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Abstract This paper is the first to analyze the robustness of goodness-of-fit for bivariate

elliptical and archimedean copulas. To assess the tests’ robustness, we consider perturbations

and outliers both in the dependence structure and the observations from the joint distribution.

The Monte Carlo simulations show that independent of the underlying true copula, the GoF-test

or chosen test statistic, even minor contaminations of the data can lead to a significant decrease

in the GoF-tests’ power. In order to robustify the GoF-tests, several methods for the detection of

multivariate outliers are applied to the contaminated data. The results show that the exclusion of

outliers can have a beneficial effect on the power of the GoF-tests. Moreover, this robustification

strategy improves the power of GoF-testing when used to identify the main component of a mixture

copula. In the empirical risk management application, the practical usefullness of this strategy is

exemplified for a set of bivariate portfolios.
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1 Introduction

Parametric copulas have become the model of choice in statistics for analyzing the dependence

structure inherent in multivariate random vectors. Starting with the seminal paper by Embrechts

et al. (2002), the advantages and caveats of using copulas instead of linear correlation have now

been addressed in several different areas of applied statistics and financial econometrics. During

the last years, copulas have been used extensively in a risk management setting where they are

being used for the analysis of risky portfolios of stocks (see e.g. Malevergne and Sornette, 2003;

Junker and May, 2005; Fischer et al., 2009; Nikoloulopoulos et al., in press) or the modeling of

credit default (see Li, 2000).

Recently, research has concentrated on deriving goodness-of-fit (GoF) test statistics in a copula

setting (see e.g. Breymann et al., 2003; Fermanian, 2005; Dobrić and Schmid, 2007; Savu and

Trede, 2008; Kole et al., 2007; Genest et al. 2006, 2009, 2011; Genest and Rémillard, 2008;

Kojadinovic and Yan, 2011) and comparing these GoF-statistics with each other (see Berg, 2009).

While early approaches for copula model selection were based on AIC or variants of it (see e.g.

Breymann et al., 2003; Chen and Fan, 2005; and Huard et al., 2006) recent GoF-tests are based

on some comparison of the hypothesized parametric copula and Deheuvels’ empirical copula which

converges uniformly to the true underlying copula (see Deheuvels, 1978, 1981). Surprisingly, the

finite sample properties of these GoF-tests have only recently been analysed in two power studies by

Genest et al. (2009) and Berg (2009). Their main result is that most tests perform rather well even

for small sample sizes of n = 50. However, both simulation studies only consider uncontaminated

data that is simulated from a prespecified copula model. As real data will usually be contaminated

by outliers and measuring errors, the question which (if any) GoF-test for copulas is robust to these

contaminations is of high practical importance. Moreover, recent results by Weiß (2011) show that

GoF-tests for copulas are more or less unsuited for selecting the optimal parametric copula for the

estimation of portfolio Value-at-Risk of Expected Shortfall giving rise to the idea that this lack of

power could indeed be caused by a lack of the GoF-tests’ robustness to data contaminations.

The literature on robust statistical inference for copulas is still in its infancy. To the best

knowledge of the author, the only study that is concerned with the robustness of copula models

is Mendes et al. (2007) (recent papers by Kim et al. (2007) and Fantazzini (2009a) focus on the
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robustness of copula models to misspecified marginals; however, they do not consider contaminated

data). In their work, Mendes et al. (2007) derive robust estimators for the parameters of copulas

and analyse their finite sample properties by means of a simulation study. The two strategies

they employ to robustify the estimation of copula parameters include (1) the inclusion of weight

functions in Minimum-Distance estimators and (2) the identification and exclusion of outliers. The

robustness of GoF-tests for copulas, however, has been addressed neither theoretically nor by means

of a simulation study.

This paper focuses on filling this gap in the literature by performing a comprehensive simulation

study on the robustness of copula GoF-tests as well as the performance of several strategies for

robustifying these tests. Thus, this paper contributes significantly in several ways to the current

state of the art: First, by analysing the finite sample properties of recently proposed copula GoF-

tests when applied to contaminated data, this paper is the first one to answer the question which

(if any) copula GoF-test is robust to outliers in the data. Second, this paper is the first to apply

outlier detection methods from robust statistics before testing a copula model’s goodness-of-fit.

Third, five different methods are used for identifying outliers in the contaminated data before

re-assessing the copula GoF-tests’ power. While Mendes et al. (2007) only use the Donoho-

Stahel projection based estimator of multivariate location and scatter in their simulation study, we

compare the Minimum Covariance Determinant estimator of Rousseeuw (1985), the Donoho-Stahel

estimator, Rocke’s constrained M-estimator, the S-estimator based on Tukey’s biweight function

and the orthogonalized Gnanadesikan-Kettenring estimator with each other regarding their ability

to robustify the results of the copula GoF-tests. Fourth, this paper is the first to analyse the effects

of mistakingly assuming a single parametric copula when the data actually stems from a mixture

copula.

The results presented in this paper show that independent of the underlying true copula, the

GoF-test or chosen test statistic, even minor contaminations of the data can lead to a significant

decrease in the GoF-tests’ power. Conversely, the exclusion of outliers can have a beneficial effect

on the power of the GoF-tests. Moreover, this robustification strategy improves the power of

GoF-testing when used to identify the main component of a mixture copula. In the empirical

risk management application, we show that excluding outliers can correct both false rejections and

non-rejections of the copula GoF-tests for the majority of portfolios we consider.

2



The remainder of this article is structured as follows. Section 2 introduces copula-specific

goodness-of-fit-tests. Section 3 discusses the different methods for identifying outliers used in this

study. In Section 4 the results of the simulation study are presented and discussed. In Section 5,

we conduct an empirical analysis for a set of bivariate financial portfolios. Concluding remarks are

given in Section 6.

2 Testing the Goodness-of-fit of copula models

The purpose of this section is to shortly restate the outline of several goodness-of-fit tests that

have been proposed recently for copula models. For ease of exposition, the formulae are restricted

to the bivariate case. Extensions to the multivariate case are straightforward.

Consider a continuous bivariate random vector X ≡ (X1,X2) with a joint cumulative distribu-

tion function (cdf) G and marginal cdfs F1 and F2. Let C(u1, u2) be the unique copula such that

G(x1, x2) = C (F1(x1), F2(x2)) holds. In applications, the unique copula C is regularly assumed to

come from a parametric family

C := {Cθ|θ ∈ Θ}

with Θ ⊂ R.

In goodness-of-fit testing for copula models, we are interested in testing the hypothesis H0 :

C ∈ C, i.e. that the copula C belongs to a prespecified parametric family C. In the following, three

different approaches to copula GoF testing are described.

2.1 Goodness-of-fit tests based on the empirical copula process

The most intuitive approach to testing the fit of a parametric copula model is based on a

comparison between Deheuvels’ empirical and the hypothesized parametric copula. Given an i.i.d.

sample of size n, Deheuvels’ empirical copula is defined as

Cn(v) ≡ 1

n

n∑
i=1

1(ui1 ≤ v1, ui2 ≤ v2), v ≡ (v1, v2, )
T ∈ [0; 1]2 (1)

with 1(·) being a logical indicator function (see Genest et al., 2009).

The empirical copula converges uniformly to the true underlying copula (see Deheuvels, 1978 and
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1981) and thus constitutes a discontinuous approximation to the true copula. It is nonparametric

in nature and goodness-of-fit tests based on computing a distance between the empirical and the

hypothesized copula have been shown empirically to perform well in power studies (see Berg, 2009;

Berg and Quessy, 2009; Genest et al., 2009).

Given a random sample X = (xij) (i = 1, . . . , n; j = 1, 2), consider the transformed (pseudo-)

sample (uij) obtained from the original sample via

uij =
n

n+ 1
F̂j (xij) (2)

where F̂j is the empirical cdf of the jth margin (see McNeil et al., 2005). The empirical copula

process is then given by

Cn ≡ √
n(Cn − Cθ̂) (3)

where Cn is Deheuvels’ empirical copula and Cθ̂ is the hypothesized copula from a parametric

family parameterized by the parameter estimate θ̂ obtained from the pseudo-sample (uij).

The convergence of Cn under appropriate regularity conditions is established in Genest and

Rémillard (2008). A simple Cramér-von-Mises test statistic based on Cn is then given by

ρCvM
emp ≡

∫
[0;1]2

Cn(v)
2dCn(v) (4)

with the empirical version of ρCvM
emp being (see Genest et al., 2009)

ρ̂CvM
emp (uij ; θ) ≡

n∑
i=1

{
Cn((ui1, ui2))− Cθ̂((ui1, ui2))

}2
. (5)

The asymptotic distribution of the test statistic is unknown and thus approximate p-values

need to be obtained via parametric bootstrap (the same applies to the GoF-tests described below).

Descriptions for the bootstrap procedures used in this study can be found in Genest et al. (2009).

In the simulation study, we employ both Cramér-von-Mises as well as Kolmogorov-Smirnov test

statistics.
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2.2 Goodness-of-fit tests based on Kendall’s dependence function

In the second approach for testing the fit of a given parametic copula model, Kendall’s probabil-

ity integral transform is used (see Savu and Trede, 2008; and Genest et al., 2006). More specifically,

Kendall’s transform for an arbitrary random vector X with joint cdf G and margins Fi (i ∈ Nd) is

given by (see Genest et al., 2009)

X �→ V = G(X) = C(U1, . . . ,Ud), (6)

where the joint cdf of U = (U1, . . . ,Ud) is C and Ui = Fi(Xi). Let K be the cdf of the probability

integral transform V . Then a nonparametric estimation of K based on the transformed sample

Vi ≡ Cn((ui1, ui2)) of size n is given by (see Genest and Rivest, 1993)

Kn(ω) ≡ 1

n

n∑
i=1

1(Vi ≤ ω), ω ∈ [0; 1]. (7)

If U is distributed as Cθ̂, a parametric estimation of K is given by the distribution Kθ̂ of the Kendall

transform Cθ̂(U). Goodness-of-fit tests can then be based on the empirical process

Kn ≡ √
n(Kn −Kθ̂). (8)

The convergence of the empirical process Kn underlying these estimators is established in Genest

et al. (2006) under appropriate regularity conditions. Here, we employ the Cramér-von-Mises test

statistic

ρCvM
K ≡

∫ 1

0
KE(ω)

2dKθ̂(ω) (9)

and a respective Kolmogorov-Smirnov test.

2.3 Goodness-of-fit tests based on Rosenblatt’s transform

Finally, we also employ tests based on Rosenblatt’s probability integral transform (see Rosen-

blatt, 1952). The idea behind this approach for GoF-testing is the result that given the multivariate

distribution of a sample, a set of dependent variables can be transformed into a set of indepen-
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dent U([0; 1]) variables. Specifically, for a given random vector X ≡ (X1,X2) with marginal cdfs

Fj(xj) (j = 1, 2) and conditional cdf F2|1, Rosenblatt’s transform of X is given by (see Berg, 2009)

R(X) ≡ (R1(X1),R2(X2)) where

R1(X1) ≡ F1(x1),

R2(X2) ≡ F2|1(x2|x1). (10)

Under a specified parametric null hypothesis copula, a given data sample can be transformed via

Rosenblatt’s transform. The closer the null copula is to the true underlying copula, the closer

the data sample will be to being i.i.d. U([0; 1])2. Consequently, Genest et al. (2009) propose to

measure the distance between the empirical copula and the independence copula at each element

of the transformed data matrix V = (vij) ≡ (R1(ui1);R2(ui2)) which is dependent on the null

hypothesis copula Cθ̂. An empirical version for the Cramér-von-Mises test statistic is then given

by

ρ̂CvM
Ros (V) =

n∑
i=1

{Cn((vi1, vi2))− C⊥((vi1, vi2))}2 . (11)

where (vi1, vi2) is obtained by transforming the pseudo-sample (ui1, ui2) according to (10) (see

Ghoudi and Rémillard, 2004; and Genest et al., 2009; for proofs concerning the asymptotic null

behaviour of the underlying empirical process and the convergence of the test statistic).

3 Methods for detecting outliers

3.1 Robust estimates of multivariate location and scale

A common approach to outlier identification is to use a metric measuring the distance be-

tween possible outliers and the center of the data points. Most commonly, a robust version of the

Mahalanobis distance for a data point xi ∈ R
d given by

MDi =

√
(xi − µ)TΣ−1(xi − µ) (12)

where µ and Σ are robust estimates of the location vector and covariance matrix respectively of

the data set X = (xi)i=1,...,n is used in order to classify outliers.
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Various methods have been reported in the literature for finding robust estimates of multivariate

location and shape (see e.g. Campbell, 1980; Devlin et al., 1981; Donoho, 1982; Lopuhaä, 1989;

Rousseeuw, 1985; Woodruff and Rocke, 1994; Becker and Gather, 1999, 2001). In this study, the

Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 1985; Lopuhaä and Rousseeuw,

1991), the constrained M-estimator (Kent and Tyler, 1996), the Stahel-Donoho estimator (Stahel,

1981; Donoho, 1982; Tyler, 1994), the orthogonalized Gnanadesikan-Kettenring (OGK) estimator

(Gnanadesikan and Kettenring, 1972; Devlin et al., 1981; Maronna and Zamar, 2002) as well as the

S-estimator based on Tukey’s biweight function (see Lopuhaä, 1989; Rocke, 1996) are employed.

In a copula setting, the only study concerned with the robust estimation of copula parameters is

due to Mendes et al. (2007). In their work, only the Donoho-Stahel estimator is used for robustly

estimating the location and scale of the multivariate data.

After the robust estimation of the multivariate location and scale, the detection (and subsequent

exclusion) of outliers requires some knowledge of the distribution of the estimated Mahalanobis dis-

tances in (12). For data samples coming from a multivariate normally distributed random vector,

the classic (non-robust) squared Mahalanobis distances based on the sample mean and covariance

matrix follows a χ2
d-distribution. If robust estimators of multivariate location and scale are used

instead, this result no longer holds thus necessitating the alternative use of a scaled F -distribution

(see Hardin and Rocke, 2005). Both methods, however, seem to be impractical for the purposes of

this paper due to two reasons. First, Becker and Gather (2001) show that the χ2
d-distribution is a

rather bad approximation to the true distribution of the squared Mahalanobis distances when con-

sidering small sample sizes. Second, both approximations by the χ2
d- and the scaled F -distribution

assume the uncontaminated data to be multivariate normal. For most applications in finance and

risk management, this assumption regularly does not hold. Also, the assumption of multivariate

normally distributed data would contradict the use of a copula model.

As a remedy, we follow Maronna and Zamar (2002) and Filzmoser et al. (2008) by weighting

each data point i in the sample according to I(MDi < MD0) with MDi being the Mahalanobis

distance corresponding to the ith data point, I(·) being an indicator function and MD0 being

MD0 ≡ χ2
d(β)med(MD1, . . . ,MDn)

χ2
d(0.5)

(13)
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where med(·) is the median function and χ2
d(β) is the β-quantile of the χ2

d-distribution. After

excluding data points with MDi ≥ MD0, the location and scale of the remaining data points

are reestimated and the resulting Mahalanobis distances should then approximately follow a χ2
d-

distribution so that the quantile χ2
d(β) can be used for detecting outliers in the original non-normal

data.

3.2 Outlier detection and copula goodness-of-fit testing

When using copulas to model multivariate data, the choice of the parametric copula that fits

the data best is of extremely high importance. Though the modeling of the univariate marginals

can also have a significant impact on the overall fit of the multivariate model (see Fantazzini,

2009a), the task of finding a suitable copula is usually more demanding than fitting the univariate

marginals. Recent simulation studies by Berg (2009) and Genest et al. (2009) suggest that copula

goodness-of-fit tests are well suited for the task of identifying the best fitting parametric copula.

Extending these results from simulated data to the case of real financial market data, a recent

study by Weiß (2011) shows that the examined copula GoF-tests can no longer identify the best

fitting parametric copula. One possible reason for this lack of power could be the fact that these

GoF-tests are not robust to contaminations in the data.

At the same time, however, the robustification of copula goodness-of-fit tests by means of

outlier detection could have severe drawbacks. By detecting and excluding possible outliers from

the data sample, some data points in the tails of the multivariate distribution could be falsely

excluded from the analysis. As copula modeling aims in particular at modeling the extreme tail

behaviour of multivariate distributions, outlier detection could thus prove to be counterproductive.

Consequently, there seems to exist a tradeoff between a robust test of the copula model’s goodness-

of-fit and an adequate modeling of the multivariate tail behaviour of the data. It is this tradeoff

which will be of particular interest in both our simulation studies and real data example.

4 Simulation study

A large-scale simulation study was conducted on the robustness of goodness-of-fit tests based

on the empirical copula process, Rosenblatt’s and Kendall’s transform for bivariate elliptical and
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archimedean copulas. The aim of this simulation study is to compute and compare the nominal

level and power of the different approaches for GoF-testing when used on contaminated and uncon-

taminated data. Especially, we are interested in comparing the losses in power of the three different

GoF-tests when the data is contaminated. Conversely, we are interested in answering the question

whether any detected loss in the GoF-tests’ power can be prevented by identifying and excluding

outliers prior to the testing of the copula models’ fit.

In this study, two types of data contaminations will be considered. The first type of data

contamination will consist of perturbations of the data points which are intended to mimic mea-

surement errors. The second type tries to capture the model risk of falsely assuming a single

parametric copula when the true dependence structure is given by a mixture copula (i.e. a convex

combination of several copulas). This type of data contamination is somewhat closely related to the

usual starting point in robust statistics where the majority of the data points is assumed to follow

the true distribution with the remaining data points stemming from a contaminating distribution.

4.1 Robustness to perturbations of the data

In the first part of the simulation study, we examine the effects of perturbations and outliers in

the data on the GoF-tests’ power.

4.1.1 Design of the simulation study

In the following, the design of the first part of the simulation study is outlined in detail. After

the description of the simulation steps, the different choices of parameters are given.

We examine bivariate distributions with one (fixed) marginal being distributed according to a

univariate Normal distribution with mean μ = 2 and standard deviation σ = 0.5 and the other

(fixed) marginal being t-distributed with 4 degrees of freedom. As candidate parametric copulas

we consider the Gaussian, Student’s t, Clayton, Frank and Gumbel copula.

For each bivariate parametric copula family parameterised by the (true) parameter(s) θk repeat

the following steps K times where K is some large integer:

(1) Simulate a sample (xij)i=1,...,n;j=1,2 of size n from the joint distribution G(x1, x2) =

C(F1(x1), F2(x2)|θk) with θk being the copula parameter(s) (k = 1, 2 . . .) by first simulat-
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ing a sample (uij)i=1,...,n;j=1,2 of size n from the respective copula and then using the quantile

functions of the known margins.

(2) Generate a contaminated data sample from the original sample (xij)i=1,...,n;j=1,2 in the following

way:

(a) Set ε = 0.1.

(b) Generate random numbers (ηij)i=1,...,n;j=1,2 from the interval [1 − ε; 1 + ε] and compute

(ũij) := (uijηij)i=1,...,n;j=1,2. If ũij ≥ 1, set ũij = 0.99.

(c) Replace the components of n · ε pairs of copula observations (ũij)i=1,...,n;j=1,2 with random

numbers from the unit interval yielding the contaminated copula sample (ûij)i=1,...,n;j=1,2.

(d) Transform the sample (ûij)i=1,...,n;j=1,2 via the quantile functions of the margins into a

sample (x̌ij)i=1,...,n;j=1,2 of the joint distribution.

(e) Contaminate the sample (x̌ij)i=1,...,n;j=1,2 in the same way as the original copula observa-

tions (i.e. scale all observations with a random number η̃ij ∈ [1− ε; 1 + ε] and replace the

two components of n ·ε observations with outliers. The two components of the outliers are

chosen to be included in the interval [min {x̌ij} · (1 − ε);max {x̌ij} · (1 + ε)]). The result

is the final sample of contaminated data (x̂ij)i=1,...,n;j=1,2

(3) Identify and exclude possible outliers in the contaminated data sample by the use of the five

methods described above. As a result we get five (possibly different) data samples of different

sizes ñl (with l = 1, . . . , 5 being the index of the respective outlier detection method):

(a)
(
x
(MCD)
ij

)
i=1,...,ñ1;j=1,2

(Minimum Covariance Determinant estimator of Rousseeuw),

(b)
(
x
(DS)
ij

)
i=1,...,ñ2;j=1,2

(Donoho-Stahel estimator),

(c)
(
x
(M)
ij

)
i=1,...,ñ3;j=1,2

(Rocke’s constrained M-estimator),

(d)
(
x
(S)
ij

)
i=1,...,ñ4;j=1,2

(S-estimator based on Tukeys biweight function) and

(e)
(
x
(OGK)
ij

)
i=1,...,ñ5;j=1,2

(orthogonalized Gnanadesikan-Kettenring estimator).

(4) Estimate the parameters of the five candidate copulas via canonical maximum-likelihood

(see Kim et al., 2007) for the original sample (xij)i=1,...,n;j=1,2, the contaminated sample

(x̂ij)i=1,...,n;j=1,2 as well as the five samples from which outliers have been excluded.
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(5) Compute the Cramér-von-Mises and Kolmogorov-Smirnov test statistics of all three different

approaches for goodness-of-fit testing (empirical copula process, Kendall’s transform, Rosen-

blatt’s transform) for the five estimated parametric candidate copulas at a significance level of

α percent. Estimate approximate p-values for the tests via parametric bootstrapping.

(6) Compare the nominal levels and the rejection percentages of the different tests’ decisions.

In this first simulation study, the number of simulated samples K was chosen to be 500. For the

GoF-tests, the significance level α was set to 5%. The procedure outlined above was then repeated

• for different sample sizes n with n ∈ {50; 150} to assess the improvement in the GoF-tests’

power with increasing sample size and

• two different choices of copula parameters corresponding to Kendall’s tau being either τ = 0.25

or τ = 0.5 to analyse the influence of the strength of the dependence on the performance of

the tests.

To limit the computational complexity, only bivariate copulas were considered as the true copula.

The choice of n, K and τ are comparable to similar studies like Berg (2009) and Genest et al.

(2009).

All computations were performed in R version 2.11.1 on the HPC Compute Cluster of the

RWTH Aachen University using the procedure optimise. For all estimates, the found optima were

polished by the additional use of the function optim.

Obviously different procedures for generating the contaminations in the data could have also

been used. The described perturbations and outliers in the data, however, can be seen as a very

general scenario where both measurement errors (the perturbations of the data via the random

scaling factors (ηij)i=1,...,n;j=1,2 and (η̃ij)i=1,...,n;j=1,2 respectively) as well as completely random

outliers can distort the original data sample. Moreover, the contaminations are not limited to the

sample of the joint distribution but also effect the copula and thus the dependence structure in an

additional step of the data contamination.

Examples of the data contamination prodecure are shown for a Clayton and a Student’s t copula

(sample size n = 500, Kendall’s tau = 0.75) in Figure 1.

- insert Figure 1 about here -
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From Figure 1 one can see that the contaminated data samples (red triangles) retain the general

structure of the dependence structure in the original samples (black circles) while at the same time

containing considerably more outliers in the extreme tails.

The joint effect of the contamination of both the simulated copula observations in the first step

as well as the observations from the joint bivariate distribution in the second step are illustrated

for a Gaussian and a Clayton copula (sample size n = 500, Kendall’s tau = 0.25) in Figure 2.

- insert Figure 2 about here -

Again, one can see from Figure 2 that the contaminated data samples retain the general structure

of the original samples with several outliers in the extreme tails of the distribution.

4.1.2 Results

The results of the first simulation study on the level and power of the different GoF-tests

and the different data samples are reported in Tables 1-3. The tables report the results for a

sample size of n = 150 and τ = 0.50 for the Cramér-von-Mises statistic for each of the three GoF-

testing approaches (empirical copula process, Kendall’s and Rosenblatt’s transform). Furthermore,

the results for the sample size of n = 50 as well as the results for the Kolmogorov-Smirnov test

statistics are omitted from the presentation though we comment on them in our discussion of the

results. The complete set of results and Tables is available from the author upon request.

- insert Tables 1-3 about here -

In the following, we discuss several aspects of the results in more detail.

Concerning the influence of the data perturbations, we can see from Tables 1-3 (columns labeled

”‘C”’) that the power of all GoF-tests decreases considerably when applied to the contaminated

data sets. While all tests are able to hold their nominal level for the uncontaminated samples, the

true copula is rejected in 10.8% to 34.4% of the contaminated samples. This finding is true for all

five parametric copulas considered with the perturbations having the strongest effect on the samples

simulated from the Gumbel copula. At the same time, the rejection rates for the remaining four

(false) parametric copulas seem to increase for the majority of true copula/H0-copula-pairs. It thus

seems that the presence of outliers in both the copula as well as the joint distribution significantly
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decreases the power of the GoF-tests. This result is even more striking when considering the fact

that the contaminating parameter ε = 0.1 was relatively low.

In contrast to this result, outlier detection and exclusion seems to have a beneficial effect on the

GoF-tests’ power. For all copulas and GoF-tests we can see a considerable decrease in the rejection

rates of the true copula. In several cases, the previous rejection rate from the uncontaminated data

sample could be matched with the GoF-tests again holding their nominal level. Concerning the

rejection rates for the false H0-copulas, we can see from Tables 1-3 that the rejection rates for all

parametric copula decrease considerably when excluding outliers. Even worse, the rejection rates

for the false H0-copulas decrease below the previous levels for the uncontaminated data. We can

thus see that outlier exclusion can help decrease the type I error of the GoF-testing while at the

same time increasing the chance of not rejecting a false H0-copula. However, the results also show

that the rejection rates for the false H0-copulas remain well above 20% for most parametric copulas

and GoF-tests.

Further results concerning the choice of the respective outlier detection method show that with

the exception of the S-estimator, all four remaining methods yield comparable results. For the GoF-

test based on the empirical copula process, we can see that the Minimum Covariance Determinant

estimator yields rejections rates for the data samples from the H0-copula which are slightly lower

than the rates for the other outlier detection methods. Besides these minor differences and the

poor performance of the S-estimator, however, the choice of the outlier detection method does not

seem to have a significant impact on the GoF-tests’ power.

Next, we address the question whether we can find different results for the five types of para-

metric copulas. For the Gaussian, Student’s t, Clayton and Frank copulas, the results on both the

contaminated samples as well as the samples from which outliers have been excluded are almost

the same. The only striking fact is that perturbations of the data sample from the Gumbel copula

seem to have an extremely negative effect on all three types of GoF-tests. In these cases, outlier

detection can reverse some of the loss in the GoF-tests’ power. However, the tests cannot hold their

nominal level even after outliers have been excluded from the data samples (rejection rates for the

true Gumbel copula remain well above 10 − 15% for all three tests and all five outlier detection

methods).
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From a risk management perspective, it is particularly interesting to analyse the changes in the

GoF-tests’ power for the Clayton copula (as it is far better suited to model e.g. financial portfolios

than the upper tail dependent Gumbel copula). Though one could expect that outlier detection

would increase the rejection rate for the Clayton copula as observations in the tails are more likely

to be falsely excluded from the data sample, the opposite is true. The results show that the GoF-

tests are less likely to falsely reject a true Clayton copula after excluding outliers. While rejecting

the previous conjecture that outlier exclusion could delete too much valuable information on the

bivariate distribution’s tails, the exclusion of outliers comes at the price of an increased probability

of misinterpreting the Clayton copula for an elliptical copula.

Finally, unreported results for the different choices for the sample size and Kendall’s tau yielded

results which were in line with our expectation. Both smaller sample sizes as well as a stronger

dependence between the random variables as expressed by Kendall’s tau led to a stronger influ-

ences of both the data contamination as well as the effects of outlier detection on the GoF-tests’

performance while the overall power of the tests increased with the sample size.

4.2 Robustness to model risk

In the second part of the simulation study, we analyse the contaminating effect caused by mixing

observations from a second parametric copula to the original dependence structure. To assess

the loss in power of the copula GoF-tests, we consider four different mixture copulas consisting

of two parametric copulas with mixture weights 0.9 and 0.1. The first parametric copula (with

a respective weight of 0.9) will be considered the true copula while the contaminating effect is

assumed to be caused by the second parametric copula. The second simulation study thus mimics

typical applications in practice where one tries to model a more complex dependence structure with

a single parametric copula.

4.2.1 Design of the simulation study

As before, the design of the second simulation study is outlined in detail below highlighting the

steps of the simulation procedure as well as the parameter choices. We choose the same marginal

models as in the first simulation study in order to keep the results from both studies comparable.

As mixture copulas, we consider the following models with a mixing parameter θmix = 0.9:
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• Cmix
1 (u1, u2) = θmixCClayton+(1−θmix)CFrank (Clayton copula disturbed by a Frank copula)

• Cmix
2 (u1, u2) = θmixCt + (1− θmix)CClayton (t copula disturbed by a Clayton copula)

• Cmix
3 (u1, u2) = θmixCt + (1− θmix)CFrank (t copula disturbed by a Frank copula)

• Cmix
4 (u1, u2) = θmixCt + (1− θmix)Ct (mixture of two t copulas with different parameters)

Our choice of particular mixture copulas is motivated by the wish to mix different types of tail

dependence in order to cover a broad range of possible dependence structures. The simulation

study then proceeds as follows:

For each mixture copula parameterized by the parameter(s) θk and the mixing parameter θmix

repeat the following steps K times where K is some large integer:

(1) Simulate a sample (xij)i=1,...,n;j=1,2 of size n from the joint distribution G(x1, x2) =

C(F1(x1), F2(x2)|θk, θmix) with θk being the copula parameter(s) (k = 1, 2, 3, 4 . . .) and θmix

being the mixing parameter by first simulating a sample (uij)i=1,...,n;j=1,2 of size n from the

respective mixture copula and then using the quantile functions of the known margins.

(2) Perform step (3) of the first simulation study in order to identify and exclude outliers from the

original data sample (xij)i=1,...,n;j=1,2.

(3) Estimate the parameters of the five candidate copulas via canonical maximum-likelihood (see

Kim et al., 2007) for the original sample (xij)i=1,...,n;j=1,2 as well as the five samples from which

outliers have been excluded.

(4) Perform steps (5) and (6) of the first simulation study for goodness-of-fit testing and a com-

parison of the nominal levels and the tests’ power.

As in the first simulation study, the number of simulated samples K was chosen to be 500. The

procedure outlined above was performed for sample sizes of n = 150 and n = 500. The true copula

in the mixture was parameterized with Kendall’s tau being τ = 0.25 while the parameter(s) of the

disturbing copula were chosen according to τ = 0.5.

To illustrate the effect of the mixing of two parametric copulas, simulated samples from four

mixture copulas are shown in Figure 3.
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- insert Figure 3 about here -

As can be seen from the four scatterplots in Figure 3, distinctive feautures of the disturbing

parametric copula in the mixture copula (e.g. tail dependence, high Kendall’s tau) can be recognised

from the data plots even though the mixing weight θmix is relatively low (note e.g. the concentration

of observations in the lower tail of the Student’s t-Clayton mixture due to the disturbing copula’s

lower tail dependence or the concentration of observations around the middle of the distribution in

the Student’s t-Students’ t-mixture due to the disturbing copula’s high parameter value).

In contrast to the situation in the first simulation study on data perturbations, neglecting a

disturbing parametric copula in a mixture copula does not necessarily have to result in outliers in

the sample from the joint distribution. We illustrate this conjecture by simulating two data sets

from joint distributions stemming from two mixture copulas. The scatterplots of the data are shown

in Figure 4. While the left plot shows a bivariate sample simulated from a Student’s t-Clayton

mixture copula, the second plot on the right shows a sample distribution with a Student’s t-Frank

mixture copula (sample size n = 500, mixing parameter θ = 0.9 for the Student’s t copula in both

cases, Kendall’s τ = 0.25 for the Student’s t and τ = 0.50 for both Archimedean copulas).

- insert Figure 4 about here -

The plots given in Figure 4 show that while some outliers are visible in both plots, the general

structure of the data is not as severely disturbed as in the first simulation study. It thus seems that

the disturbing influence in form of a different parametric copula mixed into the true parametric

copula does not change the characteristics of the joint distribution too much. Consequently, the

identification and exclusion of outliers should not be able to greatly increase the power of the GoF-

tests. On the contrary, outlier exclusion might prove counterproductive as distinctive features in

the tails of the data are excluded from the analysis. We investigate this question in more detail in

the following.

4.2.2 Results

The results of the second simulation study on the GoF-tests’ performance when used on mixture

copula data are reported in Tables 4-6. The sample size and Kendall’ tau were chosen as to equal
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the choices from our first simulation study (n = 150 and τ = 0.50). Results for the three GoF-

testing approaches are given in separate tables. As before, we omit the results for a sample size of

n = 50 with the complete set of results being available from the author upon request.

- insert Tables 4-6 about here -

In the following, we discuss several aspects of the results in more detail.

Concerning the influence of the data perturbations, we can see from Tables 4-6 (columns labeled

”‘C”’) that the power of all GoF-tests is relatively low for all types of mixture copulas we consider

with the exception of the Student’s t/Student’s t-mixture. In all cases we consider, the tests are

not able to hold their nominal level with the true copula being rejected in up to 16.8% of all

simulations. Again, results do not differ across the parametric copulas we consider. The strongest

negative effect on the GoF-tests’ power can be observed for the mixtures of two copulas with

different tail dependence behaviour (Clayton/Frank and t/Clayton).

Again, we can see that the detection and exclusion of outliers seems to increase the power of

the GoF-tests: For all copulas and test approaches, we find significant decreases in the rejection

rates of the true mixture copulas. Concerning the rejection rates for the false H0-copulas, we can

again observe decreasing rejection rates for the false H0-copulas after excluding outliers. In some

cases (e.g. the Clayton/Frank mixture and the Student’s t-copula as the false H0-copula), the

exclusion of outliers even leads to a drop of the rejection rates down to 6%. Though the false

parametric copulas become more likely to not be rejected by the GoF-test after the exclusion of

outliers, rejection rates are still the lowest for the true copula.

The choice of the respective outlier detection method does not seem to have any significant

influence on the outcome of excluding outliers. As all five methods yield comparable results,

together with our previous results, the Minimum Covariance Determinant estimator appears to be

the method of choice for identifying potential outliers in the data.

The mentioned results also hold for all four different mixture copulas we consider. Though small

differences can be seen in the results presented in Tables 4-6, our overall assessment of the results

given above remains valid for all four mixture copulas.

From a practical point of view, we can see that mixing a second parametric copula to another

copula has the undesired effect of a decrease in the power of any of the three GoF-test approaches we
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consider. In an empirical setting where dependence structures of financial time series are often too

complex to be represented by a simple parametric copula model, mixture copulas offer a promising

tool for capturing different facets of the underlying dependence structure. In this situation, however,

GoF-tests do not seem to offer much guidance for choosing the major components of the mixture

copula. The exclusion of outliers on the other hand comes with a tradeoff between a lower rejection

rate of the true copula and (slightly) lower rejection rates for the remaining false copulas.

We will address the trade-off between these two results in our real-case study on financial market

data.

5 Empirical application

5.1 Model

In this section, the practical usefullness of including outlier detection and exclusion methods in

the modeling of financial returns is exemplified by forecasting and backtesting the value-at-risk and

expected shortfall for a variety of bivariate porfolio. Though more commonly found in engineering

application, data contaminations are also conceivable in a risk management setting. For example,

Frésard et al. (2011) find that a large fraction of US and international banks uses data that include

fees and commissions as well as intraday trading revenues in order to validate their market risk

models. We do not analyze this question in detail here, but conjecture that contaminations in our

data samples could be present. Moreover, the GoF-tests’ power could possibly break down due to

few extreme observations in our samples. The benefits and drawbacks of testing the goodness-of-fit

of copula models in a robust manner are thus of high importance for risk managers.

We therefore forecast the VaR and ES of the portfolios by the use of copula-GARCH models

and repeat the estimations for two data samples: one unaltered data sample including possible

outliers and one with outliers excluded. As the results from the previous section did not show

any significant qualitative difference between the methods for outlier detection, we employ the

MCD-estimator for detecting possible outliers.

A stylized fact about financial data is the presence of conditional heteroscedasticity in financial

returns. As the presence of conditional heteroscedasticity could bias the results and as the results

for copula models described above only hold for i.i.d. data, we fit GARCH(1,1)-models to each
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of the univariate marginals to account for time-varying volatility. Obviously, other more complex

specifications for the marginals are possible irrespective of the modelling of the dependence struc-

ture. The GARCH(1,1) specification of the marginals is, however, in line with the vast majority of

studies on copula models for VaR-estimation (Jondeau and Rockinger 2006; Fantazzini 2009b; Liu

and Luger 2009; Aas and Berg 2009; Ausin and Lopes 2010; Hafner and Reznikova 2010). More-

over, results by Hansen and Lunde (2005) show that in many cases a GARCH (1,1) specification

cannot be outperformed by more complex models thus underlining the suitability of this study’s

marginal models (for an analysis of a misspecification of the marginal models on VaR estimates see

Fantazzini 2009a).

Then, let Pt (t = 0, 1, . . . , T ) be a time series of the prices of a financial asset. We use the log

return Rt defined as Rt := log(Pt/Pt−1) for (t ≥ 1). We are then interested in modeling the joint

distribution of the d assets with returns Rt1, . . . , Rtd. As described above, we use GARCH(1,1)-

models with Student’s t distributed innovations for the marginals thus yielding the model:

Rtj = μj + σtjZtj , (14)

σ2
tj = α0j + α1jR

2
t−1,j + βjσ

2
t−1,j, j = 1, . . . , d; t = 1, . . . , T, (15)

with independent and identically t-distributed innovations Ztj . Next, we assume the vectors Zt =

(Zt1, . . . , Ztd) (t = 1, . . . , T ) to be distributed according to

FZ(z; ν1, . . . , νd, ω) = C [F1(z1; ν1), . . . , Fd(zd; νd);ω] (16)

with parameters ν1, . . . , νd for the innovations’ distribution and a copula with parameter(s) ω.

While the parameters of the univariate GARCH-models are estimated in a standard fashion

via Maximum-Likelihood, several different methods are available for the estimation of the copula

parameters (see e.g. McNeil et al. 2005 for an overview of possible estimators). Here, the parame-

ters are fitted by canonical maximum-likelihood (ML) using rank-transformed pseudo-observations.

Recent simulation studies show that this estimator possesses some empirical optimality over the tra-

ditional full-maximum-likelihood or Inference for Margins procedures especially when the marginals

are possibly misspecified (Kim et al. 2007).
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In the empirical study we will consider equally-weighted portfolios of different assets with port-

folio returns Rp,t = 2−1
∑2

j=1Rtj . While the parameters of both the GARCH and the copula

models are estimated using the T observations from the in-sample, the Value-at-Risk and Expected

Shortfall of the portfolio are forecasted for day T+1 via Monte Carlo simulation using the following

algorithm (for an in-sample version of this algorithm, see Nikoloulopoulos et al., in press):

• For K = 10, 000, simulate K observations u
(k)
T+1,1, u

(k)
T+1,2 (k = 1, . . . ,K) from the fitted

conditional copula.

• Convert u
(k)
T+1,j to z

(k)
T+1,j (j = 1, 2) using the quantile function of the Student-t distribution.

• Transform z
(k)
T+1,j into the simulated return R

(k)
T+1,j = μ̂j + σ̂T+1,jz

(k)
T+1,j where σ̂T+1,j and μ̂j

(j = 1, 2) are the forecasted conditional volatility and mean values from the previously fitted

marginal models.

• Compute the simulated portfolio return as R
(k)
p,T+1 = 2−1

∑2
j=1R

(k)
j,T+1.

• The simulated log returns are then smoothed by kernel density estimation using the Epanech-

nikov kernel (Pritsker 2006; Alexander and Sheedy 2008) and the VaR at the 100(1 − α)%

confidence level for day T+1 is then computed as the α-quantile of the kernel density estimate.

• Update the information set with the actual portfolio return Rp,T+1, reestimate all models and

forecast the portfolio return for day T + 2 and so forth.

In order to formally test the performance of the different models, we use the test of conditional

coverage proposed by Christoffersen (1998) and Christoffersen and Pelletier (2004). Approximate

p-values for the test of conditional coverage are obtained via Monte-Carlo-simulation.

Moreover, we compute the estimate for the portfolios’ sample Expected Shortfall on day t as

the mean of the simulated returns beyond the estimated VaRs in the out-of-sample. The models’

Expected Shortfall estimates are then backtested using the sample asymptotics derived by Wong

(2008) under a standard normal null hypothesis.

5.2 Data

In the empirical study, we use daily returns on five different stock indices in order to achieve

relatively heterogenous portfolios with ample opportunities for diversification. The data includes
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the logarithmic returns on the DAX 30, S&P 500 Composite, the FTSE 100, the TOPIX and the

NIKKEI 225 indices. The data we use is collected from Thomson Reuters Financial Datastream

over the period September 14, 2006 to April 20, 2011. As portfolios, we consider all bivariate

combinations of the five indices with both respective return series entering the portfolio with equal

weights.

Excluding non-trading days, the sample consists of n = 1, 200 observations of the five indices.

The full sample of log returns is then split into half (period 1 and period 2) in order to measure

the results’ robustness to different phases of market volatility. For each period, daily forecasting of

VaR and ES is performed for the latter 100 days in that respective period with the copula-GARCH

models being estimated from rolling windows of 500 observations preceding the day for which the

portfolio returns are forecasted.

Table 7 presents summary statistics on the returns of the indices in the sample.

- insert Table 7 about here -

Over the sample period, all asset classes exhibit the classical stylised facts on financial market

data. Whereas all indices yielded negligible mean log returns on average, the hypothesis of normally

distributed log returns can be rejected for almost all return series as indicated by the skewness and

fat-tails of the return series.

5.3 Results

Results for both the copula GoF-tests as well as the backtests are presented in Table 8.

- insert Table 8 about here -

For simplicity, only the different tests’ decisions rather than the corresponding p-values and test

statistics are reported in Table 8. The significance level of the VaR and ES estimates was 1%, the

backtests as well as the GoF-test were performed at a significance level of 5%.

As a first result, we can see from Table 8 that the quality of the VaR and ES estimates is

barely influenced by the exclusion of outliers for almost all portfolios in our sample. In contrast

to this result, GoF-testing seems to be considerably affected by outlier exclusion. We find several

cases where the use of the MCD-estimator for identifying and excluding outliers changes the copula
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GoF-test’s decision (highlighted in bold type in Table 8). In the vast majority of these cases, the

GoF-test’s decision is corrected by the exclusion of outliers. In these cases, both (false) rejections

and non-rejections of GoF-test performed on the original sample were corrected. Only in one case

(DAX/TOPIX, Student’s t copula-model) does the exclusion of outliers lead to a false rejection of

a copula model that yielded acceptable VaR and ES results and which was not rejected previously

by the GoF-test performed on the original sample. This result shows that the exclusion of outliers

prior to the test of a copula model’s goodness-of-fit can aid in the selection of a VaR- or ES-optimal

parametric copula family. At the same time, the (possibly incorrect) exclusion of extreme values

in the tails of the portfolio returns does not seem to decrease the overall accuracy of the VaR

forecasting.

It is interesting to note that the type of parametric copula family does not seem to have an

influence on this result. Also, the main result that outlier exclusion can improve the accuracy of

copula GoF-testing for VaR and ES forecasting seems to be robust to a change in time periods

and thus volatility regimes. Concerning the differences in the results across the ten portfolios

we consider, we can see that the results are similar for all portfolios with the exception of the

combination of the TOPIX and NIKKEI indices for which no copula model produced acceptable

risk forecasts (mainly due to the high linear correlation between the two assets).

In summary, we can see that the exclusion of outliers can considerably improve the identification

of a parametric copula family which is optimal for forecasting the VaR and ES of a bivariate

portfolio.

6 Conclusion

The aim of this study was to analyze the robustness of copula GoF-tests as well as the perfor-

mance of several strategies for robustifying these tests. By performing two large simulation studies

on the power of copula GoF-tests when performed on samples contaminated by either outliers or a

contaminating second parametric copula, this study is the first to analyze in detail the robustness

of copula GoF-tests to perturbations in the underlying data sample. The practical relevance for

risk management purposes was exemplified in the empirical analysis of ten bivariate portfolios.

The results show that independent of the underlying true copula, the GoF-test approach or
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chosen test statistic, even minor contaminations of the data can lead to a significant decrease in the

GoF-test’s power. Conversely, the exclusion of outliers can have a beneficial effect on the power of

the GoF-tests. Moreover, the addition of a second parametric copula with even a small weight in the

resulting mixture copula can significantly decrease a GoF-test’s power. Again, the robustification

strategy improves the power of GoF-testing when used to identify the main component of a mixture

copula.

These results, however, have to be taken with care. While outlier exclusion decreases the danger

of rejecting the true parametric copula, it also lowers rejection rates for the false candidate copulas.

The gravity of this trade-off was examined closer in our real-case study on financial market data.

In the empirical risk management application, we show that excluding outliers can correct false

rejections and non-rejections of the copula GoF-tests for the majority of portfolios we consider. At

the same time, the previously found decrease in the rejection rates of the false copulas does not

seem to impair the VaR and ES forecasting accuracy.

Further research should concentrate on the question how robust versions of the copula GoF-tests

used in this study could be derived. As this study concentrated on the bivariate case, it would

also be interesting to answer the question whether the results found in this study also hold in the

multivariate case for large portfolios.
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Lopuhaä H.P., 1989. On the relation between S-estimators and M-estimators of multivariate
location and covariance. Annals of Statistics 17, 1662-1683.
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Figure 1: The figure shows two scatterplots for a bivariate Student’s t copula (left half, τ = 0.75)
and a Clayton copula (right half, τ = 0.75). The data of the original sample are shown in black
(circles) while the contaminated data samples are shown in red color (triangles). The sample size
is n = 500 for both copulas.
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Figure 2: The figure shows two scatterplots for a bivariate distribution with a Gaussian copula (left
half, τ = 0.25) and a Clayton copula (right half, τ = 0.25). The data of the original sample are
shown in black (circles) while the contaminated data samples are shown in red color (triangles).
The marginals are distributed according to X ∼ N(μ = 0;σ = 2) and Y ∼ t(ν = 4). The sample
size is n = 500 for both distributions.
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Figure 3: The figure shows four scatterplots for a bivariate mixture copula consisting of a Clayton
copula disturbed by a Frank copula (τ = 0.50 for both copulas; upper left plot), a Student’s t
copula (ρ = 0.2, df=3) disturbed by a Frank copula (τ = 0.25; upper right plot), a Student’s t
copula (ρ = 0.2, df=3) disturbed by a Clayton copula (τ = 0.25; lower left plot) and a Student’s
t copula (ρ = 0.2, df=3) disturbed by a differently parameterized t copula (ρ = 0.9, df=11; lower
right plot). The mixing parameter θmix was chosen to be 0.9. The data of the sample simulated
from the ”‘true”’ copula (i.e. the copula entering the mixture with weight 0.9) are shown in black
(circles) while the data samples stemming from the disturbing parametric copula in the mixture
are shown in red color (triangles). The sample size is n = 500 for both distributions.
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Figure 4: The figure shows two scatterplots for a bivariate distribution with a mixture copula
consisting of a Student’s t copula (τ = 0.25) and a Clayton copula (left half, τ = 0.50) or a Frank
copula (right half, τ = 0.50). The data of the sample simulated according to the Student’s t
copula are shown in black (circles) while the data samples stemming from the Clayton or Frank
copula in the mixture are shown in red color (triangles). The marginals are distributed according
to X ∼ N(μ = 0;σ = 2) and Y ∼ t(ν = 4). The sample size is n = 500 for all four copulas.
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Table 1 Percentage of rejection of the H0-copula by the GoF-test based on the empirical copula
process (Cramér-von-Mises test statistic) for the uncontaminated and contaminated data samples.
The samples of size n = 150 are simulated from distributions with different parametric copulas
with τ = 0.25. The data samples are UC=uncontaminated, C=contaminated and the five samples
with outliers excluded.

True copula Copula under H0 Data sample
UC C MCD DS M S OGK

Gaussian Gaussian 3.2 10.8 3.4 4.4 2.2 9.8 6.2
Student’s t 2.4 9.0 3.2 4.6 3.8 4.4 3.4
Clayton 48.8 42.4 35.8 37.4 36.0 41.8 38.4
Frank 7.0 11.2 4.6 4.8 3.4 9.2 4.4
Gumbel 23.2 24.4 18.8 198 20.0 24.6 21.2

Student’s t Gaussian 9.2 20.0 6.2 5.8 8.4 17.6 9.2
Student’s t 3.8 17.8 3.8 4.2 5.4 8.6 8.6
Clayton 47.2 45.6 37.6 39.0 36.6 43.8 37.4
Frank 22.8 21.2 7.6 9.4 9.2 18.8 9.8
Gumbel 20.4 29.6 15.8 20.8 19.6 28.0 20.4

Clayton Gaussian 41.4 28.2 8.4 12.8 12.4 27.2 15.8
Student’s t 37.8 17.0 9.2 12.0 12.2 14.6 11.4
Clayton 6.8 16.2 6.8 7.4 6.8 6.0 6.8
Frank 47.0 33.0 13.4 17.0 16.2 31.4 16.8
Gumbel 70.4 62.2 47.2 53.0 52.0 61.8 52.2

Frank Gaussian 7.0 10.8 3.4 4.6 3.0 12.8 5.4
Student’s t 2.4 15.4 3.8 5.6 6.2 8.4 5.8
Clayton 61.6 59.8 48.4 53.2 52.2 58.2 49.6
Frank 3.8 17.2 4.2 5.0 4.4 6.2 4.4
Gumbel 37.0 36.4 25.0 24.4 24.4 36.2 27.2

Gumbel Gaussian 14.2 28.2 8.6 7.6 9.2 20.6 8.4
Student’s t 16.2 22.0 7.4 9.6 8.8 17.0 8.8
Clayton 99.8 99.2 97.8 98.6 98.4 99.2 98.0
Frank 56.2 20.4 15.2 16.2 15.8 18.2 16.6
Gumbel 5.8 34.4 16.8 17.4 17.6 25.8 18.0
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Table 2 Percentage of rejection of the H0-copula by the GoF-test based on Kendall’s transform
(Cramér-von-Mises test statistic) for the uncontaminated and contaminated data samples. The
samples of size n = 150 are simulated from distributions with different parametric copulas with
τ = 0.25. The data samples are UC=uncontaminated, C=contaminated and the five samples with
outliers excluded.

True copula Copula under H0 Data sample
UC C MCD DS M S OGK

Gaussian Gaussian 1.8 13.6 2.0 4.4 5.8 4.2 5.4
Student’s t 2.0 8.8 2.6 3.2 4.2 5.6 4.0
Clayton 33.4 23.8 25.8 25.8 26.6 23.8 25.2
Frank 4.0 5.0 5.4 6.0 4.4 4.4 5.6
Gumbel 40.0 28.0 33.4 35.8 36.4 27.0 35.4

Student’s t Gaussian 4.6 8.0 6.0 7.4 6.2 7.4 7.4
Student’s t 6.4 17.4 6.4 5.4 5.8 8.2 6.8
Clayton 20.4 17.4 23.8 21.8 20.2 17.4 21.4
Frank 6.2 6.0 3.6 4.8 4.4 6.6 3.2
Gumbel 31.0 28.4 32.0 37.4 35.8 27.0 36.0

Clayton Gaussian 36.6 22.0 14.4 15.4 12.6 17.8 15.6
Student’s t 41.2 23.0 16.0 13.2 19.4 18.8 15.6
Clayton 6.0 13.8 11.0 9.2 10.6 4.4 11.0
Frank 6.0 5.0 3.2 4.4 4.2 4.0 4.0
Gumbel 93.6 74.8 68.8 69.8 74.2 74.0 70.4

Frank Gaussian 3.8 4.6 6.4 6.4 6.8 5.8 6.6
Student’s t 7.2 10.8 5.0 7.0 4.6 11.8 9.4
Clayton 53.4 39.2 40.4 41.4 40.8 38.2 41.0
Frank 3.4 15.2 6.8 4.8 7.2 5.6 3.0
Gumbel 41.6 25.8 30.4 34.0 33.4 27.0 35.0

Gumbel Gaussian 12.0 11.4 7.4 7.4 8.4 10.0 7.4
Student’s t 16.4 16.0 6.8 7.2 9.2 11.8 7.4
Clayton 98.8 93.4 91.6 90.6 91.0 93.2 91.2
Frank 5.0 5.4 4.4 4.2 5.2 5.0 4.8
Gumbel 4.8 18.6 24.8 26.0 27.6 19.0 26.4
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Table 3 Percentage of rejection of the H0-copula by the GoF-test based on Rosenblatt’s trans-
form (Cramér-von-Mises test statistic) for the uncontaminated and contaminated data samples.
The samples of size n = 150 are simulated from distributions with different parametric copulas
with τ = 0.25. The data samples are UC=uncontaminated, C=contaminated and the five samples
with outliers excluded.

True copula Copula under H0 Data sample
UC C MCD DS M S OGK

Gaussian Gaussian 3.8 23.4 2.4 2.2 2.4 20.4 2.2
Student’s t 4.2 6.6 1.8 2.4 2.2 4.2 2.0
Clayton 26.4 39.6 15.4 19.4 18.2 38.6 18.4
Frank 5.2 10.0 4.0 3.6 3.4 7.8 3.4
Gumbel 19.4 27.4 13.2 16.2 15.0 25.8 16.0

Student’s t Gaussian 15.0 49.4 5.0 6.6 5.0 44.4 6.6
Student’s t 4.4 11.6 3.4 6.2 4.6 10.2 6.0
Clayton 40.6 58.6 20.0 21.0 19.0 54.4 21.8
Frank 9.0 24.4 6.4 7.0 7.0 19.2 7.0
Gumbel 21.2 37.4 13.8 17.6 17.4 34.2 18.6

Clayton Gaussian 30.8 49.4 10.2 12.2 12.8 43.8 12.4
Student’s t 23.8 15.0 5.8 11.0 12.2 11.8 11.4
Clayton 4.4 16.4 3.4 5.2 4.6 12.2 5.0
Frank 28.4 25.6 10.0 12.8 14.0 24.4 13.6
Gumbel 74.2 61.6 40.6 46.2 46.6 61.0 47.2

Frank Gaussian 7.8 37.2 2.4 3.6 2.6 31.6 4.4
Student’s t 4.2 9.4 2.8 4.6 3.8 9.0 4.8
Clayton 40.8 58.0 18.0 20.8 19.0 55.8 19.8
Frank 4.0 10.8 3.8 2.8 3.0 9.2 3.4
Gumbel 30.0 35.2 17.4 20.8 19.2 34.2 22.6

Gumbel Gaussian 7.2 74.2 2.2 3.2 3.0 53.2 3.8
Student’s t 9.8 14.4 3.0 4.8 4.8 9.4 5.6
Clayton 95.4 97.2 61.2 67.8 66.4 93.2 68.0
Frank 12.2 25.4 6.4 6.6 7.4 15.6 7.4
Gumbel 5.8 52.0 10.2 13.4 12.2 38.2 12.6
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Table 4 Percentage of rejection of the H0-copula by the GoF-test based on the empirical copula
process (Cramér-von-Mises test statistic) for the uncontaminated and contaminated data samples.
The mixture weight θmix was chosen to be 0.9. The true copula in the mixture was parameterized
with Kendalls tau being τ = 0.25 while the parameter(s) of the disturbing copula were chosen
according to τ = 0.5. The samples of size n = 150 are simulated from distributions with different
parametric mixture copulas. The data samples are C=contaminated and the five samples with
outliers excluded.

True copula Copula under H0 Data sample
C MCD DS M S OGK

Clayton/Frank Gaussian 39.8 11.6 13.4 13.8 27.2 14.2
Student’s t 33.6 12.4 14.8 14.4 29.0 14.2
Clayton 16.2 9.2 7.8 7.4 6.6 7.2
Frank 43.4 17.2 20.2 19.4 41.6 20.4
Gumbel 81.8 54.0 62.0 60.8 79.6 62.4

t/Clayton Gaussian 11.2 4.0 4.2 4.6 11.0 5.4
Student’s t 15.6 0.6 3.4 4.0 5.4 4.2
Clayton 40.2 43.2 47.4 45.8 42.6 45.8
Frank 20.4 8.4 11.6 11.0 18.4 11.6
Gumbel 29.6 20.0 22.4 22.2 29.0 23.8

t/Frank Gaussian 16.6 6.4 5.0 5.2 5.2 2.4
Student’s t 11.8 2.0 2.4 5.0 2.8 7.8
Clayton 57.0 52.2 57.2 54.4 56.4 55.0
Frank 16.0 6.2 9.0 9.6 15.8 11.2
Gumbel 21.2 20.8 21.6 23.2 20.2 24.8

t/t Gaussian 10.6 3.8 4.8 6.4 9.2 5.0
Student’s t 9.6 3.2 5.2 4.2 5.6 4.4
Clayton 54.4 50.6 54.2 52.8 53.8 53.6
Frank 21.6 8.0 10.8 11.0 19.2 10.6
Gumbel 19.6 16.6 18.8 18.2 20.0 19.2
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Table 5 Percentage of rejection of the H0-copula by the GoF-test based on Kendall’s transform
(Cramér-von-Mises test statistic) for the uncontaminated and contaminated data samples. The
mixture weight θmix was chosen to be 0.9. The true copula in the mixture was parameterized
with Kendalls tau being τ = 0.25 while the parameter(s) of the disturbing copula were chosen
according to τ = 0.5. The samples of size n = 150 are simulated from distributions with different
parametric mixture copulas. The data samples are C=contaminated and the five samples with
outliers excluded.

True copula Copula under H0 Data sample
C MCD DS M S OGK

Clayton/Frank Gaussian 29.8 13.2 16.6 14.4 32.4 15.4
Student’s t 34.6 14.6 14.8 15.8 34.8 17.6
Clayton 15.0 17.8 15.6 16.2 6.2 16.2
Frank 16.8 4.2 3.4 6.2 5.0 4.4
Gumbel 94.2 78.6 81.8 81.2 93.8 83.6

t/Clayton Gaussian 15.2 2.6 5.2 4.8 8.6 4.4
Student’s t 16.8 4.0 5.6 4.0 7.4 4.4
Clayton 17.2 26.6 24.4 25.2 18.0 25.8
Frank 4.6 3.8 5.2 4.0 6.2 4.4
Gumbel 44.4 42.8 45.0 43.8 45.2 43.6

t/Frank Gaussian 11.2 1.6 3.8 3.8 6.6 3.6
Student’s t 13.4 4.2 2.2 3.0 6.8 4.6
Clayton 30.8 35.8 37.2 37.0 27.8 38.6
Frank 3.4 5.0 6.6 9.6 3.2 3.0
Gumbel 36.0 37.0 40.2 39.2 32.8 38.8

t/t Gaussian 13.8 3.2 5.6 5.4 7.0 6.8
Student’s t 8.8 4.6 4.2 4.6 4.6 6.8
Clayton 23.4 30.8 30.2 30.8 24.6 31.6
Frank 6.2 6.0 5.2 5.2 5.6 6.4
Gumbel 31.6 34.6 36.8 37.2 31.8 22.6
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Table 6 Percentage of rejection of the H0-copula by the GoF-test based on Rosenblatt’s trans-
form (Cramér-von-Mises test statistic) for the uncontaminated and contaminated data samples.
The mixture weight θmix was chosen to be 0.9. The true copula in the mixture was parameterized
with Kendalls tau being τ = 0.25 while the parameter(s) of the disturbing copula were chosen
according to τ = 0.5. The samples of size n = 150 are simulated from distributions with different
parametric mixture copulas. The data samples are C=contaminated and the five samples with
outliers excluded.

True copula Copula under H0 Data sample
C MCD DS M S OGK

Clayton/Frank Gaussian 33.0 9.8 12.0 10.8 34.0 12.2
Student’s t 19.8 6.0 9.0 7.4 19.8 10.0
Clayton 15.8 6.8 8.2 8.6 5.6 9.6
Frank 25.8 9.4 12.8 11.6 24.8 14.0
Gumbel 75.4 45.2 53.2 52.4 73.6 54.8

t/Clayton Gaussian 21.6 2.6 3.4 3.0 19.8 4.2
Student’s t 15.0 2.0 2.2 2.4 4.2 2.6
Clayton 32.4 14.0 18.0 18.2 31.4 20.2
Frank 11.6 3.4 5.0 4.6 10.4 4.8
Gumbel 29.8 16.0 17.2 16.4 27.8 18.2

t/Frank Gaussian 17.8 2.0 4.2 3.8 16.8 3.6
Student’s t 14.6 2.0 3.2 5.4 4.0 3.2
Clayton 40.2 18.2 25.2 24.8 36.0 23.2
Frank 12.0 3.8 6.8 5.4 11.4 6.2
Gumbel 26.4 18.0 21.0 19.6 25.0 21.2

t/t Gaussian 17.4 2.0 4.4 3.4 16.6 4.4
Student’s t 10.0 2.6 4.0 4.0 6.0 4.0
Clayton 44.2 22.4 25.0 24.2 42.0 27.0
Frank 10.6 4.8 6.8 6.4 11.2 7.4
Gumbel 23.2 12.8 15.2 15.8 22.6 16.0

Table 7 Summary statistics for the log return series of the five stock indices.

DAX 30 S&P 500 FTSE 100 TOPIX NIKKEI 225

Summary statistics
Mean 0.000171 0.000010 0.000019 -0.000531 -0.000411
Std. dev. 0.015680 0.016022 0.014894 0.016710 0.018162
Minimum -0.074334 -0.094695 -0.092655 -0.100070 -0.121110
Maximum 0.107974 0.109572 0.093843 0.128646 0.132345
Kurtosis 7.6740 8.2569 6.9138 7.7527 8.7044
Skewness 0.2096 -0.2370 -0.0789 -0.3682 -0.5583

Bravais-Pearson correlations
DAX 30 1 0.6337 0.8785 0.3247 0.3456
S&P 500 1 0.5731 0.1153 0.1215
FTSE 100 1 0.3533 0.3681
TOPIX 1 0.9744
NIKKEI 225 1
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Table 8 The table presents the results for the CvM-GoF test based on the empirical copula
process as well as the backtesting decisions from the test of conditional coverage (Value-at-Risk)
and the test by Wong (2008; Expected shortfall). Results are given separately for the two time
windows and the ten bivariate portfolios considered. The confidence level for both the VaR and
ES was 1%. For all three types of tests, the test decisions are given based on a significance level
of 5%. Rejection (non rejection) of a test is symbolized by a × (�). All tests were performed on
both the orignal sample (orig.) as well as the sample with outliers excluded (MCD) by the use of
the MCD-estimator. Whenever the GoF-test produced conflicting decisions for the two samples,
the corresponding line in the table was highlighted in bold type.

Time window one: 14/09/2006-31/12/2008

DAX/S&P DAX/FTSE DAX/TOPIX

GoF VaR ES GoF VaR ES GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD

Gauss � � � � � � � � � � � � � � � � � �
Student’s t � � � � � � � � � � � � ✔ ✕ ✔ ✔ ✔ ✔

Clayton × × × × × × � � � � � � ✔ ✕ ✕ ✕ ✕ ✔

Frank ✕ ✔ ✔ ✔ ✔ ✔ ✕ ✔ ✔ ✔ ✔ ✔ � � � � � �
Gumbel × × � � � � ✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✕ ✔ ✕

DAX/NIKKEI S&P/FTSE S&P/TOPIX

GoF VaR ES GoF VaR ES GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD

Gauss � � � � � � � � � � � � � � � � � �
Student’s t � � � � � � � � � � � � � � � � � �
Clayton × × × × × × ✔ ✕ ✕ ✕ ✕ ✕ � � � � � �
Frank ✕ ✔ ✔ ✔ ✔ ✔ ✕ ✔ ✔ ✔ ✔ ✔ � � � � � �
Gumbel ✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✕ ✕ ✕ ✔ ✕ ✕ ✕ ✕ ✕

S&P/NIKKEI FTSE/TOPIX FTSE/NIKKEI

GoF VaR ES GoF VaR ES GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD

Gauss � � � � � � � � � � � � � � � � � �
Student’s t � � � � � � ✕ ✔ ✔ ✔ ✔ ✔ � � � � � �
Clayton ✕ ✔ ✔ ✔ ✔ ✔ ✔ ✕ ✕ ✕ ✕ ✕ ✔ ✕ ✕ ✕ ✕ ✕

Frank ✕ ✔ ✔ ✔ ✔ ✔ � � � � � � ✕ ✔ ✔ ✔ ✔ ✔

Gumbel × × × × × × × × × × × × × × × × × ×

TOPIX/NIKKEI

GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD

Gauss ✔ ✕ ✕ ✕ ✕ ✕

Clayton � � × × × ×
Student’s t × × × × × ×
Frank ✔ ✕ ✕ ✕ ✕ ✕

Gumbel × × × × × ×
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Table 8 (continued).
Time window two: 1/1/2009-20/04/2011

DAX/S&P DAX/FTSE DAX/TOPIX

GoF VaR ES GoF VaR ES GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD

Gauss × × � � � � � � � � � � � � � � � �
Student’s t ✔ ✕ ✕ ✕ ✕ ✕ � � � � � � � � � × � �
Clayton ✔ ✕ ✕ ✕ ✕ ✕ ✔ ✕ ✔ ✔ ✔ ✔ � � � × � �
Frank × × � � � � ✔ ✕ ✔ ✔ ✔ ✔ ✕ ✔ ✔ ✔ ✔ ✔

Gumbel ✕ ✔ ✔ ✔ ✔ ✔ × × � � � � ✕ ✔ ✔ ✔ ✔ ✔

DAX/NIKKEI S&P/FTSE S&P/TOPIX

GoF VaR ES GoF VaR ES GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD

Gauss � � � � � � × × � � � � � � � � � �
Student’s t � � � × � � ✔ ✕ ✕ ✕ ✕ ✔ � � � � � �
Clayton ✕ ✔ ✔ ✔ ✔ ✔ × × � � � � � � � � � �
Frank ✕ ✔ ✕ ✔ ✔ ✔ × × � � � � � � � � � �
Gumbel ✔ ✕ ✕ ✕ ✕ ✕ ✕ ✔ ✔ ✔ ✔ ✔ � � � � � �

S&P/NIKKEI FTSE/TOPIX FTSE/NIKKEI

GoF VaR ES GoF VaR ES GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD orig. MCD

Gauss � � � � � � � � � � � � ✕ ✔ ✔ ✔ ✔ ✔

Student’s t ✔ ✕ ✕ ✕ ✕ ✕ � � � � � � ✕ ✔ ✔ ✔ ✔ ✔

Clayton � � � � � � � � � � � � ✔ ✕ ✕ ✕ ✕ ✕

Frank ✔ ✕ ✕ ✕ ✕ ✕ � � � � � � � � � � � �
Gumbel � � � � � � ✔ ✕ ✕ ✕ ✕ ✕ ✔ ✕ ✔ ✔ ✔ ✔

TOPIX/NIKKEI

GoF VaR ES

Copulas orig. MCD orig. MCD orig. MCD

Gauss ✔ ✕ ✕ ✕ ✕ ✕

Clayton ✔ ✕ ✕ ✕ ✕ ✕

Student’s t × × × × × ×
Frank ✔ ✕ ✕ ✕ ✕ ✕

Gumbel × × × × × ×
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