
Large-Scale Parallel State Space Search
Utilizing Graphics Processing Units

and Solid State Disks

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von
Damian Sulewski

Dortmund
2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46911795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Tag der mündlichen Prüfung:
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Abstract

The evolution of science is a double-track process composed of theoretical insights on
the one hand and practical inventions on the other one. While in most cases new theo-
retical insights motivate hardware developers to produce systems following the theory,
in some cases the shown hardware solutions force theoretical research to forecast the
results to expect.

Progress in computer science rely on two aspects, processing information and stor-
ing it. Improving one side without touching the other will evidently impose new prob-
lems without producing a real alternative solution to the problem. While decreasing
the time to solve a challenge may provide a solution to long term problems it will fail
in solving problems which require much storage. In contrast, increasing the available
amount of space for information storage will definitively allow harder problems to be
solved by offering enough time.

This work studies two recent developments in the hardware to utilize them in the
domain of graph searching. The trend to discontinue information storage on magnetic
disks and use electronic media instead and the tendency to parallelize the computation
to speed up information processing are analyzed.

Storing information on rotating magnetic disk has become the standard way since
a couple of years and has reached a point where the storage capacity can be seen as
infinite due to the possibility of adding new drives instantly with low costs. However,
while the possible storage capacity increases every year, the transferring speed does
not. At the beginning of this work, solid state media appeared on the market, slowly
suppressing hard disks in speed demanding applications. Today, when finishing this
work solid state drives are replacing magnetic disks in mobile computing, and com-
puting centers use them as caching media to increase information retrieving speed.
The reason is the huge advantage in random access where the speed does not drop so
significantly as with magnetic drives.

While storing and retrieving huge amounts of information is one side of the medal,
the other one is the processing speed. Here the trend from increasing the clock fre-
quency of single processors stagnated in 2006 and the manufacturers started to com-
bine multiple cores in one processor. While a CPU is a general purpose processor the
manufacturers of graphics processing units (GPUs) encounter the challenge to perform
the same computation for a large number of image points. Here, a parallelization offers
huge advantages, so modern graphics cards have evolved to highly parallel computing
instances with several hundreds of cores. The challenge is to utilize these processors
in other domains than graphics processing.
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One of the vastly used tasks in computer science is search. Not only disciplines with
an obvious search but also in software testing searching a graph is the crucial aspect.
Strategies which enable to examine larger graphs, be it by reducing the number of
considered nodes or by increasing the searching speed, have to be developed to battle
the rising challenges. This work enhances searching in multiple scientific domains
like explicit state Model Checking, Action Planning, Game Solving and Probabilistic
Model Checking proposing strategies to find solutions for the search problems.

Providing an universal search strategy which can be used in all environments to
utilize solid state media and graphics processing units is not possible due to the hetero-
geneous aspects of the domains. Thus, this work presents a tool kit of strategies tied
together in an universal three stage strategy. In the first stage the edges leaving a node
are determined, in the second stage the algorithm follows the edges to generate nodes.
The duplicate detection in stage three compares all newly generated nodes to existing
once and avoids multiple expansions.

For each stage at least two strategies are proposed and decision hints are given to
simplify the selection of the proper strategy. After describing the strategies the kit is
evaluated in four domains explaining the choice for the strategy, evaluating its outcome
and giving future clues on the topic.



Acknowledgments

In most cases a thesis would not exist without a Ph. D. Supervisor, but in this one the
influence of Prof. Dr. Stefan Edelkamp, my supervisor, started much earlier. Being a
diploma student he introduced me to the art of Model Checking. I do not know if it
was because of someone had to do the job or because of you are the right for the job
but he always motivated me. Prof. Dr. Edelkamp trusted me, much more then I could
trust myself, and now you can read the results. Thanks for the endless discussions, on-
and off-topic. Thanks for your time whenever I needed it. Thanks for the possibility to
find oneself on the long line.

Special thanks go to Prof. Dr. Bernhard Steffen the man with the big picture.
Although he never was the one I discussed implementation details with, he was always
interested in my work and pushed me in the right direction when I stood at a forking
way not knowing where to go. Thanks also for the warm place for my research.

I am also grateful to the other members of the committee: Prof. Dr. Jan Vahrenhold
and Dr. Ingo Battenfeld for the help and support in the last minutes.

Thanks to all the coauthors who showed me the right way to write papers, thanks
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Chapter 1

Introduction

1.1 Motivation
Time is a scarce resource, space is unlimited. This statement is becoming reality in
the 64-bit era. Today, an ordinary personal computer utilizes up to 32 gigabyte of
internal RAM storage, using server hardware even 256 gigabyte in one computer are
possible. Utilizing external storage one can get 3 terabyte magnetic drives, so called
Hard Disk Drives (HDDs) at nearly 100 C and continuously falling prices. An example
of resource capabilities these days is the company Google, who is offering an Email
service giving each user 7.44 gigabyte available space for their mails. In February
2010 the service had reported to have 170 million accounts1 with an available space of
1,235,156.25 terabytes or 1.177 exabytes.

For applications where excessive random access to the data is mandatory and mag-
netic drives fail to reach appropriate speeds, solid state drives (SSDs) have entered
the market. An SSD stores information on memory chips providing faster access to
the data while consuming less power. A system with 256 GB of RAM costs about
4,500 C at today’s prices while the same amount of SSD storage costs nearly 300 C
utilizing a reading access speed of 255 MB/s (compared to about 100 MB/s on HDDs
and 17 GB/s for RAM) and the possibility to be extended by adding more or larger de-
vices. The characteristics of solid state media differ significantly from the ones of hard
disk devices imposing new challenges on the developers of algorithms. While writ-
ing data to such a medium is done at a speed comparable to magnetic devices (being
about 100 MB/s) the reading of random bits can be done with much higher efficiency.
These characteristics, additionally with the possibility to even increase the throughput
by combining several devices, make them perfect for storing random access structures
which exceed the size of RAM.

Rising storage capabilities do not necessarily require a change on the algorithmic
level. In contrast to this, the switch from increasing the clock rate to assembling mul-
tiple cores in one central processing unit (CPU) demands for a parallelization on the
algorithmic level. This change in design forces the algorithms to utilize the available

1http://news.bbc.co.uk/2/hi/8506148.stm
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2 CHAPTER 1. INTRODUCTION

parallel computing power to gain profit from it and requires synchronization techniques
and load balancing. The current maximum number of cores in one CPU is 8 which sim-
ulate 16 cores by utilizing two threads per core. Being confronted with a number of
different tasks in parallel, the CPU cores are self-contained computing cores even able
to increase the clock for one single core to speed up sequential computation. Simul-
taneously to the CPU the developers of the graphics cards increased the computation
power by parallelization. Contrary to data processing a graphics processing unit (GPU)
is used to compute the visualization for a large number of triangles representing a vir-
tual world. Since the triangles are independent and the computation is equivalent for
all of them, the parallelization used is the single instruction multiple data (SIMD) tech-
nique. Here a large number of processors manipulate data using the same instructions.
Current GPUs utilize up to 1,024 processors in one graphics card (NVIDIA GTX 590)
and up to 4 cards can be combined in one system.

This work utilizes recent developments in hardware to solve search problems in
which the goal is to find a set of explicit nodes in a graph defined implicitly prior to
the search. In an implicit definition just the starting node and a transition function
transforming this node into new ones is given. The main challenge spreading over all
implicit graph search problems is the state space explosion problem, which describes
the potentially exponential development of node numbers in the graph. Even small
changes in the transition function definition may increase the number of reachable
nodes, on a path from the initial node, dramatically increasing the search time, which
is mostly linear to this number.

Between all the available search challenges given in the scientific and non-scientific
work, the four investigated domains represent a spectrum and give a starting point for
investigation in many other research areas.

The first investigation on the usage of solid state drives and graphics processing
units is Explicit State Model Checking (Clarke et al., 1999; Müller-Olm et al., 1999),
where the demand for storage space and computation power increased dramatically
with the introduction of parallel processors. It should be needless to say how important
software verification has become in the last years. With the introduction of concur-
rent hardware at affordable prices for everyone, parallel programming has evolved to
a standard technique to implement efficient algorithms. Not so long ago, only security
related bugs were hunted, or bugs whose removal would directly avoid loosing equip-
ment worth millions of dollars like an exploding space rocket. Today all companies
search for efficient ways to verify their software because a bug can cause a significant
loss of reputation resulting in the emigration of customers. The automobile constructor
Mercedes-Benz learned their lesson when long term clients switched to other manu-
facturers because of small bugs in the car software. Even though the bugs were not
dramatic, e. g., a not opening door when the remote was pressed, the damage to their
reputation of being a premium manufacturer was worth millions of dollars due to de-
creasing sales.

The second chosen discipline is Action Planning (Russell and Norvig, 2002), where
the goal is to find a plan fulfilling predefined conditions given a set of actions. The plan
consists of a sequence of transition functions (here denoted as actions) which transform
the initial state into a goal state. Prominent examples of planning are logistic domains
as well as planning robots which perform various tasks efficiently. This work deals
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with deterministic Action Planning where each action is fully defined.
A breadth-first state-space generation in the artificial intelligence (AI) branch Game

Solving (van den Herik et al., 2002) imposes new challenges on the SSD and GPU
utilization. Problems in this domain are usually built up of a high number of available
moves, e. g., all possible movements to the figures on a chess board, with only a small
number of these being valid moves. While a check for a single move can be done very
efficiently the high number of checks imposes a long searching time. An additional
aspect of this problems is a large state description where an efficient compression is
necessary to traverse the entire state space. Here the computation power of the GPU
comes in handy since the decompression and the determination of valid movements
can be done in parallel on a huge number of states.

Probabilistic Model Checking (Kwiatkowska et al., 2007) has been proved to be
a powerful framework for modeling various systems ranging from randomized algo-
rithms via performance analysis to biological networks. Although solutions for Proba-
bilistic Model Checking can also be obtained by a state space search for a specific state,
this is not an efficient way. Here the satisfaction of properties is quantified with some
probability in contrast to the previous disciplines. In a state space approach this maps
to generating states and annotating them with a probability until the target is reached.
Due to the high branching factor it is more efficient to choose a different approach i. e.,
using numerical methods which enforce different strategies to utilize the GPU and ex-
ternal media. In this discipline the GPU has to be used with the intention of solving
linear equations, imposing new challenges on the algorithm development.

This work will investigate in using recent developments in hardware to allow for
traversing larger graphs in less time in all these domains.

1.2 State Space Exploration
The connecting aspect of all analyzed problems is the traversal of a search graph de-
fined only by a starting node and a transformation function. To understand the correla-
tion exploited in this work we need to define the basics of the state space exploration
and present a number of existing algorithms. The following sections will provide the
necessary definitions to explore state spaces and to analyze the proposed algorithms.

1.2.1 Introducing State Spaces
As this dissertation concentrates on implicitly given graphs where only a starting point
and instructions how to traverse the graph are given we limit the definitions to those
graph structures.

Definition 1 (System) A system is a problem definition in a given environment. It
includes all the necessary information to solve the problem and can be expressed in a
suitable description language.

A system usually consists of three aspects, a description of an environment, defini-
tions of transformable elements in this environment and transition functions for these
elements. Board games are systems where the board defines the environment and the
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pieces are placed or moved by transforming their position. The rulebook defines the
transition functions by describing allowed moves.

Definition 2 (State) A state s is a description representing the overall configuration of
a system at a specified point in time.

A state can be the concatenation of sub-states each describing a part of the system.
To give an example take a look at the game checkers, here each piece can be a usual
men or a king. One solution to store this difference in a state is to use different notations
for this attribute. Another solution is to include this as a special variable representing
this piece in the state. This variable is called local state since a change to this local
state is only locally in the whole system.

Definition 3 (Local state) The local state of an unique actor in a system is a variable
describing the current condition of the actor.

As an example, the local state of a piece denotes whether it is a men or a king and
a state is the position of all pieces on the board in checkers. Replacing or removing
pieces and changing a local state when reaching the appropriate position corresponds
to transforming one state into another.

Definition 4 (State Space) A state space S, is the set of all possible configurations of
a given system.

The state space S of the game chess consists of all the possible placements for all
pieces. sinS is mapped to a node v ∈ V in the graph G = (V,E).

A subset of all states ŝ ∈ S identifies the initial states, defined entirely before the
search. All systems analyzed in this work only have one single initial state. The set of
reachable nodes is a subset r ⊆ S denoting all nodes connected from ŝ.

To define the remaining states the informal definition of the transition function is
formalized and transitions, composed of a precondition and a postcondition are defined
as follows,

Definition 5 (Precondition) A precondition of a transition defines conditions in the
state to be true before transforming the state by applying a transition.

Definition 6 (Transition) A transition t in the set of all transitions T is a pair con-
necting one Boolean precondition and a set of postconditions. The transition is called
active when the precondition evaluates to true.

A transition has to define the modifications to the state in a set of postconditions.

Definition 7 (Postcondition) The postconditions define conditions in the state which
have to be true after it has been transformed.

A transition from s1 ∈ S to s2 ∈ S is similar to an edge in the directed graph
G = (V,E) with V = S and E = (v1, v2) where v1 = s1 ∧ v2 = s2.
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Both, the precondition and all postconditions may be empty, resulting in a transition
applicable to all states or a transition transforming the state into its identity. While
the identifier precondition is common in Action Planning the postconditions in Action
Planning and Model Checking are called effects. The later additionally utilizes the term
guard to denote a precondition. In Game Solving the preconditions are given as rules
whether a move is valid or not, the postcondition is the result of executing a valid move.
Probabilistic Model Checking is an exception where all preconditions are active with a
given probability. Postconditions are applied when a precondition is chosen.

Definition 8 (Parents and Successors) When applying a transition the base state is
called parent while the resulting state is called successor. Leaves are states without
successors having no active transition.

Definition 9 (Expansion / Generation) During the expansion of a parent, or the gen-
eration of successors, the parent is expanded when all successors have been generated.

While definitions so far applied to single nodes in a graph, the following one will
cover connected nodes.

Definition 10 (Path) A path is a sequence of states s0, s1, . . . , sn where an active tran-
sition exists for all pairs (si, si+1) with 0 ≤ i < n. The length of a path is n the number
of states it contains.

Starting at an initial state and transforming it into a number of successors will
generate a tree. To transform this tree into a graph duplicates have to be defined,
describing states which are indistinguishable.

Definition 11 (Duplicate) Two states s1 and s2 reachable on different paths from the
initial state (ŝ . . . s1 6= ŝ . . . s2) are duplicates when their representations are identical
(write s1 = s2).

Lemma 1 In two state spaces S1 and S2 using the same set of transitions T and du-
plicate initial states ŝ1 = ŝ2, for each state s′ ∈ S1 exists a duplicate state s′′ ∈ S2 so
that s′ = s′′ and S1 = S2.

Proof. Since the representation of the duplicates ŝ1 ∈ S1 and ŝ2 ∈ S2 are identical the
set of active transitions a ⊆ T (the set of non-active transitions ā : T/a) is identical.

Applying the same postconditions of an active transition a1 ∈ a to ŝ1 or ŝ2 results
in a new duplicate successor s for every a′ ∈ a. The same applies to every s further
down the path. �

Finally, after having introduced paths and duplicates the definition of a cycle can
be given.

Definition 12 (Cycle) A cycle in a state space is a path of arbitrary length connecting
two duplicates.

The shortest cycle is a path (s,s) formed by a transition without effects.
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1.2.2 Example of a State Space
This section introduces an example to sketch a state and the state space on a constructed
problem.

The problem is to finish a work denoted as thesis by a given actor called student.
The student is supported by a variable number of friends to review the thesis and reduce
its level of completeness by a given amount, due to pointing out errors and inconsis-
tencies. The student alternates between thinking and writing of the thesis to complete
it, but also has the necessity to sleep and eat during this process, while his friends are
enjoying time or correcting the work.

To simplify the students life we set up some assumptions:

• After sleeping the student has to eat.

• Having eaten the student starts thinking on the thesis.

• The student immediately writes down her or his thoughts.

• If the student is neither hungry nor sleepy having finished writing a part he starts
to think about further parts.

• Writing makes hungry.

• Eating makes sleepy.

• A friend can only review a thesis if something is written.

The question here could be if the work will be finished or how the number of
reviewers influences the time to finish the work or to find a plan to distribute the thesis
among friends efficiently.

Figure 1.1 visualizes the student’s and one friend’s behavior as a directed graph.
Each circle is a local state denoted with a name in the upper half. Edges represent
transitions from the parent state to its successor. If a precondition for a transition
exists it is given the prefix pre: above the corresponding edge. Postconditions are
described under the edges and prefixed with a post:. There is one global variable called
completeness denoting the completeness of the work not visualized in the graph.

The state space of the student, depicted in Figure 1.2 shows a directed graph of
all reachable states for the student, if no interaction with a friend appears. The name
of the state is shown in the upper half, and the variables being true in a state are
visualized in the bottom half of the circle. In contrast to Figure 1.1 states with similar
names appear several times in the state space since the values of the variables in it
differ. Figure 1.2 visualizes only the state space of the student omitting interventions
of friends. A state space involving correction cycles is a cross product of the state
spaces of all actors. So in each state the student is in the friend can be in an enjoying
time or in a correcting state, increasing the number of states by a factor of two for each
extra friend. Additionally, tracking the completeness variable in the state, e. g., as an
integer value between 0 and 100% would theoretically blow up the state space by a
factor of 100 making reduction and compression strategies essential.
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Figure 1.1: Visualization of the thesis problem as a graph. Circles denote a local state
the actor can be in. Each local state is denoted with a name in the upper half of the
circle. Edges represent transitions from the parent to the successor with preconditions
above it prefixed by pre: and postconditions by post:. The upper graph presents the
transitions for the student and the lower one those for a friend.

Both examples sketch the roots of the states space explosion problem in a simpli-
fied manner and motivate the necessity for efficient state storage and processing strate-
gies. While a naive implementation of the completeness variable would increase
the state space by a factor of 100 the binary representation can reduce the factor to
log(100) = 7. Additional reduction techniques are abstraction (Edelkamp and Lluch-
Lafuente, 2004; Namjoshi and Kurshan, 2000) and compression (Lluch-Lafuente et al.,
2002; Clarke et al., 1994; Korf, 2008b; Holzmann and Puri, 1999).

1.2.3 State Spaces in the Following Parts

Although the following domains seem to be very different the strategy of state space
exploration is the connecting aspect. Model checking, Action Planning, Game Solv-
ing and Probabilistic Model Checking are all search problems and easily mapped to a
graph algorithm. The proposed technique to use recently developed hardware in graph
searching is the roof standing on four pillars, depicted in the four disciplines. The
next sections will sketch the mapping of each part to graph searching while a detailed
mapping is given in each corresponding part.
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Figure 1.2: The state space containing 9 states the actor student defined in the thesis
problem can be in. The communication with friends, who correct the thesis, is avoided
due to complexity of the visualization. When an additional actor (e. g., friend) is in-
cluded each state is extended by a local state of the actor increasing the number of
states by a factor corresponding to the number of local states the actor can be in. This
simplification also abstracts from the completion variable in the states which would
increase the number of states by a factor of 100 if used as a percent variable.

Model Checking

In Model Checking a model, describing a system and given in a description language
is checked for a given property. Here, the system is defined prior to the search, given
variables and processes as transformable elements, followed by transition functions
denoted as transitions. Although the environment is not given explicitly it is given
by the model checker who is handling the description language. The goal of finding
states violating the property is achieved by checking each single state reachable from
an initial state against it. To check lifeness properties a so called lasso path has to be
found. Such a path consists of a cycle containing at least one special (in this discipline
denoted as active) state and that must be reachable from the initial state and defined
in the model description. For such a search, special graph traversal algorithms were
developed and Part II will propose an extended algorithm. It uses a number of standard
graph search algorithms to find the shortest lasso in a state space. The following chapter
proposes an approach to efficiently utilize graphics cards when generating the state
space in Model Checking.

Action Planning

Action Planning is a scientific domain for finding a plan in a given environment to
achieve a defined goal. The system of Action Planning is an environment for an actor,
e. g., a robot. The actor has to perform actions to find a sequence of actions, called plan,
to put himself, into a given goal configuration. This plan can be mapped to a path in a
graph, starting at an initial state and connecting it to a state where the goal is achieved.
The initial state is defined prior to the search and transitions are given by actions in
a description language. The way to find such a plan is to generate all states until the
goal state is reached and then either search backwards to the initial state, for a plan
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reconstruction, or store the plan while searching. Refined Action Planning uses costs
which map each action to a value to generate a more realistic representation. Here,
an exploration considering only the length of a path is not efficient and special graph
algorithms (e. g., Dijkstra’s Algorithm (Dijkstra, 1959)), are used. Part III presents
a graphics card algorithm extended to support action costs and external media for a
generation of the plan.

Game Solving

The system of a game in Game Solving is the state of the game at a specific stage. In
board games it suffices to represent the board and the positions of all pieces on it in
the system. The transitions are the rules of the game given prior to the search. The
task to decide whether a given player can win the game at a given state is achieved
by visiting every state and checking for a path to a winning state. One approach to
solve a game is a two searches strategy. In the first forward search all states reachable
from the initial state are generated and classified whether they are winning states for a
player or not. The second backwards search starts at all winning states and propagates
the information which player has won to the predecessors. In games with only one
winning state, like one player combinatorial games, a forward search from the current
state suffices to determine if the game can still be completed. In two player games
all terminating winning states have to be identified by a forward search followed by a
backward search from these to classify all states up to the initial state. Part IV proposes
to compress each state to a number by using a permutation rank strategy or binomial
and multinomial hashing to decompress the state on the graphics card and analyze it.
This strategy can be evaluated efficiently due to the highly parallel processing power
of this unit.

Probabilistic Model Checking

Probabilistic Model Checking avoids the preconditions of the state space search by re-
placing them with the probability of being active. The probabilities of all preconditions
in one state sum up to 100%. On leafs this is achieved by adding an outgoing transi-
tion without postconditions having a probability of 100%. A naive graph theoretical
approach to determine the probability of a property violation is to find a path from the
initial state to a violating one and compute the probability along it. This approach can
be very ineffective in terms of computation time and usually a different technique is
used. The state space is mapped to a matrix with the probabilities given in that ma-
trix and the probability is computed by solving a set of linear computations using a
matrix-vector multiplication approach. Part V decreases the time to find a solution
significantly by porting the solving process partially to the graphics card.

1.3 Graph Search Algorithms
Moving from node to node in a graph, respectively traversing a state space, requires
a strategy, including a storage- and a decision-rule for the order the successors are
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generated in. This section will develop a basic algorithm and extend it to more sophis-
ticated strategies optimizing it for different conditions like generating speed or search
direction. The development starts with a blind search, not using information about the
preferred transitions, and resorts to some form of cost-first shortest path path explo-
ration, which requires costs assigned to the edges given in the graph description. Since
state spaces can become arbitrarily large the section also introduces algorithms for ex-
ternal search, which utilizes external media like hard disks to store information, and
parallel search utilizing parallel hardware.

1.3.1 Blind Search

In blind search the order of state expansions is defined by the search algorithm, in-
formation about preferred transitions is omitted. While generating a state in a search
algorithm the generated successors have to be stored for a potential expansion in the
further traversal in a dedicated structure called open list.

Definition 13 (Open list) The set of generated, but unexpanded states is called an
Open list (or just Open) also denoted as a working set.

Using only an Open list one can already form an algorithm which is complete, so
it will visit all states in the given state space provided it is circle free.

Algorithm 1.1: Graph algorithm using an Open list
Input: ŝ ∈ S initial state, T set of transitions

1 Open← ŝ ; {store ŝ in Open }
2 while Open 6= ∅ do {repeat until search terminates}
3 choose a state s ∈ Open ; {usually the first one in the list}
4 expand successors s→ s1 . . . sν ; {apply transitions to generate successors}
5 for si (∀i : 1 ≤ i ≤ ν) do {check each successor}
6 if si /∈ Open then {when not already in Open }
7 Open← si ; {add it to Open }

8 remove s from Open ; {all successors generated so state can be dropped}

After inserting the initial state into the Open list, Algorithm 1.1 generates the suc-
cessors of a state by checking the preconditions and applying corresponding postcon-
ditions and stores them in Open. When all successors of a state are generated and
inserted into Open the state is removed from the list.

Lemma 2 Algorithm 1.1 will terminate and expand all paths in the state space, visiting
all states, if the state space is cycle free.

Proof. Each state remains in Open until all its successors are generated. Removing
a fully expanded state is safe since all paths crossing this state to its successors are
extended by at least one state. Leaves, states without successors, are end points of paths
which cannot be extended and are removed from Open immediately when generated.
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Since the state space is cycle free each path from ŝ has to end with a leaf forcing
the algorithm to terminate. �

For state spaces containing cycles Algorithm 1.1 has to be extended. Consider a
transition set T with two transitions {(ŝ, s), (s, ŝ)} from the initial state to a successor
and back to the initial state. The algorithm will add the initial state to Open over and
over again, being trapped in the cycle unable to terminate. To avoid this behavior an
option is needed to decide whether a duplicate of a state was already removed from
Open, thus the states removed from Open are stored in a separate structure.

Definition 14 (Closed list) When all successors of a state are generated it is moved to
the Closed list (usually just Closed), also denoted as visited set.

Algorithm 1.2: Graph algorithm using an Open and a Closed list
Input : ŝ ∈ S initial state, T set of transitions

1 Open← ŝ ; {store ŝ in Open }
2 Closed← ∅ ; {clear Closed list}
3 while Open 6= ∅ do {repeat until search terminates}
4 choose a state s ∈ Open ; {usually the first one in the list}
5 expand successors s→ s1 . . . sν ; {apply transitions to generate successors}
6 for si (∀i : 1 ≤ i ≤ ν) do {check each successor}
7 if si /∈ Open ∧ si /∈ Closed then {when not already expanded}
8 Open← si ; {add it to Open }

9 remove s from Open ; {all successors generated, so state can be removed}
10 Closed← s ; {add s to Closed }

Algorithm 1.2, which extends Algorithm 1.1 by a Closed list, detects duplicates
using the lines 6 to 8 and avoids adding them to the Open list.

Lemma 3 Algorithm 1.2 will terminate and expand all states reachable in the state
space, visiting each state exactly once.

Proof. For state spaces without cycles the duplicate detection is not needed, here the
proof of Algorithm 1.1 can be applied.

Let us assume a cycle exists and state sc is the first reached state on this cycle.
Line 8 ensures that sc is stored in Open on the first appearance and line 10 stores
it in Closed when it has been expanded. While extending all paths crossing sc the
algorithm will reach it again, but avoid inserting it into Open since it was already
inserted or expanded. When a duplicate of sc exists it will also be bypassed which
does not matter since the states behind this duplicate also exist behind sc. �

In the example given above, with transitions {ŝ, s), (s, ŝ)}, Algorithm 1.2 will not
add ŝ a second time to Open since it is already present in Closed. Although the pseu-
docode is extended only in two lines the problem of looking up a state in the Closed
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Figure 1.4: DFS ordering of states.

list should not be underestimated. Many strategies exist and scientists are still develop-
ing new ways to either perform or avoid a random lookup, or store Closed efficiently
on external media without the necessity to perform a scan through the complete file
for each generated state. Based on Algorithm 1.2 several strategies were developed to
traverse state spaces efficiently, and this work is another contribution to these strategies.

The most prominent algorithms are Breadth-First search (BFS) and Depth-First
search (DFS) (Knuth, 1973). The difference between those algorithms is only the order
of storing states in Open. BFS stores them in a First In / First Out strategy while DFS
uses a Last In / First Out Open structure.

Algorithm 1.3: Breadth-First search
Input : ŝ ∈ S initial state, T set of transitions

1 Open← ŝ ; {store ŝ in Open }
2 Closed← ∅ ; {clear Closed list}
3 while Open 6= ∅ do {repeat until search terminates}
4 choose first state s ∈ Open ;
5 expand successors s→ s1 . . . sν ; {apply transitions to generate successors}
6 forall the si (∀i : 1 ≤ i ≤ ν) do {check each successor}
7 if si /∈ Open ∧ si /∈ Closed then {when not already expanded}
8 Open← si ; {add it to the end of Open }

9 remove s from Open ; {all successors generated so state can be removed}
10 Closed← s ; {add s to Closed }

Algorithm 1.3 visits all states ordered by the distance to ŝ while Algorithm 1.4
visits states with a maximal distance to ŝ first. In contrast to Algorithm 1.2 the order
of storing states in the Open list is given explicitly by the algorithm.

Since only the order of storing the states in Open is different to the general algo-
rithm the proof of completeness is inherited from the previous algorithms. The differ-
ence in the order of visiting nodes is displayed in Figures 1.3 and 1.4.

Algorithm 1.3 partitions S into BFS-Layers. All states in a BFS-Layer have the
same distance from the initial state.
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Algorithm 1.4: Depth-First search
Input : ŝ ∈ S initial state, T set of transitions

1 Open← ŝ ; {store ŝ in Open }
2 Closed← ∅ ; {clear Closed list}
3 while Open 6= ∅ do {repeat until search terminates}
4 choose first state s ∈ Open ;
5 expand successors s→ s1 . . . sν ; {apply transitions to generate successors}
6 forall the si (∀i : 1 ≤ i ≤ ν) do {check each successor}
7 if si /∈ Open ∧ si /∈ Closed then {when not already expanded}
8 Open← si ; {add it to the beginning of Open }

9 remove s from Open ; {all successors generated so state can be removed}
10 Closed← s ; {add s to Closed }

Table 1.1: Main differences between BFS and DFS.

BFS DFS
speed slow fast

Open size bound by largest layer bound by depth
cycle detection none by checking new states in Open

distance to initial minimal not specified

Although the difference in pseudocode is marginal the impact on the evaluation
of the algorithm is not. Table 1.1 points out some of the main differences. The DFS
algorithm turns out to be much faster on today’s hardware due to its better cache effi-
ciency. Although the work to expand all states is the same the BFS algorithm stores
a large number of states in memory and fetches a state from a distant region of it for
expansion. In contrast DFS expands the last generated state which resides often still in
the cache of the CPU. On the other hand the BFS algorithm can be parallelized trivially
by sending generated successors to different nodes. For the DFS algorithm an efficient
parallelization is much harder to realize since only one successor of a parent is gen-
erated. Memory consumption of Open also differs significantly in both approaches,
while in BFS the next BFS-Layer has to be stored in Open DFS stores the path from
the initial state to the current one. This path is especially short in state spaces with a
low BFS-depth but a high branching factor. Storing the entire path from initial also
enables a trivial cycle detection extension to the algorithm. By simply checking each
generated state for a duplicate in Open all cycles reachable from ŝ are found. In BFS
this strategy fails due to all states inOpen having the same distance to the initial. How-
ever, in BFS this distance is guaranteed to be minimal while in DFS the depth at which
a state is found depends highly on the state space and the chosen successor to generate.

To connect the optimality in depth and the speed of single expansions Korf (1985)
presented iterative deepening (Korf, 1985) as described in Algorithm 1.5. Here a DFS
is started with a maximal depth maxd given before the search. When the desired goal
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Algorithm 1.5: Iterated Depth-First search
Input : ŝ ∈ S initial state, T set of transitions
Output: minimal path to goal state if it exists

1 Open← ŝ ; {store ŝ in Open }
2 Closed← ∅ ; {clear Closed list}
3 maxd ← 2 ; {depth bound for first iteration}
4 while iterate do {repeat until whole state space generated}
5 iterate← false ; {variable to force another iteration}
6 while Open 6= ∅ do {repeat until search terminates}
7 choose first state s ∈ Open ;
8 expand successors s→ s1 . . . sν ;

{apply transitions to generate successors}
9 forall the si (∀i : 1 ≤ i ≤ ν) do {check each successor}

10 if si /∈ Open ∧ si /∈ Closed then {when not already expanded}
11 if |Open|+ 1 > maxd then {states exist under the bound}
12 iterate← true

13 else
14 Open← si ; {add si to the beginning of Open }
15 if si ∈ goal then return Open; {return path to goal}

16 remove s from Open ;
{all successors generated so state can be removed}

17 Closed← s ; {add s to Closed }
18 maxd ← maxd + 1 ; {increase depth bound}

state is not found the depth bound is increased and the search restarted. When no length
of a path exceeds the bound the search terminates. This algorithm is not complete, it
does not necessarily expand all states up to the given search border.2 Although a DFS
is used, the path delivered to the goal is minimal due to the increasing border by one
and a goal is reported at the minimal depth bound.

All blind algorithms assume that transitions are preferred according to the given
expansion strategy. When the state space description includes an ordering on the tran-
sitions the algorithm has to take this into account while expanding. One possibility
used in planning to impose an ordering on transitions is assigning them costs of evalu-
ation by defining a cost function.

Definition 15 (Cost Function) A cost function cost is a mapping T → R assigning
each t ∈ T a cost value.

2Assume a search border of b for a given iteration and a state s in a depth b then s can be reached by
the search and stored in Closed. When reached again in a lower depth it will not be expanded due to its
existence in Closed and its successors will be omitted.
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Analogously the cost of a path is defined as follows.

Definition 16 (Cost of a Path) The cost cost (s0 . . . sn) for a given path (s0 . . . sn) is
the sum of all costs of transitions applied in the path

n−1∑
i=0

cost(t(si, si+1))

.

In state spaces with uniform costs, e. g., cost(t) = c ∀t ∈ T , the length of a path
conforms to cost(s0, . . . , sn−1)/c.

Given a cost function, and interested in the path with minimal costs, Dijkstra pre-
sented a graph traversal algorithm in 1959 expanding nodes in the order of increasing
costs. Algorithm 1.6 applicable to state spaces stores pairs (s, cost(s)) in Open or-
dered by cost() to compute the summarized costs for a path.

Algorithm 1.6: Dijkstra’s Algorithm
Input: ŝ ∈ S initial state, T set of transitions, cost : T → R transitions to costs

mapping
Output: pathcost: minimal costs for each state reached on a path from ŝ

1 Open← (ŝ, 0) ; {store ŝ and cost (ŝ) in Open }
2 Closed← ∅ ; {clear Closed list}
3 while Open 6= ∅ do {repeat until search terminates}
4 choose the state s ∈ Open with minimal costs ; {e. g., in a priority queue}
5 expand successors s→ s1 . . . sν ; {apply transitions to generate successors}
6 forall the si (∀i : 1 ≤ i ≤ ν) do {check each successor}
7 if si /∈ Closed then {look into Open AND Closed }
8 Open← (si, cost(si)) ; {store statei and cost(si) in Open }
9 else

10 if si ∈ Open and cost(si) < cost(duplicate in Open) then
11 cost(duplicate in Open)← cost(si) ;

{update the cost in Open }

12 remove s from Open ; {all successors generated so state can be removed}
13 pathcost← (s, cost(s)) ; {store s and cost(s) to return it}
14 Closed← s ; {add s to Closed }
15 return pathcost ;

Algorithm 1.6 looks in Closed for duplicates but also checks for existence of the
state in Open which is mandatory to update the costs for already generated but still not
expanded states which were reached again using a cheaper path. To maintain Open
sorted priority queues (Edelkamp and Wegener, 2000; Cormen et al., 2001) are used to
speed up the algorithm.
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Table 1.2: Dijkstra ordering of nodes in Closed. The position is given in the upper
array and the path cost in the lower. The nodes are expanded in the order of their path
costs.

Position 1 2 3 4 5 6 7 8 9 . . . 13 14 15 16
Path costs 0 1 2 3 3 3 4 4 5 . . . 5 6 7 8

Lemma 4 Algorithm 1.6 returns the minimal cost of a path for all states reachable
from the initial one for state spaces with non-negative costs.

Proof. The algorithm partitions the state space in layers of equal costs. First consider
state spaces with uniform costs cost(t) = c (∀t ∈ T ). Here the algorithm partitions
the state space according to the BFS-Layers since the path costs start with 0 at the
initial state and increase by c with every added state. Open is always strictly sorted by
the costs and every new state is added at the end having costs equal or higher to the
previous one

• if a state si is a successor of s its costs are cost(ŝ, si) = cost(ŝ, s) + c.

• if two states si and sj are successors of a state s, the costs are cost(ŝ, si) =
cost(ŝ, sj) = cost(ŝ, s) + c.

In state spaces with non-uniform and non-negative costs cost(t) = c ≥ 0 (∀t ∈ T )
the state space is partitioned in layers of equal costs. Assume we sort Open after each
insertion. With non-negative costs we have cost(ŝ, si ∈ Succ(s)) ≥ cost(ŝ, s), and
when a state so ∈ Open is being expanded the costs to reach it cost(ŝ, so) is minimal
compared to all remaining states in Open. So each new generated state si ∈ Succ(s)
is sorted behind s and an update of its cost can move it only further to the front of
Open but not before s. When s is expanded its costs will never again be updated since
for all states so ∈ Open we have cost(ŝ, s) ≤ cost(ŝ, so) so all remaining states will
be added to Closed, and to pathcost in a non-decreasing order of costs. �

After adding a cost function to the state space given in Figures 1.3 and 1.4 with costs
in the range of 1 . . . 3 the Dijkstra algorithm is applied, resulting in a state ordering
given in Figure 1.5. The states contain the expansion order at the top and the path cost
at the bottom of a state depicted by a circle. Table 1.2 depicts the numbers again to
visualize the implied ordering by path cost.

1.3.2 External Search
State space traversal algorithms consume a huge amount of memory. Storing all states
of an implicitly given graph in RAM can be impossible given on the size of the graph.
Solving the problem by using compression is a solution, but even with compression a
minimal size for a state exists limiting the amount of states which can be stored.

Another approach is to store the nodes on external memory e. g., a HDD. Since
hard disk drive has different access properties then internal memory, new algorithms
had to be developed to utilize it efficiently.
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Figure 1.5: Dijkstra ordering of states in a virtual state space. The expansion order is
given in the upper half, the path cost in the lower half of each circle. Edges are marked
with the edge costs.

Data is stored in blocks on external media imposing a lag when accessing a random
block or a single element in this block. Adjacent blocks of memory can be accessed
without a latency, so accessing data is done sequentially since this strategy distributes
the latency on all retrieved elements. Aggarwal and Vitter invented an adapted mem-
ory model to analyze algorithms that utilize external memory in 1988. Here accessing
the data in blocks is preferred to analyze the performance of external memory algo-
rithms. Graph traversal algorithms optimized for external memory usage are presented
in (Meyer et al., 2003).

Algorithm 1.7: The External BFS algorithm
Input : ŝ ∈ S initial state, T set of transitions, buffer preferably size of RAM

1 Open← ŝ ; {store ŝ in Open }
2 while Open not empty do
3 read Open in buffer ; {partially if to large}
4 expand all states in buffer into a new file Opennext on external device ;
5 sort Opennext ; {externally if necessary}
6 scan through Opennext and remove adjacent duplicates ;
7 scan trough Open and Opennext to remove duplicates from previous layers ;
8 append Opennext to Open;

Algorithm 1.7 presents a Breadth-First search approach (Munagala and Ranade,
1999), where all data is stored on external media. Internal memory is used as a buffer
where nodes are stored temporarily before being written to the block device. Enabling
an efficient duplicate detection is realized by sorting. Since the Opennext file, contain-
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ing all states to be expanded in the next BFS-Layer can potentially exceed the available
buffer size an external sorting approach is needed. Being sorted, all duplicates in the
file will be arranged adjacent to each other and can be removed easily by a single
scan through the file. Mehlhorn and Meyer (2002) and later on Ajwani et al. (2007)
present modifications of this algorithms with a reduced number of I/O operations due to
caching an adjacency matrix of the nodes in the internal memory, reducing the running
time by several folds.

While the presented modifications request an explicitly given graphs Korf (2003a)
presents an implicit graph algorithm based on the idea of a Frontier Search analyzed in
detail also by Korf in 2005.

Since the efficiency of an external algorithm highly depends on its implementation
two C++ libraries exist to support the developer. The standard template library for XXL
data sets (STXXL) (Dementiev et al., 2005), used in the scope of this work, is the first
I/O-efficient algorithm library that supports the pipelining technique. While the goal
of the Templated Parallel I/O Environment (TPIE) is to provide a portable, extensible,
flexible, and easy to use C++ programming environment.

1.3.3 Parallel Graph Search

Parallel graph search (an overview is given e. g., by Ghosh (1993)) increases the search-
ing speed by utilizing more then one computation device to generate states or to check
for duplicates and extends the available internal memory by using a distributed system.
The challenge in parallel search is to find distinct parts of a graph and to distribute them
to the computation cores.

Parallel search is divided in two sub domains called distributed search and shared
memory search. Distributed search denotes the utilization of clusters, build up of a
number of distinct computing systems connected through a network. Shared memory
search relays on the existence of a memory accessible directly from all used computa-
tion devices.

Distributing a state space is usually done in one of two ways, either a static hash
like function is used to determine which core is responsible for the state or a dynamic
function analyzes the load on the cores and assigns a generated successor to a core
with the minimal load. Both strategies are divided into further solutions to optimize
the distribution and minimize the necessary communication.

A naive approach to parallelize the Breadth-First search (Ghosh and Bhattacharjee,
1984), depicted in Algorithm 1.8 is to distribute the generated successors among the
available computing nodes. The problem with this realization is a high communication
overhead between the nodes. Each generated state is send over a communication proto-
col to a distant node and a common Closed structure has to be maintained to avoid the
expansion of duplicates. Additionally to a Closed synchronization the Open structure
of this algorithm has to be maintained on a root node.

The modified Algorithm 1.9 utilizes a hash function h(s) to distribute states to
indexed nodes enabling a distribution of Closed and Open structure. This hash based
partitioning avoids the communication to determine already visited states but depends
on the distribution of the hash function to achieve an efficient parallelization.
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Algorithm 1.8: Basic parallel search strategy
Input : ŝ ∈ S initial state, T set of transitions

1 Open← ŝ ; {store ŝ in Open }
2 Closed← ∅ ; {clear Closed list}
3 while Open 6= ∅ do {repeat until search terminates}
4 choose n states sp ∈ Open ;
5 forall the sp (∀p : 0 ≤ p ≤ n− 1) do in parallel
6 expand successors sp → s1 . . . sν ;

{apply transitions to generate successors}
7 forall the si (∀i : 1 ≤ i ≤ ν) do {check each successor}
8 if si /∈ Closed then {when not already expanded}
9 Open← si ; {add it to Open }

10 remove all sp from Open ;
{all successors generated so states can be removed}

11 Closed← s ; {add s to Closed }

Algorithm 1.9: Hash based parallel search strategy
Input : ŝ ∈ S initial state, T set of transitions, N number of nodes

1 Open[0]← ŝ ; {store ŝ in Open of one node}
2 forall the nodes n (0 ≤ n < N) do in parallel {start all nodes}
3 Closed[n]← ∅ ; {clear local Closed list}
4 while Open[0, . . . , N − 1] 6= ∅ do {repeat until all Open empty}
5 choose one state s ∈ Open[n] ;
6 if s /∈ Closed[n] then {when not already expanded}
7 expand successors s→ s1 . . . sν ;

{apply transitions to generate successors}
8 forall the si (∀i : 1 ≤ i ≤ ν) do {check each successor}
9 if h(si) 6= n then {find responsible node for this state}

10 send si to node h(si) ; {send it to appropriate state}
11 else
12 Open[n]← si ; {add it to local Open }

13 remove s from Open[n] ;
{all successors generated so state can be removed}

14 store s in Closed[n] ; {add it local Closed }
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Figure 1.6: Distribution of nodes according to the DFS distance to the initial like pro-
posed by (Holzmann and Bosnacki, 2007).

Zhou and Hansen (2007) presented a structured based parallel distributing approach
which analyzes the state space prior to the search and distributes the states based on
a state space abstraction function. Here, the advantage is the preferred expansion of
successors on the same node, so each node can work on a specific region in the state
space and distribute only distant states. They extended this strategy to a dynamic dis-
tribution technique. Here the state space is analyzed on the fly while searching and the
distribution function adjusted (Zhou and Hansen, 2011). An adjustment includes a stop
of the search and a rearrangement of already stored states.

While the previous parallelizations are based on BFS and can be used on shared
memory and distributed systems, (Holzmann and Bosnacki, 2007) went a different ap-
proach and parallelized the Depth-First search on a shared memory multi-core system.
Here, the states are distributed among the available cores depending on their DFS dis-
tance from the initial state like sketched in Figure 1.6. When all nodes are occupied the
search continues on the first node which preferably expands states at a higher depth.

Recently Barnat et al. (2011) show how existing parallel algorithms to find strongly
connected components in a graph can be reformulated in order to be accelerated by
NVIDIA CUDA technology. In particular, they design a new CUDA-aware proce-
dure for pivot selection and adapt selected parallel algorithms for CUDA accelerated
computation.

DisNet, a tool set for Distributed Graph Computation (Lichtenwalter and Chawla,
2011) should be given as the latest example for a distributed graph search implemen-
tation. After supplying two small fragments of code describing the fundamental kernel
of the computation. The framework automatically divides and distributes the workload
and manages completion using an arbitrary number of heterogeneous computational
resources.

Describing all possible ways to parallelize a state space search is sincerely out of the
scope of this introduction and even not possible due to the large number. The sketch,
given in this section is mentioned as a starting point for the following assumptions and
development leading to an efficient algorithm for novel hardware.
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1.4 Duplicate Detection in Graph Search
All state space searching algorithms rely on an efficient duplicate detection. In fact
studies made within the scope of this work revealed the duplicate detection to consume
over 50% of the whole searching time. So several strategies were developed to avoid re-
expanding nodes. Removing already existing nodes requires a comparison function for
state representations. This function can either compare the complete stored vectors or
an approximated representation of them giving the chance to reduce the space needed
to represent the state.

The challenge in duplicate detection is to find an already expanded state which is
similar to the examined one, done either by sorting the new state into all existing ones or
by looking up an entry in a table containing expanded states. While the sorting method
is superior on block access devices with a slow random access, looking up an entry
table is superior in memory structures with a short random access speed. Variations
exist to speed up the checking process by either reducing the number of comparisons
or the amount of memory used for the expanded states.

In special cases, where enough information of the state space is given prior to the
search it is possible to reduce the duplicate detection to only special states or even avoid
it completely. In his thesis Jabbar (2008) has shown that when exploring undirected
graphs with the BFS algorithm a check of the previous two layers suffices to remove
all duplicates.

External search introduces the term Delayed Duplicate Detection (DDD) in con-
trast to Immediate Duplicate Detection (IDD) defined as follows.

Definition 17 (Delayed/Immediate Duplicate Detection) In Delayed Duplicate De-
tection (Korf, 2003a) the detection of duplicates is postponed to a specific point in
the search, e. g., when one BFS-Layer is generated, to increase per state performance.
Taking into account that states may be stored more then once.

Immediate Duplicate Detection checks for existing duplicates immediately after a
new state is generated, avoiding memorizing of duplicates.

1.4.1 Hash Based Duplicate Detection
To achieve a fast duplicate detection, also facing the rising amount of RAM available
in today’s systems hashing can be used.

Definition 18 (Hash Function) A hash function h is a mapping of some universe U to
an index set [0, . . . ,m− 1].

The set of reachable states S is a subset of U , i. e., S ⊆ U . Since S is usually
not known prior to the search, the hash function h is defined over all elements in the
universe. The upper bound for m− 1 is the number representation in the system being
2b where b is the number of bits used to store the value. A generated state s or its
representation is stored at a specific position in a table. Usually the predefined position
for s is h(s) mod tablesize where tablesize is the maximal number of elements the
table can host.
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Collision affected hashing

Since not only the hash value is limited but also the number of entries in the table
collisions will appear. A collision appears when two different states are assigned to the
same entry in the table.

s1 6= s2 and h(s1) mod ts = h(s2) mod ts

The appearance of collisions can not be avoided, unless all elements which will
be hashed are known prior to the hashing, collision resolving strategies were invented.
While this work will present the most common in the following, the interested reader
is directed to Knuth (1973).

Chaining A basic strategy to resolve collisions is to store more then one element in
one table entry by increasing the size of each table entry and decreasing ts. Since
increasing the size of an entry increases the number of collisions by decreasing
the ts an alternative is to store a list of elements at each entry and record the
number of inserted elements.

Open addressing In this strategy the element is stored at an alternative position if
its preferred position is occupied. Storing the element simply at the next free
position, denoted as linear probing requires a scan up to the next free position for
each lookup and increases the lookup time so alternatives like quadratic probing
exist to decrease this drawback. Here the element is stored on an alternative
position computed from the hash value h(s) e. g., h(s)2 in quadratic probing.

Cuckoo hashing A strategy with a guaranteed constant lookup time is cuckoo hash-
ing (Pagh and Rodler, 2001) where two tables t1 and t2 and two hash functions
h1 and h2 are utilized. The element is inserted either in t1 using h1 or in t2 using
h2. When both entries are occupied an element is removed in one table and the
new one inserted. The inserting process restarts with the removed element. The
drawback is the possibility to meet circles which can be destroyed by changing
the hash functions and rehashing all elements.

Bloom Filer In the bloom filter or Bitstate hashing (Bloom, 1970) the entry in the
table is solely one bit. Checking if state s was already expanded boils down to
look up the bit at index h(s) and discard s if the bit is enabled. Otherwise the bit
is changed to be enabled. Colliding states are discarded. This strategy provides a
maximal compression per state but is not complete due to omitting unexpanded
states.

Perfect, non collision affected hashing

Perfect hashing (Botelho et al., 2007) is a space-efficient way of associating unique
identifiers to states. It yields constant random access time in the worst-case. Perfect
hash functions are bijective. In certain search environments perfect hash functions can
be used with a bit vector to compress each state to only one bit in Closed. Such an
environment can be either a search where all reachable states are known before the
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search, here a collision free hashing function can be constructed or where all reachable
states are determined in an additional step performed before the actual search starts.
To construct a perfect hash function according to Botelho and Ziviani (2007), it is
necessary to generate the entire state space graph. For the search using a bit vector
Closed list certain characteristics of hash functions have to be defined.

Definition 19 (Perfect Hash Function) A hash function h : U → [0, . . . ,m − 1] is
perfect, if for all s ∈ S with h(s) = h(s′) we have s = s′.

Given that every state can be viewed as a bit vector, and, in turn, be interpreted as
a number in binary, a simple but space-inefficient design for a perfect hash function
would be to use this number as a hash value.

Definition 20 (Space Efficiency) The space efficiency of h is the proportion dm/|S|e
of available hash values to states.

Definition 21 (Minimal Perfect Hash Function) A perfect hash function h is mini-
mal if its space efficiency is 1.

A minimal perfect hash function is an one-to-one mapping from the state space S
to the set of indexes {0, . . . , |S| − 1}, i. e., m = |S|. In contrast to open-addressed
or chained hash tables, perfect hash functions allow direct-addressing of Bitstate hash
tables. This allows compressing the set of visited states without loosing completeness.
The other important property is given if the state vector can be reconstructed given the
hash value, which allows to also compress the list of frontier states Open.

Definition 22 (Reversible Hash Function) A perfect hash function h is reversible or
invertible, if given h(s), the state s ∈ S can be reconstructed. A reversible minimum
perfect hash function is called rank, while the inverse is called unrank.

Of course every perfect hash function can be modified to be a reversible hash func-
tion by storing the states in the order given by the hash function in a table. Now, when
h(s) is computed a lookup suffices to find the reconstructed state but this approach is
not efficient in terms of memory usage.

While the generation of a minimal perfect hash function from a set of elements is
described in detail by Belazzougui et al. (2009) it can be also constructed combining
not perfect but orthogonal hash functions.

Definition 23 (Orthogonal Hash Functions) Two hash functions h1 and h2 are or-
thogonal, if for all states s, and s′ with h1(s) = h1(s′) and h2(s) = h2(s′) we have
s = s′.

Theorem 1 (Orthogonal Hashing implies Perfect Hashing) If two hash functions
h1 : U → [0, . . . ,m1 − 1] and h2 : U → [0, . . . ,m2 − 1] are orthogonal, their
concatenation (h1, h2) is perfect.
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Proof. Starting with hash functions h1 and h2, let s be any state in U . (h1(s), h2(s)) =
(h′1(s), h′2(s)) implies h1(s) = h1(s′) and h2(s) = h2(s′). Since h1 and h2 are
orthogonal, this implies s1 = s2. �

In case of orthogonal hash functions, with smallm1 the value of h1 can be encoded
in the file name (Korf, 2003a), leading to a partitioned layout of the search frontier, and
a smaller hash value h2 to be stored explicitly. Orthogonality can cooperate with bit
vector representation of the search space, as function h2 can be used as an index. For
frontier search, the space-efficiency is smaller than with full state space memorization.

Considering its strong set of assumptions of orthogonal and reversible hash func-
tions, hash-based delayed duplicate detection based on perfect hashing as proposed
by Korf and Schultze (2005) is not available for general state space search.

1.4.2 Sorting Based Duplicate Detection

In searches where the internal memory does not suffice to expand the whole graph
external memory can be used. In this strategy sorting reduces the number of read
accesses to the external media since two sorted files can be compared by one parallel
scan through them. Figure 1.7 visualizes this process. One file is stored in the buffer
while the other is traversed sequentially comparing each state in memory sm to one
external state se. The decision process is defined as follows:

• sm = se remove sm from memory

• sm < se move the memory read pointer

• sm > se move the external read pointer

• se < (following adjacent se) move the memory read pointer to the beginning

Where the comparison is defined by the sorting function.
Since checking for the existence of a duplicate immediately would require a block

access to the disk, this is postponed and all elements in one block are checked at once
in external searching.

Read Pointer 1

Read Pointer 2

First File in internal buffer

Second File

Figure 1.7: Removing duplicates in two sorted files by scanning. Read Pointer 1 is
moved to the right and reset to the front when Read Pointer 2 detects a decrease in the
increasing sorting order.
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1.5 Main Contributions

The underlying publications of this work are the results of intensive discussions not
only with my supervisor Stefan Edelkamp but also with a number of scientists in- and
outside the office. Since a diary, with detailed results of discussions or even paper
dependent contributions does not exist, I can map my contributions to specific chapters
and sketch my impact on the results, only. One thing to mention is that the order of
author names on the publications is strictly alphabetical. An exception is (Sulewski et
al., 2011) here the names are ordered by the amount of contribution.

Although this work relays on a number of publications it extracts common topics
from different disciplines and presents the results in a novel, easy to follow way. The
author contributes with this thesis to four scientific disciplines by exploiting aspects
found in all of them and by proposing a way of using novel hardware efficiently.

Explicit State Model Checking The starting point of utilizing solid state disks in
the field of search was the algorithm from Gastin and Moro (2007). I analyzed the
External Perfect Hashing (Botelho and Ziviani, 2007) which generates the Perfect Hash
Function from external media but stores it internally, and developed an efficient strategy
to outsource the hash function to SSDs. This externalization enabled the semi-external
algorithm presented in Chapter 6 which stores solely one-bit per state in the Closed
list in internal memory.

The demand to generate the entire state space efficiently for the previous algorithm
motivated us to search for hardware to accelerate the generation. This search led to
graphics cards due to the enormous computation power. I analyzed the Model Check-
ing process for entry points to use the graphics unit and extended the existing model
checker DIVINE to generate the state space utilizing the GPU. For this the model is
converted into the Reverse Polish Notation (RPN). A representation revealed by me to
be efficient due to the flat representation and sequential evaluation. To accelerate the
generation I evaluated the sorting strategies mentioned in Part I and developed the ap-
proach presented in Subsection 4.3.1 as a combination of MP5 and hash based bucket
sorting, efficient for sorting large elements on the GPU.

During the work on sorting, the model checker DIVINE has been reimplemented
and ported to utilize 64-bit architecture. An integration of the GPU would have required
serious analyzing efforts in DIVINE without the guarantee that further major changes
in the code would not make the efforts useless. So the decision was to to develop a
CUDA Driven Model Checker (CUDMOC) as an evaluation platform for GPU Model
Checking algorithms. It has been entirely developed and implemented by me.

Action Planning Inspired by the results in Model Checking and due to the similarity
of searching a state space I implemented a parser for the Planning Domain Description
Language (PDDL) and extended CUDMOC to the CUDA Driven Planner (CUDPLAN).
Here the main task was to translate the input into the RPN, enabling the planner to
handle action costs by performing a Dijkstra search. The resulting algorithm developed
and implemented by me is presented in Part III.
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Game Solving In the work on Model Checking and Action Planning a byproduct
was the successor counting strategy proposed in Subsection 4.2.1. It revealed to be
inefficient in both disciplines. This strategy was evaluated by me on single player per-
mutation games and revealed to be efficient in Game Solving. During the evaluation
I reduced the space consumption of the two-bit BFS approach from Cooperman and
Finkelstein (1992) to use only one-bit for reachability or even for BFS in special cases,
presented in Part IV. In this context Perfect Hashing for permutations, called ranking
was utilized to compress the states. I revealed the lexicographical approach is ineffi-
cient on the GPU and it is a better solution to use the functions proposed by (Myrvold
and Ruskey, 2001) adopted to be efficient on the graphics card. The approach was ex-
tended to single and multi-player games by using binomial and multinomial hashing.

Discussions with other scientists revealed the field of Probabilistic Model Checking
to be a promising target for a GPU enhancement. It turned out that the Jacobi iterations
used to solve the probabilistic problems are efficiently parallelizable. So I analyzed the
implementation of the PRISM Model Checking tool and extended it to use the GPU
and later on even multiple GPUs as presented in Part V.

Although most of the work done by me seems to be implementation I also partici-
pated actively on writing the papers.

1.6 Organization of the Thesis
This thesis presents results achieved by utilizing the recently introduced achievements
in information storage and parallel processing on four scientific areas from Software
Verification and Artificial Intelligence domains, namely Explicit State Model Checking,
Action Planning, Game Solving and Probabilistic Model Checking. All relies strongly
on traversing a state space given by an initial state and an transition relation.

Having introduced the basic formalism of state space searching and basic algo-
rithms in the first chapter it continues with a brief overview of the hardware evaluation
in the last decade. Since knowledge of the specifics is crucial to understand the deci-
sions undertaken in the development of the algorithms Chapter 2 introduces the main
aspects of Solid State Disks (SSDs), followed by the architecture and the programming
model of General Purpose Graphics Processing Units (GPGPUs). The chapter closes
with discussing the limitations in GPU programming.

After presenting the fundamental knowledge on the hardware an algorithm is pro-
posed to utilize both devices efficiently to extend the number of solvable problems in
the search domains. The presented algorithm is build up of modules which are used
depending on the problem. The searching process is split up in three stages, namely
evaluate successors, generate successors and remove already existing successors. In
each stage strategies are presented for an efficient utilization of the parallel processors
of the graphics card or the random access speed of SSDs. To avoid revisiting of states
two strategies are explored, on the one hand an external sorting approach which utilizes
the GPU to speed up sorting, on the other hand CPU based hashing. Both strategies are
extended to increase the available space per element by compressing and adding the
probability of removing unexpanded states.

Having introduced Explicit State Model Checking the proposed strategies are ap-
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plied and evaluated. To extend the available memory for the checking process tech-
niques to use Solid State Disks as a storage medium are studied in Chapter 6. Here, a
semi-external technique to use perfect hash functions stored externally is proposed to
find minimal counter examples in LTL Model Checking and concentrates on the results
from the following journal publication,

• Stefan Edelkamp, Damian Sulewski, Jiri Barnat, Lubos Brim, Pavel Šimeček,
Flash memory efficient LTL Model Checking. In Science of Computer Program-
ming, volume 76, number 2, pages 136-157, Elsevier, 2011

Having extended the available memory by using external media we increase the
speed of checking by enhancing the process with a massively parallel graphics pro-
cessor in Chapter 7. Algorithms to speed up breath first searching by using the com-
putation power of a GPU are presented. Detailed information is given on translating
the given problem into a description suitable for the graphics card, and the implicit
traversal of the graph. This chapter merges the results from two publications, namely

• Stefan Edelkamp and Damian Sulewski Efficient Explicit-State Model Checking
on General Purpose Graphics Processors. In 17th International SPIN Workshop
on Model Checking of Software (Spin’10) by van de Pol and Weber (Eds.). Lec-
ture Notes in Computer Science (LNCS), vol. 6349, pages 106-123, Springer,
Berlin, Heidelberg, 2010

• Stefan Edelkamp and Damian Sulewski External Memory Breath-First Search
with Delayed Duplicate Detection on the GPU. In Sixth Workshop on Model
Checking and Artificial Intelligence (MoChArt’10), Atlanta, Georgia, USA, July
11, 2010

Due to the similarities in Model Checking and Planning, the approach presented in
the previous chapter is adopted in Action Planning by an implementation of a parser
and the addition of a cost-optimal search technique. Chapter 9 introduces planning
and points out the similarities to Model Checking. In the following the conversion
of a planning problem to a GPU suitable description is presented. The approach was
extended to Dijkstra’s Algorithm, where the costs of a node are computed on the GPU,
and presented in

• Stefan Edelkamp, Damian Sulewski and Peter Kissmann Exploiting the Compu-
tational Power of the Graphics Card: Optimal State Space Planning on the GPU.
In International Conference on Automated Planning and Scheduling (ICAPS’11),
pages 242-249, AAAI Press., 2011

During the evaluation of techniques for Model Checking and Action Planning a
different approach for generating successors was found, not suitable for the analyzed
domains. This technique showed promising results in areas where the generation of
successors is an easy to perform task and even perfect hash functions can be used.
Part IV describes the utilization of the GPU for solving games. After an introduction is
given, the analyzed games are introduced. A well defined state description, e. g., given
by a game board and the number and position of pins of each player, allows us to con-
struct perfect hash functions, which are collision free, and efficiently computable on the
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GPU. Chapter 13 will propose such hash functions for the analyzed games which will
be used to construct algorithms for traversing the state space. The Chapter is followed
by a detailed instruction on porting the algorithms on the GPU and an experimental
evaluation presenting the results. It merges the results from the following publications:

• Stefan Edelkamp and Damian Sulewski Parallel State Space Search. In The
2009 International Symposium on Combinatorial Search (SoCS’09), Los Ange-
les, USA, July 2009

• Stefan Edelkamp, Damian Sulewski and Cengizhan Yücel, Perfect Hashing for
State Space Exploration on the GPU. In International Conference on Automated
Planning and Scheduling (ICAPS’10), pages 57-64, AAAI Press., 2010

• Stefan Edelkamp, Damian Sulewski, Cengizhan Yücel, GPU Exploration of
Two-Player Games with Perfect Hash Functions, In The ICAPS 2010 (Interna-
tional Conference on Automated Planning and Scheduling) Workshop on Plan-
ning in Games, Toronto, Canada, May, 2010

Although the proposed framework could be also applied to speed up the state space
generation in Probabilistic Model Checking it turns out to be ineffective in this disci-
pline to generate the state space. Here the checking process is performed by solving
linear equations so a different approach had to be invented to profit from the GPU.
Part V, exemplifies the usage of the GPU to speed up the Jacobi iterations used in
Probabilistic Model Checking for solving linear equations, the most time consuming
part of the process. It is based on the journal publication

• Dragan Bosnacki, Stefan Edelkamp, Damian Sulewski and Anton Wijs, Parallel
Probabilistic Model Checking on general purpose graphics processors, In Inter-
national Journal on Software Tools for Technology Transfer (STTT), volume 13,
number 1, pages 21-35, Springer, Berlin, Heidelberg, 2011

Finally, conclusions are drawn and future extensions discussed.



Chapter 2

Hardware and Programming
Models

This chapter motivates the necessity for the algorithm designers to follow the hardware
development and adopt existing, or even invent new algorithms to utilize the aspects
of novel hardware. In graph searching, like in most computationally challenging tasks,
not only the computing speed has to be optimized but also the storage capacity. With
an increasing computation speed the amount of generated information in given time is
increasing, resulting in a larger space demand or better compression techniques. On
the other hand the increasing amount of storage capacity enables a longer computation,
accelerated by faster hardware or by better algorithms.

In the following novel hardware solutions to both problems will be presented. On
the one hand the SSDs are in the process of replacing the HDDs in high performance
computing. On the other hand the utilization of massively parallel systems to support
the multi-core CPUs. After sketching the evolution of the hardware up to the current
point, the chapter closes with a presentation and evaluation of the used devices.

Structure of the chapter: This chapter will sketch the hardware developments of
storage and display devices in recent years. Detailed information is given on the differ-
ences between magnetic and solid state media and on the interns of graphics processing
units. The chapter closes with an evaluation of the hardware used in this thesis.

2.1 Information Storage

The demand of storage capacities rises linearly with the number of states to visit, not
only a visited list has to be maintained, but also the states being evaluated in the fu-
ture have to be stored. This requests a huge amount of storage space necessary to find a
goal, or to prove its absence. Traditionally two main levels of storage are distinguished.
Internal storage, accessible very fast, even when accessed randomly, and external stor-
age preferring sequential access to deliver data at a decent speed. In the recent years a
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new type of external storage was presented, the so called Solid State Disk (SSD). This
drive lacks any mechanical parts and stores its information like the internal storage on
memory cells in the chip. Such a type of memory is faster, compared to hard disk
drives (HDDs) in random reading time but the disks analyzed in this work gained no
speed advantage while writing.

2.1.1 Random Access and Insufficient Space in Internal Memory
Even with 64-bit technology the amount of internal storage is limited due to the ca-
pabilities of the hardware. Utilizing more then 32 gigabyte of internal random access
memory (RAM) assumes special hardware which is very expensive. Even in hard-
ware developed for server usage 256 GB RAM per computing node seams to be the
limit nowadays. While connecting a huge number of computers with a fast network
is a solution, using them implies different algorithms switching the topic to parallel
computing.

2.1.2 Pushing Space Constrains by Going External
While writing this thesis the price for 1 GB external storage on hard disk drives is
0.03 C, making it very cheap to construct cluster computers with nearly unlimited
space, or adding storage capacities to existing computers. Comparing the speed of
data access on external and internal memory bares the main drawback of HDDs. Even
with a sequential data transfer rate of 200 MB/second the disk is slow compared to
17, 000 MB/second achievable with recent RAM modules. On the algorithmic side new
traversal techniques developed to access data in large blocks utilizing the sequential
access speed of this media can be used. On the hardware side it is possible to connect
more than one media to a Redundant Array of Independent Disks (RAID). While such
an array theoretically increases the transfer speed up to a sum of all used drives it does
not change the IO latency when accessing the media randomly.

2.1.3 Solid State Disks
SSDs developed recently benefit from the fact, that accessing data stored in solid-state
memory of a chip is faster then accessing it on a magnetic disk. They are not only faster
while sequential reading but also while random reading. In recent years a trend arises
to replace HDDs in notebook computers by SSDs and they are continually entering the
market for desktop computers particularly when a high demand for fast access exists.
While an SSD is preferred in portable computing due to their resistance to physical
shock and the low power consumption, desktop users profit mostly from the speed and
the absence of sound. However, the price of 2 C for 1 GB nowadays increases not only
the price of portable computing but also decreases the storage capabilities compared
to HDDs. Taking into account the already long evolution of magnetic media, and the
fact that the production of memory chips is developing very fast the price is expected
to decrease in near future1.

1When my research begun two years ago the price was nearly 20 C for 1 GB.
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Storage Medium

The drawback of magnetic and optic devices is the time needed to move the read/write
head to the data. To eliminate this drawback early generation solid state devices stored
the data in electrically erasable DRAM chips which were powered by additional bat-
teries if necessary. Of course the data is lost once the battery drains out. In 1994 the
first flash-based drive was introduced which did not require an additional power supply.
The military begun to use such devices due to their physical shock resistance. Recently
the manufacturers switched from using DRAM volatile memory to NAND flash due to
its higher bit density (Kim et al., 2005) and lower production cost reaching up to 1 TB
capacities with a throughput of 768 MB/s. Table 2.1 shows a qualitative picture for the
devices tested by (Ajwani et al., 2008).

Table 2.1: Rough classification of flash with respect to RAM and hard disk.

Characteristic RAM Flash Disk
Volatile Yes No No
Shock Resistant Yes Yes No
Physical Size Small Small Large
Storage Capacity Small Large Largest
Energy Consumption High Low Medium
Price Very High Medium Very Cheap
Random Reads Very Fast Fast Slow
Random Writes Very Fast Fast Slow
Sequential Reads Very Fast Fast Fast
Sequential Writes Very Fast Fast Fast
Throughput Big Smallest Small

Comparison to Magnetic Media

While a magnetic drive is mostly a mechanical device, where one or more rotating
magnetic disks are accessed by a read/write head which is moved to the according
position, an SSD is an electronic device where no moving parts are present. Figure 2.1
points out the aspects of both drives in more detail. The controller’s task in the hard
disk is to activate the motor spinning the disk and to move the head to the appropriate
location when accessing data. The data is stored in continuous blocks if possible.
Although NAND flash memory is slower it has outpaced DRAM memory due to the
highly parallel structure of the SSD and the evolution of on board controllers built
into the devices. The controller in an SSD is responsible for accessing the appropriate
memory cell and to distribute written data over the available blocks. While a block on
the magnetic disk can directly be overwritten this is not the case in NAND memory.
Here, the controller has to erase the block prior to writing data to it, a task which
explains the discrepancy between reading and writing times when accessing solid state
drives.
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Figure 2.1: Comparison of a HDD and an SSD on the hardware level. In a HDD
the controller (HDDC) controls the motor (M) to spin the disk (Disk) and the head
controller (HeadC) to move the head (H). Data is read and written sequentially using
the head to the disk. In an SSD the controller (SSDC) accesses the memory chips
(M1...12) directly receiving and sending data in parallel from them and to them.

Memory Models

In this section an extension to the model for hard disk I/O operations presented by
Aggarwal and Vitter (1988) is sketched (given in detail by Edelkamp and Sulewski
(2008a)), and extended to represent also the characteristics of solid state drives. It
also distinguishes between the scanning complexity scan(n) = dn/Be and sorting
complexity sort(n) = dn/Be logbM/Bcdn/Be, where n is the number of input items
that have to be scanned and sorted, B is the number of elements in a block that are
accessed in one I/O operation, and M is main memory capacity (in items).

Driven by own evaluation and the observations of Ajwani et al. (2008), this model
distinguishes between writing of n items, denoted as write(n), and reading of n ele-
ments, denoted as read(n), mainly because reads are faster than writes. As, according
to Ajwani et al. (2008), standard external sorting does not differ much on both media
introducing a different term for flash memory is not necessary. It has to be accepted
that the derived complexity model is not an exact match. For example there are dis-
continuities on flash media, e. g., restructuring the access tables requires longer idle
times.

Solid state disk reads also operate block-wise, as reads and writes on hard disk
do, so reading small amounts of data from distant random positions takes considerably
more time than reading the same amount of data stored linearly. This does match
the design of flash media. The difference in read and write on flash devices have to
reflect the fact that, since NAND technology is not able to write a single random bit,
writing uses block copying and removal, before a small amount of data is written2.
This explains why random writing is slower then random reading.

As observed by Ajwani et al. (2008), a simple penalty factor is likely to be too

2The gap between read and write also relates to how the flash memory is organized. Even for NAND
devices different trade-offs can be obtained in different designs.
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pessimistic for random write, as it becomes faster if the data set gets larger. The theo-
retical model suggested here is based on linear functions that include both the offsets
to prepare the access to the data, and the times for reading it. As hard disk I/Os as well
as read and write I/O operations differ, it suggests not to count block accesses, but take
some abstract notion of time. The proposed model distinguishes between the offset
(including the seek time and other delays prior to the sequential access), and a linear
term for reading the elements.

One may either introduce individual block sizes for reading and writing, or devise
suitable factors for read and write access. The second alternative is preferred here and
suggests the following primitives for analyzing algorithms on flash memory:

scan(n) = tA + t′A · dn/Be,
read(n) = tR + t′R · dn/Be, and

write(n) = tW + t′W · dn/Be,

where the value

tA denotes the time offset for hard disk access (either for reading or for writing). It
reflects the seek time for moving the head to the location of the first data item
that is executed only once in a sequential read operation.

t′A is the time for reaching the next block in a linear scan.

tR and tW are the time offsets for reading and writing data on the flash. With tW
being considerably larger than tR this explains the discrepancy between the two
operations for random access.

t′R and t′W are the offsets for flash media access per block. Here t′W is only moder-
ately larger than t′R, explaining that the burst rates do not differ that much.

As tA is much larger than tR and tW (while t′A is about as large as t′R and t′W )
these terms agree with the observation that for flash media it is less important, where
the block is located, while disks clearly prefer blocks that are adjacent.

Ajwani et al. (2009) propose two new computation models, the general flash model
and the unit-cost model being enough for meaningful algorithms design and analysis
picking up the idea presented here and simplifying it for easier usage.

This section presented the organization of semiconductor storage devices and com-
pared their function to magnetic media devices. The most limiting factor of SSD usage
is the limited space. While hard disk drives can store several terabytes today, avail-
able SSDs are limited to several hundred gigabytes. A second negative aspect is the
immense influence of the controller. Different controller technologies with varying
access speeds result in different running times of algorithms. Additionally, when ana-
lyzing an algorithm the developer has to distinguish between read and write accesses,
compared to just counting the IO operations in the Vitter/Shriver model.
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2.2 Faster Computation Using Parallel Hardware
In his thesis Jabbar (2008) proposed algorithms to utilize external hardware for state
space exploration in a way which hides the latency of the external media, relying on
more computational power for a faster search. The experimental evaluation was per-
formed on a two disk RAID array with nearly 120 megabyte per second transfer rate.
Combining four recent SSDs in such an array enables nearly 1,000 megabyte per sec-
ond transfer rate for external media, pushing the bottleneck even further on the central
processing unit.

The increasing speed of external memory and also the perspective to utilize more
internal memory motivated researchers to develop parallel algorithm to solve harder
problems.

2.2.1 Parallel Computing
In the 90ties Gasser (1996) used a cluster of connected computers to solve the Game
Nine-Men-Morris. Utilizing connected machines enabled the researchers to tackle
complex problems and get deeper insight into solutions. By this time two types of
parallel computers existed, a distributed system of self-sufficient machines connected
with a network and systems consisting of several unique CPUs with access to shared
memory. Cluster computers combine both architectures to achieve more computation
power.
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Figure 2.2: Intel CPU frequency over the years.

In 1965 Moore predicted the number of transistors placed inexpensively on a chip
to double every two years. Until nearly 2005 not only the number of transitions on a
chip nearly doubled every two years, following “Moore’s Law” but also the frequency
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of the chip doubled. According to Figure 2.2 this trend stagnated in 2005 where the
developers started to double the number of cores every 2 years. The high frequency
scaling, attended by a rapid development in network technology, took the focus from
machines with more then one CPUs on one main board and pushed it to clusters of
single core machines connected in a high speed network. This development achieved
a peak in the year 2000 with the fastest computer in Europe consisting of 528 single
standard PCs, each with just one Intel Pentium III CPU.

Since running the processors at a very high frequency causes the CPU to consume
much power and cooling becomes problematic, a way to increase computational power
without increasing the clock speed had to be found, and the solution led to multi-core
CPUs. Here several computing cores are combined in one chip and each single core
runs at a relatively slow clock speed, but the computational power can be cumulated.
Today multi-core CPUs consists of up to 8 real cores simulating 16 cores by Chip-
Level-Multithreading (CMT).

The development in architecture shifted the focus in algorithm engineering again
from distributed algorithms communicating over a network to multi-core algorithms
communicating using shared memory.

2.2.2 General Purpose Graphics Processors
While the cores of a CPU are self-sustaining cores being able to accomplish compu-
tation tasks independently the developers of Graphics Processing Units (GPUs) being
confronted with image processing choose a different architecture for their many-core
chips. In image processing where the same function has to be computed for a huge
number of aspects in the image, an Single Instruction Multiple Data architecture is
preferred. Here a huge number of processors executes the same instruction on different
data. Usually no synchronization is necessary and the processors identify their chunk
of data using an unique id.

Lets take a look into the past to motivate the development of the graphics hardware.
In the early days of computing the only purpose of displays was to visualize text. Some
rather simple components, located directly on the Motherboard were enough to accom-
plish this task. The graphics card was born in the early 1980s, when IBM moved the
hardware responsible for data visualization to a separate card, plugged into a bus and
equipped with own memory. The evaluation of computing power demanded for higher
standards in data visualization. Table 2.2 enumerates the standards sorted by time of
definition. The resolution of the MGA standard is defined in graphics blocks which
can display a character each, the remaining resolutions describe the amount of pixels
per row and column.

Starting in the 1990s the manufacturers constantly added more memory onto the
graphics card allowing to increase the resolution and the amount of colors per pixel.

The CPU computed the visualization and the graphics card displayed it until a
graphics accelerator chip was added onto graphics cards in 1994. From now on an
increasing number of tasks necessary to display an image on the screen were performed
by the accelerator and its complexity and computational power rapidly increased with
the demands of 3 dimensional (3D) data visualization. The Graphics Processing Unit
(GPU) was born. Eickmann (2004) presents a detailed history of graphics cards.
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Table 2.2: Graphics standards over the time.

Year Name Memory Resolution Colors
1981 MGA 4 KB 80x25 Monochrome
1982 HGC 16 KB 720x348 3 Colors
1982 CGA 16 KB 320x200 4 Colors

640x350 2 Colors
1985 EGA 128/256 KB 320x200 16 Colors

640x350 16 Colors
1986 VGA 512 KB 320x200 256 Colors

640x350 16 Colors
. . .

2011 UHXGA 4 GB 7680x4800 248 Colors

In 1999 NVIDIA presented a GPU being able to visualize a 2 dimensional (2D)
projection on the screen given a model of a 3D world. It was capable to display chang-
ing viewer positions and different light modes denoted as Transformation and Light-
ning (T&L). From then on, the GPU becomes faster and supports more and more func-
tions and transformations for image processing and formatting. Since image processing
is beyond the scope of this work only the existence of APIs like OpenGL3 which enable
the programmer to use instructions supported by the given GPU is mentioned here.

The task of projecting a 3D world on a 2D screen consists of a huge number of
independent computations, e. g., computing the color for each polygon, and the GPU
evolved to a highly parallel processor being even superior to the CPU in certain tasks.
Therefore it was a natural process when in 2003 the first thoughts came up to utilize
the GPU not only for data visualization, but also for data processing.

Summarizing can be said that today’s graphics cards contain a graphics processing
unit and memory being used exclusively by the GPU. A special case are graphics cards
which are located on the Motherboard and share RAM with the CPU.

For understanding the decisions which lead to the proposed algorithms, knowing
the utilized hardware is essential. Thus, this Chapter sketched the evolution from char-
acter displays used in the early 1970s to visualize text, to nowadays graphics cards
being not only capable to visualize data but also to perform highly parallel computa-
tions. A detailed insight into current hardware is given, followed by an introduction
into the different programming interfaces with the main attention given to CUDA, the
interface from NVIDIA.

2.2.3 GPGPU Programming Interfaces

Programming languages do not support additional hardware like GPUs natively, they
have to be extended by additional instructions provided by a programming interface.
For general-purpose computing on graphics processing units (GPGPU or GP2U) a gen-
eral purpose API is not necessarily needed, in the beginning the data was interpreted

3see: http://www.opengl.org/

http://www.opengl.org/
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Figure 2.3: Sample Architecture of the NVIDIA GTX 280 chipset. The GPU consists
of a number of Texture Processing Clusters (TPC) connected to the global memory.
Each TPC includes several Streaming Multiprocessors (SM) which are composed of
Special Function Units, responsible for complex computation tasks and work distri-
bution, shared memory and a number of Streaming Processors (SP). SP are simple
computing devices being used by the SM as SIMD processors evaluating the equal
instructions in parallel.

by the GPU as image data and operations on it had to be formed using the graphical
instructions supported by OpenGL or DirectX. As this is inconvenient for the program-
mers, general-purpose APIs had to be invented.

Architecture

When this work began CUDA was the only manufacturer who delivered a program-
ming interface suitable for scientific research. This work is therefore based on the
CUDA architecture from NVIDIA utilizing the CUDA SDK. Furthermore only one
GPU could be afforded for experimental evaluation and the NVIDIA GPUs supplied
more computation power and on-board memory. Therefore the next sections describe
CUDA specifications but also point out the similarities and differences to the Stream
SDK from ATI.

Instruction evaluation In image processing the same function is executed on many
data entries in parallel. The given world is decomposed in triangles, the more complex
an object is, the more triangles are needed to display it accurately on the screen. Hence,
when the image is computed, the GPU has to perform the same computation, e. g., dis-
play light conditions, visibility or surface visualization for each triangle, independently.
Such a computation is fairly easy to parallelize by using several computation nodes and
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allowing them to access the data at fast speed. Since the tasks are independent and ho-
mogeneous, the computation speed-up4 is linear to the number of cores used. To meet
the demand of faster image processing and visualization of complex objects build up of
millions of triangles the manufacturers had to increase the number of processing units
in the GPU. Other aspects of general computing architecture, e. g., fast randomized
access to memory or even autonomous computation of several cores, are not necessary
on a graphics card.

This development currently peaks in an architecture like the one in Figure 2.3,
being representative for GPUs nowadays. A NVIDIA GPU consists of 10 texture
processor clusters TPCs being responsible for access to the data and the instructions
from the host and for distributing the instructions to its streaming multiprocessors(SM).
Each of the SMs in a TPC can be seen as an autonomous core with an internal shared
memory and various computation nodes. Two special function units SFUs perform
double precision arithmetics and higher mathematical functions like sine and cosine.
Instruction evaluation is done by the 8 streaming processors (SPs) included in each of
the SMs. The SPs are single instruction multiple data SIMD cores executing exactly
the same instructions in parallel.

The Architecture of ATI is similar to the one of NVIDIA, here the TPC is called
SIMD Engine, the SM are Thread Processors and the SPs bear the name Stream Cores.
Since this work is based on the NVIDIA architecture it will use the names of NVIDIA
for the components.

Data Management

With a rising number of processors the access speed to the data becomes the bottleneck
of the computation. To serve the cores faster with data a graphics card is equipped
with dedicated global memory (Video RAM or VRAM) which can be accessed from
the main system. Data, to be accessible by the cores, has to be copied over the bus
from the system memory RAM and back when necessary. The amount of VRAM is
currently limited to 2 GB on standard graphics cards and to 4 GB on high end graphics
cards.

The hierarchically structured memory on a graphics card is partitioned in three lay-
ers, from which only the first one, the VRAM resides on the card while the remaining
structures are located in the GPU.

Figure 2.4 visualizes all different memory hierarchies located in a system consid-
ered in this work. Since the distribution of information is a crucial part of an algorithm,
strategies have to be developed to utilize each layer of memory efficiently.

As described above, the VRAM is located outside the GPU therefore sequential
access speed to it is comparable to the sequential access speed to RAM or even faster
due to the increased width of the bus. It is optimized for streamed access in blocks,
but supports random access also. To maximize the throughput for image processing
this memory supports coalescing a technique where a number of adjacent memory ac-
cesses is combined to one block access by the memory manager. Due to the capability
of broadcasting, access from multiple SPs to the same memory region is fast, while

4defined as one core time divided by many core time.
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Figure 2.4: Visualization of available memory hierarchies in the system. At the bot-
tom the external devices, being either HDDs or SSDs are displayed and connected
directly to the internal memory, the RAM. Access to the graphics cards global memory
(VRAM) is established through a BUS on the main board. On each graphics device the
GPU accesses the VRAM and manages internal memories like the shared memory and
the registers.

randomized access has to be sequentialized.
Shared memory (SRAM5) is located in each of the SMs and accessible by all its

streaming processors. In current architectures it is limited to 32 KB per SM being
accessible at a speed comparable to the cache in a CPU.

Each SP has exclusive access to registers which are accessible at a high speed but
very limited in size.

Principally each part of a GPU has its counterpart on a desktop computer, where
only the latencies are much higher. The VRAM is fully adequate to a hard disk drive
which also prefers sequential access being enhanced by reading blocks of the data.
Random access is provided here but punished with high latencies. Each texture pro-
cessing cluster is mapped to a multi-core CPU on the main board while each multi-
processor is represented by a core of the CPU and, finally a thread, assuming multi-
threading is supported, describes a streaming processor of a GPU.

While all aspects of a GPU can be mapped to a desktop system the reverse is not
the case, a GPU does not have a counter part for the RAM. This aspect points out the
difficulty when developing algorithms for such an architecture. Omitting the RAM in
a system results in a direct access of (unsynchronized) cores to the hard disk which
can end disastrous. The mapping of virtual threads to GPU processors omits the fact
that the processors are SIMD which run in parallel while threads are independent from

5Not to be confused with the static RAM.
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each other and run sequentially.
Even a mapping of a multiple GPU system to a cluster is possible on the memory

and also the computation level. Each cluster system has a storage-area-network (SAN)
capable of storing large amounts of data. When this SAN, connected over the network,
is accessed randomly each access will be paused for a network latency time needed
to build up the communication, what is fully adequate to access external media in a
desktop system. The VRAM of the GPU is then mapped to the shared memory of each
cluster node connected to one or more multi-core CPUs which perform the computation
in parallel just like the streaming processors of a GPU.

Having mapped the GPU system to a desktop and even a cluster computing system
motivates the development for graphics card supported systems even more due to the
reutilization of such algorithms on other computation environments.

Programming Paradigm

The programming model is based on the idea of a kernel driven by threads. The kernel
is a function which is executed on up to all SPs located on the GPU. Based on the SIMD
idea the kernel is the sequence of Single Instructions which is executed on Multiple
Data.

Algorithm 2.1 shows a sample CPU algorithm to compute the multiplication of a
matrix A with the vector V and store the result in the vector R. The CPU implemen-
tation would be implemented using two embedded FOR loops traversing each row and
column of A, multiplying the given entry with the appropriate entry of V and storing
the result in the vector R. This implementation results in a O(n×m) running time.

It can immediately be seen that the outer loop (increasing the variable i) can be
parallelized, since no access to other lines then i is necessary for computingRi. In GPU
programming this algorithm would be divided into two parts, one executed on the host
and the other on the GPU. The instructions for the GPU are extracted into the kernel
resulting in Algorithm 2.2. Note that an integer i is required in the kernel to specify
the line each one has to compute. The corresponding host implementation is similar
to Algorithm 2.3. Although a parallel version could also compute the multiplication
Aij ∗ Vj in parallel, this would require a kernel invocation for each cell, resulting in an
inefficient algorithm due to the small amount of work a kernel has to do in contrast to
the overhead when starting it.

Algorithm 2.1: Matrix Vector Multiplication on the CPU
Input : n×m matrix A, vector V , integer n, integer m
Output: vector R

1 for i = 0 to n do {traverse each line}
2 for j = 0 to m do {traverse each column}
3 Ri = Ri +Aij ∗ Vj ; {perform computation}
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Algorithm 2.2: GPU-Kernel for the Matrix Vector Multiplication
Input : n×m matrix A, vector V , integer i, integer m
Output: vector R

1 for j = 0 to m do {traverse each column}
2 Ri = Ri +Aij ∗ Vj ; {perform computation}

Algorithm 2.3: Host algorithm for the Matrix Vector Multiplication
Input : n×m matrix A, vector V , integer i, integer m
Output: vector R

1 copy data to GPU ;
2 forall the i = 0 to n do in parallel {traverse each line}
3 rowV ectorKernel(A, V, i,m) ; {call GPU-Kernel on this line}
4 copy result to host ;

Software Developing Kits

In 2008, by the time this work started, two major graphics card manufacturers ATI and
NVIDIA provided a software development kit for the C++ language, the ATI Stream
SDK and the NVIDIA CUDA SDK.

ATI Stream™ In November 2006 AMD released a programming interface called
Close To Metal (CTM) giving the programmers the possibility to access the native
instructions of ATI GPUs. Interpreting the name as close to the hardware reveals the
high complexity of the interface which made it uninteresting for the majority of general
purpose programmers and for scientific evaluation.

Stream SDK6 displaced CTM in December 2007, replacing the low level instruc-
tions by instructions on a higher level. Stream is based on the Brook language devel-
oped by the Stanford University (Buck et al., 2004).

In 2010 AMD stops the development of an own SDK and switches over to support
the open standard OpenCL.

NVIDIA CUDA After AMDs release of CTM, NVIDIA presented an SDK for
their Compute Unified Device Architecture (CUDA) based graphics cards in February
2007, which supports low level and higher level instructions and has evolved to version
3 today also supporting OpenCL.

Software Hardware Mapping in the CUDA SDK

The GPU has to know the number of kernels to start. This can be determined from
the array the kernel is invoked like in the Stream SDK or directly given by the user.
In the CUDA SDK the user specifies at the number of kernels, denoted as threads

6http://www.amd.com/stream

http://www.amd.com/stream
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when starting the computation by grouping them into blocks and arranging them in a 2
dimensional grid.

CUDA
Device

Streaming Processor

Streaming Multiprocessor

GPU

Thread

Block

Grid

Figure 2.5: Mapping of the software structures to the GPU hardware in CUDA. Each
kernel is called a thread and up to 512 threads are grouped into one block. The number
of blocks to execute is given in 2 dimensions and called grid. The scheduler decides
which block to execute and assigns it to a streaming multiprocessor where each thread
is assigned to one streaming processor.

Figure 2.5 sketches the mapping of software structures to the GPU hardware. The
TPC schedules the execution of the blocks by assigning them to individual streaming
multiprocessors which execute the kernels on their streaming processors. Memory
latencies can be hidden by scheduling the kernels which already received the data and
pausing the remaining ones.

A CUDA kernel is invoked preceding it with the grid dimensions enclosed by
<<< >>>. The grid defines how many threads are grouped together to a block. Each
thread corresponds to a kernel invocation. All the threads in a block are scheduled to
the same SM allowing them to share the SRAM and being synchronized. Sharing of
information between threads in different blocks is only possible using the slow VRAM.

Limitations

A number of limiting factors exists when developing GPGPU algorithms. The key
limitation is the slow random access to the VRAM from the processing cores. This
prohibits using pointers in data structures. All memory access to the data has to be
streamed or at least synchronized for many threads.
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Before the GPU code is compiled all functions are concatenated inline by the com-
piler resulting in one sequence of code instructions. While this approach increases the
performance it makes using recursion impossible. All recursive functions have to be
rewritten to sequential ones before using them on the GPU.

Another limitation is given by the amount of memory incorporated on every stream-
ing multiprocessor. The maximal number of concurrent kernels on one SM is given by
its memory divided by the amount of memory the kernel uses. Utilizing to much mem-
ory in a kernel will force the SM to execute only a small number of kernels leaving
most of the streaming processors idle.

2.3 Used Hardware
For an evaluation of the approaches presented in this work specific hardware settings
were used, evaluated in the following sections. After giving an overview on the used
solid state disks and comparing them to magnetic drives the specifications of the an-
alyzed graphics cards will be given closing with a detailed evaluation of the different
systems.

Two systems were evaluated in the scope of this work starting with a one SSD, one
GPU 32-bit system and continuing with a two SSDs, two GPUs 64-bit system.

• The 32-bit experiments were executed on (one core of) a personal computer with
an AMD Athlon(tm) 64 X2 Dual Core Processor 3800+ running at 2 GHz with
4 GB of RAM. The solid state drive is a HAMA 3,5” SATA device with a storage
capability of 32 GB. This system includes an MSI N280GTX T20G graphic card
with 1 GB global memory and 240 cores running at 0.6 GHz plugged into a PCI
Express slot.

• The 64-bit experiments were executed on (one, or more cores of) a personal
computer with Intel Core i7 CPU 920 running at 2.67 GHz providing up to 4
CPU cores. Two SSDs were used here to test grouped configurations on them,
one was a MTRON MSD-SATA3035 with a 64 GB capacity and the other a
SAMSUNG MMCQE28G8MUP-0VA providing space for 128 GB of data. In
this system two graphics cards of type NVIDIA GeForce 285 GTX (MSI) with
1.7 GB VRAM and 240 streaming processors each running at 1.2 GHz were
used. The system RAM amounts to 12 GB and was upgraded to 24 GB during
the evaluation.

The operating system in use on the 32-bit system is SUSE 11 with CUDA 2.1
SDK and the NVIDIA driver version 177.13. On the 64-bit system Ubuntu 9.04 with
CUDA 2.2 SDK and the NVIDIA driver version 195.36.24 is installed.

2.3.1 Solid State Disks
By the time this work began the solid state disks started to appear on the market and
the differences in performance between the manufacturers were significantly high. The
first used SSD was a HAMA 3,5” SATA solid state device with 32 GB storage capacity.
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Table 2.3: Comparison of the used external storage devices in this work, given by the
manufacturers.

Solid State Drives
Manufacturer MTRON SAMSUNG

Model MSD-SATA3035 MMCQE28G8MUP-0VA
Storage Capacity 64 GB 128 GB

Sequential access speed 81 MB/s 90 MB/s
Hard Disk Drives

Manufacturer SAMSUNG WDC
Model HD103UJ WD5002ABYS-02B1B0

Storage Capacity 1, 000 GB 500 GB
Sequential access speed 100 MB/s 100 MB/s

With further development of the hardware new devices were added, what enabled the
possibility to build up a RAID with different devices and test grouped configurations.
Table 2.3 compares different properties of the hardware. Unfortunately the HAMA
disk broke during intensive evaluation and is not accessible for further investigation, so
it was replaced and the experiments repeated.

Although Ajwani et al. have done exhaustive experiments to compare an SSD to
magnetic media this work utilizes arrays of combinations including several SSDs and
HDDs which makes it necessary to run a detailed evaluation.

This evaluation is done using iozone7, a standard implementation for external me-
dia analysis. When testing external devices in a system with the Linux operating system
one has to consider that the operating system will cache the data written to the disk in
the internal memory to speed up the access. A solution to circumvent this problem is
a size of a testing file which exceeds the internal memory. According to the system
memory, the file size of a test file needs to be at least 32 GB to circumvent the internal
cache. Provided this, a test was run to measure the differences in random access speed
of the different devices.

External algorithms often require large amounts of storage. This can be achieved
either by utilizing one large storage device or by combining several devices to a RAID
array. In the used software RAID the kernel of the system distributes the data to several
available devices. To find out whether an algorithm profits from an array of solid state
drives several devices where evaluated in such a setting.

Sequential Access

Plots 2.6 and 2.7 show the access speed while writing and reading a file sequentially
compared to the used data block size. The plots identify the hard disk drives to be
clearly superior to the solid state devices. While the writing speed comparison points
out a nearly double writing speed for the HDD the reading speed difference is less

7http://www.iozone.com
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Figure 2.6: Sequential writing speed while writing a 32 GB file with different block
sizes.

significant. The RAID array experiment exemplifies the disadvantages of the SSDs in
writing even more, here adding a second device increased the speed only by 50%.

Figure 2.7 visualizes the disadvantage of the solid state media in reading small even
sequentially aligned blocks of data. Since the media is not able to align the data for a
fast adjacent access, the reading speed decreases with a decreasing block size, while
the hard disk drive profits from its cache and continues to read the same block and
achieves its maximum reading speed even for small block sizes.

This evaluation forces the algorithms to be developed for SSD usage to avoid writ-
ing, but when its inevitable it can be done even in small blocks. While in reading the
block size should be as large as possible to achieve a maximum data throughput.

Figures 2.9 and 2.8 describe the performance in a random access situation depend-
ing on the size of the accessed block. Here the difference in writing and reading per-
formance is even more significant. Due to the fact that each writing access imposes a
copying of a block in the solid state device random writing of small blocks of data is a
highly inefficient task. But also the hard disk devices decrease drastically in throughput
due to the head movement necessary to write the data. The second solid state device
can even cope with the speed of the hard disk drive in random writing speed.

The best use case for a solid state device is demonstrated in Figure 2.9 which points
out the random reading performance of the compared devices. While the hard disk
drives suffer from the high number of head movements when reading small blocks at
random positions, the solid state drives reach the peak speed at even for small blocks
and deliver the smallest chunks of data with a reading speed comparable to the maximal
speed of the HDDs. One additional point should be mentioned when looking at the
random reading speed of combined solid state devices, while combining two HDDs
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Figure 2.7: Sequential reading speed while reading a 32 GB file with different block
sizes.

results in a mandatory increased random access speed the combination of 2 solid state
drives can nearly reach a throughput being equal to a sum of both drives.

Algorithms with a high demand of random reading access to data can profit from
the novel storage media even more if the devices are combined and arranged in an
array.

2.3.2 Graphics Cards
To measure the performance of a graphics card two sets of experiments were conducted
using the cards displayed in Table 2.4. The GTX 480 card was added to the system at
the end of this work due to the fact of not being available when the work started.

The GTX 200 chip on the GTX 285 cards contains 10 texture processing clusters
(TPC). Each TPC consists of 3 streaming multiprocessors (SM) and each SM includes
8 streaming processors (SPs) and 1 double precision unit. In total, it has 240 SPs
executing the threads in parallel. Maximum block size for this GPU is 512. Given
a grid, the TPCs divide the blocks on its SMs, and each SM controls at most 1, 024
threads, which are run on the 8 SPs.

The GTX 480 card uses a GTX 400 chip the next generation of cards, the Fermi ar-
chitecture where a streaming multiprocessor comprises 32 streaming processors, each
one with a double precision unit. The maximum block size is 1, 024 and the shared
memory was increased to 48 kb per multiprocessor.

Due to the different clock rates of the systems the theoretical speedup factor is
240∗1.2GHz/2GHz = 144 and (240∗1.2GHz)/(2.67GHz ∗4) = 26.9668 or even

8Taken into account that the CPU can execute up to four operations with one clock pulse.
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Figure 2.8: Comparison of random writing throughput.
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Table 2.4: Comparison of the used graphics cards.

Type GeForce GTX 285 GeForce GTX 480
Used in System 32-bit 64-bit

Cores 240 480
GPU frequency 648 700
SP frequency 1,476 1,401
VRAM size 1,242 MB 1,536 MB

Memory speed 159 GB/s 177 GB/s

(480∗1.4Hz)/(2.67GHz ∗4) = 62.92 however, due to memory latency on both sides
such a factor is not to be expected in complex algorithms.

The hardware systems were evaluated prior to the development of the algorithms by
running basic experiments. In this section the transfer speed between the GPU and the
host, the latency induced by starting the kernels and compared a GPU implementation
to a CPU implementation on a highly parallel task is tested. All tasks performed on
the 64-bit system evaluate the utilization of one GPU, since the GPUs are identical the
performance is the same.

Figure 2.10 shows the transferring speed of data to the GPU. In the experiment a
data block with a fixed size was copied 1.000 times to the GPU and the transferring
speed computed. It can clearly be seen that the speed is dropping for blocks smaller
than 5MB, and achieves its maximum of about 5.5 GB/s on the 64-bit and 1.5 GB/s
on the 32-bit system when copying blocks larger than 5MB. Since the data transferring
speed mostly relies on the bus no significant difference between the two cards in the
64-bit system are visible.

To test the latency introduced by starting the kernels three experiments were per-
formed on each system. In each experiment a different number of blocks with 512
threads each was started 1,000 times. Figure 2.11 shows a decreasing number of ker-
nel executions with a rising number of threads executing the empty kernel, a nearly
empty function only assigning a value to a local variable. While the amount of threads
increases linearly, by 10, 000 blocks the execution time decreases not linearly indicat-
ing that the GPU is able to schedule the work better over its processors with a higher
number of threads. This figure also points out the drastic decrease in performance
when accessing the global memory, a task that has to be performed in nearly all GPU
algorithms. Using the memory kernel, a function that accesses the global memory to
assign a value to a local variable, the performance drops by a factor of nearly 5 for
both systems with the GTX 280 card. In contrast the performance of the GTX 480
card, optimized for memory access, stays nearly the same when the number of threads
is sufficient. An interesting fact revealed by this experiment is that the system does not
have much impact on the execution speed of threads when memory access is included,
both lines of the memory kernel with the GTX 280 card nearly cover each other.

The impact of accessing the memory randomly is shown in Figure 2.12. Here a
function is used which assigns values to a local variable from the global memory being
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scaled by the number of assignments. While in the function visualized in Figure 2.11
the memory access is aligned (thread i accesses cell[i] and thread i + 1 cell[i + 1])
this is not the case for Figure 2.12. The impact can be clearly seen as only 4 or 5
random reads suffice to slow the GPU down to execute just 3 iterations with 60.000
groups of 512 threads per second. Compared to aligned memory access the impact is
even more obvious, while the GTX 480 is able to execute nearly 3000 iterations with
60.000 groups per second using aligned access, the iteration number drops to 65 when
the access is unaligned.

An experimental setup is needed for testing the maximal speedup. Such a setup
should be highly parallel so all the threads are performing nearly the same task. Ad-
ditionally, such a task should be easy to scale. I choose to compute a large number
of Fibonacci numbers using a function with 3 local variables and scaling the compu-
tation by the length of the Fibonacci row. Being computed, the number is written to
the global memory and copied to the host to check its correctness. Figure 2.13 shows
an impressive speedup of nearly 350 for the largest instances on both systems. Taking
into account that the executed kernel has only one global memory access which is writ-
ing the computed number into its memory cell, and that all threads perform exactly the
same task, a speedup of this size is not to be expected in realistic algorithms. The factor
is much larger than the expected theoretical speedup, showing that the number of the
processors on the GPU even adjusted with the clock rate cannot be used to determine
the real speedup. The GTX280 card, solving the task in a comparable speed on both
systems is able to achieve a higher speedup on the 32-bit system, visualized in the top
position of the data plot, due to the slower 32-bit CPU. This experiment also reveals
that doubling the number of cores on the GPU results not in a doubled speed, even for
such highly parallel tasks.
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Chapter 3

Prerequisites for GPU and SSD
Utilization

Explicit graph algorithms utilizing the graphics processing unit (with a state space
residing in RAM or on disk) were presented e. g., by Harish and Narayanan (2007).
In this work, however, state space graphs are generated implicitly, by the application
of transitions to states, starting with some initial state. Additionally, considering the
fundamental difference in the architectures of the processing units solutions developed
for multi-core Model Checking (Holzmann and Bosnacki, 2007) hardly transfer to ones
for the GPU.

While analyzing the state space generation according to the description of an im-
plicitly given graph the process will be divided and partitions, suitable to be ported
to the graphics card or supported by external storage identified. Selecting appropriate
subpart of a search algorithm implies braking it up and classify the partitions. Each
algorithm can be seen as an ordered sequence of tasks to recieve the desired result.
When described in pseudocode each line can be assumed as a task with a function
grouping together subtasks. This function is also a task being a subtask of the whole
algorithm. The tasks of an algorithm are classified here into structured memory tasks,
grouping together the set of tasks which access only predefined locations in memory,
and unstructured memory tasks, accessing either an unpredictable amount or unpre-
dictable regions in memory. This classification is necessary to efficiently distribute the
algorithm.

Structure of the chapter: This chapter will introduce basic analyzing techniques
to identify parts in existing algorithms suitable for execution on the graphics card.
The algorithm is examined from two points of view. On the one side the efficient
distribution of performed work is considered on the other side a logical placement of
information is proposed.
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3.1 Work Distribution

Host System Graphics Cards

RAM

CPU Cores
VRAM GPU Cores

GPU CoresVRAM
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HDD
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Figure 3.1: Visualization of the computing system used in this work. The host system,
including the internal memory and the Central Processing Unit is the connecting part
between the graphics cards and the external media. Currently there is a limit of 4
graphics cards in a system and a limit of maximal 128 external media devices.

The system considered in this thesis is composed of two computation areas con-
nected to a number of storage devices. As visualized in Figure 3.1 the GPU computa-
tion processor, constructed of a high number of SIMD GPU cores, and the CPU which
combines a number of independent CPU cores, are connected to each other via a bus.
The cores do not only differ in data processing but also in memory access and process-
ing speed. For an efficient work distribution the search algorithm is divided into tasks
classified by their memory requirements. The classification in memory requirements is
motivated by the fact that a search algorithm basically applies two operations to each
state:

1. Generate all successors of a parent.

2. Check for each generated successor if it was seen before.

The naive approach, also presented in Algorithm 1.8 on Page 19, is doomed to
failure here due to a high communication demand to distribute the states and manage
a common Closed and even Open list. Evaluating the suitable tasks for the GPU
and the CPU memory is done by dividing the algorithm and analyzing the memory
requirements of each subtask performed by the algorithm.

To identify functions which should be ported to be executed on the GPU a classifi-
cation rule is unavoidable. Such a rule has to take into account the dependency between
the parallel tasks and the memory requirements of them. The term output memory of a
function or task is used to denote the amount of memory necessary to store the result
of a function, while the evaluation memory is the amount to evaluate the function.
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3.1.1 Independent Limited Memory Tasks
Limited memory tasks denote tasks which access memory in a system of ordering and
amount predictable before the execution. A limited memory task has a constant run-
ning time and if more of them can be performed simultaneously without a form of
communication or synchronization they are independent.

Definition 24 (Independent Limited Memory Task) An independent limited mem-
ory task is a part of an algorithm, e. g., a function, which satisfies two conditions.

1. The amount of used evaluation and output memory is known prior to running the
task.

2. When running such tasks in parallel no communication is needed, i. e., the func-
tions are independent.

Independent limited memory tasks can be executed efficiently in parallel on the
GPU, given the size of the evaluation memory and output memory is adequate to the
card. The memory condition is a necessity to decide if the task is executable on the
given card due to different amounts of available memory on different cards. Since
the memory requirements are known prior to the execution there is no problem to de-
cide whether the requested size fits on the particular GPU. Synchronization between
processors in the GPU is not supported, and a communication over the slow global
memory should be avoided in GPU suitable tasks. Now, having identified independent
limited memory tasks as GPU friendly the algorithm can be partitioned and suitable
tasks identified.

Generating Successors as an Independent Structured Memory Task

When generating successors for distinct parents the communication condition is sat-
isfied. The problem is the amount of output memory utilized by this operation. It
depends on the number of successors to generate.

If the upper bound for the number of successors of a state s is max(s) and the
amount of memory to store a state is denoted by |s| successor generation is an indepen-
dent memory task if max(s) ∗ |s| is reserved as output memory. This function would
satisfy both conditions but is not practicable since the upper bound for the number of
successors is not always known, and if so it would be an inefficient waste of memory
if most parents have fewer successors than max(s).

A second strategy is to divide the task into two subtasks:

1. Determine the number of successors.

2. Generate each successor independently.

Counting the number of successors for a state is an independent limited memory
task due to the fact that it needs only an integer value as the output length. It can be
done by processing only the preconditions or by generating all successors and discard-
ing them immediately after returning the result. This process needs |s| and the transi-
tion description as evaluation memory and is completely communication free between
different states.
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Generating the successors is also an independent structured memory task when
implemented in the right way. One way is to construct pairs (s, t) of a parent and infor-
mation which transition to enable. This way the parent is transformed into its succes-
sor and no additional evaluation memory beside the transition description is required.
Communication is also avoided.

Having examined the algorithm for GPU friendly tasks the remaining functions
can be classified as GPU unfriendly or as unlimited memory tasks. The term dependent
is avoided since this tasks possibly are independent but are disqualified due to their
memory requirements.

3.1.2 Unlimited Memory Tasks
Unlimited memory tasks should be maintained on the CPU side of the system because
of two main facts. On the one hand the built-in structures of the processors can be
used to implement an efficient communication, on the other hand the larger amount of
RAM supports dynamic memory allocation. Since the search includes several unlim-
ited memory tasks the CPU will control the whole process.

A decision rule for identifying independent limited memory tasks is a divide and
conquer strategy (Brassard and Bratley, 1996). Divide the algorithm in logical tasks
and check if they are limited in memory and independent. Otherwise proceed by di-
viding one of the tasks further. Of course a point exists where dividing does not make
sense any more, i. e., when the task to divide is not parallelizable.

Checking for Duplicates as an Unlimited Memory Task

Every duplicate detection strategy using a Closed list requests potentially access to
the whole Closed list. While the memory condition can be satisfied in the duplicate
detection, by considering the evaluation memory to be the complete Closed list and
the output memory being just the information expanded or unexpanded the process
still requires communication, thus it cannot satisfy the independence condition.

Consider two duplicates s0 = s1 to be checked using hash based duplicate de-
tection in a sequential manner by two system reads. When thread t0 is checking for
existence of s0 in Closed there are two possible situations, s0 is new so it has to be
inserted into the Closed list or s0 already exists in Closed and can be discarded. s1
will be discarded in both situations, when s0 is already visited s1 is also, and if s0 is in-
serted, thread t1 will find it in the list and classify s1 as seen. So the order of execution
decides whether s0 or s1 will be inserted what is indifferent since they are duplicates.
But when inserting in parallel, both threads would identify the non-existence of the
corresponding state and try to insert it, unless some point of locking1, at least at the
table entry level, is done.

However, in a hash based approach this task can be divided further into:

1. Compute hash value for the state.

2. Check the state for existence in Closed.
1One thread occupies a memory region exclusively.
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This partitioning extracts the hash value computation as an independent limited
memory task which needs the evaluation memory to compute and the output memory
to store the hash value. No communication is necessary when computing the hash
values for a number of states, the first subtask. Looking up in the hash table still
enforces communication, for the same reason as the whole duplicate detection.

A further unlimited memory task is to maintain the Open list. Here the function
has to select states to expand and has to consider an unpredictable amount of states in
Open.

3.2 Information Distribution
Distributing all the maintained information in the system expects an analysis and a
distinction of different information classes. Usually in algorithms two classes of in-
formation can be distinguished, constant and dynamic information. In this work the
definition of the graph is considered as the constant and the description of a state as
dynamic information. Although a generated state will never change during the search,
every algorithm will expand each state only once and replace its position in memory
with the following one, while the graph definition will remain constant over the whole
search.

Basically the storage of information is given by the design of the algorithm. The
information should be stored accessible for the task. The next two sections will classify
the information which arises during a graph search and classify them in two groups.

3.2.1 Constant Information

Constant information is data which never changes during the search process. In graph
search the transition rules are classified as constant information since they define the
graph structure which remains constant over the search. Of course the algorithm im-
plementation is also constant information, but is not considered in the analysis due to
the fact that the operating system of the computer itself maintains it.

The state description could also be assumed as constant information since it never
changes once a state is generated. To avoid such a classification this work considers
only information structures which are known prior to the search and the state descrip-
tions are not.

Constant information should be stored very efficiently since it is usually accessed
frequently during the search process. In the case of the transition rules the information
is accessed once for every node in the graph. The distance to the processor needing this
information should be as short as possible, an optimal case is a representation which fits
into the cache of such a processor and is accessed with nearly no latency. In case this
information is stored on the GPU all pointers2 are to be avoided, so the representation
has to be flat and, if possible, sequentially accessed to enable an efficient access.

All other information in the search process is dynamic, either because it arises
during the search or because it is extended or changed.

2A pointer is a variable type whose value refers another value stored in the computer memory.
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3.2.2 Dynamic Information

A graph search utilizes three types of storage. The Open list, being extended, the
Closed list, being either extended or changed, and the state representation, being gen-
erated, changed or even discarded during the search.

Since the state representation is system dependent and should be developed for each
system independently there is only one strategy to mention here, i. e., compression.
The number of states is usually not known before a search so an efficient storage using
compression methods is an advance for it. However, if the compression is to hard to
compute it may slow down the process, but still a search may only succeed on a given
system before filling its memory due to an efficient compression.

The remaining structures i. e., the Open list and the Closed list, have basically
only two levels of memory to reside, the RAM and the external memory. Graphics
card memory is not suitable here because of its size compared to the system memory
and lack of random read support.

The dynamic information can be classified further by counting the number of ac-
cesses to its stored states. While the Open list entries are accessed basically once for
an expansion, the entries in the Closed list are accessed an arbitrary number of times
depending on the structure of the graph.

If states in the Open list can be grouped together and adjacent states are accessed
in a block-wise manner, such a structure is perfect to reside on the external storage.
Since this work mainly concentrates on BFS search the Open list will be analyzed in
detail in the following, also motivating to store it externally.

Open list on external storage

The Open list in a Breadth-First search is per definition a first in first out (FIFO) struc-
ture, so a state is accessed after all states being inserted before it are removed. Imple-
menting such a structure is fairly simple by adding new elements to the end of a list
and removing them, when needed, at the front. When space is not a constraint, like on
external storage, or the elements are needed for further processing one can abandon the
deletion and mark them as read. With such an approach the list’s size will continually
increase.

Such a list can be easily ported to the external block device by utilizing a memory
portion as a buffer before writing and while reading the elements. When new elements
are created they are stored in the buffer, which is appended to the end of the file once
it gets filled. Reading elements from disk is realized in the backwards manner. When
new states are needed the buffer is filled with states from the beginning of the file
and the position of the read pointer is memorized marking all states before it as used.
Figure 3.2 exemplifies this setting. Another positive aspect of such a storage, beside
the low internal memory requirements, is the persistent storage of all elements after the
search. Utilizing more than one external block device can be realized by an increased
buffer and a RAID storage array, or by multiple buffers, one for each medium, and
parallel writing and reading.

There is another important argument to store the Open list on external media, i. e.,
the element size. System representations stored in theOpen list have to be compressed
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Closed Open

Reading Writing

Figure 3.2: A single file represents the externalOpen list structure in BFS. The reading
pointer is used to divide expanded elements from unexpanded.

lossless, meaning that the representation has to be reconstructed from the compressed
element. Since the elements in Open have to be expanded all information available in
the parent state has to be available again when the successor is generated.

Having clearly motivated to store the Open list on external media the storage posi-
tion of the Closed list is much more dependent on the searching environment.

Where to store Closed?

A definitive answer, like in the previous section, cannot be given to this question, since
it clearly depends on the strategy used for the Closed list. The next few paragraphs
will motivate several strategies to maintain Closed and propose the storage of it. A
complete list of all strategies for maintaining theClosed structure would clearly exceed
the scope of this work, so this section restricts to the strategies used in this work.

Sorting based Closed In sorting based Closed lists the elements are stored exter-
nally on block devices to utilize a minimum of internal memory (Korf and Schultze,
2005). Here the elements are sorted in an internal memory buffer prior to storing them
on the external media. While this approach is very effective in avoiding internal mem-
ory usage it is also very ineffective in evaluation time, since every generated element
has to be sorted prior to be stored or abandoned. Especially when the graph includes
many duplicates this strategy will slow down the searching process extremely.

Hash basedClosed This strategy is clearly seen on the opposite side of the spectrum.
It is very effective in terms of evaluation speed in internal memory, but ineffective in
memory usage. Hash based Closed list strategies map the element to an index and
look in a table at the index position if such an element already exists. Since two ele-
ments can be mapped to the same index due to collisions, the table entry has to contain
a distinct representation of the inserted element which is then compared to the new
one. The table is accessed at nearly random positions, defined by the hash function and
the order of generated elements, thus a storage on external block devices is ineffec-
tive and should be avoided. However, in Model Checking SSD storage was analyzed
and showed decent results in being suitable for hash based Closed lists (Barnat et al.,
2008a). Here the time sacrificed for an access to the table can be recompensed with the
nearly unlimited storage capacity.

Perfect hashing based Closed Using perfect hashing for the Closed list is a three
step approach. In the first step a set of all elements which should be included in the
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hash table is generated, and in the second step a perfect hash function (PHF) is com-
puted which assigns an unique index to each element. Now the PHF can be used to
assign entries in a table to elements which should be checked. The advantage is the
compression ratio of such an approach. While the PHF can be compressed to 1.4 bits
per element the table can be only 1 bit per entry. Both structures imply random access
to all its entries, thus should be stored in the internal memory. External memory is only
used to store the elements prior to building the PHF. Nevertheless, an efficient storage
of the PHF on solid state media has been applied during this work leaving only 1 bit
per stored element in the internal memory and will be presented in Chapter 6.

All these strategies, and combinations of them, are evaluated in the reminder of
this work and show different advantages and disadvantages depending on the problem
and the graph structure. The following chapter will introduce a framework to partition
a search algorithm and strategies for the successor generation and duplicate detection.
The strategies are developed to be efficiently executable on the graphics card, or effi-
ciently utilize solid state media.



Chapter 4

GPUSSD-BFS - A GPU and
SSD supported Breadth-First
Search

Building up on the basic parallel Algorithm 1.8 presented in Chapter 1.3.3 a set of
strategies will be proposed to utilize novel hardware developments, e. g., SSD storage
or GPU computation, to speed up searching scenarios. In this work a hierarchical
memory structure of SRAM and VRAM located on the GPU and described in detail in
Chapter 2 is assumed. Additional memory is available as RAM and as external memory
on magnetic and solid state disks. After presenting strategies for an efficient successor
generation in parallel it will give detailed description on duplicate detection techniques
based on sorting and hashing. The chapter ends with the proposal of a framework
denoted with GPUSSD-BFS which is the baseline for speeding up the search in a state
space.

Structure of the chapter The chapter starts with the proposal of a basic framework
to utilize GPUs and SSDs in a Breadth-First search. Having exemplified three stages
performed in any BFS algorithm strategies are given to port the state generation to the
GPU, and perform efficient duplicate detection on the SSDs. The chapter continues
with a proposal to translate Boolean formulas, often used in pre- and postconditions,
into a representation suitable for the GPU.

4.1 Basic Structure of the Algorithm
The intuition behind this approach is to dispatch a set of operations to the GPU. For
each BFS-Layer, the search is divided into two main computational stages performed
utilizing the graphics card.

63
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Stage 1 Determine the number of successors for a set of states in parallel.

Stage 2 Generate all successors in parallel.

followed by a third stage utilizing external memory

Stage 3 Remove all duplicate states and store new ones externally.

The pseudo-codes display a fine-grained algorithm, separating the selection of the
transitions from their application. For the sake of clarity, the transfer from hard disk to
RAM (and back) for layers that do not fit in RAM is hidden in the set based represen-
tation, so is the transfer from RAM to VRAM. In all remaining algorithms the copying
of data to the GPU is hidden in the functions fillVRAM which denote the transferring
of elements given to the function until the VRAM is filled.

Algorithm 4.1: Basic GPU Parallel Search algorithm
Input: ŝ ∈ S initial state, T set of transitions

1 Open← ŝ ; {store ŝ in Open }
2 Closed← ∅ ; {clear Closed list}
3 while Open 6= ∅ do {repeat until search terminates}

Stage 1 - Generate sets of active transitions
4 Active← ∅ ; {clear Active}
5 while |Active| 6= |Open| do {until all frontier states are processed}
6 fillVRAM(u ∈ Open) ; {copy states to VRAM}
7 Active← Active ∪ GPU-Kernel Determine Transitions() ;

Stage 2 - Generate sets of successors
8 Successors← ∅ ; {clear Successors}
9 while Active 6= ∅ do {Until all transitions processed}

10 fillVRAM(Active ∪ {s, · · · , s}) {Copy Active ∪ {s, · · · , s} to VRAM}
11 Active← Active ∩ VRAM ; {remove transferred states}
12 Successors← Successors ∪ GPU-Kernel Generate Successors();

Stage 3 - Remove duplicates and rebuild Open
13 Open← ∅ ; {prepare next layer}
14 Successors← Successors ∩ Closed ; {remove explored states}
15 Closed← Closed ∪ Successors ; {extend set of explored states}
16 Open← Successors; ; {add new layer to the search frontier}

Algorithm 4.1 depicts a framework to utilize the GPU in state space searching. Two
sets denoted as Active and Successors are used beside Open and Closed to maintain
information about the states. After the initial state is stored in Open to be expanded
Closed is cleared and the search begins with Stage 1, the examination of the transitions.
Here a subset of the states in Open is copied to the VRAM (line 5) until it gets filled
and a kernel is started to determine active transitions. The information about the active
transitions is stored in the Active set when retrieved from the VRAM.

Having determined the active transitions, the successors are generated in Stage 2
where the VRAM is filled with the information from Active and additionally the states
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to expand. The successors are retrieved from the VRAM and stored in an array denoted
as Successors.

When all successors are generated the duplicate detection phase is invoked in the
third stage. Firstly, Open is cleared since all states in this set are expanded, then all
visited states are removed from Successors. Finally, the remaining states are appended
to the Closed list and Open. Naturally line 14 and 13 can be implemented in one step
like in the hash based duplicate detection.

An additional aspect to mention is the scalability of the approach. Not only each
stage can be distributed to several GPUs if they are available, but it is also possible to
execute all stages in parallel. Once the Active set is filled stage 2 can start on the second
GPU to generate the successors which are checked by the CPU when generated.

The sets Active and Successors can be externalized e. g., to use the internal memory
for Closed, since they are accessed sequentially when they are populated.

Having defined the framework of a GPU algorithm, strategies for the three stages
will be discussed in the following sections.

4.2 Strategies for Successor Generation

Splitting up the generation of successors may be a serious challenge depending on
the system description. While in selected scenarios, like in Game Solving, the check
for an enabled transition is trivially done by checking a bit, in scenarios like Explicit
State Model Checking a precondition can be an arbitrarily complex Boolean formula.
In the first case it suffices to return the number of successor in Active and recheck the
preconditions. In scenarios with preconditions given in a Boolean formula a rechecking
has to be avoided. Selecting a generation strategy for a given problem depends on
several input variables. The next two sections will present two groups of strategies
which can be applied efficiently when utilizing the GPU for successor generation. The
first strategy is based on counting and is suitable for scenarios where the test whether a
transition can be enabled is done without computation by a single lookup. Classifying
the transitions whether they can be enabled or not, the alternative strategy is rather
suitable when the check requires a decent amount of time.

Regardless of the strategy chosen to return information about the successors, the
first two stages can already be classified by means of expected GPU performance. The
task to determine the enabled transitions is an efficient SIMD task, since all threads
perform exactly the same work by traversing a list of applicable preconditions and
checking them for being active. In contrast to this the second stage, the application of
enabled transitions depends highly on the length of the postconditions.

4.2.1 Successor Counting

The first strategy mentioned here is meant to determine how much space will be needed
for the successors of a state. The advantage of it is the short output memory amount.
Assuming the maximal number of active transitions |t| is known, the output memory
amounts to log(t). In scenarios where the state description is also short, be it due to an
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Algorithm 4.2: GPU-Kernel Determine Transitions for Successor Counting
Input: {s1, . . . , sk} array of elements to examine, T set of transitions, d

dimension of the grid
Output: {a1, . . . , ak} number of successor for each state in {s1, . . . , sk}

1 for each group g do in parallel {partially distributed computation}
2 for each thread p : 0 ≤ p < d do in parallel {distributed computation}
3 e← 0 ; {reset counter}
4 forall the t ∈ T do {check each transition}
5 if t is applicable in sg∗d+p then {evaluate transition}
6 e← e+ 1 ; {increase counter}

7 ag∗d+p ← e ; {replace state with number}

8 return {a1, . . . , ak} ; {return active transitions}

effective compression or simply a small state, this strategy helps to reduce the memory
usage on the GPU for the set Active.

Determining active transitions

Algorithm 4.2 counts the number of active transitions and returns it as an array of
numbers. The VRAM is filled with states prior to the execution of the kernel. When
started, each thread analyzes a state based on its group and thread ID for enabled tran-
sitions and counts them in a sequential loop. The counter is maintained internally to
reduce memory access to global memory. Having determined the number of enabled
transitions it is stored in the VRAM at the position the state was before.

Since the states which are examined will usually be longer then the output variable
a naive implementation is to replace the state by the number of its active transitions.
An adjacent storage of variables is avoided since threads could overwrite states which
are not examined yet, due to the lack of synchronization. This naive implementation
needs the states to be copied twice to the GPU, once for examination of the active
transitions and once for the successor generation. With a simple modification to this
strategy the number of copies between the system and the GPU can be reduced at the
cost of parallelism. When transmitting the states to the GPU a region should be left out
which can hold a portion of the Active set.

The number of parallel instances reduces to v = |V RAM |/(|s|+ |a|) which is the
size of the VRAM divided by the length of a state and the space occupied by a value
returning the number of successors. Two arrays are needed on the GPU

{{s1, · · · , sv}, {room for Active}},

but the Active set can be copied back as one block without gaps. While copying this
set the first part of the state array remains on the GPU for successor generation in step
two. The drawback of this strategy which seems superior to simply overwriting the
elements is the memory management. While coalesced reading is supported, coalesced
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writing is not, so each thread, writing into Active has to wait until neighboring threads
have finished writing. In practice the naive approach was superior to this one.

Runtime Complexity Each state is examined by one thread for active transitions.
The run-time is determined by the number of transitions times the number of groups,
as for all threads in a group the transitions are checked in parallel.

Algorithm 4.3: GPU-Kernel Generate Successors for Successor Counting
Input: {s1, . . . , sk} array of states to expand, T set of transitions,

{a1, . . . , ak} numbers of successors, d dimension of the grid,
Succ Successor generation function

Output: Successors the set of successors
1 Successors← ∅ ; {clear set of successors}
2 for each group g do in parallel {partially distributed computation}
3 for each thread p : 0 ≤ p < d do in parallel {distributed computation}
4 g ← 0 ; {Counter for generated successors}
5 while g < (ag∗d+p) do {generate all successors}
6 forall the t ∈ T do {check each transition}
7 if t is applicable in sg∗d+p then {evaluate transition}
8 Successors← Successors ∪ Succ(sg∗d+p, t) ;

{generate successor}
9 g ← g + 1 ; {increase counter for generated successors}

10 return Successors ;

Generating successors

Enabling transitions when the number of successors is known is realized by checking
all transitions again, until the given number of successors is generated. Algorithm 4.3
exemplifies such a function. Here each thread analyzes one state for enabled transi-
tions, applies the postconditions to the parent and stores its successor. Each thread
expects a pair of information containing the parent and the number of successors to
generate.

Two representations can be applied to store the generated successors in the VRAM.
In both cases transferring the array of successor numbers {a1, a2, · · · , ak} can be omit-
ted when the line 5 is removed from the algorithm. Space for the successors can be
allocated starting with the parent, followed by empty place according to the number of
successors to generate.

{{s1, · · · }, {s2, · · · }, · · · , {sk, · · · }}

There are two major drawbacks hidden in this representation. Firstly, an additional
GPU buffer is necessary in the internal memory to distribute the states to their positions
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and secondly coalesced reading is unlikely to be applied due to the large gaps between
the states.

The alternative, omitting the additional buffer, is to allocate the necessary space for
all successors in one block of the global memory.

{{s1, s2, · · · , sk}, · · · }

This strategy should be preferred since states located in Open can be directly sub-
mitted to the GPU in one block and neighboring states are accessed simultaneously.
However, since the size of a state is not limited coalescing reading adjacent elements
is not guaranteed.

Both representations require a conversion of the successor numbers {a1, · · · , ak}
to be usable by the threads of the GPU. Since each thread requires the position where
to read the parent (in the first representation) or where to store the successors (in the
second representation) a position array P contains the summed up number of all suc-
cessors being generated until a particular index in the number of successors set.

pi ∈ P =

i∑
j=0

aj for the first strategy

pi ∈ P =

i∑
j=0

aj − 1 for the second strategy

Having generated the position array P each thread can immediately determine
where to store the successors generated like described in Algorithm 4.3. It is effi-
cient to copy P as one data block, since alternative implementations would imply a
reorganization of the states on the CPU side.

Runtime Complexity Each thread generates all successors of a state to be expanded.
The run-time is determined by the maximal number of successors times the number of
groups.

4.2.2 Successor Pointing

When the check whether a transitions is enabled is complex it is inefficient to do it
twice. Here a strategy is useful which propagates the information which transitions
are active to the generation step. The challenge is to find a specification that does not
exceed the size of a state and has a fixed length, independent form the number of active
transitions.

Using a bit vector as a Bloom filter (Bloom, 1970) has shown the best results in
terms of compression, each transition is compressed to a single bit, and the number of
bits is constant over the search and corresponds to the number of available transitions.
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Determining active transitions

The pseudo-codes for checking enabledness (Algorithm 4.4) and generating the suc-
cessors (Algorithm 4.5) reflect that each processing core selects its share based on its
group and thread ID just like in the pointing strategy.

Algorithm 4.4: GPU-Kernel Determine Transitions for Successor Pointing
Input: {s1, . . . , sk} array of states to examine, T set of transitions, d dimension

of the grid
Output: {t1, . . . , tk} set of transition sets

1 for each group g do in parallel {partially distributed computation}
2 for each thread p do in parallel {distributed computation}
3 B← (false, . . . , false) ; {clear applicable bit vector}
4 forall the t ∈ T do {check transition}
5 if t is applicable in sg∗d+p then {evaluate transition}
6 B[t]← true ; {check enabledness and set according bit}

7 tg·sizeof(g)+p ← B ; {overwrite selected state}

8 return {t1, . . . , tk} ; {return overwritten states to CPU}

In this strategy every thread allocates a bit vector B with a number of bits which
corresponds to the upper bound of enabled transitions. Since each vector B can be sig-
nificantly longer then a number representation a dedicated space in the global memory
to returning the vectors is not to be efficient, leaving the replacement of states as the
way to go.

There are two requirements for such a strategy to the system.

1. The upper bound of active transitions is known and constant for all states.

2. The transitions are ordered and indexed to be identified given the position of the
corresponding enabled bit.

The given requirements are no restrictions in most of the systems since the maximum
number of outgoing transitions is known from the definition of the implicit graph which
also imposes an ordering on them. The reason for maintaining the vector B internally
is to decrease the number of VRAM accesses to only one, when the analysis is done.

Runtime Complexity Each state is examined by one thread for active transitions.
The run-time is determined by the number of transitions times the number of groups.

Generating successors

Preparation of data in the system is significantly different compared to the successor
counting strategy. Since the information on how many transitions have to be applied
can be interpreted from B, one could simply transfer the parents followed by the bit
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vectors and leave space for generated successors in the global memory.

{{s1, s2, · · · , sn}, {b1, b2, · · · , bn}, {space for successors}}

This storage strategy is not efficient on the GPU for a couple of reasons which
partially are shared with the successor counting strategy e. g., different numbers of
successors imposing different running times on threads, but apply also to this specific
approach. Since the length of the bit vector is constant and independent of the number
of enabled transitions, space is wasted if only a few bits are enabled. Additionally, each
thread has to access two places of memory to be able to create the successors, namely
the state-vector and the bit vector.

To circumvent this drawbacks a different storage strategy is necessary with a better
support for coalesced reading and a more synchronized successor generation. Different
numbers of successors in each state imply different lengths on loops generating the
successors causing idle times for threads. A solution here is to choose a fixed number
of generations for each thread. This number is one since each state transmitted to the
GPU has at least one successor. The limitation to generate only one successor enables
a different storing strategy.

{{s1, t1}, {s1, t2}, · · · , {sn, tn}}

In this representation each thread reads a pair {s, t} and applies the transition denoted
with the id given in t to the state s. Since all threads apply only one transition the work
is divided equally among them.

Algorithm 4.5: GPU-Kernel Generate Successors for Successor Pointing
Input: {{s1, t1}, {s1, t2}, . . . , {sn, tn}} array of pairs of state and transition to

apply, T set of transitions, d dimension of the grid
Output: Successors the set of successors (explored nodes are overwritten)

1 for each group g do
2 for each thread p do in parallel
3 Successors← Successors ∪ Succ(sg·d+p, ttg·d+p) ; {add successor}

4 return {s1, . . . , sk} ; {Feedback result to CPU}

An experimental evaluation identified the second strategy as superior. Therefore,
this work proposes to replicate each state to be explored by the number of enabled
transitions on the CPU. Moreover, attach the ID of the transition that is enabled together
with each state. Then, move the array of states to the GPU and generate the successors
in parallel overwriting the parent state.

Runtime Complexity Each state to be explored is overwritten with the result of ap-
plying the attached transition, which often results in small changes to the state vector.
Finally, all states are copied back to RAM. The run-time is determined by the maximal
length of an effect times the number of groups.
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4.3 Strategies for Duplicate Detection

After having generated the successors on the GPU they are copied back into the internal
or external memory and checked for duplicates. Since a set of successors is generated
in the third stage parallel methods should be applied to find already expanded states.
This section will propose three strategies to perform a duplicate detection utilizing the
parallel processing power of either the GPU or the CPU and the storage capabilities
of SSDs. When a low probability of removing unexplored states is acceptable, an
incomplete duplicate detection can be used. Here different compression methods for
both strategies are proposed.

The external memory sorting approach supports state space sizes up to the size
of the external media, classified as unlimited in this work. However, sorting a huge
number of elements is time costly, even when done on the GPU. In addition to the
sorting time there is the latency which is caused by reading all previously generated
states for each set generated by the GPU. The amount of time necessary in this step
increases proportionally to the number of generated states.

4.3.1 Sorting Based Duplicate Detection

GPU-based sorting won the 2006 Indy PennySort category of the TeraSort competi-
tion (Govindaraju et al., 2006), a sorting benchmark, testing performance for database
operations. Since then, various GPU sorting algorithms have been proposed, includ-
ing MP51 GPU BITONIC SORT (Batcher, 1968) and GPU QUICKSORT (Cederman
and Tsigas, 2008). One of the best general GPU sorting algorithm was introduced by
Leischner et al. (2010), the question is if this efforts can be ported to sorting long states.

Consequently an evaluation was performed to analyze both sorting algorithms in
a state space search utilizing delayed duplicate detection. The initial results, im-
plemented in an existing model checker DIVINE and documented in (Edelkamp and
Sulewski, 2008c), were disappointing. Even after further refinements, the best im-
provement of existing GPU sorting technology achievable wrt. CPU QUICKSORT was
about 20%. Lessons learned in this evaluation where that the size of the element has
a crucial impact on the sorting speed, with a rising size of sorted elements the sorting
speed decreased continually. Trying to sort a set of indexes also failed badly, as now
the comparison exceeds the boundary of the SRAM, since elements have to be fetched
from the VRAM and compared. For effective GPU-sorting the sorted elements should
be as small as possible, and sorting has to stay local.

Assuming an efficient algorithm to sort this kind of objects exists the GPU can be
used to seed up sorting in external breadth first search approaches. The strategy to
remove duplicates is a two step approach:

Step 1. Sorting Sort the generated successors in a predefined order.

Step 2. Removing Remove neighboring duplicates.

1courses.ece.uiuc.edu/ece498/al/mps/MP5-TopWinners/kaatz/
MP5-parallel sort.zip
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Now the set of successors is free of duplicates and has to be compared to previous
sets stored on disk by scanning once through the Open file just like described in Sec-
tion 1.3.2.

In the following a hybrid of sorting- and hash-based delayed duplicate detection
is proposed, sorting buckets filled by applying a first level hash function. The hidden
objective of this approach is that hashing in RAM allows distant data moves, while
sorting only induces local changes and can be accelerated on the GPU.

Hash based partitioning

The BITONIC SORT approach which revealed to be superior to other sorting methods
on the GPU consists of two phases. In the first one a block of threads is used to sort a
subset of all elements that fits into the SRAM, then the sorted subsets are joint invoking
intensive access to the VRAM. The crucial observation is, the first phase accesses the
global memory only once for reading and after sorting once for writing, so it is fast
compared to the second phase. Therefore, hash-based partitioning on the CPU was
employed in order to distribute the elements into buckets of adequate size and use only
the first phase of BITONIC SORT.

sorting

copying

compacting

flushing

HDD/SSD
subtracting

generated successors

successors distributed by hashing blocks

each block sorted (parallel)

duplicates removed from blocks

dummy states removed

states seen in previous layers removed

copying

GPUCPU

Figure 4.1: Efficient sorting of large elements utilizing both the GPU and the CPU.
The generated successors are distributed to blocks of equal size, using a hash function.
After copying the buckets to the GPU, each bucket is sorted by a block of threads. Back
in the internal memory all adjacent duplicates and states from previous layers removed.

The array to be sorted is scanned once as sketched in Figure 4.1. Using the hash



4.3. STRATEGIES FOR DUPLICATE DETECTION 73

function h and a distribution of the VRAM into p blocks, an element s is written to the
bucket with index h′(s) = h(s) mod p. On the first overflow in one of the buckets,
all remaining places in all buckets are set to a predefined illegal vector that realizes
the largest possible value in the total ordering of elements. This hash-partitioned vec-
tor is copied to the graphics card and the buckets are sorted in parallel as indicated in
Algorithm 4.6. A crucial observation is that the array is fully sorted wrt. to the ex-
tended comparison function operating on pairs (h′(s), s). The sorted vector is copied
back from VRAM to RAM, and the array is compacted by eliminating duplicates with
another scan through the elements. Subtracting visited states is made possible by scan-
ning all previous layers residing on disk. Finally, the current, duplicate-free BFS layer
is flushed to disk and iterated.

Algorithm 4.6: GPU-Kernel Sort buckets in sorting based duplicate detection
Input: {H1, . . . ,Hk} (unsorted buckets)
Output: {H1, . . . ,Hk} (sorted buckets)

1 for each group g do
2 SRAM ← SelectBucket(Hg) ; {Copy bucket to SRAM}
3 Hg ← Sort(SRAM) ; {Sort and write bucket back}
4 return {H1, . . . ,Hk} ; {Feedback result to CPU}

As long as the files do not exceed the GPUs memory, the above exploration strategy
is sufficient. If a BFS-Layer becomes too large to be sorted on the GPU, it is split into
parts that fit in the VRAM. This yields additional state vector files to be subtracted
to obtain a duplicate-free layer. For the case that subtraction becomes harder hash-
partitioning can be exploited – inserting previous states into files partitioned by the
same hash value – a technique inspired by hash-based duplicate detection (Korf and
Schultze, 2005) and implemented in structured duplicate detection (Zhou and Hansen,
2004). Provided that the sorting order is first on the hash value and then on the state,
after the concatenation of files (even if sorted separately) a total order on the sets is
obtained. This implies that duplicate detection including subtraction can be restricted
to states with matching hash values.

Incomplete Sorting Based Duplicate Detection Using State Compression

The shorter the state vector, the more elements fit into one bucket, and the better the ex-
pected speed-up on the GPU. For improving the sorting performance the state vectors
are compressed to 64-bits (Stern and Dill, 1996); Roughly speaking, hash-compaction
yields a Bloom filter (Bloom, 1970) variant for (single, double, or triple) Bitstate hash-
ing (Holzmann, 1998). The objective is that false positives can arise during search.
Two independent 32-bit hash functions h1 and h2 are chosen randomly from a set of
universal hash functions. The state vector for s is compressed to (h1(s), h2(s), a(s)),
where a(s) is the index of the state vector residing in RAM that is needed for state
exploration. The values (h1(s), h2(s), a(s)) are then sorted lexicographically on the
GPU. The empirical observation is that with this 64-bit hash address no collision ap-



74 CHAPTER 4. GPUSSD - BREADTH-FIRST SEARCH

peared even for very large state spaces 2

Turning this approach into a complete duplicate detection is done by checking
each state vector for equality with the address indexed by the pair (a(s), a(s′)) and
(h1(s), h2(s)) = (h1(s′), h2(s′)) for s = s′. This check is costly due to the intensive
random memory access, even if it can be obtained while scanning the data once.

Probability of false positive

For deriving an estimate on the probability of a false positive, assume a space of
n = 230 states universally hashed to the m = 264 possible bit vectors of length 64.
According to the birthday problem (Bloom, 1973), the probability of having no dupli-
cates ism!/(mn(m−n)!). One known upper bound is e−n(n−1)/2m, which in this case
resolves to 0.9692, such that we have a chance of less than 96.92% to have no collision
during the search. But how much less can this be? For a better confidence on our algo-
rithm, a lower bound is needed. Lets have m!/(mn(m− n)!) ≥ (1− n/m)n. For this
case this resolves to (1−2−34)2

30

= (0.99999999994179233909)1073741824 = 0.9394.
Hence, a confidence of at least 93.94% that no collision arises is reached.

An alternative way of computing the error probability is as follows. There are
230(230 − 1)/2 pairs of states (x, y), where x < y. For a random hash function h, and
for any such pair, the probability that h(x) = h(y) is 1/264. Therefore, the expected
number of hash conflicts is (230(230−1)/2)/264 = (260−230)/265 = 1/25−1/235 ≤
0.03126, certifying that with a chance of more than a 99.68%, no false positive has been
produced, while traversing the entire state space.

In contrast, single Bitstate hashing with an 8 GB-sized hash table results in an ex-
pected number of about (230(230 − 1)/2)/236 ≈ 223 hash conflicts (see (Holzmann,
1998) for an analysis of single, double, and multi Bitstate hashing). Moreover, missing
a duplicate harms, only if the missed state is the exclusive way to reach the target. In
the search spaces examined in this evaluation the 64-bit compression did not miss any
single element. If the above certified confidence is still too small, one can re-run the ex-
periment with another set of hash functions, as in the Supertrace algorithm (Holzmann,
2004).

4.3.2 Parallel Hash Based Duplicate Detection

The advance of an unlimited space in sorting based duplicate detection is achieved by
sacrificing time to access the data. Even the fastest external media devices can not
cope with the speed of internal hash based duplicate detection due to two reasons: all
states have to be compared to be sorted and all new states have to be stored on disk
at a writing speed of about 100 MB/s compared to a writing speed of 17,000 MB/s in
RAM. In contrast to the sorting approach a hash based one computes a hash value for
every state and compares it to a small number of elements retrieved from the internal
storage. So a hashing based approach should be preferred until the internal memory is
exhausted.

2The approach reassembles ideas from Game Solving, where boards are often mapped to 64-bit vectors.
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Figure 4.2: Table configuration in the Lock less Hashing approach. When a new state is
to be inserted a cache block is transferred into the CPU cache and examined for existing
hashes. To avoid memory accesses linear probing starts at a top of a cache block when
the bottom is reached. Only when a cache block is filled a new one is fetched from the
memory. On equal hash values the vector in the data table is compared to the inspected
one.

The goal is to introduce an efficient shared state storage for immediate duplicate
detection. Since in state space exploration, only storing and retrieving state vectors is
necessary, the stored key is the state vector itself. The time efficiency of the lookup
should scale with the number of cores utilized in parallel. Pointers and memory allo-
cations are avoided. The implementation of the hash table uses open addressing tuned
to use the cache more efficiently by small-sized linear probing. Lock-free algorithms
guarantee system-wide progress in modern CPUs. They implement a compare-and-
swap operation (CAS), so that always some thread can continue its work.

In this solution, based on the tables from Laarman et al. (2010) however, only
statistical progress is guaranteed, explicit locks are avoided using CAS. This leads to
a simpler implementation and no penalty in performance. Strictly speaking, the al-
gorithm locks in-situ – it needs no additional variables for implementing the locking
mechanism. CAS ensures atomic memory modification while at the same time pre-
serving data consistency.

The problem with lock-free hashing is that it relies on low-level CAS operations
with an upper limit on the data size that can be stored (one memory cell). In order to
store states that usually exceed the size of a memory cell, two tables are needed: the
Index and the Data table. Memorized hashes and the write status bit of the state is
stored in the Index table. If h is the memorized hash, the possible values of the indexes
are thus: (−,>) for being empty, (h,⊥) for being blocked for writing and (h,>) for
releasing the lock. In Index the locking mechanism is realized by CAS.
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Parallel Bloom filter detection

Using a Bloom filter (Bloom, 1970) Closed is compressed to only one bit per state
addressed by the hash function h(s). When a collision appears with h(s) = h(s′) and
s 6= s′ the second state will be discarded even if it is unexpanded.

To decrease the possibility of discarding an unexpanded state the number of used
hash functions can be increased and several bits addressed for each state. When using
c hash functions a collision appears if {h1(s), . . . , hc(s

′)} = {h1(s′), . . . , hc(s
′)} and

s 6= s′. The state s will be also discarded if a configuration of c states {s1, . . . , sc}
exist such that {h1(s), . . . , hc(s

′)} = {h1(s′1), . . . , hc(s
′
c)}.

Parallelizing is done by utilizing more then one thread for the check risking to visit
some states more then once when two threads try to insert the same state at the same
time. Even if just one hash function is used thread t2 can check h(s) before thread
t1 has set the corresponding bit to true hence, t2 will classify s as new. Now both
threads will try to insert s into Open.

In an environment where a perfect hash function is available a parallel Bloom fil-
ter (Bloom, 1970) can even be used for a complete search due to the absence of col-
lisions. Since no collision can appear when computing the hash value for s using the
hash function h, h(s) identifies s uniquely. Closed is then represented as a bit vector
and a true bit at position i identifies the state h(s) = i as expanded.

4.4 External State Space Exploration on the GPU

When the amount of RAM and the available GPU memory (e. g., when using multiple
GPUs) amounts are nearly the same it is not efficient to store the Active and Successors
sets internally. Here an extension to the framework will be presented to utilize RAM
only as a buffer for the GPU. It is not possible to transfer data from the external storage
to the GPU directly, so at least one buffer has to be maintained. However, the buffers are
not exemplified in pseudo-code of Algorithm 4.7 since they can be seen as transparent.

The process of the exploration is divided in three stages as proposed by Algo-
rithm 4.1. For each BFS-Layer the state space enumeration is divided into three com-
putational stages (see Algorithm 4.7). In the first stage the elements in Open are trans-
ferred into the GPU and the set of active transitions is stored in the file Activeex.

In the second stage, sets of all possible successors are generated. For each en-
abled transition a pair, joining the transition ID and the explored state, is copied to the
VRAM. Each state is replicated by the number of successors it generates in order to
avoid memory to be allocated dynamically. Here it is efficient to have Openex and
Activeex on separate storing devices since a parallel read can be used.

The third stage removes all duplicates by using the hash based GPU sorting ap-
proach and hashing the successors to buckets, which are indexed by the hash value,
and by sorting the buckets in the GPU. Adjacent duplicates are removed in a first scan,
followed by scans to remove duplicates from previous layers.
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Algorithm 4.7: GPU-BFS - Large-Scale Breadth-First search on the GPU
Input: ŝ ∈ S initial state, T set of transitions

1 g ← 0 ; {reset counter for the BFS-Layers}
2 Openex[g]← ŝ ; {insert ŝ into first file}
3 while Openex[g] 6= ∅ do {until an empty layer is found}

{Stage 1 - Generate sets of enabled transitions}
4 Openex[g + 1]← ∅ ; {reset next file}
5 while |Activeex| 6= |Openex| do {until all frontier states are processed}
6 fillVRAM(u ∈ Openex) ; {copy states to VRAM}
7 Activeex ← Activeex ∪ GPU-Kernel Determine Transitions() ;

{Stage 2 - Generate sets of successors}
8 Successorsex ← ∅ ; {clear Successors file}
9 while eEndOfFile(Activeex) do {Until all transitions processed}

10 fillVRAM(Activeex ∪ {s, · · · , s})
{Copy Active ∪ {s, · · · , s} to VRAM}

11 Successorsex ← Successorsex ∪ GPU-Kernel Generate Successors();

{Stage 3 - Remove duplicates and rebuild Open }
12 for s ∈ Successorsex do
13 H[hash(s)]← H[hash(s)] ∪ {s} ; {insert s into bucket H[hash(s)]}
14 if |H[hash(s)]| = H[hash(s)].max then {if bucket full}
15 Sorted← GPU-Kernel sort buckets(H) ; {sort buckets on GPU}
16 Compacted← ScanAndRemoveDuplicates(Sorted) ;
17 DuplicateFree← SubtractDuplicates(Compacted, Openex[0..g]) ;
18 Openex[g + 1]← Merge(Openex[g + 1],DuplicateFree) ;
19 H[0..m]← ∅ ; {reset buckets}

20 g ← g + 1 ;

21 return Openex[0..g − 1] ;

4.5 Efficient Flat Representation of Formulas

To check the transitions for enabledness, a representation of them has to be accessible
by the GPU cores. While an object-oriented data structure – where each expression
in a process is realized as an object linked to its substructures – might be a preferable
representation of the graph definition for CPU access, such a representation would be
less effective for GPU access.

As described in Section 2, the GPU’s memory manager prefers sequential access to
the data structures. Moreover, to use coalescing reading many threads have to access
the same memory area in parallel. Hence, in order to speed up the access the pre- and
postconditions should reside in the SRAM of each multi-processor. This way a fast
randomized access can be granted, while the available space shrinks to at most SRAM
size.

Since the GPU should not access RAM and pointer manipulation on the GPU is
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Figure 4.3: The precondition my place == 3-1 encoded in Reverse Polish Notation and
stored in an integer vector.

limited, it is necessary to rewrite the condition labels to be evaluated. This description
has to be efficient in terms of memory and evaluation time, due to the small size of the
VRAM (compared to the computational power of the GPU). Furthermore, all transi-
tions should be moved to the graphics card as one memory block to take advantage of
fast block transfers on the express bus.

The challenge is to store the representation of the transitions efficiently. On the
GPU, the Reverse Polish Notation (RPN)3 (Burks et al., 1954), i. e., a postfix represen-
tation of Boolean and arithmetic expressions, was identified as effective. It is used to
represent all preconditions and postconditions of the model in one integer array. This
array is partitioned into two parts, one for the preconditions, the other for the post-
conditions. A prefix assigns the conditions to its processes after creating the array. In
addition to the preconditions, each transition indicates the successor state the process
will reach after enabling the postconditions. Tokens are used to distinguish different
elements of the Boolean formulas. Each entry consists of a pair (token,value) identi-
fying the action to take. Consider the precondition my\_place==3-1; starting at
position 8 of the array presented in Figure 7.2. It is translated to the RPN as an array
of length 10 using tokens for constants, arithmetic operations and variables. Constant
tokens, defining also the type of the constant, are followed by the value. Arithmetic to-
kens identify the following byte as an operator. One special token is the variable token,
there is no need for distinction in arrays or variables, since variables are seen as arrays
of length 1, so the token defines the type of the variable and is followed by the index to
access it in the state. This yields a pointer-free, compact and flat representation of the
transition conditions.

Evaluation complexity To evaluate a postfix representation of a boolean formula,
one scan through its representation suffices. The maximal length of a formula times
the number of groups thus determines the parallel running time, as for all threads in a
group, the check for enabledness is executed concurrently.

4.6 Summary
In this chapter an algorithm was proposed to utilize the highly parallel graphics pro-
cessing unit located on a graphics card and the corresponding memory to speed up state

3Originally invented by the Polish logican Jan Łukasiewicz in the 1920s.
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space generation and searching. For an efficient duplicate detection and the Open list
solid state devices are utilized due to their improved transferring speed.

The framework algorithm consists of three stages from which two use the GPU for
generating the successors and the third one stores the generated states on external media
to increase the available storage space. In the first stage a set of states is transferred
to the GPU and tested for active transitions. In the second stage a set of transitions
assigned to states is copied to the GPU and the successors are generated in parallel on
the device. In the third stage a parallel duplicate elimination is performed and visited
states are removed. This elimination can be either complete or not complete where
a small probability of removing new states is given. For each stage several strategies
were proposed to be used in the framework.

Determining active transitions is performed either in the successor counting strat-
egy, here the output of the GPU-Kernel is the number of successors to generate or using
the successor pointing strategy and identifying each successor uniquely by the index of
a bit in a vector.

When just the number of the successors is known, the generating function uses it
for allocating memory on the graphics card and generating the successors by repeating
the precondition check. The successor pointing strategy trades space for a returning bit
vector for a reduced work in the generation phase due to an avoided repetition of the
precondition check.

Duplicate detection can be either delayed by utilizing a sorting based approach
and external media or done semi immediately by utilizing lock less parallel hashing
using internal memory. Both strategies can be restricted to reduce the completeness
and increase storage capacity and lookup speed by using a compression in the first
approach and a bloom filter in the hash-based duplicate detection.

Still, there are remaining obstacles in implementing a fully-fledged state space
search on the GPU. First, the state size may vary during the verification. Fortunately,
the analyzed domains provide upper bounds on the state vector size or induce the max-
imal size of the state vector once the initial state has been read. Another technical
challenge is that the GPU kernel (though being C-like) does not exactly match the
sources of existing searching implementations, such that all methods being called have
to be ported to CUDA.
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Part II

Explicit State Model Checking
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Chapter 5

Introduction to Explicit State
Model Checking

Developing software is an evolving process. Even for systems where specifications
exist prior to the implementation each new version has to be checked whether it com-
plies with the specification. Since validating the specification on the implementation of
a prototype may not be possible a representation has to be generated and maintained.
The representation is then verified to fulfill the properties given in the specification.
After being checked the representation is converted into a programming language com-
piled for the given system. On the other hand an implementation can be analyzed to
generate a representation and check it. Both approaches demand for high computation
and storage capabilities not only for the transformation task, but also for the checking
process.

A common approach to verify a system is Model Checking (Clarke et al., 1999;
Müller-Olm et al., 1999) where a representation of the system, called model is created
and checked against given properties. Checking is done by traversing an implicit graph
defined by an initial state and transition definitions. The resulting graph can be arbi-
trarily large and modifications on the underlying model, e. g., while extending it to a
new version, can increase the number of nodes in the graph even exponentially. To
handle the large number of nodes and avoid the state space explosion problem, gener-
ated by a large branching factor, algorithms are needed that use the available hardware
efficiently.

Structure of this chapter: In the remaining part of this chapter Model Checking will
be defined in detail linking it to the state space search approach. The thesis example
from the introduction will be formed as a model in the DIVINE description language
DVE. The chapter closes by giving an overview on the related work.
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5.1 Modeling of Concurrent Systems
While the definition of Model Checking is as follows:

Definition 25 (Model Checking) Given a Model of a systemM and a property spec-
ification φ, Model Checking verifies if φ is satisfied by the system, (M |= φ)

several formalisms exist to model a concurrent system, e. g., communicating sequen-
tial processes (CSP) (Hoare, 1978), petri nets (Petri, 1962) and process algebras such
as the calculus of communicating systems (CCS) (Milner, 1980). When defined, the
model should represent the system as accurate as possible, since differences between
the representation and the prototype to verify may lead to false positives, finding errors
in the model not being present in the system, or to an overlooked error in the system.
The notification used in this work is equivalent to the DVE language (Pelánek, 2007)
here a model is composed of two main aspects; variables and processes.

5.1.1 Concurrent Systems as Variables and Actions
To use the benchmark protocols provided by the BEEM Library1 DVE was chosen as
an input model representation. The underlying theoretical model of the DVE language
is that of communicating finite state machines and consists of several parts, structured
hierarchically and identified as global variables and a number of processes on the top
level.

The DVE language composes a model of a set of processes and a set of variables.
Where a process is described by a variable representing the state of the process and a set
of actions. A tuple of a guard and a set of effects denote an action also called transition.
In Model Checking the term guard is used to depict preconditions that must be true for
an action to be active, while the term effect is used for postconditions. Reasoning on
the transitions in Model Checking the state space can be reduced, e. g., using the partial
order reduction (Godefroid, 1996) or data-flow analysis (Steffen, 1991).

Information sharing between processes and information storage is accomplished
using variables.

Definition 26 (Variable) A variable represents a container for information from a fi-
nite domain accessible either by all processes (global variable) or by one specific pro-
cess (local variable). If a variable is defined as constant its information does not change
between states.

Each variable can be identified by its name denoted in the model and needs to be
stored in the state, since it is required to describe the condition the system is in. Usually
variables are stored as a bit vector of adjustable size in the state and a table links its
name to an index position. This work restricts for finite system requesting for variables
from a finite domain, infinite systems are described in detail by Burkart and Steffen
(1997).

The umber of processes is not limited but only one transition in each process is
evaluated in the DIVINE model checker. While in sequential models only one process

1see: http://anna.fi.muni.cz/models/
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is active in one state parallel models activate all processes evaluating a number of
transitions at once.

The description language used to describe models in the model checker DIVINE
adds an explicit local state to each process called process state. The system state is
then composed of a number of process states accordingly to Definition 3 of a local
state in the introduction.

Definition 27 (Process State) Each process in a specification resides in a process state
defined prior to the search. One process state has to be marked as an initial process
state which is the state the process is in when the search starts.

The process state is realized as an additional private variable assigned to the pro-
cess. Each transition in Model Checking is extended by an additional guard checking
whether the process is in the process state the transition expects. The modification of
the process state is realized in the postconditions of the transition. The remaining parts
of the transition are defined exactly like in the introduction by using preconditions, de-
noted as guards and postconditions denoted as effects. In contrast to only allowing one
guard the number of effects is not bounded.

Two different approaches exist to traverse the graph generated from the represen-
tation, a two-passes Model Checking, where the state space is first generated, then
checked, and on-the-fly Model Checking (Courcoubetis et al., 1992; Fernandez et al.,
1992). Here the checking process is performed in parallel to the generation.

5.1.2 Explicit State Model Checking
In Explicit State Model Checking a system of transitions is checked against a given
property. This work is based on the description of the model in Linear Temporal
Logic (LTL) which uses a temporal logic for specifying the behavior of a software sys-
tem (Pnueli, 1977). Automata-based LTL Model Checking (Vardi and Wolper, 1986)
amounts to detecting accepting cycles in a global state space graph after converting
the transition system and the property into Büchi automata. However, Wolper (1983)
showed that a conversion is not always possible due to the increased expressiveness
of Büchi automata. Denoting the automata of the model with B(M) and the property
with B(φ) the system satisfies the property if

Lang(B(M)) ⊆ Lang(B(φ))

The system satisfies the property φ if all paths in the automaton M satisfy φ. Since
such a definition would always require to check the whole state space the previous
formula is converted to

Lang(B(M)) ∩ Lang(B(φ)) = ∅

equivalent to

Lang(B(M)) ∩ Lang(B(¬φ)) = ∅

and
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Lang(B(M) ∩B(¬φ)) = ∅

Now, every path of the combined automata is checked for not satisfying φ or, equiv-
alent to this for satisfying¬φ. Such a checking process is sufficient for safety properties
and can be realized by a simple BFS generation of the state space.Barnat et al. (2005)
propose to invoke a second search from each BFS backward edge (connecting states to
previous BFS-Layers), to detect cycles while in (Brim et al., 2004) predecessor accep-
tance is chosen.

States which satisfy the properties are denoted as accepting states and a Büchi
automata is accepting when a path exists from the initial state ŝ to the accepting state
sa and sa is part of a cycle. This leads to the definition of a counterexample in the
form given in Figure 5.1 where sa is visualized double circled. The state connecting
the cycle to the path from initial is called seed state.

There are two possible criteria for minimal counterexamples. The external memory
LTL Model Checking algorithm of Edelkamp and Jabbar (2006b) produces a minimal-
length lasso-shaped counterexample τ1τ2 among the ones that include the accepting
state at the seed state of the cycle (Figure 5.1 left).

τ1

τ2

ρ1

ρ2

ρ3

Figure 5.1: Different optimality criteria for a lasso-shaped LTL counterexample.

For this work, a stronger optimality criterion is assumed, in which the counterex-
ample ρ1ρ2ρ3 (Figure 5.1 right) is minimal among all lasso-shaped counterexamples
(not necessarily having an accepting state at the seed of the cycle). It is obvious that
the length is at most as large as the above one.

5.1.3 Explicit State Model Checking Example
Figure 5.2 models the graph in Figure 1.1 on Page 7 in the DVE language (Pelánek,
2007) specification. An integer global variable comlpeteness is defined carry-
ing the progress of the thesis and accessible by all processes defined in the following
code. The first process called student contains two private Boolean variables called
sleepy and hungry instantiated to true. The process can be in four process states,
specified at the beginning with the word state and being sleeping, eating,
thinking and writing where the initial process state is sleeping. Transitions
are introduced by the word trans and grouped in curly brackets. Each transition starts
with the process state it requires followed by an arrow -> and the process state the pro-
cess will be in after evaluation. Guards and effects are prefixed by the appropriate key
and separated in case of the effects by a semicolon. Analogous to the first process the
friend process is modeled containing two process states and two transitions. The
third process is a special one defining the LTL property with an accepting state q2 and
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int completeness = 0;

process student {
bool sleepy = true;
bool hungry = true;

state sleeping, eating, thinking, writing;
init sleeping;
trans{

sleeping -> eating {effect sleepy = false},
eating -> thinking {effect hungry =false},
thinking -> writing {},
writing -> thinking {guard !sleepy and !hungry;

effect hungry;completeness+=10;},
writing -> eating {guard hungry;

effect sleepy;completeness+=10;},
writing -> sleeping {guard sleepy;

effect hungry;completeness+=10;}
};

}

process friend{
state enjoingTime, reading;
init enjoingTime;
trans{

enjoingTime -> reading {guard completeness > 0;},
reading -> enjoingTime {effect completeness --;}}

}

process LTL_property {
state q1, q2;
init q1;
accept q2;
trans{

q1 -> q1 {},
q1 -> q2 {guard completeness >= 100;},
q2 -> q2 {};

}
}

Figure 5.2: Graph in Figure 1.1 on Page 7 described as a DVE model.
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only one guard in the transitions being enabled when completeness has reached
100%.

5.2 Related Work
A detailed overview in the area of Explicit State Model Checking can not be given in
the scope of this thesis so the next sections will sketch the most important work done in
the fields of External Explicit State Model Checking and Parallel Explicit State Model
Checking.

5.2.1 External Explicit State Model Checking Algorithms
Edelkamp and Jabbar (2006b) present the first I/O-efficient solution for the LTL Model
Checking problem which builds on the reduction of liveness-to-safety property conver-
sion from Schuppan and Biere (2004), originally designed for symbolic Model Check-
ing (McMillan, 1993). The algorithm operates on-the-fly and applies heuristics (Pearl,
1985) for accelerated LTL property checking. Since the exploration strategy is A* (Hart
et al., 1968), the produced counterexamples are optimal.

A further I/O-efficient algorithm for accepting cycle detection (Barnat et al., 2007)
is one-way-catch-them-young (OWCTY). It generates the whole state space and then
iteratively prunes parts that do not lead to any accepting cycle. Later on, an external on-
the-fly LTL Model Checking algorithm based on the maximal-accepting-predecessors
algorithm (MAP) (Barnat et al., 2008b) and nested Depth-First searches (Fernandez et
al., 1992) has been developed.

Edelkamp et al. (2004b) coin the phrase Directed Model Checking to denote a
guided traversal of the state space supported by heuristics by implementing the guided
explicit-state model checker HSF-SPIN, an extension to SPIN (Holzmann, 2004). While
Approver, proposed by Jan (1978) was already a too that used a directed search for the
verification of communication protocols, SpotLight (Yang and Dill, 1998) applied the
basic AI algorithm A* (Pearl, 1985) for the verification of models. Based on this ap-
proaches were invented to utilize heuristics in Model Checking, e. g., by Edelkamp et
al. (2004a) and by Jabbar and Edelkamp (2005). Followed by external memory and
even a parallelized algorithm to decrease the searching time (Edelkamp and Jabbar,
2006b; Jabbar and Edelkamp, 2006; Edelkamp and Schroedl, 2011). Both algorithms
do utilize external memory but not necessarily the advantage of solid state media which
would provide an additional speed up.

5.2.2 Parallel Explicit State Model Checking
The first appearance of distributed Model Checking goes back to Aggarwal et al. (1987)
who investigate aspects of distributing reachability over a local area network of work-
stations, in order to reduce the time needed to complete the calculation. However,
the algorithm was never implemented so that the first practical usage of distributed
Model Checking was by Stern and Dill (1997). They describe a parallel version of
the explicit state enumeration verifier Murφ for distributed memory multiprocessors
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and networks of workstations using the message passing paradigm. An approach like
presented in (Edelkamp et al., 2008a) is not suitable due to necessary communication
between threads.

Currently a number of Model Checking tools exist being extended to utilize parallel
hardware in a shared or distributed memory architecture. DIVINE, a tool utilized also
in the scope of this work, is a parallel shared memory LTL model checker that is based
on a distributed memory algorithm. A number of implementation techniques presented
in (Barnat et al., 2010b) is devised to improve the scalability of the tool.

In Holzmann et al. (2008) one of the most prominent Model Checking tools, namely
SPIN (Holzmann, 2004) is parallelized by using the swarm intelligence technique de-
scribed by Hofstadter (1979).

The LTSmin tool set (Laarman et al., 2011a) provides multiple generation and on-
the-fly analysis algorithms for large state spaces in symbolic and distributed Model
Checking algorithms. Recently a multi-core back end for checking safety properties
was added (Laarman et al., 2011b), improving efficiency and memory usage .

Barnat et al. (2009) present a tool that performs CUDA accelerated LTL Model
Checking. They adjust the MAP algorithm to the GPU to detect the presence of accept-
ing cycles. As in bounded Model Checking (Biere et al., 1999), the state space may be
generated in layers on the CPU, before being transformed into a matrix representation
to be processed on the GPU. The speed-ups are visible, but the approach is limited by
the memory available on the GPU and able to checking properties in moderately-sized
models only. The approach is modified to utilize multiple devices (Barnat et al., 2010a)
extending the possible model size by a factor of two due to using two cards.

5.3 Summary
As a starting point this chapter introduces Explicit State Model Checking and the mod-
eling of concurrent systems. The input language DVE discussed in detail and an ex-
ample of a model was given. The chapter closes with a presentation of related work on
Explicit State Model Checking.
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Chapter 6

SSD-Based Minimal
Counterexamples Search

Many scenarios with the claim for a minimal counterexample exist in Model Check-
ing. Be it in the case where a non minimal model checker finds a counterexample to
long to reconstruct for the developer or when even the minimal one is known to have a
decent length. In such situations investing more time or other resources in the checking
process may pay off when analysing the returned example. This chapter will propose
an algorithm which traverses a the state space partially or even completely three times
but ensures to deliver a minimal counter example. The preliminaries of this chapter
first appeared in (Edelkamp and Sulewski, 2008a) extended a refined in (Edelkamp
and Sulewski, 2008b). Later on this approach is presented in (Edelkamp et al., 2011)
together with different other techniques for using the SSD in hashing and Model Check-
ing.

Structure of this chapter: Starting with the definition of semi-external algorithms
this chapter introduces the baseline algorithm from Gastin and Moro (2007) extended
to support solid state media. In the next section the modification to use perfect hashing
to externalize the majority of information is described.

6.1 Semi-External LTL Model Checking
With limited information per state (e. g., one flag for monitoring if a state has been
visited), semi-external graph algorithms (Abello et al., 1998) store a constant number
of bits per state.

Definition 28 (c-bit semi-external graph algorithm) A graph algorithm A is called
c-bit semi-external for c ∈ R+, if there is a constant c0 > 0 such that for each implicit
graphG = (V,E) the internal memory requirements ofA are at most c0 ·vmax+c · |V |
bits. Including the state vector size vmax in the complexity is necessary, since this value
varies for different graphs.

91
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The worst case I/O complexity of the presented algorithm is roughly |Accept| times
the one of semi-external BFS with internal duplicate detection. Its shows a consider-
able improvement to (Edelkamp and Jabbar, 2006b). More importantly, the worst-case
space consumption is linear in the model size and matches the ones of OWCTY and
MAP.

Based on the definition of perfect hash functions given in the introduction, semi-
external Depth-First search with the use of minimum perfect hashing has been pro-
posed (Edelkamp et al., 2008b) . First, an external memory BFS (Munagala and
Ranade, 1999) generates all states on disk (the external step). Then, a minimal per-
fect hash function (residing in RAM) is constructed on the basis of all these states.
Finally, the actual verification is performed using this perfect hash function to address
a 1 bit table (see Figure 6.1) for the Closed state set.

Perfect hash function, using 5 bits per state.

Visited bit array, using 1 bit per state.

Figure 6.1: State space compression utilizing a perfect hash function which compresses
a state to 5 bits (the position of a visited bit is determined by the state’s compressed
representation in the function).

In a related publication the double Depth-First search algorithm originally pro-
posed by Courcoubetis et al. (1992) has been ported from internal to external search
for semi-external LTL Model Checking. The algorithm performs a first DFS to find all
accepting states. The second DFS explores the state space seeded by these states. Be-
sides the amount of space for storing the perfect hash function, the algorithm requires
one additional bit per state.

Depth-First search based algorithms (usually) produce non-minimal counterexam-
ples. Many other algorithms, like OWCTY and MAP, do also not guarantee minimality
of the counterexamples produced.

The following implementation, calling a semi-external BFS O(|Accept|) times,
adapts the algorithm of Gastin and Moro (2007), an internal-memory algorithm that
finds optimal counterexamples space-efficiently.1 The algorithm progresses only along
forward edges.

Algorithm 6.1 provides the pseudo-code for the search for a minimal counterexam-
ple with a combination of solid state and hard disks. The construction of the priority
queue2 is shown in Algorithm 6.2, while the synchronized traversal is shown in Algo-
rithm 6.3.

Gastin and Moro (2007) propose three phases, corresponding to the three concate-
nated sub-paths of the counterexample ρ1ρ2ρ3, show in Figure.5.1. Path ρ1 to the cycle
seed (phase 1), path ρ2 from the seed to the accepting state (phase 3) and path ρ3 back

1In (Gastin and Moro, 2007), the algorithm was not implemented. Hence, this presentation eliminates
some minor bugs.

2The notation aligns with (Gastin and Moro, 2007), proofs of correctness and optimality are inherited.
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Algorithm 6.1: Minimal-Counterexample search
Input: ŝ ∈ S initial state
Output: Minimal Counter Example if exists

1 (S, εŝ)← External-BFS(ŝ) ; {start External BFS from ŝ }
{generate S and store the maximal depth in εŝ}

2 h← Construct-PHF(S) ; {construct the perfect hash function to S }
3 Closed← (0..0) ; {internal bit-array of length |S|}
4 Open← ∅ ; {file for state vectors on external memory}
5 (depth,Accept)← BFS-distance(ŝ, Open) ;

{find all accepting states and store their distance to ŝ }
6 opt←∞ ; {initial optimal lasso length}
7 for sa ∈ Accept ∧ depth(sa) < opt do
{for each accepting state whose distance to ŝ is smaller then opt}

8 Open← ∅;Closed← (0..0) ; {clear Open and Closed list}
9 PQ← BFS-PQ(sa, Open,Closed) ;

{determine minimal ρ1 + ρ3 for all states reachable from sa}
10 Open← ∅;Closed← (0..0) ; {clear Open and Closed list}
11 (t, n)← Prio-min(sa,PQ, Open,Closed) ;

{determine minimal ρ2 for all states with a path to sa}
12 if (n < opt) then
13 s1 ← t; s2 ← sa; opt← n ;

{reconstruction of the counterexamples knowing ρ1, ρ2 and ρ3}
Open← ∅;Closed← (0..0) ; {clear Open and Closed list}

14 ρ1 ← Bounded-DFS(ŝ, s1, Open,Closed, depth(s1));
{reconstruct ρ1 using a DFS search bounded to depth(s1)}

Open← ∅;Closed← (0..0) ; {clear Open and Closed list}
15 dist(s1, s2)← BFS(s1, s2, Open,Closed);

; {determine length of ρ2 using a BFS search}
16 Open← ∅;Closed← (0..0) ; {clear Open and Closed list}
17 ρ2 ← Bounded-DFS(s1, s2, Open,Closed, dist(s1, s2));

{reconstruct ρ2 using a DFS search bounded to dist(s1, s2)}
Open← ∅;Closed← (0..0) ; {clear Open and Closed list}

18 ρ3 ← Bounded-DFS(s2, s1, Open,Closed, opt− depth(s1)− dist(s1, s2));
{reconstruct ρ3 using a DFS search bounded to opt− depth(s1)− dist(s1, s2) }
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Algorithm 6.2: BFS-PQ File-based 1-level-bucket priority queue
Input: sa Accepting state, Open file for state vectors
Output: PQ Dynamic array of state vector files (external)

1 if (depth(sa) < opt) then {if depth of sa less then current opt}
2 PQ[depth(sa) + 1]← sa ; {append sa to array at position depth(sa)}
3 Open← sa ; {append sa at the end of Open }
4 Closed[h(sa)]← true; ; {mark sa as visited}
5 n← 0 ; {current distance to sa}
6 loop← false ; {necessary to store whether sa was reached again}
7 l← 1 ; {number of states in current BFS-Layer started with sa}
8 l′ ← 0 ; {counter for states in next BFS-Layer started with sa}
9 q ← 0 ; {read pointer for Open }

10 while (q 6= |Open| ∧ n < opt) do {elements in Open and n shorter then opt}
11 u← Open; q ← q + 1; l← l − 1 ; {read state, increase q, decrease l}
12 expand u→ s1 . . . sν ; {generate successors}
13 for si (∀i : 1 ≤ i ≤ ν) do {for each successor of u}
14 if (Closed[h(si)] = false) then {if s is an unseen state}
15 Closed[h(si)]← true ; {mark si as visited and store it in Open }
16 Open← si; l

′ ← l′ + 1 ;
{append si to Open, increase next layer counter l′}

17 if (depth(si) + n+ 1 < opt) then
{if length of a counterexample crossing si is smaller then opt}

18 PQ[depth(si) + n+ 1]← si ; {add it to appropriate PQ list}

19 loop← loop ∨ (si = sa) ; {when cycle found remember this}
20 if (loop ∧ depth(si) + n+ 1 < opt) then
21 opt← depth(si) + n+ 1 ; {store length of counterexample in opt}

22 if (l = 0) then {if all states in this BFS-Layer done increase n}
23 l← l′; l′ ← 0; n← n+ 1 ;

24 if loop then return PQ ;
25 else return ∅ ;



6.1. SEMI-EXTERNAL LTL MODEL CHECKING 95

Algorithm 6.3: Prio-min: Synchronized traversal driven by an external memory
1-level-bucket priority queue.

Input: sa Accepting state , Open file for state vectors, PQ dynamic array of
state vector files

Output: Pair (u, t) of state u and lasso length t
1 n← min{i | PQ[i] 6= ∅} ; {start with first non empty PQ}
2 p←

∑
i |PQ[i]| ; {counter for all states in all PQ files}

3 q ← 0 ; {read pointer for Open }
4 l← 0; l′ ← 0 ; {counters for current and next BFS-Layer}
5 while ((p 6= 0 ∨ q 6= |Open|) ∧ (n+ 1 6= opt)) do
{until all states processed or Open empty}

6 for (s ∈ PQ[i] ∧ Closed[h(s)] = false) do
{get all states from current PQ}

7 Open← (s, s);Closed[h(s)]← true ; {insert a pair into Open }
8 p← p− 1; l← l + 1 ; {decrease state and increase BFS-Layer counter}
9 while (l 6= 0) do {while states to process}

10 (s, s′)← Open; q ← q + 2 ; {get two states from Open }
11 expand s′ → v1 . . . vν ; {generate successors}
12 for v′i (∀i : 1 ≤ i ≤ ν) do {for each successor of the second state}
13 if (v′i = sa) then {if a path to the accepting state found}
14 return (s, n+ 1) ; {return s and length of counterexample}
15 if (Closed[h(v′i)] = false) then {state is unvisited}
16 Closed[h(v′i)] = true ; {mark it as visited}
17 Open← (s, v′i) ; {add a new pair to Open }
18 l′ ← l′ + 1;

19 l← l − 1 ; {decrease BFS level counter}
20 l← l′; l′ ← 0;n← n+ 1 ; {change l to l′ and reset l′}
21 return (⊥,∞) ;

from the accepting state to the seed (phase 2). Phase 1 of the algorithm executes a plain
BFS, that comes for free while constructing the perfect hash function, even though the
implementation performs another semi-external BFS for it. Phase 2 and 3 start a BFS
from each accepting state, incrementally improving a bound opt for the length of the
minimal counterexample. Phase 3 invokes a BFS driven by an ordering obtained by
adding the BFS distances from phases 1 and 2. States in this phase are ordered with re-
spect to |ρ1|+ |ρ3| and stored in a 1-level bucket priority queue, originally invented by
Dial (1969).3 If duplicate elimination is internal, states can be processed in sequence.
Hence, all three phases do allow streaming and can be implemented I/O-efficiently.

Files are organized in form of queues, but they do not support the Dequeue opera-
tion, for which deleting and moving the content of the file would be needed. Therefore,
instead of Enqueue and Dequeue the algorithms are rewritten based on the operations

3In (Gastin and Moro, 2007), a heap was used, which is less efficient.
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Append and Next. As a consequence that files do not run empty, and in order to keep
the data structures on the external device as simple as possible, the implementation had
to be adopted. The counters l and l′ maintain the actual sizes of the currently active
and the next BFS-Layer (at the end of a layer, l′ is set to 0 counting the unique succes-
sors of the next layer). Value q denotes the current head position in the queue file and
is incremented after reading an element. When the queue file is scanned completely,
elements are removed and q is set to 0.

With the constant access time, perfect hashing speeds up all graph traversals to
mere scanning. It provides duplicate detection and fast access to the BFS depth values
(wrt. the initial state) that have been associated with each state. Finally, solution ex-
traction (slightly different to Gastin and Moro (2007)) reconstructs the three minimal
counterexample sub-paths ρ1, ρ2, and ρ3 between two given states using bounded DFS.
In difference to Gastin and Moro (2007) the depth value is not overwritten. DFS depth
is determined by the stack size, such that, once the threshold is known, no additional
pruning information is needed.

Counterexample reconstruction based on bounded DFS can also be implemented
semi-externally. Let opt be the length of the optimal counterexample and dist the length
of the shortest path between two states. It is not difficult to see that for start state s,
seed state s1, and accepting state s2 we have |ρ1| = dist(s, s1), |ρ2| = dist(s1, s2) (to
be computed with BFS), and |ρ3| = opt−dist(s, s1)−dist(s1, s2). The reconstruction
is slightly different to Gastin and Moro (2007) as the knowledge on |ρ1| and opt to
avoid BFS calls is used.

The implementation includes performance improvements mentioned by Gastin and
Moro (2007), while constructing the priority queue. For example, accepting states
without loops or over-sized loops are neglected. If the first loop established (including
the depth of the seed) is already too big, the construction terminates. Moreover simple
loops on the accepting state are filtered.

The upper size for the priority queue is bounded by the maximum depth εs of the
BFS starting at s, plus the diameter of the search space diam = maxs1,s2 dist(s1, s2).
As the latter is not known in advance, dynamic vectors for storing the priority queue
are needed.

6.1.1 Extending to Efficiently Support SSDs

The key idea to improve the RAM-efficiency of semi-external memory algorithms is
rather simple. Instead of the hash function being maintained completely in RAM, it is
stored (partially or completely) on the solid state disk. Closed remains in RAM and
consumes one bit per state.

Note that static perfect hashing, as approached in this chapter (in contrast to dy-
namic (perfect) hashing4 (Barnat et al., 2008a)) is flash-efficient. Most perfect hashing
algorithms can be made dynamic (Dietzfelbinger et al., 1994), but on SSDs the addi-
tional limitation of slow random writes exists, so that rehashing has to be sequential.
In other words, foreground and background hash functions have to be compatible. The

4where, each time RAM becomes sparse, the foreground function, which stores the states in the RAM,
has to be moved and merged with the background hash function, using external storage
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design of flash-efficient dynamic hashing algorithms is a research challenge on its own
with a large impact for on-the-fly Model Checking.

The setting distinguishes three phases: state space generation, perfect hash function
construction and search. The external memory construction process used by Botelho
and Ziviani (2007) is streamed and includes sorting the input data according to some
first-level hash function. Therefore, it can be executed efficiently on the hard disk. In
preceding experiments with a key set provided as a file, the perfect hash function was
constructed also in form of a file, reading the keys from disk and writing the generated
perfect hash function to it. Or from hard disk to solid-state disk, or from flash media
card to solid state disk. The compression ratio is impressive, e. g., for sets of 10-letter
strings, an 18-fold reduction is obtained.

Figure 6.4 shows the extended algorithm with integrated flash memory for storing
and accessing the perfect hash function. It requires one bit per state for early duplicate
detection in RAM. For calling Semi-External-LTL-Model-Check, different options are
available. For the example of single or double Depth-First search (possibly combined
with iterative-deepening), one bit per state in Closed is sufficient.

Algorithm 6.4: SSD-LTL-Model-Check: Flash-efficient semi-external Model
Checking

1 State Space← External-BFS(s) ;
2 h : Perfect hash function, cPHF × |State Space| on SSD ;
3 h← Construct-PHF(State Space) ;
4 Closed : internal bit-array [1..|State Space|] ;
5 Semi-External-LTL-Model-Check(s, h, Closed) ;

Exploiting flash memory, the semi-external minimal counterexample algorithm de-
scribed above can be made 1-bit semi-external, if the BFS depth is attached to the state
in the perfect hash function on the solid state disk. Therefore, the number of bits re-
quired at each state on solid state disk is enlarged by the logarithm of the index of the
maximum BFS-Layer. Assuming that this value is smaller than 256, which was the
case in our experiments, one byte per state is sufficient.

6.2 Externalizing the Perfect Hash Function
To understand the externalization of minimum perfect hashing, it is necessary to moti-
vate its construction process and its usage. Perfect hashing as defined in Section 1.4.1
is an one-to-one mapping of some state set V to the index range {0, . . . , |V | − 1}. For
the construction of the hash function, the set V has to be known.

For a global state lookup, perfect hashing requires 1 seek, then reading a sequence
of bits, depending on the implementation. If the number of bits is smaller than the block
size, besides multiple calls to the read operation no additional overhead is required.

External perfect hashing (Botelho and Ziviani, 2007) builds on a partition with
buckets of at most n = 256 elements each, using a first-level hash function that guar-
antees 128 bucket elements on the average, and no more than 256. For each of the buck-
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ets, two individual hash tables exist on which a bipartite graph is built. The two hash
functions of each bucket can be stored compactly inm = 2cPHFn bits, with cPHF ≈ 1.05.
If the number of elements in the addressed bucket by a first-level hash function, is 256,
then m ≈ 530 bits have to be stored to evaluate the perfect hash function correctly.

Two externalizations were implemented in the scope of this work. In the first one,
only the information on the m bits is flushed, which leaves about 184 remaining bits
in the RAM. In the second one, all information is flushed except the file pointer to the
bucket, which reduces the number of bits per bucket to 64. In all implementations with
access to the perfect hash function on flash memory, some information of the bucket
remains in RAM, but beats the lower bound of 1.44 bits per state (Dietzfelbinger et al.,
1994). It is rather simple to extend the implementations to externalize the remaining
bits to the disk by using a sparse representation of the buckets. A drawback of writing
the uncompressed representation of the buckets to disk is that the file size increases by
about a factor of 2 (from 128 on the average to 256). Avoiding this a 1-bit semi-external
algorithm is constructed. Such 1-bit semi-external algorithm allows using almost all
available RAM for Closed. The number of hard disk I/Os does not change. Semi-
external LTL Model Checking is dominated by BFS state space generation.

Storing the hash function after generating the state space on hard disk, requires
write(|V |) flash memory I/Os. During (double) depth-first search, for each state space
edge, a query to the hash function is proposed, such thatO(|E| ·read(1)) flash memory
I/Os are needed. As the hash function for the on-the-fly variant is computed for each
BFS level, the flash memory complexity can increase.

For minimum counterexample generation, the following situation arises. If allo-
cating 1 + cPHF + dlog(εs + 1)e bits per node exceeds RAM, flash memory helps.
Outsourcing the perfect hash function together with the BFS-level takes O(write(|V |))
flash memory I/Os, while total I/O complexity for the lookups for duplicate detection
is bounded by |Accept| · |E| · read(1) I/Os. Storing the array depth on the solid state
disk by enlarging the disk representation of the perfect hash function does not yield ad-
ditional I/O, as the access to one compressed state (with depth value included), is still
below the block size. Here, the access in the pseudo-code would change from depth(v)
into depth[h(v)].

6.3 Summary
This chapter proposed a semi-external algorithm utilizing perfect hashing to store a
portion of the information, necessary to traverse a graph on solid state media. Based
on the internal minimal counterexamples algorithm from Gastin and Moro (2007) an
additional BFS was inserted at the front to generate a perfect hash function. The al-
gorithm performs 3 stages to generate the minimal counterexample, the generation of
the perfect hash function using an external BFS, the search for the counterexample us-
ing internal memory and an SSD, and the reconstruction of the counterexample. The
perfect hash function is generated and stored efficiently on SSDs and profits from the
increased random access time of this media while searching. Having externalized it
each BFS traversal can be done using the internal memory filled nearly completely
with a 1-bit Closed list supported by the SSD.



Chapter 7

GPU-Based Model Checking

In the following, the strategies presented in Part I are used for breadth-first explicit-
state Model Checking on the GPU. This chapter will show how to test enabledness for
a set of states in parallel, and – given all sets of applicable transitions – how to gener-
ate the successor state sets accordingly. BFS for generating the entire search space is
sufficient for verifying the safety properties. Even for Model Checking full LTL, pre-
sented in the previous chapter. Efficient state space generation via Breadth-First search
is often a crucial step. The external memory evaluation was published in (Edelkamp
and Sulewski, 2010b) and the internal approach in (Edelkamp and Sulewski, 2010a).

The state space generation is divided into three stages according to the framework
propsed in Part I. In the first stage, a set of enabled transitions is generated by copying
the states to the VRAM and replacing them by a bitvector using the successor pointing
strategy described in detail in Section 4.2.2. In the second stage, sets of all possible
successors are generated. For each enabled transition a pair, joining the transition ID
and the explored state, is copied to the VRAM. Each state is replicated by the number
of successors it generates in order to avoid memory to be allocated dynamically. After
the generation all duplicates are removed.

Structure of the chapter: Having described the extraction of a GPU suitable state
out of a DVE model the checking of a formula is characterized. The chapter continues
with details on the precondition checking and enabling of the postconditions to generate
successors and closes with the comparison of internal and external duplicate detection.

7.1 Parsing the DVE Language

Based on the grammar knowledge, the model description can be parsed and a syntax
tree constructed. To store different variable assignments and indicate in which state a
process currently is, a byte vector can be used. Figure 7.1 describes the state vector
assigned to the example in Figure 5.2. Necessary space for each global variable is
reserved, followed by the current state of a process, represented as an integer, and
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Figure 7.1: State vector representing a state with a global 32-bit integer denoted as
thesisComplete. One process whose process state is stored at position 4 and whose
private variables are sleepy and hungry followed by a second process called friend.

combined with space for all its local variables.1

Converting the protocol to the Reverse Polish Notation and copying it to the GPU is
executed before the Model Checking process starts. Using this representation a check
for enabledness of a transition in a process boils down to 3 steps:

1. Checking the state the process is in, by reading the corresponding byte in the
state vector.

2. Identify transitions to check by reading the global prefix of the integer vector
describing the model.

3. Evaluation of all guards dependent to the actual state and process on a stack.

To enable a transition given its ID, the representation of its effects starting at the
position given in the second partition of the array has to be evaluated. The advantage
of this approach is to copy all information needed for the model checking process into
1 block. Given that all guards and effects, respectively, are located in adjacent memory
cells, a streamed access for evaluating a large number of guards is realized.

Figure 7.2 picks up the vector in Figure 4.3 and extends it to two transitions. As pro-
posed in Section 4.5 of Part I the guards are rewritten into the Reverse Polish Notation.
Moreover, additional static information about the structure of the postfix representa-
tion, needed to evaluate a guard is copied to separate memory blocks.

This information includes, e. g., the offset of the guards for each process and the
starting position of guards depending on the state a process is in. For the application of
a transition to a given state, similar to processing the guards, the effect expressions have
been also rewritten in Reverse Polish Notation. Since this static representation resides
in the GPU’s VRAM for the entire checking process and since it is addressed by all

1This representation is equivalent to the one used in the DIVINE model checker.
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Figure 7.2: Fragments of the transition vector to evaluate two transitions. The first
transition, starting at index 7 comes without a precondition and the seconds transition
precondition is my place == 3-1 whose length is 10, denoted at position 8.

instances of the same kernel function, its access is fast. The cause is that broadcasting
is an integral operation on most graphics cards.

7.1.1 Checking Enabledness on the GPU

Before the execution the transition vector is copied to the SRAM for faster access.
All threads access in parallel the VRAM and read the state vector into their registers
using coalescing. Then all threads access transitions[0], the vector visualized partly
in Figure 7.2, to find the number of processes in the model. Next, all threads access
transitions[1] to find the state the first process is in. At this point in time, the memory
access diverges. Since processes have reached different states at different positions in
the search space, different guards have to be evaluated. This does not harm, since the
transition vector is accessible in the SRAM and all access is streamed. After collecting
the necessary information, all threads call Algorithm 7.1 as the function in line 5 of
Algorithm 4.4 (page 69). A stack consisting of pair entries (token, value) is used to
evaluate the Boolean formulas. The maximal stack size is fixed for each protocol and
can be extracted from the model.The checking process boils down to storing the values
on the stack, and executing all operations on the two entries on top of the stack. The
stack serves as a cache for all operations and if an assignment is found, the value on
top of it is written to the state.

In the first stage the VRAM is filled with states from theOpen list. Then, according
to the successor pointing strategy a GPU kernel computes a bit vector B of transitions,
with bit Bt denoting, whether or not transition t applies. The entire array B, whose
size is equal to the upper bound of all transitions, is initialized to false. A bit is
set, if a transition is enabled. Each thread reads one single state at an unique position
defined by its ID and computes the set of its enabled transitions. For improved VRAM
efficiency the vector of transitions replaces the states they are applied to. Therefore, we
utilize the fact that the number of transitions in a protocol is constant and the number
of transitions does not exceed the size of the bit vector representation of a state. For
the implementation, after having checked all transitions for enabledness, the bit vectors
are copied back to RAM.

To evaluate a postfix representation of a guard, one scan through its representation
suffices. The maximal length of a guard times the number of groups thus determines
the parallel running time, as for all threads in a group, the check for enabledness is
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Algorithm 7.1: GPU-Kernel Determine guard on a given state
Input: transitions expression vector, s state in vector representation, tID

transition ID
Output: true, if guard evaluation was successful; false, otherwise

1 pos← start of guard(tID) ; {set starting position of guard.}
2 while pos < (start of guard(tID) + length of guard(tID)) do
{while end not reached}

3 if is constant(transitions[pos]) then
4 push transitions[pos+1] on top of stack;

{constant? Just store it on the stack}
5 if is variable(transitions[pos]) then
6 push state[transitions[pos+1]] on top of stack;

{variable? Read indexed value in s and store it on the stack}
7 if is operator(transitions[pos]) then
8 pop var1 and var2 from stack;

{operator? Get two values from the top}
9 result← var1 transitions[pos+1] var2 ; {apply the indexed operator}

10 push result on top of stack ; {and store the result on the stack}
11 pos← pos + 2; ; {set pointer to the next element}
12 return result ;

executed concurrently.

Algorithm 7.2: GPU-Kernel Detect Duplicates via Sorting
Input: H (unsorted)
Output: H (partially sorted)

1 for each group g do in parallel {partially distributed computation}
2 i← Select(H, g) ; {transfer block to SRAM}
3 H ′[i]← ParallelSort(H[i]) ; {Sort using all threads}
4 return H ′

7.2 Generating the Successors on the GPU
Having fixed the set of applicable transitions for each state, generating the successors
on the GPU is relatively simple. First, each state is replicated to be explored by the
number of enabled transitions on the CPU. Moreover, we attach the ID of the transition
that is enabled together with each state. Then, the array of states is moved to the GPU
and the successors are generated in parallel.

For the application of a transition to a given state, similar to processing the guards,
the effect expressions have been rewritten in Reverse Polish Notation, and are evaluated
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according to the successor pointing strategy. Since this static representation resides
in the GPU’s VRAM for the entire checking process and since it is addressed by all
instances of the same kernel function, its access is fast. The cause is that broadcasting
is an integral operation on most graphics cards.

Each state to be explored is overwritten with the result of applying the attached
transition, which often results in small changes to the state vector. Finally, all states are
copied back to RAM. The run-time is determined by the maximal length of an effect
times the number of groups, as for all threads in a group we generate the successors in
parallel.

7.3 Duplicate Detection

Two strategies were used to perform the check for expanded states. An immediate
detection on the CPU, checking all states in the set, and a delayed duplicate detection
utilizing the GPU.

7.3.1 Immediate Detection on (Multiple Cores of) the CPU

Due to the fact that successors may be generated several times in one buffer this is not
a strict immediate duplicate detection but a semi-immediate one. Since the successors
are generated in parallel, an efficient parallel method is necessary to detect duplicates
by checking the current state against the list of explored nodes. Like in the SPIN model
checker, double Bitstate hashing is chosen as the default option. Looking at the num-
ber of states explored, the error probability for tens of gigabytes of main memory is
acceptably small. Different options have been proposed to increase coverage (Holz-
mann, 1998), including the choice of a new hash function, e. g., from a set of universal
ones (the state hash functions borrowed from Rasmus Pagh (Pagh and Rodler, 2001)
are universal). To increase space utility, cache-, hash-, and space-efficient Bloom fil-
ters have been proposed (Putze et al., 2009) and compress a static dictionary to its
information-theoretic optimum by using a Golomb code. Refinements like sequential
hashing with different hash functions, or hash compaction are possible but not yet im-
plemented. To parallelize Bitstate hashing on multiple CPU cores, the set of successors
is partitioned and all partitions are scanned in parallel as described in Section 4.3.2. In
Bitstate hashing, a bit set is never cleared due to the nature of the BFS algorithm. States
are never omitted in the parallel version of Bitstate hashing, however, since Open is
stored externally and newer states always appended when considered new, a state can
be added by two threads in parallel and expanded twice. This is not a problem since its
successors would be caught by the duplicate detection and beside this fact, this never
happened during the evaluation.

To avoid the probability of loosing a state in Bitstate hashing also table based hash-
ing, storing the complete states in the table was evaluated but it could not keep pace
with the Bitstate hashing approach in terms of time efficiency. So, having evaluated
the state space numbers and noticed no discrepancy to Bitstate hashing this duplicate
detection scheme was discarded.
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7.3.2 Delayed Duplicate Detection on the GPU
Immediate duplication, being incredibly fast in the parallel implementation fills the
available amount of RAM in about 15 minutes supported by the additional GPU pro-
cessing power. Supporting larger state spaces and utilize the parallel power of the GPU
also for the duplicate detection was considered and implemented in the way proposed
in Section 4.3.1. HereOpen and also Closed are stored entirely on external media pre-
ferring a RAID of devices to increase the access speed. The GPU is used for sorting in
a bucket sorting approach utilizing the CPU to distribute the states, or representations
of them in buckets sorted on the graphics card.

Due to the success when checking state spaces with state numbers over 2 ∗ 109

a compression strategy is used reintroducing omitting of states on a lower percentage
level then the Bitstate approach. Beside being able to generate larger state spaces the
time needed for sorting is still a significant speed killer compared with the hashing
approach even when sorting is done on the GPU.

7.4 Summary
In this chapter the framework proposed in Part I was successfully applied to explicit
Model Checking. After partitioning the search into three stages the successor pointing
strategy was chosen to generate the states according to the given model and property
converted to the Reverse Polish Notation. Several duplicate detection techniques were
implemented to test the efficiency of immediate and delayed duplicate detection.



Chapter 8

Experimental Evaluation

The proposed algorithms were implemented in DIVINE (DIstributed VerIficatioN Envi-
ronment)1, including only part of the library deployed with it, namely state generation
and internal storage. For the implementation of external memory containers and for
algorithms for efficient sorting and scanning STXXL (Standard Template Library for
Extra Large Data Sets) (Dementiev et al., 2005) is used.

Since the developers of DIVINE switched from the 32-bit architecture to 64-bit dur-
ing this work and changed the majority of DIVINE a complete reimplementation would
be necessary to follow, a new model checker called CUDA Driven Model Checker
(CUDMOC) was implemented.

Models are taken from the BEEM library (Pelánek, 2007), for which minimal
counterexample lengths are not known.The capacity of the Bitstate table amounts to
81,474,836,321 bit entries with this number being a prime.

Structure of the chapter In the following the implementation of both algorithms is
evaluated on different protocols taken from the BEEM library. Having examined the
search for minimal counterexamples internally, the perfect hash function is external-
ized though more RAM remains for Closed. In the second part of this chapter GPU
supported Model Checking is evaluated and compared to different state of the art model
checkers. The chapter closes with a summary of this part.

8.1 Results for Semi-External LTL Model Checking

To get an idea on the achievable performance when checking a state space for minimal
counterexamples an investigation in the algorithm running internally was performed.
The results are presented in this section.

1http://anna.fi.muni.cz/divine
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8.1.1 Minimal Counterexamples

First, the efficiency of the minimum counterexample generation on the 32-bit system is
evaluated. To save time, we generate the state space on SSD, if possible. We observed
a speed-up of a factor about 2, compared to the hard disk.

The first protocol used in a case study is Lifts (7) with the property 4. The state
space consists of 7,496,336 states and 20,080,824 transitions and is generated in 262
layers. Its generation time amounts to about 1,122s on the SSD. The perfect hash func-
tion is first split into 58 parts, and then finalized in 66s. The first BFS that initialized
the depth array and flushes the set of accepting states required 187s. The number of
accepting states is 2,947,840. The minimum counterexample algorithm implementa-
tion first finds a counterexample with seed depth 81 and lasso length 117 (found within
10s), which is then improved to seed depth 87 and cycle length 2. Proving this to be
optimal yields a total run time of 4,035s, with the CPU operating at 86%. According
to Edelkamp et al. (2008b), the non-optimal semi-external double DFS approach takes
about 1,920s to generate a counterexample. Factor 2.1 as a trade-off for optimality is
acceptable, as optimality is an assertion about all paths.

For the Szymanski (4) model with property 2, the state space consists of 2,256,741
states and 12,610,593 transitions and is generated in 110 layers. Generation took 511s
on the SSD. The hash function is split into 17 parts. The first BFS took 96s and gen-
erated 1,128,317 accepting states. The counterexample lengths found are 31 = 1 + 30
and 19 = 2 + 11. The last one is optimal. The total run-time is 2,084s. According
to Edelkamp et al. (2008b), semi-external double DFS takes about 600s to generate a
counterexample and is thus faster by about factor 3.4 only.

8.1.2 Flash-Efficient Model Checking

Table 8.1: Flash performance on double Depth-First search on models with invalid
temporal properties (times are given in mm:ss).

h in RAM h on External Device
Amount Time[mm:ss] Amount Time[mm:ss]

Protocol RAM RAM SSD HDD
Szymanski (2), P3 28.77KB 0:06 2KB 0:50 0:37
Szymanski (3), P3 0.99MB 2:58 68.92KB 39:02 26:11
Lifts (7), P4 4.55MB 4:27 0.22MB 68:56 48:17
Lifts (8), P2 20.24MB 19:44 0.99MB 377:22 o.o.t.

Last, but not least, a look at the externalization of the hash tables to the SSD was
taken. As the depth array was not yet externalized, LTL Model Checking with the
double DFS implementation of Edelkamp et al. (2008b) is applied. Table 8.1 shows the
results. First, the space consumption of the data structures for the models is reported,
then compared to the time-space trade-off in three different externalizations. The first
one stores the perfect hash function in the RAM, and thus matches the implementation
of (Edelkamp et al., 2008b). The other approaches externalize the hash function via
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direct I/O on either hard or solid state disk. Note that all experiments have a static
storage offset of 238.89 MB due to the inclusion of the DIVINE model checker and
STXXL.

Table 8.2: Space consumption of the tested instances.

Space Consumption
Protocol State Space h Closed
Szymanski (2), P3 1.5MB 38.48KB 7.78KB
Szymanski (3), P3 65MB 1.33MB 275KB
Lifts (7), P4 351MB 5.67MB 915KB
Lifts (8), P2 1,559MB 25.21MB 4,071KB

The value State Space in Table 8.2 indicates the complexity of each model as stored
on the hard disk. The number of states was not used here to highlight the compression
ratio between the size of the state space and the size of the perfect hash function h since
h is not dependent on the size of a state while the State Space is.

The columns h and Closed show that the size of h is proportional to the size of
Closed. Since Closed is |State Space| bits long and h contains a representation of
each state, this is what one might have expected. Note that the Szymanski protocol
needs 4.95 bits per state in the compressed form, while the Lifts protocol takes 6.34
bits per state on the average, as the implementation of Botelho and Ziviani (2007) is
not capable to create a perfect hash function for this protocol using 4.95 bits per state.

For memory comparison between Edelkamp et al. (2008b) and the extension to it,
the main memory usage for h is reported. The experiments show that the RAM usage
drops by a factor of 14 for Szymanski and even by a factor of 20 for the Lifts protocol.
As mentioned above, it is possible to externalize h completely, using more space on the
external device, without an increase in I/O: the RAM usage is due to the fact that file-
pointers are stored to every bucket in the h file (e. g., h[Lifts (8)] is stored in 260,579
buckets, 127.99 entries per bucket in average, and a file-pointer is 4 bytes long which
results in 1,042,316 B = 0.99 MB) and could be omitted by imposing a constant bucket
length in the file.

Outsourcing h on the external medium needs more time for the search and that for
small experiments, where h fits into the hard disk cache, the externalization on hard
disk is faster. Lifts (8), P2 is one experiment, where h is larger than 16 MB and does
not fit into the hard disk cache. The experiment was stopped after six hours. During
this time, the CPU usage never exceeded 5%, while the average CPU usage was 48%
on solid state disk.

The time deficiency corresponds to a 19.1-fold slowdown with respect to Edelkamp
et al. (2008b)2 using 1/20 of the main memory. Moreover, using swap space on solid
state disk is prohibited by the operating system, so that hard disk is mandatory as a
swapping partition. Time-efficiency is the main argument why to use solid state disk
instead of hard disk for storing the perfect hash function in semi-external LTL Model
Checking.

2Edelkamp et al. (2008b) is infeasible for very large model sizes.
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Table 8.3: Experimental results, cross-comparing different versions of CUDA-driven
model checker. Running times given in seconds.

CUDMOC
Protocol Times in seconds States

1 Core CPU 1 Core + GPU 8 Core + GPU
Anderson (6) 235 25 20 18,206,914
Anderson (8) 1381 669 440 538,493,685
At (5) 404 36 29 31,999,395
At (6) 836 170 119 160,588,070
Bakery (7) 296 30 28 29,047,452
Bakery (8) 3603 250 182 253,111,016
Elevator (2) 334 30 23 11,428,766
Fisher (3) 41 10 9 2,896,705
Fisher (4) 22 7 7 1,272,254
Fisher (5) 1692 126 86 101,027,986
Fisher (6) 107 16 13 8,321,728
Fisher (7) 4965 555 360 386,281,613
Frogs (4) 153 20 17 17,443,219
Frogs (5) 2474 203 215 182,726,077
Lamport (8) 867 70 49 62,669,266
Mcs (5) 896 77 50 60,556,458
Mcs (6) 12 7 7 332,544
Philosophers (6) 422 36 27 14,348,901
Philosophers (7) 2103 196 125 71,933,609
Philosophers (8) 1613 105 70 43,046,407

8.2 Results for GPU-Based Model Checking
Since internal Model Checking is much faster then the external approach two evalua-
tion strategies were tested. In the first one CUDMOC is evaluated with state of the art
internal Model Checking tools and in the following part it is compared mostly to itself
due to the lag of comparable parallel and external Model Checking tools.

8.2.1 Evaluation of Immediate Duplicate Detection
The first evaluation in Table 8.3 analyzes the performance of the GPU algorithm com-
pared to the CPU. The --deviceemu directive of the nvcc compiler was used to
simulate the experiments on the CPU3. The table shows that using the GPU for the suc-
cessor generation results in a mean speed-up (sum of all 1 Core + CPU times / sum of
all 1 core + GPU) of 22,456 / 2,638 = 8.51. Column 8 Core + GPU displays additional
savings obtained by utilizing all 8 CPU cores for duplicate detection, operating simul-

3Earlier experiences showed no significant speed difference between simulating CUDA code with this
directive and converting it by hand to, e. g., POSIX threads.
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Table 8.4: Experimental results, comparing CUDA-driven model checker with
DIVINE. (o.o.m. denotes out of memory)

CUDMOC DIVINE
Protocol Times in seconds States Times in seconds States

1 Core 8 Core States 1 Core 8 Core
Anderson (6) 25 20 18,206,914 75 21 18,206,917
At (5) 36 29 31,999,395 118 33 31,999,440
At (6) 170 119 160,588,070 674 189 160,589,600
Bakery (7) 30 28 29,047,452 95 26 29,047,471
Bakery (8) 250 182 253,111,016 – - o.o.m.
Elevator (2) 30 23 11,428,766 74 21 11,428,767
Fisher (3) 10 9 2,896,705 12 3 2,896,705
Fisher (4) 7 7 1,272,254 5 1 1,272,254
Fisher (5) 126 86 101,027,986 541 141 101,028,339
Fisher (6) 16 13 8,321,728 37 10 8,321,728
Fisher (7) 555 360 386,281,613 - - o.o.m.
Frogs (4) 20 17 17,443,219 69 15 17,443,219
Frogs (5) 203 215 182,726,077 787 - 182,772,126
Lamport (8) 70 49 62,669,266 238 68 62,669,317
Mcs (5) 77 50 60,556,458 241 68 60,556,519
Mcs (6) 7 7 332,544 0 0 332,544
Philosophers (6) 36 27 14,348,901 122 36 14,348,906
Philosophers (7) 196 125 71,933,609 768 - 71,934,773
Philosophers (8) 105 70 43,046,407 405 - 43,046,720

taneously on a partitioned vector of successors. The comparison demonstrates only
the influence to the whole Model Checking process; larger speed-ups were reached by
considering only this aspect.

In order to compare CUDMOC with the current state-of-the-art in (multi-core)
explicit-state Model Checking, additional experiments were done on the (most recent
publicly available) releases of the DIVINE (version 2.2) and SPIN (Holzmann, 2004)
(version 5.2.4) model checker.

DIVINE instances were executed using the reachability command followed by a
worker option divine reachability -w N protocol.dve with N denot-
ing the number of cores to use and aborted when more then 11GB RAM were used.
Table 8.4 shows the comparison in running time of the 1 core and the 8 core versions.
Of course, DIVINE is not able to check some instances due to its exhaustive duplicate
detection, it needs to store all visited states in full length, which is less memory effi-
cient than Bitstate hashing. One interesting fact in the frogs (5) protocol is that DIVINE
is only able to verify this instance in single-core mode. It has to be assumed that the
queues, needed to perform communication between the cores consume too much mem-
ory. Additionally, the number of reached states is displayed, to indicate the number of
states omitted. In the largest instance, the amount of states omitted is at most 3%. The
speed-up averaged over all successful instances is 3,088 / 863 = 3.58 for one core and
632 / 484 = 1.31 for the 8 core implementation. DIVINE naturally utilizes all cores for
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Table 8.5: Experimental results, comparing CUDA-driven model checker with SPIN
and Bitstate storage. Times given in seconds. Column Speed shows the quotient
states/time. Protocol Mcs 5 was aborted after 10 hours, having generated 6,308,626.

CUDMOC SPIN Bitstate BFS
Protocol 1 Core Speed States 1 Core Speed States

[sec.] [sec.]
Anderson (6) 25 728,276 18,206,914 26 698,282 18,155,353
Anderson (8) 669 804,923 538,493,685 228 618,216 140,953,300
At (5) 36 888,872 31,999,395 40 790,811 31,632,471
At (6) 170 944,635 160,588,070 146 727,404 106,201,110
Bakery (7) 30 968,248 29,047,452 29 942,202 27,323,870
Bakery (8) 250 1,012,444 253,111,016 156 78,283 12,212,250
Elevator (2) 30 380,958 11,428,766 19 601,239 11,423,554
Fisher (3) 10 289,670 2,896,705 4 724,170 2,896,681
Fisher (4) 7 181,750 1,272,254 2 636,131 1,272,262
Fisher (5) 126 801,809 101,027,986 141 614,026 86,577,752
Fisher (6) 16 520,108 8,321,728 13 639,997 8,319,972
Fisher (7) 555 696,002 386,281,613 242 547,841 132,577,710
Frogs (4) 20 872,160 17,443,219 19 916,191 17,407,634
Frogs (5) 203 900,128 182,726,077 136 853,619 116,092,290
Lamport (8) 70 895,275 62,669,266 8 917,817 7,342,543
Mcs (5) 77 786,447 60,556,458 – – 0
Mcs (6) 7 47,506 332,544 1 36,598 36,598
Philosophers (6) 36 398,580 14,348,901 43 333,412 14,336,722
Philosophers (7) 196 367,008 71,933,609 229 297,427 68,110,830
Philosophers (8) 105 409,965 43,046,407 139 304,714 42,355,353

expansion, while CUDMOC uses the additional cores only for duplicate checking.
SPIN is also able to manage an exhaustive representation of the Closed list, how-

ever, due to the memory limitations of an exhaustive search, the comparison of CUDMOC
against SPIN with the Bitstate implementation was chosen. SPIN has two options for
performing reachability, BFS and DFS. Table 8.5 presents the results in BFS, which
has no multi-core implementation. SPIN experiments were performed by calling spin
-a protocol.pm; cc -O3 -DSAFETY -DMEMLIM=12000 -DBITSTATE
-DBFS -o pan.c;./pan -m10000000 -c0 -n -w28. For the sake of clar-
ity, also the number of reached states for both model checkers is presented. The number
of states varies extremely for the larger instances. The explanation here is the diversity
with the size of the Bitstate tables (in SPIN 228 = 268,435,456 entries were chosen, and
a larger table could not be used because of the remaining memory that was occupied
by the algorithm). Speed is used to denote the number generated states per second;
CUDMOC achieves an average speed of 637,279 compared to SPIN with an average
speed of 593,598. Although the speed-up is not significant the fact should be high-
lighted that CUDMOC stores all the reached states on external memory for later usage,
while these states are lost in SPIN. Storing the information on external storage in SPIN
leads to a slowdown by a factor of 2 and more.
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Table 8.6: Experimental results, comparing CUDA-driven model checker with SPIN
and partial state storage. Times given in seconds. Speed denotes states per second.

SPIN Bitstate
1 Average Generated 8 Average Generated

Protocol Core Speed States Core Speed States
Anderson (6) 58 313,911 18,206,893 9 2,017,465 18,157,188
Anderson (8) 1316 275,800 362,954,000 78 1,859,341 145,028,600
At (5) 90 355,547 31,999,291 12 2,630,998 31,571,983
At (6) 399 339,403 135,422,110 42 2,476,482 104,012,280
Bakery (7) 48 573,577 27,531,713 8 3,413,837 27,310,696
Bakery (8) 456 488,071 222,560,800 39 3,062,315 119,430,320
Elevator (2) 47 243,165 11,428,769 8 1,427,956 11,423,654
Fisher (3) 7 413,815 2,896,707 2 1,448,344 2,896,689
Fisher (4) 2 636,128 1,272,256 1 1,272,298 1,272,298
Fisher (5) 275 367,375 101,028,340 36 2,397,127 86,296,605
Fisher (6) 20 416,086 8,321,730 4 2,079,982 8,319,929
Fisher (7) 1372 281,557 386,296,530 63 2,098,240 132,189,170
Frogs (4) 26 670,893 17,443,221 5 3,472,759 17,363,799
Frogs (5) 289 632,427 182,771,630 24 3,878,232 93,077,570
Lamport (8) 17 431,974 7,343,562 3 2,447,541 7,342,625
Mcs (5) 81 358,055 29,002,474 14 2,343,949 32,815,294
Mcs (6) 0 – 36,600 0 – 36,948
Philosophers (6) 26 387,130 10,065,395 17 843,330 14,336,624
Philosophers (7) 351 183,494 64,406,569 51 1,217,002 62,067,145
Philosophers (8) 12 766,795 9,201,551 35 1,043,143 36,510,039

As the SPIN BFS algorithm is not parallelizable, the algorithm is compared to the
DFS version and Bitstate hashing called via spin -a protocol.pm; cc -O3
-DSAFETY -DMEMLIM=8000 -DBITSTATE -DNCORE=N -DNSUCC
-DVMAX=144 -o pan.c;./pan -m10000000 -c0 -n -w27 (using 1 core),
and -w25 (using 8 cores) with N denoting the number of cores. Table 8.6 shows the
running times and per node efficiencies for the tested protocols. Since the numbers for
the 1 core CUDMOC implementation are identical in Table 8.5, here only the values for
the 8 core implementation are presented. The 8 core implementation of the DFS algo-
rithm is always faster then the CUDMOC implementation. A closer inspection of the
number of the visited states reveals that the number of cores has an impact on the size of
the Bitstate table, thus resulting in different amounts of visited states. In the Anderson
(8) protocol, which is the largest checked protocol, CUDMOC identifies 538,493,685
unique states, while the SPIN 8 core implementation reaches only 145,028,600 states,
omitting nearly 70% of the state space. Additional observations showed that at the be-
ginning of the search the speed is higher, since new states are reached more often, than
at the end, where a large amount of reached states has already been explored.
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Table 8.7: Comparing GPU- with CPU-based Performances (The CPU instance of Peg-
Solitaire has been stopped in BFS-Layer 17, o.o.m. denotes out of memory)

Protocol Runtime in hh:mm
DIVINE SPIN CPU GPU

Telephony (6) o.o.m. o.o.m. 4:42 3:03
Telephony (7) 0:01 0:00.5 0:04 0:02
Telephony (8) o.o.m. o.o.m. 2:22 1:09
Szymanski (5) 0:03 0:01 0:12 0:08
Anderson (8) o.o.m. o.o.m. 1:32 0:47

At (7) o.o.m. o.o.m. 1:56 0:45
Peg-Solitaire (6) o.o.m. o.o.m. o.o.t. 14:57
(first 17 layers) 11:52 1:20

Table 8.8: State space sizes of various protocols.

Protocol State Space (in GB)
States uncompressed compressed

Telephony (6) 1,495,154,914 69.0 12
Telephony (7) 21,960,309 1.1 0.168
Telephony (8) 854,245,188 43.0 6.4
Szymanski (5) 79,518,741 3.8 0.6
Anderson (8) 538,699,094 26.0 4.1

At (7) 819,243,858 34.0 6.2
Peg-Solitaire (6) 2,383,981,575 134.0 18
(first 17 layers) 246,328,560 13.8 1.8

8.2.2 Experiments with Delayed Duplicate Detection
For comparing delayed duplicate detection strategies, different sorting strategies were
evaluated: the system built-in CPU QUICKSORT implementation, the GPU QUICK-
SORT implementation of (Cederman and Tsigas, 2008) and a BITONIC SORT routine4,
all adapted to sort state vectors instead of numbers. In the end, BITONIC SORT was
adopted and hash partitioning as well as state compression to 64-bit as motivated above.

Overall runtime comparison

Table 8.7 displays the total run-times of the model checker subject to CPU- and GPU-
based state space exploration on disk for the selected benchmarks protocols. Using the
GPU induces the model checker to perform consistently better. To get CPU data in a
feasible amount of time, an experiment terminating Peg-Solitaire (6) after layer 17 was

4Used sources available at http://courses.ece.illinois.edu/ece498/al/HallOfFame.html
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Table 8.9: Comparing GPU- with CPU-based Performances in differential stages.

Protocol Telephony Szymanski Anderson At Peg-Solitaire
(17 layers)

Instance (6) (7) (8) (5) (8) (7) (6)
Enabling Transitions

CPU 3,654s 59s 2,362s 188s 720s 1,727s 32,226s
GPU 115s 1s 78s 5s 24s 46s 429s

Speedup 31.7 59.0 30.2 37.6 30.0 37.5 75.6
Generating Successors

CPU 1,964s 28s 1,193s 74s 734s 801s 4,088s
GPU 301s 4s 196s 12s 121s 140s 448s

Speedup 6.5 7.0 6.1 6.2 6.0 5.7 9.1
Sorting

CPU 4,372s 62s 2,447s 192s 1,585s 2,002s 3,220s
GPU 180s 41s 134s 82s 153s 86s 129s

Speedup 24.3 1.51 18.3 2.4 10.4 23.2 25.0

performed, when it had generated about 10% of all unique states and the results are
shown in the last line. While the state space of the At (7) protocol is larger than that of
the partially generated Peg-Solitaire instance, surprisingly, the total time for generating
it on the CPU is smaller. This is due to the fact that the out degree of the Peg-Solitaire
protocol is much higher and 90% of the generated successors are duplicates which
are discarded. For the sake of completeness a comparison of the algorithm with the
DIVINE-MC implementation and SPIN binaries was undertaken. Since DIVINE-MC
and SPIN are only able to check instances that fit into RAM (both were allowed to use
12 GB), we see that they are not terminating on most models. If they do they are much
faster, since both checkers use hashing for state storage, which is very fast compared to
an implementation that uses sorting-based delayed duplicate detection for an increased
external-memory performance. Table 8.8 shows the various state space sizes of the
protocols.

Individual runtimes of the three stages

The individual speed-ups for enabling transitions, successor generation and sorting
are depicted in Table 8.9 showing the protocol and its checked property in the first
row. Remaining rows are divided according to the stages. The timing information is
the sum of the efforts for all BFS-Layers in the state space generating process. The
table strongly suggests that the GPU should be used to perform similar tasks on all
threads. It also identifies the impact of the GPU being larger for enabling the transitions
than for generating the successors. This is due to the fact that the task of checking a
transition is equal for all threads in one group and run simultaneously. When generating
a state, each thread applies a transition according to its index. In the worst case each
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Table 8.10: Comparison of CPU and GPU times for the distinct stages on the first 17
BFS-Layers of the Peg-Solitaire (6) protocol. (The CPU experiment was stopped due
to obvious suboptimal performance.)

Times[s]
Operation CPU GPU Ratio
Reading Search Frontier States from HDD 397s 402s
Find active Transitions (on the GPU incl. Transfer) 32,226s 429s 75.11
Applying Transitions (on the GPU incl. Transfer) 4,088s 448s 9.13
Compressing States (Hash Function and Bucketing) 877s 1,488s
Sorting Compressed States 3,220s 129s 24.96
Subtracting Previous Layers Read from HDD 1,538s 1,577s
Writing Duplicate-Free Layer File to HDD 29s 45s
Appending Full States to Search Frontier on HDD 146s 160s
Other memory operations 178s 167s
Total Time 42,699s 4,845s 9.61

thread applies a different transition, reducing the amount of parallelism in memory
access. The last part of the table shows a sorting speed-up that differs widely between
instances. This was a surprising result, since the work of sorting is the same on all
instances, where a constant number of buckets (VRAM/SRAM) with an in average
constant number of elements (SRAM/64/8/2) is sorted. Looking carefully at the state
space can clarify why the speed-up differs. Since the maximal BFS depth varies, and
the size of each individual BFS-Layer is different, sorting is not a unified task. The
small speed-up of the Szymanski (5) instance is explained by many small layers, and,
for each layer, all buckets have to be copied to the GPU.

Finally, a profiling experiment was performed to uncover remaining performance
bottlenecks. A detailed profile for the Peg-Solitaire (6) Protocol (explored up to BFS-
Level 17) is provided in Table 8.10. Most of the time is lost in pre- and post-processing
the data. The term that harms most is due to the subtraction of previous layers, for
which strategies like revisiting resistance (Barnat et al., 2008b) and layered duplicate
detection (Lamborn and Hansen, 2008) should apply. Using multiple external drives
would also reduce the impact of reading and writing and yielding a better factor.

8.3 Summary
This chapter evaluates the GPUSSD framework on the minimal-counterexample im-
plementation and the GPU supported model checker CUDMOC. Having shown good
results in using a perfect hash function to compress the state space the PHF is exter-
nalized to SSDs and show a significant performance boost compared to HDDs. For
a faster state space generation the search is partitioned into three stages and ported to
the GPU applying the successor pointing strategy. Duplicate detection can be either
semi-immediate providing fast checking but being limited in by the RAM, or delayed
imposing longer search times but enabling to examine larger state space graphs.
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Chapter 9

Introduction to Action Planning

There is no doubt that the success of planners is sensitive to the amount of compu-
tational resources available. It is not hard to predict that due to economic pressure
parallel computing on an increased number of cores both in central processing and
graphics processing units will be essential to solve challenging problems in the future.

Motivated by the results in Explicit Model Checking the proposed strategies will
be applied to Action Planning. In contrast to Edelkamp et al. (2010a) where a software
implementation is translated into a planning problem and solved by an existing plan-
ner, this approach proposes a GPU extended planner. Due to the similarities in both
domains some decisions undertaken in the previous part can be inherited. However,
the increased number of transitions, and larger states connected with heuristic search,
requested for new strategies.

Unfortunately, beside the published results on the planner developed during this
work (Sulewski et al., 2011), so far no domain-independent planner has been proposed
that utilizes the GPU. This is partly due to the fact that the single instruction multiple
data architecture of GPUs is more closely related to a vector computer that induces a
distinguished programming model.

Structure of the chapter: Having introduced planning and defined the necessary
properties for domain, action and problem descriptions this chapter draws a connection
to the state space search. As a visual example of the Planning Domain Definition
Language the thesis problem from the introduction is given followed by related work
in this discipline.

9.1 Modeling of Planning Problems

The Artificial Intelligence classifies planning as finding a sequence of actions that
transform a given initial state into a goal state satisfying certain conditions. These con-
ditions are given additionally to a domain description defining the available actions to
the agent. Having generated the initial state actions are applied implicitly constructing
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a graph whose states are checked for fulfilling the goal conditions. The following defi-
nitions are based on STRIPS planning introduced by Fikes and Nilsson (1971). When
a goal state is found the path from the initial to the goal state is used as the sequence
representing the plan. A planning problem is defined as follows:

Definition 29 (Planning Problem) A classical planning problem is a tuple
P = (F ,A, I,G) with

• F being a set of fluents,

• A a set of actions,

• I ⊆ F the fluents that hold in the initial state and

• G ⊆ F the fluents that need to be satisfied in any goal state.

where ŝ is build up of I and ¬I the fluents that do not hold in the initial state.
Actions in planning can be mapped to edges in a graph and seen as transitions from

a parent to a successor. A slight variation exists to the transition Definition 6 on page 4
since the postconditions in planning are divided into two parts the add and the delete
effects. Additionally, actions can have costs making a Dijkstra search unavoidable.

Definition 30 (Action) An action a ∈ A is a tuple a = (P,A,D), with

• P ⊆ F the precondition that needs to be satisfied so that action a can be applied,

• A ⊆ F the set of fluents added to the current state also called add effects and

• D ⊆ F the set of fluents removed from it after applying the action often denoted
as delete effects.

The aim is to find a path called plan, i. e., a sequence of actions, that transforms the
initial state into a goal state. In case of optimal planning, this plan must be minimal in
terms of path length or path cost.

In cost-based planning, actions can be assigned certain costs, according so that the
planning problem is extended to the tuple Pc = (F ,A, cost , I,G) with cost : A 7→
N+

0 . For such a problem, the total cost of the resulting plan is the sum of the costs of
all actions within the plan and in case of optimal planning, the plan with minimal total
cost has to be found.

Oversubscription planning is the extension of classical planning to so-called soft
goals, i. e., goals that may be satisfied but are not obligatory. Thus, the problem is a
tuple Po = (F ,A, I,G, utility) with utility : 2F 7→ N a function that assigns a certain
reward for achieving a soft goal. The utility of the resulting plan is the utility of the
achieved goal state and the aim is to maximize it.

Finally, net-benefit planning contains action costs and soft goals, i. e., the net-
benefit planning problem is a tuple Pnb = (F ,A, cost , I,G, utility). The net-benefit
of a plan is the utility achieved by the plan minus the total action cost needed to achieve
it and in case of optimal planning one is interested in finding a plan that maximizes this
net-benefit.
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Nowadays, the Planning Domain Definition Language (PDDL) (McDermott, 1998)
is the most frequently used formalism for modeling. It supports, among others, com-
plex Boolean formulas for the preconditions of actions and goal descriptions, numerical
state variables, and rational action costs (which are scaled to integers). A PDDL do-
main in which all predicates are atoms and in which all actions have zero parameters
is grounded (Kissmann and Edelkamp, 2009). Matching the formalization above, this
planner assumes a grounded problem representation with a fully instantiated PDDL
description as input (e. g., provided by Hoffmann’s adl2strips, Helmert’s translate, or
Haslum’s pddlcat).

9.2 PDDL Example of the Thesis Problem
Figures 9.1 and 9.2 visualize the thesis Example 1.1 on page 7 in the introduction using
PDDL. After defining the name of the domain the requirements are formed. Each
variable is handled as an object but the typing requirements permit the usage of
derived user defined types for an easier distinction of them. This example uses four
types, student and friend for the student and the friends, mode for the mode a
student or a friend can be in and feeling for the properties of the student. In the
following the variable completeness is defined to describe the completeness of the
document and followed by the actions.

Each action starts with the tag :action followed by a name for it. Then the
used parameters are depicted after the tag :parameters and classified in a type
class. The middle part of the action prefixed with the tag :precondition describes
the preconditions being checked before the effects, given in the third part triggered
with :effect. In PDDL the effects are given as one boolean formula and all the
delete effects are concatenated and prefixed with a not statement. Having defined the
domain the problem is described starting with the presentation of the objects, here
one student and one friend and the definition of modes. After defining the enabled (and
disabled) fluents the goal condition is given. Since no constraint on the number of
applicable actions is given in planning all preconditions present in the definition have
to be checked in each state.

9.3 Related Work
The approach is distinct to existing multi-core approaches: Multiple cores on the CPU
are only used for delayed duplicate detection. In contrast, other parallelizations dis-
tribute the search space based on different sorts of hash-partitioning like HDA* (Kishi-
moto et al., 2009). Parallel version of A* (Evett et al., 1995) and transposition-
driven scheduling (Romein et al., 1999) exploit parallelism in the search space, while
PBNF (Burns et al., 2009b) extends the idea of parallel structured duplicate detec-
tion (Zhou and Hansen, 2007), exploiting the locality of a search space. Planners try-
ing to catch up with these hardware trends enhance state space planning using, e. g.,
different multi-core CPU approaches (Vidal et al., 2010; Burns et al., 2009b).

Arvand (Nakhost et al., 2010) is a planner based on Monte-Carlo searches and
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(define (domain thesis-writing)
(:requirements :typing :numeric-fluents)
(:types student friend - object

mode - object
feeling - object)

(:predicates
(inmodes ?s - student ?m - mode)
(inmodef ?f - friend ?m - mode)
(feel ?s - student ?f- feeling ))

(:functions (completeness) - number)
(:objects
(student1 - student)
(friend1 - friend)
(sleeping eating thinking writing enjoyingTime reading -mode)
(sleepy hungry - feeling))

(:action sleepToEat
:parameters (?student - student)
:precondition (inmodes ?student sleeping)
:effect (and (inmodes ?student eating)

(not (feel ?student sleepy))))
(:action eatToThink
:parameters (?student - student)
:precondition inmodes (?student eating)
:effect (and (inmodes ?student thinking)

(not (feel ?student hungry))))
(:action thinkToWrite
:parameters (?student - student)
:precondition (inmodes ?student thinking)
:effect (inmodes ?student writing))

(:action writeToSleep
:parameters (?student - student)
:precondition (and (inmodes ?student writing)

(feel ?student sleepy))
:effect (and (inmodes ?student sleeping)

(feel ?student hungry)
(increase (completeness) 10)))

(:action writeToEat
:parameters (?student - student)
:precondition (and (inmodes ?student writing)

(feel ?student hungry))
:effect (and (inmodes ?student eating)

(feel ?student sleepy)
(increase (completeness) 10)))

Figure 9.1: PDDL language example describing Figure 1.1 on Page 7 (First part).
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(:action writeToThink
:parameters (?student - student)
:precondition (and (inmodes ?student writing)

(not (feel ?student hungry)
(feel ?student sleepy)))

:effect (and (inmodes ?student thinking)
(feel ?student hungry)
(increase (completeness) 10)))

(:action proofRead
:parameters (?friend - friend)
:precondition (and (inmodef ?friend enjoyingTime)

(> ?completeness 0))
:effect (inmodef ?friend reading))

(:action corrected
:parameters (?friend - freind)
:precondition (inmodef ?friend reading)
:effect (and (inmodef ?friend enjoingTime)

(decrease (completeness) 1)))
)

(define (problem finishing_thesis_possible)
(:domain thesis-writing)

(:init
(feel student1 sleepy) (feel student1 hungry)
(inmode student1 sleeping) (inmode friend1 enjoyingTime)
(= (completeness) 0)

)
(:goal

(>= (completeness) 100)
)

)

Figure 9.2: PDDL language example describing Figure 1.1 on Page 7 (Second part).
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random restarts. As different starts are independent, assuming sufficient memory these
searches can easily be parallelized. The results are promising but solutions are typically
sub-optimal. (Multi-core) UCT a dynamical tree-growing learning algorithm on top
of Monte-Carlo search, can be used for finding optimal solutions based on lock-free
hashing (Enzenberger and Müller, 2009), but has not yet been implemented.

Often, suboptimal planning is addressed (Burns et al., 2009a; Nakhost et al., 2010),
but also a sizable number of optimal parallel planners has been developed in the last
few years (e. g., Zhou and Hansen (2007) and Zhou et al. (2010).

External approaches, like proposed by Edelkamp and Jabbar (2006a) and Edelkamp
et al. (2006) utilize magnetic media devices to store the state space on. While this
approaches also enable unlimited storage capabilities they do not profit from the RAM
since it is just used as a buffer.

9.4 Summary
This chapter introduced Action Planning and the PDDL language used to describe
problems for a planner. An example is given according to the example in the introduc-
tion and aspects of modeling a problem are discussed. The following section provides
an overview on the related work in Planning. The following chapters will propose a
planner enhanced by a GPU.



Chapter 10

Action Planning on the GPU

This chapter proposes a domain-independent CUDA driven planner (CUDPLAN) for
which precondition checks and successor generation are executed on the GPU pub-
lished in (Sulewski et al., 2011). As GPUs usually have no cache hierarchy and are
relatively slow in accessing the global memory on the graphics card, duplicate de-
tection is executed in the RAM using the CPU. For large state spaces the planner
supports exploration on disk, together with either delayed duplicate detection (Korf,
2008a) or Bitstate hash tables (Bloom, 1970). As the main interest is optimal planning,
a so-called lock-free hash table is used, a promising data structure based on low-level
compare-and-swap (CAS) operations that avoids using variables for locking regions
of the memory exlusively to an unique thread (Laarman et al., 2010; Enzenberger and
Müller, 2009).

Structure of the chapter: This chapter begins with an argumentation on the chosen
strategies for the framework followed by details on the realization of each strategy.
After motivating the used duplicate detection technique an eager planning algorithm
is presented partitioning the planning problem according to the specifications given in
the framework for GPU state space search.

10.1 Strategies from the GPUSSD-BFS Framework
When applying the proposed framework to port a search problem to support the GPU
the strategies to chose have to be evaluated. The decision for the generation stages is
presented in the next section followed by a detailed description of the algorithm.

10.1.1 Successor Generation on the GPU
Since the preconditions and effects of each action will be transferred to the Reverse Pol-
ish Notation as proposed in Part I, the first decision to be taken is the action evaluation
and successor generation strategy. The preconditions of actions can become arbitrar-
ily complex in a planning problem, so a repetition of the action evaluation should be
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omitted when possible. Thus the strategy to choose is the successor pointing strategy
with a bit vector having mapped the indexes of each bit to an action according to the
problem description. Due to the possibly large amount of actions an advantage of this
approach is to separate the preconditions from the effects increasing the probability to
store each partition in the SRAM of the GPU. However, due to the number of actions
being very large the size of the bit vector can easily become larger than the state.

As an example of the amount of actions, consider a state with only two Boolean
variables a,b. The possible preconditions for all actions are (a), (b), (ā), (b̄), (ab),
(ab), (āb), (ab̄) resulting in an enabled bit vector of length 8 bits for a state-vector
of length 2 bits. A compression method is realized easily here, by noticing that an
enabled action with precondition (ab) also imposes (a) and (b), reducing the number
of necessary bits to 4. When the remaining preconditions ((ab), (ab), (āb), (ab̄)) are
analyzed further it is obvious that only one of it can be enabled at a time, such an SAS+

representation reduces the space to 2 bits by storing the index of the enabled action in
binary representation.

10.2 GPU Planning Algorithm

As the main interest in this work is optimal planning, approximate hashing cannot be
used. Therefore the duplicate detection to be used is lock-less hashing combined with
an Open list stored externally. A sorting based strategy as utilized in Model Checking
is not efficient in planning due to the larger size of the states. Even using compression
methods each state utilizes several bytes in larger instances making an effective hash
based sorting approach impossible.

10.2.1 Planner Architecture

The implemented planner utilizes two different kernels, one designed to generate suc-
cessors for cost-optimal and one that deals with optimal planning for oversubscribed
and net-benefit planning problems. Both kernels are able to deal with numbers. The
main difference of the two kernels is that the former stops at expanding the first goal
node, while the latter overwrites the action after being executed with the metric value
of the state.

For successor generation on the GPU the satisfaction of the preconditions of ac-
tions against the state set that has been copied to the GPU is checked and the effects
to the ones that have passed the test are applied. As this is a considerable amount of
work for each GPU core, the postfix representation of the propositional and numerical
expressions that appear in the precondition and effects introduced in Section 4.5 is ex-
ploited. These representations are precomputed and broadcasted in the GPU. Extensive
tests showed that using the postfix representation enhances checking the validity of a
precondition and the computation of the assignment to an effect variable on the GPU
due to using a flat evaluation stack.

Conceptually (and as illustrated in the simplified pseudo-code in Algorithm 10.2),
for each track one kernel exists for parallel state expansion on the GPU. In the practical
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implementation, however, successors are generated in two stages on the GPU accord-
ing to Algorithm 4.1 (page 64). In a first step, the preconditions of the actions are
checked against the states in the GPU. Rather complex Boolean and numerical expres-
sions are allowed and the preconditions of all actions are checked against the state
(without applying any static filter).

In domains without (or with uniform) action costs, a breadth-first enumeration of
the search space is sufficient, while in domains with action costs optimal path finding
resorts to exploration of paths with minimal cost. If the action costs are integers (or the
used costs can be transformed as integers), a cost-based implementation of Dijkstra’s
shortest path algorithm on buckets is possible (Dijkstra, 1959; Dial, 1969).

Subsequently, with a buffer-filling implementation variant, the eager state expan-
sion on the GPU is preferred by means that states may be expanded earlier than dictated
by the monotonic non-decreasing ordering of the costs. For this case the first expanded
goal state no longer necessarily has optimal solution cost. However, given that costs
are non-negative, states can be omitted if the current cost exceeds the best one found
so far. The performance gains due to improved parallel processing can relativize the
additional amount for expanding more states than necessary.

Moreover, duplicate elimination is relaxed. While the algorithm prevents inserting
states into Open with larger costs than the one stored in the hash table, inserting states
with smaller costs than the ones stored in the hash table does not imply that the latter
ones are removed. This can result in significant re-expansions.

The pseudo-code of the eager buffer-filling planning algorithm is shown in Algo-
rithm 10.1 with an expansion kernel routine for the GPU sketched in Algorithm 10.2.1

Open is implemented as a hash map of lists (with the costs being the keys). This sparse
representation of a virtual bucket array of lists allows to deal with arbitrarily large ac-
tion costs. Closed is implemented as a (lock-free) hash table. All other structures are
implemented as vectors or lists.

The search is divided into stages like suggested by the framework and extended by
a termination check to stop when an optimal plan is found. The first stage differs only
marginally from the proposed successor pointing strategy by an extension to check all
available Open lists for states. After all available states are collected stage 2 begins
which is extended to support action costs while generating the successors. Here, the
tuple (t, s) consisting of a transition id and the appropriate state as proposed in the
generation step for the successor pointing strategy is extended to a triple (t, s, cost)
enabling the GPU to compute the costs of the generated successor. Naturally this stage
is also extended to support a set of Open lists rather than one list.

A major modification was necessary to the third stage of the framework. While the
task to check for the existence of a duplicate in Closed remains, a state is first checked
for being a goal state. Having done this a state s is only inserted to Open if cost(s) is
lower than best, the costs of the current best solution or until no solution is found∞.

For the sake of clarity, the code abstracts from the implementation. While Open is
stored externally as a number of files and Locking and Unlocking is done internally on
pointers to these files, Closed is a lock-free hashing table enabling internal duplicate
detection based just on the hash value.

1In the algorithms square brackets are used to denote concepts only relevant in net-benefit planning.
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Algorithm 10.1: Optimal Eager Buffer-Filling GPU Planning algorithm
Input: Pc[nb] = (F ,A, cost , ŝ,G[, utility ])
Output: Optimal [value of utility minus] action cost

1 best←∞ ; {initialize best to infinite}
2 i← 0 ; {reset the actual cost indicator}
3 Open0 ← ŝ ; {store ŝ in Open list indexed with 0 costs}
4 Closed← (ŝ, 0) ; {clear Closed list and store ŝ with appropriate costs}
5 while true do

Stage 1 - Generate sets of active transitions
6 Active← ∅ ;
7 while |Active| 6= |Openi···max| do {until all frontier states are processed}
8 while (∃j ≥ i : Openj 6= ∅) do {while s in Open with costs ≥ i exist}
9 fillVRAM(s ∈ Openj) ; {copy states to VRAM}

10 Active← Active ∪ GPU-Kernel Determine Transitions() ;
Stage 2 - Generate sets of successors and compute costs

11 Successors← ∅ ; {will contain pairs of (s, cost (s))}
12 while Active 6= ∅ do {Until all actions processed}
13 while (∃j ≥ i : Openj 6= ∅) do {while s in Open with costs ≥ i exist}
14 fillVRAM({(t ∈ Active, s ∈ Openj , j), · · · })

{Move triples of an active transition, a state and its costs to VRAM}
15 Openj ← Openj ∩ VRAM ; {remove states from Open }
16 Active← Active ∩ VRAM ; {remove states from Active}
17 Successors← Successors ∪ GPU-Kernel Generate Successors();

Stage 3 - Check for goal, remove duplicates and rebuild Open
18 for (s, c) ∈ Successors do
19 if (G ⊆ s) then {if state is a goal record its plan cost}
20 best← min{best, [utility(s)− c]} ;
21 if ¬utility then return best ;

22 c′ ← (cost(Search(s) in Closed) ∨∞) ;
{check Closed for costs of a duplicate}

23 if (c < c′) then {plan with lower costs found}
24 Closed← (s, c) ;
25 if (c < best) then {only if plan costs are < best add state to Open }
26 Lock Openc ;

{Open is locked on cost level to enable parallelism}
27 Openc ← s ;
28 Unlock Openc ;

{Termination check}
29 if ∀j ≥ i : Openj = ∅ then {all Open lists with costs ≥ i are empty}
30 if best =∞ then return unsolvable ; {plan not found}
31 else return best {return cost of found optimal plan}
32 i← min{j | j > i ∧Openj 6= ∅} ; {increase i to next costs layer}
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Algorithm 10.2: GPU-Kernel Generate Successors in Planning
Input: {(t ∈ Active, s ∈ Openj , j), · · · }) a set of triples with an active

transition, the appropriate state and its costs
Output: {(ss ∈ Successors, cost(ss)), · · · } pairs of a successor and its costs

1 for each group g do in parallel {partially distributed computation}
2 for each thread p : 0 ≤ p < d do in parallel {distributed computation}
3 Successors← Successors ∪ (Successors(sg·d+p, ttg·d+p), c+ cost(a)) ;

{add successor and its costs}

4 return Successors;

Considering net-benefit planning, the net-benefit is computed as the utility for each
soft goal established minus the label of the cost layer (line 18). The continuously
improving bound best records the best net-benefit and terminates the exploration in case
the optimum has been proven. As a result (and as a side effect of the eager buffer-filling
approach), net-benefit problems can also be solved optimally with Algorithm 10.1.

Theorem 2 (Optimality) For cost-based planning problems Pc and net-benefit plan-
ning problems Pnb the eager buffer-filling planning algorithm on the GPU computes
the costs of an optimal solution.

Proof. States are only eliminated from the Open list in case a strictly better (in terms
of accumulated action costs) matching state has been found in Closed, or if the non-
decreasing accumulated metric value (measured either in accumulated action cost or
net-benefit) is worse than the currently best established goal metric value (measured
either in accumulated action cost or net-benefit). �

Theorem 3 (Efficiency) For cost-based optimal planning problems Pc and net-benefit
planning problems Pnb the eager buffer-filling planning algorithm expands each state
at most once for every action cost-layer of the search frontier.

Proof. As in each cost-layer a full duplicate detection is applied, any state can appear
at most once per layer. �

As the number of re-expansions depends on the domain, in the experiments a ver-
sion that avoids buffer-filling and performs a Dijkstra-like state-space traversal was
evaluated. The changes for the pseudo-code are moderate. For cost-based planning it
stops at the first goal to be expanded.

10.3 Summary
This chapter applied the framework proposed in Part I to design a GPU enhanced plan-
ner. The process of planning, aka state space searching was divided into three stages,
an action evaluation and a successor generation strategy was chosen. The preconditions
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and effects are transferred to the Reverse Polish Notation to be efficiently evaluated on
the GPU. The next chapter will evaluate this proposal on problems from the interna-
tional planning competition 2008.



Chapter 11

Experimental evaluation

The benchmark domains are taken from the sequential optimal and the optimal net-
benefit tracks of the 2008 international planning competition (IPC).1 The competitors
of CUDPLAN are the two best planners in each track: For sequential optimal planning
these are the baseline planner (an explicit-state planner with A* and zero-heuristic) and
Gamer (Edelkamp and Kissmann, 2009) (a BDD-based bidirectional cost-first search
planner). For optimal net-benefit they are Gamer (featuring BDDs and unidirectional
cost-first branch-and-bound planning) and MIPS-XXL (Edelkamp and Jabbar, 2008)
(an explicit-state breadth-first external-memory planner).

The computer infrastructure is the 64-bit system introduced in Chapter 2. All ex-
periments are canceled after exhausting memory or 15 minutes of wall-clock time.2

For lock-free hashing, our implementation uses the GNU gcc compiler for 64-bit x86
target platforms. A gcc built-in is used for the compare-and-swap operation and reads
and writes from and to buckets are marked volatile.

Structure of the chapter: In the next section results on the evaluation are pre-
sented and discussed. Several test series are presented comparing the GPU planner
(CUDPLAN) to state of the art planners on a recent system.

11.1 Results of the Evaluation

In Figures 11.1 to 11.14 the running time in seconds for each instance of a domain if
it was solved by a planner is plotted. The planners are scored by the same system as
in the IPC 2008. For each domain the number of solved instances is accumulated. If
a domain is available in different formulations, e. g., the elevators domain in the net-
benefit track, the maximum number of solved instances over all these formulations is
used.

1http://ipc.informatik.uni-freiburg.de
2For the version of Gamer used for the problems from the sequential-optimal track, we set the time for

the backward search to 450 seconds.
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Figures 11.1 to 11.6 display the results obtained in the six benchmarks of the op-
timal net-benefit track of ICP-6 while Plots 11.7 to 11.14 deliver the results of the
sequential optimal track. Here the task is, analogue to classical planning, to find a plan
with minimal length or, if costs are given, with minimal costs.

As can be concluded from the plots the GPU planner with buffer-filling enabled
can solve 43 problems, the GPU planner without buffer-filling 52, MIPS-XXL 22 and
Gamer the highest number of 57 problems. However, investigating the cause for un-
solved instances can be reported that while Gamer was killed due to reaching the limit
of 15 minutes, the GPU planner without buffer-filling never reached this timeout. In
many of the instances the lock-free hash table was completely filled and the planner
stopped. Thus, a larger amount of main memory would turn the picture in favor of the
GPU planner.

The plots also depict another fact about the GPU planner, i. e., it depends on hard
problems. All plots but the Crewplanning domain reveal that there is a threshold where
the GPU planner is significantly faster than the other planners. Furthermore, in Crew-
planning buffer-filling outperforms the algorithm without buffer-filling while in the
others this strategy is less effective. The most likely reason for this is the fact that the
state space of this domain is rather flat, i. e., each cost layer is small. A flat state space
means a better distribution of states into separate layers and thus fewer re-expansions.

Numbers of expanded nodes were not compared due to the basic differences of the
planners. MIPS-XXL, being developed to solve large instances using external memory,
and Gamer, executing a symbolic search, are not comparable in this respect with the
explicit state internal memory GPU-based planner.

Figures 11.1 to 11.6 display results obtained in the eight STanford Research Insti-
tute Problem Solver (STRIPS) benchmark of the sequential optimal track of IPC-6.

The GPU planner with buffer-filling solves 124 problems, the GPU planner without
buffer-filling 138 problems, the baseline planner 134 problems and Gamer 127 prob-
lems. The advantage used by the GPU planner here is the large amount of Boolean
fluents in the problem description. Due to the usage of only one bit per fluent, com-
pared to 32-bits for integer fluents, the vector identifying the state is smaller and more
vectors fit into the hash table, enabling the planner to examine larger state spaces and
better utilizing the computation power of the GPU.

The plots emphasize the advantages of using the GPU. In every domain a threshold
exists where the GPU planner is faster then the CPU based baseline planner. Un-
fortunately, even 24 GB of RAM are not enough to solve the hardest problems and
demonstrate the achievable speed. In the best cases the speedup factor, defined as the
running time of baseline divided by the running time of the GPU planner, exceeds a
factor of seven, rising with the size of the problem.

The GPU planner with buffer-filling behaves only satisfactorily in the Parcprinter
domain, being slower than the other planners on all the remaining ones. Here also a
flat state space exists, in this case due to the strong divergence of the costs, keeping the
number of re-expansions small.
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Figure 11.1: Optimal Net-Benefit Track - Crewplanning runtimes.
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Figure 11.2: Optimal Net-Benefit Track - Numeric Elevators runtimes.
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Figure 11.3: Optimal Net-Benefit Track - STRIPS Elevators runtimes.
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Figure 11.4: Optimal Net-Benefit Track - Openstacks runtimes.
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Figure 11.5: Optimal Net-Benefit Track - Transport runtimes.
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Figure 11.6: Optimal Net-Benefit Track - Woodworking runtimes.
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Figure 11.7: Sequential Optimal Track - Elevators runtimes.
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Figure 11.8: Sequential Optimal Track - Openstacks runtimes.
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Figure 11.9: Sequential Optimal Track - Parcprinter runtimes.
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Figure 11.10: Sequential Optimal Track - Peg-Solitaire runtimes.
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Figure 11.11: Sequential Optimal Track - Scanalyzer runtimes.
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Figure 11.12: Sequential Optimal Track - Sokoban runtimes.
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Figure 11.13: Sequential Optimal Track - Transport runtimes.
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Figure 11.14: Sequential Optimal Track - Woodworking runtimes.
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11.2 Summary
This chapter depicts the evaluation of the GPU enhanced planning approach. The
buffer-filling algorithm and a non-filling approach are compared to state of the art plan-
ners on different domains taken from the international planning competition 2008. The
plots present an efficient planner for all domains providing an increasing speedup with
the increasing complexity of the problem. Solely small search spaces are inspected
slower then by the rivalry due to the lag introduced by copying the state into the graph-
ics cards memory. The plots also depicted that the efficiency of the buffer-filling algo-
rithm highly depends on the structure of the state space.
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Game Solving
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Chapter 12

Introduction to Game Solving

Experiences in Model Checking and Action Planning showed the advance of using a
highly parallel computing device for expanding states and searching though large state
spaces. An efficient compression e. g., a fixed size description, like a mapping of a state
to an ordinary number increases the parallelism on the GPU. In the search of such a
compression Perfect Hashing as used in Section 6.1 for LTL Model Checking showed
promising results compressing states to about 1.4 bit per state in average. However,
such a perfect hash function is created solely for the set of reachable states and this set
has to be either generated or available prior to the search.

The second disadvantage of such a hash function is the condition to have it avail-
able on the GPU, limiting the remaining space for the computations of the states. To
eliminate this disadvantage utilizing the computation power of a graphics card, a hash
function is needed which utilizes no memory but can be computationally intensive.
Ideally for the GPU the calculation of the hash value and the creation of the state rep-
resentation given the hash value should be linear in time and independent from the
state.

Unfortunately such compression strategies are not available nowadays for extremly
variable states like in the Model Checking or Planning domain. To use a precomputed
hash function distinct knowledge on the problem is required. Limiting the number of
supported problems, to enable the usage of perfect hashing, results in a highly special-
ized, thus a highly optimized algorithm for a small number of problems, or even for a
single problem e. g., enumerating the state space of a game. Here, scientists invest a
large amount of resources to classify each decision point in the game and find a strategy
to play the game optimally. The approach presented here was published in (Edelkamp
and Sulewski, 2009) and extended from permutation games to games with indistin-
guishable pieces in (Edelkamp et al., 2010c). The solution of Nine-Men-Morris was
presented in (Edelkamp et al., 2010b).

Structure of the chapter: In the next section the analyzed games are presented in
detail to illustrate special aspects of them usable to generate a perfect hash function.
In the remainder of this chapter available techniques for Game Solving are introduced
and an example is given.
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12.1 Analyzed Games

This section presents the analyzed games and sketches some initial ideas on the size
of each state space. The games are classified into three groups. The first three games,
the Sliding-tile puzzle, the Top-Spin puzzle and the Pancake problem are one person
permutation games using a number of distinguishable pieces which have to be arranged
in a special order. The following two games, namely Peg-Solitaire and Frogs and Toads
are also games played by one person but the pieces are indistinguishable (one player
combinatorial games) and the last game Nine-Men-Morris is a two person game with
indistinguishable pieces for each player.

12.1.1 Sliding-Tile Puzzle

13

1 2 3 4 5 6

7 8 9 10 11 12

The (n ×m) Sliding-Tile Puzzle (Hordern, 1986) consists
of (nm− 1) numbered tiles and one empty position, called
the blank. In many cases, the tiles are squarely arranged,
such that m = n. The task is to re-arrange the tiles such
that a certain goal arrangement is reached.

12.1.2 Top-Spin Puzzle
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The (n, k)-Top-Spin Puzzle from Chen and Skiena (1996)
has n tokens to be ordered in a ring. In one twist action of
the box k consecutive tokens are reversed and in one slide
action of the whole ring pieces are shifted around. There
are n! different possible ways to permute the tokens into
the locations. However, since the puzzle is cyclic only the
order of the different tokens matters and thus there are only
(n−1)! different states in practice. After each of the n pos-
sible actions, the permutation is normalized by cyclically

shifting the array until token 1 occupies the first position in the array.

12.1.3 Pancake Problem

The n-Pancake Problem (Dweighter, 1975) is to determine
the number of flips of the first k pancakes (with varying
k ∈ {1, . . . , n}) necessary to put them into ascending or-
der. The problem has been analyzed e. g., by Gates and
Papadimitriou (1979). It is known that (5n+ 5)/3 flips al-
ways suffice, and that 15n/14 flips are necessary. In the
burned pancake variant, the pancakes are burned on one
side and the additional requirement is to bring all burned

sides down. It is known that 2n − 2 flips always suffice and that 3n/2 flips are neces-
sary. Both problems have n possible operators. The pancake problem has n! reachable
states, the burned one has n!2n reachable states.
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12.1.4 Peg-Solitaire

Peg-Solitaire is a single-agent problem invented in the 17th
century. The game asks for the minimum number of pegs
that is reachable from a given initial state. The set of pegs
is iteratively reduced by jumps where the peg being jumped
over is removed. Different board sizes and even structures
exists in this game. Solutions for the initial state (shown
in the left Figure) with one peg removed in the middle of
the board are widely known (Berlekamp et al., 1982). An
optimal player for all possible states has been generated
by Edelkamp and Kissmann (2007).

12.1.5 Frogs and Toads

The Frogs and Toads puzzle is a generalization of the Fore
and Aft puzzle, which has been made popular by the Amer-
ican puzzle creator Sam Loyd. It is played on a part of the
7×7 board consisting of two 4×4 sub arrays at diagonally
opposite corners. They overlap in the central square. One
array has 15 black pieces and the other has 15 white pieces,
with the center left vacant. A move is to slide or jump over

another pieces of any color (without removing it). The objective is to reverse the po-
sitions of pieces in the lowest number of moves. This game was originally an English
invention in the 18th century. Henry Ernest Dudeney discovered a quickest solution for
two 3× 3 sub arrays variant of just 46 moves (Ball, 1911).

12.1.6 Nine-Men-Morris

The game Nine Men’s Morris has a board of three con-
centric squares that are connected at the mids of their
sides. The 12 corner and 12 side intersections are the
game positions (see Figure). Initially, each player picks
9 pieces in one color. The game divides into a set (I), a
move (II) and a jump (III) phase. In all phases a player
may close mills, i. e., align three pieces in his color hor-
izontally or vertically. In this case, he can remove one
of the opponent’s pieces from the board provided that it
is not contained in a mill.1 The game is won, when the

number of opponent’s pieces has been reduced to 2.
By an exhaustive enumeration on a parallel architecture, the game was shown to be

a draw by Gasser (1996), but his results have never been validated. He partitioned the
state space in sets Sk1,k2 , which contained k1 pieces of the first player, k2 pieces of the

1For the case of having two mills closed in one move, only one piece can be taken, and if the opponent
only has mills, they can be destroyed.
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second player and n− (k1 + k2) empty intersections. Obviously, Sk1,k2 and Sk2,k1 are
symmetrical, so that it is sufficient to consider Sk1,k2 with k1 ≥ k2 only.

12.2 Game Solving
Solving a game describes the task to classify each state of a game whether it is solv-
able, in single-agent games, or whether a player can still win the game, in multi-player
games. The state space of a game is a tree with the initial state being the root and
the leafs being the terminal states where either the game is won, not won or a draw,
denoted as the game-theoretical value for each state.

In game theory (van den Herik et al., 2002), a zero-sum game is a mathematical
representation of a game in which the outcome for all players sums up to zero. Flipping
a coin2 is an obvious zero-sum game, since one player wins (e. g., denoted as 1 in the
state) and the other player looses (denoted as 0 in a state). The sum of this game is
always zero. In contrast, a non-zero-sum describes a game like Mikado. Here each
player picks up sticks and the winner is the player having picked up more sticks.

When a forward search is not sufficient to determine the game-theoretical value,
a search backward is performed. This retrograde analysis starts in states where the
outcome is known and continues generating parents from successors. When reachable
states from the initial are known (e. g., from a previous forward search) this knowledge
is used to ignore not reachable states.

Figure 12.1 illustrates a part of the state space for the two-agent game Tic-Tac-Toe
where the players put a circle or a cross on a 3 board. Winner is the player who can
put 3 own tokens in a row (horizontally, vertically or diagonally). The game starts with
an empty grid and the first player puts a cross on the board, resulting in a branching
factor of 9. The figure shows only the branch of the cross being in the central position
of the grid. Now, in the following round, the second player puts a circle anywhere on
the grid, but on occupied places, resulting in a branching factor of 8. The theoretical
size of the state space is 9! = 362.880. However, the game stops when one player has
reached 3 tokens in a row, removing this states results in a size of 255,168. Exploring
symmetries can even shrink it down to 26,830.

Usually the solution to a game is an enumerated state space, where each state is
enriched with a rule on how to proceed in the game optimally. Figure 12.23 shows an
alternative way to present a solution for the Tic-Tac-Toe game. The first player draws
a cross on the grid where the bold cross is located in the solution, and zooms in to the
adequate square when the second player has drawn his circle. When both players play
optimally the game ends in a draw.

12.3 Related Work
Over the past few years, researchers have shown that the scalability of state space
search algorithms can be dramatically improved by using external memory, such as

2 two players try to predict the upper side of a coin after it flips.
3http://xkcd.com/832/
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Figure 12.1: Part of the state space for the game Tic-Tac-Toe. Initially the 3 × 3 grid
is empty, then each player puts a cross and a circle on the grid. The game ends with a
draw. Note, there is a winning state for the circle player in the last but one row. Boards
in a box denote the chosen path.

disks, to store generated states for duplicate detection. However, this requires very dif-
ferent search strategies to overcome the six orders-of-magnitude difference in random-
access speed between RAM and disk.

Munagala and Ranade (1999) suggested an I/O-efficient breadth-first search (BFS)
algorithm for explicit graphs with adjacencies that are stored on disk, while Korf
(2003b) applied a related disk-based frontier BFS algorithm to explore implicit state
spaces that are generated by the repeated application of moves. The duplicate detec-
tion schemes in these frontier search algorithms can either be delayed (Korf, 2008a) or
structured (Zhou and Hansen, 2004).

As RAM remains a scarce resource, external-memory two-bit BFS by Korf (2008b)
integrates the compression method by Cooperman and Finkelstein (1992) into an I/O-
efficient algorithm. The approach for solving large-scale problems relies on perfect
hash functions. It applies a space-efficient bit vector representation of the state space
with two bits per state, and allows states to be revisited. As a result, Kunkle and
Cooperman (2007) could prove a bound for solving Rubik’s Cube of 26 moves.

The above approaches scale especially well on multiple disks (e.g., combined in
a soft- or hardware RAID). Here, the computational bottleneck is shifted back to the
internal computing time instead of being dominated by transferring the data due to disk
latencies. This has let to another change of the focus in AI research: a rising number
of parallel search variants has been studied, e.g., by Korf (2008a); Zhou and Hansen
(2007); Burns et al. (2009a), as well as by Jabbar and Edelkamp (2006).
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Figure 12.2: Solution to the Tic-Tac-Toe game when cross starts wit the upper right
corner. Circle can not win and there are only 4 draw endings. As the first player, draw
your cross where the bold cross is. Zoom in to the square where the second player has
drawn his circle.

12.4 Summary
This chapter, the starting chapter for the Game Solving part introduces chosen games
and groups them according to the number of players and the discriminability of the
used pieces. The second section introduces the aspects of Game Solving and introduces
terms common in this discipline. The chapter closes with a sketch on related work in
parallel game solving.



Chapter 13

Perfect Hashing in Games

Having introduced the games and solution generation strategies this chapter presents
specific perfect hashing methods. According to the definition in Section 1.4.1 a min-
imal perfect hash function is a one-to-one mapping from the state space S to the set
{0, . . . , |S|−1}. For many AI search problem domains perfect hash functions and their
inverses are available prior to the search. By analysing the state space a partitioning
can be extracted which enables perfect hashing due to a beneficial segmentation. One
example of such a partitioning in the real world is the classification of the world ac-
cording to the Global Positioning System (GPS) coordinates. Here two hash functions
exist (hx, hy) with defined starting points and distances, the concatenation of both en-
ables to identify an unique position on the globe. Naturally such a partitioning can not
be defined easily for a state space but a deeper analysis of the game can reveal anchor
points for the desired function.

Structure of the chapter: Having proposed properties for general state spaces in
games, three perfect hashing methods will be presented optimized for each aforemen-
tioned groups of games. The chapter closes with a proposal to use perfect hashing to
solve games.

13.1 Properties of State Spaces in Games
For state spaces in games properties can be defined to partition the state space and
generate perfect hash functions by applying the fact that orthogonal hashing implies
perfect hashing. The first such property shown here is the Move-Alternation property
dividing the state space in two distinct partitions.

Definition 31 (Move-Alternation) Property p : S → {0, 1} is move-alternating, if it
toggles for all applied actions.

In other words, for all successors s′ of s, p(s′) = 1 − p(s). As a result, p(s) is
the same for all states s in one BFS-Layer, so that states s′ in the next BFS-Layer can
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be separated from the ones in the current one, exploiting p(s′) = x 6= y = p(s). A
stronger criterion is the following one.

Definition 32 (Layer-Selection) A property p : S → N is layer-selecting, if it deter-
mines the BFS-Layer for a state, in other words p(s) = BFS-Layer(s).

An example is the number of unoccupied holes in the Peg-Solitaire game. It starts
with one and increases by one with each move. In some cases perfect hash functions
can be partitioned along the properties (Korf and Schultze, 2005).

Definition 33 (BFS-Partitioning) A perfect hash function h is alternation partition-
ing, if there is a move-alternation property p that is orthogonal to h. A perfect hash
function h is layer partitioning, if there is a layer-selection property p that is orthogonal
to h.

For a given perfect hash function h for the full state space this leads to further
compression, and in some cases memory advances when applying frontier search, de-
pending on the locality of the search space (Zhou and Hansen, 2006).

If p is a move-alteration property, S can be partitioned into parts S0 = {s | p(s) =
0} and S1 = {s | p(s) = 1} with S0 ∪ S1 = S and S0 ∩ S1 = ∅, such that
h(s0) < h(s1) for (s0, s1) ∈ S1 × S2. This defines two bit-vector compression func-
tions h0(s) = h(s) and h1(s) = h(s)− |{h(s) | s ∈ S0}| that can be used in odd and
even layer of the search. Similarly, the observation can be extended to hash functions
h1, h2, h3, . . ., if p is layer partitioning.

For many domain-independent problem domains, perfect hash functions (and their
inverses) can be derived.

13.2 Ranking and Unranking in Permutation Games
For the design of rank and unrank functions for permutation games parity is a crucial
concept.

Definition 34 (Parity) The parity of the permutation π of length N is defined as the
parity of the number of inversions in π, where inversions are all pairs (i, j) with 0 ≤
i < j < n and πi > πj .

Definition 35 (Parity Preservation) A permutation problem is parity preserving, if all
moves preserve the parity of the permutation.

Parity Preservation allows separating solvable from insolvable states in several per-
mutation games. Examples are the sliding-tile and the (n, k) Top-Spin puzzles (with
even value of k and odd value of n). If the parity is preserved, the state space can be
compressed.

In all permutation games the time for generating a successor is dominated by the
time for ranking and unranking. For ranking and unranking permutations, efficient
time and space algorithms have been designed (Bonet, 2008). The design of a minimal
perfect hash function for the sliding-tile puzzle, can be observed that in a lexicographic
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ranking every two adjacent permutations π2i and π2i+1 have a different solvability
status.

Definition 36 (Lexicographic Rank, Inverted Index) The lexicographic rank of per-
mutation π (of sizeN ) is defined as

∑N−1
i=0 di ·(N−1−i)! where the vector coefficients

di are called the inverted indexes.

The coefficients di are uniquely determined. The parity of a permutation is known
to match (

∑N−1
i=0 di) mod 2.

In order to hash a sliding-tile puzzle state to {0, . . . , (nm)!/2 − 1}, the lexico-
graphic rank can be computed and divided by two. Unranking is slightly more com-
plex, as it has to determine, which of the two permutations π2i and π2i+1 of the puzzle
with index i is reachable.

Korf and Schultze (2005) use two lookup tables to compute lexicographic ranks
with a space requirement of O(2N logN) bits. Bonet (2008) discusses time-space
trade-offs and provides an uniform algorithm that takes O(N logN) time and O(N)
space. An evaluation revealed that existing ranking and unranking algorithms wrt. the
lexicographic ordering are rather slow. Hence, the more efficient ordering of Myrvold
and Ruskey (2001) was studied in more detail, and show that the parity of a permuation
can be derived on-the-fly.1 For faster execution (on the graphics card) recursion is
avoided (see Algorithm 13.1).

Algorithm 13.1: unrank(r) with parity derived on-the-fly
Input: r rank of a state
Output: (parity, π) parity and reconstructed permutation

1 π ← id ; {store ordered sequence in π}
2 parity← false ; {initialize parity}
3 while N > 0 do {until all elements processed}
4 i← N − 1 ; {position of first element}
5 j ← r mod N ; {position of second element}
6 if i 6= j then {count only different positions}
7 parity← ¬parity ; {negate parity}
8 swap(πi, πj) ; {swap elements at the positions}
9 r ← r div N ; {remove swapped position from the rank}

10 N ← N − 1 ; {proceed with the next position}
11 return (parity, π) ; {return parity and permutation}

Theorem 4 (Parity in Myrvold & Ruskey’s Unrank function) The parity of a per-
mutation given a rank in Myrvold & Ruskey’s ordering can be computed on-the fly in
the unrank function depicted in Algorithm 13.1.

Proof. In the unrank function swapping two elements u and v at position i and j, resp.,
with i 6= j 2(j−i−1)+1 transpositions exist (u and v are the elements to be swapped,

1This work always refers to Myrvold and Ruskey’s rank1 and unrank1 functions.
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x is a wild card for any intermediate elements): uxx . . . xxv → xux . . . xxv → . . .→
xx . . . xxuv → xx . . . xxvu → . . . → vxx . . . xxu. As 2(j − i − 1) + 1 mod 2 = 1,
each transposition either increases or decreases the parity of the number of inversions,
so that the parity toggles for each iteration. The only exception is if i = j, where no
change occurs. Hence, the parity of the permutation can be determined on-the-fly in
our algorithm.

�

Theorem 5 (Folding Myrvold & Ruskey) Let π(r) denote the permutation returned
by Myrvold & Ruskey’s unrank function given index r. Then π(r) matches π(r+N !/2)
except for swapping π0 and π1.

Proof. The last call to swap(πN−1, πr mod N ) in Myrvold and Ruskey’s unrank func-
tion is swap(π0, πr mod 1), which resolves to either swap(π1, π1) or swap(π1, π0).
Only the latter one induces a change.

If r1, . . . , rN−1 denote the indexes of r mod N in the iterations 1, . . . , N − 1 of
Myrvold and Ruskey’s unrank function, then rN−1 = b. . . br/(N − 1)c . . . /2c, which
resolves to 1 for r ≥ N !/2 and 0 for r < N !/2. �

13.2.1 Reducing State Space in Permutation Games
Sliding-Tile Puzzle

Swapping two tiles toggles the permutation parity and in turn the solvability status of
the game. Thus, only half the states are reachable.

There is one subtle problem with the blank. Simply taking the parity of the entire
board does not suffice, as swapping a tile with the blank is a move, which does not
change it. A solution is to partition the state space wrt. the position of the blank,
since for exploring the (n ×m) puzzle it is equivalent to enumerate all (nm − 1)!/2
orderings together with the nm positions of the blank. If B0, . . . , Bnm−1 denote the
set of “blank-projected” partitions, then each set Bi contains (nm− 1)!/2 states.

Top-Spin Puzzle

Depending on the value k and an odd value of n, a twist will always change the parity
or not. Given an even value of k (the default), only a twist on token 1 may change the
parity.

Theorem 6 (Parity Anomaly in Top-Spin) For an even value of k and odd value of
n > k + 1, the (normalized) (n, k) Top-Spin Puzzle has (n− 1)!/2 reachable states.

Proof. To ease notation, w.l.o.g., the proof is done for k = 4. Let n = 2m + 1 and
(x0, x1, . . . , x2m) be the normalized state vector. Thus, due to normalization, x0 = 0.
First of all, given that 0 is not counted, only three elements change their position and
lead to 3 transpositions. For (0, x1, x2, x3, . . . , x2m) four critical successor states exist:

• (x3, x2, x1, 0, x4....x2m),
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• (x2, x1, 0, x2m, x3, ..., x2m−1),

• (x1, 0, x2m, x2m−1, x2, ..., x2m−2), and

• (0, x2m, x2m−1, x2m−2, x1, ..., x2m−3).

In all cases, normalization has to move 3 elements either the ones with low index to the
end of the array to postprocess the twist, or the ones with large indexes to the start of
the array to preprocess the operation. The number of transpositions for one such move
is 2m− 1. In total 3(2m− 1) + 3 transpositions exist. As each transposition changes
the parity and the total of 6m transpositions is even, all critical cases have even priority.
�

As the parity is odd and even for a move in the (normalized) (n, k) Top-Spin Puzzle
for an odd value of n > k + 1, the entire set consists of (n− 1)! reachable states.

Pancake Problem

For an even value of d(k − 1)/2e, k > 1 the parity changes, while for an odd one, the
parity remains the same.

13.3 Binomial Coefficient for Single Player Games
For states consisting of a fixed number of Boolean variables, it suffices to store only the
variables that are assigned true, in order to identify each state. Traversing the search
graph and generating successors flips the status of individual state variables depending
on the successor generating function.

If the order of the variables is fixed and the number of satisfied bits are given, their
position can be identified using a binomial coefficient. A binomial coefficient

(
n
k

)
is

the number of possible k-sets in a set of n elements. Algorithm 13.2 describes how to
assert an unique rank to a given state. Since the number of k-sets in a n-set is known,
an ordering can be imposed on these k-sets. This ordering is given by the position of
the variables that are satisfied. The algorithm starts with a rank r = 0 and uses the
variable t to count the number of satisfied variables. For each unsatisfied variable r is
increased by the binomial coefficient given by the position of this entry and the number
of the remaining satisfied variables.

The according unrank function is displayed in Algorithm 13.3. For proving the
correctness surjectivity and injectivity is shown.

Theorem 7 (Surjectivity) For each s ∈ S with t satisfied variables, the maximal rank
is bounded by r(s) ≤

(
n
n−t
)
− 1.

Proof. Value r is increased only if no satisfied variable is found. For all n, t ∈ N
with n ≥ t,

(
n
t

)
≥
(
n−1
t

)
. We get the maximal rank when the first n − t variables

are not satisfied, resulting in r =
(
n−1
t−1
)

+ . . . +
(
n−t
t−1
)
. Using the known char-

acteristic of binomial coefficients
∑m
i=0

(
n+i
n

)
=
(
n
n

)
+ . . . +

(
n+m
n

)
=
(
n+m+1
n+1

)
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∑t
i=0

(
(
n

)
− t)− 1 + i(n− t)− 1 =

(
n
n−t
)
, and, by applying Algorithm 13.2,

(
n−t

(n−t)−1
)
+

. . .+
(

n−1
(n−t)−1

)
=
(
n
n−t
)
−
(
(n−t)−1
(n−t)−1

)
=
(
n
n−t
)
− 1. �

Theorem 8 (Injectivity) Given a number of satisfied variables t binomial ranking
induces a collision free hash function, such that for all s, s′ ∈ St, s 6= s′ implies
r(s) 6= r(s′).

Proof. Assume the contrary. Then there exists s, s′ ∈ St with s 6= s′ and r(s) = r(s′).
Since s and s′ are different, an entry at a minimal position i exists with si 6= s′i. If
w.l.o.g. si is not satisfied, equation r(s0..i) = r(s′0..i) +

(
n−i
ti−1

)
applies, where ti is the

number of satisfied elements left, but the maximal increase for r(s′) is, due to the same
arguments as in Theorem 7,

(
(n−j)−1
ti−2

)
+ . . .+

(
ti−1
ti−2

)
=
(
n−j
ti−1

)
− 1. �

Algorithm 13.2: Binomial-Rank
Input: s state to rank
Output: r rank

1 i← 0; r ← 0 ; {reset position counter and rank}
2 t← number of true values in s ; {variable for backwards counting}
3 while t > 0 do
4 i← i+ 1 ; {increase position counter}
5 if si = 1 then {do not count true bits}
6 t← t− 1 ;
7 else
8 r ← r +

(
n−i
t−1
)

;
{increase r by the binomial of left positions over left true bits}

9 return r ; {return rank}

13.4 Multinomial Coefficient for Multi Player Games

Multinomial coefficients can be used to compress state vectors with a fixed but per-
muted value assignment, e. g., board game state (sub)sets where the number of pieces
for each player does not change. For p players in a game on n positions ki with
1 ≤ i ≤ p is used to denote the number of game pieces owned by player i, and
kp+1 for the remaining empty positions.

Definition 37 For n, k1, k2, . . . , km ∈ N with n = k1 +k2 + . . .+km the multinomial
coefficient is defined as (

n
k1,k2,...,km

)
← n!

k1!·k2!·...·km! .
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Algorithm 13.3: Binomial-Unrank
Input: r rank, t number of bits to enable
Output: s generated state

1 i← 0 ; {reset position counter}
2 while t > 0 do {until all true bits generated}
3 if r <

(
n−i−1
t−1

)
then

4 si ← true ; {enable bit}
5 t← t− 1 ; {decrease number bits to enable}
6 else
7 si ← false ; {disable bit}
8 r ← r −

(
n−i−1
t−1

)
; {decrease rank due to a set false bit}

9 i← i+ 1 ; {proceed with nest position}
10 while i < |s| do
11 si ← false ; {disable remaining bits}
12 i← i+ 1;

13 return s ; {return state}

Since
∑p+1

0 ki = n value kp+1 can be deduced given k1, k2, . . . , kp. This section
presents present multinomial hashing for p = 2 but the extension to three and more
players is intuitive.

In the remainder of this work
(

n
k1,k2

)
will be used for

(
n

k1,k2,k3

)
with k3 = n −

(k1 + k2) and distinguish pieces by enumerating their colors with 1, 2, and 0 (empty).
Let Sk1,k2 be the set of all possible boards with k1 pieces of color 1 and k2 pieces in

color 2. The computation of the rank for states in Sk1,k2 is provided in Algorithm 13.4.
The intuition is that the algorithm Multinomial-Rank defines hk1,k2 via counting with
multinomial coefficient. For each position i it checks, if a 2 (line 3), a 1 (line 5) or a 0
(line 8) is present in the state vector.

• If a 2 is found, the value in variable ltwos is decremented by 1, while r remains
unchanged.

• In case of a 1, the according multinomial coefficient describes the number of
assignments, that have been visited and that contain a 2 at the current position.
This is done only if there are still remaining 2s (ltwos > 0). Since a 1 was seen
variable lones is decremented by one.

• If a 0 is processed, all visited 2s are skipped as long as ltwos > 0 and all 1s up to
the current position if lones > 0.

Theorem 9 The hash function defined in Algorithm 13.4 is bijective.

Proof Let hk1,k2 : Sk1,k2 7−→ N be the hash function defined by Algorithm 13.4. We
show: 1) for all s ∈ Sk1,k2 we have 0 ≤ hk1,k2(s) ≤

(
n

k1,k2

)
− 1; and 2) for all

s, s′ ∈ Sk1,k2 : s 6= s′ implies hk1,k2(s) 6= hk1,k2(s′).
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Algorithm 13.4: Multinomial-Rank
Input: Game state vector: s0,...,n−1, number of pieces in color 1: lones , number

of pieces in color 2: ltwos

Output: r rank
1 i ← 0; r ← 0 ; {reset position counter and rank}
2 while i < n do {for each position}
3 if si = 2 then
4 ltwos ← ltwos − 1 ; {piece of color 2 just decrease counter}
5 else if si = 1 then
6 if ltwos > 0 then
7 r ← r +

(
n−i−1

lones ,ltwos−1
)

;
{piece of color 1 increase rank if remaining pieces of color 2 exist}

8 lones ← lones − 1 ;

9 if ltwos > 0 then
10 r ← r +

(
n−i−1

lones ,ltwos−1
)

;
{si = 0 increase rank if remaining pieces of color 2 exist}

11 if lones > 0 then
12 r ← r +

(
n−i−1

lones−1,ltwos

)
;

{si = 0 increase rank if remaining pieces of color 1 exist}
13 i ← i + 1 ; {proceed with next position}
14 return r ; {return rank}

1) As r is initialized to 0 and increases monotonically, we only show the upper
bound. The values that are added to r are value1 =

(
n−i−1

ltwos ,lones−1

)
and value2 =(

n−i−1
ltwos−1,lones

)
. These values depend on the position (i + 1) of the currently consid-

ered state vector entry and on the number of non-processed pieces of color 1 (lones )
and color 2 (ltwos ). We additionally observe that the number of non-processed pieces
referred to in the bottom line of the expressions decreases monotonically.

Exploiting that for all n ∈ N+, and all k1, k2, k3 ∈ N with n = k1 + k2 + k3 we
have: (

n
k1,k2,k3

)
≥
(

n−1
k1,k2,k3

)
and for all n, k1 ∈ N+, and all k2, k3 ∈ N with n = k1 + k2 + k3 :(

n
k1,k2,k3

)
≥
(

n−1
k1−1,k2,k3+1

)
,

value1 and value2 are maximized, if the first position of the state vector entry is
maximized, followed by the second and so forth. Hence r is maximal, if at the first k3
positions we have only 0s, while in the following k1 positions we have only 1s and the
remaining k2 positions contain 2s.
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As for such maximal r the first k3 positions contain only 0s, the according val-
ues lones and ltwos in the corresponding multinomial coefficient are constant. These
positions thus add the following offset ∆0,max to r (k1 = lones and k2 = ltwos ):

k3∑
i=1

((
n−i

k1,k2−1,k3+1−i
)

+
(

n−i
k1−1,k2,k3+1−i

))
At the following k1 positions for such maximal r all 1s are scanned, while the value

k2 remains constant at ltwos . Value lones matches k1 initially and is decremented by 1
for each progress in i. Obviously, 0s are no longer present, such that the offset ∆1,max

equals

k1∑
i=1

(
n−k3−i

k1+1−i,k2−1,0
)

As the multinomial coefficient can be expressed as a product of binomial coefficients.(
n

k1,k2,...,kr

)
=
(
k1+k2
k2

)
· . . . ·

(
k1+k2+...+kr

kr

)
we rewrite the summands for ∆0,max to

k3∑
i=1

((
k1+k2−1
k2−1

)(
n−i

k3+1−i
))

and
k3∑
i=1

((
k1+k2−1

k2

)(
n−i

k3+1−i
))

For binomial coefficients we have(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
and

k3∑
i=1

(
n−i

k3+1−i
)

=
k3∑
i=1

(
n−k3−1+i
n−k3−1

)
This implies that ∆0,max is equal to

k3∑
i=1

((
n−i

k3+1−i
)
·
((
k1+k2−1
k2−1

)
+
(
k1+k2−1

k2

)))
=

k3∑
i=1

((
n−i

k3+1−i
)(
k1+k2
k2

))
=
(
k1+k2
k2

)
·
((

n
n−k3

)
− 1
)

and ∆1,max is equal to

k1∑
i=1

((
k1−i+1
k1−i+1

)(
k1+k2−i
k2−1

)(
k1+k2−i

0

))
=

k1∑
i=1

(
k1+k2−i
k2−1

)
=
(
k1+k2
k2

)
− 1.
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Algorithm 13.5: Multinomial-Unrank
Input: r rank , number of pieces color 1: lones , number of pieces color 2: ltwos

Output: s0...n−1 Game state vector
1 i ← 0 ; {reset position counter}
2 while i < n do
3 if ltwos > 0 then
4 value2 ←

(
n−i−1

lones ,ltwos−1
)

; {2s left, store binomial coefficient for si = 2}
5 else
6 value2 ← 0 ; {all 2s set}
7 if lones > 0 then
8 value1 ←

(
n−i−1

lones−1,ltwos

)
; {1s left, store binomial coefficient for si = 1}

9 else
10 value1 ← 0 ; {all 1s set}
11 if r < value2 then
12 si ← 2 ; {set when 0 ≤ r < value2}
13 ltwos ← ltwos − 1 ;

14 else if r < value1 + value2 then
15 si ← 1 ; {set when value2 ≤ r < value1 + value2}
16 r ← r − value2 ;
17 lones ← lones − 1 ;

18 else
19 si ← 0 ; {set when value1 + value2 < r}
20 r ← r − (value1 + value2) ;

21 i ← i + 1 ;

22 return state ;

Hence, the maximal possible value for r is

rmax = ∆0,max + ∆1,max

=
(
k1+k2
k2

)
·
((

n
n−k3

)
− 1
)

+
(
k1+k2
k2

)
− 1

=
(
k1
k1

)(
k1+k2
k2

)(
n
k3

)
− 1

=
(

n
k1,k2,k3

)
− 1.

2. Consider two states s1, s2 ∈ Sk1,k2 and the smallest possible index in which the
two states differ, i. e.,

i ′ := min {i | 0 ≤ i ≤ (n− 1) ∧ states1 [i ] 6= states2 [i ]}

The values of r computed up to i′ are the same. Let k′1 ≤ k1 and k′2 ≤ k2 be the
remaining pieces of the respective color. We have rs1,i′ = rs2,i′ , where rs,i′ denotes
the value r computed for state s before evaluating position i′. At position i′ we have
the following three cases.
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In the first case, states1 [i ′] = 0 and states2 [i ′] = 1. The difference of the r values
is

rs1,i′+1 = rs2,i′+1 +

(
n− i′ − 1

k′1 − 1, k′2

)
Following the above derivations, we know that rs2 increases by at most

(
n−i′−1
k′1−1,k′2

)
− 1

in the (n− i ′ − 1) remaining positions with (k′1 − 1) and k′2 pieces of the according
color, such that rs1,j 6= rs2,j for j > i ′.

In the second case, we have states1 [i ′] = 0 and states2 [i ′] = 2. This implies

rs1,i′+1 = rs2,i′+1 +

(
n− i′ − 1

k′1 − 1, k′2

)
+

(
n− i′ − 1

k′1, k′2 − 1

)
Value rs2 increases by at most

(
n−i′−1
k′1,k′2−1

)
− 1 on the remaining (n− i ′ − 1) positions

with k′1 and (k′2 − 1) pieces of the according color. We again have rs1,j 6= rs2,j for
j > i ′.

The remaining case is states1 [i ′] = 1 and states2 [i ′] = 2 with

rs1,i′+1 = rs2,i′+1 +

(
n− i′ − 1

k′1, k′2 − 1

)
,

where the argumentation of the second case applies. �

Algorithm 13.5 is the inverse of Algorithm 13.4 and used to compute h−1k1,k2 in form
of assignments to a state vector. As the Unrank procedure subtracts the multinomial
coefficients that match the ones that have been added in Rank, the inverse h−1k1,k2 is
computed correctly.

13.5 Summary
Having defined a number of properties common in the state spaces of games, the chap-
ter continued with three propositions according to the groups of introduces games.
Ranking and unranking can be used as a perfect hash function in permutation games,
while binominal and multinomial coefficients are suitable for games with indistinguish-
able pieces. This part continues with a proposal of algorithms to enumerate state spaces
in games.
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Chapter 14

GPU Enhanced Game Solving
using Perfect Hashing

Based on computing reversible minimal perfect hash functions on the GPU, one-bit
reachability and one-bit BFS algorithms are proposed. Specific perfect hash functions
are studied. In solving Nine-Men-Morris a speed-up factor of over 12 is obtained. Spe-
cialized hashing for ranking and unranking states on the GPU and a parallel retrograde
analysis on the GPU is applied. Unfortunately, the AI exploration approaches hardly
carries over to Model Checking, as general designs of invertible hash functions – as
available for particular games – are yet unknown.

Structure of the chapter: This chapter introduces techniques to enumerate all states
in a state space by traversing it in a BFS manner. A BFS approach is presented utilizing
only two bits per state. This approach is modified to use even one-bit when only a
reachability analysis is performed. In special cases when a move-alternation property
exist even an one-bit Breadth-First search can be performed. Having presented the
algorithms, they are ported to the GPU and the solution of the game Nine-Men-Morris
is provided, also ported to the GPU.

14.1 State Space Algorithms utilizing Perfect Hashing

Section 1.4.1 already mentioned an approach to compress the Closed list to only one
bit in state space searching, provided a perfect hash function is available. Given the
perfect hash function is also revertible (Definition 22) Open can also be compressed
since state s can be reconstructed using h(s). This section will propose several BFS
algorithms optimized for a reversible perfect hash function and reducing the space
consumption of (Open + Closed) to one bit per state.

157
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14.1.1 Two-Bit Breadth-First search

In the domain of Caley graphs, Cooperman and Finkelstein (1992) show that, given
a perfect and invertible hash function, two bits per state are sufficient to conduct a
complete breadth-first exploration of the search space. The running time of their ap-
proach (shown in Algorithm 14.1) is determined by the size of the search space times
the maximum breadth-first layer, times the efforts to generate the children. Each node
is expanded at most once. The algorithm uses two bit encoding numbers from 0 to 3,
with 3 denoting an unvisited state, and 0,1,2 denoting the current depth value modulo
3. The main effect is that this allows to distinguish newly generated states and visited
states from the current layer.

For non-minimal perfect hash functions, determining all reachable states is impor-
tant to distinguish the good from the bad ones. This includes filtering of terminal states
in two player games like Tic-Tac-Toe. Here 5,478 states are reachable. A simple hash
function maps Tic-Tac-Toe positions to |{O,X,−}|9 = 19,683. In this case, the effi-
ciency is d 19,683/5,478 e = 4 so that this implicit representation is fortunate compared
to explicit representations which need more bits per state.

A complete BFS traversal of the search space is very important for the construction
of pattern databases. Korf (2008b) has applied the algorithm to generate the state spaces
for hard instances of the Pancake problem I/O efficiently.

Algorithm 14.1: Two-Bit-Breadth-First search (init)
Input: ŝ ∈ S: initial state, N !− 1 number of 2 bit entries in Open

1 forall the i← 0, . . . , N !− 1 do {initialize Open }
2 Open[i]← 3 ;

3 Open[rank(ŝ)]← level← 0 ; {mark initial as open}
4 while Open has changed do {states marked as open}
5 level← level + 1 ; {count the number of levels}
6 forall the i← 0, . . . , N !− 1 do {scan for states to expand}
7 if Open[i] = (level− 1) mod 3 then

{if this is a state from the previous level}
8 s← unrank(i) ; {reconstruct state s }
9 expand s→ s1 . . . sν ; {generate successors}

10 for sj (∀j : 1 ≤ j ≤ ν) do {check each successor}
11 if Open[rank(sj)] = 3 then {this state is new}
12 Open[rank(sj)]← level mod 3 ;

{add it to the present level}

Two-bit Breadth-First search indicates the use of Bitstate tables for compressed
pattern databases. If the mod-3 value of the BFS-level is stored, its absolute value is
determined by backward construction of its path . One shortest path predecessor with
mod-3 value of BFS-level k appears in level k − 1 mod 3. Reaching the initial state,
the pattern database lookup-values can then be determined incrementally.
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14.1.2 One-Bit Reachability
The simplification in Algorithm 14.2 allows to generate the entire state space using one
bit per state.

Algorithm 14.2: One-Bit reachability (init)
Input: ŝ ∈ S: initial state, N !− 1 number of 2 bit entries in Open

1 forall the i← 0, . . . , N !− 1 do {initialize Open }
2 Open[i]← false ;

3 Open[rank(ŝ)] = true ; {mark initial as open}
4 while Open has changed do {states marked as open}
5 forall the i← 0, . . . , N !− 1 do {scan for states to expand}
6 if Open[i] = true then {this state expanded or to expand}
7 s← unrank(i) ; {reconstruct state s }
8 expand successors s→ s1 . . . sν ; {generate successors}
9 for sj (∀j : 1 ≤ j ≤ ν) do {check each successor}

10 Open[rank(sj)]← true ; {mark it for expansion}

As this algorithm does not distinguish between open and closed nodes, it may ex-
pand a node multiple times. It is able to determine reachable states if a bijective hash
function is present. Additional information extracted from a state can improve the
running time by decreasing the number of reopened nodes.

If the successor’s rank is smaller than the rank of the actual one, it will be expanded
in the next scan, otherwise in the same.

Theorem 10 (Number of Scans in 1-Bit Reachability) The number of scans in the
algorithm One-Bit-Reachability is bounded by the maximum BFS-Layer.

Proof. Let Lb(i) be the BFS-Layer and Lo(i) be the layer in the algorithm One-Bit-
Reachability. Inductively Lo(i) ≤ Lb(i) holds. Evidently, Lo(init) = Lb(init) = 0.
For any path (s0, . . . , sd) generated by BFS, Lo(sd−1) ≤ Lb(sd−1) holds by induction
hypothesis. All successors of sd are generated in the same iteration (if their index value
is larger) or in the next iteration (if their index value is smaller) such that Lo(sd) ≤
Lb(sd). �

14.1.3 One-Bit Breadth-First search
In cases with the move-alternation property , a BFS can be performed using only one
bit per state. In this section the considerations will be exemplified selecting the permu-
tation ordering of Myrvold and Ruskey in the sliding-tile puzzles.

Since the parity does not change in this puzzle another alternating property is
needed, and can be found in the position of the blank. The partition into buckets
B0, . . . , Bnm−1 enables to determine whether the state belongs to an odd or even layer
and which bucket a successor belongs to (Zhou and Hansen, 2004). Numbering the
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positions from 0 to nm−1 and reducing the problem to puzzles with an odd number of
columns shows that the successors of a state where the blank is at position 0 will have
its blank either at position 1 (right move) or at position n (down move). For puzzles
with an even number of columns the position of the blank also indicates the parity of
the BFS-Layer. We observe that the blank position in puzzles with an odd number of
columns at an even breadth-first level is even and for each odd breadth-first level it is
odd.

For such a factored representation of the sliding-tile puzzles, a refined exploration
in Algorithm 14.3 retains the breadth-first order, by means that a bit for a node is set for
the first time in its BFS-Layer. The bit vector Open is partitioned into nm parts, which
are expanded depending on the breadth-first level (line 7). The directions in which the
blank can move (R-right, L-left, D-down,U-up, see line 9), are expanded in parallel
using different threads.

Algorithm 14.3: One-Bit-Breath-First search
Input: ŝ ∈ S: initial state, N !− 1 number of 2 bit entries in Open

1 for blank = 0, . . . , nm− 1 do {initialize two dimensional Open }
2 for i = 0, . . . , (nm− 1)!/2− 1 do
3 Open[blank][i]← false ;

4 Open[blank(ŝ)][rank(ŝ) mod (nm− 1)!/2]← true ;
{mark initial as to expand}

5 level← 0 ;
6 while Open has changed do {states marked as open}
7 blank← level mod 2 ; {expand partitions according to BFS-Level mod2}
8 while blank ≤ nm do
9 forall the d ∈ {R,L,D,U} do {for all moves}

10 dst← newblank(blank, d) ;
11 if d ∈ {L,R} then {horizontal move, rank does not change here}
12 Open[dst]← Open[dst] or Open[blank] ;
13 else
14 forall the i with Open[blank][i] = true do
15 s← unrank(i) ;
16 expand successors s→ s1 . . . sν ; {generate successors}
17 for sj (∀j : 1 ≤ j ≤ ν) do {check each successor}
18 r ← rank(sj) mod (N − 1)!/2 ;
19 Open[dst][r]← true ;

20 blank = blank + 2 ;

21 level = level + 1 ;

As mentioned above, the rank of a permutation does not change by a horizontal
move of the blank. This is exploited in line 11 writing the ranks directly to the desti-
nation bucket using a bitwise-or on the bit vector from layer level − 2 and level. The
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vertical moves are unranked, moved and ranked from line 13 onwards. When a bucket
is done, the next one is skipped and the next but one is expanded. The algorithm termi-
nates when no new successor is generated.

Even though some states are expanded several times, the following result is imme-
diate. Let the population count pcl of level l be the number of bits set after the l-th
scan. Then the number of states in BFS-level l is |Layerl| = pcl − pcl−1.

14.2 Porting Algorithms to the GPU
When porting the above algorithms to the GPU the specific advantages will be consid-
ered one by one. To profit from coalescing, threads should access adjacent memory
contemporary. Additionally, the SIMD like architecture forces to avoid if-branches
and to design a kernel which will be executed unchanged for all threads. These facts
lead to the implementation of keeping the entire or partitioned state space bit vector in
RAM and copying an array of indexes (ranks) to the GPU. This approach benefits from
the SIMD technology but imposes additional work on the CPU. One additional scan
through the bit vector is needed to convert its bits into integer ranks, but on the GPU
the work to unrank, generate the successors and rank them is identical for all threads.
To avoid unnecessary memory access, the rank given to expand should be overwritten
with the rank of the first child. As the number of successors is known beforehand, with
each rank space for its successors is reserved. For smaller BFS-Layers this means that
a smaller number of states is expanded.

Algorithm 14.4: One-Bit reachability utilizing the GPU
Input: ŝ ∈ S: initial state, N !− 1 number of 2 bit entries in Open

1 forall the i← 0, . . . , N !− 1 do {initialize Open }
2 Open[i]← false ;

3 Open[rank(ŝ)] = true ; {mark initial as open}
4 while Open has changed do {states marked as open}

Stage 1 - Generate sets of active transitions
5 fillVRAM({i|0 ≤ i ≤ N !− 1 ∧Open[i] = true}) ;

{copy ranks to VRAM}
Active← Active ∪ GPU-Kernel Determine Transitions() ;

Stage 2 - Generate sets of successors
6 fillVRAM(Active ∩ ≤ i ≤ N !− 1 ∧Open[i] = true}) ;

{copy ranks to VRAM}
Successors← Successors ∪ GPU-Kernel Generate Successors();

Stage 3 - Remove duplicates and adjust Open
7 forall the r ∈ Successors do {for each rank in Successors}
8 Open[r]← true ; {mark it for expansion}

To exemplify the process of porting the algorithms extensions to the One-Bit reach-
ability algorithms are given in detail. Algorithm 14.4 exemplifies the modifications to
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Algorithm 14.5: GPU-Kernel Determine Transitions for One-Bit reachability
Input: {r1, . . . , rk} set of ranks to examine, T set of transitions, d dimension of

the grid
Output: {a1, . . . , ak} number of successor for each rank in {r1, . . . , rk}

1 for each group g do in parallel {partially distributed computation}
2 for each thread p : 0 ≤ p < d do in parallel {distributed computation}
3 e← 0 ; {reset counter}
4 s← unrank(rg∗d+p) ; {reconstruct state s from rank}
5 forall the t ∈ T do {check each transition}
6 if t is applicable in s then {evaluate transition}
7 e← e+ 1 ; {increase counter}

8 ag∗d+p ← e ; {replace rank with number}

9 return {a1, . . . , ak} ; {return active transitions}

Algorithm 14.2 to utilize the GPU for generating states. The algorithm is divided ac-
cording to the framework given in Part I and the successor counting strategy is used due
to no distinction between pre- and post-conditions in the game representation. Since
the reversible hash functions rank and unrank can be computed on the GPU, only the
rank is copied over the bus. Obviously, it would be inefficient to copy Open as a bit
vector to the GPU since a smoothed load balancing in all threads can not be guaranteed.

Algorithms 14.5 and 14.6 present the extended kernels used in the One-Bit reacha-
bility on the GPU. The extension is based on adding the rank and unrank functions in
the appropriate places. Additionally this kernels accept sets of ranks as the input and
the successor generation kernel returns a set of ranks as its output.

In larger instances that exceed RAM capacities additional write buffers are main-
tained to avoid random access on disk. Once the buffer is full, it is flushed to disk. In
one streamed access, all corresponding bits are set.

The setting is exemplified for the sliding-tile puzzle domain in Figure 14.1. We see
the “blank-partitioned” breadth-first state space residing on disk that is read into RAM,
converted to integer ranks, copied to the GPU to be unranked, expanded and ranked
again.

As a surplus, pthreads were used as additional multi-threading support. The par-
titioned state space was divided on multiple hard disks to increase the reading and
writing bandwidth and to enable each thread to use its own hard disk.

To sample a move-alternation property in contrast to the blank’s position in the
sliding-tile puzzles, the Manhattan distance heuristic value has been computed on the
GPU by processing the unranked permutation. Even though the estimate can be com-
puted incrementally in constant time, for the sake of generality it was computed from
scratch by cumulating absolute distances for all tiles.

The option of computing the heuristic value efficiently on the GPU suggests to also
accelerate heuristic search. By the large reduction in state space due to the directedness
of the search and by the lack of a perfect hash function for the explored part of the state
space in heuristic search – at least for simpler instances – a bit vector compression for
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Algorithm 14.6: GPU-Kernel Generate Successors for One-Bit reachability
Input: {r1, . . . , rk} set of ranks to expand, T set of transitions,

{a1, . . . , ak} numbers of successors, d dimension of the grid,
Succ Successor generation function

Output: Ranks the set of successor ranks
1 Ranks← ∅ ; {clear set of successor ranks}
2 for each group g do in parallel {partially distributed computation}
3 for each thread p : 0 ≤ p < d do in parallel {distributed computation}
4 g ← 0 ; {Counter for generated successors}
5 s← unrank(rg∗d+p) ; {reconstruct state s from rank}
6 while g < (ag∗d+p) do {generate all successors}
7 forall the t ∈ T do {check each transition}
8 if t is applicable in s then {evaluate transition}
9 Ranks← Ranks ∪ rank(Succ(s, t)) ; {add successor rank}

10 g ← g + 1 ; {increase counter for generated successors}

11 return Ranks ;

the entire search space is not the most space-efficient option. However, as bit vector
manipulation is fast, for hard instances runtime advances on the GPU were obtained.

For our case study we have ported breadth-first heuristic search (BFHS) (Zhou and
Hansen, 2006) to the GPU. For a given upper bound U on the optimal solution length
and current BFS-level g the GPU receives the value U − g as the maximal possible
h-value, and marks states with larger h-value as invalid.
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Figure 14.1: GPU Exploration of a Sliding-Tile Puzzle State Space Search stored as a
bit vector in RAM.



164CHAPTER 14. GPU ENHANCED GAME SOLVING USING PERFECT HASHING

14.2.1 Case Study: Nine-Men-Morris
Nine-Men Morris is a two-player zero-sum game and the optimality of a move is de-
pending on the player that moves. After generating the state space, the game is solved
bottom-up. As the number of pieces in the phases II and III can only decrease, Gasser
has applied such retrograde analysis to these two phases. For phase I, however, he ap-
plied αβ, which prunes the search space and weakly solves the game. In contrast, this
work strongly solves it, and determines the game-theoretical value for each reachable
game state.

While for circuit free two-player games 2 bits are sufficient to encode won , loss
and draw games and to conduct a retrograde analysis, this game requires a progress
measure to avoid infinite computations. Gasser’s 1 byte encoding is adopted.
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Figure 14.2: Partitioning for Phase II and III.

The partitioning in Fig. 14.2 indicates that for i, j ∈ {1, 2} and i 6= j predecessors
of Sk1,k2,i (Player i to move) are contained either in Sk1,k2,j or, if player j has closed
a mill, in Sk1+1,k2,j (given i = 1) or Sk1,k2+1,j (given i = 2).

Scanning Figure 14.2 from left to right may be interpreted as a variant of space-
efficient frontier search (Korf, 1999; Korf and Zhang, 2000). To analyze Sk1,k2 with
k1 > 3 or k2 > 3 requires the results left to Sk1,k2 to be present. Due to symmetry,
Sk1,k2 with k1 < k2 needs not to be considered again, so that a copy from Sk1,k2
suffices to evaluate a state.

For the encoding of a rank r, 34 bits are sufficient, so that a 64-bit integer suffices to
contain all state information. This integer actually stores pairs (r, v) with the additional
state information v having 8 bits. The remaining bits are used to store numbers of
successors. The GPU expects pairs (r, v) for expansion and returns triples (r′, v′, c),
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Algorithm 14.7: BFS for Phase I

1 Open← ∅ ; {initialize Open }
2 for t← 1 to 4 do {closing mills not possible here, so initialization suffices}
3 Open← Open ∪ (d t2e, b

t
2c, t) ; {mark states in bitsd t2 e,b

t
2 c,t as open}

4 for t← 5 to 18 do {k1 tokens of player 1 and k2 of player 2}
5 forall the (k1, k2, t

′) ∈ Open with t′ = t− 1 do
Stage 1 and 2 - Generate successors

6 ranks ← ∅ ;
7 fillVRAM({i|bitsk1,k2,t′ [i] =Open ∧ 0 ≤ i <

(
n

k1,k2

)
} ;

8 ranks← ranks ∪ Generate successors in two kernels ;
Stage 3 - Remove duplicates and adjust Open

9 forall the r′ ∈ ranks do
10 Determine k′1, k

′
2 according to r′ ;

11 if (k′1, k
′
2, t) /∈ Open then

12 Open← Open ∪ (k′1, k
′
2, t) ;

13 Initialize bit vector bitsk′1,k′2,t with ’not reached’ ;

14 Mark r′ in bitsk′1,k′2,t with ’reached’ ;

where c is the number of successors for the state represented in r′ (still fitting into 64
bits). The CPU reads value c if needed for encoding r′ more efficiently.

Phase I is not completely analyzed in Gasser (1996) in contrast to this work. Ar-
guing that closing mills is unfortunate, his analysis was reduced to games with 8 or 9
of the 9 pieces for each player. The BFS starts for phase I with an empty board and
determines for all depth t ∈ {1, . . . , 18} which sets Sk1,k2,t are to be considered and
which states are then reached in that set. The partition into sets Sk1,k2,t is different
to the one obtained in the other two phases and respects that some partitions may be
encountered in different search depth.

The BFS traversal is shown in Algorithm 14.7. For depths 1 to 4 the state space
is initialized with reached. Only in depth t > 4 closing mills is possible, so that
the successors of a set in the two sets of the next depth are possible and, therefore, a
growing number of state spaces are to be considered.

The sets are themselves computed in BFS, utilizing a set Open of triples (k1, k2, t)
with piece counts k1, k2 and obtained search depth t. An according entry (k1, k2, t) de-
notes that BFS has reached all states in Sk1,k2,t. This allows to compute the according
state spaces incrementally.

If Sk1,k2,t is encountered for the first time (line 11), prior to its usage in (line 14)
the responsible bit vector is allocated and initialized as not-reached. In line 10 of the
Algorithm 14.7 the outcomes for different k′1, k

′
2 are combined. If depth t is odd we

have k′1 = k1 + 1 but both k′2 = k2 and k′2 = k2 − 1 are possible (depending on a mill
being closed or not). We take an additional bit in the encoding of the ranks to denote if
a mill has been closed to accelerate the determination of values k′1, k

′
2 of rank r′.

In principle, one bit per state is sufficient. Subsequent to the BFS a backward
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Algorithm 14.8: Retrograde Analysis Phase I
Input: bitsk1,k2,t, Open, bytesk1,k2,i

1 forall the (k1, k2, t
′) ∈ Open with t′ = 18 do

2 if k1 ≥ k2 then {symmetry is used to compress Phase I}
3 forall the j ∈ {j | bitsk1,k2,t(j) = reached } do
4 bitsk1,k2,t(j)← bytesk1,k2,1

(j) ;
{transfer the game theoretical value from Phase II}

5 else
6 forall the j ∈ {j | bitsk1,k2,t(j) = reached } do

{Compute Rank j′ of the inverted game state for state with rank j}
7 bitsk1,k2,t(j)← bytesk2,k1,2

(j′) ;
{transfer the game theoretical value from Phase II}

8 for t← 17 to 1 do {the remaining layers}
9 forall the (k1, k2, t

′) ∈ reached with t′ = t do
Stage 1 and 2 - Generate successors

10 ranks ← ∅ ;
11 fillVRAM({j|bitsk1,k2,t′ [j] =reached ∧ 0 ≤ i <

(
n

k1,k2

)
} ;

12 ranks← ranks ∪ Generate successors in two kernels ;
Stage 3 - Remove duplicates and adjust Open

13 forall the r′ ∈ ranks do
14 Compute k′

1, k
′
2 associated with r′ ;

15 bitsk1,k2,t(r)← bitsk′1,k′2,t+1(r
′) ;

chaining algorithm determines the game-theoretical values. Two bits are used per state
to encode the four cases not-reached, won-for-player-1, won-for-player-2, and draw.
As already 1 bit is used for state-space generation, these demands are already allocated.

In the backward traversal described in Algorithm 14.8, first all state sets Sk1,k2,t
with depth t = 18 are initialized wrt. the data computed for phase II and III. As player
1 starts the game, he will also start phase II. For the initialization of Sk1,k2,t with
t = 18 and k1 ≥ k2 we scan the corresponding bit vector and consider each state
marked reached at position i the value stored with position i in the byte vector inferred
for Sk1,k2,1 from solving phase II and III. Depth and successor count information is
ignored. We are only interested, whether a state is won, lost or a draw.

When trying to initialize Sk1,k2,t with t = 18 and k1 < k2 we observe that no
corresponding set Sk1,k2,1 from phase II and III has been computed. In this case, we
traverse the bit vector for Sk1,k2,t, but consider the set Sk2,k1,2 from phase II and III.
In each scan of Sk1,k2,t when encountering a state s marked reached we compute the
rank j of its inverted representation, so that player 1 now plays color 2 and player 2
plays color 1. Similarly, in case Sk1,k2,1 is not present, we consider position j in the
byte vector, while inverting the state to be considered. For the translation of states in
state vector representation, their inverted representation and the computation of their
ranks j, we use the GPU.

After the initialization one step back is performed and the work continues on the
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state spaces Sk1,k2,t with t = 17. All reached successors of a state are generated and the
game-theoretical value is determined in the bit vector stored depth 18 by considering
all values at positions that correspond to the successor ranks.

The value of a state is determined by considering all its successors. If all successors
of a state with player 1 to move are lost, the state itself is lost. If at least one successor
is won, then the state itself is won. In all remaining cases, the game is a draw. We
continue until we reach depth 1.

14.3 Summary
Having introduced three algorithms to enumerate state spaces of games by using only
two or even one bit internal memory per state a porting of this algorithms to the GPU
is proposed. A special case, described in detail was the two player game Nine-Men-
Morris which was solved according to Gasser’s approach accelerated by a GPU.
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Chapter 15

Experimental evaluation

The introduced games are compared to a sequential CPU implementation. The next
sections will give distinct results of the evaluation. For measuring the speed-up on a
matching implementation the GPU performance is compared with a CPU emulation
on a single core. This way, the same code and work was executed on the CPU and
the GPU. The emulation was run with one thread to minimize the work for thread
communication on the CPU.

Structure of the chapter: In the next sections the state enumeration algorithms
ported to the GPU are evaluated on different games, followed by details on the solution
of Nine-Men-Moris.

15.1 Single-Agent Games
First the behavior of the 1-bit BFS was examined and the GPU to the CPU time com-
pared. Since calculating large binomial coefficients is a computationally intensive task,
values were precomputed and stored in an array.

Table 15.1: GPU vs. CPU Performance using 1-Bit BFS (o.o.t. denotes out of time).

Domain Instance Times
GPU CPU CPU
GPU 1 Core 8 Cores

Sliding-Tile

(3× 4) 66s 427s 217s
(4× 3) 78s 475s 187s
(2× 6) 93s 1, 114s 374s
(6× 2) 114s 1, 210s 284s
(7× 2) 14, 215s o.o.t. 22, 396

Peg-Solitaire 44s 360s

169
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Table 15.2: GPU vs. CPU Performance using 2-Bit BFS.

Domain Instance Times
GPU CPU CPU

1 Core 8 Cores

Top-Spin

10 0s 2s 0s
11 1s 10s 3s
12 12s 272s 63s
13 87s 2, 404s 510s

Pancake

10 0s 4s 2s
11 9s 52s 14s
12 130s 832s 164s
13 1, 819s 11, 771s 2, 499s

Frogs and Toads 686s 8, 880s

The first set of experiments in Table 15.1 shows the gain of integrating bit vector
state space compression with BFS in different instances of the sliding-tile puzzle. We
run the one-bit BFS algorithm on various instances of the sliding-tile-puzzle with RAM
requirements from 57 MB up to 4 GB. The 3× 3 version was simply too small to show
significant advances, while even in partitioned form a complete exploration on a bit
vector representation of the 15-Puzzle requires more RAM than available. Moreover,
the predicted amount of 1.2 TB hard disk space is only slightly smaller than the 1.4 TB
of frontier BFS search reported by Korf and Schultze (2005).

For the 1-Bit BFS implementation the speed-up achieves a factor between 7 and 10
in the small instances. Many states are re-expanded in this approach, inducing more
work for the GPU and exploiting its potential for parallel computation. Partitions being
too large for the VRAM are split and processed in chunks of about 250 millions indexes
(for the 7×2 instance). A quick calculation shows that the savings of GPU computation
are large. It should be noted that the GPU has the capability to generate 83 million
states per second (including unranking, generating the successors and computing their
ranks) compared to about 5 million states per second of the CPU (utilizing one core).
As a result, for the CPU experiment that ran out of time (o.o.t.), stopped after one day
of execution, a speed-up factor of at least 16, and a running time of over 60 hours can
be assumed. We also implemented a multi-core version of the algorithm utilizing the
available 8 cores and showing the benefit of the GPU implementation.

The results for the (n, k)-Top-Spin problems for k = 4 are shown in Table 15.2.
Since no layer-selection or move-alternating property exists, 2-bit BFS is performed.
Additionally the GPU performance to a parallel CPU implementation is compared.
For large values of n, a significant speed-up of more than factor 27 wrt. the single core
computation was obtained, and a factor of 5 compared to the 8 core computation.

Table 15.2 depicts the GPU and CPU running time results for the n-Pancake prob-
lems. In contrast to the Top-Spin puzzle for a large value of n, a speed-up factor of 7
wrt. running the same algorithm on one core of the CPU is obtained.
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15.2 Nine-Men-Morris

Table 15.3: Retrograde Analysis of middle and ending stage in Nine-Men-Morris
(times in seconds, sizes given in GB).

Size GPU CPU Ratio Size GPU CPU Ratio
9-9 6.54 36,598s – – 8-4 1.34 610s 8,093s 13.26
9-8 8.41 57,057s – – 9-3 0.58 807s 8,547s 10.59
8-8 9.47 35,441s – – 6-5 1.15 493s 1,484s 3.01
9-7 8.41 43,003s – – 7-4 0.80 397s 4,434s 11.17
8-7 8.41 61,750s – – 8-3 0.40 609s 6,123s 10.05
9-6 6.54 12,174s – – 5-5 0.48 11s 23s 2.09
7-7 6.73 15,284s 52,441s 3.43 6-4 0.40 157s 439s 2.79
8-6 5.89 19,538s 57,988s 2.96 7-3 0.23 357s 3,145s 8.80
9-5 3.93 2,045s 25,134s 12.29 5-4 0.16 5s 6s 1.20
7-6 4.28 4,914s 22,981s 4.98 6-3 0.11 69s 619s 8.97
8-5 3.21 1,805s 20,257s 11.22 4-4 0.05 1s 1s 1.00
9-4 1.78 829s 10,725s 12.93 5-3 0.04 17s 137s 8.05
6-6 2.50 1,137s 4,160s 3.62 4-3 0.01 3s 26s 8.66
7-5 2.14 1,211s 11,682s 9.64 3-3 .003 12s 80s 6.66

The time and space performance of the retrograde analysis is shown in Table 15.3.
Since 24 GB were not sufficient to maintain all responsible sets in RAM, states were
sequentially flushed to (and subsequently read from) disk. The entire classification of
the state space for the middle and ending stage on the GPU required about 3 days and
19 hours. The corresponding CPU computation on one core has not been completed
and has been terminated after 5 days.

The observed speed-ups of over one order of magnitude have been obtained (plotted
in bold font), exceeding the number of cores on most current PCs. Note that this
assertion is true for the dual 6-core CPUs available from Intel, but not on a dual Xeon
machine with two quad-core CPUs creating 16 logical cores due to multi-threading.
Nonetheless, better speed-ups are possible since NVIDIA GPUs can be used in parallel
and the Fermi architecture (e.g. located on the GeForce GTX 480 graphics card) is
coming out which will go far beyond the 240 GPU cores we had access to.

For larger levels, however, we observe that the GPU performance degrades. When
profiling the code, we identified I/O access as one limiting factor. For example, reading
S8,8 from one HDD required 100 seconds, while the expansion of 8 million states,
including ranking and unranking required only about 1 second on the GPU.

Nonetheless still some inconsistencies in the GPU performance can be observed.
According to the calculations, due to storing intermediate results, 24 GB RAM should
be sufficient for the bit vector for BFS and retrograde analysis in the RAM, so that no
further access to HDD for swapping should have been necessary. But there is addi-
tional memory needed for preparing and postprocessing the VRAM in RAM for copy
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Table 15.4: Retrograde analysis in opening stage in Nine-Men-Morris (times in sec-
onds).

Depth BFS Retrograde Depth BFS Retrograde
1 <1s <1s 10 171s 163s
2 <1s <1s 11 390s 388s
3 <1s <1s 12 909s 885s
4 <1s <1s 13 1,583s 1,554s
5 <1s <1s 14 2,838s 2,828s
6 1s 1s 15 4,047s 4,021s
7 4s 4s 16 5,743s 5,996s
8 17s 17s 17 7,219s 6,996s
9 53s 52s 18 - 16,141s

purposes. Together with the needs of the operating system this indicated that the system
did swap at least to some extend.

For analyzing the opening stage the program required little less than 17 hours.
Table 15.4 depicts the individual timings obtained by the GPU. All 24 states in depth 1
turned out to be a draw such that the result of Gasser (1996) has been validated. First
non-optimal moves are possible in depth 2.

15.3 Summary
Having introduced the analyzed games the first chapter of this part continues with an
introduction to Game Solving. Due to the simple structure of the identified games per-
fect hash functions are introduced divided in ranking and unranking for permutation
games with distinguishable pieces, and binomial and multinomial hashing for one and
more player games with indistinguishable pieces. Chapter 14 proposes a set of algo-
rithms suitable to enumerate the state space by traversing it in a BFS manner and ports
the algorithms to the GPU making use of the framework proposed in Part I. A special
case is the two player game Nine-Men-Morris. Here the solving process includes a
backward search called retrograde analysis. This Part closes with a chapter showing
the experimental results obtained while comparing the GPU approaches to a single and
a parallel CPU implementation. Significant speed-ups were achieved with a speed-up
factor up to 27 compared to the single CPU implementation.
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Probabilistic Model Checking
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Chapter 16

Introduction Probabilistic
Model Checking

The fourth discipline to analyze is Probabilistic Model Checking. Here a pure state
space search has shown to be inefficient (Kwiatkowska et al., 2004) so a numerical
strategy is used. Probabilistic Model Checking (Bosnacki et al., 2009) boils down to
solving linear equations via computing multiple sparse matrix-vector products. The
mathematical background is parallelizing Jacobi iterations. While the PCTL Proba-
bilistic Model Checking approach accelerates one iterated numerical operation on the
GPU, for explicit-state LTL Model Checking a single scan over a large search space is
performed. As a result, this work proposes a conceptually different algorithm, suited
to parallel Model Checking of large models in Probabilistic Model Checking.

Structure of the chapter: This chapter introduces the basics of the Probabilistic
Model Checking analogous to Kwiatkowska et al. (2007) and Baier and Katoen (2008).
The introduction mainly focuses on discrete-time Markov chains (DTMCs) and the
logic PCTL, and discusses only briefly continues-time Markov chains. It will motivate
the usage of matrix vector multiplication and solving systems of linear equations being
the essential aspects of nearly all algorithms for Probabilistic Model Checking.

16.1 Discrete Time Markov Chains
Given a fixed finite set of atomic propositions AP a DTMC is defined as follows:

Definition 38 A (labeled) DTMC D is a tuple (S, ŝ,P, L) where

• S is a finite set of states;

• ŝ ∈ S is the initial state;

• P : S×S → [0, 1] is the transition probability matrix where Σs′∈SP(s, s′) = 1
for all s ∈ S;
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• L : S → 2AP is a labeling function which assigns to each state s ∈ S the set
L(s) of atomic propositions that are valid in the state.

In Probabilistic Model Checking the guard of a transition is replaced by a probabil-
ity given by a real number P(s, s′) in the interval [0, 1] and ensured that for each state
the sum of the probabilities of all outgoing transitions sum up to 1 and, consequently,
each state without outgoing edges is extended by a self loop with the probability of 1.

16.2 Probabilistic Computational Tree Logic
Properties of DTMCs can be specified using Probabilistic Computation Tree Logic
(PCTL) (Hansson and Jonsson, 1994), which is a probabilistic extension of CTL.

Definition 39 PCTL has the following syntax:

Φ = true | a | ¬Φ | Φ ∧ Φ | P∼p[φ]

φ = X Φ | Φ U ≤kΦ

where a ∈ AP , ∼∈ {<,≤,≥, >}, p ∈ [0, 1], and k ∈ N ∪ {∞}.

The above definition features both state formulas Φ and path formulas φ, which are
interpreted on states and paths, respectively, of a given DTMC D. However, the prop-
erties are specified exclusively as state formulas. Path formulas have only an auxiliary
role and they occur as a parameter in state formulas of the form P∼p[φ]. Intuitively,
P∼p[φ] is satisfied in some state s ofD, if the probability of choosing a path that begins
in s and satisfies φ is within the range given by ∼p. To formally define the satisfaction
of the path formulas one defines a probability measure, which description is beyond the
scope of this introduction. Informally, this measure captures the probability of taking
a given finite path in the DTMC, which is calculated as the product of the probabilities
of individual transitions of this path.

The path operators have intuitive meaning which is analogous to the one in stan-
dard temporal logics. The formula X Φ is true if Φ is satisfied in the next state of the
path. The bounded until formula Φ U ≤kΨ is satisfied if Ψ is satisfied in one of the
next k steps and Φ holds until this happens. For k = ∞ one obtains the unbounded
until. In this case the superscript is omitted and Φ U Ψ used. The interpretation of
unbounded until is the standard strong until. Figure 16.1 exemplifies a probabilistic
model representing the thesis problem given in the introduction.

16.3 Algorithms for Model Checking PCTL
Given a labeled DTMC D = (S, ŝ, P, L) and a PCTL formula Φ, an algorithm verifies
whether the initial state of D, ŝ, satisfies Φ.

Nevertheless, the algorithm works by checking the satisfaction of Φ for each state
in S. The output of the algorithm is Sat(Φ), the set of all states that satisfy Φ.
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Figure 16.1: Thesis problem (Figure 1.1) as a probabilistic graph.

The algorithm starts by first constructing the parse tree of the PCTL formula Φ.
The root of the tree is labeled with Φ and each other node is labeled by a sub formula
of Φ. The leaves are labeled with true or an atomic proposition. Starting with the
leaves, in a recursive bottom-up manner for each node n of the tree the set of states is
computed that satisfies the sub formula that labels n. When it arrives at the root Sat(Φ)
can be determined.

Model checking algorithms for the state PCTL formulas are analogous with their
counterparts in CTL and as such quite straightforward to implement. The only excep-
tions are the path formulas whose algorithms contain an extensive numerical compo-
nent that is used to compute the transition probabilities. They are the most computa-
tionally demanding part of the Model Checking algorithm and as such a logical target
of the improvement via parallel algorithms for GPUs.

To get a general picture above these claims consider the algorithm for the formulas
of the form P[Φ U≤kΨ], where k =∞. The numerical component of this case reduces
to finding the least solution of the linear equation system:

W(s,ΦUΨ) =

 1 if s ∈ Sat(Ψ)
0 if s ∈ Sat(¬Φ ∧ ¬Ψ)
Σs′∈SP(s, s′) ·W (s′,ΦUΨ) otherwise

where W(Φ U Ψ) is the resulting vector of probabilities indexed by the states in S .
Only the states in which the formula is satisfied with probabilities 1 and 0 have a spe-
cial treatment. For each other state the probabilities are computed in a recurrent fashion
using the corresponding probabilities of the neighboring states. Before solving the sys-
tem, the algorithm employs some optimizations by precomputing the states that satisfy
the formula with probability 0 or 1. The (simplified) system of linear equations can be
solved using iterative methods that comprise matrix-vector multiplication. One such
method is presented by Bronshtein and Semendyayev (1997), which is also one of the
methods that PRISM uses and which is described in more detail in Chapter 17. Ja-
cobi’s method is preferred in this work over other methods that usually perform better
on sequential architectures. This is because Jacobi has certain advantages in the par-
allel programming context. For instance, it has lower memory consumption compared



178 CHAPTER 16. INTRODUCTION PROBABILISTIC MODEL CHECKING

to the Krylov subspace methods (Nevanlinna, 1993) and less data dependencies than
the Gauss-Seidel method (Jeffreys and Jeffreys, 1988), which makes it easier to paral-
lelize (Bell and Haverkort, 2006). The algorithms for the next operator and bounded
until boil down to a single matrix-vector product and a sequence of such products,
respectively.

PCTL can be extended with various rewards (cost ) operators that are not given
here. The algorithms for those operators can also be reduced to matrix-vector multipli-
cation (Kwiatkowska et al., 2007).

Thus, the main runtime bottleneck of the probabilistic Model Checking algorithms
is the computational part, and in particular the linear algebraic operations. Their share
of the total runtime of the algorithms increases with the size of the model |S|. Model
checking of a PCTL formula Φ on DTMC D is linear in |Φ|, the size of the formula,
and polynomial in |S|, the number of states of the DTMC. The most expensive are the
operators for unbounded until and also the rewards operators which too boil down to
solving system linear equations of size at most |S|. The complexity is linear in kmax ,
the maximal value of the bounds k in the bounded until formulas (which also occurs
in some of the costs operators). However, usually this value is much smaller than |S|.
So, for real world problems, that tend to have large state spaces, the dependence on the
size |S| is even more critical.

16.4 Beyond Discrete Time Markov Chains
Matrix-vector product is also in the core of Model Checking continuous-time Markov
chains, i. e., the corresponding Computational Stochastic Logic (CSL) (Kwiatkowska
et al., 2007; Baier et al., 2003; Bell and Haverkort, 2006). For instance, the next opera-
tor of CSL can be checked in the same way like its PCTL counterpart. Both algorithms
for steady state and transient probabilities boil down to matrix-vector multiplication.
On this operation hinge also various extensions of CSL with costs. Thus, the parallel
version of the Jacobi algorithm presented in the sequel, can also be used for stochastic
models, i. e., models based on CTMCs.

16.5 Summary
Having defined the input language for probabilistic models the chapter continues with
an introduction to algorithms used in this domain. In the following the application of
GPUs to accelerate the solution finding given a set of linear equations is described.



Chapter 17

GPU Enhanced Probabilistic
Model Checking

To speed up the algorithms the sequential matrix-vector multiplication algorithm is
replaced with a parallel one, which is adapted to run on the GPU. This section describes
the parallel algorithms which are derived from the Jacobi algorithm for matrix-vector
multiplication first published in (Bosnacki et al., 2009) and extended to multiple GPUs
in (Bosnacki et al., 2011). This algorithm is used for both bounded and unbounded
until, i.e., also for solving systems of linear equations.

Structure of the chapter: The chapter introduces the usage of Jacobi iterations to
solve probabilistic problems. Each iteration boils down to a matrix vector multiplica-
tion so efficient representations of matrices in the GPU are studied. In the following
an approach to parallelize the Jacobi method for GPUs is presented and extended to
multiple GPUs.

17.1 Jacobi Iterations.
As mentioned in Chapter 16 for Model Checking DTMCs, Jacobi iteration method is
one option to solve the set of linear equations derived for until (U). Each iteration in
the Jacobi algorithm involves a matrix-vector multiplication. Let n = |S| be the size
of the state space, which determines the dimension n× n of the matrix to be iterated.

The formula of Jacobi for solving Ax = b iteratively for an n × n matrix A =
(aij)0≤i,j≤n−1 and a current vector xk is

xk+1
i = 1/aii ·

bi −∑
j 6=i

aijx
k
j

 , for i, j ∈ {0, . . . , n− 1}.

For better readability (and faster implementation), one may extract the diagonal el-
ements and invert them prior to applying the formula. Setting Di = 1/aii, i ∈
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{0, . . . , n− 1} then yields

xk+1
i = Di ·

bi −∑
j 6=i

aijx
k
j

 , for i, j ∈ {0, . . . , n− 1}. (17.1)

The sufficient condition for Jacobi iteration to converge is that the magnitude of the
largest eigenvalue (spectral radius) of matrix D−1(A−D) is bounded by value 1. For-
tunately, the Perron–Frobenius theorem asserts that the largest eigenvalue of a (strictly
positive) stochastic matrix is equal to 1 and all other eigenvalues are smaller than this
value, so that limk→∞Ak exists. In the worst case, the number of iterations can be
exponential in the size of the state space, but in practice k, the number of iterations
until conversion to some sufficiently small ε according to a termination criteria, like
maxi |xki − x

k+1
i | < ε, is often moderate (Stewart, 1994).

17.2 Sparse Matrix Representation.

The size of the matrix being Θ(n2) is usually compressed due to the sparsity of the
models. Such a matrix compaction is a standard technique used for probabilistic Model
Checking and to this end special structures are used. In the algorithms presented here
the so called modified compressed sparse row/column format (Bell and Haverkort,
2006) is assumed.

Table 17.1: Non-zero elements of a sparse matrix P. The array labeled with row and
col contain the indexes of the non-zero value given in the array non-zero.

row 0 0 0 1 1 2 2 2 3 4 4
col 1 2 4 2 3 0 3 4 0 0 2

non-zero 0.2 0.7 0.1 0.01 0.99 0.3 0.58 0.12 1.0 0.5 0.5

The matrix given in Table 17.1 contains in the non-zero array the non-zero elements
of P whose row and column indexes are given in the arrays labeled with row and col.
Formally, for all r of the index range of the arrays, non-zeror = P(rowr, colr). This,
already optimized format, representing the standard full matrix P, can be compressed
further by replacing the row array by an array denoting the number of elements in each
array. The resulting representation is displayed in Table 17.2 which, in fact, is the
mentioned modified compressed sparse row/column format.

Instead of the row indexes, the array rsize contains the row sizes, i. e., rsizei con-
tains the number of non-zero elements in row i of P. To extract row i of the original
matrix P, take the elements

non-zerorstarti , non-zerorstarti+1, . . . , non-zerorstarti+rsizei−1

where rstarti =
∑i−1
k=0 rsizek.
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Table 17.2: Modified compressed sparse row/column representation of P, given in Ta-
ble 17.1. The array rsize denotes the number of non-zero elements in the corresponding
array.

rsize 3 2 3 1 2
col 1 2 4 2 3 0 3 4 0 0 2

non-zero 0.2 0.7 0.1 0.01 0.99 0.3 0.58 0.12 1.0 0.5 0.5

17.3 Algorithm Implementation.

The pseudo code of the sequential Jacobi algorithm that implements the aforemen-
tioned recurrent formula and which uses the compression given above is shown in
Algorithm 17.1.

The While loop in line 3 is repeated until the sufficient precision for a termination
is achieved or, to ensure a termination, a maximal number of iterations, defined by the
user in maxk is reached. In line 6 an element of the vector b is copied directly into
the result vector and the first (f ) and last (l) element of the non-zero for result xk+1

i is
computed. The ForAll loop starting in line 9 computes the product of row i and the
result of the previous iteration, vector xk. Afterwards the result is multiplied with the
entry in the diagonal array (line 11).

The first optimization, already implemented in PRISM, is to omit intermediate re-
sults by using only two vectors x and x′ to store xk the multiplication vector and xk+1

the current result. After each iteration the contents of the vectors are swapped for the
next iteration. This observation is also used in the parallel algorithm to save space, here,
in fact, only the links representing the vectors are swapped. This can be compared to
just renaming the vectors and is more efficient then copying the data.

In line 12 the algorithm assumes that a sufficient precision has been reached and
checks if one of the pairs xki and xk+1

i violates this assumption. If so the Terminate
variable is set to false to force another iteration. Note, stopping this loop after the
first violation would be possible to prevent a complete scan.

Due to the fact that the iterations have to be performed sequentially the matrix-
vector multiplication is the part to be distributed. As a feature of the algorithm (that
contributed most to the speedup) the comparison of the two solution vectors, x and x′

in this case, is done in parallel. The GPU version of the Jacobi algorithm is given in
Algorithms 17.2 and 17.3.

Before the computation can start the matrix data is copied to the GPU memory
(VRAM) and space for the vector x′ and the Terminate variable is allocated. Since
the rsize array contains only the sizes of the distinct columns it has to be converted.
Otherwise every thread would have to traverse the array and sum up all entries up to
the needed location. The rsize array is converted to a rstart array in the For loop staring
in line 5 by storing the sum of the last entry in rstart and rsize as the following entry
of rstart. After this conversion the array rstart contains at the position rstarti the index
of the first entry of column i in the non-zero array. This conversion is not done on the
GPU since it is a pure sequential task and here the CPU is preferred. The rstart array
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Algorithm 17.1: Jacobi iteration with row compression (as implemented in
PRISM)

Input: b, rsize, non-zero, col, D: data representing matrix P,
maxk: maximal number of iterations,
x: vector for multiplication
Output: x: resulting vector of the multiplication

1 k ← 0 ; {counter for the iterations}
2 Terminate← false ; {helper variable for forced termination}
3 while (not Terminate and k < maxk) do
{loop until termination or until the maximum number of iterations is reached}

4 l← 0 ; {start with the first non-zero entry}
5 for i← 0 . . . n do {traverse all rows}
6 xk+1

i ← bi ; {copy an element into the resulting vector}
7 f ← l ; {first entry of row i in the col array}
8 l← f + rsizei − 1 ; {last entry of row i in the col array}
9 for j ← f . . . l do {traverse all entries in the col and non-zero arrays}

10 xk+1
i ← xk+1

i −
(

non-zeroj · xkcolj

)
{compute the intermediate result}

11 xk+1
i ← xk+1

i ·Di ; {multiply it with the entry in the diagonal array}
12 Terminate← true ; {assume all new entries meet the range}
13 forall the i← 0 . . . n do {traverse all rows}
14 if |xk+1

i − xki | > ε then {if the new value is beyond the range}
15 Terminate← false ; {force another iteration}

16 k ← k + 1 ; {increase the iteration counter}

is then copied to the GPU end denoted by rstartGPU in line 7.
When calling a CUDA kernel the dimension of the grid, meaning number of blocks

and the block size, is defined enclosed by <<< and >>>. The algorithm determines
the number of blocks by dividing n with a BlockSize, defined by the user and increas-
ing the result by 1. Line 2 in Algorithm 17.3 ensures that threads in the last block are
terminated if their index exceeds n. After the kernel execution the value of the Termi-
nateGPU variable is copied back to the host memory, k is increased and the loop even-
tually started again. This copy statement serves also as a synchronization barrier, since
the CPU program waits until all the threads of the GPU kernel have terminated before
copying the variable from the GPU global memory. If another iteration is needed x and
x′ are swapped1. After all iterations the result is copied back from global memory to
RAM.

JacobiKernel shown in Algorithm 17.3 is the so-called kernel that operates on the
GPU. Local variables d, l, h, i and j are located in the local registers and they are not
shared between threads. The other variables reside in the global memory. The result

1Since C operates on pointers, only these are swapped in this step.
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Algorithm 17.2: Host part of the Jacobi iteration, for unbounded until
Input: x vector to multiply, n number of entries in x,
Diag, b, rsize, non-zero, col matrix P,
ε upper bound for distance, maxk upper bound for iterations
Output: x′ resulting vector, k number of iterations

1 allocate global memory for x’ ;
2 allocate global memory for col, non-zero, b, x, ε, n and copy them ;
3 allocate global memory for TerminateGPU to be shared between blocks ;
4 rstart0 ← 0 ; {Converted rsize array}
5 Terminate← false ; {helper variable for immediate termination}
6 for i← 1 . . . |rsize|+ 1 do {for each entry in the rstart array}
7 rstarti ← rstarti−1 + rsizei−1 ;

{store the sum of the previous rsize entry and the current rstart array}
8 allocate global memory for rstartGPU and copy rstart to rstartGPU ;
9 k ← 0 ; {counter for the iterations}

10 while (not Terminate and k < maxk) do
{loop until termination or until the maximum number of iterations is reached}

11 <<<n/BlockSize+1,BlockSize>>>JacobiKernel() ; {start the kernel}
12 copy TerminateGPU to Terminate ; {copy terminating information}
13 Swap(x,x’) ; {swap links to previous result and the current result}
14 k ← k + 1 ; {increase counter for iterations}
15 copy x’ to RAM ; {copy result from GPU}

is first computed in d (locally in each thread) and then written to the global memory
(line 11). This approach minimizes the access to the global memory from threads. At
invocation time each thread computes the row i of the matrix that it will handle. This
is feasible because each thread knows its ThreadId, and the BlockId of its block. Note
that the size of the block (BlockSize) is also available to each thread. Based on value
i only one thread (the first one in the first block) sets the variable TerminateGPU to
true. Recall, this variable is located in the global memory, and it is shared between
all threads in all blocks. Now, each thread reads three values from the global memory
(line 5 to 7), here we profit from coalescing done by the GPU memory controller. It is
able to detect neighboring VRAM access and combine it.

This means, if thread i accesses 2 bytes at bi and thread i + 1 accesses 2 bytes at
bi+1 the controller fetches 4 bytes at bi and divides the data to serve each thread its
chunk. In each iteration of the for loop an elementary multiplication is done. Due to
the compressed matrix representation a double indirect access is needed here. As in
the original algorithm the result is multiplied with the diagonal value Di and stored in
the new solution vector x′. Finally, each thread checks if another iteration is needed
and consequently sets the variable TerminateGPU to false. Concurrent writes are re-
solved by the GPU memory controller. The implementation in Algorithm 17.2 matches
the one for bounded-until (U≤k), except that bounded-until has a fixed upper bound on
the number of iterations, while for until a termination criterion applies.
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Algorithm 17.3: GPU-Kernel Jacobi iteration with row compression
Input: x vector for multiplication, n number of entries in x,
Diag, b, rstartGPU, non-zero, col matrix P,
ε maximal distance of vector entries
Output: x′ resulting vector, TerminteGPU termination result

1 i← BlockId ·BlockSize+ ThreadId ;
{compute the array index for this thread}

2 if (i = 0) then {first thread of all resets the terminate variable}
3 TerminateGPU← true ; {assume this is the last iteration}
4 if (i < n) then
5 d← bi ; {temporary variable for intermediate results}
6 l← rstartGPUi ; {first element of the array}
7 h← rstartGPUi+1 − 1 ; {last element of the array}
8 forall the j ← l . . . h do {visit all elements}
9 d← d− non-zeroj · xcolj ; {compute the intermediate result}

10 d← d · Diagi ; {multiply it with the entry in the diagonal array}
11 x′i ← d ; {store the result in the vector}
12 if |xi − x′i| > ε then {check distance for this threads results}
13 TerminateGPU← false ; {force another iteration if necessary}

17.4 Extending the Algorithm to Multiple GPUs
The limiting factor when utilizing the graphics card for probabilistic Model Checking
is the amount of available global memory. Since the whole matrix needs to be stored
on the GPU the approach needs to be extended efficiently to utilize all available cards
in the system.

When splitting the data among the cards the multiplication has to be divided and
all cards have to be synced after each iteration. An approach to parallelize the iter-
ation fails due to their sequential execution and the motivation to distribute the data.
Analyzing Formula 17.1 yields to the result that xk has to be available on each card,
but the matrix P can be distributed by rows. Although this approach is not scalable
to very large instances, since the vector x has to fit into the GPU memory, the cur-
rently available maximal number of 4 GPUs in a system is restricting the possibilities
earlier. However, distributing xk after each iteration will increase the amount of the
transferred data between the GPU and the host significantly and decrease the efficiency
of the approach.

Assume D being the number of cards in the system, the resulting vector is divided
in D partitions of size bn/Dc and dn/De for the last partition. When dx with 0 ≤ d <
D is the partition of x on device d the resulting formula is:
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dxk+1
i =d Di ·

dbi −
∑
j 6=i

daijx
k
j

 ,

for d ∈ {0, . . . , D}, i ∈ {0, . . . , n/D} and j ∈ {0, . . . , n− 1}

When an iteration is completed each partition dxk+1 is copied to a temporary vector
in RAM and distributed to each GPU. Basically the result of the parallelization is a
matrix vector multiplication where a matrix dP ∈ P containing n/D rows of P and
all columns is multiplied with x resulting in a vector dx′ with n/D entries.

Algorithm 17.4: Host part of the Jacobi iteration for multiple GPUs
Input: D number of GPUs, x vector to multiply, n number of entries in x,
Diag, b, rsize, non-zero, col matrix P,
ε upper bound for distance, maxk upper bound for iterations
Output: x′ resulting vector, k number of iterations

1 for d← 0 . . . D − 1 do in parallel {initialization loop}
2 allocate memory for dx′ ;
3 allocate memory for dDiag, dcol, dnon− zero, db, x, ε, n/D and copy ;
4 allocate memory for TerminateGPU to be shared ;
5 Terminated ← false ; {array for early termination}
6 rstart0 ← 0 ; {conversion of the rsize array}
7 for i← 1 . . . |rsize|+ 1 do {as described in Algorithm 17.2}
8 rstarti ← rstarti−1 + rsizei−1;

9 allocate memory for rstartGPU, copy rstart to rstartGPU on each GPU ;
10 k ← 0 ; {counter for iterations}
11 blocks← (n/D)/BlockSize+ 1 ;
{compute the number of blocks depending on the number of devices}

12 while (not
∧d<D
d=0 Terminated and k < maxk) do

{loop while at least one Terminate is set to false } and maxk not reached
13 for d← 0 . . . D − 1 do in parallel {start all GPUs in parallel}
14 copy x to VRAM ;
15 <<<blocks,BlockSize>>>JacobiKernel()) ;
16 copy TerminateGPU to Terminated ;
17 beg ← d ∗ (n/D) ; {compute first index for this device}
18 end← (d+ 1) ∗ (n/D) ; {compute last index for this device}
19 copy dx′ to xbeg,end in RAM ;

20 Swap(x,x’);
21 k ← k + 1;

22 copy x’ to RAM;

Algorithm 17.4 describes an approach to compute the resulting vector xk+1 by
splitting the data of P and distributing it in the available memories. In (Bosnacki
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et al., 2009) this approach is compared to an other more sophisticated approach and
proved to be efficient on most of the evaluated instances. Compared to Algorithm 17.2
a number of modifications can be found. At the beginning, an array of Terminate
variables containing an unique variable for each card, and instantiated in lines 9 and
10, has to be maintained, in contrast do a single variable. The main modification is
a loop, executed in parallel on the host calling the kernel for each device. Since all
kernels are started in parallel a synchronization point is necessary to ensure that the
next kernel is not started before the results of all cards are available. The number of
columns, and the size of x′ in Algorithm 17.3 is determined from rstartGPU and used
in the loop starting in line 8, hence the kernel can remain unchanged.

17.5 Summary
Having introduced the Jacobi iterations a probabilistic problem is mapped to, repre-
sentations suitable for a GPU storage of matrices are proposed. Details on the im-
plementation on a single GPU were given in section 3 of this chapter which closes
with a proposal to utilize multiple GPUs. This part continues with an evaluation of the
algorithms on a number of chosen protocols.



Chapter 18

Experimental evaluation

Three protocols, with different complexities were verified on each system. The fol-
lowing sections will describe the protocols and the achieved results in detail. The used
hardware is described in Chapter 2

Structure of the chapter: Several protocols are evaluated to examine the efficiency
of the proposed approach. Results are presented for the single and the multiple GPU
implementation, and significant speedups achieved for all instances.

18.1 Verified Protocols
Three protocols, herman, cluster and tandem, shipped with the source of PRISM
were evaluated. The protocols were chosen due to their scalability and the possibility
to verify its properties by solving a linear function with the Jacobi method. Different
protocols show different speedups achieved by the GPU, because the Jacobi iterations
are only a part of the Model Checking algorithms, while the results show the time for
the complete run.

The first protocol called herman is the Herman’s self-stabilizing algorithm (Her-
man, 1990). The protocol operates synchronously on an oriented ring topology, i. e.,
the communication is unidirectional. The instance number denotes the number of pro-
cesses in the ring, which must be odd. The underlying model is a DTMC. The verified
PCTL property is 3 (R=? [F "stable"{"k_tokens"}{max}]) from the prop-
erty file herman.pctl. Table 18.1 identifies this protocol as the one with the fewest
lines and iterations, but also reveals the matrix of being of the largest density showing
that the first instance uses about 1.34% of the cells, and the second instance 0.75%.

The second case study is cluster (Haverkort et al., 2000) which models commu-
nication within a cluster of workstations. The system comprises two sub-clusters with
N workstations (instance column in Table 18.1) in each of them, connected in a star
topology. The switches connecting each sub-cluster are joined by a central backbone.
All components can break down and there is a single repair unit to service all compo-
nents. The underlying model is CTMC and the checked CSL property is property 1
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Table 18.1: Detailed information on the protocol properties.

protocol instance n iterations GPU memory non-zero cells
herman 15 32,768 245 55MB 1,342773 %
herman 17 131,072 308 495MB 0,755310 %
cluster 122 542,676 1,077 21 MB 0,001869 %
cluster 230 1,917,300 2,724 76 MB 0,000542 %
cluster 320 3,704,340 5,107 146 MB 0,000279 %
cluster 410 6,074,580 11,488 240 MB 0,000170 %
cluster 446 7,185,972 18,907 284 MB 0,000144 %
cluster 464 7,776,660 23,932 308 MB 0,000134 %
cluster 500 9,028,020 28,123 694 MB 0,000223 %
cluster 572 11,810,676 28,437 908 MB 0,000171 %
tandem 255 130,816 4,212 4 MB 0,006127 %
tandem 511 523,776 8,498 17 MB 0,001624 %
tandem 1,023 2,096,128 16,326 71 MB 0,000424 %
tandem 2,047 8,386,560 24,141 287 MB 0,000107 %
tandem 3,070 18,859,011 31,209 647 MB 0,000048 %
tandem 3,588 25,758,253 34,638 884 MB 0,000035 %
tandem 4,095 33,550,336 37,931 1,535 MB 0,000036 %

(S=? [ "premium" ]) from the corresponding property file. In this case study a
sparser matrix was generated, which in turn needed more iterations to converge then
the herman protocol. In the largest instance (N = 572) checked by the GPU, PRISM
generates a matrix with 11,810,676 lines and iterates this matrix 28,437 times. It was
even necessary to increase the maximum number of iterations, set by default to 10,000,
to obtain a solution. Even though only one in 10,000 cells is used here the matrix uses
up to 908 MB in the GPU, a fully filled matrix would consume over 500 terabyte of
space, assuming each entry is stored in 4 bytes.

The third case study tandem is based on a tandem queuing network (Hermanns
et al., 1999). The model is represented as a CTMC which consists of a M/Cox(2)/1-
queue sequentially composed with a M/M/1-queue. c is used to denote the capacity
of the queues. Property 1 from the corresponding CSL property file (R=? [ S ])
is verified here. For this protocol Table 18.1 denotes the largest sparsity allowing a
matrix with 25,758,253 lines to occupy 884 MB of graphics card memory resulting in
a 0.000035% filling. Constant T was set to 1 for all experiments and parameter c was
scaled as shown in the instance column of Table 18.1.

18.2 Empirical Results

In all tables of this section n denotes the number of rows (columns) of the matrix,
“iterations” denotes the number of iterations of the Jacobi method, “CPU time” and
“GPU Time” denote the runtimes of the standard (sequential) version of PRISM and
our parallel implementation extension of the tool, respectively. All times are given in



18.2. EMPIRICAL RESULTS 189

seconds. The speedup is computed as the quotient between the sequential and parallel
runtimes.

All tables are partitioned into two parts, the first one showing the results for the
32-bit system, the second one for the 64-bit system. The first half does not contain the
results for the multi-GPU implementation since a second GPU was not available in this
system.

Table 18.2 shows the results of the verification using the implementation of the
algorithm described in Section 17.3. Even though the number of iterations is rather
small compared to the other models, the GPU achieves a speedup factor of approx.
1.5, and 0.9 on the 64-bit system. Since everything beyond multiplication of the matrix
and vector is done on the CPU, the results prove the assumption that with a small
matrix and a low number of iterations the memory transfer is to expensive compared to
the benefit from the parallel computation. Unfortunately, it is not possible to scale up
this model, due to the memory consumption being too high; the next possible instance
(herman19.pm) consumes more then 2 GB. This table also reveals the differences
between the used systems, while the clock time of the CPU differs only by about 30%
the 64-bit system is more then twice as fast as the 32-bit one in the sequential mode.
Here the GPU even slows down the verification process giving a factor of only 0.9. Due
to the large density of the matrix adding a second GPU to the computation achieves a
speedup in the larger instance, here the copying process, dominating the experiment,
can be done in parallel to both GPUs, giving more time for the computation.

Table 18.2: Results for the herman protocol. (Times are given in seconds).

instance CPU time 1 GPU factor 2 GPUs factor
15 22.430s 21.495s 1.04
17 304.108s 206.174s 1.48
15 10.544s 12.837s 0.82 12.135s 0.87
17 121.766s 140.248s 0.87 93.350s 1.30

Figure 18.1 shows that the GPU performs significantly better, Table 18.3 contains
some exact numbers for chosen instances of the cluster protocol. The largest
speedup reaches a factor of more then 9 on the 32-bit system and 6.6 on the other.
Even for smaller instances, the GPU exceeds factor of 2. In this protocol, as well as in
the next one, for large matrices a slight deterioration of the performance of the GPU
implementation can be observed for which, for the time being, a clear explanation can
not be given. One plausible hypothesis would be that after some threshold number of
threads the GPU cannot profit any more from smart scheduling to hide the memory
latencies. This experiment shows the costs of synchronizing the graphics cards by the
host. The speedup converges to about 4 and slows down the computation compared to
the usage of one GPU.

In the tandem protocol the best speedup was recorded shown in Table 18.4. For
the best instance (c = 2047) PRISM generates a matrix with 8, 386, 560 rows, which is
iterated 24, 141 times. For this operation standard PRISM needs 9, 672 seconds while
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Figure 18.1: Verification times for several instances of the cluster protocol on the
32-bit system. The x-axis shows the value of the parameter N . Speedup is computed
as described in the text as a quotient between the runtime of standard PRISM and the
runtime of our GPU extension of the tool.

our parallel implementation only needs 516 seconds, scoring a maximal speedup of a
factor 18.7 on the 32-bit system. Even on the faster 64-bit system the speedup is over
one order of magnitude for all larger instances. Here the effect of synchronizing is
even more obvious. Using both GPUs a speedup of a factor larger than four seems not
achievable despite the fact that larger instances can be checked.

As mentioned above, 8 SPs share one double precision unit, but each SP has its
own single precision unit. Hence, our hypothesis was that reducing the precision from
double to single should bring a significant speedup. The code of PRISM was modified
to support single precision floats for examining the effect. As can be seen in Figure 18.2
the hypothesis was wrong. The time per iteration in double precision mode is nearly
the same as the single precision mode. The graph clearly shows that the GPU is able
to hide the latency which occurs when a thread is waiting for the double precision unit
by letting the SPs work on other threads. Nevertheless, it is important to note that the
GPU with single precision arithmetic was able to verify larger instances of the protocol,
given that the floating point numbers consumed less memory.

It should be noted that in all case studies the MTBDD and hybrid representations
of the models, which are an option in PRISM, were studied, but in all cases the running
times were consistently slower than the ones with the sparse matrix representation,
which are shown in the tables.
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Figure 18.2: Time per iteration on the 32-bit system in the tandem protocol. The CPU
is significantly slower then the GPU operating in single or double precision. Reducing
the precision has nearly no effect on the speed.

18.3 Summary
This part introduced GPU probabilistic/stochastic Model Checking as a novel con-
cept. To this end it described a parallel version of Jacobi’s method for solving linear
equations, which is the main core of the algorithms for Model Checking discrete- and
continuous-time Markov chains, i. e., the corresponding logics PCTL and CSL. The
algorithm was implemented on top of the probabilistic model checker PRISM. The ef-
ficiency and the advantages of the GPU Probabilistic Model Checking in general were
illustrated on several case studies. Speedups of up to 18 times compared to the sequen-
tial implementation of PRISM were achieved. On a recent system the speedup still
reaches a factor of 15.
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Table 18.3: Results for the cluster protocol. Parameter N is used to scale the
protocol.

N CPU time 1 GPU factor 2 GPUs factor
122 31.469s 8.855s 3.55 .
230 260.440s 54.817s 4.75 .
320 931.515s 165.179s 5.63 .
410 3,339.307s 445.297s 7.49 .
446 6,440.959s 767.835s 8.38 .
464 8,739.750s 952.817s 9.17 .
500 11,516.716s 1,458.609s 7.89 .
572 15,576.977s 1,976.576s 7.88 .
122 16.400s 6.906s 2.37 8.620s 1.90
230 135.269s 34.732s 3.89 46.685s 2.90
320 469.827s 101.664s 4.62 141.456s 3.32
410 1,649.663s 286.014s 5.77 429.626s 3.84
446 3,143.487s 512.708s 6.13 785.629s 4.00
464 4,270.262s 643.850s 6.63 1,024.335s 4.17
500 4,865.687s 1,027.095s 4.73 1,470.256s 3.30
572 6,630.097s 1,386.101s 4.78 1,964.418s 3.38

Table 18.4: Results from the verification of the tandem protocol. The constant c is
used to scale the protocol (o.o.m. denotes out of global memory).

c CPU time 1 GPU factor 2 GPUs factor
255 26.99s 3.63s 7.4 .
511 190.26s 17.80s 10.7 .

1,023 1,360.58s 103.15s 13.2 .
2,047 9,672.19s 516.33s 18.7 .
3,070 25,960.39s 1,502.85s 17.3 .
3,588 33,820.21s 2,435.41s 13.9 .
4,095 76,311.59s o.o.m. .

255 14.96s 3.56s 4.20 6.79s 2.20
511 98.81s 11.42s 8.65 27.89s 3.54

1,023 658.78s 65.51s 10.06 166.27s 3.97
2,047 3,642.62s 384.68s 9.47 946.76s 3.85
3,070 10,049.93s 866.27s 11.60 2,510.67s 4.00
3,588 15,114.93s 1,319.13s 11.46 3,794.79s 3.98
4,095 22,174.01s o.o.m. 5,386.44s 4.12
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Chapter 19

Conclusion

Each part summarized results of itself, only, therefore a comprehensive overview will
be given in the reminder of this work. The achieved results in each part will be sum-
marized and a discussion on future developments given in the reminder.

19.1 Conclusions
This work started with an introduction to state spaces, defining the prerequisites needed
to understand the process of searching in an implicit graph. Definition 2, introducing
the state is seen as the center of this work. It defines the most prominent element
which glues together all the algorithms introduced mainly to expand and handle states.
Subsequently, an example was introduced describing the process of a student writing a
thesis. Although this example is far to be a realistic representation of the problem, it
suffices to give an insight on the challenges dealt in this work.

Next, graph search algorithms were presented, starting with the pseudo code of
an algorithm utilizing just one structure to store states, i. e., Open. The algorithms
end with the introduction of a naive parallel approach, being the starting point for this
work. The main problem with states in state spaces is the huge number of them. Not
only expansion may take a serious amount of time, they need to be stored, also. Thus,
Section 1.4 introduced known strategies for an efficient duplicate detection on external
storage, for a nearly unlimited size, and in internal memory, for a short response time.

This work is on utilizing novel hardware to accelerate the state space search. Uti-
lizing the hardware requests a knowledge on the intern structures given in Chapter 2.
Here the differences of solid state media and magnetic media were sketched. While
SSDs store information electronically on erasable memory chips, HDDs use a spin-
ning disk to store data. The main difference, evaluated in the scope of this work is the
short random access latency of solid state media. While the hard drive needs about 7ms
to move the read/write head to the appropriate position, an SSD delivers the data a 100
times faster.

The increased storage capability and access speed enabling the examination of
larger state spaces provided, enough time for the generation is given. To decrease
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the searching time a parallel expansion of states is useful, e. g., on the highly parallel
processor of a graphics card, introduced and evaluated also in the second chapter.

GPUSSD-Breadth-First search The contribution starts with giving the prerequisites
for an efficient GPU and SSD utilization in state space searching. The searching algo-
rithm is examined for tasks suitable to be ported to the GPU, followed by a discussion
where to store the generated states. Having examined the searching process a frame-
work on using GPUs and SSDs in searching was proposed. This framework divides
the process into three stages namely, evaluation of the states for existing successors,
generation of the successors and removal of expanded states in a duplicate detection.

For each stage a strategy was presented on how to perform the task efficiently on
the GPU or to use SSD storage in duplicate detection. The presented strategies were di-
vided into a successor counting strategy and a successor pointing strategy. The first one
counts the successors available in a state. The number is used to allocate enough global
memory on the graphics card for the generation. When a state is expanded the precon-
ditions have to be checked again since only the number of successors is known in this
strategy. The second strategy, the successor pointing strategy classifies the transitions
of a state in groups of active and non-active transitions. It makes an reevaluation of the
preconditions in the generation step needles but requires more memory. The chapter
continued with the proposal to convert the pre- and postconditions to the Reverse Pol-
ish Notation due to its pointer less flat representation suitable for the GPU. It closed
with an external GPU searching approach utilizing RAM only for buffers needed to
transfer data from disk to the GPU.

Explicit State Model Checking In the second part the proposed approach was ap-
plied to explicit state Model Checking externalizing the verification to solid state me-
dia and increasing the searching speed by using graphics cards for the generation
of the state space. Having introduced Explicit State Model Checking and given an
overview of the related work, a semi-external algorithm was proposed. This algorithm
utilizes perfect hashing to store a portion of the information, necessary to traverse a
graph, on solid state media. Based on the internal minimal counterexamples algo-
rithm from Gastin and Moro (2007) an additional BFS was inserted at the beginning to
generate a perfect hash function. The algorithm performs three stages to generate the
minimal counterexample, the generation of the perfect hash function using an external
BFS, the search for the counterexample using internal memory and an SSD, and the re-
construction of the counterexample. The perfect hash function is generated and stored
efficiently on SSDs and profits from the increased random access time of this media
while searching. Having externalized it each BFS traversal can be done using internal
memory filled nearly completely with a 1-bit Closed list.

The minimal counter example search time is dominated by the generation of the
whole state space for the perfect hash function. This work is done no matter if a counter
example exists or not, so a fast generation method is mandatory.

Since the evaluation of a guard and the generation of a successor using the effects
can be separated in Explicit State Model Checking the successor pointing strategy was
was applied here. The generation was divided in three stages according to the settings
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given by the framework. Duplicate detection was performed either as a sorting based
strategy, including the not complete state compression method and by utilizing a paral-
lel bloom filter. To perform the evaluation of a guard and to evaluate the effects on the
GPU a flat representation is needed which can be evaluated by a sequential traversal.
Here the chosen polish Reverse Polish Notation has shown good results in terms of
model description size and searching time.

The evaluation has revealed the approach to be efficient in utilizing additional mem-
ory for duplicate detection and parallelizing the search on the highly parallel graphics
processing unit. Both algorithms show promising results in either increasing the size
of the expanded state space or the acceleration of the searching process.

Action Planning In this part Action Planning was successfully enhanced by the us-
age of the graphics card to speed up the search and external media to increase storage
space by outsourcing Open. The first domain-independent planner CUDPLAN is pro-
posed that exploits the power available on the graphics card. The flat representation
of the preconditions and effects was realized by converting them to a postfix notation.
While Open is outsourced to external devices connected in a RAID to increase trans-
ferring speed, Closed remains in the internal memory due to the high random access
speed. Parallelization of the duplicate detection is performed by utilizing a lock-less
hashing approach and storing states in a hash table. Due to the state sizes a sorting
based approach on the GPU is not effective and the optimality criteria prohibits the
usage of compression strategies which forgo information.

The searching process was divided into three stages and the successor pointing
strategy used. Lowering the number of expanded states is achieved by using a Dijkstra
search and partitioning Open by means of the path costs.

The approach has shown to be effective in finding optimal plans and achieves a
decent speedup compared to sequential implementations.

Game Solving Having described the analyzed games and given hints on their state
spaces the chapter sketches the strategies in game solving. In one person combinatorial
games a forward search suffices to determine whether the game is won. However, in
most games a backward search is necessary to propagate the game theoretical results
to the initial state. In all games compression methods to store the states come in handy
due to the large number of states. Perfect Hash strategies were presented in Chapter
13 and divided in three groups depending on the game to hash. Using this functions
a two-bit BFS traversal of the state space can be performed or even an one-bit reacha-
bility analysis. Such algorithms, proposed and ported to the GPU in Chapter 14, were
evaluated in the remainder of the Game Solving part. The evaluation has shown signif-
icant speedups of a factor about 27 compared to a single thread CPU implementation.
A case study performed here was the solution to the game Nine-Men-Morris which is
a two player game with indistinguishable pieces. The work validates Gasser’s results
revealing the game to be a draw.

Probabilistic Model Checking In the domain of Probabilistic Model Checking a
state space exploration is possible but inefficient. Here numerical approaches show
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better results and a different strategy for the GPU has to be considered. The work
proposed to port the Jacobi iterations, the most time demanding part of the checking
process, to the GPU. Part V describes Probabilistic Model Checking and introduces the
checking process. In the second chapter of this part the matrix vector multiplication
is ported to the GPU and an efficient matrix representation presented. The algorithm
was extended to use multiply GPUs, to increase the size of possible state spaces, and
evaluated. It shows significant speedups of about one order of magnitude compared to
the original sequential approach.

19.2 Future Work
It is always hard to predict the future, and especially in a topic like hardware develop-
ments. Although the impact of SSDs in computing is rising, the specifications differ
with new generations. Recent developments in random writing speed of such devices
show a significant increase of the throughput, so a possible utilization of the hash based
GPU sorting approach on external memory could be evaluated. This work also revealed
a RAID of SSDs being faster then a single disk putting hash based strategies into the
focus of external duplicate detection. The question whether SSD storage should be
used in place of RAM is a question of costs and it will remain one. Both memories are
chip devices bound to Moore’s Law so using RAM will remain the expensive solution
since the capacity per chip is predicted to double every two years at the same price.

The development in graphics hardware is an ongoing process, also. The manufac-
turers are concatenating more and more parallel processors to have more computing
power available. Additionally, when this work started nearly no interest in GPU uti-
lization in science existed, today many publications on this topic are available. In
NVIDIA’s latest Fermi architecture the separation of the streaming multiprocessors in
texture processing clusters was eliminated decreasing the distance to the global mem-
ory. Additionally the shared memory and the registers were extended. The concentra-
tion on memory in the structure follows the demands of using GPUs in general purpose
programming, where an efficient storage of information is mandatory. New algorithms
should be developed to profit from this developments.

In contrast to following the developments in hardware the disciplines are by far not
examined to a full extend in this work. CUDMOC is just able to verify safety properties
due to the utilization of BFS and will be extended to check lifeness properties in the
feature.

One obvious way to go from here is heuristic search using algorithms like A* and
porting them to the GPU. Evaluations has shown that it is not the processing power
of the GPU which limits the speed-ups but the memory access speed. Additional test
computations while expanding states in Action Planning have shown no impact on the
searching speed. This shows that a computation of a heuristic value would come for
free in terms of time.

The presented approaches are not bind to specific GPU types, not even to graphic
cards. When describing the aspects of a system equipped with a GPU we speak about
an infinite external storage and a finite amount of RAM connected over a rather slow
connection to a large number of processing cores. This image can be ported nearly
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unchanged to a cluster of computers with a centralized storage. Here, the GPUs are
mapped to the unique cores, and the slow connection is the network. However this
mapping is not completely adequate since the GPU cores are connected to a global
VRAM while the unique cluster nodes are not. Having realized the similarity’s of both
systems porting algorithms to cluster computing modified according to the framework
is possible. It will be interesting to evaluate the presented framework and different
strategies on other systems then one with one ore more GPUs.

Finally, a fine grained theoretical model of the GPU devices would be very helpful
in the development and analysis of GPU algorithms.
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Radek. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In Model Check-
ing Software, 14th International SPIN Workshop, volume 4595 of Lecture Notes in
Computer Science, pages 263–267. Springer, 2007.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Institut für instru-
mentelle Mathematik, Bonn, 1962.

Amir Pnueli. The temporal logic of programs. In IEEE Symposium on Foundation of
Computer Science, pages 46–57. IEEE Press, 1977.

Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-, and space-efficient
bloom filters. ACM Journal of Experimental Algorithmics, 14, 2009.

John W. Romein, Aske Plaat, Henri E. Bal, and Jonathan Schaeffer. Transposition table
driven work scheduling in distributed search. In Proceedings of the 16th National
Conference on Artificial Intelligence and Eleventh Conference on Innovative Appli-
cations of Artificial Intelligence (AAAI), pages 725–731. AAAI Press / The MIT
Press, 1999.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (2nd
Edition). Prentice Hall series in artificial intelligence. Prentice Hall, Second edition,
2002.

Viktor Schuppan and Armin Biere. Efficient reduction of finite state model checking
to reachability analysis. International Journal on Software Tools for Technology
Transfer, 5(2–3):185–204, 2004.



BIBLIOGRAPHY 213

Bernhard Steffen. Data flow analysis as model checking. In Theoretical Aspects of
Computer Software (TACS), volume 526 of Lecture Notes in Computer Science,
pages 346–365. Springer, 1991.

Ulrich Stern and David L. Dill. Combining state space caching and hash compaction.
In Methoden des Entwurfs und der Verifikation digitaler Systeme, 4. GI/ITG/GME
Workshop, pages 81–90. Shaker, 1996.

Ulrich Stern and David L. Dill. Parallelizing the murϕ verifier. In Proceedings of the
9th International Conference on Computer Aided Verification (CAV), volume 1254
of Lecture Notes in Computer Science, pages 256–267. Springer, 1997.

William J. Stewart. Introduction to the numerical solution of Markov chains. Princeton
University Press, 1994.

Damian Sulewski, Stefan Edelkamp, and Peter Kissmann. Exploiting the computa-
tional power of the graphics card: Optimal state space planning on the GPU. In
Fahiem Bacchus, Carmel Domshlak, Stefan Edelkamp, and Malte Helmert, edi-
tors, Proceedings of the 21st International Conference on Automated Planning and
Scheduling (ICAPS). AAAI Press, 2011.

H. Jaap van den Herik, Jos W. H. M. Uiterwijk, and Jack van Rijswijck. Games solved:
now and in the future. Artificial Intelligence, 134:277–311, 2002.

Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Logic in Computer Science (LICS), pages 332–344, 1986.

Vincent Vidal, Lucas Bordeaux, and Yousseff Hamadi. Parallel, Dynamic K-Best-
First Search: A Simple but Efficient Algorithm for Multi-Core Domain-Independent
Planning. In International Symposium on Combinatorial Search (SoCS), pages 100–
107, 2010.

Pierre Wolper. Temporal logic can be more expressive. Information and Control,
56:72–99, 1983.

C. Han Yang and David L. Dill. Validation with guided search of the state space. In
Conference on Design Automation (DAC), pages 599–604, 1998.

Rong Zhou and Eric A. Hansen. Structured duplicate detection in external-memory
graph search. In George Ferguson Deborah L. McGuinness, editor, Proceedings
of the 19th National Conference on Artificial Intelligence (AAAI), pages 683–689.
AAAI Press / The MIT Press, 2004.

Rong Zhou and Eric A. Hansen. Breadth-first heuristic search. Artificial Intelligence,
170(4-5):385–408, 2006.

Rong Zhou and Eric A. Hansen. Parallel structured duplicate detection. In Proceedings
of the 21nd AAAI Conference on Artificial Intelligence (AAAI), pages 1217–1222.
AAAI Press, 2007.



214 BIBLIOGRAPHY

Rong Zhou and Eric A. Hansen. Dynamic state-space partitioning in external-memory
graph search. In Proceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS). AAAI Press, 2011.

Rong Zhou, Tim Schmidt, Eric Hansen, Minh Binh Do, and Serdar Uckun. Edge
partitioning in parallel structured duplicate detection. In International Symposium
on Combinatorial Search (SoCS), pages 137–138, 2010.


	Introduction
	Motivation
	State Space Exploration
	Introducing State Spaces
	Example of a State Space
	State Spaces in the Following Parts

	Graph Search Algorithms
	Blind Search
	External Search
	Parallel Graph Search

	Duplicate Detection in Graph Search
	Hash Based Duplicate Detection
	Sorting Based Duplicate Detection

	Main Contributions
	Organization of the Thesis

	Hardware and Programming Models
	Information Storage
	Random Access and Insufficient Space in Internal Memory
	Pushing Space Constrains by Going External
	Solid State Disks

	Faster Computation Using Parallel Hardware
	Parallel Computing
	General Purpose Graphics Processors
	GPGPU Programming Interfaces

	Used Hardware
	Solid State Disks
	Graphics Cards


	I Breadth-First Search utilizing Novel Hardware
	Prerequisites for GPU and SSD Utilization
	Work Distribution
	Independent Limited Memory Tasks
	Unlimited Memory Tasks

	Information Distribution
	Constant Information
	Dynamic Information


	GPUSSD - Breadth-First Search
	Basic Structure of the Algorithm
	Strategies for Successor Generation
	Successor Counting
	Successor Pointing

	Strategies for Duplicate Detection
	Sorting Based Duplicate Detection
	Parallel Hash Based Duplicate Detection

	External State Space Exploration on the GPU
	Efficient Flat Representation of Formulas
	Summary


	II Explicit State Model Checking
	Introduction to Explicit State Model Checking
	Modeling of Concurrent Systems
	Concurrent Systems as Variables and Actions
	Explicit State Model Checking
	Explicit State Model Checking Example

	Related Work
	External Explicit State Model Checking Algorithms
	Parallel Explicit State Model Checking

	Summary

	SSD-Based Minimal Counterexamples Search
	Semi-External LTL Model Checking
	Extending to Efficiently Support SSDs

	Externalizing the Perfect Hash Function
	Summary

	GPU-Based Model Checking
	Parsing the DVE Language
	Checking Enabledness on the GPU

	Generating the Successors on the GPU
	Duplicate Detection
	Immediate Detection on (Multiple Cores of) the CPU
	Delayed Duplicate Detection on the GPU

	Summary

	Experimental Evaluation
	Results for Semi-External LTL Model Checking
	Minimal Counterexamples
	Flash-Efficient Model Checking

	Results for GPU-Based Model Checking
	Evaluation of Immediate Duplicate Detection
	Experiments with Delayed Duplicate Detection

	Summary


	III Action Planning
	Introduction to Action Planning
	Modeling of Planning Problems
	PDDL Example of the Thesis Problem
	Related Work
	Summary

	Action Planning on the GPU
	Strategies from the GPUSSD-BFS Framework
	Successor Generation on the GPU

	GPU Planning Algorithm
	Planner Architecture

	Summary

	Experimental evaluation
	Results of the Evaluation
	Summary


	IV Game Solving
	Introduction to Game Solving
	Analyzed Games
	Sliding-Tile Puzzle
	Top-Spin Puzzle
	Pancake Problem
	Peg-Solitaire
	Frogs and Toads
	Nine-Men-Morris

	Game Solving
	Related Work
	Summary

	Perfect Hashing in Games
	Properties of State Spaces in Games
	Ranking and Unranking in Permutation Games
	Reducing State Space in Permutation Games

	Binomial Coefficient for Single Player Games
	Multinomial Coefficient for Multi Player Games
	Summary

	GPU Enhanced Game Solving using Perfect Hashing
	State Space Algorithms utilizing Perfect Hashing
	Two-Bit Breadth-First search
	One-Bit Reachability
	One-Bit Breadth-First search

	Porting Algorithms to the GPU
	Case Study: Nine-Men-Morris

	Summary

	Experimental evaluation
	Single-Agent Games
	Nine-Men-Morris
	Summary


	V Probabilistic Model Checking
	Introduction Probabilistic Model Checking
	Discrete Time Markov Chains
	Probabilistic Computational Tree Logic
	Algorithms for Model Checking PCTL
	Beyond Discrete Time Markov Chains
	Summary

	GPU Enhanced Probabilistic Model Checking
	Jacobi Iterations.
	Sparse Matrix Representation.
	Algorithm Implementation.
	Extending the Algorithm to Multiple GPUs
	Summary

	Experimental evaluation
	Verified Protocols
	Empirical Results
	Summary


	VI Conclusions and Future Work
	Conclusion
	Conclusions
	Future Work



