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Abstract

An important application of high-dimensional gene expression measurements is the
risk prediction and the interpretation of the variables in the resulting survival models.
A major problem in this context is the typically large number of genes compared to
the number of observations (individuals). Feature selection procedures can generate
predictive models with high prediction accuracy and at the same time low model
complexity. However, interpretability of the resulting models is still limited due to
little knowledge on many of the remaining selected genes. Thus, we summarize genes as
gene groups defined by the hierarchically structured Gene Ontology (GO) and include
these gene groups as covariates in the hazard regression models. Since expression
profiles within GO groups are often heterogeneous, we present a new method to obtain
subgroups with coherent patterns. We apply preclustering to genes within GO groups
according to the correlation of their gene expression measurements.

We compare Cox models for modeling disease free survival times of breast cancer
patients. Besides classical clinical covariates we consider genes, GO groups and
preclustered GO groups as additional genomic covariates. Survival models with
preclustered gene groups as covariates have improved prediction accuracy in long term
survival compared to models built only with single genes or GO groups. We also
provide an analysis of frequently chosen covariates and comparisons to models using
only clinical information.

The preclustering information enables a more detailed analysis of the biological meaning
of covariates selected in the final models. Compared to models built only with single
genes there is additional functional information contained in the GO annotation, and
compared to models using GO groups as covariates the preclustering yields coherent
representative gene expression profiles. For evaluation of fitted survival models, we
present prediction error curves revealing that models with preclustered gene groups
have improved prediction performance compared to models built with single genes or
GO groups.
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1 Introduction

Almost 10% of German women will develop invasive breast cancer over the course of

their lifetime. In 2004, approximately 57 000 new cases of breast cancer were diagnosed

in women in Germany (Robert Koch Institut, 2010). Statistics for other countries,

especially for the United States, are comparable (Ma and Huang, 2007). Despite major

progresses in breast cancer treatment, the ability to predict the metastatic behavior of

tumor remains limited.

In addition to well-known risk factors (cf. Robert Koch Institut, 2010) like drinking al-

cohol, getting older, being overweight (increases risk for breast cancer after menopause)

and not getting regular exercise, specific genes may have an influence on developing

cancer and on patient’s survival times. According to Giersiepen et al. (2005) about 5

to 10% of breast cancers can be linked to gene mutations (abnormal changes) inherited

from one’s mother or father. Mutations of the BRCA1 and BRCA2 genes are the most

common. Women with these mutations have up to an 80% risk of developing breast

cancer during their lifetime, and they are more likely to be diagnosed at a younger

age (before menopause).

In the last 10 years cancer research has focused on gene expression experiments to

detect genes that are responsible for the development of cancer and for its course over

time. Thus, the prediction of cancer patient survival based on gene expression profiles

is an important application of genome-wide expression data (Rosenwald et al., 2002;

van de Vijver et al., 2002; van ’t Veer et al., 2002).

In this thesis, our goal is to improve prediction accuracy and interpretability of high-

dimensional models for prediction of survival outcomes, by combining gene expression

data with prior biological knowledge on groups of genes.
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Since 2001 numerous developments have appeared to outcome prediction for several

kinds of cancer on the basis of gene expression experiments (Alizadeh et al., 2000;

Bair and Tibshirani, 2004; Beer et al., 2002; Khan et al., 2001; Rosenwald et al.,

2002; Ramaswamy et al., 2003), with special focus on breast carcinoma (Sørlie et al.,

2001; Rosenwald et al., 2002; van de Vijver et al., 2002; van ’t Veer et al., 2002;

Wang et al., 2005; West et al., 2001). Several of these studies reported considerable

predictive success. They allow the discovery of new markers that open the way to

more subject-specific treatments with greater efficacy and safety.

Clinical covariates like age, gender, blood pressure, tumor size and grade, as well as

smoking and drinking history have been extensively used and shown to have satisfactory

predictive power. They are usually easy to measure and of low dimensionality.

By uncovering the relationship between time to event and the tumor gene expres-

sion profile, it is hoped to achieve more accurate prognoses and improved treatment

strategies. Predicting the prognosis and metastatic potential of cancer at the time of

discovery is a major challenge in current clinical research. Numerous recent studies

searched for gene expression signatures that outperform traditionally used clinical

parameters in outcome prediction (see e.g. Binder and Schumacher, 2008b). A substan-

tial challenge in this context comes from the fact that the number of genomic variables

p is usually much larger than the number of individuals n. The goal is to construct

models that are complex enough to have high prediction accuracy but that are at the

same time simple enough to allow biological interpretation. It is very difficult to select

the most powerful genomic variables for prediction, as these may depend on each other

in an unknown fashion.

Univariate approaches use single genes as covariates in survival time models, whereas

multivariate models need a more elaborate framework. For statistical analysis, the

Cox regression model (Cox, 1972) is a well-known method for modeling censored

survival data. It can be used for identifying covariates that are significantly correlated

with survival times. Due to the high-dimensional nature of microarray data we

cannot obtain the parameter estimates directly with the Cox log partial likelihood

approach. Techniques have been developed that result in shrunken and/or sparse

models, i.e., models where only a small number of covariates is used. The classical
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ridge-regression (Hoerl and Kennard, 1970) and lasso-regression (Tibshirani, 1996,

1997) are particularly suitable. Efron et al. (2004) proposed a highly efficient procedure,

called Least Angle Regression (LARS) for variable selection which can be used to

perform variable selection with very large matrices. LARS can be modified to provide

a solution for the lasso-procedure. Using the connection between LARS and lasso, Gui

and Li (2005) proposed LARS-Cox for gene selection in high-dimension and low-sample

settings. In this case and in boosting approaches (Bühlmann and Hothorn, 2007), it is

avoided to discard covariates before model fitting. Parameter estimation and selection

of covariates is performed simultaneously. This is implemented by imposing a penalty

on the model parameters for estimation. The structure of this penalty is chosen such

that most of the estimated parameters will be equal to zero, i.e., the value of the

corresponding covariates does not influence predictions obtained from the fitted model.

Schumacher et al. (2007) developed techniques for extending a bootstrap approach for

estimating prediction error curves (introduced by Gerds and Schumacher, 2007) to

high-dimensional gene expression data with survival outcome.

An alternative method was developed by Binder and Schumacher (2008b). They

proposed a boosting approach for high-dimensional Cox models (CoxBoost). The

resulting model is sparse and thus it competes directly with the results from lasso-

regression. Binder and Schumacher (2008b) applied the CoxBoost algorithm to gene

expression data sets.

In addition, the combination of clinical data and gene expression data is a hot topic

of research (cf. Boulesteix et al., 2008; Binder and Schumacher, 2008b). In order to

integrate the clinical information and microarray data in survival models properly,

it is a common approach to handle the clinical covariates as unpenalized mandatory

variables (cf. Binder and Schumacher, 2008b; Bøvelstad et al., 2009). These approaches

show that the combination of genomic and clinical information may also improve

predictions.

For evaluating a fitted survival model, patients are often divided into subgroups

according to their prognoses. Kaplan-Meier curves (Kaplan and Meier, 1958) are

calculated for each group and compared with the log-rank test (see, e.g. Rosenwald

et al., 2002). It is important that a comparison of groups is performed without the
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individuals used for model fitting. Otherwise, results would be overoptimistic.

Graf et al. (1999) presented an adapted framework for the Brier-Score (Brier, 1950)

for survival models with censored observations. At each time point, we compare the

estimated probability of being event-free to the observed event-status. Analysis of

the prognostic index (Bøvelstad et al., 2007) and the Brier-Score (Graf et al., 1999;

Schumacher et al., 2007) can be used to assess the predictive performance of the fitted

models.

On the other hand, Haibe-Kains et al. (2008) showed in a comparative study of survival

models for breast cancer prognostication based on microarray data that the most

complex methods are not significantly better than the simplest one, a univariate model

relying on a single proliferation gene. This result suggests that proliferation might

be the most relevant biological process for breast cancer prognostication and that

the loss of interpretability deriving from the use of overcomplex methods may be not

sufficiently counterbalanced by an improvement of the quality of prediction of those

who really need chemotherapy and benefit from it.

However, due to the large variability in survival times between cancer patients and

the amount of genes on the microarrays unrelated to outcome, building accurate

prediction models that are easy to interpret remains a challenge. In this thesis, we

propose a new approach for improving performance and interpretability of prediction

models by integrating gene expression data with prior biological knowledge. To

raise the interpretability of prognostic models, we combine genes to gene groups

(e.g. according to their biological processes) and use these groups as covariates in

the survival models. The hierarchically ordered ’GO groups’ (Gene Ontology) are

particularly suitable (Ashburner et al., 2000). The Gene Ontology (GO) project

provides structured, controlled vocabularies and classifications according to molecular

and cellular biology. Gene expression data can be analyzed by summarizing groups of

individual gene expression profiles based on GO annotation information. The mean

expression profile per group or the first principle component can then be used to

identify interesting GO categories in relation to the experimental settings. Another

platform is the KEGG data base (Kanehisa et al., 2004) that provides biological

pathway information for genes and proteins.
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A problem when relating genes to groups is that the genes in each gene group may

have different expression profiles: interesting subgroups may not be detected due to

heterogeneous or anti-correlated expression profiles within one gene group. We propose

to cluster the expression profiles of genes in every gene group to detect homogeneous

subclasses within a GO group and preselect relevant clusters (preclustering). The

Intra Cluster Correlation (ICC), a measure of cluster tightness, is applied to identify

relevant clusters.

In a first step we compared high-dimensional survival models with genes and GO groups

as covariates for different variable selection methods (Kammers and Rahnenführer,

2010). Based on this work Lang (2010) constructed in his diploma thesis different

aggregation methods for genes within a gene group for high-dimensional data sets. It

turned out that summarizing the expression values with the first principle component

is the most promising aggregation method. This result is integrated in this thesis

with an extensive model building and evaluation procedure. We show comparisons

to clinical models and to combinations of genomic and clinical models with different

types of evaluation measures as well as the analysis of frequently chosen covariates.

The main results of this thesis are already published in the peer-reviewed journal BMC

Bioinformatics.

This thesis is organized as follows: Chapter 2 provides the biological background

and introduces the data sets. Chapter 3 and 4 describe the statistical methodology

for building prognostic models for high-dimensional data sets. Chapter 3 presents

methods for summarizing gene expression measurements with a focus on preclustering

and Chapter 4 introduces the survival framework including the Cox model for high-

dimensional data and algorithms for fitting and evaluating it. Chapter 5 shows the

main results for two breast cancer data sets. Chapter 6 discusses proper ways for

placing the results within the context of recent studies and possibilities for extensions.

Concluding remarks are also given in this chapter.
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2 Background and Data Sets

In Section 2.1 we present the biological and medical background of breast cancer

including risk factors, types of therapy and relation to recent statistical research. In

Section 2.2 and Section 2.3 we briefly introduce the microarray technology for gene

expression experiments and the Gene Ontology database that provide supplementary

information for many genes. Finally, in Section 2.4 we present two well-known breast

cancer data sets that are used for all analysis steps in Chapter 5.

2.1 Breast Cancer

Breast cancer is a malignant tumor that starts in the cells of the breast. A malignant

tumor is a group of cancer cells that can grow into (invade) surrounding tissues or

spread (metastasize) to distant areas of the body. Usually breast cancer either begins

in the cells of the lobules, which are the milk-producing glands, or the ducts, the

passages that drain milk from the lobules to the nipple (see, e.g. Sariego, 2010). The

disease occurs mostly in women, but men can be affected, too.

The size, stage, rate of growth, and other characteristics of the tumor determine the

kinds of treatment. It may include surgery, drugs (hormonal therapy and chemother-

apy), radiation and/or immunotherapy (Florescu et al., 2011). Surgical removal of the

tumor provides the single largest benefit, with surgery alone being capable of producing

a cure in many cases. To increase the disease-free survival, several chemotherapy

regimens are commonly given in addition to surgery. Radiation is indicated especially

after breast conserving surgery and substantially improves local relapse rates and in

many circumstances also overall survival (Buchholz, 2009). Some breast cancers are
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sensitive to hormones such as estrogen and/or progesterone, which makes it possible

to treat them by blocking the effects of these hormones.

Research has found several risk factors that may increase the chances of getting breast

cancer. According to Robert Koch Institut (2010) an excerpt of risk factors is given

by never giving birth, personal history of breast cancer or some non-cancerous breast

diseases, family history of breast cancer (mother, sister, daughter), treatment with

radiation therapy to the breast/chest, starting menopause at a later age, long-term

use of hormone replacement therapy (estrogen and progesterone combined), drinking

alcohol and getting older, being overweight (increases risk for breast cancer after

menopause) and not getting regular exercise. In addition to these ’clinical’ factors,

changes in the breast cancer-related genes BRCA1 or BRCA2 may also influence the

susceptibility to breast cancer.

For lowering the risk of breast cancer the U.S. Preventive Services Task Force (2009)

as well as Boyle and Levin (2008) suggest to be screened for breast cancer regularly

and control the risk factors if possible.

Boyle and Levin (2008) point out that worldwide, breast cancer comprises 22.9% of

all cancers (excluding non-melanoma skin cancers) in women. In 2008, breast cancer

caused approximately 450 000 deaths worldwide corresponding to 13.7% of cancer

deaths in women. Breast cancer is more than 100 times more common in women than

breast cancer in men, although males tend to have poorer outcomes due to delays in

diagnosis. Prognosis and survival rate vary greatly depending on cancer type, staging

and treatment.

In the article of 2001, Cooper reviews the ways in which microarray technology (see

Section 2.2) may be used in breast cancer research (Cooper, 2001). Today, the analysis

of gene expression profiles of breast cancer patients and the combination of clinical

and gene expression data is a hot topic of research and is very important for risk

prediction in survival models (see, e.g., Bøvelstad et al., 2007, 2009; Boulesteix et al.,

2008; Binder and Schumacher, 2008b; Binder et al., 2011).
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2.2 Microarray Technology

Microarray technology represents a powerful functional genomics technology, which

permits the expression profiling of thousands of genes in parallel (Schena et al., 1996)

and is based on hybridisation of complementary nucleotide strands (DNA or RNA).

Microarray chips consist of thousands of DNA molecules (corresponding to different

genes) that are immobilized and girded onto a support such as glass, silicon or nylon

membrane. Each spot on the chip is representative for a certain gene or transcript.

The expression levels of all genes can be determined by isolating the total amount

of mRNA, which is defined to be the transcriptome of the cell at the given time.

Fluorescently or radioactively labeled nucleotides (targets) that are complementary

to the isolated mRNA are prepared and hybridized to the immobilized molecules.

Target molecules that did not bind to the immobilized molecules (probes) during the

hybridization process are washed away. The amount of hybridized target molecules is

proportional to the amount of isolated mRNA. The relative abundance of hybridized

molecules on a defined array spot can be determined by measuring the fluorescent or

radioactive signal.

Different types of DNA arrays are designed for mRNA profiling. These types differ by

the type of probes that are immobilized on the chip (cDNA or synthetic oligonucleotides)

and by the density (probes per square centimetre) of the array. The two basic

microarrays variants are probe cDNA (0.2 to 5 kb long) that is immobilized to a solid

surface using robot spotting and synthetic DNA fragments (oligonucleotides, 20 to

80mer long) that are synthesized on-chip (Gene Chip, Affymetrix) or by conventional

synthesis followed by on-chip immobilization. This high-density microarray type can

carry up to 40 probes per transcript. Half of the probes are designed to perfectly

match the nucleotide stretches of the gene, while the other half contains a mismatch (a

faulty nucleotide) as a control to test for specificity of the hybridisation signal. Other

microarray platforms, such as Illumina, use microscopic beads, instead of the large

solid support.
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2.3 Gene Ontology Data Base

The Gene Ontology (GO) project is an international bioinformatics initiative to unify

the representation of gene and gene product attributes across all species (Ashburner

et al., 2000). This project provides a set of structured, controlled vocabularies for

community use in annotating genes, gene products and sequences that are available

from the GO web site http://www.geneontology.org. The ontologies have been

extended and refined for several biological areas, and improvements to the structure of

the ontologies have been implemented. The current ontologies of the GO project are

biological process, molecular function, and cellular component.

GO has a hierarchical structure that forms a directed acyclic graph (DAG). For such

a graph we can use the notions of child and parent, where a child can have multiple

parents. Every GO term (GO group) is represented by a node in this graph. The

nodes are annotated with a set of genes. For an inner node of the GO graph, the

corresponding set of genes also comprises all genes annotated to all children of this

node. Figure 2.1 represents a part of this graph for the biological process ontology. The

arrowhead indicates the direction of the relationship. Child nodes can have different

relations to its parents note or its parents notes: a node may have a part of relationship

to one node or an is a relationship to another. The biological process ontology includes

terms that represent collections of processes as well as terms that represent a specific,

entire process. The former mainly have is a relationships to their children, and the

latter mainly have part of children that represent subprocesses.

http://www.geneontology.org
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Figure 2.1: Exemplary part of the directed acyclic graph from Gene Ontology database.

2.4 Description of Data Sets

In this section we introduce two well-known breast cancer data sets that we use for

the entire analysis (see Chapter 5): the Dutch breast cancer (DBC) data set and

the Mainz cohort (MC) study. Both consist of genomic and clinical information

as well as survival times and are therefore particularly suitable. The DBC data set

is analyzed in several publications (see, e.g. Bøvelstad et al., 2007, 2009; Porzelius

et al., 2009; van Wieringen et al., 2009) with models for time-to-event endpoints and

thus our results are easy to compare to the already published ones. The MC study

is a data set that is extensively used in our working group in cooperation with the

Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU

Dortmund University. The complete study data is well-known from its surgical origin

to final data matrices. In addition, we want to highlight that there is no missing data

in both data sets.

The Dutch breast cancer (DBC) data set is a subset of the original data set

from the fresh-frozen-tissue bank of the Netherlands Cancer Institute with 24 885

gene expression measurements from n = 295 women with breast cancer. According
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to van de Vijver et al. (2002) and van Houwelingen et al. (2006) the following selection

criteria were employed:

• the tumour was a primary invasive breast carcinoma of size less than 5cm in

diameter,

• the age at diagnosis was 52 years or younger,

• the diagnosis was between 1984 and 1995, and

• there was no previous history of cancer, except non-melanoma skin cancer.

All patients had been treated by modified radical mastectomy or breast conserving

surgery, including dissection of the axillary lymph nodes, followed by radiotherapy if

indicated. Among the 295 patients, 151 were lymph node negative and 144 were lymph

node positive. All tumors were profiled on cDNA arrays containing 24 885 genes. After

data pre-processing as proposed by van Houwelingen et al. (2006) the data set was

reduced to a set of 4 919 genes. The data, including gene expression measurements,

clinical information and survival data for each patient, was obtained from the website

https://www.msbi.nl/dnn/People/Houwelingen.aspx. Working with this reduced

data set makes it easier to compare our results with previous publications (see, e.g.

Bøvelstad et al., 2007, 2009). Our analysis is performed with only 1 876 genes, that

are annotated to at least one GO group, according to the biological process ontology.

In total, there are 5 560 GO groups to which at least one of these genes is annotated.

The mean number of genes included in these GO groups is approximately 17 genes

where 90% of all GO groups contain at most 30 genes. For 79 patients an event was

observed. The clinical covariates are age, size, nodes and grade.

The Mainz cohort (MC) study consists of n = 200 node-negative breast cancer

patients who were treated at the Department of Obstetrics and Gynecology of the

Johannes Gutenberg University Mainz between the years 1988 and 1998 (Schmidt

et al., 2008). All patients underwent surgery and did not receive any systemic therapy

in the adjuvant setting. Gene expression profiling of the patients’ RNA was performed

using the Affymetrix HG-U133A array, containing 22 283 probe sets, and the GeneChip

System. These probe sets are identifiers for approximately 14 500 well-characterized

human genes that can be used to explore human biology and disease processes. The

https://www.msbi.nl/dnn/People/Houwelingen.aspx
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normalization of the raw data was done using RMA from the Bioconductor package

affy. The raw .cel files are deposited at the NCBI GEO data repository with accession

number GSE11121. For covariates in the survival models, 17 834 probe sets and 8 587

GO groups are available. The mean number of genes included in these GO groups is

approximately 102 probe sets where 90% of all GO groups contain at most 146 probe

sets and the number of observed events is 47. The clinical data covers age at diagnosis,

tumor size and grade as well as the estrogen receptor status.

Probe sets can code for the same gene. We will not differentiate between probe sets

and genes in the following and we call them genes.
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3 Methods for Preclustering

In this chapter we present methods that search for correlated covariates and aggregation

procedures that summarize these covariates. Partitioning around Medoids (PAM)

is a clustering method that groups positively correlated variables according to their

correlation matrix. This approach is introduced in Section 3.1 and followed by a

permutation test for correlation in Section 3.2. This test is used for preselecting

covariates within PAM-clustering and as an alternative for clustering when only

two covariates are present. Further, we introduce simple aggregation methods for

summarizing covariate information in Section 3.3. Finally, we present the principal

component analysis (PCA) for multivariate dimension reduction in Section 3.4.

3.1 Partitioning Around Medoids Clustering

Partitioning around Medoids (PAM) (cf. Kaufman and Rousseeuw, 1995) is a clustering

algorithm related to the K-means algorithm. Both algorithms are partitional (dividing

the dataset into groups) and both attempt to minimize the squared error, the sum of

squared distances of all data points to their respective cluster centers. PAM is more

robust to noise and outliers compared to K-means because it minimizes the sum of

pairwise dissimilarities instead of the sum of squared Euclidean distances.

Let X be a data matrix with n observations and p covariates. The PAM procedure

is based on the search for K representative objects, the medoids ({m1, . . . ,mK} ⊂
{1, . . . , p}), whose sum of average dissimilarity to all objects in the cluster is minimal.

Here, the objects are the covariates that should be clustered.
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In order to find correlated subgroups, we first calculate the dissimilarity

dij = 1− Cor(xi, xj)

for all pairs (i, j) with values xi and xj (i, j = 1, . . . , p). In matrix notation, the

dissimilarity matrix D, given by

D = 1− Cor (X) ∈ Rp×p,

is generated by the data matrix X (X ∈ Rn×p). The distance between two column

vectors is calculated via their correlation coefficient: if two column vectors are highly

positive correlated, their distance is close to zero, if they are uncorrelated, their distance

is one, if they are highly negative correlated, their distance is two. The correlation

coefficient is calculated with the empirical Pearson’s correlation coefficient which is

defined for two objects x and y with n values by

Cor (x, y) =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2 ·
∑n

i=1 (yi − ȳ)2
, x̄ =

1

n

n∑
i=1

xi, ȳ =
1

n

n∑
i=1

yi.

Let C (C(i) : Np → NK) be a configuration function. The grouping of all p objects in K

homogeneous clusters is done with the function C that maps the object i (i = 1, . . . , p)

to cluster k (k ∈ 1, . . . , K) according to the smallest dissimilarity to the medoids

C(i) = argmin
1≤k≤K

dimk
. (3.1)

To evaluate a solution with given medoids and the resulting configuration of all objects,

we calculate the sum of intra-cluster-dissimilarities (often referred to as cost-function):

H(m1, . . . ,mK) =
K∑
k=1

∑
C(i)=k

dimk
. (3.2)

The PAM optimization problem is the minimization of equation (3.2) regarding to the

choice of the medoids and considering the mapping rule (3.1).
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The two following steps are carried out iteratively until convergence, starting with K

randomly selected objects as initial solution (m1, . . . ,mK):

1. Build: Select sequentially K initial clusters and assign each gene to its closest

medoid.

2. Swap: For each medoid mk and all non-medoid objects θ, swap mk and θ, then

calculate the homogeneity measure given in equation (3.2) and finally select the

configuration of medoids with the lowest cost.

Note that we have to test (K · (p−K)) swaps in each Swap step.

The number of clusters K for the PAM algorithm has to be chosen in advance. There

are several techniques that provide adequate measures or graphical representation

of how well each object lies within its cluster, e.g. the average silhouette width (cf.

Rousseeuw, 1987). To find tight clusters of highly correlated objects, De Haan et al.

(2010) suggest using the Intra Cluster Correlation. For each possible number of

clusters K, the normalized sums of all elements of the lower triangle of the correlation

matrix are computed for each cluster. Afterwards, the arithmetic mean over all clusters

is calculated. Thus, the optimal number of clusters KICC according to this method is

given by

KICC = argmax
K=1,...,n−1

 1

K

K∑
k=1

 2

nk(nk − 1)

nk∑
ik,jk=1

jk>ik

Cor (xik , xjk)


 ,

with object indices ik and jk containing nk single objects in cluster k. If the term in

the round brackets consists of only one object, the term is zero by definition. The

maximum mean KICC among the K = 2, . . . , (N − 1) possible cluster configurations

corresponds to the optimal number of clusters within the given data set. Alternative

calculations for the optimal number of clusters are e.g. provided in Hastie et al. (2009)

and in Kaufman and Rousseeuw (1995).
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3.2 Permutation Test for Correlation

A permutation test is a statistical test in which the distribution of the test statistic

under the null hypothesis is obtained by calculating all possible values of the test

statistic under rearrangements of the labels of the observed data points. Let Ψ be a

(n×n) permutation matrix that has exactly one entry one in each row and each column

and zeros elsewhere. Each such matrix represents a specific permutation of n elements

and, when used to multiply with a vector x ∈ Rn, can produce that permutation within

the vector. For each of the permuted vectors, we can calculate the test statistic and

the ranking of the observed test statistic among the permuted test statistics provides

a p-value.

In our context, we look at a group with p objects (e.g. gene expression measurements)

and investigate if object i has a positive correlation with at least one object of the

group. We can formulate the following hypotheses:

H0 : ith object has no correlation with another object

H1 : ith object has a correlation with at least one other object.

The maximum correlation C0 ∈ R between object i and all other (p− 1) objects can

be calculated with

C0 = max
j∈{1,...,p}\i

{
Cor (xi, xj)

}
, (3.3)

in which xj (j = 1, . . . , p) represents the n-dimensional vector of object j. In the case

p = 2, the maximum correlation is reduced to Cor (x1, x2).

The vector Cp ∈ RNp represents the Np maximum correlations after applying Np times

a permutations-matrix Ψ on xi:

Cp =

(
max

j∈{1,...,p}\i

{
Cor (Ψ · xi, xj)

})
1,...,Np

.

According to Buening and Trenkler (1994) we can calculate the p-value p(i) for object

i with

p(i) = 1−

(
1, 0, . . . , 0

)
· Rg

((
C0, C

>
p

)>)
Np + 1

, (3.4)
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where Rg(·) is the rank statistic. If C0 has a high rank, the ratio in (3.4) is close to one

and thus the p-value p(i) is close to zero. For p-values smaller than a given significance

level α, we have to reject the null hypothesis.

It is important to note that the number of permutations Np should be large. Common

values are in the range of 105 or greater, depending on the size of the data set.

3.3 Simple Aggregation Methods

In this section we present simple aggregation methods for summarizing information

of several covariates to one single representative covariate. There are a number of

methods for summarizing groups of covariates. Starting with a data matrix X ∈ Rp×n,

we are looking for a dimension reducing function:

f : Rp×n → Rn, f(x1, . . . , xp) = y, x1, . . . , xp, y ∈ Rn (3.5)

where the generated variable y should be a representative vector for the group of

covariates x1, . . . , xp and the loss of information should be minimized.

A simple possibility for summarizing a set of covariates is given by standard measures

of location. Component wise computation of the arithmetic mean

x̄ =
1

n

n∑
i=1

xi

and of q-quantiles

x̃q =

xdnqe, if nq 6∈ N
1
2

(
x(nq) + x(nq+1)

)
, if nq ∈ N

of the data matrix X ∈ Rp×n could be performed. The median x̃0.5 corresponds the

0.5-quantile.

Another possibility to summarize covariate information is directly provided by results of

the PAM-clustering approach: medoids of clusters are particularly suitable to represent

groups and no further aggregation has to be performed.
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3.4 Principle Component Analysis

Correlation structures within high-dimensional data sets could be interpreted as

redundant information. Principal components analysis (PCA) is a method that reduces

data dimensionality by finding a new set of covariates, smaller than the original set of

covariates, that nonetheless retains most of the sample’s information, i.e. the variation

present in the data set, given by the correlations between the original covariates. The

new covariates, called principal components (PCs), are uncorrelated, and are ordered

by the fraction of the total information each retains. As such, it is suitable for data

sets in multiple dimensions, such as large experiments in gene expression. PCA on

genes will find relevant components, or patterns, across gene expression data.

Mathematically, PCA is defined as an orthogonal linear transformation that transforms

the data to a new coordinate system such that the greatest variance by any projection

of the data comes to lie on the first coordinate (called the first principal component),

the second greatest variance on the second coordinate, and so on.

The PCA is in general computed by determining the eigenvectors and eigenvalues of

the covariance matrix. To calculate the covariance matrix from a data set given by a

(p × n) matrix X, we first center the data by subtracting the mean of each sample

vector. Considering the columns of the centered data matrix X as the sample vectors,

we can write the covariance matrix of the samples Cn as:

Cn =
1

n
XX>.

If we are interested in the covariance matrix for the n p-dimensional covariates (i.e. gene

expression measurements), we first center the data for each covariate. The covariance

matrix Cp is then given by

Cp =
1

p
X>X.

Often the scale factors 1
n
and 1

p
are included in the matrix and the covariance matrices

are simply written as XX> and X>X, respectively. The eigenvectors of the covariance

matrix are the axes of maximal variance. Since we are only interested in the PCA for

the p-dimensional covariates we present a solution for X>X in the following.
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With the help of singular value decomposition (SVD) (cf. Wall et al., 2003) the

factorization of an arbitrary real-valued (p× n) matrix X with rank r is obtained by

X = UΣV >, U ∈ Rp×n, Σ ∈ Rn×n, V ∈ Rn×n. (3.6)

Here U is a (p× n) orthogonal matrix (U>U = Idp) whose columns uk are called the

left singular vectors and V is a (p× p) orthogonal matrix (V >V = Idp) whose columns

vk are called the right singular vectors. The elements of the (n× n) matrix Σ are only

nonzero on the diagonal, and are called the singular values. The first r singular values

of Σ = diag (σ1, . . . , σn) are sorted in decreasing order σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 =

. . . = σn = 0.

The advantage of the SVD is that there are a number of algorithms for computing the

SVD. One method is to compute V and S by diagonalizing X>X:

X>X = V Σ2V >

and then to calculate U by ignoring the (r + 1), . . . , n columns of V with σk = 0

U = XV Σ−1.

The SVD and PCA are closely related. As mentioned before, the covariance matrix

for X is X>X. With the help of the SVD, we can write

X>X = (UΣV >)(UΣV >)> = UΣV >V ΣU> = UΣ2U>

using the fact that V is orthogonal, thus V > = V −1. Further, U can be calculated

as the eigenvectors of X>X. The diagonal of Σ contains the square roots of the

eigenvalues of the covariance matrix and the columns of U form the eigenvectors.
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An important result of the SVD of a matrix X is that

X(l) =
l∑

k=1

ukσkv
>
k

is the closest rank l matrix to X (closest means that X(l) minimizes the sum of squares

of the differences
∑

ij

(
xij − x(l)ij

)2
of the elements of X and X(l)).

For dimension reduction, we determine in advance the number of covariates p0 ≤ p

which should be selected. In most cases the number of selected PCs is due to the

proportion of variance accounted, to which the singular values are proportional. Timm

(2002) points out that the explained cumulated proportion of the variance in the data

α for the first p0 principal components is

α =

∑p0
j=1 σ

2
j∑p

j=1 σ
2
j

.

If we only consider the first principle component of the data matrix X the aggregated

matrix X(l) is reduced to a single vector that represents all p covariates of the observed

data matrix X.
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4 Methods in Survival Analysis

Survival analysis involves the modeling of time to event data where the response is

often referred to as failure time, survival time, or event time. We focus on applying

the techniques to biological and medical applications, i.e. the death or progression

of cancer patients is the event of interest. A common feature in these data is that

censoring is present when we have some information about an individual’s event time,

but we do not know the exact event time. For the analysis methods we assume that

the censoring mechanism is independent of the survival mechanism.

In this thesis, we will focus on right-censoring, where all that is known is that the

individual is still event-free at a given time. There are a lot of reasons why right-

censoring may occur. A typical censoring circumstance is that an individual does not

experience the event before the study ends, an individual is lost to follow-up during

the study period or an individual withdraws from the study. Censoring rates of more

than 50% are not unusual in cancer data sets and a main challenge of survival analysis

is the integration of the censoring information in the statistical methodology instead

of deleting this data.

In this chapter, we introduce the basis functions, the survival function, and the hazard

rate, for modeling survival data in Section 4.1. Basic estimates of the survival function

and the hazard rate and the corresponding standard errors are discussed in Section 4.2

and Section 4.3. In Section 4.4, we present the log-rank test for detecting differences in

survival in a two sample setting. Including covariate information (clinical and genomic

variables) of the individuals leads to more detailed survival models. We consider Cox’s

proportional hazards model (Cox model), introduced by Cox (1972), in Section 4.5

with a detailed description in the high-dimensional setting in Section 4.6, including a

model selection and evaluation procedure. Since most methods for dimension reduction
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or shrinkage require the selection of a tuning parameter that determines the amount of

shrinkage, we describe how to choose the optimal tuning parameter for the presented

methods.

4.1 Introduction to Survival Analysis

Let T be a positive random variable which represents the time from a well-defined

starting point t = 0 to an event of interest with density f(t) and corresponding

distribution function F (t). We define the survival function (the probability of being

event-free up to time t) by

S (t) = P (T > t) .

According to the relationship to the distribution function F (t) = 1−S(t), it is easy to

see that the survival function S (t) is right-continuous and monotonically decreasing

with limits S(t) = 0 for t→∞ and S(t) = 1 for t→ 0. In Section 4.2, we introduce

an estimator for the survival function.

The hazard rate (function) λ(t), also called risk function or conditional failure rate, is

the chance that an individual experiences an event in the next instant time, conditional

on survival until time t:

λ(t) = lim
h↓0

P (t ≤ T < t+ h | T > t)

h
, λ(t) ≥ 0 ∀t ∈ [0,∞].

If T is a continuous random variable, the relationship between the survival function

and the hazard rate is given by

λ(t) = lim
h↓0

P (t ≤ T < t+ h)

h

1

P (T > t)

=
f(t)

S(t)
=

∂
∂t
F (t)

S(t)
=
− ∂
∂t
S(t)

S(t)
= − ∂

∂t
ln (S(t)) .

A related quantitiy is the cumulative hazard function Λ(t), defined by

Λ(t) =

∫ t

0

λ(u) du =

∫ t

0

f(u)

S(u)
du =

∫ t

0

δ
δu
F (u)

S(u)
du = −

∫ t

0

δ
δu
S(u)

S(u)
du = − lnS(t).
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A well-established estimator for the cumulative hazard function is the Nelson-Aalen

estimator that is introduced in Section 4.3.

4.2 Kaplan-Meier Estimator

The standard nonparametric estimator for the survival function S(t) introduced by

Kaplan and Meier (1958) is called Kaplan-Meier estimator or Product-Limit estimator.

To allow for possible ties in the data, we considerD distinct event times ti (i = 1, . . . , D)

with ti < ti+1 with di events at time ti. Note that censoring is not an event. Let Yi be

the number of individuals who are at risk at time ti, e.g. the number of individuals

who are alive at time ti or experienced the event of interest at ti. The Kaplan-Meier

estimator Ŝ (t) is defined (for all values of t in the range where there is data) by:

Ŝ (t) =

1, t < t1∏
ti≤t

(
1− di

Yi

)
, t ≥ t1.

According to Klein and Moeschberger (2003, Chapter 4.2) Ŝ(t) is a consistent estimator

of the survival function S(t). There are analogous relations between the estimates

as between the survival function and the distribution function. The Kaplan-Meier

estimator is a monotone decreasing step function with jumps at the observed event

times and is well defined for all time points less than the largest observation. If the

largest time point is an event, the survival curve is zero beyond this point. If the

largest point is censored, the value Ŝ(t) beyond this point is undetermined. There is

no information when the last survivor would have died if the survivor had not been

censored.

The standard error of the Kaplan-Meier estimator Ŝ(t) is estimated by Greenwood’s

formula (see Klein and Moeschberger, 2003, Chapter 4.2):

SE
(
Ŝ(t)

)
= Ŝ(t) ·

√∑
ti<t

di
Yi(Yi − di)

.
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The standard error is especially required for the calculation of pointwise (1− α) confi-

dence intervals, given by

[
Ŝ(t)± u1−α/2 SE

(
Ŝ(t)

)]
.

Here uα is the α-quantile of a standard normal distribution N (0, 1).

For testing differences in survival of two or more groups, the log-rank test is introduced

in Section 4.4.

4.3 Nelson-Aalen Estimator

The Kaplan-Meier estimator can also be used to estimate the cumulative hazard func-

tion Λ(t) = − lnS(t); the estimation is obtained by Λ̂(t) = − ln Ŝ(t). An alternative

estimator of the cumulative hazard rate Λ(t) was suggested by Nelson (1972) and Aalen

(1978). With the notation of Section 4.2 and the assumption that all time points are

distinct, the Nelson-Aalen estimator of the cumulative hazard rate Λ(t) is given by

Λ̂(t) =
∑
ti≤t

λ̂(ti) =
∑
ti≤t

di
Yi
.

According to the connection between the survival function S(t) and the cumulative

hazard rate Λ(t),

Ŝ(t) = exp
(
−Λ̂(t)

)
= exp

(
−
∑
ti≤t

di
Yi

)
is an alternative estimator for the survival function.
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4.4 Log-rank Test

In this section, we focus on hypothesis tests that are based on comparing the Nelson-

Aalen estimates for two or more groups. In the survival context the most frequently

used test is the log-rank test that compares the differences in hazard rates over time.

According to Klein and Moeschberger (2003, Chapter 7.3) we test the following set of

hypotheses:

H0 : λ1(t) = λ2(t) = . . . = λK(t), ∀t ≤ τ, vs.

H1 : ∃i, j ∈ 1, . . . , K, ∃t ≤ τ : λi(t) 6= λj(t).

Here τ is the largest time at which all groups have at least one individual at risk. The

test statistic is now constructed with the Nelson-Aalen estimator (see Section 4.3).

We consider distinct event times of the pooled population with the notation from

Section 4.2. At time ti we observe dij events in the jth population out of Yij individuals

at risk. The test statistic is based on a weighted comparison of the estimated hazard

rate of the jth population and the estimated pooled hazard rate. Let Wj(ti) be a

positive weight function with the property Wj(ti) = 0 whenever Yij = 0. The general

test for the jth group is based on the statistics

Zj(τ) =
D∑
i=1

Wj(ti)

[
dij
Yij
− di
Yi

]
, di =

K∑
j=1

dij, Yi =
K∑
j=1

Yij, j ∈ 1, . . . , K.

By the specific choice of the weight function the influence of early and late observations

can be controlled. The log-rank test is defined by Wj(ti) = YijW (ti) with W (ti) ≡ 1.

Thus, the rewritten test statistics

Zj(τ) =
D∑
i=1

W (ti)

[
dij − Yij

di
Yi

]
, j ∈ 1, . . . , K
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show that all event times have equal weights. The entries σ̂jg of the covariance matrix Σ̂

for the log-rank test are estimated by

σ̂2
jj := Var (Zj(τ)) =

D∑
i=1

Yij
Yi

(
1− Yij

Yi

)(
Yi − di
Yi − 1

)
di, j = 1, . . . , K, and

σ̂2
jg := Cov (Zj(τ), Zg(τ)) =

D∑
i=1

Yij
Yi

Yig
Yi

(
Yi − di
Yi − 1

)
di, j, g = 1, . . . , K, j 6= g.

The test statistic is given by

χ2
LR = (Zi(τ), . . . , ZK−1(τ)) Σ̂−1 (Zi(τ), . . . , ZK−1(τ))> .

If the null hypothesis is true, this statistic follows a χ2-distribution with (K−1)-degrees

of freedom. The null hypothesis is rejected at a given α level if χ2
LR is larger than the

(1− α)-quantile of this distribution.

4.5 Cox Proportional Hazard Model

In addition to the event times there are often covariates observed that might have

impact on survival. In order to cope with right-censored survival data we use the Cox

model, also referred to as the proportional hazards regression model (see Cox, 1972).

First, we introduce the notation. As before, let T denote the time to event with

density f(t), distribution function F (t) and corresponding survival function S(t). We

also consider the situation of possibly right-censored time to event data. Let C be the

positive random variable that represents the censoring times. A common assumption

in survival context (see, e.g., Gerds and Schumacher, 2006) is that T and C are

independent. We assume that C is distributed according to SC(t) = P (C > t) =

1− FC(t).

In the usual setup of survival data, we observe for each of the i = 1, . . . , n individuals

the triple (T̃i, δi, Zi), where T̃i = min(Ti, Ci) is the minimum of the event times Ti and

the censoring times Ci. In addition, the censoring information is represented by the

(non-censoring-)indicator δi = I{Ti≤Ci}. δi is equal to 1 if T̃i is a true event time and
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equal to 0 if it is right-censored. For each individual i, the covariate information is

given by a p-dimensional vector of covariates Zi = (Zi1, . . . , Zip)
>.

Cox (1972) suggested that the risk of an event at time t for an individual i with given

covariate vector Zi = (Zi1, . . . , Zip)
> is modeled as

λ(t | Z = Zi) = λ0(t) exp (β>Zi), (4.1)

where λ0(·) is an arbitrary baseline hazard function and β = (β1, . . . , βp)
> a vector of

regression coefficients. The value of β>Zi is called prognostic index (PI) or risk score

of individual i. In other words: PI is the sum of the covariate values of a particular

individual, weighted by the corresponding (estimated) regression coefficients.

As mentioned before, the Cox model is often called a proportional hazards model and

assumes that for two covariate values Z1 and Z2 the ratio of their hazard rates is

constant over time:

λ(t | Z1)

λ(t | Z2)
=
λ0(t) exp

(
β>Z1

)
λ0(t) exp (β>Z2)

= exp
(
β>(Z1 − Z2)

)
= const.

In the classical setting with n > p, the regression coefficients are estimated by Maximum

Likelihood Estimation (MLE). We suppose that there are no ties between the ordered

event times t1 < t2 < . . . < tD. The likelihood is only calculated for the event times.

The risk set R(ti) at time ti (that also includes the censoring times) is defined by

R(ti) = {j : tj ≥ ti} ,

as the set of all individuals who have not yet failed nor been censored. The partial

likelihood can be written as

L(β) =

(
D∏
i=1

Li

)
=

D∏
i=1

exp (
∑p

k=1 βkZik)∑
j∈R(ti)

exp (
∑p

k=1 βkZjk)
. (4.2)

Here, the numerator of the likelihood depends only on information from individuals

having an event, whereas the denominator consists of information of all individuals

having not yet experienced the event or who may be censored later. Note that Cox’s
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partial likelihood estimation method ignores the actual event times; it takes the

ordering of events into account, but not their explicit values. For this reason the

likelihood is referred to be partial.

Maximizing the partial likelihood is equivalent to maximizing the log partial likelihood

LL(β) = ln

(
D∏
i=1

Li

)
=

D∑
i=1

ln (Li)

=
D∑
i=1

p∑
k=1

βkZik −
D∑
i=1

ln

 ∑
j∈R(ti)

exp

(
p∑

k=1

βkZjk

) , (4.3)

which corresponds to solving the following system of equations: Uk(β) := ∂
∂βk

LL(β) = 0

for all k = 1, . . . , p. The vector U(β) with components Uk is called efficient score

vector.

The estimation of the baseline hazard rate λ0(t) is performed after the estimation

of the regression coefficients β1, . . . , βp with the Breslow estimator (see Klein and

Moeschberger, 2003, Chapter 8.8)

λ̂0(t) =
∑
ti≤t

 di∑
j∈R(ti)

exp
(
β̂>Zj

)
 .

There are several suggestions for constructing the partial likelihood when ties among

the event times are present. A widely used adaption of the likelihood was suggested

by Efron (1977):

LE(β) =
D∏
i=1

exp
(
β>
(∑

j∈Di
Zj

))
∏di

j=1

[∑
k∈R(ti)

exp (β>Zk)− j−1
di

∑
k∈Di

exp (β>Zk)
] .

Here di is the number of events at time ti and Di the set of individuals who experience

an event at time ti. Even though the partial likelihood (equation 4.2) and its adapted

version by Efron show similar results in practice, we utilize Efron’s version for our

calculations.

Maximizing Cox’s partial likelihood does not work for p � n and some dimension
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reduction or regularization methods must be used. The lasso- and ridge-regression are

possibilities to jointly optimize over the parameters (see Section 4.6.1).

4.5.1 Hypothesis Testing

There are three main tests for hypotheses for the regression coefficients β = (β1, . . . , βp)
>.

Let β̂ = (β̂1, . . . , β̂p)
> denote the maximum likelihood estimate of β. All three sta-

tistical tests have as null hypothesis that the set of regression parameters β is equal

to some particular value β0 (H0 : β = β0 vs. H1 : β 6= β0). For testing whether the

regression coefficients have an effect of individuals’ risk to die or not, we choose β0 = 0.

We start with presenting the (efficient) score test, followed by the Wald test and

the likelihood-ratio test. Note that the Wald test and the likelihood-ratio test are

asymptotically equivalent.

4.5.2 Score Test

The score test is the most powerful test when the true value of β is close to β0.

The main advantage of the score test is that it does not require an estimate of the

information under the alternative hypothesis or unconstrained maximum likelihood.

This makes testing feasible when the unconstrained maximum likelihood estimate is a

boundary point in the parameter space. Let U(β) = (U1(β), . . . , Up(β)) be the efficient

score vector defined in Section 4.5 and I(β) the (p× p) information matrix evaluated

at β:

I(β) =

[
− ∂2

∂βj∂βk
LL(β)

]
p×p

, j, k = 1, . . . , p.

Here, LL(β) is the log partial likelihood (see Section 4.5) evaluated at β. According

to Klein and Moeschberger (2003, Chapter 8.3), U(β) is asymptotically p-variate

normal with mean vector 0 and covariance matrix I−1(β) when H0 is true. The score

test for H0 : β = β0 is given by

χ2
SC = U(β0)

>I−1(β0)U(β0)
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having a χ2-distribution with p degrees of freedom under H0. We reject the null

hypothesis at a significance level α if χ2
SC > χ2

p,1−α. Here, χ2
p,1−α is the (1−α)-quantile

of the χ2-distribution with p degrees of freedom.

4.5.3 Wald Test

The Wald test (first suggested by Wald, 1943) compares the maximum likelihood

estimate β̂ of the parameter vector of interest β with the proposed value β0, with

the assumption that the difference between the two will be approximately normal.

Typically the square of the difference weighted with the covariance matrix I−1(β) is

compared to a chi-squared distribution. With the notation from Section 4.5.2, the

Wald test for the global hypothesis H0 : β = β0 is defined by

χ2
W = (β̂ − β0)>I−1(β̂)(β̂ − β0)

and has a χ2-distribution with p degrees of freedom if H0 is true.

4.5.4 Likelihood-ratio Test

A likelihood ratio test is used to compare the fit of two models: the null model using β0
and the alternative model using the parameter estimate β̂. The test is based on the

likelihood ratio, which expresses how many times more likely the data are under one

model than under the other. This likelihood ratio, or equivalently its logarithm, can

then be used to compute a p-value to decide whether to reject the null model in favor

of the alternative model. Both competing models, the null model and the alternative

model, are fitted separately to the data and the log-likelihood is recorded. The test

statistic is twice the difference of these log-likelihoods:

χ2
LR = 2

(
LL(β̂)− LL(β0)

)
which has a χ2-distribution with p degrees of freedom under H0.
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4.5.5 Local Test

In cases of variable selection, we are also interested in testing a hypothesis for single

components β̂i of β̂. These tests are often called local tests and are presented in detail

in Klein and Moeschberger (2003, Chapter 8.5). Exemplary, we present the Wald

local test that we utilize e.g. for forward selection described in Section 4.6.3. In the

univariate case, the Wald test statistic for the two-sided test with β0 ∈ R

H0 : β̂i = β0 vs. H1 : β̂i 6= β0

is given by

W =
β̂i − β0
SE
(
β̂i

) ,
which is compared to a normal distribution. The standard error SE

(
β̂i

)
is derived by

the corresponding value of the information matrix of the maximum likelihood estimate,

i.e. square root of the ith diagonal element of I−1(β). Typically the square W is

compared to a chi-squared distribution.
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4.6 Cox Proportional Hazards Model in

High-Dimensional Settings

Maximizing Cox’s log partial likelihood LL (see equation (4.3)) does not work if the

number of covariates is larger than the number of individuals (p� n), since then a

unique maximum for the optimization problem of LL does not exist. Thus, dimension

reduction or regularization methods are required. Lasso- and ridge-regression are

possibilities to optimize over the parameters.

In the following, we assume that the data consists of two different categories of

covariates

(I) p1 clinical covariates Zcl = (Zcl,1, ..., Zcl,p1)
>: e.g. tumor size, tumor grade, age

(II) p2 genomic covariates Zg = (Zg,1, ..., Zg,p2)
>: gene expression values of single

genes or combined gene expression values for (preclustered) gene groups.

If a differentiation between the clinical and the genomic covariates is not necessary, we

use the standard notation Z1, ..., Zp.

4.6.1 Penalized Estimation of the Likelihood

By introducing a tuning/complexity parameter λ ∈ R+, we have the opportunity to

shrink large values of the estimated regression coefficients (β̂1, . . . , βp) towards zero.

With the help of a λ-depending function fλ : R× Rp → R+, we reformulate the initial

maximization problem β̂ = argmaxβ̂ LL(β̂) as

β̂λ = argmax
β̂

(
LL(β̂)− fλ(β̂)

)
.

We require properties for fλ: the larger the value of λ, the greater should be the

penalty for large values of β̂. In addition, a value λ = 0 should be equivalent to the

initial optimization problem without a penalty.
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By choosing

fλ(β) = λ

p∑
k=1

β2
k → β̂λ = argmax

β̂

(
LL(β̂)− λ

p∑
k=1

β̂2
k

)
, (4.4)

the maximization corresponds to ridge-regression (L2 regression) introduced by Hoerl

and Kennard (1970). Ridge-regression shrinks the regression coefficients by imposing

a penalty on their squared values. A result of ridge-regression consists of many small

but non-zero regression coefficients.

The lasso- or L1-regression (Tibshirani, 1996) shrinks the regression coefficients towards

zero by penalizing the absolute values instead of their squares. The maximization

problem of penalized log partial likelihood thus becomes

fλ(β) = λ

p∑
k=1

|βk| → β̂λ = argmax
β̂

(
LL(β̂)− λ

p∑
k=1

∣∣∣β̂k∣∣∣) . (4.5)

Penalizing with the absolute values has the effect that many regression coefficients are

shrunk exactly to zero. Thus, the lasso is a variable selection method.

In applications, where clinical and genomic covariates are integrated in regression

models, we perform the penalization only on the high-dimensional genomic covariates,

the clinical covariates are handled as unpenalized mandatory covariates. Let Zcl be

the vector of clinical, Zg be the vector of genomic covariates (see Section 4.6) and

β̂cl = (β̂cl,1, . . . , β̂cl,p1) and β̂g = (β̂g,1, . . . , β̂g,p2) the corresponding parameter estimates

of βcl and βg. The penalized log partial likelihood thus becomes

LLridge =

(
LL(β̂cl, β̂g)− λ

p2∑
k=1

β̂2
g,k

)
(4.6)

for ridge-regression and

LLlasso =

(
LL(β̂cl, β̂g)− λ

p2∑
k=1

∣∣∣β̂g,k∣∣∣) (4.7)

for lasso-regression. The regression coefficients of the clinical covariates are not

penalized in any way. In both methods the tuning parameter λ controls the amount of

shrinkage and is obtained by cross-validation described in the next section.
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4.6.2 Choosing the Tuning Parameter

The model complexity of the prediction methods depends on the tuning parameter λ.

We use K-fold cross-validation as proposed by Verweij and van Houwelingen (1993) for

estimating λ. In K-fold cross-validation, the original data set is randomly partitioned

into k subsets that are called folds. For easy reference, we utilize LLλ ∈ {LLlasso,LLridge}
as a synomym for a penalized log partial likelihood. The K-fold cross-validated log

partial likelihood (CVPL) is given by

CVPL (λ) =
K∑
k=1

[
LLλ

(
β̂
(−k)
cl , β̂(−k)

g (λ)
)
− LLλ

(−k)
(
β̂
(−k)
cl , β̂(−k)

g (λ)
)]
. (4.8)

Here, LLλ(βcl, βg(λ)) denotes the penalized log partial likelihood given in Section 4.6.1

and LL
(−k)
λ (βcl, βg(λ)) the log partial likelihood when the kth fold (k = 1, ..., K) is left

out. The difference of the two terms compared in the formula is that in the right term

the likelihood is evaluated without the kth fold, and the left term is evaluated with all

individuals. In both cases the parameters βcl and βg are estimated without the kth

fold. The estimates of βcl and βg when the kth fold is left out are denoted by β̂(−k)
cl and

β̂
(−k)
g (λ). The optimal value of λ is chosen to maximize the sum of the contributions

of each fold to the log partial likelihood. Maximizing the cross-validated log partial

likelihood with respect to λ yields the optimal penalty/tuning parameter λopt.

In detail, both terms within the brackets in equation (4.8) are negative with a

greater absolute value of the first summand. Thus, the K differences are all neg-

ative and consequently the CVPL as well. By adding the kth fold in the first summand

LLλ

(
β̂
(−k)
cl , β̂

(−k)
g (λ)

)
, the penalized log partial likelihood with complete data should

result in a large absolute value. A large value corresponds to a good prediction of the

kth fold by the other (K − 1) folds. Hence, we can rewrite the maximization problem

as

λopt = argmax
λ∈R+

CVPL(λ),

which can be interpreted as optimization of the predictive quality.

The maximization problem can be solved with the help of a Newton-Raphson algorithm

that alternates between adjusting the parameters (βcl, βg(λ)) and λ and optimizing the
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CVPL according to the other parameter. Details are described in the work of Verweij

and van Houwelingen (1994).

In the case K = n, we perform leave-one-out cross-validation and the value of the

CVPL is reproducible. If the number of folds K is smaller than the number of

individuals n, the individuals are subdivided into groups (folds) at random and the

value of the CVPL is not deterministic.

4.6.3 Variable Selection with CVPL

In addition to the presented L2-regression in Section 4.6.1 (results in many small

but non-zero regression coefficients) and the variable selecting L1-regression (many

regression coefficients are shrunk exactly to zero), we introduce two standard variable

selection methods: univariate and forward selection. Both methods also utilize the cross-

validated log partial likelihood for model selection. Covariates are added sequentially

to the Cox model and the number of covariates is equivalent to the optimal tuning

parameter λopt.

The following descriptions of univariate and forward selection refer to the situation

where clinical and genomic information is provided for all individuals and the clinical

information is mandatory included in the models. If clinical information should not be

modeled, we just start with the empty model.

Univariate Selection Starting with a clinical Cox model, we test the effect each

genomic covariate has on survival. For each genomic covariate Zg,j, j = 1, . . . , p2, we

fit a Cox model

h (t | Zcl, Zg,j) = h0(t) exp
(
β>clZcl + β>g,jZg,j

)
.

We then test the null hypothesis βg,j = 0 versus the alternative βg,j 6= 0 using the

Wald local test (see Section 4.5.5). After testing the genetic covariates one at a time,

we arrange them according to increasing p-values and construct the multivariate Cox

regression model 4.1 including the λopt top ranked genomic covariates in addition to the
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p1 clinical covariates. The tuning parameter λopt thus directly represents the number

of genetic covariates in the final model, and it is determined by cross-validation.

Forward Selection We start with the clinical model described above. We iteratively

add single genomic covariates to the model by selecting in every step the covariate

that yields the most significant model together with the covariates chosen in the steps

before. The Likelihood ratio test (see Section 4.5.4) is used for hypothesis testing. The

optimal tuning parameter λopt is determined by cross-validation.

4.6.4 Alternative Approach: CoxBoost

An alternative method to the lasso- and ridge-regression was developed by Binder and

Schumacher (2008b). In particluar, they propose a boosting approach (CoxBoost) to

fit a Cox proportional hazards model by componentwise likelihood based boosting.

It is especially suited for models with a large number of predictors and allows for

the integration of mandatory clinical covariates. The aim of the CoxBoost approach

is to estimate the parameter vector for the covariates in the Cox model. Typical

gradient boosting approaches either use all covariates for the fitting of the gradient

in each step, e.g. based on regression trees, or, in component-wise boosting, update

only one element of the estimate of the parameter vector, corresponding to only one

covariate. Binder and Schumacher (2008b) point out that the results for componentwise

CoxBoost are similar to those from lasso-like approaches. Let l = 1, . . . ,M be the

number of boosting steps and β̂(l−1) the estimate of the parameter vector β after (l−1)

steps of the algorithm. For each of the k = 1, . . . , p covariates a separate update of

the corresponding parameter is evaluated. The covariate that improves the overall fit

the most will then be selected for the update. The possible updates of β̂(l−1) in the lth

step after updating covariate k are obtained by the penalized log partial likelihood

(c.f. Equations (4.2) and (4.4))

LLλ(γk(l)) =
D∑
i=1

β>(l−1)Zi + γk(l)Zik−
D∑
i=1

ln

 ∑
j∈R(ti)

exp
(
β>(l−1)Zj + γk(l)Zik

)−λγ2k(l),
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with respect to the parameter γk(l). Note, that Zik is the covariate for patient i and

covariate k. The tuning parameter λ and the parameter estimates γ̂k(l) (estimates for

the updates of β̂k(l−1)) are chosen by the cross-validated log partial likelihood (see

Section 4.6.3).

The componentwise CoxBoost algorithm for a fixed tuning parameter λ is the follow-

ing (Binder and Schumacher, 2008b):

(1) Initialize β̂(0) = (0, . . . , 0)>.

(2) Repeat for l = 1, . . . ,M :

(i) Calculate potential updates γ̂k(l) for all covariates k = 1, . . . , p via penalized

log partial likelihood

(ii) Determine the best update k∗ that maximizes the penalized log partial

likelihood

(iii) Calculate the updated parameter vector β̂(l) = (β̂1(l), . . . , β̂p(l))
> via

β̂k(l) =

β̂k(l−1) + γ̂k(l), if k = k∗

β̂k(l−1), if k 6= k∗.

Note that the step size for the updates in part (2)(iii) of the algorithm is 1. The

modification of the step size is controlled by the tuning parameter λ. Binder and

Schumacher (2008b) point out that the resulting model is sparse.

When including mandatory covariates in the componentwise CoxBoost algorithm, Binder

and Schumacher (2008b) suggest to update the corresponding parameters before each

step of componentwise CoxBoost. In other words, mandatory parameters are updated

separately. The CoxBoost algorithm has two tuning parameters, the penalty parameter

λ and the number of boosting steps M . To avoid overfitting, Binder and Schumacher

(2008b) suggest to choose λ such that the number of boosting steps M is larger than

50. The algorithm is implemented in the R-package CoxBoost (Binder, 2011).
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4.7 Evaluation of Prediction Performance

In this section, we describe how we evaluate the prediction performance of the estimated

models. We make use of three different model evaluation criteria, two based on the

prognostic index of the individuals and the third one based on a quadratic loss function.

The basic idea is to split the data into a training set for model fitting and a test set

for model evaluation. It is important to note that we have to consider several splits of

the data into training and test sets due to the extreme dependence of the results on

such a split (cf. Bøvelstad et al., 2007; Ein-Dor et al., 2006).

4.7.1 Evaluation Procedure

In order to obtain a fair comparison of the prediction methods, we divide the data

S ∈ N times at random in a training set of dr · ne, r ∈ (0, 1) individuals used for

estimation and a test set of b(1− r) · nc individuals used for evaluation, where n is the

number of all individuals in the study. After computing the optimal tuning parameter

λ̂train by K-fold cross-validation using the training data, we estimate the regression

coefficients β̂train on the whole training data set. For each of the S splits into training

data and test data, we calculate on the test set the three evaluation criteria explained

in the following Sections 4.7.2, 4.7.3 and 4.7.4.

4.7.2 Log-rank Test for two Prognostic Groups

For each individual i with covariate information Zi = (Zi1, ..., Zip)
> in the test set, we

calculate its individual prognostic index (also called risk score)

RSi = β̂>trainZi.

The individuals in the test set are assigned to two subgroups based on their prognosis,

into one with good and one with bad prognosis. If the prognostic index β̂>trainZi of

individual i is higher, the risk of the event of interest is expected to be increased

and thus the survival time is expected to be shorter. In order to obtain equally sized
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subgroups, individual i in the test set is assigned to the high-risk group if its prognostic

index is above the median of all prognostic indices calculated on the test set. We apply

a log-rank test (see Section 4.4) on the two prognostic groups and use the p-value as

an evaluation criterion for the usefulness of the grouping.

Bøvelstad et al. (2007) point out that a disadvantage of this criterion is that it does not

consider the ranking of the patients within the groups and it may not be biologically

meaningful.

4.7.3 Prognostic Index

The prognostic index β̂>trainZi for individual i in the test set is used as a single

continuous covariate in a Cox model. For α ∈ R we fit the Cox model λi(t | Z =

Zi) = λ0(t) exp (αRSi). Using the likelihood ratio test (see Section 4.5.4), we test the

null hypothesis α = 0 versus α 6= 0 and assess the prediction performance with the

obtained p-value. A small p-value indicates the calculated prognostic indices have an

effect on survival.

4.7.4 Brier-Score

The Brier-Score is a proper score function that measures the accuracy of a set of

probability assessments. It was proposed by Brier (1950) and measures the average

squared deviation between predicted probabilities for a set of events and their outcomes.

Originally, it was mostly used for weather forecasts in the setting of binary events.

Graf et al. (1999) proposed a framework where the goodness of a predicted survival

function can also be assessed based on the (integrated) Brier-Score. The Brier-Score

BS(t) is defined as a function of time t > 0 by

BS(t) =
1

n

n∑
i=1

[
(0− Ŝ(t|Zi))21(T̃i ≤ t)δi

ŜC(T̃i)
+

(1− Ŝ(t|Zi))21(T̃i > t)

ŜC(t)

]
, (4.9)

where ŜC(·) denotes the Kaplan-Meier estimate of the censoring distribution which is

only based on the censored observations (cf. Section 4.2). The values of the Brier-Score
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range between 0 and 1. Small Brier-Scores at time t reflect good predictions. For a

fixed time point t∗, the contributions to the Brier-Score can be splitted into the three

following categories:

(1) T̃i ≤ t∗ and δi = 1,

(2) T̃i > t∗,

(3) T̃i ≤ t∗ and δi = 0.

The observations in the first category are uncensored observations that experience

their events before time t∗. Thus the event status at time t∗ is equal to 1(Ti > t∗) = 0

and the contribution to the Brier-Score is (0− Ŝ(t|Zi))2. In the second category, we

observe individuals that are event-free before and at time t∗, their event status is equal

to 1 at time t∗ and thus the contribution to the Brier-Score is (1 − Ŝ(t|Zi))2. All

observations in the third category are censored and occur before t∗. Thus, the event

status at t∗ is unknown and the contribution to the Brier-Score is not defined and set

to 0.

In order to compensate the loss of information due to censoring, the individual

contributions have to be reweighted in a similar way as in the calculation of the

Kaplan-Meier estimator (cf. Kaplan and Meier, 1958). The division by ŜC(·) in both

terms of (4.9) displays that weighting scheme. Note that the Brier-Score is only defined

for t with SC(t) > 0. A detailed derivation of the Brier-Score is described in Graf et al.

(1999).

Note that the Brier-Score is equal to 0.25 when the trivial prediction Ŝ(t) = 0.5 is

made for all individuals.

The Brier-Score as defined in (4.9) is calculated for all t > 0. In order to obtain an

averaged value, we make use of the integrated Brier-Score (IBS), given by

IBS(t) =
1

max(ti)

∫ max(ti)

0

BS(t) dt, (4.10)

as a score to assess the goodness of the predicted survival functions of all observations

at every time t between 0 and max(ti), i = 1, ..., n.
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Note that the IBS is also appropriate for prediction methods that do not involve Cox

regression models: it is more general than the R2 and the p-value criteria (cf. Graf

et al., 1999) and has thus become a standard evaluation measure for survival prediction

methods (Binder and Schumacher, 2008a; Gerds and Schumacher, 2006, 2007; van

Wieringen et al., 2009).

For assessing the prediction performance in terms of the Brier-Score, it is a common

agreement in the literature to present the values of the IBS as well as the run of

the Brier-Score curve over time. These curves are also known as prediction error

curves (see, e.g., Binder and Schumacher, 2008a; Gerds and Schumacher, 2007).

4.7.5 Example for Calculating the Brier-Score

The following artificial example illustrates the calculation of the Brier-Score in the

classical survival setting with censored observations. For seven individuals, we observe

the following minimum values of the event and censoring times T̃i = min(Ti, Ci) for

i = 1, . . . , 7:

2 3 + 5 + 6 7 + 9 10+,

where + indicates a censored observation.

For easy reference, we estimate the survival function for the event times and the

censoring times with the Kaplan-Meier estimate by ignoring the covariate information

(cf. Section 4.2 and Graf et al. (1999)). In Figure 4.1 we calculate the basic survival

measures and provide a graphical presentation of the Kaplan-Meier estimator Ŝ(t) on

the right panel. To assess the quality of the Kaplan-Meier estimator at time t > 0, we

calculate the Brier-Scores at each time point by measuring the average discrepancy

between the true event status and the estimated predicted value. In order to get an

impression of how the calculation of the Brier-Score for each time t is done, in Table 4.1

we present exemplarily the calculation of the Brier-Score at time t∗ = 6. Columns

6 and 9 are set in green and red color to discriminate between events that already

occurred before t∗ and that may occur later. The corresponding values are calculated
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ti Yi di Ŝ(t)

2 7 1 6
7

3 6 0 6
7

5 5 0 6
7

6 4 1 6
7
· 3
4

= 9
14

7 3 0 9
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9 2 1 9
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= 9
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Figure 4.1: Table of basic survival measures: event times ti, number of individuals at
risk Yi and number of events di at time ti (left panel), and the Kaplan-Meier
estimator with its run of the curve (right panel). A + indicates a censored
observation.

with the following formula (see equation 4.9):

BS(t) =
1

n

n∑
i=1

[
(0− Ŝ(t|Zi))21(T̃i ≤ t)δi

ŜC(T̃i)
+

(1− Ŝ(t|Zi))21(T̃i > t)

ŜC(t)

]
.

According to the splitting in the three different categories (see Section 4.7.4), we

only need to calculate one summand of the Brier-Score because the other one is

zero. In the case where the minimum of event and censoring time T̃i is less or

equal than the time point t∗, the first, green marked summand is calculated for

individual i. If T̃i is greater than t∗, the second, red marked summand is calculated

for individual i. For all individuals with known event status at t∗, we are able to

calculate the squared differences of the estimated survival probability and the event

status. The corresponding values are shown in column six of Table 4.1. The individuals

number 2 and 3 are censored before t∗, thus their event status is unknown at t∗ and

their actual weight according to the estimated censoring distribution ŜC is uniformly

distributed across all successive observations. The contributions of all seven individuals

are summed up and divided by the number of individuals. The resulting value of the

Brier-Score at t∗ is BS(t∗) = BS(6) ≈ 0.2296 and thus less than 0.25, corresponding
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Table 4.1: Calculation of the Brier-Score BS(6) at time point t∗ = 6.

i T̃i δi Ŝ(T̃i) ŜC(T̃i)
(
1(T̃i > t)− Ŝ(t)

)2
weights ith summand

1 2 1 6
7

1 (0− 9
14

)2 (0− 9
14

)2 · 1
1

2 3+ 0 6
7

5
6

- � 0

3 5+ 0 6
7

2
3

- ↓ � 0

4 6 1 9
14

2
3

(0− 9
14

)2 +1
4

+1
4

(0− 9
14

)2 · 1
2/3

5 7+ 0 9
14

4
9

(1− 9
14

)2 +1
4

+1
4

(1− 9
14

)2 · 1
2/3

6 9 1 9
28

4
9

(1− 9
14

)2 +1
4

+1
4

(1− 9
14

)2 · 1
2/3

7 10+ 0 9
28

0 (1− 9
14

)2 +1
4

+1
4

(1− 9
14

)2 · 1
2/3

BS(6) = 1
7

∑7
i=1 . . . ≈ 0.2296

to the trivial prediction. The Brier-Scores for all other time points are calculated

analogously and are given by

0.1224 0.1224 0.1224 0.2296 0.2296 0.2181 0.0701.

For the first three time points and the last one, the Kaplan-Meier estimator shows

a better prediction performance than for time points in the middle. The average

prediction performance is calculated with the help of the integrated Brier-Score IBS,

given in equation (4.10):

IBS =
1

tmax

∫ tmax

0

BS(t) dt =
1

10

∫ 10

0

BS(t) dt ≈ 0.1578.
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5 Results

We performed the analysis of two high-dimensional breast cancer data sets with the

help of the free software environment for statistical computing R (R Development Core

Team, 2011) in version 2.14.0. At this point we want to highlight that the proposed

methods are computationally intensive. Due to the preclustering approach, the 100

splits into training and test data and the cross-validation procedure for obtaining the

optimal tuning parameter λ, all computations were performed on the LiDOng high

performance computing cluster of TU Dortmund University with 432 nodes and up to

64 GB RAM per node. The calculation takes several weeks to accumulate all results

for one high-dimensional data set. When we make use of additional R-packages, we

refer to them at the corresponding points in the following sections.

At the beginning of this chapter, in Section 5.1 we present a descriptive analysis of the

two data sets including survival and censoring times as well as mappings from genes to

Gene Ontology (GO) groups. Section 5.2 gives an overview of the course of the extensive

evaluation procedure with a focus on cluster analysis and aggregation of (preclustered)

gene groups to representative covariates. A comparison of the developed models is

presented for both data sets in Section 5.4. The main focus is on the analysis and

assessment of the most promising combinations of selection and aggregation methods.

Finally, in Section 5.5 we show an exemplary result according to the annotation of

genes within GO groups and their biological functions for the most frequently chosen

covariates.
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5.1 Descriptive Analysis of Data Sets

With the help of the R-package survival (Therneau and Lumley, 2009) we show

in Figure 5.1 Kaplan-Meier estimators with pointwise 95% confidence intervals for

the two high-dimensional breast cancer data sets. The beginning of both studies is

defined by the date of surgery and censoring is due to missing information from follow

up examinations. Thus, the survival times are right-censored. The censoring rate is

73.2% for the DBC data set and 76.5% for the MC study. Due to the large amount

of censored observations a median survival time cannot be calculated.
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Figure 5.1: Kaplan-Meier estimators Ŝ(t) for survival functions with corresponding
95% confidence intervals for DBC data set and MC study.

We utilize the R-package topGO (Alexa and Rahnenführer, 2009) in combination with

the package hgu133a.db (Carlson et al., 2009), both available from the Bioconductor-

Repository, for mapping genes to GO groups. Genes that are not yet annotated to at

least one GO group are eliminated from the data sets. The resulting 1876 genes of the

DBC data set are assigned to 5560 GO groups, and 17 643 genes of the MC study are

annotated to 8587 GO groups.
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Table 5.1: Basic data information of the two data sets.

data set patients events all genes annotated genes GO groups

DBC 295 79 4919 1876 5560

MC 200 47 22283 17643 8587

Figure 5.2 shows with boxplots the number of genes contained in each GO group for

the two data sets. The median group size of the DBC data (2 genes) is considerably

smaller than the median group size of the MC study (8 genes). The differences become

even greater when considering the mean group size: 16.5 for the DBC data set and

98.9 for the MC study. The smaller number of genes in the GO groups in the DBC

data set are a direct consequence of the data preprocessing (see Section 2.4): we use

less than one fifth of the size of the original data set. Thus small GO groups are

over-represented. Table 5.1 summarizes this basic data information.

D
B
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M

C

1 10 100 1000 10000

Number of Genes

Figure 5.2: Boxplots of the number of genes included in GO groups in the DBC data
set and the MC study

At this point, we have to mention that the complete analysis is performed on the data

sets separately. A joint analysis of both data sets is not feasible due to different data

preprocessing procedures (see Section 2.4) and the consequential different representation

with GO groups.
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5.2 Analysis Steps

At first, we present the chronology of the analysis which is identical for both data

sets. The starting point is a (p× n) gene expression matrix Z. The entry in the jth

row and ith column corresponds to the expression value of gene j from patient i. In

addition, the two data sets contain clinical information for each patient. The clinical

covariates for the DBC data set are age at diagnosis, tumor size and tumor grade

as well as the number of nodes. For the MC study the clinical covariates are age at

diagnosis, tumor size and tumor grade as well as the estrogen receptor status. For all

patients, we have information concerning their survival times and event status. In the

following, when referring to the ’clinical model’, we make use of models that contain

the four covariates for each data set, respectively. In the ’genetic models’ single genes,

gene groups as well as preclustered gene groups are used as covariates. The last type

of model is the ’clinical-genomic model’ where we combine the genomic models with

the clinical model. In order to calculate a representative gene expression matrix for

GO groups and preclustered GO groups, we present clustering and aggregation steps

in the following paragraphs.

Cluster Analysis At first, gene expression data is annotated to GO groups as

described in Section 5.1. With the help of Partioning Around Medoids clustering (see

Section 3.1), we search for correlated subgroups within the GO groups. The R-package

cluster (Maechler et al., 2005) provides the corresponding algorithms. We calculate

the dissimilarity matrix D (see Section 3.1)

D = 1− Cor
(
Z>
)
∈ Rp×p,

with the help of the gene expression matrix Z (Z ∈ Rp×n). The distance between two

column vectors is calculated with the empirical Pearson correlation coefficient (see

Section 3.1): if two gene vectors (columns of Z>) are highly positive correlated, their

distance is close to zero, if they are uncorrelated, their distance is one, and if they are

highly negative correlated, their distance is two. The optimal number of clusters K is

chosen by the maximum Intra Cluster Correlation. This method is also introduced in
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Section 3.1. Due to high computational costs the maximum number of clusters within

one GO group is limited to 20 clusters. Without a limit, if we consider a GO group

with more than 10 000 genes, we have to calculate more than 1.66 · 1011 swaps in one

iteration of the PAM-clustering algorithm.

Permutation Test The permutation test (see Section 3.2) with Np = 104 permuta-

tions is performed in advance of the clustering. All genes that do not show a positive

correlation with at least one gene of the same GO group at the 5% significance level

are defined as single clusters and the PAM-clustering algorithm is performed on the

remaining genes. If no or one gene remains in a GO group, this group cannot be sum-

marized. If a GO group contains two genes, a clustering is also not feasible. To solve

this problem, we suggest an additional permutation test with Np = 104 permutations.

This procedure is heuristic and should only be used as an alternative approach for

PAM-clustering if the number of genes within a GO group is small (necessary for one

or two genes and recommended for up to 5 genes).

Aggregation A (preclustered) gene group must be appropriately summarized in order

to obtain one representative value for each patient and each group. These aggregated

covariates are particularly suitable for survival models in the further analysis. Simple

methods for aggregation, e.g. the arithmetic mean, the median or the medoid gene, are

described in Section 3.3. They yield similar results due to the standardized data sets.

Another method to reduce data dimensionality is Principal Component Analysis (see

Section 3.4) that finds a new (smaller) set of covariates that represent the variation in

the data set, given by the correlations between the original covariates. The Principal

Component Analysis (PCA) is based on singular value decomposition and is available

via the function prcomp() within the R standard package stats.

An extensive comparison of these aggregation methods is performed in Lang’s diploma

thesis (Lang, 2010). He showed that the most promising and suitable method for

summarizing gene expression values within one gene group is PCA with the first

principal component. Thus we summarize the gene expression measurements from all

genes belonging to one GO group or to one cluster via the first principle component
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of all genes that belong to this gene group or cluster. Note that the first principal

component and thus the parameter estimates must be interpreted with caution. It

is uniquely determined according to its direction but not to its sign. In our analysis

we select positively correlated covariates. We choose the sign of the first principal

component such that the direction is in accordance with the correlated covariates.

Reference Models In order to assess the merit of the preclustering approach, we

present results for models using only genes or only GO groups as explanatory variables

and also combine the genomic information with the clinical data. In order to obtain

a fair comparison of models with different types of genomic covariates, we only use

those genes that are annotated to GO groups. Figure 5.3 illustrates the paths from a

given data matrix via the clustering and aggregation methods to the final different

types of covariates that are used in Cox models for further analysis.

Duplicated covariates Prior to fitting survival models it is necessary to remove

duplicated covariates in order to avoid failures when inverting matrices with linear

dependent rows. Duplicates result from identical GO groups or from identical subgroups

after preclustering. If two or more identical covariates occur, we remove the duplicates

from the covariate matrix and save the removed covariates separately for further

investigation (if necessary).

Variable selection and evaluation After clustering, aggregating and removing

duplicated covariates, we obtain an appropriate data matrix for each type of genomic

covariates (genes, GO groups, preclustered GO groups).
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reference models

clinical covariates and

gene expression data

GO groups

permutation

test

clustering

aggregation aggregation

Zcl Zg ZGO Zclust

p ≤ 2

Figure 5.3: Analysis steps: Zcl =̂ clinical covariates, Zg =̂ genes as covariates, ZGO =̂
aggregated GO groups as covariates, Zclust =̂ preclustered and aggregated
GO groups as covariates; p =̂ number of covariates.

The results for each of the two data sets after applying the evaluation procedure

described in Section 4.7.1 are presented in the following sections. To reduce bias,

we have to consider several splits of the data into training and test set due to the

dependence of the results on such a split. In Section 5.3, we present detailed results for

one specific random split and in Section 5.4 a comprehensive analysis summarizing 100

random splits. We split n breast cancer patients into training set and test set, where

2/3 of the patients are assigned to the training set and 1/3 to the test set. We use the

training data for estimating the tuning parameter λ̂train and the regression coefficients

β̂train and γ̂train and the test data for evaluation. For each split into training data and
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test data, we calculate the three evaluation criteria on the test set (see Section 4.7).

The results are compared with boxplots and prediction error curves.

In detail, we apply two classical variable selection methods, univariate and forward

selection (see Section 4.6.3), and three shrinkage and dimension reduction procedures,

lasso- and ridge-regression (see Section 4.6.1) as well as the CoxBoost algorithm (see

Section 4.6.4), to the different types of genomic covariates of the training data sets.

The optimal tuning parameter λ̂train is determined with the K-fold cross-validated log

partial likelihood which is described in Section 4.6.2. According to Bøvelstad et al.

(2007) we apply K = 10 fold cross-validation. Due to the small number of clinical

covariates, the shrinkage and dimension reduction procedures are only applied to

the genomic covariates when considering the combined clinical-genomic models and

the pure genomic models. For evaluating the prediction performance, we calculate

the prognostic indices/risk scores (see Section 4.5) for all patients in the test set.

With the help of the prognostic indices, we apply the log-rank test (see Section 4.4

and Section 4.7.2) on the test set and use the p-value as an evaluation criterion

for the usefulness of the grouping. The prognostic index is also used as a single

continuous covariate to assess the prediction performance of the fitted Cox model (see

Section 4.7.3). In addition to these two test-based evaluation types, we calculate the

integrated Brier-Score for each split into training and test data (see Section 4.7.4). We

present the results for 100 splits with boxplots and with prediction error curves that

show the course of the Brier-Scores over time.

For lasso- and ridge-regression we make use of several functions from the R-package

penalized (Goeman, 2010b) that are described in detail in Goeman (2010a). The

CoxBoost algorithm implemented in the R-package CoxBoost (Binder, 2011) and the

R-package survival (Therneau and Lumley, 2009) provides the basis functions for

univariate and forward selection in the survival context. The Brier-Score is implemented

in the R-package ipred (Haibe-Kains et al., 2010).

In the following sections, we present at first an exemplary analysis of one split into

training and test data and afterwards a comprehensive analysis of 100 splits. Analysis

of frequently chosen covariates across the 100 splits is essential to assess the stability

of the fitted survival models.
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5.3 Exemplary Analysis: One Split into Training

and Test Data

We apply model selection methods and three evaluation criteria to one specific random

split of the Mainz cohort study into training and test data to illustrate how the model

building and evaluation are performed (as explained in Section 4.7.1). We split the

200 breast cancer patients into training set and test set, where 2/3 of the patients (in

this case 133) are assigned to the training set and 1/3 (here 67) to the test set. We

use the training data for estimating the tuning parameter λ̂train and the regression

coefficients β̂train and γ̂train and the test data for evaluation. Table 5.2 shows the results

for evaluation criteria when using genes, GO groups, or preclustered gene groups

as covariates. The values pLR and pPI correspond to the p-values derived from the

log-rank test and the prognostic index, respectively. The IBS is the value of the

integrated Brier-Score.

This example indicates that the predictive performance of models built with GO groups

alone and of models with preclustered GO groups is comparable with classical models

using only genes as covariates. The p-values for model assessment are similar, but in

addition, we have more information in the final model; annotations of preclustered GO

groups can help clinicians to investigate the selected genes according to their biological

function.

For all three types of genomic covariates the two prognostic groups are clearly separated

on the test data, with significant differences in overall survival (p < 0.02) between the

high-risk group and the low-risk group for lasso-regression (see pLR and pPI). The

separation between the two groups is best when using a model containing preclustered

GO groups (p = 0.0092).

Due to the high censoring, especially at the end of the studies, the integrated Brier-

Scores are calculated up to 10 years follow-up. They result in a value of approximately

0.10 for all methods with favoring the preclustered models.

For ridge-regression, all covariates are kept in the model since parameter estimates are

unlikely to get shrunken exactly to 0. The number of covariates for lasso-regression
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Table 5.2: One random split into training and test data for the Mainz cohort study:
Results for the prediction methods using (i) genes, (ii) GO groups, and
(iii) preclustered GO groups. For ridge-regression, all covariates are kept in
the model since parameter estimates are unlikely to get shrunken exactly
to 0. LR =̂ log-rank test, PI =̂ prognostic index, IBS =̂ integrated Brier-
Score, λ =̂ tuning parameter, sel.cov =̂ number of selected covariates; L1 =̂
lasso-regression, L2 =̂ ridge-regression.

Method Covariates pLR pPI IBS λ sel.cov

L1 genes 0.0190 0.0017 0.1042 11.72 19

L1 GO 0.0176 0.0018 0.1103 10.75 16

L1 clustered 0.0092 0.0002 0.0830 28.53 5

L2 genes 0.0098 0.0003 0.0877 5112.08 17834

L2 GO 0.0541 0.0097 0.1022 11749.16 6530

L2 clustered 0.0690 0.0006 0.0896 96499.04 31229

range from 5 for preclustered GO groups to 19 for genes. These models fulfill the

requirement of sparseness.

From only one split of the data into training and test sets, we will not know to which

extent the resulting criteria values depend on the actual training/test randomization.

In the next sections, we present a comprehensive analysis of 100 random splits.

For illustration of the results presented in Table 5.2 we show Kaplan-Meier curves for

two prognostic groups of patients derived by dividing all patients according to the

median prognostic index of the patients in the test set. Here we use lasso-regression

for model selection and the log-rank test for evaluation. We compare models with

genes, GO groups, and preclustered GO groups as covariates (see Figure 5.4).
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Figure 5.4: Mainz cohort study: Kaplan-Meier curves for the high-risk and low-risk
groups defined by the estimated prognostic indices of the 67 patients in
the test data set, the cutoff is defined as the median prognostic index on
the test data. Genes, GO groups, and preclustered GO groups are used as
covariates, respectively, and lasso-regression is applied as model selection
method.



5 Results 58

5.4 Comparison of Selection Methods

We observe high variability of the chosen tuning parameters and the parameter

estimates depending on the split into training and test data. In order to quantify which

covariates are consistently selected in different splits and how stable the evaluation

measures are, we calculate results for 100 random splits and compare the selected

genes and GO groups.

In Figures 5.5 (DBC) and 5.6 (MC), we present boxplots for the results for the two breast

cancer data sets, after applying the evaluation procedure to the five model building

procedures (lasso- and ridge-regression, CoxBoost, univariate and forward selection)

for each of the three types of genomic covariates (genes, GO groups, preclustered GO

groups). Results for the clinical model are presented as a reference. We consider the

median of the 100 values obtained from our prediction performance criteria as the

outcome of main interest. For easy reference we present all median values in Tables 5.3

and 5.4 for the DBC data set and the MC study, respectively. Best performance values

are highlighted in boldface.

Rows of the figures correspond to two model evaluation criteria, the prognostic index

and the integrated Brier-Score, and the columns correspond to two types of models:

the genomic model and the genomic model combined with clinical covariates that are

mandatory. Results for the log-rank test are nearly the same as for the prognostic index

and therefore not shown here. In both figures we show the results for the five model

selection methods. The p-values for the prognostic index (cf. Section 4.7.3) are shown

on the − log10 scale (a value of 2, e.g., corresponds to a p-value of 0.01). Thus, large

values correspond to good prediction performance. For the integrated Brier-Score small

values correspond to good prediction performance. The reference is a Brier-Score of

0.25, for a random estimation (cf. Section 4.7.4). Due to the high censoring, especially

at the end of the studies, the integrated Brier-Scores are calculated up to 10 years

follow-up. For both evaluation criteria in all plots the horizontal line at the median

indicates the reference model containing only clinical information.
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Figure 5.5: Dutch breast cancer data set: The boxplots show results for all model
building procedures applied to 100 training/test splits for genes, GO groups
(GO), and preclustered GO groups (cluster) for the Dutch breast cancer
data set. P -values of the prognostic index are presented on − log10 scale
such that large values correspond to good prediction performance. The
Brier-Scores are calculated for 10 years follow-up. Small values of the
integrated Brier-Score correspond to good prediction performance. L1 =̂
lasso-regression, L2 =̂ ridge-regression, CB =̂ CoxBoost, uni =̂ univariate
selection, forw =̂ forward selection.
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Figure 5.6: Mainz cohort study: The boxplots show results for all model building
procedures applied to 100 training/test splits for genes, GO groups (GO),
and preclustered GO groups (cluster) for the Mainz cohort study. P -values
of the prognostic index are presented on − log10 scale such that large values
correspond to good prediction performance. The integrated Brier-Scores
are calculated for 10 years follow-up. Small values of the integrated Brier-
Score correspond to good prediction performance. L1 =̂ lasso-regression,
L2 =̂ ridge-regression, CB =̂ CoxBoost, uni =̂ univariate selection, forw
=̂ forward selection.
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Investigating Figure 5.5 (DBC) and Figure 5.6 (MC) we first note, that there is a

fairly large spread of values over the 100 splits. This is due to the variation caused by

splitting the data at random into training and test sets as well as to the variation in

the performance of the prediction methods for given splits.

For all different model building and evaluation settings, forward selection has the

poorest prediction performance. It has been shown in several publications that forward

selection has problematic performance (see, e.g. Bøvelstad et al., 2007, 2009). Lasso-

and ridge-regression often outperform this standard selection method. Univariate

selection is in most of the cases slightly inferior compared to penalty models.

In the boxplots of Figure 5.5, in terms of the likelihood-ratio test for the prognostic

index, all models (except lasso-regression and CoxBoost with genes as covariates)

have an increased prediction performance compared to the clinical model and are

in median significant at the 0.01 significance level. The upper left and upper right

panel of Figure 5.5 show that lasso-regression with preclustered GO groups (median

p-value across 100 splits is 0.0003) and in combination with clinical covariates (median

p-value of 0.0006) has the best prediction performance for the DBC data set. Only

ridge-regression with genes as covariates has similar results.

This result does not hold for the integrated Brier-Score for this data set. Here,

all methods provide comparable prediction performances (the median of the IBS is

approximately 0.12), even though the results indicate an advantage of the clinical-

genomic model for lasso-regression with preclustered GO groups (IBS = 0.1168).

We also note that variance for clinical models is lower than for any integration of

genomic covariates. As the integrated Brier-Score is the average across the Brier-Scores

calculated at all time points a further analysis of the Brier-Score at different time

points is necessary and presented at the end of this section.

In the Mainz cohort study, we see the same result for the genomic models using the

integrated Brier-Score for evaluation (see the lower panels of Figure 5.5). In fact, the

Brier-Score favors the lasso-regression with genetic covariates (IBS = 0.1170). It is

noticeable that for the MC study and prognostic index as performance measure, the

model using only genomic information is worse than the clinical model (Figure 5.5,

upper left), but the clinical-genomic model is comparable to the clinical model. The
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Table 5.3: Dutch breast cancer data set: Summary of Figure 5.5. The table shows
median values for results for all model building procedures applied to 100
training/test splits for all types of covariates. Notation is according to
Figure 5.5. Best performance values are highlighted in boldface.

Method Covariates L1 L2 CB uni forw
PI clinical 0.0028 0.0028 0.0028 0.0028 0.0028
PI genes 0.0052 0.0003 0.0036 0.0027 0.0615
PI GO 0.0024 0.0016 0.0021 0.0018 0.0515
PI cluster 0.0003 0.0013 0.0012 0.0028 0.0772
PI clinical+genes 0.0019 0.0007 0.0034 0.0015 0.0356
PI clinical+GO 0.0018 0.0015 0.0013 0.0017 0.0595
PI clinical+cluster 0.0005 0.0011 0.0006 0.0015 0.0403
IBS clinical 0.1192 0.1192 0.1192 0.1192 0.1192
IBS genes 0.1277 0.1293 0.1306 0.1243 0.2014
IBS GO 0.1264 0.1297 0.1271 0.1190 0.2076
IBS cluster 0.1197 0.1236 0.1291 0.1278 0.2101
IBS clinical+genes 0.1238 0.1229 0.1232 0.1267 0.2068
IBS clinical+GO 0.1203 0.1225 0.1185 0.1202 0.2085
IBS clinical+cluster 0.1168 0.1199 0.1194 0.1256 0.2067

Table 5.4: Mainz cohort study: Summary of Figure 5.6. The table shows median
values for results for all model building procedures applied to 100 train-
ing/test splits for all types of covariates. Notation is according to Figure 5.6.
Best performance values are highlighted in boldface.

Method Covariates L1 L2 CB uni forw
PI clinical 0.0367 0.0367 0.0367 0.0367 0.0367
PI genes 0.2208 0.0331 0.1627 0.4369 0.2730
PI GO 0.1700 0.1053 0.1128 0.2166 0.4077
PI cluster 0.1098 0.0411 0.1984 0.3831 0.5212
PI clinical+genes 0.0575 0.0292 0.0320 0.2199 0.2281
PI clinical+GO 0.0441 0.0472 0.0388 0.1117 0.2043
PI clinical+cluster 0.0402 0.0520 0.0193 0.1298 0.2288
IBS clinical 0.1270 0.1270 0.1270 0.1270 0.1270
IBS genes 0.1335 0.1326 0.1330 0.1212 0.2042
IBS GO 0.1276 0.1327 0.1287 0.1265 0.2096
IBS cluster 0.1178 0.1246 0.1326 0.1302 0.2056
IBS clinical+genes 0.1263 0.1268 0.1308 0.1262 0.2171
IBS clinical+GO 0.1190 0.1233 0.1288 0.1392 0.2106
IBS clinical+cluster 0.1302 0.1229 0.1296 0.1310 0.2070
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best median prediction performance for the prognostic index is also provided by a

model using preclustering information: CoxBoost based on the clinical-genomic model

(median p-value of 0.0193).

For both data sets, we observe that methods built from preclustered GO groups as

covariates perform better than models using only genes. The combination of clinical

and genomic information does not always show better results than using the genetic

covariates alone. By comparing the results for lasso- and ridge-regression, we observe

a slightly better prediction performance for Cox models using the lasso-regression,

especially for models with preclustered gene groups as covariates. Results for the

CoxBoost algorithm and for univariate selection are slightly inferior to the lasso- and

ridge-regression models.

The solutions for all methods except ridge-regression are always sparse, but the optimal

tuning parameter varies considerably between the splits and thus the number of chosen

covariates. In Figure 5.7 we present for both data sets boxplots for the number of

chosen covariates for the different variable selection methods with different types of

genetic covariates. The results for the clinical-genomic models are similar and not

shown here. All methods provide sparse solutions and the numbers of chosen covariates

are less than 50. The interquartile range for the number of chosen covariates for

lasso-regression and for all three different types of covariates ranges approximately

from 3 and 20 for the DBC data set and from 5 to 12 for the Mainz cohort study. In

terms of the median, results from the CoxBoost approach consist of more covariates

than lasso-regression for all types of covariates. There is a higher variance on the

number of chosen covariates for the DBC data set for lasso models and for the MC

study for the CoxBoost models. For both data sets univariate selection make use of

less that 10 covariates in most of the splits across all three types of covariates. Forward

selection choses in median 25 covariates for the DBC data set and 13 for the MC

study. Across all different types of variable selection methods there is a tendency

that the numbers of selected genes and preclustered GO groups are similar, whereas

the numbers of selected GO groups are smaller. In average, lasso regression and the

CoxBoost approach select more covariates compared to univariate selection, with a

higher variance on the number of chosen covariates.
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Figure 5.7: Boxplots showing the number of selected covariates for 100 training/test
splits, models with genes, GO groups and preclustered GO groups, applied
to the Mainz cohort study (MC) and the Dutch breast cancer data set
(DBC). L1 =̂ lasso-regression, CB =̂ CoxBoost, uni =̂ univariate selection,
forw =̂ forward selection.

For a more detailed analysis of the results in terms of the Brier-Score, we have a

closer look at the run of the curves of the Brier-Score over time for lasso models

with preclustered GO groups in comparison to the other models. Prediction error

curves (see, e.g. Gerds and Schumacher, 2006; Graf et al., 1999) (averaged values for

the Brier-Score calculated at each time point for 100 splits) for models with the three

different types of genomic covariates are shown in Figure 5.8 and 5.9 for the DBC

data set and the MC study, respectively.

The performance of the clinical model serves as reference. For both data sets, the

model with preclustered GO groups has a better prediction performance over time

in comparison to clinical models. The preclustered models outperform the clinical

models, starting at four years for the DBC data set and at three years for the MC

study. The other two genomic models are also inferior to the preclustered models.
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This result shows that there is highly relevant information inside the preclustered gene

groups for risk prediction of breast cancer patients, starting at 3 to 5 years follow-up.

An analysis of frequently chosen covariates is provided in the next section.
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Figure 5.8: Prediction error curves for the DBC data set for the lasso evaluation
procedure. We show averaged values for the Brier-Score calculated at
each time point for 100 splits for models with the three different types of
genomic covariates and the clinical model. A better prediction performance
leads to lower curves.
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Figure 5.9: Prediction error curves for the MC for the lasso evaluation procedure. We
show averaged values for the Brier-Score calculated at each time point for
100 splits for models with the three different types of genomic covariates
and the clinical model. A better prediction performance leads to lower
curves.

5.5 Analysis of Important GO Groups

In this paragraph, we present for one of the best models an exemplary analysis of

most frequently selected covariates across all 100 splits. We consider the results for

lasso-regression with preclustered gene groups as covariates for the Mainz Cohort

study. The Due to the sparse solution for lasso models compared to ridge-regression we

provide results for this method. Table 5.5 contains the numbers of the most frequently

selected covariates, the corresponding GO groups with GO IDs (Ashburner et al.,

2000) and further information concerning the medoid gene, the cluster size and the
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Table 5.5: Top 10 selected covariates for preclustered GO-groups according to 100
splits into training and test data: Probe set names for the medoid genes
and GO IDs for GO groups. The first column corresponds to the selected
number for the covariate across 100 splits into training and test data for
L1 regression on the Mainz cohort study. The value of the effect indicates
whether the covariate has an increasing (+1) or decreasing (−1) effect on
patients’ risk to die.

count GO effect medoid clustersize annotation

85 GO:0043170 +1 209258_s_at 410 macromolecule metabolic process

81 GO:0007049 +1 210052_s_at 222 cell cycle

74 GO:0050896 −1 211908_x_at 102 response to stimulus

52 GO:0032501 −1 212195_at 310 multicellular organismal process

40 GO:0032501 −1 210935_s_at 362 multicellular organismal process

21 GO:0050794 −1 210417_s_at 312 regulation of cellular process

18 GO:0043170 +1 211693_at 434 macromolecule metabolic process

18 GO:0050896 −1 204118_at 230 response to stimulus

16 GO:0006952 −1 203535_at 27 defense response

15 GO:0042221 +1 219140_s_at 39 response to chemical stimulus

annotation for the GO groups that are helpful for the biologist.

We observe that most of the chosen clusters are subgroups of large GO groups and

consist of more than 100 genes. The value of the effect indicates whether a high value

of the corresponding covariate has an increasing (+1) or decreasing (−1) influence on

patients’ risk to die. For a detailed analysis of the effects the boxplots in Figure 5.10

show the variation of the estimated regression coefficients in the Cox regression model

for the most frequently chosen clusters, represented via medoid genes. First of all, the

direction of the effect among all splits into training and test data is stable. From this

it follows that a detected cluster has a consistent effect on patients’ survival - either

positive or negative. The first two clusters (from GO:0043170 and GO:0007049) shown

in Table 5.5 are chosen in more than 80% of the splits into training and test data.

Their parameter estimates are positive, i.e. high expression values of the included

genes lead to increased risk to die and thereby to shorter survival. In addition, the

clusters at fourth and fifth position are contained in the same GO group. Thus the
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top 5 frequently chosen covariates for preclustered gene groups as covariates underline

a very stable model selection procedure. At first view the direction of the effects are

in accordance with the biological interpretation, e.g. high expression values of the

genes within the cluster from GO group GO:0007049 (cell cycle) lead to shorter

survival and high expression values of the genes within the cluster from GO:0006952

(defense response) to longer survival.
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Figure 5.10: Boxplots show variation of estimated regression coefficients in the Cox
regression model for the most frequently chosen clusters from Table 5.5,
represented via medoid genes (probe sets).
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6 Discussion and Conclusion

The typical challenge when relating survival times to gene expression measurements is

a relatively small number of individuals compared to a large number of predictors. In

this case the use of classical approaches is not possible.

For investigating the relationship between microarray gene expression data and censored

survival data, we analyzed two published breast cancer data sets. We introduced

methods for summarizing gene expression measurements with a focus on preclustering

(Chapter 3) and the survival framework including the Cox model for high-dimensional

data and algorithms for fitting and evaluating it (Chapter 4). We presented results for

the evaluation procedure applied to these two data sets. Standard approaches focus

on single genes as covariates (cf. Bøvelstad et al., 2007; Gui and Li, 2005; Haibe-Kains

et al., 2008). We integrate additional biological knowledge by building models with

preclustered GO groups as covariates.

In accordance with Bøvelstad et al. (2007), the lasso-regression method seems most

suitable and promising: its prediction performance is slightly better compared to

ridge-regression and the solution is sparse. Bøvelstad et al. (2007, 2009) show that

ridge-regression performs better than all the other methods. In our analysis, ridge-

regression leads in general to comparable but not better results compared to the

lasso-regression. However, an important disadvantage of this method is that it does not

select variables. The CoxBoost approach (Binder and Schumacher, 2008b) provides

comparable results to lasso- and ridge-regression. Its solution is sparse and this

procedure should always be considered as an alternative to lasso-regression. We

observe relevant differences between high-risk and low-risk patients, but there are too

many genes or GO groups to be further investigated.
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The preclustering approach is beneficial concerning prediction performance in the lasso

setting and leads to improved or comparable results in the other models. However, a

main benefit of preclustering is that we detect genes with similar expression patterns

and that these subgroups are correlated with survival. In addition, we can have a

detailed view on the GO groups containing the preclustered subgroups. Table 5.5

shows that the cluster sizes as well as the corresponding GO groups are quite large.

However, in this case the selection of the top 5 clusters is quite stable. For gaining

further biological insight a more detailed analysis of the composition of these clusters

is required and promising.

In terms of the Brier-Score, we showed that the prediction performance of models

using clinical, genomic or both information is comparable. It seems that these different

kind of covariates contain an overlap of information for predicting survival.

This work shows that different model selection procedures can be used to identify

genes and (preclustered) GO groups related to survival outcomes and to build models

for predicting survival times of future patients.

The integration of GO groups is useful, since they contain aggregated information

of biological function and thus are often more informative than single genes. It

is encouraging that in terms of prediction performance, our results obtained with

preclustered GO groups as predictors are comparable to those using only genes as

predictors. We demonstrated that this result holds true also for models using GO

groups and not only genes. Especially, the analysis of prediction error curves reveals

an improved prediction performance for the new preclustering approach. Thus the

potentially improved interpretability makes these models with preclustered GO groups

competitive. The agenda in the present work was:

• Constructing models with a relatively small subset of relevant covariates that are

enriched with additional gene group information in terms of the Gene Ontology.

• Presenting a new approach of preclustering genes from one functional group due

to different expression profiles within one GO group.

• Comparing prediction rules and prediction error curves for the three types of

covariates (genes, gene groups, preclustered gene groups).
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• Adding clinical information and comparing the results to single use of genomic

data.

For future work, there are several opportunities for extending the presented approach.

The options can be divided into two categories: integrating alternative model selection

procedures (internal extensions) and transfer to other settings or data sets (external

extensions).

For the internal options, we can investigate other possibilities for integrating group

information in survival models. Binder and Schumacher (2008b) applied the CoxBoost

algorithm to gene expression data sets without using gene group information. They

point out that the main benefit from combining clinical and microarray information

was increased prediction performance. This boosting approach may also allow flexible

regularization for groups of covariates. Biological prior information from Gene Ontology

may be integrated as group information.

The group lasso (Yuan and Lin, 2006) is an extension of the lasso to do variable selection

on (predefined) groups of variables in linear regression models. Meier et al. (2008)

extended the group lasso to logistic regression models, especially for high-dimensional

problems. The method can also be applied to generalized linear models and survival

models (Simon et al., 2012).

Another possible step for improving our models could be the integration of more

detailed information concerning the hierarchically structured gene ontology. For coping

with high correlations between GO groups one can follow the approach of Alexa

et al. (2006) where correlations between neighboring GO groups in the GO graph are

iteratively removed.

Finally, we can enrich our preclustering approach with other biological data bases,

e.g. the KEGG data base (Kanehisa et al., 2004), or apply the approach without any

biological prior knowledge. This has the advantage that there will be no duplicates in

the processed data. But we are confronted with the problem that performing clustering

on more than 10 000 covariates is computationally intensive. The data set has to be

reduced in advance to get results in finite time.
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For external transfer of the approach we think of different genomic data like SNP

data or array-CGH data in combination with survival outcome. These types of data

are of higher dimensions than classical microarray data sets and an analysis with the

proposed methods would be challenging.

Finally, when thinking of a classical high-dimensional classification problem with

binary outcome, e.g. disease and non-disease, there are often informative genes that

are selected according to a two-sample statistical test combined with multiple testing

procedures. Instead of keeping the top ranked genes in the models, one could think

of a clustering approach in advance and keep medoid genes of clusters and construct

models with these covariates.
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