorem 4.13.

Remark 3.8. We would like to note that if a certain conjecture due to Viterbo would
be true, the partial quasi-morphisms µa would be homogeneous quasi-morphisms
when restricted to Ham(T ∗rN).

In [Vi3] Viterbo claims that there is a certain bound, we refer to it as the Viterbo
bound, on the Lagrangian spectral invariants for cotangent bundles of tori. In more
detail, he claims that the following statement is true: There is a constant κ >
0, depending only on the auxiliary Riemannian metric on Tn, such that if φ ∈
Ham(T ∗r Tn), then

`+(φ)− `−(φ) ≤ κr .

Unfortunately, there is a critical error in Viterbo’s argument in [Vi3], and there is
no other proof for the claim known so far. Thus, for now it is not clear whether the
Viterbo bound holds for tori or if there are manifolds at all for which the Viterbo
bound holds. But note that if the bound would be true on tori, the effect of reduction
on Lagrangian spectral invariants, as in [Vi1], would imply that it would hold on
manifolds which admit a finite connected covering which is a torus.

Although we do not know whether there are manifolds N for which the Viterbo
bound holds, we would like to point out that on such N the functions `±|Ham(T ∗r N)

would be genuine quasi-morphisms of defect ≤ κr since the Viterbo bound would
imply `+(φ) + `+(ψ) − κr ≤ `+(φψ) and `−(φ) + `−(ψ) + κr ≥ `−(φψ) for any
φ ∈ Ham(T ∗N) and ψ ∈ Ham(T ∗rN). Therefore, the restricted function µ0|Ham(T ∗r N)

would be a homogeneous quasi-morphism with defect ≤ 2κr (every quasi-morphism
gives rise to a homogeneous one where the defect is increased by a factor at most 2,
see [Ca]).

Moreover, for any ε > 0 there is α ∈ a whose graph is contained in T ∗<‖a‖+εN ,

where ‖a‖ denotes the dual of the Gromov-Federer stable norm on H1(N ;R) which
is expressible as

‖a‖ = inf
α∈a

max
q∈N
‖α(q)‖

41



for a ∈ H1(N ;R), see [Gro], [PPS]. Thus, we have T−αφTα ∈ Ham(T ∗r+‖a‖+εN)

for any φ ∈ Ham(T ∗rN), and we can use the bound for µ0 to conclude that any
µa|Ham(T ∗r N) would be a homogeneous quasi-morphism of defect ≤ 2κ(r + ‖a‖).

Recall from Subsection 2.5 that we defined the Lagrangian spectral invariants
`(α,H : M) for Hamiltonians with complete flow, and that the extended invariants
share the properties of the usual ones (but actually depend on the Hamiltonian
H and not only on its time-1 map). Therefore, we can extend the definition of
the functions µa to Hamiltonians with complete flow and these extended functions
share the properties of the usual ones listed in Theorem 3.5. Since the values of
the extended functions depend on the Hamiltonian H and not just on its time-1
map, we use the notation µa(H). Recall the definition of the direct sum H ⊕ H ′

of two time-dependent Hamiltonians H and H ′ given in Subsection 2.6 and note
that whenever H,H ′ have complete flows, so does H ⊕ H ′. The product formula
for the Lagrangian spectral invariants stated in Theorem 2.19 gives, together with
homogenization and shifting by Tα for appropriate 1-forms α, the following product
formula for the partial quasi-morphisms

Proposition 3.9. Let N ′′ = N × N ′. For a ∈ H1(N ;R) and a′ ∈ H1(N ′;R) let
µa, µ

′
a′ be the partial quasi-morphisms on T ∗N, T ∗N ′, respectively, extended to the

set of Hamiltonians with complete flow. Let H,H ′ be time-dependent Hamiltonians
with complete flow on T ∗N , T ∗N ′, respectively. Then we have

µa′′(H ⊕H ′) = µa(H) + µ′a′(H
′) ,

where a′′ = (a, a′) ∈ H1(N ;R)×H1(N ′;R) ⊂ H1(N ′′;R).

3.2 Partial symplectic quasi-integrals

In this subsection we show that the partial quasi-morphisms µa: Ham(T ∗N)→ R
yield a family of functionals ζa: C

∞
c (T ∗N) → R via ζa(F ) = µa(φF ), where each

functional has properties analogous to those of a partial symplectic quasi-integral.
Recall from Subsection 1.2.1 that a subset S ⊂ T ∗N is dominated by an open subset
U if there is ϕ ∈ Ham(T ∗N) such that S ⊂ ϕ(U).

Theorem 3.10. For any a ∈ H1(N ;R) the functional ζa: C
∞
c (T ∗N) → R defined

as ζa(F ) = µa(φF ) has the following properties:

(i) ζa is semi-homogeneous, i.e. ζa(λF ) = λζa(F ) for λ ∈ R≥0;

(ii) ζa is invariant under the natural action of Ham(T ∗N) on C∞c (T ∗N), i.e. ζa(F◦
φ) = ζa(F ) for any φ ∈ Ham(T ∗N);

(iii) we have
min(F −G) ≤ ζa(F )− ζa(G) ≤ max(F −G) ,

in particular, ζa is Lipschitz continuous with respect to the C0-norm, i.e.
|ζa(F )− ζa(G)| ≤ ‖F −G‖C0;

(iv) ζa is monotone, i.e. ζa(F ) ≤ ζa(G) for F ≤ G;
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(v) ζa(F ) = 0 for any F with displaceable support;

(vi) for any open and displaceable subset U ⊂ T ∗N , any F , and G with support
dominated by U we have

|ζa(F +G)− ζa(F )− ζa(G)| = |ζa(F +G)− ζa(F )| ≤
√

2e(U) ‖{F,G}‖C0 ,

and in particular

(vii) if F,G Poisson commute and the support of G is displaceable, then

ζa(F +G) = ζa(F ) + ζa(G) = ζa(F ) ;

(viii) if F = c (respectively F ≥ c, F ≤ c) when restricted to the graph of a closed
1-form in the class a, then ζa(F ) = c (respectively ζa(F ) ≥ c, ζa(F ) ≤ c);

(ix) if F,G Poisson commute, then ζa(F +G) ≤ ζa(F ) + ζa(G).

Proof. (i) By semi-homogeneity of µa, the identity ζa(λF ) = λζa(F ) is obtained
for natural λ, then for all positive rational λ, and finally, using Lipschitz continuity,
for all λ ≥ 0. Points (ii),(iii),(iv),(v),(viii),(ix) are immediate consequences of the
properties of the partial quasi-morphisms µa. Point (vii) is a consequence of (vi).
The proof of (vi) repeats verbatim the proof of Theorem 1.8 in [EPZ]. In fact, the
proof in [EPZ] gives |ζa(F +G)− ζa(F )− ζa(G)| ≤

√
2C ‖{F,G}‖C0 , where C is

such that |µa(φFφG)− µa(φF )− µa(φG)| ≤ C. According to the above discussion
we have C = e(U) if the support of G is dominated by an open and displaceable
subset U .

Remark 3.11. Since ζa is Lipschitz continuous in the C0-norm, it admits a unique
extension to the space Cc(T

∗N) of continuous functions with compact support which
is a partial symplectic quasi-integral in the sense of Definition 1.4. However, we refer
to the functionals ζa: C

∞
c (T ∗N)→ R as partial symplectic quasi-integrals as well.

Similarly to the partial quasi-morphisms µa we can define the partial symplectic
quasi-integrals ζa on autonomous Hamiltonians with complete flow. For these we
have the following product formula which follows directly from the one for the partial
quasi-morphisms µa.

Proposition 3.12. Let N ′′ = N ×N ′ and for a ∈ H1(N ;R) and a′ ∈ H1(N ′;R) let
ζa, ζ

′
a′ be the partial symplectic quasi-integrals on T ∗N, T ∗N ′, respectively, extended

to the set of autonomous Hamiltonians with complete flow. Let F, F ′ be Hamiltonians
with complete flow on T ∗N, T ∗N ′, respectively. Then we have

ζa′′(F ⊕ F ′) = ζa(F ) + ζ ′a′(F
′) ,

where a′′ = (a, a′) ∈ H1(N ;R)×H1(N ′;R) ⊂ H1(N ′′;R).

Remark 3.13. Recall from Subsection 2.3 the definition of the Hamiltonian spectral
invariant c+: Ham(T ∗N) → R . Since c+ satisfies the triangle inequality, it can be
homogenized to yield a function ν: Ham(T ∗N)→ R, and the latter can be used to
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define a function η: C∞c (T ∗N)→ R. These two functions ν and η coincide with Lan-
zat’s functions on T ∗N which are defined in [La] via quantum and Floer homology,
and they enjoy properties analogous to those of the partial quasi-morphisms µa and
the partial symplectic quasi-integrals ζa. Moreover, using the comparison described
in Proposition 2.12 we can conclude µa ≤ ν and ζa ≤ η for all a ∈ H1(N ;R). Lanzat
actually uses this relation between ν and µa in order to prove that ν is a genuine
partial quasi-morphism (and not a homogeneous quasi-morphism) on Ham(T ∗N).
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4 Symplectic homogenization

Symplectic homogenization on cotangent bundles of tori is originally due to
Viterbo [Vi4]. The construction of a symplectic notion of homogenization was
thereby motivated by the classical one of homogenization in the sense that Viterbo
associates a “rescaled” Hamiltonian Hk(t, q, p) = H(kt, kq, p) to a Hamiltonian

H ∈ C∞c ([0, 1] × T ∗Tn) and asks, whether Hk converges to some Hamiltonian Ĥ
which only depends on the fiber variable p. Thereby, the convergence is understood
in the way that the limit of the time-1 maps of Hk with respect to Viterbo’s metric
is generated by Ĥ in a certain precise sense.

In fact, in [Vi4] Viterbo defines symplectic homogenization as an operator

H: C∞c ([0, 1]× T ∗Tn)→ Cc(Rn)

which indeed sends a Hamiltonian H to a continuous function Ĥ which only depends
on the fiber variable and which is related to the limit of the rescaled Hamiltonian
Hk. The operator is constructed in terms of Lagrangian spectral invariants from
generating functions. More precisely, in [Vi4] Viterbo claims that the symplectic
homogenization operator H exists and that it has various nice properties which
include, for instance, a notion of convergence of the time-1 maps of Hk to the time-1
map of Ĥ.

In this section we give an alternative description of Viterbo’s symplectic homog-
enization operator. We prove that it is equivalent to the partial quasi-morphisms µa
introduced above. Using this equivalence on T ∗Tn we can give a definition of sym-
plectic homogenization on cotangent bundles T ∗N , where N is any closed connected
manifold, and conclude the properties of symplectic homogenization from the ones
of the partial quasi-morphisms µa.

Moreover, we will point out the resulting effects of the fact that Viterbo uses his
unproven bound (see Remark 3.8) in the construction of symplectic homogenization
and in the proofs of some of its properties. For now let us just mention that the exis-
tence of the symplectic homogenization operator can be proved without the Viterbo
bound. The latter is just needed in the proof of some properties of symplectic ho-
mogenization, for instance, in the proof of the convergence of the time-1 maps. This
observation is consistent with the equivalence between symplectic homogenization
and the partial quasi-morphisms µa. The equivalence can be seen as a way to define
symplectic homogenization, and the properties of symplectic homogenization, which
in this case are just the adapted ones of the partial quasi-morphisms µa, are exactly
the ones in whose proofs Viterbo does not use his bound.

To be able to state and prove the equivalence between Viterbo’s symplectic ho-
mogenization operator and the partial quasi-morphisms, we give a short overview
of the definition of Lagrangian spectral invariants from generating functions in Sub-
section 4.1, and state a result of Milinković and Oh describing an equality between
spectral invariants coming from Floer homology and generating function homology
in Subsection 4.1.1. The effect of the fact that we use a different sign convention
than Milinković and Oh is discussed in Subsection 4.1.2. In Subsection 4.2 we give
an overview about Viterbo’s approach to symplectic homogenization, in Subsec-
tion 4.3 we formulate the equivalent description of symplectic homogenization using
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the partial quasi-morphisms coming from Lagrangian spectral invariants and define
symplectic homogenization for more general cotangent bundles. The equivalence is
proved in Subsection 4.3.1.

4.1 Spectral invariants from generating functions

According to Viterbo one can define spectral invariants associated to a La-
grangian submanifold Hamiltonian isotopic to the zero section of a cotangent bundle
via a finite-dimensional approach [Vi1]. These Lagrangian spectral invariants are
constructed using the homology theory of generating functions quadratic at infinity.
In this subsection we briefly recall Viterbo’s construction of these spectral invari-
ants; the general reference for this is [Vi1]. Moreover, we review the relation between
the Lagrangian spectral invariants coming from generating functions and from Floer
homology given by Milinković and Oh in [MO1], [MO2], and discuss the effect of
the different sign conventions.

Consider a closed connected n-dimensional manifold N and the symplectic man-
ifold (T ∗N,ω = dλ), where λ = p dq is the Liouville form. A generating function
quadratic at infinity, or gfqi for short, is a function

S: N(q)× E(ξ)→ R ,

where E is a finite-dimensional vector space, such that ‖∂ξS − ∂ξQ‖C0 is bounded,
where Q: E → R is a non-degenerate quadratic form.

If L ⊂ T ∗N is a Lagrangian submanifold Hamiltonian isotopic to the zero sec-
tion, a gfqi S: N × E → R is said to generate L if the map (q; ξ) 7→ ∂ξS(q; ξ) has
0 as a regular value, and the map iS: ΣS → T ∗N given by (q; ξ) 7→ (q, ∂qS(q; ξ))
has image iS(ΣS) = L, where ΣS = {(q; ξ) ∈ N × E | ∂ξS(q; ξ) = 0} is a compact
submanifold in N ×E. If S is a gfqi for L, the critical points of S are in one-to-one
correspondence to the intersection points of L and ON . The definition of generating
functions for Lagrangian submanifolds was thereby motivated by the simple example
that the graph of the differential of a smooth function F ∈ C∞c (N), that is, the set
ΓdF = {(x, dF (x)) |x ∈ N}, is a Lagrangian submanifold in T ∗N which is generated
by F . In general, every Lagrangian submanifold Hamiltonian isotopic to the zero
section admits a gfqi [Sik], and such a gfqi is unique up to the following elementary
operations: addition of a non-degenerate quadratic form (stabilization), applica-
tion of a fiber-preserving diffeomorphism (gauge transformation) and addition of a
constant (translation) [Vi1], [Th].

Let S: N × E → R be a gfqi, Sa = {(q; ξ) |S(q; ξ) ≤ a}, and let E = E+ ⊕ E−
be the splitting into the positive and negative eigenspaces of the quadratic form Q.
The relative homology H∗(S

a, Sb) is independent of a and b for sufficiently large a
and sufficiently small b, and we denote this group by H∗(S : N). It is canonically
isomorphic to H∗(N) ⊗ H∗(E−, E− \ {0}) ' H∗+d(N), where d = dimE− and the
last isomorphism (“Thom isomorphism”) is given by tensoring with the generator
of Hd(E

−, E− \ {0}) ' Z2. There is a natural inclusion

ib: H∗(S
b)→ H∗(S : N)

and to each A ∈ H∗(N) one can associate the spectral invariant

`(A, S) = inf{b |A ∈ im ib} .
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Notation 4.1. We denote

`+(S) = `([N ], S) and `−(S) = `(pt, S)

for generators [N ] ∈ Hn(N) and pt ∈ H0(N).

If M ⊂ N is a closed submanifold, one can consider the restriction S|M×E as a
gfqi with base M and define spectral invariants `(A, S|M×E) associated to homology
classes in H∗(M).

In case S: N ×E → R is a gfqi of a Lagrangian submanifold L ⊂ T ∗N Hamilto-
nian isotopic to the zero section, it is unique up to gauge transformation, stabiliza-
tion and translation. With the exception of translation, the elementary operations
do not alter the spectral invariants. So one can say that the spectral invariants
are attached to the Lagrangian submanifold L and that they are all defined up to
simultaneous addition of a constant.

4.1.1 Relation between spectral invariants from Lagrangian Floer ho-
mology and from generating functions

In [MO1], [MO2] Milinković and Oh prove that the spectral invariants com-
ing from Lagrangian Floer homology and those coming from generating functions
coincide if the generating function is suitably normalized; this is needed to relate
symplectic homogenization and the partial quasi-morphisms in the sequel. In this
subsection we review the comparison of the spectral invariants due to Milinković and
Oh. Thereby, we follow their sign convention which differs from ours, and denote
objects defined with their convention (in this subsection as well as in the rest of this
work) with the overline. In particular, we denote by `(A,H : M) the Lagrangian
spectral invariants in the sign convention of Milinković and Oh. The effect of the
different conventions regarding spectral invariants is discussed in Subsection 4.1.2.

The above definition of a generating function is a particular case of the general
definition of a generating function [Vi1] as a function S: E → R defined on the
total space of a submersion π: E → N . If S: E → R is a generating function
for a Lagrangian embedding L ⊂ T ∗N , the set ΣS := {e ∈ E | ∂ξS(e) = 0} is a
smooth manifold, and there exists a Lagrangian embedding iS: ΣS → T ∗N given by
e 7→ (π(e), dS(e)) such that iS(ΣS) = L. In this case it is true that i∗Sλ = d(S|ΣS).
Thus, S induces a function, denoted by S|L, on the image of the embedding via the
formula S|L := S ◦ (iS)−1: L → R. The differential d(S|L) coincides with λ|L and
two generating functions of L induce functions on L whose difference is constant.

Remark 4.2. The action functional AH(γ) = −
∫ 1

0
Ht(γ(t)) dt +

∫
γ∗λ defined on

the path space Ω(N) is a particular example of a generating function (see [Oh1]); the
submersion is given by Ω(N)→ N , γ 7→ γ(1). The action functional AH generates
φH(N). This observation, which is originally due to Weinstein, lead Oh to define
his Lagrangian spectral invariants using Lagrangian Floer homology relative to the
action functional AH(γ).

The relation between the Lagrangian spectral invariants is given by the following
lemma which is essentially contained in [MO1], [MO2]:
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Lemma 4.3. Let L ⊂ T ∗N be a Lagrangian submanifold Hamiltonian isotopic to
the zero section and H ∈ C∞c ([0, 1] × T ∗N) a time-dependent compactly supported
Hamiltonian such that φH(N) = L. Let S: N×E → R be a gfqi of L. If the induced
functions AH |L and S|L coincide, then

`(A,H : M) = `(A, S|M×E)

for any closed connected submanifold M ⊂ N and any A ∈ H∗(M).

Remark 4.4. The proof is essentially contained in [MO1], [MO2] but since Milinković
and Oh use a normalization which is in terms of wavefronts, we describe their proof
and their normalization in order to see that our normalization equals theirs.

Remark 4.5. A gfqi S of L determines a wavefront of L given by

WS := {(π(p), (S|L)(p)) ∈ N × R | p ∈ L} ,

where π: T ∗N → N denotes the canonical projection. Similarly, when a Hamiltonian
H generates L in the sense that φH(N) = L, it determines a wavefront of L by

WH := {(π(p), (AH |L)(p)) ∈ N × R | p ∈ L} .

If S and H generate the same Lagrangian L, the two wavefronts are the same up to
a vertical translation.

Proof. Milinković and Oh define an “action” functional AH,S on a space of paths
with Lagrangian boundary conditions (relative to a closed connected submanifold
M ⊂ N) which generates the Lagrangian submanifold φH(LS), where S is a gfqi
of a Lagrangian submanifold LS and H a Hamiltonian. In particular, if H = 0,
A0,S generates LS, and if S = Q, where Q is a non-degenerate quadratic form, AH,Q
generates φH(N). According to Milinković and Oh, the Floer homology of the action
functional AH,S is well-defined, isomorphic to H∗(M), and one can extract spectral
invariants σ(A,H, S : M) for any A ∈ H∗(M). In case S = Q, these spectral
invariants coincide with those of AH , i.e. σ(A,H,Q : M) = `(A,H : M), and in
case H = 0, they coincide with those of S, i.e. σ(A, 0, S : M) = `(A, S|M×E).

If S is a gfqi for L = φH(N), one can consider a continuous family (the existence
of such a family is proved ibid.) of gfqi S(t) of φtH(L), where S0 = S and S1 = Q, and
Hamiltonians H(t) such that φ1

H(t) = φtH . If LS(t) denotes the Lagrangian generated

by L(t), one can calculate φH(t)(LS(t)) = L, and thus the action functional AH(t),S(t)

generates the fixed Lagrangian L. In this situation Milinković and Oh show that if
the isotopy (H(t), S(t)) is normalized such that the wavefront of AH(t),S(t) remains
fixed as t varies, the spectral invariants σ(A,H(t), S(t) : M) are independent of t,
and thus

`(A, S|M×E) = σ(A, 0, S : M) = σ(A,H,Q : M) = `(A,H : M) .

By definition of S(t) and H(t) we see that the wavefront of A0,S, which is the wave-
front of S, and the one of AH,Q, which is the wavefront of H, coincide. By our
normalization, the wavefronts of H and S coincide by assumption which means that
there is a unique continuous choice of normalization for the isotopy (H(t), S(t)), de-
fined by these wavefronts. It follows that our normalization equals the normalization
of Milinković and Oh, and the lemma follows from [MO1], [MO2].
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4.1.2 Sign conventions

In this subsection we finally discuss the effect of the different sign conventions
regarding spectral invariants. Recall that we denote objects defined with the sign
conventions of Milinković and Oh with the overline, with the exception of H, which
we reserve for the “reversed” Hamiltonian.

Our sign convention follows the philosophy that the Floer theory of the action
functional is a perturbation of the Morse theory of a function on a closed manifold,
in particular, the Hamiltonian enters the action functional with a positive sign.

Let H be a compactly supported time-dependent Hamiltonian on T ∗N . The
action functional AH : Ω(M)→ R is defined as

AH(γ) = −
∫ 1

0

Ht(γ(t)) dt+

∫
γ∗λ = −AH(γ) .

The symplectic form ω = −dλ = −dp∧ dq = −ω. The Hamiltonian vector field XH

is defined by the equation ω(XH , ·) = dH and so XH = XH . In particular, the flows
in the two sign conventions coincide.

If H is regular, that is φH(N) intersects ν∗M transversely, we have Crit(AH :
M) = Crit(H : M), while the action spectrum is flipped: Spec(AH : M) =
− Spec(H : M). Milinković and Oh use the negative gradient flow of AH to produce
the Floer equation. In their sign conventions, an almost complex structure J is
compatible with ω if ω(·, J ·) is a Riemannian metric. This is the case if and only if
the almost complex structure J = −J = (J)−1 is compatible with ω in our sense.
Therefore, their negative gradient flow corresponds to our positive gradient flow. It
follows that there is a canonical identification

M(γ+, γ−) =M(γ−, γ+)

for γ± ∈ Crit(H : M). Consequently, their Floer boundary operator is the dual
of ours. Their convention for the Conley-Zehnder index is mH:M(γ) = dimM −
mH:M(γ) for γ ∈ Crit(H : M). Thus, their Floer complex

(CF ∗(H : M), ∂H:M)

is canonically isomorphic to

(CF dimM−∗(H : M), (∂H:M)∗) ,

and so the homology they obtain is in fact the singular cohomology HdimM−∗(M)
which by Poincaré duality is isomorphic to H∗(M). Using this latter identification
and the fact that ∂ decreases the action AH , they define spectral invariants by the
usual recipe; we denote them by `(A,H : M) for A ∈ H∗(M).

We will only need the relation between ` and ` in the case M = N . By Poincaré
duality described in Subsection 2.2.2 we have

(CF ∗(H : N), ∂H:N) = (CF n−∗(H : N), (∂H:N)∗) = (CF∗(H : N), ∂H:N) .

Since AH(γ) = AH(γ), the action filtration on (CF ∗(H : M), ∂H:M) induced by
A coincides with the filtration on (CF∗(H : M), ∂H:M) induced by AH . Thus, the
relation between the spectral invariants is given by

`(pt, H) = `(pt, H) = −`([N ], H) and `([N ], H) = `([N ], H) = −`(pt, H) .
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Using the above notation we can write these relations as

`±(H) = −`∓(H) .

4.2 Viterbo’s approach to symplectic homogenization

Viterbo’s symplectic homogenization is an operator which sends a compactly
supported time-dependent Hamiltonian H ∈ C∞c ([0, 1] × T ∗Tn) to a continuous

function Ĥ which is related to the rescaled Hamiltonian Hk(t, q, p) = H(kt, kq, p)
and only depends on the fiber variable p. To define the symplectic homogenization
Ĥ of H, Viterbo constructs a function h′k: Rn → R via spectral invariants from
a generating function of a Lagrangian submanifold which is obtained from Hk in
an appropriate cotangent bundle. Viterbo then proves that the sequence (h′k(p))

converges to a continuous function for fixed p, and he defines Ĥ(p) = limk→∞ h
′
k(p).

The general reference for Viterbo’s construction, which we describe in more detail
below, is Viterbo’s unpublished manuscript [Vi4].

Let H ∈ C∞c ([0, 1]× T ∗Tn) be a compactly supported time-dependent Hamilto-
nian and denote by φt = φtH the Hamiltonian isotopy generated by H and by φ = φ1

its time-1 map. Define Hk ∈ C∞c ([0, 1]× T ∗Tn) as 5)

Hk(t, q, p) := H(kt, kq, p) ,

and denote by φtk = φtHk its flow and by φk = φ1
k its time-1 map.

The Lagrangian submanifold associated to Hk is constructed in terms of the
time-1 map φk of Hk which is related to the time-1 map φ of H. Namely, consider
the covering map

ρk: T
∗Tn → T ∗Tn

given by ρk(q, p) = (kq, p). The covering ρk allows to pull back Hamiltonian vec-
tor fields via ρ∗k(X)(z) = (dzρk)

−1(X(ρk(z))) and thus it defines a homomorphism
ρ∗k: Ham(T ∗Tn)→ Ham(T ∗Tn). The time-1 map of Hk is given by

φk = ρ∗kφ
k .

To associate a Lagrangian submanifold to the time-1 map φk of Hk which is Hamilto-
nian isotopic to the zero section of an appropriate cotangent bundle, one can follow
a particular construction which we describe in the following remark.

Remark 4.6. For any H ∈ C∞c ([0, 1] × T ∗Tn) the graph Γφt of φt is a Lagrangian
submanifold in (T ∗Tn × T ∗Tn, ω ⊕−ω), where the overline T ∗Tn indicates that the
symplectic form is the negative of the usual one. In particular, Γφt is given by the
image of the diagonal ∆ = ∆T ∗Tn = T ∗Tn in T ∗Tn × T ∗Tn under the Hamiltonian
isotopy

Φt = id×φt: T ∗Tn × T ∗Tn → T ∗Tn × T ∗Tn ,

i.e. Φt(∆) = Γφt . Note that the Hamiltonian isotopy Φt is generated by the Hamil-
tonian Kt = 0⊕ (−Ht) which means Kt(z, z

′) = −Ht(z
′) for z, z′ ∈ T ∗Tn.

5)Formally, one should assume that H is time-periodic for this to make sense but we suppress
such considerations below.
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Consider the symplectic covering

τ : T ∗∆→ T ∗Tn × T ∗Tn

given by τ(u, v;U, V ) = (u − V, v;u, v − U) which sends the zero section O∆ dif-
feomorphically onto ∆. Here (u, v) are the coordinates on the diagonal ∆ =
T ∗Tn = Tn(u) × Rn(v) and (U, V ) are the dual coordinates on cotangent fibers
T(u,v)∆ = T(u,v)T

∗Tn = T ∗(u,v)(Tn × Rn) = T ∗uTn(U) × T ∗vRn(V ). All coordinates

correspond to the splitting T ∗∆ = T ∗(Tn×Rn) = Tn(u)×Rn(v)×Rn(U)×Rn(V ).
On T ∗Tn × T ∗Tn = Tn(q) × Rn(p) × Tn(Q)× Rn(P ) the coordinates are given by
(q, p;Q,P ). The symplectic form on T ∗∆ is ωT

∗∆ = dU ∧du+dV ∧dv and the sym-
plectic form on T ∗Tn×T ∗Tn is ωT

∗Tn ⊕−ωT ∗Tn = dp∧ dq− dP ∧ dQ. A calculation
shows

τ ∗(ωT
∗Tn ⊕−ωT ∗Tn) = ωT

∗∆ ,

and therefore τ is indeed symplectic. Define the Hamiltonian H̃t = Kt ◦ τ on T ∗∆.
It generates a Hamiltonian isotopy (which has no longer compact support)

Φ̃t: T ∗∆→ T ∗∆

such that Φt◦τ = τ ◦ Φ̃t. The image of the zero section O∆ under Φ̃t is a Lagrangian
submanifold in T ∗∆,

Φ̃t(O∆) =: L(t) ⊂ T ∗∆ .

In particular, this Lagrangian submanifold maps diffeomorphically onto the graph
of φt under τ , i.e. τ(L(t)) = Γφt .

Following the above construction for φk one can consider

Φk := id×φk: T ∗Tn × T ∗Tn → T ∗Tn × T ∗Tn

and its lift
Φ̃k: T

∗∆→ T ∗∆ .

The image of the zero section O∆ under Φ̃k is a Lagrangian submanifold

Φ̃k(O∆) =: L′(k) ⊂ T ∗∆

which maps diffeomorphically to the graph of φk under τ , i.e. τ(L′(k)) = Γφk . Since
the Hamiltonian Hk has compact support, the Lagrangian L′(k) differs from the
zero section O∆ only inside a compact subset of T ∗∆. Thus, L′(k) ⊂ T ∗∆ admits a
generating function quadratic at infinity

Sk: ∆× E → R ,

where E is a finite-dimensional vector space, which is, up to gauge transformation
and stabilization, uniquely determined by the requirement that it coincides with a
quadratic form on E on a complement of K×E, where K ⊂ ∆ is a certain compact
subset. This implies that its spectral invariants `(·, Sk) are uniquely determined by
L′(k), and thus by φk.
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Remark 4.7. Actually, in [Vi4] Viterbo gives another way of constructing a gen-

erating function Sk associated to the Lagrangian Φ̃k(O∆) = L′(k) from which he
obtains a particular formula for Sk. But since we do not need the particular formula
for Sk, it suffices to obtain the existence of Sk by the above considerations.

Associated to the Hamiltonian isotopy φt of H Viterbo considers the unique

lift ĩd×φt: T ∗Rn × T ∗Rn → T ∗Rn × T ∗Rn of the symplectic isotopy id×φt. It
can be composed with a map T ∗Rn × T ∗Rn → T ∗∆T ∗Rn to yield a function which
descends, evaluated on the diagonal ∆T ∗Rn , to a well-defined Lagrangian embed-
ding ∆T ∗Tn → T ∗∆T ∗Tn . The image of this embedding in T ∗∆T ∗Tn is exactly
the Lagrangian submanifold L(t) given by Φ̃t(O∆), see Remark 4.6. In particu-

lar, L(1) = Φ̃(O∆) = L′(1). Using this construction Viterbo obtains a formula for a
gfqi S: ∆T ∗Tn×E → R for the Lagrangian submanifold L′(1) from which he deduces
a formula for a generating function Sk: ∆T ∗Tn × E → R for the Lagrangian L′(k).

With the generating function Sk: ∆ × E → R for the Lagrangian L′(k) ⊂ T ∗∆
at hand, Viterbo defines, for any p ∈ Rn, a function

(Sk)p: Tn × E → R

via
(Sk)p = Sk|Tn×{p}×E ,

i.e. (Sk)p(q; ξ) = Sk(q, p; ξ), where we view Tn × {p} as a subset of ∆ = T ∗Tn. He
then defines the function

h′k: Rn → R

to be
h′k(p) = `+(Sk|Tn×{p}×E) ,

and proves that the sequence (h′k(p)) converges for fixed p (in the proof of the
equivalence between symplectic homogenization and the partial quasi-morphisms
we will see that the convergence of the sequence follows a posteriori), and that the

limit is a continuous function. Finally, he defines the symplectic homogenization Ĥ
of H to be the q-independent function Ĥ(p) = limk→∞ h

′
k(p). Thus, in summary,

Viterbo’s construction gives an operator

H : C∞c ([0, 1]× T ∗Tn)→ Cc(Rn)

given by
H(H) = Ĥ .

Remark 4.8. Up to this point the Viterbo bound introduced in Remark 3.8 was not
needed in the construction. Nevertheless, in addition to the existence of the sym-
plectic homogenization operator H, Viterbo claims in [Vi4] that it has the following
properties:

· the time-1 maps φk form a Cauchy sequence with respect to Viterbo’s metric
γ (see the following remark, Remark 4.9, for the definition of γ) and its limit
with respect to this metric is, in a certain precise sense, generated by the
q-independent Hamiltonian Ĥ;
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· H(H) only depends on the time-1 map φ of H;

· H is Lipschitz continuous with respect to Viterbo’s metric γ.

Moreover, he claims that the above operator gives rise to a symplectic homogeniza-
tion operator for time-independent Hamiltonians H: C∞c (T ∗Tn) → Cc(Rn) which
has the following properties:

· H(F ) ≤ H(G) if F ≤ G;

· H(F ◦ φ) = H(F ) for all φ ∈ Ham(T ∗Tn);

· H(−F ) = −H(F );

· if L is a Lagrangian submanifold Hamiltonian isotopic to Lp0 = {(q, p0) ∈
T ∗Tn} and if F is such that F |L ≥ c (≤ c), then H(F )(p0) ≥ c (≤ c);

· if F,G are such that {F,G} = 0, then H(F +G) = H(F ) +H(G).

However, a consideration of Viterbo’s proofs shows that some of these properties
rely on the Viterbo bound. In fact, Viterbo uses it in the proof of the convergence
of the time-1 maps, in the proof of the Lipschitz continuity, in the proof of H(−F ) =
−H(F ), and in the proof of the strong quasi-additivity property.

Remark 4.9. Using his spectral invariants from generating functions Viterbo de-
fines a metric on the group of Hamiltonian diffeomorphisms Ham(T ∗Tn) [Vi1], [Vi2].
For a Hamiltonian diffeomorphism φ ∈ Ham(T ∗Tn) let Γφ ⊂ T ∗Tn × T ∗Tn be its

graph. It can be lifted to a Lagrangian submanifold Γ̃φ ⊂ T ∗∆ via a symplectic
covering τ : T ∗∆→ T ∗Tn×T ∗Tn as above. Since φ is compactly supported, one can
compactify Γ̃φ to a Lagrangian Γφ in T ∗(Sn × Tn). The latter Lagrangian admits a
gfqi S, and the formula

γ(φ) = `([Sn]⊗ [Tn], S)− `(pt⊗ pt, S)

defines a norm on Ham(T ∗Tn) which gives a metric, referred to as Viterbo’s metric,
via γ(φ, ψ) = γ(ψφ−1). The associated asymptotic Viterbo norm γ∞ on Ham(T ∗Tn)
is given by

γ∞(φ) = lim
k→∞

γ(φk)

k
.

In general, it is true that the (asymptotic) Viterbo norm is bounded from above by
the (asymptotic) Hofer norm, i.e. γ(∞) ≤ ρ(∞) [Vi1], [Vi2].

Another definition of the function h′k

Combining the above construction, the relation between the time-1 maps φk and
φ, and Viterbo’s approach, it is intuitively clear that we can define the function h′k
using spectral invariants coming from a generating function obtained in terms of φk

instead of φk.
Recall the definition of the Lagrangian submanifold L(t) = Φ̃t(O∆) ⊂ T ∗∆

associated to the Hamiltonian isotopy φt coming from H from Remark 4.6. Again,
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the Lagrangian L(t) ⊂ T ∗∆ is Hamiltonian isotopic to the zero section O∆ and
coincides with the zero section outside of a compact subset of T ∗∆. Therefore, it
admits a gfqi

S(t): ∆× E → R

which is up to gauge transformation and stabilization uniquely determined by the
requirement that it coincides with a quadratic form on E outside of a compact
subset, and this implies that its spectral invariants are uniquely determined by φt.

For k ∈ N and any p ∈ Rn we define

S(k)p := S(k)|Tn×{p}×E ,

where we view Tn × {p} as a subset of ∆ = T ∗Tn. Thus, we have a function

S(k)p: Tn × E → R ,

where S(k)p(q; ξ) = S(k)(q, p; ξ), and we define

hk: Rn → R

to be

hk(p) =
1

k
`+(S(k)p) .

By construction it is intuitively clear that the two functions hk and h′k coincide, that
is, that we have the following

Proposition 4.10.

h′k(p) = `+(Sk|Tn×{p}×E) =
1

k
`+(S(k)|Tn×{p}×E) = hk(p) .

To prove the proposition we use the following lemma which is contained in [Vi4].

Lemma 4.11. Let φ ∈ Ham(T ∗Tn) and ψ = ρ∗kφ. Let S: ∆× E → R be a gfqi for
the lift of the graph of φ to T ∗∆. Define T : ∆×E → R by T (q, p, ξ) = 1

k
S(kq, p, ξ).

Then T is a gfqi for the lift of the graph of ψ to T ∗∆.

The lemma yields that the spectral invariants of T are 1
k

times the spectral
invariants of S.

Proof (of Proposition 4.10). Our situation is exactly the situation of the above
lemma. In particular, we have that S(k): ∆ × E → R is a gfqi for L(k), where

L(k) = Φ̃k(O∆) and τ(L(k)) = Γφk , while Sk: ∆×E → R is a gfqi for L′(k), where

L′(k) = Φ̃k(O∆) and τ(L′(k)) = Γφk . Moreover, φk = ρ∗kφ
k. Thus, we conclude

`+(Sk) = 1
k
`+(S(k)), and in particular,

`+(Sk|Tn×{p}×E) =
1

k
`+(S(k)|Tn×{p}×E) .
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4.3 Symplectic homogenization via partial quasi-morphisms

In this section we formulate the equivalence between Viterbo’s symplectic ho-
mogenization operator H and the partial quasi-morphisms µa for T ∗Tn. With this
equivalence we define a symplectic homogenization operator for cotangent bundles
T ∗N , where N is any closed connected manifold, and extract its properties from the
ones of the partial quasi-morphisms µa.

Theorem 4.12. For each k we have

hk(0) =
1

k
`+(φk) ,

where `+ is the Lagrangian spectral invariant coming from Lagrangian Floer homol-
ogy, see Notation 2.8 in Section 2.

Postponing the proof of the theorem we conclude that the existence of the limit
of the sequence (hk(0)) follows a posteriori, and that

Ĥ(0) = lim
k→∞

hk(0) = lim
k→∞

`+(φk)

k
= µ0(φ) .

If we define Hp(t, q, ·) = H(t, q, · + p), we have Ĥp(0) = Ĥ(p), and since the same

property holds for µa, i.e. µ0(φHp) = µp(φ), we have Ĥ(p) = µp(φ). In summary,
Theorem 4.12 implies

Theorem 4.13. Let N = Tn and identify H1(Tn;R) = Rn. Then Ĥ(p) equals the
value of µp on the time-1 map φH of H, for any H ∈ C∞c ([0, 1]×T ∗Tn) and p ∈ Rn,
i.e.

Ĥ(p) = µp(φH) .

With the above equivalence at hand we can, in particular, prove that the partial
quasi-morphisms µa are invariant under coverings as stated in Proposition 3.7 in
Subsection 3.1.

Proof (of Proposition 3.7). From the construction of symplectic homogenization
as a limit process over k it is clear that the operator H is invariant under the
covering ρk : T ∗Tn → T ∗Tn given by (q, p) 7→ (kq, p), that is, that the symplectic
homogenization of the Hamiltonian H is the same as the symplectic homogenization
of the Hamiltonian Hk, where Hk(t, q, p) = H(kt, kq, p). With the above equivalence
we conclude that the same is true for the partial quasi-morphisms µa. For any k we
have µa(φ) = µa(φk) for φ ∈ Ham(T ∗N) and φk = ρ∗kφ

k.

Since the functions µa exist on T ∗N , where N is any closed connected manifold,
it makes sense to make the following general definition which can be interpreted to
generalize Viterbo’s construction from Tn to arbitrary closed connected N : For any
closed connected manifold N , the symplectic homogenization Ĥ of H ∈ C∞c ([0, 1]×
T ∗N) is given by

Ĥ(p) := µp(φH) ,
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where p ∈ H1(N ;R). Note that Ĥ is indeed continuous because of property (viii)
in Theorem 3.5.

Thus, symplectic homogenization yields an operator

H: C∞c ([0, 1]× T ∗N)→ Cc(H
1(N ;R))

H 7→ Ĥ

which is (according to the Lipschitz continuity of the partial quasi-morphisms µa)
Lipschitz continuous with respect to Hofer’s metric, i.e. ‖H(H)−H(G)‖C0 ≤
ρ(φH , φG).

Moreover, using the fact that the partial quasi-morphisms µa yield partial sym-
plectic quasi-integrals ζa: C

∞
c (T ∗N)→ R with properties as listed in Theorem 3.10,

we conclude that the operator H yields an operator H: C∞c (T ∗N)→ Cc(H
1(N ;R))

via H(F )(a) = ζa(F ) = µa(φF ) such that the following holds:

Lemma 4.14. The symplectic homogenization operatorH: C∞c (T ∗N)→ Cc(H
1(N ;R))

has the following properties:

(i) H is monotone, i.e. H(F ) ≤ H(G) for all F ≤ G;

(ii) H is invariant under Hamiltonian diffeomorphisms of T ∗N , i.e. H(F ◦ φ) =
H(F ) for all φ ∈ Ham(T ∗N);

(iii) H is Lipschitz continuous with respect to the C0-norm, i.e. ‖H(F )−H(F )‖C0 ≤
‖F −G‖C0;

(iv) if the restriction of F to the graph of a closed 1-form in the class a is ≥ c
(≤ c,= c), for some c ∈ R, then H(F )(a) ≥ c (≤ c,= c);

(v) if F,G are such that {F,G} = 0 and the support of G is displaceable, then
H(F +G) = H(F ) +H(G).

Remark 4.15. One should compare the above considerations with the observations
concerning the Viterbo bound given in Remark 4.8. From the equivalence and the
properties of the partial quasi-morphisms µa we implicitly get that the symplectic
homogenization Ĥ just depends on the time-1 map of H and that the operator H
is Lipschitz with respect to Hofer’s metric. The properties which we cannot deduce
from the equivalence are the notion of convergence of the time-1 maps φk to the
time-1 map of Ĥ, and the Lipschitz continuity with respect to Viterbo’s metric;
these properties are exactly the ones in whose proof Viterbo does use his bound.

Moreover, properties (i)-(iv) of the symplectic homogenization operator listed in
the above proposition are exactly the ones in whose proofs Viterbo does not need his
bound. As for quasi-additivity, we can prove the partial quasi-additivity, property
(v), instead of the strong quasi-additivity in whose proof Viterbo uses his unproven
bound.
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Remark 4.16. In Section 6 we prove the existence and uniqueness of an operator
H: Cc(T

∗S1)→ Cc(R) which has the properties listed in Lemma 4.14, where partial
quasi-additivity is replaced by the stronger assumption of strong quasi-additivity.
The proof thereby relies on the existence and uniqueness of a particular symplectic
quasi-integral on T ∗S1 which is constructed using a representation theorem for quasi-
integrals and topological measures (which is also developed in Section 6). Thus, in
two dimensions, the Viterbo bound is not needed in order to prove the strong quasi-
additivity and Viterbo’s symplectic homogenization operator can be proved to exist
and to be unique by an axiomatic approach.

4.3.1 Proof of Theorem 4.12

In order to prove Theorem 4.12 we need to show

`+(S(k)|Tn×{0}×E) = `+(φk) .

To prove the above equality we want to make use of the equality between spectral
invariants from generating functions and those from Lagrangian Floer homology due
to Milinković and Oh stated in Lemma 4.3. To do so, we need to prove the following
two statements.

Lemma 4.17. The function S(k)0 = S(k)|Tn×{0}×E generates the Lagrangian sub-

manifold φk(OTn) in T ∗Tn which is also generated by the action functional of H#k.
In particular, S(1)0 and AH generate the Lagrangian submanifold φ(OTn).

Lemma 4.18. The induced functions S(k)0|φk(OTn) and AH#k |φk(OTn) coincide.
In particular,

S(1)0|φ(OTn) = AH |φ(OTn) .

Here and in the sequel L denotes the image of the Lagrangian L under the
involution (q, p) 7→ (q,−p); L is still a Lagrangian submanifold.

Postponing the proof of the two lemmata for the moment we conclude:

Proof (of Theorem 4.12). We can assume k = 1 since the whole construction can
be performed with φ replaced by φk (see also the proof of the lemmata). According
to the above lemmata, S(1)0 and AH both generate φ(OTn), and S(1)0|φ(OTn) =
AH |φ(OTn). Thus, AH = −AH and −S(1)0 generate the Lagrangian φ(OTn), and
AH |φ(OTn) = −S(1)0|φ(OTn). Using Lemma 4.3 we conclude

`±(H) = `±(−S(1)0) .

In summary, we have the following chain of equalities

`+(φ) = `+(H) = −`−(H) = −`−(−S(1)0) = `+(S(1)0) ,

where we have `±(H) = −`∓(H) due to the sign conventions (see Subsection 4.1.2)
and `±(−S) = −`∓(S) by standard duality considerations (see [Vi1]).
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Proof (of Lemma 4.17). We can assume k = 1 since we can proceed for general k
in the same fashion. We have the following commutative diagram:

T ∗Rn × T ∗Rn −−−→ T ∗∆T ∗Rny y
T ∗Tn × T ∗Tn τ←−−− T ∗∆T ∗Tn

.

Here we view explicitly Tn = Rn/Zn. The left and the right arrows are induced from
the quotient maps6) Rn ×Rn → Tn × Tn and T ∗Rn → T ∗Tn. The top map is given
by (q, p;Q,P ) 7→ (Q, p; p− P,Q− q). Using the commutative diagram we conclude
that S(1)p generates the Lagrangian submanifold in T ∗Tn given by

{(Q(q, p), p− P (q, p)) | q ∈ Tn, (Q(q, p), P (q, p)) = φ(q, p)} .

Thus, S(1)0 generates

{(Q(q, 0),−P (q, 0)) | q ∈ Tn, (Q(q, 0), P (q, 0)) = φ(q, 0)} = φ(OTn) .

But φ(OTn) is generated by the action functional AH as well (recall Remark 4.2),
proving the claim.

Proof (of Lemma 4.18). Again, we assume k = 1. To prove the equality of the
induced functions S(1)0|φ(OTn) and AH |φ(OTn) it suffices to show that they are
equal at one point since their difference is constant. To do so, we first of all prove
that we can define an action functional corresponding to H̃ which generates L(1),
and that the induced function on L(1) coincides with S(1)|L(1) on the covering
space T ∗∆. With this equality we can conclude the claim for the functions S(1)0

and AH .
Recall the definition of the Hamiltonian H̃ on T ∗∆ which generates Φ̃t from

Remark 4.6. It is not compactly supported but for finite t we can cut it off outside a
large enough ball and consider the action functional corresponding to that function
(which we also denote by H̃t), AH̃ . This action functional has the same values

on all Hamiltonian arcs starting at the zero section and following the flow Φ̃t as
the original function before the cutoff. The action functional AH̃ generates the

Lagrangian submanifold Φ̃(O∆) which is L(1). Thus, AH̃ generates the Lagrangian

L(1) = Φ̃(O∆). But the Lagrangian L(1) is also generated by S(1) (according to the
definition, see Subsection 4.2). Thus, AH̃ and S(1) both generate the Lagrangian
submanifold L(1) ⊂ T ∗∆ and therefore they induce functions on L(1) which differ
by a constant.

Since L(1) differs from the zero section only inside a compact subset of T ∗∆, we
can compactify all objects to T ∗(Tn × Sn) = T ∗(∆ ∪ Tn × {∞}). For simplicity, we

denote all compactified objects by the same letters. From the definition of H̃ it is
clear that the points of Tn × {∞}, considered as constant curves, are Hamiltonian

6)Usually if there is a smooth map f : X → Y , there is no natural way of associating a smooth
map between the corresponding cotangent bundles, however if this map is a local diffeomorphism,
then we get the induced map f∗: T ∗X → T ∗Y given by f∗(α) = α ◦ (dxf)−1 for α ∈ T ∗

xX, and it
is symplectic: (f∗)∗ωT∗Y = ωT∗X .
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arcs with respect to H̃ starting and ending at the zero section. Moreover, H̃t equals
zero on an open neighborhood of Tn × {∞} inside T ∗(Tn × Sn) which means, in
particular, that the action of a point in Tn×{∞}, considered as a Hamiltonian arc,
is zero. But the generating function S(1) also equals zero at a point of Tn × {∞},
and thus the induced functions on L(1) coincide, i.e.

AH̃ |L(1) = S(1)|L(1) .

In particular, if γ : [0, 1] → T ∗(Tn × Sn) is a Hamiltonian arc relative to H̃ such
that γ(0) ⊂ O∆ and γ(1) = z ∈ L(1), then

(S(1)|L(1))(z) = AH̃(γ) = −AH̃(γ) .

With this equality of the “lifted” functions we conclude that the functions
AH |φ(OTn) and S(1)0|φ(OTn) are equal at one point of φ(OTn) and therefore co-
incide.

Choose a point z ∈ φ(OTn) ∩ OTn . It exists by Lagrangian intersection theory.
Let γ be the Hamiltonian arc ending at z relative to the flow φt, i.e.

γ(t) = φt(γ(0)) and γ(1) = z ,

where γ(0) ∈ T ∗Tn. In coordinates we denote (q, 0) = γ(0) ∈ T ∗Tn and γ(t) =
(Qt, Pt). Note that the curve t 7→ Qt ∈ Tn has lifts to Rn, and for any such lift, say,
δ(t), the difference δ(t) − δ(0) is independent of the lift. We denote this difference
by Qt − q ∈ Rn.

Recall the definition of the symplectic covering τ : T ∗∆→ T ∗Tn× T ∗Tn and the
Hamiltonian isotopy Φ̃t: T ∗∆→ T ∗∆ from Remark 4.6. Consider the arc γ̃: [0, 1]→
T ∗∆ given by

γ̃(t) = Φ̃t(γ(0)) ,

where we view γ(0) ∈ T ∗Tn = ∆ = O∆ ⊂ T ∗∆. Since τ(Φ̃t(O∆)) = Γφt , we have

(τ ◦ γ̃)(t) == (γ(0);φt(γ(0))) = (q, 0; γ(t)) = (q, 0;Qt, Pt) ∈ T ∗Tn × T ∗Tn .

Moreover, using the symplectic covering τ one can calculate

γ̃(t) = (Qt, 0;−Pt, Qt − q) ∈ T ∗∆ .

We compute the action of the arc γ̃ relative to the Hamiltonian H̃, i.e.

AH̃(γ̃) =

∫ 1

0

H̃t(γ̃(t)) dt−
∫
γ̃∗λ∆ ,

where λ∆ is the Liouville form on T ∗∆. With the definition of H̃t = Kt ◦ τ =
(0⊕ (−Ht)) ◦ τ (recall Remark 4.6) and the above computation we have in the first
integral∫ 1

0

H̃t(γ̃(t)) dt =

∫ 1

0

(Kt ◦ τ ◦ γ̃)(t) =

∫ 1

0

(0⊕−Ht)(q, 0; γ(t)) dt = −
∫ 1

0

Ht(γ(t)) dt .
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The second integral equals

−
∫ 1

0

λ∆( ˙̃γ(t)) dt = −
∫ 1

0

〈(−Pt, Qt − q), ddt(Qt − q, 0)〉 dt =

∫ 1

0

〈Pt, Q̇t〉 dt =

∫
γ∗λ .

In total, we get
−AH̃(γ̃) = AH(γ) .

Denoting z̃ = γ̃(1), we have

(S(1)0|φ(OTn))(z) = (S(1)|L(1))(z̃) = −AH̃(γ̃) = AH(γ) .

The first of these equalities follows from the fact that φ(OTn) is obtained from L(1)
by symplectic reduction (which is just a reformulation of the fact that φ(OTn) is
generated by the gfqi S(1)0 which itself is the restriction of S(1) to the zero section
OTn ⊂ T ∗Tn = ∆), and that z̃ is mapped to z under this reduction.
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5 Applications

The existence and the properties of the functions µa: Ham(T ∗N) → R and
ζa: C

∞
c (T ∗N)→ R lead to various applications. In Subsection 5.1 we present a lower

bound on Banyaga’s fragmentation norm relative to displaceable subsets, in Sub-
section 5.2 we prove that the partial quasi-morphisms µa are equivalent to Mather’s
alpha function and deduce the invariance of the latter under Hamiltonian diffeo-
morphisms. In Subsection 5.3 we present the applications to Hofer and spectral
geometry. Finally, in Subsection 5.4 we deduce rigidity results of subsets using the
partial symplectic quasi-integral ζ0.

5.1 Fragmentation norm

Recall from Remark 3.4 that the fragmentation norm ‖φ‖U of a Hamiltonian
diffeomorphism φ ∈ Ham(T ∗N) relative to an arbitrary family U of open subsets
is given by the following: Associated to U we consider an open covering V of T ∗N
consisting of open subsets V for which there is ψ ∈ Ham(T ∗N) such that ψ(V ) ∈ U ;
the fragmentation norm ‖φ‖U is the fragmentation norm relative to the covering V .

Proposition 5.1. The fragmentation norm of φ ∈ Ham(T ∗N) relative to a family
of open and displaceable subsets U satisfies

‖φ‖U ≥
|µ0(φ)|
e(U)

,

where e(U) is the spectral displacement energy of the family U introduced in Remark
2.11. In particular, if φ ∈ Ham(T ∗N) is generated by a Hamiltonian H such that
H|L ≥ c, for some c ∈ R, where L is a Lagrangian Hamiltonian isotopic to the zero
section N , then

‖φ‖U ≥
c

e(U)
.

Proof. Point (v) of Theorem 3.5 states |µ0(φψ)− µ0(ψ)| ≤ e(U) ‖φ‖U and with
ψ = id we obtain

|µ0(φ)| ≤ e(U) ‖φ‖U ,

and the claim follows. For the particular case it suffices to note that according to
the conjugation invariance of µ0 under Ham(T ∗N) we have |µ0(φ)| ≥ c for any such
φ.

Remark 5.2. Similar results are proved in [EP1] for closed manifolds and in [La] for
certain types of open convex manifolds. In the first reference the Hamiltonian dif-
feomorphism φ is required to have displaceable support. This has to do with the fact
that the Calabi quasi-morphism used there coincides with the Calabi homomorphism
on displaceable subsets (see Subsection 6.5), while our partial quasi-morphisms (and
Lanzat’s functions) vanish on displaceable subsets.
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5.2 Mather’s alpha function

Before stating and proving the equality between Mather’s alpha function and
the partial quasi-morphisms µa we briefly recall the definition of Mather’s alpha
function; we refer to [Ma] for details.

Mather’s alpha function is a function

αH : H1(N ;R)→ R

which can be associated to any time-periodic Tonelli Hamiltonian H: S1 × T ∗N →
R. Thereby, a Hamiltonian H: S1 × T ∗N → R is called Tonelli if it is fiberwise
strictly convex, i.e. the fiberwise Hessian of H is positive definite, superlinear,
i.e. lim‖p‖→∞H(t, q, p)/ ‖p‖ = ∞ for all (t, q) ∈ S1 × N , and has complete flow.
In general, Mather’s theory, in whose context the alpha function is constructed,
is about action minimizing invariant measures for certain Hamiltonian systems on
cotangent bundles T ∗N . In fact, the alpha function is the conjugate of a func-
tion βH : H1(N ;R)→ R which can be interpreted to represent the minimal average
Lagrangian action needed in order to carry out motions with a given rotation vector.

Let H: S1 × T ∗N → R be a time-periodic Tonelli Hamiltonian. Consider the
associated Lagrangian L: S1 × TN → R which is given by the Legendre duality by
the formula

L(t, q, v) = sup{〈p, v〉 −H(t, q, p) | p ∈ T ∗qN} .
The Lagrangian L is Tonelli and defines a so-called Euler-Lagrange flow φL on
S1 × TN which is given by the solution of the equation

d

dt
∂vL(t, q, v) = ∂qL(t, q, v) .

Let P = S1 × (TN ∪ {∞}) denote the one-point compactification of S1 × TN . The
Euler-Lagrange flow φL extends to a flow on P which fixes ∞. Let ML denote the
set of probability measures on P which are invariant under φL. To each µ ∈ ML

one can associate a unique class p(µ) ∈ H1(N ;R), called the rotation vector, as
follows: Let λ be a closed 1-form on N and [λ] ∈ H1(N ;R) its cohomology class.
One can view λ as a map TN → R which is linear in the fibers and compose it
with the projection S1×TN → TN ; the resulting map is still denoted by λ. Define
a functional H1(N ;R) → R by [λ] 7→

∫
P
λ dµ. For every µ ∈ ML there exists

p(µ) ∈ H1(N ;R), referred to as rotation vector of µ, such that∫
P

λ dµ = 〈[λ], p(µ)〉 ,

for all closed 1-forms λ, where 〈·, ·〉 denotes the canonical pairing between cohomol-
ogy and homology classes.

For µ ∈ML define its average action by

AL(µ) =

∫
P

Ldµ ,

where we set L(∞) = ∞. According to Mather there exists µ ∈ ML such that

AL(µ) < ∞; the set of all such µ is denoted by M̂L. Moreover, there exists a
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minimal value of the average action over the set of probability measures M̂L with
a given rotation vector. Thus, there is a well-defined map

βH : H1(N ;R)→ R

h 7→ min{AL(µ) |µ ∈ M̂L, p(µ) = h} .

The function βH is convex and superlinear, and therefore one can consider its con-
jugate function (given by the Legendre duality)

αH : H1(N ;R)→ R
c 7→ max

h∈H1(N ;R)
(〈c, h〉 − βH(h)) ,

which is known as Mather’s alpha function.
We have the following relation between the partial quasi-morphisms (extended

to the set of Hamiltonians with complete flow) and Mather’s alpha function:

Proposition 5.3. Let H be a time-periodic Tonelli Hamiltonian. For any a ∈
H1(N ;R) we have

αH(a) = µa(φH) .

Remark 5.4. Note that the above result gives a way to define the alpha function
for arbitrary Hamiltonians on T ∗N with complete flow as αH(a) := µa(φH).

Remark 5.5. The above result was first established in [Vi4] for N = Tn in the
formulation of symplectic homogenization (there the author proves that the alpha
function of H equals the symplectic homogenization of H).

Proof. It suffices to show the equality for a = 0. According to Mather (this is
implicit in [Ma]; see for example the proof of the proposition on page 178) there is
the following expression of the alpha function at 0:

αH(0) = − lim
k→∞

1

k
inf{AkL(γ) | γ: [0, k]→ N} ,

where k ∈ N and

AkL(γ) =

∫ k

0

L(t, γ(t), γ̇(t)) dt ,

where L: S1 × TN → R is the time-periodic Lagrangian function associated to H.
We claim that the infimum on the right-hand side equals −`+(φkH). Assuming this
claim for a moment we obtain

αH(0) = lim
k→∞

`+(φkH)

k
= µ0(φH) .

To prove the claim we consider the space of smooth paths Pk = {γ: [0, k] → N}
and the functional AkL: Pk → R. Since the evaluation map πk: Pk → N given
by γ 7→ γ(k) is a submersion, one can consider the functional AkL as a generating
function which generates the Lagrangian submanifold φkH(N). The above infimum
is a minimum and therefore it is a critical value of AkL. Thus, it is the action of a
Hamiltonian arc in Pk running from the zero section back to itself.
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Moreover, it is possible to find a finite-dimensional generating function Sk for
φkH(N) which equals a positive-definite quadratic form outside of a compact subset
(this can be found in the latest version of [Vi4], appendix D, or in [MVZ], appendix
A). In this case we have

minSk = `−(Sk) .

Thus, we have two generating functions of φkH(N) and both of them induce functions
on the Lagrangian φkH(N); their difference is a constant. By normalization of Sk we
can assume that its critical values coincide with those of AkL, and thus

minAkL = minSk = `−(Sk) .

Now, our sign conventions imply that the Hamiltonian action functional is the neg-
ative of the Lagrangian one when evaluated at a critical point. Therefore, we have

Sk|φkH(N) = AkL|φkH(N) = −AkH |φkH(N) ,

and it follows that the spectral invariants of Sk coincide with those of −AkH . In
summary, we have

minAkL = minSk = `−(Sk) = −`+(φkH) ,

as claimed.

As a consequence of the above result we get the invariance of the alpha function
under Hamiltonian diffeomorphisms.

Corollary 5.6. For a time-periodic Tonelli Hamiltonian H and a Hamiltonian dif-
feomorphism φ ∈ Ham(T ∗N) such that H ◦ φ is still Tonelli 7) we have

αH◦φ = αH .

Proof. The functions µa are invariant under conjugation in Ham(T ∗N) (when ex-
tended to the set of Hamiltonians with complete flow). SinceH◦φ generates φ−1φHφ,
the claim follows.

Remark 5.7. The proof of the symplectic invariance of the alpha function for
Tonelli Hamiltonians can be found in [Be] and the references therein. Before that it
was also shown in [PPS] in case H is autonomous. The advantage of our approach is
that the proof follows from the properties of the partial quasi-morphisms and that
it applies to any Hamiltonian with complete flow.

5.3 Hofer and spectral geometry

Recall from Subsection 1.5 that the Hofer norm of φ ∈ Ham(T ∗N) is given by

ρ(φ) = inf
H

∫ 1

0

oscHt dt ,

7)Since φ has compact support, H ◦ φ has automatically complete flow and is superlinear.
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where the infimum goes over all compactly supported Hamiltonians generating φ.
It gives rise to the asymptotic Hofer norm ρ∞(φ) = limk→∞ ρ(φk)/k and defines
Hofer’s metric on Ham(T ∗N) via ρ(φ, ψ) = ρ(φψ−1).

Furthermore, recall from Remark 2.10 that the spectral norm of φ ∈ Ham(T ∗N)
is given by

Γ(ψ) = c+(ψ)− c−(ψ) ,

where c±: Ham(T ∗N)→ R are Hamiltonian spectral invariants. The corresponding
asymptotic spectral norm is given by Γ∞(φ) = limk→∞ Γ(φk)/k, while the spectral
metric on Ham(T ∗N) is given by Γ(φ, ψ) = Γ(φψ−1).

In [FS] it is proved that
Γ(φ, ψ) ≤ ρ(φ, ψ) .

We get the following chain of inequalities for the (asymptotic) Hofer and the
(asymptotic) spectral norm (related results can be found in [PS] and in [Sib2]).

Proposition 5.8. For φ ∈ Ham(T ∗N) we have

osca∈H1(N ;R) µa(φ) ≤ Γ(φ) ≤ ρ(φ)

and
osca∈H1(N ;R) µa(φ) ≤ Γ∞(φ) ≤ ρ∞(φ) .

Proof. To prove the claim about the spectral metric recall from Proposition 2.12
that we have the following comparison inequality

c−(φ) ≤ `+(φ) ≤ c+(φ) .

Since the triangle inequality holds for the spectral invariants c±, the sequence
{c+(φk)}k≥1 is subadditive and the sequence {c−(φk)}k≥1 is superadditive. We get

c−(φ) ≤ `+(φk)

k
≤ c+(φ) ,

and thus
c−(φ) ≤ µ0(φ) ≤ c+(φ) .

Since the spectral invariants c± are invariant under the symplectomorphisms Tα
which were used to define µa, we have

osca∈H1(N ;R) µa(φ) ≤ c+(φ)− c−(φ) = Γ(φ) .

Finally, note that the spectral norm satisfies Γ(φ) ≤ ρ(φ) which proves the estimate
for the Hofer metric.

For the next theorem note that oscillation is a norm on the subspace C∞c ((0, 1)),
the corresponding metric space is denoted by (C∞c ((0, 1)), osc).

Proposition 5.9. (i) If N does not admit a nowhere vanishing closed 1-form,
there is an isometric embedding of R into Ham(T ∗N).

(ii) If N admits a nowhere vanishing closed 1-form, then there is an isometric
embedding from (C∞c ((0, 1)), osc) into (Ham(T ∗N), ρ), that is, there is a map
ι: C∞c ((0, 1))→ Ham(T ∗N) such that ρ(ι(F ), ι(G)) = osc(F −G).
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Proof. (i) Let H ∈ C∞c (T ∗N) be such that H|N = 1 and 0 ≤ H ≤ 1 everywhere.
Define ι: R→ Ham(T ∗N) by t 7→ φtH . On the one hand, we have

ρ(ι(t), ι(t′)) = ρ(φtH , φt′H) ≤ osc((t− t′)H) = |t− t′| .

On the other hand, we have according to (iii) in Theorem 3.5

ρ(ι(t), ι(t′)) ≥ |µ0(φtH)− µ0(φt′H)|

but since tH|N = t and t′H|N = t′, we have with (vi) in Theorem 3.5 that µ0(φtH) = t
and µ0(φt′H) = t′, and thus

ρ(ι(t), ι(t′)) ≥ |t− t′| .

(ii) Let α be a nowhere vanishing closed 1-form and a = [α] ∈ H1(N ;R). Since α
has no zeros, we can fix a smooth H: T ∗N → R such that H|Γtα = t for t ∈ [0, 1],
where Γtα denotes the graph of tα. Define a map C∞c ((0, 1)) → C∞c (T ∗N) by
f 7→ Hf := f ◦ H, where we implicitly extend f ∈ C∞c ((0, 1)) to R by zero; the
map is linear. Note that we have maxHf = max f and the same for min and osc.
Moreover, f ◦H equals f(t) on Γtα. Define a map

ι : C∞c ((0, 1))→ Ham(T ∗N)

by
ι(f) ≡ φHf ;

the map is a group homomorphism. Now, we have

ρ(ι(f), ι(g)) = ρ(φHf , φHg) ≤ osc(Hf −Hg) = osc(f − g) .

To prove the claim we need to prove the reversed inequality osc(f−g) ≤ ρ(ι(f), ι(g)).
Let H,G be time-dependent Hamiltonians generating φHf and φHg respectively.
According to (iii) in Theorem 3.5 we have

µta(φHf )− µta(φHg) ≤
∫ 1

0

max(Ft −Gt) dt .

By (vi) in Theorem 3.5 and the fact that Hf equals f(t) on Γtα, and similar for g,
we have

µta(φHf )− µta(φHg) = f(t)− g(t) = (f − g)(t) ,

and thus

max(f − g) ≤
∫ 1

0

max(Ft −Gt) dt .

Similarly,

min(f − g) ≥
∫ 1

0

min(Ft −Gt) dt .

The above inequalities imply

osc(f − g) ≤
∫ 1

0

osc(Ft −Gt) dt ,

and since this is true for any F,G generating φHf , φHg , we have

osc(f − g) ≤ ρ(φHf , φHg) = ρ(ι(f), ι(g)) .
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5.3.1 Mather’s alpha function and Hofer geometry

There is a connection between Aubry-Mather theory and Hofer geometry as
studied by Siburg in [Sib1]; in particular, there is an inequality between the Hofer
norm and the minimum of the alpha function. It can be interpreted as to provide
a relation between the dynamical and the geometric point of view to the study of
Hamiltonian systems.

Recall that Aubry-Mather theory (or the existence of the alpha function) is es-
tablished for Tonelli Hamiltonians. Since these Hamiltonians do not have compact
support, they do not generate an element in Ham(T ∗N). To circumvent this diffi-
culty and to be able to relate the Hofer norm and the alpha function, one considers
nicely behaved Tonelli Hamiltonians such that both, the notion of Hofer norm and
the alpha function, are well-defined.

Let B∗N ⊂ T ∗N denote the closed unit disk cotangent bundle. Let H be the
space of time-periodic Hamiltonians H : S1 × B∗N → R which vanish on the
boundary of B∗N and which admit smooth extensions to the whole S1×T ∗N which
only depend on ||p|| and t outside B∗N . Then there is an associated notion of the
Hofer norm for any Hamiltonian diffeomorphism φH : B∗N → B∗N , where H ∈ H,
given by

ρH(φ) = inf

∫ 1

0

oscHt dt ,

where the infimum goes over all H ∈ H generating φH .

Proposition 5.10. Let H̃ be a Tonelli Hamiltonian which vanishes for ‖p‖ = 1 and

which only depends on ‖p‖ for ‖p‖ ≥ 1. Let H = H̃|B∗N ∈ H. Then

ρH(φH) ≥ − min
H1(N ;R)

αH̃ .

Proof. Consider a smooth function f : [0,∞) → [0, 1] such that f(t) = t for t ∈
[0, 1

2
], f(t) = 1 for t ≥ 2 and f ′(t) ≥ 0 for all t. For ε > 0 define fε(t) = εf( t

ε
) and

Kε = fε ◦ H̃. According to [SV] we have

ρH(φH) = lim
ε→0

ρ(φKε) .

Moreover, for any a ∈ H1(N ;R) such that ‖a‖ < 1, where ‖·‖ denotes the Gromov-
Federer stable norm (see Remark 3.8), we have

αKε(a) = αH̃(a) .

Note that the minima minαH̃ and minαKε are both negative and attained on {‖a‖ <
1} ⊂ H1(N ;R). Thus, for any ‖a‖ < 1 we have

ρ(φKε) ≥ −µa(φKε) = −αKε(a) ,

and therefore
ρ(φKε) ≥ −minαKε = −minαH̃ .

Taking ε→ 0 gives the desired inequality.
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Remark 5.11. Note that the minimum on the right-hand side only depends on H.

Remark 5.12. In [Sib1] the above is proved for N = Tn. A proof for cotangent
bundles over a general base can be found in [ISM].

Remark 5.13. In [Sib1] the author gives a further relation between Hofer geometry
and Aubry-Mather theory in terms of the asymptotic Hofer norm ρ∞ and the beta
function. In fact, Siburg proves that if H̃ is a Tonelli Hamiltonian such that H =
H̃|B∗Tn ∈ H, then it is true that ρ∞(φH) ≥ βH̃(0).

In [SV] the authors claim to prove the strict inequality using the asymptotic
Viterbo norm γ∞ on Ham(T ∗Tn) (recall its definition from Remark 4.9) and the

known relation γ∞ ≤ ρ∞. In fact, they prove that for a Tonelli Hamiltonian H̃ and
H ∈ H as above it is true that γ∞(φH) = βH̃(0). Furthermore, in Theorem 5.5

of [SV] the authors claim to give a construction of a Tonelli Hamiltonian H̃ such

that H = H̃|B∗Tn ∈ H for which γ∞ is strictly less than the asymptotic Hofer norm
ρ∞. This would imply ρ∞(φH) > γ∞(φH) = βH̃(0). But again, the construction in
the proof of Theorem 5.5 uses properties of the symplectic homogenization operator
which rely on the unproven Viterbo bound.

5.4 Symplectic rigidity

Following the methods of [EP2] and [EP3] we can extract rigidity results using the
existence of the partial symplectic quasi-integral ζ = ζ0: C∞c (T ∗N)→ R introduced
in Theorem 3.10. Rigidity of subsets is thereby a phenomenon in symplectic topology
which means that certain subsets of symplectic manifolds cannot be completely
displaced from another one or from themselves by a Hamiltonian diffeomorphism
while it is possible to replace them by a genuine diffeomorphism.

Definition 5.14. A compact subset X ⊂ T ∗N is called ζ-superheavy (or super-
heavy) if ζ(F ) = c for any F ∈ C∞c (T ∗N) with F |X = c ∈ R.

Note that the zero section N is superheavy according to property (viii) in Theorem
3.10 and that the collection of superheavy sets is invariant under the action of
Ham(T ∗N) according to property (ii) in Theorem 3.10.

Remark 5.15. The notion of superheavy sets was introduced in [EP3] for closed
symplectic manifolds. There the authors also introduce the notion of heavy sets for
closed symplectic manifolds but since we could not find an example of a heavy set
which is not superheavy, we do not introduce this notion at this point.

Superheavy sets are rigid in the sense that any two must intersect.

Proposition 5.16. For two superheavy sets X, Y ⊂ T ∗N we have X ∩ Y 6= ∅.

Proof. Assume on the contrary X ∩ Y = ∅ and choose F,G ∈ C∞c (T ∗N) with
disjoint supports such that F |X = G|Y = −1 and ‖F‖C0 = ‖G‖C0 = 1. This
means that F,G Poisson commute. Thus, we have, using (ix) in Theorem 3.10 and
superheaviness of X and Y ,

ζ(F +G) ≤ ζ(F ) + ζ(G) ≤ −2.
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But this is a contradiction to

|ζ(F − (−G))| ≤ ‖F − (−G)‖C0 = ‖F +G‖C0 = 1.

Corollary 5.17. Superheavy sets are non-displaceable.

Proof. The statement follows from the above proposition and the fact that super-
heavy sets are invariant under the action of Ham(T ∗N).

The following proposition allows to construct examples of superheavy sets:

Proposition 5.18. Let X ⊂ T ∗N be a compact subset such that T ∗N \X = U∞ ∪⋃
i Ui is a finite disjoint union with U∞ being the unbounded connected component

(the union of the two unbounded connected components in case dimN = 1). Assume
that U∞ is disjoint from the zero section and that each Ui is displaceable. Then X
is superheavy.

Proof. For any F ∈ C∞c (T ∗N) such that F |X = c we need to show ζ(F ) = c. By the
Lipschitz continuity of ζ it suffices to show this for all F which equal c on an open
neighborhood of X. Let F be such a function. Denote X̂ = X ∪

⋃
i Ui = T ∗N \U∞.

Define a function F̂ as follows: Let F̂ = F on U∞ and F̂ = c on X̂. Then F̂ is
smooth and since N ⊂ X̂, we have F̂ |N = c. Thus, ζ(F̂ ) = c. If we can prove
ζ(F ) = ζ(F̂ ), the claim follows. Define functions Fi by Fi|Uci = 0 and Fi|Ui = c− F
for all i. The functions Fi are smooth and have compact support in Ui, where Ui is
displaceable; thus, ζ(Fi) = 0. Moreover, we have

F̂ = F +
∑
i

Fi.

Since all Fi commute with each other and with F , we conclude with property (vii)
in Theorem 3.10

ζ(F̂ ) = ζ(F +
∑
i

Fi) = ζ(F ) .

Remark 5.19. Note that we can replace the assumption that any Ui is displaceable
by the weaker one saying that any Ui is ζ-null. Here we call an open subset U ⊂ T ∗N
ζ-null if ζ|C∞c (U) ≡ 0. Note that displaceable subsets are ζ-null according to (iv) in
Theorem 3.10. More generally, if every compact subset of an open subset U ⊂ T ∗N
is displaceable, then U is ζ-null.

Example 5.20. Let q0 ∈ N be a fixed point and consider D(q0) := {(q, p) ∈
T ∗N | q ∈ N, ‖p‖ = 1} ∪ {(q0, p) | ‖p‖ ≤ 1}. The complement of D(q0) is given by
the union of U∞ = {(q, p) | q ∈ N, ‖p‖ > 1} and the open unit disk cotangent bundle
over N \ {q0}. The latter set is null and therefore D(q0) is superheavy according to
the above proposition.

Finally, we have the following result which allows to obtain yet more examples.
Note that here the partial symplectic quasi-integral ζ is the one which is extended
to the set of autonomous Hamiltonians with complete flow.
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Theorem 5.21. Let Xi ⊂ T ∗Ni, i = 1, 2, be superheavy subsets. Then the product

X1 ×X2 ⊂ T ∗N1 × T ∗N2 = T ∗(N1 ×N2)

is superheavy.

Proof. Let X = X1 ×X2 and ζ1, ζ2, ζ denote the partial symplectic quasi-integrals
on T ∗N1, T

∗N2, T
∗(N1×N2), respectively. For any F ∈ C∞c (T ∗(N1×N2)) such that

F |X = c we need to show ζ(F ) = c. On the one hand, we have

c = min
X

F = −max
X

(−F ) ≤ −ζ(−F )

and with property (ix) in Theorem 3.10 we conclude 0 = ζ(F −F ) ≤ ζ(F )+ ζ(−F ),
and thus −ζ(−F ) ≤ ζ(F ) which yields

c ≤ ζ(F ) .

Thus, it suffices to show ζ(F ) ≤ c. Moreover, since ζ is Lipschitz continuous, it
suffices to show the above claim for any function F which equals c on a neighborhood
of X. Let F be such a function and U the corresponding neighborhood.

Roughly speaking, the idea is to bound ζ(F ) from above by ζ(F1 ⊕ F2), where
Fi|Xi = c/2 for i = 1, 2, and to use the superheaviness of X1 and X2 and the product
formula for ζ to conclude. For i = 1, 2 let Ui ⊂ Ni be neighborhoods of Xi such
that U1 × U2 ⊂ U . Let Si be a closed cotangent disk bundle in T ∗Ni which contains
the image of the support of F under the projection T ∗(N1×N2)→ T ∗Ni. Consider
functions Fi ∈ C∞c (T ∗Ni) such that Fi|Xi = c/2, Fi|Ui\Xi ≥ c/2, Fi|Si\Ui = M and
Fi|Sci ≥ 0, where M > 0 is a real number such that min(2M,M + c/2) ≥ maxF .
Note that since Xi is superheavy, we have ζi(Fi) = c/2 for i = 1, 2. For the direct
sum of the Fi’s we have F1 ⊕ F2 ≥ F on S = S1 × S2 and F1 ⊕ F2 > 0 on the
boundary of S1 × S2. Therefore, there is a neighborhood V of S1 × S2 such that
F1⊕F2 is positive on V \S1×S2. Moreover, the flow of F1⊕F2 keeps the zero section
inside S. Let G denote a cutoff of F1 ⊕ F2 outside V . The function G is compactly
supported and its flow keeps the zero section inside S. According to Lemma 2.17
this implies that ζ(F1 ⊗ F2) = ζ(G). Since G ≥ F , we conclude

ζ(F ) ≤ ζ(G) = ζ(F1 ⊗ F2) = ζ1(F1) + ζ2(F2) = c/2 + c/2 = c .

The theorem implies the following

Corollary 5.22. Let Xi, X
′
i ⊂ T ∗Ni, i = 1, . . . , k, be subsets as in Proposition 5.18.

Then ∏
i

Xi ∩ φ(
∏
i

X ′i) 6= ∅

for any Hamiltonian diffeomorphism φ on T ∗
∏

iNi. In particular,
∏

iXi is non-
displaceable.
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Remark 5.23. If the Viterbo bound would hold on N , the partial quasi-morphisms
µa would be genuine homogeneous quasi-morphisms when restricted to Ham(T ∗rN)
and the functionals ζa would be genuine symplectic quasi-integrals (recall Remark
3.8). In this case there would be yet more applications following from the existence
of the functions. In fact, there would be applications to the second bounded co-
homology, the (stable) commutator norm, and to asymptotics of Hamilton-Jacobi
equations.
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6 Comparison of symplectic quasi-integrals in two

dimensions

In this part of the work we are interested in the comparison of two particular
symplectic quasi-integrals in two dimensions. On the one hand, we prove that there
exists a symplectic quasi-integral η0 on T ∗S1 which is uniquely characterized by its
additional properties. On the other hand, there exists, due to Entov and Polterovich,
a Calabi quasi-state ζEP on S2 which is uniquely characterized by its additional
properties as well [EP1], [EP2]. Thus, there are two symplectic quasi-integrals, one
on T ∗S1 and one on S2, which are both universal in some sense, and therefore it is
an interesting question whether they are equal on an open neighborhood of the zero
section in T ∗S1. More precisely, we consider a symplectic embedding S1× (−r, r)→
S2, pull ζEP back via this embedding and ask, whether this pull back coincides with
the restriction of η0 to S1× (−r, r). We provide a necessary and sufficient condition
for these symplectic quasi-integrals to be equal.

Moreover, it will turn out that the symplectic quasi-integral η0 on T ∗S1 is closely
related to Viterbo’s symplectic homogenization operator in two dimensions. Using
the symplectic quasi-integral η0 we can prove the existence and uniqueness of an
operator

H: Cc(T
∗S1)→ Cc(Rn)

which has the properties of symplectic homogenization by an axiomatic approach.
In fact, we can prove the existence and uniqueness of an operator on T ∗S1 which
has the properties of Viterbo’s symplectic homogenization operator introduced in
Section 4, where the partial quasi-additivity is replaced by the stronger property of
strong quasi-additivity. The operator H allows to define symplectic quasi-integrals
ησ on T ∗S1 by integration against Radon measures σ, that is, we prove that

ησ(F ) =

∫
R
H(F ) dσ

is a symplectic quasi-integral for any Radon measure σ. If we take the Radon
measure σ to be the Dirac measure centered at zero, i.e. η0(F ) = H(F )(0), we
obtain the unique symplectic quasi-integral η0 on T ∗S1.

In order to prove the existence of the symplectic quasi-integral η0 on T ∗S1 and in
order to compare it with the Calabi quasi-state ζEP , we define the notion of quasi-
integrals and topological measures for locally compact Hausdorff spaces and develop
a representation theory for quasi-integrals in terms of topological measures. It is a
generalization of the representation theorem for quasi-states and quasi-measures on
compact Hausdorff spaces due to Aarnes [Aa1]. In addition, we introduce a reduction
argument for topological measures and prove a statement about the symplecticity of
quasi-integrals on surfaces without boundary; both are needed to prove the existence
of η0 and to compare the symplectic quasi-integrals.

The notions of quasi-integrals and topological measures for locally compact Haus-
dorff spaces and the representation theorem are subject of Subsection 6.1. In Subsec-
tion 6.2 we give the statement about the symplecticity of quasi-integrals on surfaces
without boundary, and in Subsection 6.3 we introduce the reduction argument for
topological measures.
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In Subsection 6.4 we prove the existence and uniqueness of the partial symplectic
quasi-integral η0 on T ∗S1 and relate it to Viterbo’s symplectic homogenization on
T ∗S1. The construction and properties of the Calabi quasi-state ζEP due to Entov
and Polterovich are subject of Subsection 6.5. In Subsection 6.6 we finally compare
the symplectic quasi-integrals η0 and ζEP .

6.1 Quasi-integrals and topological measures on locally com-
pact Hausdorff spaces

In this section we define quasi-integrals and topological measures for locally
compact Hausdorff spaces and prove a representation theorem for them which is
needed in order to prove the existence of the symplectic quasi-integral η0 on T ∗S1 and
in order to compare the two quasi-integrals η0 and ζEP on an open neighborhood of
the zero section in T ∗S1. The representation theorem states that there is a bijection
between the set of quasi-integrals and the set of topological measures for locally
compact Hausdorff spaces; it is a generalization of Aarnes’ representation theorem
for quasi-states and quasi-measures on compact Hausdorff spaces.

6.1.1 Quasi-integrals and topological measures

Let X be a locally compact Hausdorff space. Denote by C(X) the space of
real valued continuous functions on X and by Cc(X) ⊂ C(X) the subspace of all
continuous functions with compact support on X. On Cc(X) we use the C0-norm
given by ‖F‖C0 = supx∈X |F (x)| for F ∈ Cc(X). We make the following definition.

Definition 6.1. LetX be a locally compact Hausdorff space. A functional ζ: Cc(X)→
R is called a quasi-integral if it satisfies:

(i) Monotonicity : ζ(F ) ≤ ζ(G) for all F,G ∈ Cc(X) with F ≤ G;

(ii) Quasi-linearity : ζ is linear on every subspace of Cc(X) of the form {φ◦F |φ ∈
C(R), φ(0) = 0}, where F ∈ Cc(X);

(iii) Lipschitz continuity : For every compact subset K ⊂ X there is a number
NK ≥ 0 such that |ζ(F )− ζ(G)| ≤ NK ‖F −G‖C0 for all F,G ∈ Cc(X) with
support contained in K.

In case X is compact and ζ is normalized, i.e. ζ(1) = 1, it is called a quasi-state. It
is called simple if ζ(F 2) = (ζ(F ))2 for any F ∈ C(X).

Remark 6.2. In case X is compact, the definition of quasi-states was introduced
and first studied by Aarnes [Aa1]. In his sense, a quasi-state is a normalized, quasi-
linear functional such that ζ(F ) ≥ 0 for all F ≥ 0. It is also proved in [Aa1] that
these properties yield monotonicity, which in turn implies the Lipschitz continuity
of ζ. Thus, a quasi-state of Aarnes is the same as a quasi-integral on a compact
Hausdorff space in the sense of the above definition. Moreover, it is proved in [Aa1]
that a quasi-state ζ on a compact Hausdorff space satisfies

ζ(F ) = ζ(F+)− ζ(F−)
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for every F ∈ C(X), where F = F+ − F− denotes the decomposition of F into its
positive and negative part, i.e. F+(x) = max(0, F (x)) and F−(x) = −min(0, F (x)).

Remark 6.3. Recall the definition of a symplectic quasi-integral on T ∗N , Defini-
tion 1.3, and extend it to arbitrary locally compact symplectic manifolds (M,ω).
We would like to note that every symplectic quasi-integral is a quasi-integral. In
fact, strong quasi-additivity and Lipschitz continuity imply quasi-linearity: Let
ζ: Cc(M) → R be strong quasi-additive and Lipschitz continuous. Let F ∈ Cc(M)
and φ, ψ ∈ C(R) such that φ(0) = ψ(0) = 0. Note that we can replace φ and ψ
by functions with compact support without altering φ ◦ F and ψ ◦ F . There are
functions Fk ∈ C∞c (M) and φk, ψk ∈ C∞c (R) with φk(0) = ψk(0) = 0 for all k such
that Fk → F , φk → φ and ψk → ψ for k → ∞, where the limit is with respect to
the C0-norm. We have {φk ◦ Fk, ψk ◦ Fk} = 0 for all k, and thus

ζ(φk ◦ Fk + ψk ◦ Fk) = ζ(φk ◦ Fk) + ζ(ψk ◦ Fk)

due to the strong quasi-additivity. But since ζ is Lipschitz continuous in the C0-
norm, we have

ζ(φk ◦ Fk + ψk ◦ Fk)→ ζ(φ ◦ F + ψ ◦ F ) ,

and
ζ(φk ◦ Fk)→ ζ(φ+ F ) , ζ(ψk ◦ Fk)→ ζ(ψ ◦ F ) ,

proving the quasi-linearity of ζ.

Let K(X) be the family of compact subsets of X, O(X) the family of open
subsets of X with compact closure, and A(X) = K(X) ∪ O(X).

Definition 6.4. A function τ : A(X) → [0,∞) is called a topological measure if it
satisfies:

(i) Additivity : If A,A′ ∈ A(X) are disjoint and A∪A′ ∈ A(X), then τ(A∪A′) =
τ(A) + τ(A′);

(ii) Monotonicity : If A,A′ ∈ A(X) such that A ⊂ A′, then τ(A) ≤ τ(A′);

(iii) Regularity : For any K ∈ K(X) we have τ(K) = inf{τ(O) |O ∈ O(X), K ⊂ O}
(outer regularity). For any O ∈ O(X) we have τ(O) = sup{τ(K) |K ∈
K(X), O ⊃ K} (inner regularity).

Remark 6.5. In case X is compact, a topological measure is the same as a quasi-
measure in the sense of Aarnes [Aa1]. According to Aarnes, a quasi-measure is a
function τ : A(X) → [0,∞) that satisfies monotonicity and additivity for pairs of
compact subsets K ∈ K(X), inner regularity, and normalization τ(K)+ τ(X \K) =
τ(X) for K ∈ K(X). It is proved in [Aa1] that these four properties imply mono-
tonicity and additivity for general subsets of A(X), and outer regularity. Therefore,
a quasi-measure in the sense of Aarnes is the same as a topological measure on a
compact Hausdorff space in the sense of the above definition.
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6.1.2 Representation theory

The above definitions generalize the ones of quasi-states and quasi-measures
on compact Hausdorff spaces due to Aarnes. In case X is compact, there is a
representation theory for quasi-states in terms of quasi-measures due to Aarnes in
the sense that every quasi-measure determines a quasi-state, and all quasi-states
arise in this way [Aa1]. We generalize this result and obtain:

Theorem 6.6. There is a natural bijection between the set of quasi-integrals and
the set of topological measures on a locally compact Hausdorff space.

In the original work [Aa1] Aarnes used delicate analysis in order to prove his
representation theorem. In order to prove the above theorem for the locally compact
case we rely on results valid in the compact case by using a reduction argument via
one-point compactifications.

Therefore, we briefly recall the representation theory for compact Hausdorff
spaces; the general reference is [Aa1]. Aarnes proved that to each quasi-measure
τ there corresponds a unique quasi-state ζ as follows: Let F ∈ C(X) and consider
the compact subset {F ≥ t} = {x ∈ X |F (x) ≥ t} ⊂ X. Then the function
t 7→ τ({F ≥ t}) is non-increasing and we have τ({F ≥ t}) = 1 for t ≤ minF and
τ({F ≥ t}) = 0 for t > maxF . Thus, the functional

ζ(F ) = τ(X) ·minF +

maxF∫
minF

τ({F ≥ t}) dt

is well-defined, and it is a quasi-state on C(X) according to Aarnes. Vice versa, for
any quasi-state ζ on C(X) there is a unique quasi-measure τ on X with τ(X) = 1
such that ζ is the quasi-state corresponding to τ . The quasi-measure τ associated
to ζ is given by

τ(K) = inf{ζ(F ) |F ∈ C(X), F ≥ 1lK} ,

for any compact subset K ∈ K(X) and τ(U) = 1 − τ(X \ U) for any open subset
U ∈ O(X). Here and in the sequel, 1l stands for the characteristic function of a set.

One-point compactifications

Let X be a locally compact Hausdorff space. Any open subset of X is a locally
compact space as well. Moreover, since X is a locally compact Hausdorff space, it
is completely regular, meaning that for any x ∈ X and any closed subset A ⊂ X
such that x /∈ A there is a continuous function f : X → [0, 1] such that f(x) = 0 and
f(a) = 1 for any a ∈ A.

Fix an open subset O ∈ O(X) and let Ô = O∪{∞} be its one-point compactifi-
cation. For a topological measure τ on X we can define a topological measure τ̂O on
Ô. Similarly, given a quasi-integral ζ on X we can define a quasi-integral ζ̂O on Ô.
These topological measures and quasi-integrals on the compactified space Ô allow
to prove the representation theorem for locally compact Hausdorff spaces by using
the representation theory for the compact case.
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A topological measure on the compactified space Ô is a map on the union A(Ô)

of the open and compact subsets of Ô. Here we have

O(Ô) = {U ⊂ O open} ∪ {(O \K) ∪ {∞} |K ∈ K(O)}

and
K(Ô) = K(O) ∪ {(O \ U) ∪ {∞} |U ⊂ O open}.

For a topological measure τ on X we define

τ̂O: A(Ô)→ [0,∞)

by
τ̂O(U) = τ(U) , τ̂O(K) = τ(K)

and

τ̂O((O \K) ∪ {∞}) = τ(O \K) , τ̂O((O \ U) ∪ {∞}) = τ(O)− τ(U)

for U ⊂ O open and K ∈ K(O).

Lemma 6.7. τ̂O is a topological measure on Ô.

Proof. First of all, we note that τ̂ = τ̂O is well-defined. Because of Remark 6.5 it
suffices to prove that τ̂ is a topological measure in the sense of Aarnes, that is, it
suffices to show:

(i) Normalization: τ̂(Ô \K) + τ̂(K) = τ̂(Ô) for K ∈ K(Ô);

(ii) Additivity : τ̂(K ∪K ′) = τ̂(K) + τ̂(K ′) for disjoint K,K ′ ∈ K(Ô);

(iii) Monotonicity : τ̂(K) ≤ τ̂(K ′) for K,K ′ ∈ K(Ô) with K ⊂ K ′;

(iv) Inner regularity : τ̂(K) = inf{τ̂(U) |U ∈ O(Ô), U ⊃ K} for K ∈ K(Ô).

If K,K ′ ∈ K(Ô) are compact subsets of O, all of the above properties follow im-
mediately from the definition of τ̂ and the corresponding properties of τ . Thus, it
remains to consider the following:
(i) Let K ∈ K(X) be such that K = (O \ U) ∪ {∞}, where U ⊂ O is open. Then

τ̂(Ô \K) + τ̂(K) = τ(U) + (τ(O)− τ(U)) = τ(O) = τ̂(Ô) .

(ii) For disjoint K,K ′ ∈ K(Ô) we must have K ∈ K(O) and K ′ = (O \ U) ∪ {∞} ∈
K(Ô), where U ⊂ O is open. Then

τ̂(K ∪K ′) = τ̂(O \ (U \K) ∪ {∞}) = τ(O)− τ(U \K) = (τ(O)− τ(U))︸ ︷︷ ︸
=τ̂(K′)

+ τ(K)︸ ︷︷ ︸
=τ̂(K)

.

(iii) Let K,K ′ ∈ K(Ô) be such that K ⊂ K ′. We have two cases to consider. On

the one hand, let K ∈ K(O) and K ′ = (O \ U) ∪ {∞} ∈ K(Ô), where U ⊂ O
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is open. Then K ⊂ K ′ implies K ⊂ O \ U which implies U ⊂ O \ K and hence
τ(U) ≤ τ(O \K) = τ(O)− τ(K). Using the above inequality we have

τ̂(K ′) = τ(O)− τ(U) ≥ τ(K) = τ̂(K) .

On the other hand, let K = (O \ V ) ∪ {∞} ∈ K(Ô) with V ⊂ O open and K ′ as
above. Then K ⊂ K ′ implies V ⊃ U , and so

τ̂(K) = τ(O)− τ(V ) ≤ τ(O)− τ(U) = τ̂(K ′) .

(iv) Let K = (O \ U) ∪ {∞} ∈ K(Ô), where U ⊂ O is open. If an open set V ⊂ Ô
contains K, it has to be of the form V = (O \ L) ∪ {∞}, where L ⊂ O is compact,
and then it follows that L ⊂ U . Thus,

inf{τ̂(V ) |V open, V ⊃ K} = inf{τ(O)− τ(L) |L ⊂ U compact}

which equals

τ(O)− sup{τ(L) |L ⊂ U compact} = τ(O)− τ(U) = τ̂(K) ,

where the first equality follows from the inner regularity of τ .

Let ζ: Cc(X) → R be a quasi-integral on X. Since ζ is Lipschitz continuous
on Cc(X), the restriction ζ|Cc(O) of ζ to Cc(O) is Lipschitz continuous as well. We

extend F ∈ Cc(O) to Ô by setting F (∞) = 0 and consider the space Cc(O) as a

dense subset of C0(Ô) = {F ∈ C(Ô) |F (∞) = 0} in the C0-norm. This yields,

together with the Lipschitz continuity, that there is a unique extension ζ̂O of ζ to
C0(Ô). Moreover, ζ̂O is also Lipschitz continuous with the same Lipschitz constant
as ζ|Cc(O).

We extend ζ̂O to C(Ô), where we use the same notation ζ̂O. For F ∈ C(Ô) we
put

ζ̂O(F ) = ζ̂O(F − F (∞)) + λOF (∞) ,

where λ0 = sup{ζ(G) |G ∈ Cc(O), G ≤ 1lO} and F − F (∞) ∈ C0(Ô). Note that
λO = τζ(O).

Lemma 6.8. ζ̂O is a quasi-integral on Ô.

Proof. Abbreviate ζ̂ = ζ̂O and λ = λO. According to Remark 6.2 it suffices to
show:

(i) ζ̂(F ) ≥ 0 for F ∈ C(Ô) such that F ≥ 0;

(ii) ζ̂ is linear on every subspace of C(Ô) of the form {φ ◦ F |φ ∈ C(R)}, where

F ∈ C(Ô).

(i) Let F ∈ C(Ô) be such that F ≥ 0. Put F̃ = F − F (∞) ∈ C0(Ô). By definition

of ζ̂ we have ζ̂(F ) = ζ̂(F̃ ) + λF (∞). Let ε > 0. Since the subspace Cc(O) is dense

in C0(Ô) and F ≥ 0, there is G ∈ Cc(O) such that ‖F̃ − G‖ < ε and 0 ≥ minG =
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min F̃ ≥ −F (∞). Moreover, there exists H ∈ Cc(O) such that 0 ≥ H ≥ minG and
H = minG on the support of G. We then have G ≥ H ≥ minG · 1lO and so

ζ̂(G) = ζ(G) ≥ ζ(H) ≥ λ ·minG = λ ·min F̃ ≥ −λ · F (∞)

by the definition of λ and the linearity of ζ on R · H ⊂ Cc(O). Since ζ̂|C0(Ô) is
Lipschitz continuous with Lipschitz constant C, we have

ζ̂(F̃ ) ≥ ζ̂(G)− Cε ≥ −λ · F (∞)− Cε .

Thus, we obtained, for any ε > 0,

ζ̂(F ) = ζ̂(F̃ ) + λ · F (∞) ≥ −Cε

which proves the claim.
(ii) Let F ∈ C(Ô) and φ, ψ ∈ C(R). We need to prove ζ̂(φ ◦ F + ψ ◦ F ) =

ζ̂(φ ◦ F ) + ζ̂(ψ ◦ F ). Note that

ζ̂(φ ◦ F ) = ζ̂(φ ◦ F − φ(F (∞))) + λφ(F (∞))

= ζ̂((φ− φ(F (∞))) ◦ F ) + λφ(F (∞))

and similarly for ψ ◦ F and φ ◦ F + ψ ◦ F = (φ + ψ) ◦ F . Thus, proving that

ζ̂(φ◦F +ψ◦F ) = ζ̂(φ◦F )+ ζ̂(ψ◦F ) is equivalent to proving that ζ̂((φ−φ(F (∞)))◦
F +(ψ−ψ(F (∞)))◦F ) = ζ̂((φ−φ(F (∞)))◦F )+ ζ̂((ψ−ψ(F (∞)))◦F ). Therefore,
we may assume that φ(F (∞)) = ψ(F (∞)) = 0. Again, the idea is to use the quasi-

integral ζ restricted to Cc(O). Therefore, let F̃ = F − F (∞) ∈ C0(Ô), and let φ̃, ψ̃

be defined by φ̃(t) = φ(t+F (∞)) and similarly for ψ̃. We then have φ̃(0) = ψ̃(0) = 0

and φ̃ ◦ F̃ = φ ◦ F and the same for ψ. Again, Cc(O) is dense in C0(Ô) and we can

choose a sequence Fk ∈ Cc(O) whose limit is F̃ . Since ζ is quasi-linear (on Cc(O)),
we have

ζ(φ̃ ◦ Fk + ψ̃ ◦ Fk) = ζ(φ̃ ◦ Fk) + ζ(ψ̃ ◦ Fk) .

When k →∞, the left-hand side tends to ζ̂(φ̃ ◦ F̃ + ψ̃ ◦ F̃ ) = ζ̂(φ ◦F +ψ ◦F ), while

the right-hand side tends to ζ̂(φ̃ ◦ F̃ ) + ζ̂(ψ̃ ◦ F̃ ) = ζ̂(φ ◦ F ) + ζ̂(ψ ◦ F ).

6.1.3 Proof of the representation theorem

In this subsection we prove the representation theorem, Theorem 6.6. We estab-
lish procedures of going from quasi-integrals to topological measures and vice versa
and prove that these procedures are inverse to each other.

From quasi-integrals to topological measures

Let ζ be a quasi-integral on X. Define a function

τζ : A(X)→ [0,∞)

by
τζ(K) = inf{ζ(F ) |F ∈ Cc(X), F ≥ 1lK}
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for K ∈ K(X) and

τζ(O) = sup{ζ(F ) |F ∈ Cc(X), F ≤ 1lO}

for O ∈ O(X).

Lemma 6.9. τζ is a topological measure on X.

Proof. Abbreviate τ = τζ .
Monotonicity : For pairs of compact subsets and for pairs of open subsets, mono-
tonicity follows from the definition. Let K ∈ K(X) and O ∈ O(X) such that O ⊂ K.
Then for any function F such that F ≥ 1lK and any function G with G ≤ 1lO we
have F ≥ G and so τ(K) = inf ζ(F ) ≥ sup ζ(G) = τ(O), the infimum and supre-
mum being taken over all such F,G. Assume now that K ⊂ O. Then there exists
F ∈ Cc(X) with values in [0, 1] such that F |K = 1 and F |X\O = 0. Thus, F ≤ 1lO
and τ(K) ≤ ζ(F ) ≤ τ(O).
Regularity : Let K ∈ K(X). For outer regularity we have to prove that τ(K) =
inf{τ(O) |O ∈ O(X), O ⊃ K}. Denote the infimum by I. It follows from mono-
tonicity that τ(K) ≤ I. Thus, we need to show that τ(K) ≥ I. Let ε > 0 and fix a
compact set L containing K in its interior. By the definition of the infimum and the
fact that X is completely regular there is a function F such that F |K = 1, F = 0
outside the interior of L and τ(K) ≥ ζ(F ) − ε. By continuity of F , compactness
of K, and local compactness of X, there is O ∈ O(X) such that K ⊂ O ⊂ L and
F |O > 1−ε. This means that any function G with G ≤ 1lO satisfies F

1−ε > G, and so
1

1−εζ(F ) ≥ τ(O). Putting this together, and using the monotonicity of τ established
above, we obtain

τ(K) ≥ ζ(F )− ε ≥ (1− ε)τ(O)− ε ≥ τ(O)− ε(1 + τ(L)) ≥ I − ε(1 + τ(L)) .

Since ε was arbitrary and L is fixed, we get τ(K) ≥ I. A similar argument shows
inner regularity.
Additivity : For pairs of disjoint compact subsets and for pairs of disjoint open
subsets, additivity follows from the definitions and the properties of the infimum
and supremum. It remains to establish additivity for a disjoint pair K ∈ K(X) and
O ∈ O(X) such that K∪O is either open or compact. Let us assume that U = K∪O
is open (and then necessarily with compact closure); the case when the union is
compact is treated similarly. Note that regularity implies τ(U) ≥ τ(O)+ τ(K) since
for any compact K ′ ⊂ O the union K ′ ∪ K is disjoint, compact, and contained in
U , so τ(U) ≥ τ(K) + τ(K ′). Taking the supremum over all such K ′ we obtain the
statement. Thus, it remains to show τ(U) ≤ τ(O) + τ(K). Also by the regularity
of τ we have the following statement: for any ε > 0 there is an open neighborhood
P of K with compact closure such that whenever F satisfies 1lK ≤ F ≤ 1lP , it is
true that ζ(F ) ≥ τ(K) ≥ ζ(F ) − ε. We can choose this P to lie inside any open
neighborhood of K. Similarly, for any ε > 0 there is a compact set L ⊂ O such that
if G satisfies 1lL ≤ G ≤ 1lO, we have ζ(G) ≤ τ(O) ≤ ζ(G) + ε, and this L can be
chosen to contain any prescribed compact subset of O.

Let ε > 0. Let L be a compact subset of O as we just described. Similarly,
let P be an open neighborhood of K with compact closure. We may assume, X

79



being Hausdorff, that P is contained in U \ L. And finally, let M be a compact
subset of U , containing L ∪ P , which has the same property with respect to U , i.e.
1lM ≤ H ≤ 1lU implies ζ(H) ≤ τ(U) ≤ ζ(H) + ε. Let H be such a function. Let
H ′′: X → [0, ε] be such that H ′′|K = ε and H ′′ = 0 outside P and set H ′ = H +H ′′.
Then H ′|K = 1 + ε, 1 ≤ H ′ ≤ 1 + ε on P and H ′ = H outside P . Consider
two continuous functions φ, ψ: [0, 1 + ε] → [0, 1] such that φ(t) = 0 for t ∈ [0, 1],
φ(1 + ε) = 1 and ψ(t) = t for t ∈ [0, 1] and φ(t) + ψ(t) = 1 for t ∈ [1, 1 + ε].
Define F = φ ◦ H ′, G = ψ ◦ H ′. These functions have the following properties:
1lK ≤ F ≤ 1lP , 1lL ≤ G ≤ 1lO, 1lM ≤ F +G ≤ 1lU . It follows that

τ(K) + τ(O) ≥ ζ(F ) + ζ(G)− ε = ζ(F +G)− ε ≥ τ(U)− 2ε ,

where the equality is due to the quasi-linearity of ζ. Thus, we obtained the required
inequality.

From topological measures to quasi-integrals

Let τ be a topological measure on X. We can define the corresponding quasi-
integral ζτ : Cc(X) → R on X using the one-point compactification procedure to Ô
since any F ∈ Cc(X) has support in some O ∈ O(X). Namely, let O ∈ O(X) and

τ̂O be the corresponding topological measure on Ô given by the one-point compacti-
fication procedure. Consider the corresponding quasi-integral on C(Ô) (which exists
according to the representation theorem for compact Hausdorff spaces)

ζO: C(Ô)→ R

given by

ζO(F ) = τ̂O(Ô) ·minF +

maxF∫
minF

τ̂O({F ≥ t}) dt .

Since ζO is a quasi-integral on Ô, it is monotone, quasi-linear, and Lipschitz continu-
ous with constant NO = τ̂O(Ô) = τ(O). The same properties hold for the restriction

of ζ̂ to Cc(O) ⊂ C(Ô). Thus, for F ∈ Cc(X) with support in some O ∈ O(X) we
can define

ζτ (F ) = ζO(F ) .

Lemma 6.10. ζτ is a quasi-integral on X.

Proof. Since we already know that ζO|Cc(O) is monotone, quasi-linear, and Lipschitz
continuous, it remains to check that the definition of ζτ is correct, that is, it remains
to check that if the support of F is contained in O′ ∈ O(X), then ζO(F ) = ζO′(F ).
Since O ∩ O′ is also in O(X) and still contains the support of F , we see that it
suffices to consider the case O ⊂ O′.

Since ζO and ζO′ are quasi-integrals on a compact space, they respect the de-
composition ζO(F ) = ζO(F+) − ζO(F−), and similarly for ζO′ , where F+(x) =
max(0, F (x)) and F−(x) = −min(0, F (x)) (see Remark 6.2). Thus, we may as-

sume F ≥ 0. Since F has compact support, we have minF = 0 on Ô and Ô′.
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Moreover, F has the same maximum on Ô and Ô′. For t > 0 the set {F ≥ t} is
compact and contained in the support of F and by definition of τ̂O and τ̂O′ we have

τ̂O({F ≥ t}) = τ({F ≥ t}) = τ̂O′({F ≥ t}) .

Thus, the two functions t 7→ τ̂O({F ≥ t}) and t 7→ τ̂O′({F ≥ t}) coincide on
(0,maxF ], and hence so do their integrals on (0,maxF ]. In summary, the functions
ζO(F ) and ζO′(F ) are equal.

The bijection

To prove the theorem it remains to show that the above procedures of going from
quasi-integrals to topological measures and vice versa are inverse to each other.

Lemma 6.11. (i) Let τ be a topological measure on X. Then τζτ = τ .

(ii) Let ζ be a quasi-integral on X. Then ζτζ = ζ.

Proof. (i) Let τ be a topological measure on X. For K ∈ K(X) we need to prove
τ(K) = τζτ (K). For a fixed K ∈ K(X) there is O ∈ O(X) such that K ⊂ O. But
for any O ∈ O(X) the topological measure τ induces a topological measure τ̂O on

the compactified space Ô. We have K ∈ K(Ô) and by definition τ̂O(K) = τ(K).
According to the representation theory for the compact case there is a quasi-integral
ζO on Ô associated to τ̂O. By the representation theory for the compact case we
conclude

τ(K) = τ̂O(K) = inf{ζO(F ) |F ∈ C(Ô), F ≥ 1lK} .

Moreover, the value of the infimum remains unchanged if we only consider functions
with compact support in O and thus we have

τ(K) = inf{ζO(F ) |F ∈ Cc(O), F ≥ 1lK} .

Now, recall the definition of the quasi-integral ζτ on X associated to τ . It is con-
structed in terms of the quasi-integral ζO on Ô. In particular, ζτ restricted to
Cc(O) ⊂ C(Ô) coincides with the restriction of ζO to Cc(O), and thus going from
quasi-integrals to topological measures we get that

τζτ (K) = inf{ζO(F ) |F ∈ Cc(O), F ≥ 1lK} = τ(K)

which gives the desired equality. By inner regularity, the same is true on O(X).
(ii) Since both ζτζ and ζ are quasi-integrals, they respect the decomposition of
functions into the positive and the negative part, namely ζ(F ) = ζ(F+) − ζ(F−)
and similarly for ζτζ (see Remark 6.2). Therefore, it suffices to show that ζ and ζτζ
coincide on non-negative functions. Any function F ∈ Cc(X) has support in some
O ∈ O(X). Fix O ∈ O(X) and let F ∈ Cc(O) be non-negative. The quasi-integral ζ

on X induces a quasi-integral ζ̂O on Ô by the one-point compactification procedure
and the restriction of ζ to Cc(O) coincides with the restriction of ζ̂O to Cc(O). Thus,

we have ζ(F ) = ζ̂O(F ). Moreover, the quasi-integral ζ̂O on Ô is represented by a
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topological measure τ ′ on Ô according to the representation theory for the compact
case and we get

ζ(F ) = ζ̂O(F ) =

maxF∫
0

τ ′({F ≥ t}) dt .

The quasi-integral ζτζ is by definition given by

ζτζ(F ) =

maxF∫
0

τζ({F ≥ t}) dt ,

and it suffices to show τζ({F ≥ t}) = τ ′({F ≥ t}) to prove the claim. But since ζ

and ζ̂O coincide on Cc(O), so do the corresponding topological measures τζ and τ ′

on any K ⊂ O.

This completes the proof of Theorem 6.6.

Remark 6.12. Aarnes’ representation theorem was generalized to various other
settings; we refer to [Bo], [GL], [Wh]. Topological measures as defined here are a
generalization of both, Aarnes quasi-measures on compact spaces and Radon mea-
sures on locally compact spaces. Furthermore, we would like to mention that the
theory of quasi-integrals and topological measures on locally compact spaces, as
developed here, has been established by Rustad in [Ru] using different methods.

Remark 6.13. A topological measure τ on a locally compact Hausdorff space X
extends to a unique topological measure τ̂ on the one-point compactification X̂,
such that τ̂(∞) = 0, if and only if τ is bounded. This is the case if and only if
the corresponding quasi-integral is globally Lipschitz continuous, and the Lipschitz
constant evidently equals τ̂(X̂) = supA(X) τ .

6.2 Symplecticity of quasi-integrals on surfaces without bound-
ary

In this subsection we prove a statement concerning the symplecticity of quasi-
integrals on surfaces without boundary. It is needed in order to prove the existence
of the symplectic quasi-integral η0 on T ∗S1.

Recall the definition of a symplectic quasi-integral, Definition 1.3, and extend it
to arbitrary locally compact symplectic manifolds. Moreover, recall from Remark 6.3
that every symplectic quasi-integral is a quasi-integral. In case Σ is a closed surface
with an area form, the opposite direction is proved in [EP2], that is, every quasi-state
on Σ is symplectic, meaning that quasi-linearity implies strong quasi-additivity. In
[Za2] this result is extended to the notion of Poisson commutativity for continuous
functions. It is proved there that a quasi-state on a closed surface with an area
form is linear on Poisson commuting subspaces of the space of continuous functions.
Thereby, the definition of Poisson commutativity for continuous functions, which
is due to Cardin and Viterbo [CV], is the following: Two continuous functions
F,G ∈ C(Σ) are said to Poisson commute if there are functions Fk, Gk ∈ C∞(Σ)
such that Fk → F , Gk → G, {Fk, Gk} → 0, all in the C0-norm. It is proved in [CV]
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that a pair of compactly supported smooth functions Poisson commutes according
to this definition if and only if their Poisson bracket vanishes. Therefore, the above
definition is a genuine generalization of the classical notion of Poisson commutativity
from smooth to continuous functions.

We formulate a yet more general result for quasi-integrals on surfaces without
boundary. Therefore, we use a particular version of Poisson commutativity for
continuous functions in which all the smooth functions approximating a given con-
tinuous function have support in a fixed compact subset. Again, this definition is a
generalization of the usual notion of Poisson commutativity.

Definition 6.14. Let Σ be a surface without boundary and let ω be an area form
on it. We say that F,G ∈ Cc(Σ) Poisson commute if there is an open set O ⊂ Σ
with compact closure, and for k ∈ N functions Fk, Gk ∈ C∞c (O) ⊂ C∞c (Σ) such that
Fk → F , Gk → G, {Fk, Gk} → 0, all in the C0-norm.

Proposition 6.15. Let Σ be a surface without boundary with an area form ω. Any
quasi-integral on Σ is linear on Poisson commutative subspaces of Cc(Σ), and in
particular, it is symplectic.

Proof. Let η be a quasi-integral on Σ. Since a quasi-integral is homogeneous by
definition, it remains to prove that η is additive on Poisson commuting functions,
that is, it suffices to prove η(F + G) − η(F ) − η(G) = 0 for Poisson commuting
F,G ∈ Cc(Σ). According to the definition of Poisson commutativity there is an
open subset O ⊂ Σ with compact closure and functions Fk, Gk ∈ Cc(O) ⊂ Cc(Σ)
for k ∈ N such that Fk → F , Gk → G and {Fk, Gk} → 0, where the limits are with
respect to the C0-norm. We assume

∫
O
ω = 1 without loss of generality. Define

εk = ‖{Fk, Gk}‖C0 . According to the main theorem in [Za2] there are functions
F ′k, G

′
k ∈ Cc(O) such that ‖Fk − F ′k‖C0 , ‖Gk −G′k‖C0 ≤

√
εk. Moreover, denote

by Φk: O → R2 the evaluation map given by Φk = (F ′k, G
′
k). The image of Φk is a

compact subset of R×√εkZ∪
√
εkZ×R, in particular, it has covering dimension ≤ 1.

Let Ô denote the one-point compactification of O. The evaluation map Φk extends
to a map Φk: Ô → R2 by sending ∞ to 0. The quasi-integral η induces a quasi-
integral η̂O on Ô by the procedure introduced in Subsection 6.1.2. According to [Wh]
the quasi-integral (Φk)∗η̂0 on im Φk is linear since im Φk has covering dimension ≤ 1.
Let (x, y) be the coordinates in R2. We obtain

0 = (Φk)∗η̂O(x+ y)− (Φk)∗η̂O(x)− (Φk)∗η̂O(y)

= η̂O(F ′k +G′k)− η̂O(F ′k)− η̂O(G′k) .

Since F ′k → F and G′k → G with respect to the C0-norm, we obtain, together with
the Lipschitz continuity of η̂O, the claim

η(F +G)− η(F )− η(G) = 0 .

6.3 A reduction argument for topological measures

In this subsection we introduce a reduction argument for topological measures
on manifolds without boundary. It gives a recipe how one can try to determine the
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values of a topological measure; it is particularly useful in two dimensions and we
will use it multiple times in the sequel. In particular, it is needed in order to prove
the existence of the symplectic quasi-integral η0 on T ∗S1.

Let M be a manifold without boundary and let B(M) denote the collection of
codimension zero compact connected submanifolds with boundary of M . Given a
topological measure τ on M , its restriction τ |B(M) has the following properties:

(i) τ |B(M) is monotone;

(ii) τ |B(M) is additive under finite disjoint unions;

(iii) τ |B(M) is regular in the sense that for W ∈ B(M) it is true that

τ(W ) = inf{τ(W ′) |W ′ ∈ B(M) contains W in its interior} .

Adapting the arguments in [Za1] one can show that if τ ′: B(M) → [0,∞) is a
function satisfying (i)-(iii) above, then it is the restriction of a unique topological
measure. This implies the following:

Proposition 6.16. The map τ 7→ τ |B(M) is a bijection between the set of topological
measures and the set of functions B(M) → [0,∞) satisfying (i)-(iii) above. In
particular, a topological measure on a manifold without boundary is determined by
its values on codimension zero compact connected submanifolds with boundary.

6.4 A unique symplectic quasi-integral on T ∗S1

In this subsection we prove the existence of a genuine symplectic quasi-integral
η0: Cc(T

∗S1)→ R which is uniquely characterized by its additional properties. The
proof of the existence and uniqueness relies on the representation theory for quasi-
integrals and topological measures on locally compact Hausdorff spaces, as well as on
the statement about the symplecticity of quasi-integrals on surfaces without bound-
ary, and the reduction argument for topological measures developed in the previous
subsections. In fact, we prove the existence and uniqueness of a certain topological
measure τ on T ∗S1 which yields, according to the representation theorem, the exis-
tence and uniqueness of a corresponding quasi-integral η0; it is symplectic according
to the symplecticity of quasi-integrals on T ∗S1.

Moreover, we show that the symplectic quasi-integral η0 is closely related to
Viterbo’s symplectic homogenization. In fact, it can be seen as to arise from sym-
plectic homogenization. To be more precise, we prove the existence and uniqueness
of an operatorH: Cc(T

∗S1)→ Cc(R) which can be interpreted as Viterbo’s symplec-
tic homogenization operator in two dimensions using the symplectic quasi-integral
η0. This operator H gives rise to symplectic quasi-integrals on T ∗S1 by integration
against Radon measures. In particular, if one takes the Dirac measure centered at
0, the symplectic quasi-integral given by η0(F ) = H(F )(0) is the unique symplectic
quasi-integral on T ∗S1.

The construction of the symplectic quasi-integral η0 is based on the following
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Proposition 6.17. There exists a unique topological measure σ on T ∗S1 which is
invariant under Hamiltonian diffeomorphisms and satisfies

σ(S1 × [a, b]) = 1l[a,b](0) .

It satisfies σ(D) = 0 for any closed smoothly embedded disk D ⊂ T ∗S1.

Before giving the proof of the above proposition we note the following:

Remark 6.18. According to Proposition 6.16 we know that a topological measure
on T ∗S1 is uniquely determined by its values on codimension zero compact connected
submanifolds with boundary. In T ∗S1 there are two types of such submanifolds;
there are disks with holes and non-contractible annuli with holes (where holes are
deleted disks). The properties of a topological measure allow to fill in these holes,
that is, regularity implies that the values of a topological measure on open disks are
determined by the values on closed disks, and then additivity implies that it suffices
to know the values of the topological measure on closed smoothly embedded disks
and non-contractible annuli.

Proof (of Proposition 6.17). Uniqueness : Assume that such a topological measure
σ exists. Following the above remark it suffices to know the values of σ on closed
smoothly embedded disks and non-contractible annuli in order to determine it com-
pletely. We claim that these values are determined by the above properties of the
topological measure.

Let D ⊂ T ∗S1 be a smoothly embedded closed disk. Then there is another disk
D′ which is Hamiltonian isotopic to D such that D′ ⊂ S1 × [a, b] where b > a > 0.
By Hamiltonian invariance and monotonicity of σ we conclude

σ(D) = σ(D′) ≤ σ(S1 × [a, b]) = 1l[a,b](0) = 0 .

Let A ⊂ T ∗S1 be an annulus. Then A is Hamiltonian isotopic to a unique annulus
of the form S1 × [a, b], and thus by Hamiltonian invariance of σ the value

σ(A) = σ(S1 × [a, b]) = 1l[a,b](0)

is uniquely determined. In summary, σ, if it exists, is unique.
Existence: To prove the existence we define the values of σ on disks and annuli as
above and extend it, by regularity and additivity, to a function on the collection of
codimension zero compact connected submanifolds with boundary of T ∗S1. Using
Proposition 6.16 and the properties of the extended function we conclude that we
can extend σ to A(T ∗S1). Thus, we just have constructed a topological measure
with the above properties which proves that σ exists.

As a consequence we get:

Proposition 6.19. There exists a unique symplectic quasi-integral η0 on T ∗S1 which
is invariant under Hamiltonian diffeomorphisms and has the Lagrangian property,
i.e. η0(F ) = c for any F ∈ Cc(T ∗S1) such that F |S1×{0} = c ∈ R. In particular, it
is represented by the topological measure σ from Proposition 6.17.
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Proof. Uniqueness : Let η0 be a symplectic quasi-integral on T ∗S1 as above and de-
note by σ the corresponding topological measure (which exists according to Theorem
6.6). It is invariant under Hamiltonian diffeomorphisms and we claim

σ(S1 × [a, b]) = 1l[a,b](0) .

In order to prove the claim, recall that for a compact subset K ⊂ T ∗S1 we have

σ(K) = inf{η0(K) |F ∈ Cc(T ∗S1), F ≥ 1lK} .

Now, if 0 ∈ [a, b], we have for any F ∈ Cc(T ∗S1) with F ≥ 1lS1×[a,b] that η0(F ) ≥ 1,
due to the Lagrangian property, and thus σ(S1 × [a, b]) = 1. If 0 /∈ [a, b], there is
F ∈ Cc(T ∗S1) with F ≥ 1lS1×[a,b] and F |S1×{0} = 0 which gives η0(F ) = 0, and thus
σ(S1× [a, b]) = 0. In summary, η0 is represented by the unique topological measure
σ from the previous proposition and in particular, η0 is unique itself.
Existence: According to the above, the topological measure σ and its properties are
dictated by a quasi-integral η0 which is invariant under Hamiltonian diffeomorphisms
and has the Lagrangian property. Since we have just proved the existence of the
topological measure σ in Proposition 6.17, the quasi-integral η0 exists. Moreover,
according to Proposition 6.15 the quasi-integral η0 is symplectic.

6.4.1 Symplectic homogenization on T ∗S1

In this subsection we explain the relation between the symplectic quasi-integral
η0 on T ∗S1 and Viterbo’s symplectic homogenization in two dimensions. Accord-
ing to Section 4 the latter yields an operator H: C∞c (T ∗Tn) → Cc(Rn), where
H(F )(p) = µp(φF ), which is monotone, Lipschitz continuous, partial quasi-additive,
invariant under Hamiltonian diffeomorphisms, and has the Lagrangian property. In
two dimensions T ∗T1 = T ∗S1 = S1 × R we can prove the existence and uniqueness
of such an operator by an axiomatic approach using the symplectic quasi-integral
η0, where partial quasi-additivity is replaced by the stronger property of strong
quasi-additivity.

Theorem 6.20. There is a unique operator H: Cc(T
∗S1)→ Cc(R) such that for all

F,G ∈ Cc(T ∗S1):

(i) H is monotone, i.e. H(F ) ≤ H(G) for F ≤ G;

(ii) H is Lipschitz continuous with respect to the C0-norm, i.e. ‖H(F )−H(G)‖C0 ≤
‖F −G‖C0;

(iii) the restriction of H to any Poisson commutative subspace of C∞c (T ∗S1) is
linear;

(iv) if there is a constant c ∈ R and p ∈ R such that F = c on S1 × {p}, then
H(F )(p) = c;

(v) H is invariant under the natural action of Ham(T ∗N), i.e. H(F ◦ φ) = H(F )
for all φ ∈ Ham(T ∗S1).
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Remark 6.21. Recall from Section 4 that Viterbo claims in [Vi4] that the sym-
plectic homogenization operator H is strong quasi-additive for any T ∗Tn and that
we have pointed out that his proof of this property relies on the unproven Viterbo
bound. Therefore, it is an interesting observation that, in two dimensions, one can
include the strong quasi-additivity to the properties of symplectic homogenization
and prove the uniqueness and existence of the latter by an axiomatic approach which
does not use the Viterbo bound.

Assuming the theorem for the moment we conclude, using Viterbo’s idea in [Vi4],
that the above operator H gives rise to symplectic quasi-integrals on T ∗S1.

Proposition 6.22. Let σ be a Radon measure on R (that is, a locally finite regular
Borel measure). The functional ησ: Cc(T

∗S1)→ R given by

ησ(F ) =

∫
R
H(F ) dσ

is a symplectic quasi-integral. The Lipschitz constant of the restriction of ησ to
functions with support in S1 ×K, where K ⊂ R is compact, is bounded from above
by σ(K).

Proof. Monotonicity : This follows from the monotonicity of H.
Lipschitz continuity : We need to establish Lipschitz continuity for functions which
are compactly supported in a subset of T ∗S1 of the form S1 ×K, where K ⊂ R is
compact. If a function F has support in S1 × K, property (iv) of H implies that
H(F )(p) = 0 for p /∈ K. Let G be another function with support in S1 × K. We
have

|ησ(F )− ησ(G)| ≤
∫
R
|H(F )(p)−H(G)(p)| dσ(p)

≤ σ(K)‖H(F )−H(G)‖C0 ≤ σ(K)‖F −G‖C0

which proves Lipschitz continuity and the bound on the Lipschitz constant.
Strong quasi-additivity : The fact that ησ is strong quasi-additive follows from the
fact that H is linear on Poisson commutative subspaces of C∞c (T ∗S1).

If we take σ to be the Dirac measure centered at 0, we can extract a symplectic
quasi-integral by

η0(F ) = H(F )(0)

which is invariant under Hamiltonian diffeomorphisms and has the Lagrangian prop-
erty. Therefore, it is the unique symplectic quasi-integral η0 on T ∗S1 which we
introduced above.

Proof (of Theorem 6.20). Uniqueness : Assume that the operator H: Cc(T
∗S1) →

Cc(R) exists. Proposition 6.22 states that the properties of H listed in the theorem
imply that η0 = H(·)(0) is a symplectic quasi-integral which is invariant under
Hamiltonian diffeomorphisms and has the Lagrangian property. Moreover, according
to Proposition 6.19, the symplectic quasi-integral η0 is unique. Now, for p ∈ R, we
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define ηp: Cc(T
∗S1) → R by ηp = H(·)(p). For any F ∈ Cc(T

∗S1) and Fp(q, ·) =
F (q, ·+ p) we have

ηp(F ) = η0(Fp) .

Thus, the operator H, if it exists, is determined by η0 and therefore it is the unique
operator satisfying the properties listed in the theorem.
Existence: Let η0 be the unique symplectic quasi-integral on T ∗S1 which is invariant
under Hamiltonian diffeomorphisms and has the Lagrangian property. We define H
by

H(F )(p) = ηp(F ) = η0(Fp) ,

where we define Fp(q, ·) = F (q, · + p). Now, in order to prove the existence of an
operator which has the properties listed in the theorem, it suffices to show that H
just defined has these properties. Points (i) and (v) follow from the monotonicity
and invariance of ηp. Since the topological measure σ only takes values 0 and 1,
the corresponding quasi-integral η0 is globally Lipschitz continuous with constant
1, see Remark 6.13. Therefore, H is Lipschitz continuous with constant 1 as well,
proving (ii). Point (iii) follows from the strong quasi-additivity of η0. Property (iv)
is satisfied tautologically. We also have to show that H indeed takes values in Cc(R).
This follows from the fact that for any F ∈ Cc(T ∗S1) we have

lim
p→0
‖F − Fp‖C0 = 0 .

Therefore, the proof of Theorem 6.20 is complete.

Remark 6.23. Using techniques similar to the ones in [Za3] one can give an ex-
plicit formula for H in terms of its Reeb graph, it is, in terms of its level sets,
see [MZ] for details. With this formula it is proved ibid. that the asymptotic
Hofer norm ρ∞ (recall Subsection 1.5 for definitions) of F ∈ C∞c (T ∗S1) satisfies
ρ∞(F ) = maxH(F )−minH(F ).

Moreover, in [Vi4] Viterbo claims that the quantity maxH(F )−minH(F ) also
equals the asymptotic Viterbo norm γ∞(F ) for F ∈ C∞c (T ∗S1) (recall Remark 4.9
for the definition). But again, as far as we understand, the proof of this equality
relies on the Viterbo bound (in particular, it uses H(−F ) = −H(F )). Nevertheless,
if we assume that Viterbo’s claim holds, the above discussion shows that in the
autonomous case we would have γ∞(F ) = ρ∞(F ) for F ∈ C∞c (T ∗S1).

Remark 6.24. The above remark should be contrasted with Remark 5.13. If we
assume that the Viterbo bound holds, then both, the equality γ∞ = ρ∞ for au-
tonomous Hamiltonians on T ∗S1 introduced in the above remark and the strict
inequality between the asymptotic norms given in [SV] introduced in Remark 5.13,
are true. One should note that this would not be a contradiction as one could assume
since the point of difference would be the following: In [SV] the authors use Hamil-
tonians on B∗Tn which vanish on the boundary and which admit a smooth extension
to T ∗Tn depending only on time and on ‖p‖ outside B∗Tn (this particular flavor of
asymptotic Hofer geometry was introduced in Subsection 5.3). The fact that B∗Tn
has finite volume then allows to use the Calabi invariant of the Hamiltonian as a
lower bound for its asymptotic Hofer norm which is impossible on T ∗S1.
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6.5 The Calabi quasi-state on S2

In this subsection we introduce the Calabi quasi-state ζEP : C(S2) → R due
to Entov and Polterovich in order to compare it to the symplectic quasi-integral
η0: Cc(T

∗S1) → R on an open neighborhood of the zero section in the next sub-
section. The Calabi quasi-state ζEP stems from a Calabi quasi-morphism which
is given in terms of spectral invariants coming from Hamiltonian Floer homology.
Therefore, we give a very short overview of Hamiltonian Floer homology, Hamilto-
nian spectral invariants and the construction of the Calabi quasi-morphism and the
Calabi quasi-state on CP n. The general references are [EP1] and [EP2].

The Calabi quasi-morphism on CP n

Consider the symplectic manifold (CP n, ω) with its standard symplectic struc-
ture ω given by the Fubini-Study form normalized such that

∫
CPn ω

n = 1.
In [EP1] Entov und Polterovich construct a nontrivial homogeneous quasi-morphism

µ̃EP on the universal cover of the group of Hamiltonian diffeomorphisms H̃am(CP n)
which descends to a homogeneous quasi-morphism µEP on the group Ham(CP n).

When restricted to H̃am(U), the quasi-morphism µ̃EP coincides with the Calabi

homomorphism on H̃am(U) for every open and displaceable subset U ⊂ CP n. It
is obtained by homogenizing a certain spectral invariant coming from Hamiltonian
Floer homology which is, in this setting, isomorphic to the quantum homology. We
refer to [HS], [McS2], [Oh3], [Oh4] for details concerning Hamiltonian Floer and
quantum homology with coefficients in a Novikov ring of closed symplectic mani-
folds and spectral invariants coming from Hamiltonian Floer homology; briefly, the
construction is as follows:

Denote by Λ the space of smooth contractible loops γ: S1 → CP n and by Λ̃ its
covering which consists of equivalence classes of pairs (γ, u), where γ ∈ Λ and u is a
disk spanning x. Thereby, (γ1, u1) and (γ2, u2) are equivalent if and only if γ1 = γ2

and the disks u1 and u2 are homotopic with fixed boundary.
Let H: S1 ×CP n → R be a time-periodic generic Hamiltonian. Assume that H

is normalized, i.e.
∫
CPn Ht ω

n = 0 for any t ∈ S1. Consider the action functional

AH : Λ̃→ R associated to H given by AH([γ, u]) =
∫ 1

0
H(t, γ(t))dt−

∫
D
u∗ω, where

D denotes the standard unit disk in R2. The lift P̃H ⊂ Λ̃ of the set PH of contractible
1-periodic orbits of the Hamiltonian flow generated by H is in one-to-one correspon-
dence to the set of critical points Crit(H) of AH . The Floer complex CF (H) is the
complex vector space which is generated by Crit(H), and the differential is defined
by counting isolated gradient trajectories of the negative gradient flow of AH con-
necting critical points of AH of index difference one. The full Hamiltonian Floer
homology HF∗(H) is well-defined, and there is an isomorphism between HF∗(H)
and QH∗(CP n) which is grading preserving. Here QH∗(CP n) denotes the quantum
homology of CP n which is isomorphic to H∗(CP n;C)⊗CC[[s] as a vector space over
C, where C[[s] is the field whose elements are formal Laurent series

∑
j∈Z zjs

j in the
formal variable s, where zj ∈ C vanishes for large enough positive j. On QH∗(CP n)
there exists a quantum product which makes the quantum homology into an asso-
ciative algebra. In fact, on CP n, the quantum homology QH∗(CP n) is a field, and
the quantum product is commutative (on more general closed symplectic manifolds
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one needs to consider the even-dimensional quantum homology to obtain an algebra
which is commutative).

The filtered version of Hamiltonian Floer homology HF a
∗ (H) is obtained by the

filtered Floer complex which is generated by critical points of AH with action < a
and the differential which is induced by the full differential; Floer trajectories are
negative gradient flow lines and thus the differential decreases the action. There is
an inclusion homomorphism

ia: HF
a(H)→ HF (H) ,

and for generic normalized H and A ∈ HF∗(H) = QH∗(CP n) one can define spectral
invariants

c(A,H) := inf{a |A ∈ im ia}

which can be extended to arbitrary normalized H. Actually, the spectral invariants

descend to H̃am(CP n) and have all the standard properties including spectrality,
continuity, Hamiltonian invariance, and the triangle inequality; we denote them by
c(A, φ̃). Let e ∈ QH(CP n) denote the unit element of the quantum homology
QH∗(CP n) (which is a field); it is given by the fundamental class [CP n]. According
to Entov and Polterovich, the map

µ̃EP : H̃am(CP n)→ R

given by

µ̃EP (φ̃) = − lim
k→∞

c(e, φ̃k)

k

is a homogeneous quasi-morphism [EP1]. Moreover, the restriction of µ̃EP to H̃am(U)
coincides with the Calabi homomorphism for any open and displaceable subset

U ⊂ CP n, where the Calabi homomorphism C̃alU : H̃am(U) → R is given by

C̃alU(φ̃) =
∫ 1

0

∫
CPn Ht ω

n dt, where H is a Hamiltonian with compact support in

U which generates φ̃ (see [McS1] for instance). Therefore, µ̃EP is called Calabi
quasi-morphism. In addition, it is proved in [EPZ] that∫ 1

0

min
M

(Ft −Gt) dt ≤ µ̃EP (φ̃G)− µ̃EP (φ̃F ) ≤
∫ 1

0

max
M

(Ft −Gt) dt

for all normalized Hamiltonians F,G generating φ̃F , φ̃G, respectively.
Moreover, the quasi-morphism µ̃EP descends to a homogeneous quasi-morphism

µEP : Ham(CP n)→ R

which coincides with the Calabi homomorphism CalU : Ham(U) → R on any open
and displaceable subset U ⊂ CP n such that ω is exact on U (if ω is exact on
U , the Calabi-homomorphism is well-defined, meaning that it does not depend on
the specific choice of the Hamiltonian generating the element in Ham(U)). The
quasi-morphism µEP is invariant under Hamiltonian diffeomorphisms and Lipschitz
continuous with respect to Hofer’s metric, i.e. |µEP (φ)− µEP (ψ)| ≤ ρ(φ, ψ) for
φ, ψ ∈ Ham(CP n).
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The Calabi quasi-state on CP n

In [EP2] Entov and Polterovich prove that the Calabi quasi-morphism µ̃EP on
CP n yields a functional

ζEP : C∞(CP n)→ R

by setting

ζEP (F ) =

∫
CPn

F ωn − µ̃EP (φ̃F ) =

∫
CPn

F ωn + lim
k→∞

c(e, φ̃kF )

k

which satisfies the axioms of a symplectic quasi-state. Indeed, ζEP is monotone since
µ̃EP has the continuity property. The strong quasi-additivity of ζEP follows from the
fact that the restriction of a homogeneous quasi-morphism to an abelian subgroup is
a homomorphism (see [Ca]) and that for F,G ∈ C∞(CP n) with {F,G} = 0 it is true
that φF and φG commute. The normalization ζEP (1) = 1 follows by construction.

Since monotonicity gives Lipschitz continuity of ζEP in the C0-norm, one can
extend ζEP to a functional ζEP : C(CP n)→ R which is a symplectic quasi-state; it
is called Calabi quasi-state. According to the additional properties of the Calabi
quasi-morphism µ̃EP , the Calabi quasi-state ζEP satisfies [EP2]:

(i) Vanishing : ζEP (F ) = 0 if the support of F is displaceable;

(ii) ζEP is invariant under the natural action of Ham(CP n), i.e. ζEP (F ◦ φ) =
ζEP (F ) for any φ ∈ Ham(CP n).

The Calabi quasi-state on S2

Consider S2 = CP 1 with an area form ω such that
∫
S2 ω = 1. The group

Ham(S2) admits a Calabi quasi-morphism which has additional properties as men-
tioned above. According to Entov and Polterovich [EP1] any two such Calabi quasi-
morphisms on Ham(S2) coincide on the set of elements generated by autonomous
Hamiltonians; in fact, one can explicitly compute µEP (φF ) in terms of the data of
the level sets of F .

The Calabi quasi-morphism on Ham(S2) gives rise to a symplectic quasi-state
on C(S2) which has the vanishing property and is invariant under Hamiltonian
diffeomorphisms. Since the quasi-state is Lipschitz continuous in the C0-norm, it
suffices to know its values on a dense subset of C(S2); in particular, it suffices to
know its values on the set of smooth Morse functions on S2 with distinct critical
values. But any two Calabi quasi-morphisms on Ham(S2) coincide on the set of
smooth Morse functions and thus the Calabi quasi-states do. Therefore, the Calabi
quasi-state ζEP is the unique symplectic quasi-state on C(S2) which is invariant
under Hamiltonian diffeomorphisms and has the vanishing property.

Moreover, Entov and Polterovich prove that for a smooth Morse function F with
distinct critical values, the value of ζEP (F ) is the value of the unique connected
component mF of a level set of F such that every component of S2 \mF has area
≤ 1

2
[EP2]. More general, if AF denotes the space consisting of all smooth functions

G ∈ C∞(S2) such that {F,G} = 0 (note that every G ∈ AF is constant on connected
components of level sets of F ), it is true that ζEP (G) = G(mF ) for G ∈ AF . In

91



addition, it is proved in [EP2] that the restriction of ζEP to AF is multiplicative,
i.e. ζEP (GH) = ζEP (G)ζEP (H) for any G,H ∈ AF , and the Lipschitz continuity of
ζEP implies that ζEP is multiplicative on AF for any F ∈ C(S2). In particular, ζEP
is simple.

In summary, the Calabi quasi-state ζEP : C(S2) → R is the unique symplectic
quasi-state on S2 which is invariant under Hamiltonian diffeomorphisms and has the
vanishing property (and is simple).

6.6 Comparison

In the previous subsections we introduced two symplectic quasi-integrals in two
dimensions which are uniquely characterized by their additional properties. The
first one is the symplectic quasi-integral η0: Cc(T

∗S1) → R which is related to
Viterbo’s symplectic homogenization on T ∗S1; it is invariant under Hamiltonian
diffeomorphisms and has the Lagrangian property. The second one is the Calabi
quasi-state ζEP : C(S2) → R due to Entov and Polterovich; it is invariant under
Hamiltonian diffeomorphism and has the vanishing property (and is simple).

In this section we compare the two symplectic quasi-integrals. In particular,
we ask whether the quasi-integrals are equal on an open neighborhood of the zero
section of T ∗S1.

In order to give an answer to the above question we make use of the represen-
tation theorem of quasi-integrals and topological measures, Theorem 6.6, developed
in Section 6.1; in fact, we compare the corresponding topological measures.

To be able to compare ζ = ζEP : C(S2) → R and η = η0: Cc(T
∗S1) → R we need

them to be defined on the same space. Let r ∈ (0, 1
2
] and Ur = S1× (−r, r) ⊂ T ∗S1.

Consider a symplectic embedding

jr: Ur → S2

such that jr(S
1×{0}) is the equator in S2. The symplectic forms ω′ on S2 and ω = dλ

on T ∗S1 are normalized so that area(S2) =
∫
S2 ω

′ = 1 and area(Ur) =
∫
Ur
ω = 2r.

The symplectic embedding jr induces a map

j!
r: Cc(Ur)→ C(S2)

and we can pull ζ back to Cc(Ur) by

ζr := j∗r ζ = ζ ◦ j!
r .

The following observation motivates the question whether ζr and η are equal.

Remark 6.25. The two functionals ζr and η coincide on functions which only
depend on the vertical coordinate: Let (q, p) be the standard coordinates on T ∗S1

and for F ∈ Cc((−r, r)) define f ∈ Cc(Ur) by f(q, p) = F (p). We have

η(f) = ζr(f) = F (0) .

For η this follows immediately from the definition, the statement about ζ is contained
in [EP2].
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In general, we have the following result:

Theorem 6.26. The restriction of η to Cc(Ur) coincides with ζr if and only if
r ∈ (0, 1

4
].

Remark 6.27. Recall from Proposition 6.22 that the operator H: Cc(T
∗S1) →

Cc(R) yields more general symplectic quasi-integrals ησ on T ∗S1. For those it can
be seen that ησ|Cc(Ur) 6= ζr if the restriction of σ to (−r, r) does not coincide with
the Dirac measure centered at 0.

Remark 6.28. The above result has to do with the general question of uniqueness
of symplectic quasi-states and quasi-integrals. As the above theorem shows, there is
no uniqueness on a neighborhood of the zero section in T ∗S1, even not if we impose
additional properties of the symplectic quasi-integrals like Hamiltonian invariance.

To prove Theorem 6.26 we make use of the representation theorem of quasi-
integrals in terms of topological measures, Theorem 6.6.

Recall that the topological measure which is associated to η is the unique topolog-
ical measure σ on T ∗S1 given by Proposition 6.17. It is invariant under Hamiltonian
diffeomorphisms and satisfies σ(S1 × [a, b]) = 1l[a,b](0), in particular, σ vanishes on
smoothly embedded closed disks.

Let τ be the topological measure on S2 corresponding to ζ. It is invariant under
Hamiltonian diffeomorphisms. Moreover, according to a theorem of Aarnes [Aa2], it
is simple, that is, it only takes values 0 and 1 since the corresponding quasi-state ζ is
multiplicative on AF for any F ∈ C(S2). In addition, according to [AR], [Aa3], the
topological measure τ is completely determined by its values on smoothly embedded
closed disks D ⊂ S2 as follows: Let D ⊂ S2 be a closed disk, then

τ(D) =

{
1, area(D) ≥ 1

2

0, area(D) < 1
2

.

Now, let τr be the pull-back of τ by jr, i.e.

τr(A) = τ(jr(A))

for A ∈ A(Ur).
According to the representation theorem, Theorem 6.6, Theorem 6.26 is equiva-

lent to

Theorem 6.29. We have σ|A(Ur) = τr if and only if r ∈ (0, 1
4
].

Proof (of Theorem 6.29). We prove the theorem in the language of topological
measures.
(i) We need to show that r > 1

4
implies σ|A(Ur) 6= τr. If r > 1

4
, we have area(Ur) ≥ 1

2
.

Thus, there is a smoothly embedded closed disk D ⊂ Ur such that area(D) ≥ 1
2
.

Thus, jr(D) ⊂ S2 is a closed smoothly embedded disk of area ≥ 1
2
. Now, on the one

hand, we have
τr(D) = τ(jr(D)) = 1 .

On the other hand,
σ(D) = 0
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which proves that σ|A(Ur) 6= τr if r > 1
4
.

(ii) It remains to prove that we have σ|A(Ur) = τr if we assume r ≤ 1
4
. Let r ≤ 1

4

and recall from Remark 6.18 that a topological measure on Ur ⊂ T ∗S1 is completely
determined by its values on smoothly embedded closed disks and non-contractible
annuli. Let D ⊂ Ur be a smoothly embedded closed disk. Its image jr(D) ⊂ S2 is
a disk of area < 1

2
and we have

τr(D) = τ(jr(D)) = 0 = σ(D) .

Let A ⊂ Ur be a non-contractible annulus. It can be isotoped to a unique standard
annulus of the form S1×[a, b], where −r < a < b < r, by a Hamiltonian isotopy with
compact support in Ur. Since both, τr and σ|A(Ur), are invariant under Hamiltonian
diffeomorphisms, it suffices to consider annuli in Ur of the form S1×[a, b]. Now, there
are two cases to consider: 0 ∈ [a, b] and 0 /∈ [a, b]. Let 0 /∈ [a, b], then jr(S

1 × [a, b])
is contained in a disk of area < 1

2
and so

τr(S
1 × [a, b]) = τ(jr(S

1 × [a, b])) = 0

and
σ(S1 × [a, b]) = 1l[a,b](0) = 0 .

If 0 ∈ S1 × [a, b], then
σ(S1 × [a, b]) = 1l[a,b](0) = 1 .

For the evaluation of τr note that the complement of jr(S
1 × [a, b]) in S2 is the

disjoint union of two open disks of area < 1
2
, i.e. S2 \ jr(S1 × [a, b]) = D ∪D′. By

additivity we get

τr(S
1 × [a, b]) = τ(jr(S

1 × [a, b])) = 1− τ(S2 \ jr(S1 × [a, b]))

= 1− τ(D)− τ(D′) = 1 .
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Birkhäuser, 1999.

[GL] Grubb, D. J., LaBerge, T., Spaces of quasi-measures, Canad. Math. Bull. 42
(1999), 291–297.

[Ho] Hofer, H., On the topological properties of symplectic maps, Proc. Roy. Soc.
Edinb A 115 (1990), 25–38.

[HS] Hofer, H., Salamon, D., Floer homology and Novikov rings, The Floer memo-
rial volume, 483–524, Birkhäuser, 1995.
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