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1. Introduction

1. Introduction

Thermal spraying technology can be employed to apply a particle coating on a sur-

face, e.g. for wear protection or durable medical instruments. Due to uncontrollable

day-effects thermal spraying processes are lacking in reproducibility. This fact, com-

bined with a time-consuming and not immediately available analysis of the quality of

the coating, leads us to measure and use in-flight properties of the particles. Figure

1.1 shows the considered set-up of the process.

 

High-speed camera 
VisiSizer 

Specimen holder 

Laser-diffusor VisiSizer 

Lens system 
VisiSizer 
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Spray gun 

Linear motion system

Figure 1.1: Measuring in-flight particles in a thermal spraying process

In this contribution we focus on the relationship between process parameters and

properties of the particles in-flight. We aim at a strategy which allows us to pre-

dict particle properties based on prediction models from an initial full experiment

together with only few experiments on the day of prediction. Preceding screening ex-

periments (Tillmann et al., 2010) identified kerosine level, stand-off-distance, feeder

disc velocity and Lambda, which is defined as a kind of the kerosine/oxygen ratio, as

parameters to influence in-flight properties. As a next step HVOF spraying exper-

iments have been conducted with input parameters varied by a central-composite

design. In a first approach to the complex prediction problem we fit individual

prediction models to the measured in-flight properties temperature, velocity, flame

intensity and flame width. Suitable statistical models are provided by the class
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2. Experimental set-up of the thermal spraying process

of generalized linear models (GLM). A previous analysis of similar data showed

that normal and gamma distributions as well as different link functions should be

considered (Hoyden, 2011). The fitted models constitute the basis for day-adjusted

prediction models, which only require a limited number of further observations. The

final use of the prediction models will be within process control. It is therefore as-

sumed that parameter settings are looked for which lead to specific values of the

properties temperature and velocity. It turns out that adjusting the GLMs with an

additive constant leads to prediction results much closer to the observed values than

the predicted values without the adjustment. As a final step two parameter settings

are derived from the fitted adjusted model, which return predicted values close to the

desired temperature and velocity of the particles. Verification experiments confirm

these settings.

This paper is organized as follows. In Section 2 we introduce the experimental set-

up for the thermal spraying process of interest. The measured in-flight properties

are analysed in Section 3 and individual BIC-optimal GLMs are fitted. In Section

4 the day-adjustment strategy is presented and successfully applied to the predic-

tion models for temperature and velocity. The paper finishes with an outlook and

discussion in section 5.

2. Experimental set-up of the thermal spraying

process

In this section, we give detailed information on the material and equipment used for

the experiments.

The thermal spraying experiments were conducted with a Wokajet 400 HVOF spray

gun from Sulzer. This gun is a liquid fuel gun using kerosene and pure gaseous

oxygen for the combustion process. During all experiments an agglomerated and

sintered WC-12Co powder of type WOKA 3102 from Sulzer Metco was used. Its

chemical composition is given in Table 2.1. The particle size of −45 + 15µm was

determined by laser scattering and sieve analysis by Sulzer Metco Figure (2.1).

The powder was injected radial to the combustion gas flow directly behind the

Laval nozzle by a TWIN 120AH powder supply. Acceleration nozzle length was

4



3. Fitting of individual GLM

W C Co Fe
82.3 5.48 12.13 0.09

Table 2.1: Powder chemical composition (wt.-%)

Figure 2.1: SEM-image of utilized WC-12Co powder from Sulzer Metco

kept constant at 6 inch and gun velocity (passing speed of gun over substrate) at

30m/min.

As substrate material 48.5 × 2.5mm steel tubes of 1.0503 mild steel were used for all

experiments. To clean the surfaces and for better adhesion of the coatings, all tubes

were grit blasted with Al2O3 (EKF 100) at a pressure of 4 bar from a distance of

100 mm at an angle of 45◦. Surface roughness Rz after grit blasting was 19− 24µm.

One hour before spraying the specimens were cleaned in an ultrasonic ethanol bath

for 30 min., dried and put into an electric furnace at 120◦C.

An Accuraspray g3 analyzing system from Tecnar was employed for particle velocity

and temperature measurement. The particle sizes and shapes were recorded by an

optical laser system of type VisiSizer N60 from Oxford Lasers. Both systems were

mounted on a holder fixed to the spray cabin and synchronized to the same spot

in the spray jet for each run. The measuring time in each run was marked by the

VisiSizer system to count at least 300 particles.

3. Fitting of individual GLM

In this section we model the relationship between the process parameters and the

individual in-flight properties separately as given in Figure 3.1. Previous analyses

of the process (Hoyden, 2011) showed that fitting classical linear models does not

lead to a good fit and that the assumption of a normal response distribution might

not be valid. Hence we employ generalized linear models (GLMs) which allow the

modeling of response variables Y which are assumed to follow a distribution from
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3. Fitting of individual GLM
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Figure 3.1: List of parameters in the experimental set-up

a class within the exponential family. Let E(Y) denote the expected value of the

response variable Y ∈ Rn, which is expressed as

E(Y) = µ = g−1(Xβ)

within the generalized linear model. Herein g is the so-called link function, where

common choices are e.g. the inverse, the identity or the natural logarithm. The

design matrix X contains observed values of the predictor variables. Apart from the

process parameters themselves we can also consider squared effects and interaction

terms as predictor variables.

As the final aim are sparse models with a good fit, the selection of predictor vari-

ables is an important issue. Two of the most popular variable selection criteria are

the AIC (Akaike’s Information Criterion, Akaike (1973)) and the BIC (Bayesian

Information Criterion, Schwarz (1978)). A low value of the criteria indicates a good

fit of the data. They are both based on the log-likelihood of the model and on

the number of chosen predictor variables, but the BIC penalizes a high number of

predictor variables stronger than the AIC. In different studies (consult Taper and

Lele (2004) for an overview) it has been shown that BIC-optimal models are not

as prone to overfitting as AIC-optimal models, so we choose the BIC as variable

selection criterion.

Due to knowledge of the process we constrain the maximum number of predictors to

nine. We denote p as the number of chosen variables, so that X is an (n×p)-matrix.

The unknown parameters β are commonly estimated by the maximum likelihood

(ML) method. Then β̂ denotes the ML estimator. For further details we refer to
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3. Fitting of individual GLM

e.g. McCulloch and Searle (2001). One disadvantage of the information criteria is

that they can be used only for comparisons of models for one and the same response

variable. To judge the fit of a linear model and compare it to a completely different

model, the coefficient of determination R2 is a useful tool. Nagelkerke’s coefficient of

determination R2
N is an R2-type criterion of fit for GLMs which can be interpreted

as the explained ratio of variation in the data (Nagelkerke, 1991).

Residual analysis is a crucial part of (generalized) linear models. While quantile-

quantile plots are considered in the case of classical linear models, we look at half-

normal plots instead. Half-normal plots show the sorted absolute standardized resid-

uals against the half normal quantiles (Φ−1
(

n+i+ 1
2

2n+ 9
8

)
) (McCullagh and Nelder, 1989),

values strongly deviating from the dashed line are indicators for a unsuitable link

function.

For the comparison of the different predictor subsets we use the statistical pro-

gramming language R (R Development Core Team, 2011) and the package bestglm

by McLeod and Xu (2010). After choosing the distribution, the link function and

estimating the coefficients, we conduct residual analysis to check whether the as-

sumptions of the GLM hold. Finally, we look at the R2
N computed with the package

pscl by Jackman (2011).

Application to Real Data. An orthogonally blocked central composite design

(CCD) has been chosen for the experimental design. A CCD consists of a full 2k

design (here: k = 4), center points and axial points, where one factor is set to α > 1

(here: α = 2 for orthogonally blocking) and the remaining ones are zero. With the

CCD linear terms, quadratic terms and two-way interactions are estimable. The

plan is given in Table A.1. The levels of the design are explained in Table 3.1.

Instead of the oxygen level we use a kind of ration of the kerosine and oxygen level

due to engineering reasons.

Level
Factor -2 -1 0 1 2

Kerosene level (K) 15 17.5 20 22.5 25
Lambda (L) 1 1.075 1.15 1.225 1.3

Stand-off distance (D) 200 225 250 275 300
Feeder disc velocity (FDV ) 5 7.5 10 12.5 15

Table 3.1: Parameter values
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3. Fitting of individual GLM

For each of the four in-flight properties, temperature, velocity, flame intensity and

flame width, generalized linear models with smallest BIC-values are determined. As

predictor variables main effects, interaction as well as quadratic effects are allowed

with the restriction of at most nine effects. With the logistic link, the identity

link and the inverse link different link functions are compared whereas as response

distribution the Gamma distribution turned out to be the most suitable assumption.

If the half-normal plot of the BIC-minimal model suggests a pattern, we also consider

the models with the next best fit. This is the case for velocity and flame width. We

finally end up with the model with the second-best (for velocity) resp. third-best

(for flame width) BIC.

Table 3.2 gives an overview of the selected models and their fit. The R2
N can be

used to compare e.g. the chosen GLM for temperature and velocity but it mainly

provides an idea of the quality of fit itself. In most cases (except for temperature)

all possible main effects are included in the BIC-optimal model.

Finally we look at scatterplots of fitted values against residuals and fitted values

against the index for a final check of the chosen model. Let us now look at the fitted

models in more detail. We concentrate on the parameter estimates for the predictor

variables, an intercept is included in every fitted GLM as well.

Temperature Velocity Flame Width Flame Intensity
Main effects L,K,D L,K,D, FDV L,K,D, FDV L,K,D, FDV

Squared effects K2 K2 K2 L2, K2, FDV 2

Interaction terms – – – D · FDV
BIC 245.744 196.979 99.749 106.148
R2

N 0.884 0.987 0.818 0.901
Link identity logistic inverse identity

Table 3.2: Properties of the chosen GLMs with Gamma-distributed response variable

The BIC-minimal model for temperature has five significant parameters (see Table

3.3). The kerosine level has a positive influence on the temperature, whereas the

other three parameters have negative influences on it.

The left plot in figure 3.2 shows the half-normal plot. The observations are close

to the dashed line which legitimates the choice of the link function. The two right

side plots are the residual plots. They indicate that the fitted values are neither

correlated to the residuals (middle), nor to the index (right). Plotting the residuals
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3. Fitting of individual GLM

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1523.263 2.672 570.036 5.955e-53

L -17.742 2.314 -7.669 5.035e-08
K 19.658 2.294 8.570 6.554e-09
D -13.818 2.314 -5.973 3.092e-06
K2 -9.990 2.081 -4.800 6.259e-05

Table 3.3: Best model for temperature with identity link function

against the input variables (A.1) also suggests no correlation. Hence we stay with

the BIC-minimal model with identity link for the in-flight property temperature.

The explained ratio of variance is about 88%, which is a satisfying result in this

context.
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Figure 3.2: Temperature: Validation of assumptions of the GLM

The BIC-optimal model (BIC=195.178) for velocity shows irregularities in the half-

normal plot, see Figure 3.3 (left). Therefore we investigate the properties of the

model with the second-best BIC (BIC=196.979), which is a GLM with logistic link

function. The corresponding half-normal plot is given on the right-hand side of

Figure 3.3. We see no systematic differences between the dashed line and the obser-

vations, so in this case we take the GLM with logistic link function as final model.

The best model for velocity (see Table 3.4) includes all linear predictors, plus the

the interaction between L and K and the squared effect of K. The parameters are

significant to the 5% level except for L · K. Lambda and the kerosine level have

positive effects on the velocity, the other parameters have negative effects on it.
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3. Fitting of individual GLM
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Figure 3.3: Half-normal plots of identity and logistic link function

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.565e+00 1.564e-03 4198.393 3.510e-69

L 1.361e-02 1.354e-03 10.050 6.962e-10
K 5.161e-02 1.354e-03 38.112 2.732e-22
D -1.711e-02 1.354e-03 -12.634 7.860e-12

FDV -7.809e-03 1.354e-03 -5.767 7.112e-06
L ·K -3.067e-03 1.659e-03 -1.849 7.733e-02
K2 -9.169e-03 1.236e-03 -7.417 1.531e-07

Table 3.4: Best model for velocity with logistic link function

Further analysis (see Figure 3.4) shows no obvious violations against the assumptions

of the GLM. Yet there is an interesting aspect in Figure A.2: Setting the input

parameters zero seems to lead to smaller residuals. Nevertheless we stay with the

BIC-minimal model with inverse link function.

The BIC-optimal model for flame width (BIC=87.390, identity link function) shows

poor residual behaviour, such that the assumptions of model seem to be violated

(see Figure 3.5, left). We observe the same for the second-best BIC (BIC=96.682,

logistic link function, middle), which is why we consider a model with a slightly

poorer BIC-value (BIC=99.748, inverse link function, right). These observations

are much closer to the dashed line, so we decide on the GLM with inverse link
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3. Fitting of individual GLM

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.015 −0.005 0.005

65
0

70
0

75
0

Velocity: Residuals

V
el

oc
ity

: F
itt

ed
 v

al
ue

s

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30
65

0
70

0
75

0
Index

V
el

oc
ity

: F
itt

ed
 v

al
ue

s

Figure 3.4: Velocity: Validation of assumptions of the GLM

function.

The GLM for flame width (see Table 3.5) is similar to that for velocity, except

for the missing interaction between Lambda and Kerosin. Yet, there are notable

differences. The stand-off-distance is not significant to the 5%-level, but we believe it

is relevant in this model. Lambda, stand-off-distance and the squared kerosine level

have positive effects on the flame width, the remaining parameters have negative

effects.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.630e-02 1.808e-03 47.727 2.673e-25

L 5.296e-03 1.524e-03 3.476 1.956e-03
K -4.439e-03 1.612e-03 -2.754 1.106e-02
D 2.867e-03 1.525e-03 1.880 7.236e-02

FDV -1.231e-02 1.508e-03 -8.162 2.208e-08
K2 3.904e-03 1.542e-03 2.532 1.832e-02

Table 3.5: Best model for flame width

The residual plots in Figure 3.6 and A.3 show no obvious violations of the model

assumptions. Hence, we chose the model with inverse link and predictor variables

as given in Table 3.5.
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Figure 3.5: Half-normal plots for GLMs with identity, logistic and inverse link func-
tion (f.l.t.r.)
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Figure 3.6: Flame Width: Validation of assumptions of the GLM
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3. Fitting of individual GLM

The model with the most parameters is the best model for flame intensity (Table

3.6). There are non-significant parameters (stand-off-distance, squared Lambda,

interaction between stand-off-distance and feeder disc velocity), but we do not rely

on the p-value only. We have four positive effects on the flame intensity and four

negative effects. The assumptions of the GLM seem to hold, since there are no

obvious patterns in Figures 3.7, A.4 and A.5.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.478 0.336 57.905 1.188e-24

L -0.889 0.190 -4.675 1.296e-04
K 0.865 0.186 4.641 1.405e-04
D -0.371 0.197 -1.883 7.360e-02

FDV 2.166 0.204 10.606 6.851e-10
L2 -0.310 0.176 -1.759 9.311e-02
K2 -0.561 0.170 -3.306 3.365e-03

FDV 2 0.509 0.192 2.646 1.512e-02
D · FDV 0.410 0.238 1.722 9.976e-02

Table 3.6: Best model for flame intensity
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Figure 3.7: Flame Intensity: Validation of assumptions of the GLM

In conclusion, we remark that the kerosine level and the squared kerosine level are

contained in each of the final GLMs, but with different signs in different models.
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3. Fitting of individual GLM
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Figure 3.8: Prediction quality of the properties in flight
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3. Fitting of individual GLM

Finally, in Figure 3.8, the estimated values are plotted against the observed ones

for the chosen models. Points which are located on the red dashed line are perfect

predictions of the true values, points between the green solid lines are predictions

with less than 2% inaccuracy. Points between the green dashed lines are predictions

with less than 5% inaccuracy. We see that the predictions of temperature and

velocity are less than 2% inaccurate. The predictions of the flame properties are

mostly less than 5% inaccurate.
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4. Day-adjusted prediction of coating properties

We now describe our procedure to adapt generalized linear models from a more

extensive preceding study, such as the final models from the previous section, to

additive day-effects by using only a limited number of new experiments on the

prediction day. In our application to thermal spraying our final goal are parameter

settings which lead to desired values of 1550 for the temperature and 740 for velocity.

Let X1 ∈ Rn×k be the design matrix from the preceding study, here the central

composite design given in Table A.1, and

g(µ) = η1 = X1β1,

the considered generalized linear model with appropriately chosen link function g.

The corresponding maximum likelihood estimation β̂1 is the basis for the subsequent

day-adjustment. In order to adapt the model to another day we estimate an additive

constant based on a design X2, conducted on the day of interest, here a fractional

factorial with 8 runs in total, in the following sense

η2 = X2β̂1 + γ,

where a constant γ ∈ R is added to the linear predictor. The additive term γ

is estimated by the maximum likelihood method based on the observed data from

conducting the experiments from the design X2. This leads us to the following new

prediction model

ŷ = g−1
(
Xβ̂1 + γ̂

)
,

where g−1 is the inverse map of the link function belonging to the original GLM.

For our particle properties temperature and velocity the resulting adapted models

are

ŷT = g−1
T

(
Xβ̂T + γ̂T

)
and

ŷV = g−1
V

(
Xβ̂V + γ̂V

)
,
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4. Day-adjusted prediction of coating properties

with g−1
T the identity, g−1

V the exponential function and estimates as given in Table

A.2.
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Figure 4.1: Real vs. Fitted for adapted and original models for temperature, veloc-
ity, flame width and intensity

Figure 4.1 shows the measured values for temperature and velocity versus the fitted

values. It is rather obvious that a model adaption is necessary, especially for the tem-

perature. With the additional constant, the root mean squared error reduces from

388.444 to 101.220 for temperature and from 98.768 to 49.473 for velocity. Hence,

even for the simple modification by a single additive constant we have substantially

improved the prediction model.

Based on the day-adjusted models parameter settings are searched for which lead to

predicted particle property values close to the desired ones. To achieve this for both
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4. Day-adjusted prediction of coating properties

temperature and velocity simultaneously as best as possible, the Joint Optimization

Plot method (Erdbrügge et al., 2011) has been used. It returns points on the Pareto

front. Two possible parameter settings were chosen and verified by two experiments

each. The results are rather convincing, as predicted and observed values are very

close, see Table 4.1.

Temperature Velocity
L K SOD FDV Predicted Observed Predicted Observed

-1.28 0.51 -1.15 - 0.64 1549.21 1551.48 739.90 743.19
-1.28 0.51 -1.15 - 0.64 1549.21 1556.17 739.90 742.81
-0.23 0.48 -1.44 1.24 1549.93 1552.97 739.96 742.60
-0.23 0.48 -1.44 1.24 1549.93 1521.02 739.96 723.82

Table 4.1: Results of prediction and verification experiments
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5. Outlook and Discussion

5. Outlook and Discussion

The overall idea of our research is the assumption that the particle properties reflect

some non-controllable disturbances of the thermal spraying process, like a day effect.

Thereby it should be possible to gain better predictions of the coating properties

on the basis of the particle properties. As a first step, we have here modeled the

particle properties by means of generalized linear models and were able to find

parameter settings which lead to desired temperature and velocity values. Some

further improvements with respect to modeling in-flight properties might be achieved

by considering generalized additive models, where some regressors can be treated

more exactly. Future research will focus on strategies for predicting the coating

properties. To this aim models for particle and coating properties are connected.

The results will be presented in a forthcoming discussion paper.

This paper discusses the spraying process when WC-Co layers are used. These kinds

of layers have possible negative effects on health, which is why these (and other)

investigations will be extended to iron-based layers. The exact chemical composition

of such an iron-based layer is a recent field of research and investigations of the

spraying process as in section 3 but with iron-based layers promises to be a highly

interesting topic.
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Run L K D FDV
1 1 -1 1 -1
2 1 1 1 1
3 -1 -1 1 -1
4 -1 -1 -1 1
5 0 0 0 0
6 0 0 0 0
7 -1 1 1 -1
8 -1 1 -1 1
9 1 1 -1 1
10 1 -1 -1 -1
11 0 0 0 0
12 -1 1 -1 -1
13 1 1 -1 -1
14 -1 1 1 1
15 1 -1 1 1
16 -1 -1 1 1
17 -1 -1 -1 -1
18 1 1 1 -1
19 0 0 0 0
20 1 -1 -1 1
21 0 0 0 0
22 0 0 -2 0
23 -2 0 0 0
24 2 0 0 0
25 0 0 0 0
26 0 0 0 -2
27 0 0 2 0
28 0 2 0 0
29 0 0 0 2
30 0 -2 0 0

Table A.1: Central Composite Design
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A. Appendix

β̂T β̂V
(Intercept) 1523.263 6.565

L -17.742 0.014
K 19.658 0.052
D -13.818 -0.017

FDV -0.008
K2 -9.990 -0.009

L ·K -0.003
γ̂ -16.897 0.0109

Table A.2: Estimators for β and γ
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Figure A.1: Temperature: Further residual analysis of the GLM

23



A. Appendix

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

−2 −1 0 1 2

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Lambda

V
el

oc
ity

: R
es

id
ua

ls

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

−2 −1 0 1 2

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Kerosine
V

el
oc

ity
: R

es
id

ua
ls

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

−2 −1 0 1 2

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Distance

V
el

oc
ity

: R
es

id
ua

ls

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

−2 −1 0 1 2

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Feeder Disc Velocity

V
el

oc
ity

: R
es

id
ua

ls

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Lambda * Kerosine

V
el

oc
ity

: R
es

id
ua

ls

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

0 1 2 3 4

−
0.

01
5

−
0.

01
0

−
0.

00
5

0.
00

0
0.

00
5

0.
01

0

Kerosine squared

V
el

oc
ity

: R
es

id
ua

ls

Figure A.2: Velocity: Further residual analysis of the GLM
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Figure A.3: Flame Width: Further residual analysis of the GLM
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Figure A.4: Flame Intensity: Further residual analysis of the GLM (main effects)
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Figure A.5: Flame Intensity: Further residual analysis of the GLM (other effects)
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Run L K D FDV
1 1 1 -1 -1
2 1 -1 -1 1
3 -1 -1 -1 -1
4 -1 -1 1 1
5 -1 1 1 -1
6 1 1 1 1
7 1 -1 1 -1
8 -1 1 -1 1

Table A.3: The reduced design for X2

28



 



 


