
Upward Planarization and Layout

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Hoi-Ming Wong

Dortmund
2011

Tag der mündlichen Prüfung:
26.09.2011

Dekanin:
Prof. Dr. Gabriele Kern-Isberner

Gutachter:
Prof. Dr. Petra Mutzel, Technische Universität Dortmund
Prof. Dr. Christoph Buchheim, Technische Universität Dortmund

Abstract

Drawing directed graphs has many applications and occurs whenever a nat-
ural flow of information is to be visualized. Given a directed acyclic graph
(DAG) G, we are interested in an upward drawing of G, that is, a drawing of
G in which all arcs are drawn as curves that are monotonically increasing in
the vertical direction. Besides the upward property, it is desirable that the
number of arc crossings arising in the drawing should be minimized.

In this thesis, we propose a new approach for drawing DAGs based on the
idea of upward planarization. We first introduce a novel upward planarization
approach for upward crossing minimization of DAGs that utilizes new ideas
for subgraph computation and arc reinsertion. In particular, it is the first
upward crossing minimization algorithm which does not utilize any layering
techniques known from the framework by Sugiyama et al. [STT81] or from
the upward planarization algorithm by Eiglsperger et al. [EKE03].

Our approach addresses the main weakness of the classical two step up-
ward crossing minimization approaches, where in the first step a layering of
the input DAG is computed and then, in the second step, the number of
crossings is minimized by solving the so-called k-level crossing minimization
problem (k-LCM). However, choosing an inappropriate layering in the first
step can negatively effect the subsequent k-level crossing minimization step,
thus causing many unnecessary arc crossings.

As shown by experimental evaluations, our new approach—referred to as
layer-free upward crossing minimization (LFUP)—outperforms the state-of-
the-art crossing minimization heuristics based on layering even if an exact
algorithm for k-level crossing minimization is used. Furthermore, LFUP also
outperforms the existing approaches following the idea of upward planariza-
tion, that is, the approaches by Di Battista et al. [BPTT89] and Eiglsperger
et al. [EKE03].

We also present two extensions for the new approach: an extension for
upward planarization of directed hypergraphs and an extension for handling
given port constraints, that is, drawing constraints that arise due to the
prescribed positions where arcs can be connected to the drawing of the nodes.

The upward planarization approach LFUP computes an upward planar
representation (UPR) R of the input graph G, where crossings are modeled
by dummy nodes. We introduce a new layout approach for realizing UPRs,
that is, a drawing algorithm for constructing upward drawings where the arc
crossings arising in the drawing are the ones modeled by the dummy nodes in
R. Only few algorithms exist for realizing UPRs, most of these algorithms are
based on simple ideas and originally developed for drawing planar st-graphs,
hence our layout approach constitutes the first approach specialized for real-
izing UPRs. It offers two main advantages over the popular Sugiyama frame-
work: It benefits from the advantage of the upward planarization approach
LFUP, thus producing upward drawings with significantly less arc crossings.

i

Therefore, the drawing quality increases considerably. Furthermore, while the
upward drawings produced by layer-based drawing approaches are often un-
structured and appear unnaturally flat, the new layout approach constructs
upward drawings that better reflect the structure of the digraphs and give a
tidier impression to the viewer.

ii

Zusammenfassung

Die Visualisierung von gerichteten azyklischen Graphen (DAGs) gehört zu
den wichtigsten Aufgaben im automatischen Zeichnen von Graphen. Hierbei
suchen wir für einen gegebenen DAG G eine Zeichnung von G (Aufwärts-
zeichnung von G genannt), sodass alle Kanten als Kurven streng monoton
in vertikaler Richtung steigend gezeichnet werden. Um die Lesbarkeit der
Zeichnung zu erhöhen, sollte neben der Aufwärtseigenschaft auch die Anzahl
der Kantenkreuzungen in der Zeichnung möglichst gering sein.

In dieser Dissertation entwerfen wir einen neuen Ansatz zur Visualisierung
von gerichteten Graphen, der auf der Idee der Aufwärtsplanarisierung basiert.
Wir stellen zuerst ein innovatives Aufwärtsplanarisierungverfahren vor, das
neue Techniken für die Berechnung aufwärtsplanare Untergraphen und die
anschließende Kanteneinfügephase einsetzt. Vor allem werden in dem neuen
Verfahren keine Schichtungstechniken zur Kreuzungsminimierung benutzt,
wie wir sie aus dem Zeichenverfahren von Sugiyama et al. [STT81] oder aus
dem Aufwärtsplanarisierungsverfahren von Eiglsperger et al. [EKE03] kennen.
Die Festlegung einer Schichtung kann nämlich zu sehr schlechten Ergebnissen
führen. Folglich besitzt das neue Verfahren nicht die Nachteile der bisherigen
Kreuzungsminimierungsverfahren.

Experimentellen Analysen zeigen, dass das neue Aufwärtsplanarisierungs-
verfahren deutlich bessere Ergebnisse liefert als das klassische, auf Schich-
tungen basierende Kreuzungsminimierungsverfahren, und dies unabhängig
von den benutzten Lösungsansätzen (heuristisch oder optimal) für die k-
level Kreuzungsminimierungsphase. Auch im Vergleich mit den bekannten
Aufwärtsplanarisierungsverfahren (Di Battista et al. [BPTT89] und Eigls-
perger et al. [EKE03]) zeigt sich, dass der neue Ansatz weitaus bessere Ergeb-
nisse liefert. Wir stellen auch zwei Erweiterungen des neuen Ansatzes vor:
eine Erweiterung zur Aufwärtsplanarisierung von gerichteten Hypergraphen
und eine zur Unterstützung von Port Constraints.

Das Ergebnis der Aufwärtsplanarisierung ist eine aufwärtsplanare Re-
präsentation (UPR) — ein eingebetteter DAG, in dem Kreuzungen durch
künstliche Dummy-Knoten modelliert werden. Wir stellen ein Layoutver-
fahren zur Realisierung solcher UPRs vor, d.h., ein Verfahren, das aus einem
UPR eine Aufwärtszeichnung konstruiert, sodass die Kantenkreuzungen in
der Zeichnung zu den Dummy-Knoten des gegebenen UPR korrespondieren.
Die wenigen existierenden Zeichenverfahren zur Realisierung von UPRs sind
sehr einfach und wurden ursprünglich entwickelt, um planare st-Graphen zu
zeichnen. Unser neues Verfahren stellt somit das erste Layoutverfahren dar,
das speziell im Hinblick auf die Realisierung von UPRs entworfen wurde. Es
bietet zwei wichtige Vorteile gegenüber dem etablierten Standardzeichenal-
gorithmus von Sugiyama et al.: Die Zeichnungen besitzen wesentlich weniger
Kreuzungen, was zur deutlichen Verbesserung der Lesbarkeit führt. Ferner
sind sie strukturierter und machen einen aufgeräumteren Eindruck.

iii

iv

Acknowledgment

Many people supported me during the time of research. Without their help,
this thesis would never have been possible. I wish to express here my gratitude
to all of them.

First of all, I want to thank my advisor Prof. Dr. Petra Mutzel who gave
me the opportunity to work with her and her research group at TU Dortmund.
I am grateful to my co-authors Carsten Gutwenger and Markus Chimani for
giving valuable advices regarding upward planarization and layouts and for
sharing their experience and knowledge. I also want to thank Miro Spönne-
mann for the fruitful cooperation and for sharing his knowledge about port
constraints and orthogonal drawings. Many thanks go to Nils Kriege and
Bernd Zey for proofreading parts of this thesis and Gundel Jankord for doing
all the administrative work. I am very grateful to Karsten Klein, the brave
fighter against “Kraut und Rüben”, who gave me many helpful advices and
who sacrificed a lot of free time for proofreading this thesis. I want to thank
the members of my defense commission: Prof. Dr. Christoph Buchheim,
Prof. Dr. Ernst-Erich Doberkat, Prof. Dr. Petra Mutzel, and Dr. Moritz
Martens. Finally, I wish to thank my family and friends for their support.

Hoi-Ming Wong
Dortmund, 2011

v

Variable Description
a arc
ã arc to be reinserted
e arc/edge
f face
G graph
H hypergraph
L layering
R upward planar representation
s source
ŝ super source
t sink
t̂ super sink
U subgraph
u, v nodes
α hyperarc
γ combinatorial embedding
Γ (upward) planar embedding
ε line segment
Θ weight function
τ sink-switch
Notation Description
D drawing
u v a path from u to v
u 6 v no path exists from u to v
|V | cardinality of set V
X(u) x-coordinate of node u
Y (u) y-coordinate of node u
u ≺ v Y (u) < Y (y)
Abbreviation Description
BFS breadth-first search
DAG directed acyclic graph
DFS depth-first search
FUPS feasible upward planar subgraph
ILP integer linear programming
k-LCM k-level (multi-level) crossing minimization
LFUP layer-free upward planarization
SDP semidefinite programming
sT -graph single source DAG
UPL upward planarization layout
UPR upward planar representation
UIP upward insertion path

Table 1: Notation

vi

Contents

1 Introduction 1
1.1 Corresponding Publications . 3
1.2 Main Results . 5
1.3 Organization of the Thesis . 6

2 Preliminaries 9
2.1 Graphs . 9
2.2 Drawings and Embeddings . 11
2.3 Upward Planarity . 16
2.4 Planarization . 17

3 Upward Drawing Algorithms 21
3.1 Framework by Sugiyama, Tagawa, and Toda 21

3.1.1 Cycle Removal . 22
3.1.2 Layer Assignment . 23
3.1.3 Crossing Minimization 27
3.1.4 Coordinate Assignment 32
3.1.5 Extensions . 34

3.2 Alternative Upward Drawing Algorithms 36
3.2.1 Mixed Upward Planarization 37
3.2.2 Dominance Drawing . 38
3.2.3 Visibility Representation 38

4 Upward Planarization 41
4.1 Introduction . 41

4.1.1 Motivation . 42
4.1.2 Challenges . 43

4.2 Upward Planarization Algorithm 44
4.2.1 Algorithm Overview . 44
4.2.2 Feasible Subgraph . 46
4.2.3 Arc Reinsertion . 50
4.2.4 Runtime Analysis . 66

4.3 Experimental Evaluation . 68
4.3.1 Benchmark Sets . 68

vii

viii Contents

4.3.2 Evaluated Algorithms 70
4.3.3 Comparison . 71
4.3.4 Deeper Analysis . 74
4.3.5 Runtime . 84
4.3.6 Summary . 84

4.4 Extension to Port Constraints 86
4.4.1 Chain Substitution . 87
4.4.2 Feasible Subgraph . 87
4.4.3 Arc Reinsertion . 88

4.5 Extension to Hypergraphs . 90
4.5.1 Pre-processing . 91
4.5.2 Feasible Subgraph and Arc Reinsertion 91

4.6 Example . 98

5 Upward Planarization Layout 109
5.1 Introduction . 109
5.2 Straight-forward Approach . 111
5.3 Upward Planarization Layout 111

5.3.1 Layer Assignment and Node Ordering 113
5.3.2 Post-processing . 118
5.3.3 Polyline Hierarchical Layout 120
5.3.4 Experimental Evaluation 125
5.3.5 Orthogonal Layout . 139

5.4 Example . 147
5.5 Drawing Gallery . 150

6 Discussion 163
6.1 Conclusion . 163
6.2 Future Works . 166

Bibliography 169

Index 179

Chapter 1

Introduction

Since the publication of the drawing framework by Sugiyama, Tagawa, and
Toda in 1981 [STT81], the suggested crossing minimization approach based
on layering, that is, first computing a layering of the input graph and then
solving the corresponding k-level crossing minimization problem, is a synonym
for upward crossing minimizing of directed acyclic graphs (DAGs).

Although two alternative techniques based on the idea of planarization
were proposed—the first one by Di Battista, Pietrosanti, Tamassia, and
Tollis [BPTT89] and the second one by Eiglsperger, Eppinger, and Kauf-
mann [EKE03]—they had not managed to establish themselves in practice.
One main reason was the poor performance of the first upward planarization
approach (see Di Battista et al. [DGL+00]) which produces upward planar
representations, that is, upward planar embedded DAGs where arc crossings
are modeled by dummy nodes (crossing dummies), with too many crossing
dummies.

Another reason was the absent of sophisticated algorithms for construct-
ing upward drawings based on a given upward planar representation. Exist-
ing algorithms for this task are slightly modified upward drawing algorithms
which were originally developed for visualizing planar st-graphs, for example,
the dominance drawing approach suggested by Di Battista, Tamassia, and
Tollis [DTT92] or the visibility drawing approach published by Rosenstiehl
and Tarjan [RT86] and independently by Tamassia and Tollis [TT86]. These
algorithms are based on simple topological numbering of the nodes and the
modification is limited to the replacement of the images of the crossing dum-
mies by arc crossings after the complete upward planar representation has
been drawn; for an example, see Figure 1.1. Unsurprisingly, these drawing
approaches are by far not competitive in comparison to the well known and
widespread drawing framework by Sugiyama et al.

The negative impression of the upward planarization idea regarding up-
ward crossing minimization reported in [DGL+00] was corrected by Eiglsper-
ger et al. [EKE03]. They suggested an approach called mixed upward pla-
narization and showed that upward planarization can outperform the com-

1

2 Chapter 1. Introduction

8

9

7

3

2

1

4

0

6

(a) Visibility: Due to the fact that crossing
dummies are replaced by crossings, the
crossing points of the arcs often also ap-
pear as bend-points.

1

0

3

4

5

6

7

8

9

(b) Dominance drawing: Each arc (also
an arc that connects crossing dummy
nodes) has at most one bend.

Figure 1.1: Limitations of the visibility and the dominance drawing approaches.

mon crossing minimization heuristics based on layering, hence give a hint
regarding the true potential of the upward planarization idea in visualization
of DAGs. However, their approach has some limits: the basic idea of the up-
ward planar subgraph computation step is quite simple and the edge insertion
algorithm uses a layering technique which may reduce the number of possible
insertion paths, in particular insertion paths causing few arc crossings may
not be considered.

In view of these facts, the main goal of this thesis is to develop a new
drawing algorithm for drawing digraphs (and directed hypergraphs) based
on the idea of upward planarization. For this, we have to face the following
challenges in order to overcome the drawbacks of the existing approaches:

1. Develop an upward planarization approach which can exploit the po-
tential of the upward planarization idea.

2. Develop a layout approach tailored to the construction of upward draw-
ings based on a given upward planar representation.

The goal is motivated by the fact that drawing DAGs/directed graphs has
many applications and occurs whenever a natural flow of information is to
be visualized. Application domains for drawing DAGs are for example the
following:

Bioinformatics: The systems biology graphical notation (SBGN) [NHM+09]
is a standardized graphical representation developed for describing com-

1.1. Corresponding Publications 3

plex biological networks and processes. The underlying graph of many
SBGN diagrams, in particular the activity flows, is a directed graph.

Figure 1.2(a) gives an example of an activity flow diagram where a
signaling pathway is illustrated.

Hardware engineering: Visualizing directed graphs arises in nearly all mod-
ern hardware development tools, for example, Simulink1, ASCET2, or
LabVIEW3. Such tools offer a graph editor for modeling hardware sys-
tems. The underlying graphs of the models are mostly either directed
graphs or directed hypergraphs. Since the modeled objects are chips
or electric components, arcs connecting the objects are often given pre-
scribed connecting positions, called ports.

Figure 1.2(b) gives an example drawing of a model visualized by Simulink.

Software engineering: The Unified Modeling Language (UML) is a model-
ing language for specification, construction and documentation of soft-
ware. Automatically drawing UML diagrams is a typical example where
graph drawing algorithms are to be applied.

Figure 1.2(c) gives an example of a hierarchical UML class diagram.

Business process modeling: Directed graphs are used for modeling typ-
ical business processes like workflows, communication or control pro-
cesses.

This list of application domains and the corresponding examples can be
arbitrarily extended and illustrates that graph drawing algorithms, and in
particular algorithms for drawing directed graphs, are widely used in practice.

1.1 Corresponding Publications

The results presented in this thesis have been partially published in confer-
ences and journals. In the following we list these publications with references
to the corresponding chapters and sections of this thesis.

• The layer-free upward planarization algorithm introduced in Sections 4.1–
4.3 was first published in the conference proceeding of the Workshop on
Experimental Algorithms (WEA) 2008 [CGMW08]. An extended ver-
sion was published in the Journal of Experimental Algorithmics (JEA)
2010 [CGMW10a].

1http://www.mathworks.com/products/simulink
2http://www.etas.com
3http://www.ni.com/labview

4 Chapter 1. Introduction

cytosol

nucleus

Ras

p7056K

JNK

MSK2

PKC

N-WASP

Vav

MARK

Akt

STAT

RasGAP1

GAB1

Grb7

NckErB2

p90RSK

ARF

c-Jun

Spry

Gbr2 Actin

Ca++

PLC gamma

Shc

Cbl

Pl3K 1a

c-Src

FKHR/DAF16BAD

MSK1

DAG

p21

EGF

GRP1

Rac

MAPKK
Pl3,4,5P3

PDK1

Raf-1

CREB

SOS

eEF2K

p85 Pl3K

EFGR

Rho

(a) An underlying directed graph of an activity flow diagram
from [MSLN+09].

2.3 Specialties of Data Flow Diagrams

Logging
2

Actuator
1

Switch

Subsystem

in1

in2

out1

out2
Step

Ramp

Gain

2*PI

Divide
sensor3

3

sensor2
2

sensor1
1

(a) Simulink

(b) SCADE

(c) LabVIEW

Figure 2.2: Example diagrams from graphical modeling tools

5

(b) A model of a hardware component drawn by Simulink
(Spöneman [Spö09]).

!"#$$%&'()*+,-%)./

-%)./

!"#$%

"&0+ 1$&+

!&$'%

2+,34*-%)./

(##)$*+,-%./,.%0),12

!0),12

3)$%)*+'0),12

5+&')(6%&+%'(0-%)./7)%89+(*%'96%&+%'(0-%)./ #$$%&'()*+,-%)./

:$%;-%)./

!(##)$*+,-%.0),12

<9894'9-%)./ 2)(;'(0-%)./

(c) A hierarchical UML class diagram (www.oreas.com).

Figure 1.2: Application examples.

1.2. Main Results 5

• The upward planarization layout approach introduced in Chapter 5 was
published first in the conference proceeding of Graph Drawing (GD)
2009 [CGMW10b]. An extended version was published in the Journal
of Graph Algorithms and Applications (JGAA) 2011 [CGMW11].

• The extension of the layer-free upward planarization algorithm to port
constraints and directed hypergraphs (Sections 4.4–4.5), as well as the
layout algorithm for digraphs and directed hypergraphs with port con-
straints (Chapter 5) were published in the conference proceedings of
Graph Drawing (GD) 2010 [CGM+10].

1.2 Main Results

We introduce in this thesis a novel approach for upward crossing minimization
of directed acyclic graphs based on the idea of upward planarization. It is the
first approach for upward crossing minimization that computes a so-called
upward planar representation without to adopt any layering techniques. The
conducted experiments reveal, that the new approach outperforms all known
upward crossing minimization heuristics on the used benchmark sets, includ-
ing the state-of-the-art crossing minimization heuristics based on layering,
the mixed upward planarization by Eiglsperger et al. [EKE03] and the grid
sifting approach by Bachmaier et al. [BBG11]. For example, in compari-
son to the classical layered crossing minimization approach (based on longest
path layering and the barycenter heuristic) and grid sifting, the new approach
achieved up to 90% and 70% crossing reduction, respectively. Hence it can be
considered as a new state-of-the-art upward crossing minimization heuristic.

We also develop two extensions for the new approach: an extension to
directed hypergraphs and to port constraints. To the best of our knowledge,
it is the first approach for upward planarizing directed hypergraphs with port
constraints.

Directed graphs are usually drawn with the framework by Sugiyama et al.
Alternative drawing approaches are rare and most of them focus on special
classes of directed graphs. In this thesis, we also propose a layout approach
for drawing directed graphs and hypergraphs based on a given upward planar
representation. It is the first approach specialized for drawing these classes of
graphs with given prescribed port positions. In comparison to the Sugiyama
drawing framework, the new layout approach not only produces drawings with
much fewer arc crossings, but the drawings also have better drawing charac-
teristics, that is, the drawings are structured and give a tidier impression to
the viewer; for example, see Figure 1.3.

6 Chapter 1. Introduction

2

23

5

37

19

4

36

14

30

34

10

6

27

8

3325

21

1

35

29

26

13

20

31 11

18

3 17

24

7

28

12

0

15

9

32

16

22

(a)

6

14

24

15

16

19

25

13

12

4

23

11

2

22

1

5

26

18

20

9

21

3

0

17

7

10

3735

36

8

34

33

32

31

30

29

28

27

(b)

Figure 1.3: Two upward drawings of instance g.38.21 (North DAGs): (a) A draw-
ing with 27 crossings produced by the drawing framework by Sugiyama et al. (b)
A drawing with one crossing produced by the new upward planarization drawing
approach (see Chapter 5). In contrast to (a) the drawing offers clarity, is well struc-
tured, and tidy. Obviously, the drawing in (b) reflects some characteristics of the
graph which are completely missing or hard to detect in (a).

1.3 Organization of the Thesis

We start with an introduction to the basics and notations required for this
thesis (Chapter 2). The upward planarization approach proposed in this
thesis is based on the idea of planarization. We give a sketch of this approach
in the last section of Chapter 2.

In Chapter 3, we give an overview of the main solutions for each individual
step of the drawing framework by Sugiyama et al. In particular, we focused on
the heuristics for the k-level crossing minimization problem. We also briefly
describe some extensions for the framework: the extension to hypergraphs
and the extension to port constraints. At the end of Chapter 3, we depict
the mixed upward planarization approach by Eiglsperger et al. and describe

1.3. Organization of the Thesis 7

two alternative approaches for upward drawing DAGs: the dominance and
the visibility drawing approach. Both approaches can be used for visualizing
upward planar representations.

Chapter 4 is dedicated to the problem of upward planarization. We pro-
pose a new approach referred to as layer-free upward planarization for upward
planarization of DAGs. In Section 4.1, an introduction to upward crossing
minimization is given, where we also explain the motivations for developing
a new approach and depict the arising challenges. After an overview of the
whole upward planarization algorithm (Section 4.2.1), we describe in detail
how to tackle the two main problems, namely the feasible subgraph (Sec-
tion 4.2.2) and the arc reinsertion problem (Section 4.2.3). In Section 4.2.4,
we theoretically analyze the runtime of the new approach and in Section 4.3,
we evaluate the layer-free upward planarization approach by experiments. We
then show how to extend the new approach for handling port constraints (Sec-
tion 4.4) and how to upward planarize directed hypergraphs (Section 4.5). In
the last section of the Chapter 4, we give an illustrated example of the new
upward planarization approach.

The final outcome of the layer-free upward planarization approach is an
upward planar representation. In Chapter 5, we depict an approach called
upward planarization layout for constructing hierarchical layouts based on
upward planar representations. After an introduction in Section 5.1, we in-
troduce a straight-forward approach for constructing upward drawings (Sec-
tion 5.2). In Section 5.3.1, we depict how to improve the straight-forward
approach, and in Section 5.3.3, we explain a layout approach for construct-
ing upward drawings based on a given layering. The new approach is then
experimentally evaluated (Section 5.3.4). We compare it with the alterna-
tive dominance and visibility drawing approaches and with the traditional
Sugiyama drawing framework. We also introduce a layout approach for or-
thogonal upward drawings (Section 5.3.5). In Section 5.4, we illustrate the
new layout algorithm by an example and in the last section of Chapter 5,
we give some upward drawings produced by the new and by the Sugiyama
drawing framework.

In the final chapter, we give a conclusion of the achieved results and
discuss possible future works.

8 Chapter 1. Introduction

Chapter 2

Preliminaries

This chapter introduces the required theoretical basics and notations for this
thesis. Section 2.1 provides elementary definitions related to graphs. The
basics of graph drawing are described in Section 2.2. Upward planarity is a
crucial property that plays an important role in upward drawing digraphs.
Backgrounds and basics regarding this property are introduced in Section 2.3.
The last section of this chapter is dedicated to the planarization approach by
Batini, Talamo, and Tamassia [BTT84].

The following bibliographical sources are used for this chapter: the text-
book by Diestel [Die05]; the textbook by Di Battista, Eades, Tamassia, and
Tollis [DETT99] and the textbook by Kaufmann and Wagner [KW01].

2.1 Graphs

Undirected graph. A graph is a pair G = (V,E), where V is a finite set
of nodes and E is a set of pairs (u, v) with u, v ∈ V . An element e = (u, v)
of E is called an edge and u and v are called the end nodes of e. The edge e
is a self-loop if u ≡ v. An edge e is incident to a node u if u is an end node
of e. u is adjacent to v if (u, v) ∈ E. The degree of u is the number of edges
incident to u. If x is a element of G, that is, x ∈ V or x ∈ E, then we denote
x ∈ G.

Path and cycle. A path p = 〈v0, . . . , vk〉 in a graph G = (V,E) is a non-
empty sequence of mutually distinct nodes of G such that (vi, vi+1) ∈ E
with 0 ≤ i ≤ k − 1. Instead of a sequence of mutually distinct nodes, a
path can also be described by a sequence of mutually distinct edges p =
〈(v0, v1), . . . , (vk−1, vk)〉. A cycle is a path p with the additional edge (vk, v0)
that connects the last node with the first node of p. A graph which does
not contain any cycle is called a acyclic graph. A length function ` : E → R

assigns for each edge of E a length. The length of a path p is the sum of the
lengths of the edges in p.

9

10 Chapter 2. Preliminaries

Subgraph and component. A graph U = (V ′, E′) is an (induced) sub-
graph of a graph G = (V,E), if V ′ ⊆ V and E′ ⊆ E and E′ contains all the
edges (u, v) ∈ E with end nodes u, v ∈ V ′.

G = (V,E) is connected if for any pair of nodes {u, v}, there is an undi-
rected path from u to v in G. A maximal connected subgraph of G is a
component of G. G is k-connected with k ∈ N, if and only if |V | > k and for
every subset X ⊆ V with |X| < k, the graph obtained from G by deleting
nodes of X is still connected. A maximal 2-connected subgraph of G is also
called a block of G.

Tree and forest. An undirected acyclic graph is called a forest and a
connected forest is called a tree. The leaves of a tree T are the nodes with
degree one. Nodes with degree greater than one are called inner nodes of T .

In the following we assume that a graph is connected unless otherwise
noted.

Directed graph. A directed graph or digraph is a pair G = (V,A), where
V is a finite set of nodes and A is a set of ordered pairs (u, v) with u, v ∈ V .
An element a = (u, v) of A is called an arc and u is the source node and
v is the target node of a. a = (u, v) is called an outgoing arc of u and an
incoming arc of v. The in-degree of u is the number of incoming arcs and the
out-degree of u is the number of outgoing arcs of u. A node u ∈ G is a sink
of G if its out-degree is zero and u is a source of G if its in-degree is zero.
The (undirected) underlying graph of G is the graph G′ = (V,E), where E is
obtained by considering the arcs of A as undirected edges.

A directed tree T is a DAG such that its underlying graph is a undirected
tree.

Analogously to the definition of undirected paths and cycles, a directed
path and directed cycle in a digraph G can be defined. We say u dominates v,
if there exists a directed path in G from node u to node v. We denote this by
u v and use u 6 v if u does not dominate v, that is, no path exists in G
from u to v. An arc a = (u, v) dominates a node w or another arc a′ = (u′, v′)
if v dominates w or u′, respectively.

Multigraph. G = (V,E) is a multi-graph if E is a multi-set, that is, there
is at least one element e ∈ E with occurrence greater than one. e is called a
multi-edge. G is called a simple graph if it contains no multi-edges. Analo-
gously, a directed multi-graph can be defined.

sT -graph and st-graph. An important role in this thesis plays the class
of sT -graphs. sT -graphs are connected, directed acyclic graphs (DAGs) with
exactly one source s. In such digraphs, s dominates all nodes of G. A
restricted class of sT -graph are the st-graphs. These are sT -graphs with
exactly one sink t and in addition, an st-graphs contains the arc (s, t).

2.2. Drawings and Embeddings 11

Directed hypergraph. A directed hypergraph is a pair H = (V,A), where
V is again a finite set of nodes and A is a set of pairs (S, T) with non-empty
sets S, T ⊆ V . The elements of A are called hyperarcs, S are the source nodes,
and T the target nodes. Hence, a directed hyperarc can connect several source
nodes with several target nodes. While the definition conceptually allows
S ∩ T 6= ∅ (that is, a hyperarc may be or contain a self-loop), we will not
consider such cases in our thesis.

Now let H be a self-loop free directed hypergraph and α = (S, T) a hy-
perarc of H. A directed tree T = (Vα, Aα) with Vα = (S ∪ T ∪ N) is an
underlying tree of α if:

(i) for each source node s ∈ S there is a node n ∈ N with (s, n) ∈ Aα;

(ii) for each target node t ∈ T there is a node n′ ∈ N with (n′, t) ∈ Aα;

(iii) the degree of each v ∈ S ∪ T is exactly one within T and

(iv) each n ∈ N is only adjacent to vertices of Vα and has degree at least
two.

We call N the hypernodes of α.
Informally, the source and target nodes are the leaves and the hypernodes

are the inner nodes of T . T is called confluent if each source node dominates
all target nodes. (This definition is very similar to the definition of Dicker-
son, Eppstein, Goodrich, and Meng in the context of confluent drawings of
directed and undirected graphs [DEGM03], where several edges can be merged
together to one edge.) Analogously to Chimani and Gutwenger [CG07] (see
tree-based and point-based drawing style of hyperedges), we distinguish two
cases: If the cardinality |N | of N is exactly one, then T is called a star-based
underlying tree and if |N | > 1, T is called a tree-based underlying tree. A triv-
ial observation: While the star-based underlying tree of a hyperarc is unique,
the tree-based is not. An example of star-based and tree-based underlying
trees is given in Figure 2.1.

A directed underlying graph H of a directed hypergraph H is obtained by
substituting each hyperarc α by an underlying tree Tα, that is, H consists
of the nodes of H together with the hypernodes and arcs of all underlying
trees. If each α is replaced by its star-based underlying tree, then H is called
a star-based underlying graph of H. H is confluent if all underlying trees are
confluent.

2.2 Drawings and Embeddings

Given a graph G, a drawing D of G is a function that maps the nodes to
non-overlapping points on a plane surface S and each edge (u, v) to a simple
open curve that connects the corresponding points of u and v in S and does
not cross any other node points.

12 Chapter 2. Preliminaries

h

t1

s2

t2
t3

s1

h

t1

s2

t2
t3

s1

h

h

Figure 2.1: Directed underlying trees of a hyperarc: A star-based (left) and a tree-
based (right) directed underlying tree of the hyperarc α = ({s1, s2}, {t1, t2, t3}). The
hypernodes are labeled with “h” and are drawn in red. Both underlying trees are
confluent since the sources dominate the targets.

Drawing style. We distinguish between two main types of drawings: pla-
nar and non-planar. A planar drawing D is a drawing on the plane where
no any two edges intersect each other except at the end-points. Clearly, not
every graph admits a planar drawing. A graph that can be drawn in planar
fashion is called a planar graph. A special case of planar drawings are upward
planar drawings: A (strictly) upward drawing D is a drawing of a digraph
such that each arc is drawn (strictly) monotonically increasing in the verti-
cal direction. If the drawing is also planar, then D is (a strictly) an upward
planar drawing. A digraph which admits an upward planar drawing is called
an upward planar digraph. It is easy to see that only DAGs can be drawn in
upward fashion.

There are different drawing styles for drawing planar and non-planar
graphs and each style has its advantages and disadvantages. Some common
drawing styles are:

Polyline Drawing: In this style, the edges of the graph are drawn on the
plane as polygonal chains.

Straight-line Drawing: The edges are drawn as straight-lines. Straight-
lines drawings can be considered as a special case of the polyline style
where the images of the edges do not have any bend-points.

Orthogonal Drawing: This style can also be considered as a special case
of the polyline style where each arc is drawn as a chain of horizontal
and vertical line segments.

Layered/Hierarchical Drawing: The nodes of the graph are assigned to
certain layers, and nodes on the same layer are placed on the same
horizontal line. This style has become a quasi standard style for drawing
digraphs.

2.2. Drawings and Embeddings 13

6

1

32

4 5

6

1

32

4 5

1

6

3

2

54

Figure 2.2: Illustration of the different drawing styles and combinations: The three
figures show drawings of the same planar but non-upward planar DAG. (left) A non-
planar layered straight-line strictly upward drawing. (middle) A non-planar layered
orthogonal upward drawing. (right) A planar but non-upward polyline grid drawing.

Grid Drawing: In a grid drawing, the coordinates of the nodes, bend-
points, and edge crossings are integers.

Figure 2.2 gives an illustration of the different drawing styles and combina-
tions.

Aesthetic criteria. One main task in graph drawing is to find algorithms
that draw graphs “nicely” . Whether a graph is drawn nicely or not depends
on many factors and on the personal, therefore subjective, interpretation of
“nice”. Nonetheless, a drawing of a graph should reflect domain specific re-
quirements and should help the reader easier to remember and understand the
visualized information. Although there is no clear formal definition of “nice
drawing”, it turns out that there are several aesthetic criteria which can be
used to characterize a nice drawing (see Purchase, Cohen, and James [PCJ96]
or Purchase [Pur97]). Some of the commonly accepted criteria are:

crossings: A drawing with too many edge crossings may appear cluttered
and hence makes difficult for the reader to track the edges. This is in
particular the case when the drawing area is small. Therefore it is often
preferable that the number of edge crossings occurring in a drawing is
small. For many applications the number of edge crossings is considered
as an important aesthetic criterion.

area: This criteria measures the compactness of a drawing. Since a drawing
can scale up or down, this criterion is always related to some given
drawing conditions called resolution rules. These conditions are, for

14 Chapter 2. Preliminaries

(a) (b)

Figure 2.3: Aesthetic criteria and readability: Two orthogonal drawings of the
same graph. (a) A drawing with many bend-points, arc crossings, and high average
edge length. (b) In contrast to (a), a drawing with fewer arc crossings, bend-points
and lower average edge length.

example, the minimal distance of the nodes, minimal edge length or
minimal layer distances (for layered drawings). With respect to the
given resolution rules, it is desirable that a drawing should be drawn
with small area requirement, where the area of a drawing D can be
defined, for example, as the area occupied by the bounding box of D.

edge length: Short edges are desirable since they help the reader to find out
easier whether two nodes are connected or not. Further, in a hierarchical
drawing long edges can increase the drawing area. This is due to the
characteristic of hierarchical drawings, that is, nodes are assigned to
layers. Thus, for long arcs that span more than one layer, additional
spaces on each spanned layer must be allocated. These spaces are later
occupied by the drawings of the long arcs. Allocate enough spaces also
allows that the given minimal distance between the arcs can be fulfilled.
There are several common measurements for this criterion: the total
sum of the edge lengths, the average edge length, or the maximum edge
length.

general direction: Whenever flows are modeled by digraphs, it is preferable
that a drawing of the model helps the viewer to recognize the general
flow direction easily. Hence, this criterion plays an important role in
drawing digraphs.

angular resolution: It is eligible that the angle between two consecutive edges
incident on the same node is as large as possible, large angles make the
distinction of edges easier.

bends: An edge drawn as a polyline consists of a chain of straight-line seg-
ments. The point where two straight-line segments meet are called
bend-points. An edge drawn with few or no bend-points is easier to fol-
low than an edge drawn with a lot of bend-points. Furthermore, edges

2.2. Drawings and Embeddings 15

8

15

7

10

11

12

9

0

12

4

14 3

6

5

13

(a)

8

15

7

10

11

12

9

0

12

4

14 3

6

5

13

(b)

Figure 2.4: (a) “Spaghetti effect” caused by arcs with too many bend-points. (b)
A tidier drawing obtained by eliminating some bend-points.

with many bend-points tend to take a zig zag course. This may cause
the so-called “spaghetti effect” (see Figure 2.4).

aspect ratio: Given the width w and the height h of a drawing, the aspect
ratio is defined as w/h. For some applications it is desirable that the
drawings fit to a given screen or printing area, hence also to a certain
aspect ratio.

In consideration of these aesthetic criteria, drawing graphs can be re-
garded as a multi-criteria optimization task. We will see that for some crite-
ria, this task includes several NP-hard problems.

Observe that whether a drawing is good or not strongly depends on the
application demands. There may be situations where a compact representa-
tion is preferred over a representation with few arc crossings or vice versa.
Also a set of numbers, for example, number of arc crossings, height or width
may not correctly reflect the quality of a structured and tidy drawing. So
manually inspecting the drawings is the best way to evaluate the quality.

Combinatorial and planar embeddings. A planar drawing of G on a
plane S defines for each node a fixed circular order of its incident edges.
According to this circular order, each planar drawing D can be assigned to
a certain equivalence class called combinatorial embedding γ of G. We say
D induces γ. The drawing D also subdivides S into regions called faces. A
region f is an internal face if f is bounded by a cycle of edges, called face-
cycle of f . If f is the outer unbounded region, then f is called the external

16 Chapter 2. Preliminaries

face of D. Since D induces γ, we also say f is a face of γ and write f ∈ γ. In
the following we use face and face-cycle as synonym if it is non-ambiguous.
If an element x, for example, a node or an arc, is an element of the face-cycle
f then we denote x ∈ f .

We observe that the definition of combinatorial embedding does not fix
the external face. Thus, in contrast to a combinatorial embedding, a planar
embedding Γ is defined as a combinatorial embedding γ with a fixed external
face. γ is then the underlying combinatorial embedding of Γ.

2.3 Upward Planarity

Now let G = (V,A) be a planar DAG and let Γ be a planar embedding of
G with the given external face f∗. Γ is an upward planar embedding of G
if there exists an upward drawing D inducing Γ such that f∗ is the external
face of D.

A sink-switch/source-switch of a face-cycle f is a node u ∈ f for which
there is no arc of f starting/ending at u (see Figure 2.5).

Since the main goal is to construct an upward drawing of G with as few
arc crossings as possible, we are interested in testing whether G admits an up-
ward planar drawing or not. Unfortunately, such a test cannot be performed
in polynomial time for general DAGs unless NP = P (Garg and Tamas-
sia [GT01]; Garey and Johnson [GJ90]). However, as shown by Bertolazzi, Di
Battista, Mannino and Tamassia [BDMT98], for an important class, namely,
the class of single source digraphs, upward planarity testing can be performed
in (|V |+ |A|). We now give more facts on this class of graphs:

Let G be an sT -graph and Γ an upward planar embedding of G. We can
observe that in an upward planar drawing D inducing Γ, there exists a sink-
switch τ ∈ f for each internal face f ∈ Γ such that τ is drawn higher than all
other nodes incident to f (see Figure 2.5). We call τ the top-sink-switch of
face f .

Let γ be the underlying combinatorial embedding of Γ. A face-sink-graph
F of G with respect to γ is a graph such that:

• for each face f of γ, there is a node uf in F which corresponds to f ;

• for each sink-switch τ of γ, there is a node vτ in F which corresponds
to τ ;

• graph F has an edge (uf , vτ) if τ is a sink-switch in f .

An example of a face-sink-graph is given in Figure 2.5.
As described by Bertolazzi et al. [BDMT98], a face-sink-graph can be used

to test whether γ is an underlying embedding of an upward planar embedding
Γ in time O(|V |+ |A|). In the positive case, Γ can then be derived from γ by
determining a suitable face f of γ as the external face of Γ.

2.4. Planarization 17

5

(a)

6

2

4

1

f1

f0 f2

f3

f4
f5

f6
3

5

(b)

6

2
4

1

f1

f0

f2

f3

f5

f6
3

f4

(c)

3

f4
f5

f0

f1

f2

f3

f6

6

5

Figure 2.5: Two upward planar drawings of the same sT -graph inducing the up-
ward planar embeddings Γa and Γb, respectively. Notice that Γa and Γb have the
underlying combinatorial embedding γ in common. (b) The face-cycle of f2 ∈ Γb
contains four switches: two sink-switches (node 5 and 6) and two source-switches
(node 2 and 4). Node 6 is the top-sink-switch of f2. (c) The face-sink-graph F with
respect to γ.

2.4 Planarization

Regarding the aesthetic criterion crossings, it is desirable to draw a non-
planar graph with minimized number of edge crossings. An approach to
achieve this goal is the planarization algorithm suggested by Batini, Talamo,
and Tamassia [BTT84] in 1984. It is widely recognized as the most successful
heuristic for minimizing edge crossings for undirected graphs (Gutwenger and
Mutzel [GM04]). Our approach for upward planarizing DAGs is inspired by
their idea of planarization, hence we give here some basic definitions concern-
ing planarization and then depict the individual phases of the planarization
approach.

Let G = (V,E) be a graph and U = (V,E′) a planar subgraph of G. U is
a maximum planar subgraph of G if the number of edges of U is the highest
among all planar subgraphs of G.

Definition 1 (Insertion Path). An insertion path p with respect to some
edge e = (x, y) ∈ E \ E′ is an ordered list 〈e1, . . . , eκ〉 of edges of U such
that the graph U ′ obtained after realizing p is planar. The realization works
as follows: We split the edges e1, . . . , eκ obtaining the crossing dummy nodes
c1, . . . , cκ, and add the edges (x, c1), (c1, c2), . . . , (cκ, y) representing e.

Definition 2 (Dual Graph). Let Γ be a planar embedding of a connected
graph G = (V,E). The dual graph GD = (V D, ED) of G with respect to
Γ is a graph that has a node wf ∈ V D for each face f ∈ Γ, and an edge
(ug, vh) ∈ ED for each edge e ∈ G that is on the face-cycle of g and h.

18 Chapter 2. Preliminaries

The planarization approach by Batini et al. can be divided into two main
phases:

Planarization

Phase 1 Planar Subgraph Computation

Phase 2 Edge Reinsertion

Planar Subgraph Computation: In this phase a planar subgraph U of G
is computed. Following the idea that if few edges have to be reinserted
in the subsequent step then few edge crossings can arise, it is eligible
that U should be a maximum planar subgraph. However, the maximum
planar subgraph problem, that is, to decide whether a given subgraph
U is a maximum subgraph of G or not, is NP-complete (Garey and
Johnson [GJ90]). Although there are exact algorithms to solve this
problem, for example, Jünger and Mutzel [JM96], the runtime for large
instances is far from being practical, hence heuristics are preferred.
An often used simple heuristic for computing planar subgraphs can be
depicted as follows: We start with an arbitrary spanning tree U of G
and iteratively try to add the edges e /∈ U one by one to U . Each time
a planarity test is performed on the intermediate graph U := U ∪ e.
We continue with the next edge if U is planar, otherwise e is not added
to U . It will be reinserted later in the edge reinsertion phase. As final
result, a planar subgraph U = (V,E′) and a set of edges B = E \ E′ is
obtained. The runtime of the algorithm is O(|E| · |V |) since planarity
testing can be performed in O(|V |) (Hopcroft and Tarjan [HT74]) and
O(|E|) edges are iteratively added.

Edge Reinsertion: Obtaining a planar subgraph U and the arc set B, the
task in this phase is to reinsert the edges of B one by one into U such
that as few edge crossings as possible arise. As proved by Ziegler [Zie00],
this task is again NP-hard even when the embedding of U is fixed, hence
practical heuristics are used. Most of these heuristics use a dual graph
UD of U as routing network to compute an insertion path for the edges
of B. Due to the construction of the routing network, a path pD in
UD corresponds to an insertion path p for an edge e ∈ B. In addition,
when setting the length of each edge of UD to one, the length of pD
corresponds to the number of edges crossed by p. Hence, a short path
in UD corresponds to an insertion path for e which causes few edge
crossings.
After realizing p in U , an embedded intermediate graph U ′ is obtained
where crossings are represented by dummy nodes (crossing dummies).

2.4. Planarization 19

We call U ′ an intermediate planar representation. Using U ′ as starting
point, the remaining edges of B are iteratively reinserted. The final
result is a planar representation of G where crossings are modeled by
crossing dummies.

Figure 2.6 illustrates the idea of the planarization approach where the non-
planar graph K6 is planarized.

6

1

54

2 3

(a)

6

1

54

2 3

(b)

6

1

4

c

2 3

5

(c)

c

2

c

3

5

c

4

1

6

(d)

Figure 2.6: Planarization: (a) A drawing of the non-planar graph K6. (b) A
drawing of a planar subgraph of K6 obtained after deleting the edges (2, 5), (1, 4),
and (3, 6). (c) The corresponding intermediate planar representation obtained after
realizing the insertion path p for edge (2, 5). p crosses only edge (3, 4). The crossing
is modeled by a crossing dummy (red node labeled with c). (d) The final planar
representation of K6 obtained after reinserting all edges.

20 Chapter 2. Preliminaries

Chapter 3

Upward Drawing Algorithms

Drawing digraphs is one of the fundamental issues in graph drawing, having
received a lot of attention in the past. Given a digraph G, we ask for a drawing
D of G such that the crossings occurring in D are minimized. Further, D
should reflect the general flow direction modeled by G. Ideally, the drawing
should be drawn upward without any crossings if G is upward planar.

Several algorithms were proposed for drawing digraphs. Without doubt,
the most popular one is due to Sugiyama, Tagawa, and Toda [STT81], sug-
gested in 1981, which can be considered as the drawing framework for di-
graphs. We depict this framework in Section 3.1. In particular, we give an
overview of the main solutions for each single step of the framework and
describe also some published extensions to hypergraphs and to port con-
straints. In Section 3.2, we consider two alternative approaches for drawing
DAGs: the dominance and the visibility drawing algorithm. Both algorithms
are restricted to planar st-graphs, however they can be easily extended to
general DAGs by using upward planarization algorithms. Such an upward
planarization algorithm is introduced in the last section of this chapter.

3.1 Framework by Sugiyama, Tagawa, and Toda

The classical framework for drawing digraphs—in the following referred to as
Sugiyama—was proposed by Sugiyama et al. [STT81]. Since its publication,
a vast number of modifications and alternatives for the individual steps have
been suggested. Due to the simplicity and universality of the framework—
it can draw nearly all kinds of directed graphs—it has become one of the
most popular drawing algorithms. The original algorithm produces polyline
hierarchical drawings, but there also exist several modifications allowing it to
produce layouts in different styles like orthogonal drawings (see Section 3.1.5)
or drawings where arcs are drawn as splines (Gansner, Koutsofios, North,
and Vo [GKNV93]). The framework can be divided into four main individual
steps:

21

22 Chapter 3. Upward Drawing Algorithms

Sugiyama’s Framework

0. Cycle Removal transform the input digraph G into a DAG

1. Layer Assignment assign the nodes of G to layers

2. Crossing Min.
reorder the nodes on each layer subject to crossing
reduction

3. Coord. Assignment assign coordinates to nodes and bend-points

In the following subsection we concentrate on some popular solutions.

3.1.1 Cycle Removal

The cycle removal step can be considered as a pre-processing step where a
general digraph G is transformed into a DAG. A common method for this
task is to compute a feedback arc set F , that is, a set of arcs, such that by
reversing the arcs of F , G becomes acyclic. The original direction of these
arcs will be restored in the last step of the framework.

Regarding the aesthetic criterion general direction, it is eligible that the
cardinality of F should be the smallest among all feedback arc sets of G.
However, finding such a set for general digraphs1 leads us to the NP-hard
minimum feedback arc set problem (Garey and Johnson [GJ90]). Several
approaches, both heuristic and exact, were suggested to tackle this problem:

DFS: The depth-first search heuristic partitions the arcs of G into forward-,
back-, cross- and tree-arcs. By reversing the back-arcs, G becomes
a DAG. Yet, this heuristic delivers unsatisfying results (Eades and
Sugiyama [ES90]), that is, the size of the feedback arc set is unnecessary
large. On the other hand, it is simple and fast (runtime O(|V |+ |A|)).

Greedy: Eades, Lin and Smyth [ELS93] proposed a greedy heuristic which
also has runtime O(|V |+ |A|). The approach is quite simple and can be
sketched as follows: Given a sequence S = 〈v1, . . . , vn〉 of the nodes of
G, an arc a = (vi, vj) is a forward-arc if i < j and a is a backward-arc if
j > i. The set of backward-arcs corresponds to a feedback arc set. Thus
the task is to find a sequence such that the number of the backward-arcs
is minimal.
The idea of the greedy heuristic is very intuitive. It greedily puts nodes
with high out-degree and low in-degree at the begin and nodes with
high in-degree and low out-degree at the end of the sequence S (see
Figure 3.1). The authors proved that for graphs with no two-cycles,

1For planar digraphs this problem is solvable in polynomial time (Lucchesi [Luc76]).

3.1. Framework by Sugiyama, Tagawa, and Toda 23

v1 v3v2 v5v4 v6 v7

Figure 3.1: Heuristic Greedy: The nodes of the graph are placed on a horizontal
line and then are ordered such that the number of backward-arcs (dashed line) is
small.

that is, a cycle C = 〈u, v, u〉, the cardinality of the computed feedback
arc set does not exceed |A|

2 −
|V |
6 . Due to its good practical results

(Eades, Lin and Smyth [ELS89]), simplicity, and speed, the heuristic is
widely used for the cycle removal step.
We refer to the greedy approach in the following as Greedy-CR.

Optimal: Grötschel, Jünger and Reinert [GJR85] considered the maximum
acyclic subgraph problem which is strongly related to the minimum feed-
back arc set. The results of their study on the polytopes associated
with the maximum acyclic subgraph problem can be used for a branch-
and-cut program. Further, the authors also showed: The maximum
acyclic subgraph problem is closely related to the linear ordering prob-
lem. Therefore exact algorithms for the linear ordering problem, for
example, Jünger and Mutzel [JM97], can be used to solve the minimum
feedback arc set.

On the one hand, it is desirable to have a small feedback arc set, but on
the other hand, in most real world applications, the feedback arcs are given
or are easily identified due to the semantic of the models, for example, the
feedback arcs are associated with signal feedback-loops. Moreover, according
to Gansner et al. [GKNV93], most real-world digraphs have a natural flow
direction even when they contain cycles and by removing some improper arcs,
the final drawing may be disturbed. Due to this fact, Gansner et al. suggest
to use simple and fast approaches like DFS-based heuristics or Greedy-CR
instead of using complex algorithms.

3.1.2 Layer Assignment

A layering/leveling of a DAG G = (V,A) is a partition L = 〈L1, . . . , Lk〉 of V
such that for each arc a = (u, v) with u ∈ Li and v ∈ Lj , i < j holds. Li is
called layer/level and G a layered/leveled DAG with respect to L. The span
of a is defined as j − i. If each arc of L has a span of one, then L is a proper

24 Chapter 3. Upward Drawing Algorithms

layering. Otherwise a proper layering can be achieved by splitting each arc a
with span greater than one by introducing long arc dummies2 on each layer
between i and j. Then the arc a consists of a chain of subarcs. Note that a
proper layering is required for the crossing minimization step.

The height of L is the number of layers of L, thus k. The width of a
layer Li is the number of regular nodes, that is, original nodes of G, and
long arc dummies. The width of a layering L is the number of nodes of the
widest layer of L. In some publications, the width is defined without taking
the dummies into account. But since the drawings of the arcs should have a
certain distance to the drawings of some neighboring elements, that is, nodes
or arcs, the space occupied by long arcs is significant. The definition reflects
this fact.

Let Λ be a horizontal line and let Y (Λ) denotes the y-coordinate of Λ. A
hierarchical/layered drawing with respect to L is an upward drawing of G such
that the drawing of the nodes on layer Li are placed on the i-th horizontal
line Λi and Y (Λi) < Y (Λi+1) for 1 ≤ i < k.

Having regard to the aesthetic criteria area and edge length, the number of
long arc dummies, the height, and the width of a layering should be as small
as possible. This leads us to a multi criteria optimization task. However,
the problem of finding a layering with minimum height when the width is
restricted can be reduced to the multiprocessor scheduling problem which is
known to be NP-hard (Garey and Johnson [GJ90]; Sugiyama, Tagawa, and
Toda [STT81]). Lin showed in his PhD thesis that computing a layering such
that the height and the number of long arcs dummies are minimized, is also
NP-hard [Lin95]. The problem of layering DAGs with restricted width was
investigated by Branke, Leppert and Middendorf [BLME02]. They showed
that given a fixed integer w, finding a layering with width w is NP-hard.
In addition, they also proved that for two given integers w and h, to decide
whether a layering exists for a DAG with width w and height h can be done
in polynomial time if at most a constant number of nodes are placed on each
layer.
In the following we introduce some algorithms concerning layering DAGs:

Longest Path: This classical layering algorithm is based on a longest path
algorithm (Eades and Sugiyama [ES90]; Mehlhorn [Meh84]). It first
places each node v with zero out-degree on the top most layer Lk and
then removes v and its incident arcs from G. Then the algorithm re-
cursively places all nodes with zero out-degree on the next lower layer
Lk−1 and stops if G is an empty graph. The longest path heuristic with
runtime O(|V |+|A|), is quite fast. It computes layerings with minimum
height, but the algorithm tends to place the nodes to higher layers. Due
to this fact, the width of the layering is often unnecessary large (Eades
and Sugiyama [ES90]). We denote this heuristic with LongestPath.

2For the sake of convenience, instead of long arc dummies we often just say dummies.

3.1. Framework by Sugiyama, Tagawa, and Toda 25

Promotion Layering: Unlike the other algorithms introduced here, pro-
motion layering by Nikolov and Tarassov [NT06] is a post-processing
approach which can be applied only on an already obtained layering. It
was developed for tackling the problem of unnecessary long arc dum-
mies.
For a given layering L, a single promotion step moves a node v from its
layer L(v) to a lower layer L(v)−1. If the layer L(v)−1 does not exist,
then a new layer is added to L. In the case when the upward property
is violated, that is, there is a node u with (u, v) and L(u) = L(v), then
the promotion step is recursively applied to u. A promotion step is
successful if the total number of long arc dummies is reduced thereafter.
The promotion layering heuristic performs for each non-source node a
promotion step. If the promotion step is successful, then the heuristic
continues with the next node, otherwise the layering before the call of
the promotion step is restored. The algorithm stops if no successful
promotion step can be applied to the non-source nodes of G.
Although promotion layering in combination with LongestPath does
not compute a layering with minimum number of dummies, the ex-
perimental evaluations of Nikolov and Tarassov reveal quite good re-
sults, but compared to an optimal solution (see GKNV-Layering) a
small gap still exists. Furthermore, promotion layering needs runtime
O(d|V |(|V |+ |A|)) where d is the number of dummies of L. In practice
it is noticeable slower than the optimal solution GKNV-Layering.

Coffman-Graham: This heuristic was developed by Coffman and Graham
originally for the multiprocessor scheduling problem [CG72], but since
this problem is closely related to the problem of finding a layering of a
DAG with minimum height (see Sugiyama, Tagawa, and Toda [STT81]),
it can also be used for layering DAGs.
The heuristic first computes for each node v a priority with respect to
the in- and out-degree of v. In this process, nodes with high in-degree
are assigned a high priority. For a given fixed number w, the algorithm
”fills” the layers one by one with nodes (starting with a highest prior-
itized node). If a layer is full, that is, the number of regular nodes is
w, then it continues to fill the next empty layer. A layering of G is
obtained after all nodes are distributed. Observe that w is the number
of regular nodes, otherwise if w gives the number of regular and dummy
nodes, then the NP-hardness of layering a digraph with restricted width
w would be contradicted.
According to the published results of Lam and Sethi [LS77], the heuristic
computes a layering L such that the height of L is at least (2− 2

whmin)k
where hmin is the minimal height with respect to w. Although the
heuristic gives us some control on the width of the computed layering,

26 Chapter 3. Upward Drawing Algorithms

the main drawback is that the approach tends to produce layerings
with many dummies which can significantly slow down the crossing
reduction step. Another flaw is that the input DAG must not contain
transitive arcs. Thus a pre-processing step is necessary to transform G
into a transitive arc free digraph. This transformation requires runtime
O(|V |2) which is also the final runtime.

GKNV: Long arc dummies correspond to the length of the arcs in the final
drawing. Further, too many dummies can increase the runtime of the
crossing reduction step. Gansner, Koutsofios, North and Vo tackled
this problem by an integer linear programming (ILP) approach that
computes a layering with the objective to minimize the number of long
arc dummies [GKNV93]. It is formulated as follows:

L(u) ≥ 1 for each node u ∈ V (3.1)
L(v)− L(u) ≥ 1 for each arc (u, v) ∈ A (3.2)

L(v)− L(u) ≥ δ(u, v) for each arc (u, v) ∈ A (3.3)
min

∑
a=(u,v)∈A

Θ(a)(L(v)− L(u)) subject to (3.1) – (3.3) (3.4)

where L(u) denotes the layer u is assigned to, δ(u, v) the given minimal
span of (u, v), and Θ(a) the weight of the arc a. Usually, the weight
of each arc and δ(u, v) are set to one. The inequations (3.1)–(3.2)
ensure a feasible layering and (3.3) ensures that each arc fulfills the
given minimal span. The authors show that the relaxed problem of this
integer program has an integer solution, therefore an optimal solution
can be computed in polynomial time.
In order to attain a better node distribution over the layers, Gansner
et al. proposed to apply a post-processing step called balancing to the
obtained layering. In this balancing step, nodes with the same in- and
out-degree are reassigned to alternative layers with low width such that
the upward property of the layering is not violated. We refer to the
GKNV approach in combination with balancing as GKNV-Layering.
As shown by our experimental evaluations, GKNV-Layering is quite
fast and computes layerings with nearly minimum height. Further-
more, the experimental evaluations of Healy and Nikolov [HN02b] reveal
that drawings obtained by Sugiyama using GKNV-Layering required less
drawing area than when using LongestPath or the approach by Coff-
man and Graham.

ILP: Healy and Nikolov investigated the DAG layering problem from the
polyhedral point of view. They suggested an ILP [HN02b] and a branch-

3.1. Framework by Sugiyama, Tagawa, and Toda 27

and-cut [HN02a] approach for finding a height and width bounded lay-
ering with minimum number of dummies. For this, GKNV-Layering was
used to determine feasible upper bounds for height and width. Although
both solutions are not practical due to their runtime, the computed re-
sults can be used for testing the quality of existing layering heuristics.

MinWidth/StretchWidth: Based on the longest path algorithm, Nikolov,
Tarassov, and Branke developed two heuristics called MinWidth and
StretchWidth which try to minimize the width of a layering [NTB05].
Both approaches not only take into account the individual width of
each nodes, but also the width of the dummies. The behavior of the
algorithms can be controlled by a set of variables, that is, by choos-
ing appropriate parameters, the number of dummies, the height and
the width of a layering can be influenced. In order to improve the re-
sults, both algorithms use a modified version of the promotion layering
heuristic [NT06] as post-processing step for dummy reduction.
The experimental evaluations of Tarassov et al. [NTB05] reveal that
MinWidth with post-processing produces layerings which width is smal-
ler than GKNV-Layering, but this advantage is bought dearly by high
runtime, more dummies, and layers. Compared to GKNV-Layering,
StretchWidth also produces layerings with more dummies and layers and
moreover, the average width of the layerings is not significant smaller.

We conclude from our study of the published results, that among the
described layering algorithms, GKNV-Layering computes the best layering in
the sense of compactness, runtime, and number of long arc dummies.

3.1.3 Crossing Minimization

Having obtained a proper layering L of a DAG G = (V,A), the next task is
to minimize the arc crossings. Due to the fact that the number of crossings
of a hierarchical drawing with respect to L depends only on the node order,
the task is equivalent to finding an appropriate node order for each layer.
Ideally, G is level planar with respect to L, that is, there exists a crossing-free
hierarchical drawing of G with respect to L. This level planar property can be
tested in O(|V |+ |A|) as described by Jünger, Mutzel and Leipert in [JLM98].
In [JLM99], they also describe how to obtain a planar embedding for a level
planar graph3.

If L does not admit a crossing-free hierarchical drawing, then finding an
appropriate node order for the layers to minimize the number of crossings
leads to the k-level (multi-level) crossing minimization problem (k-LCM).
This problem is NP-hard even for 2-LCM (Garey and Johnson [GJ83]). Re-
garding the latter problem, we distinguish two cases: the 1-sided and the

3It should be noticed here that level planarity testing is not part of the original framework
by Sugiyama et al.

28 Chapter 3. Upward Drawing Algorithms

2-sided 2-LCM. Let L1 and L2 be the two layers of a 2-LCM instance. In
1-sided 2-LCM, the node order of L1 is fixed and we ask for a crossing min-
imizing node order of the non-fixed layer L2. In 2-sided 2-LCM, the node
order of both layers is not fixed and we ask for a crossing minimizing node
order of both layers.

There is a huge amount of publications regarding the k-LCM problem.
We briefly sketch the main approaches here:

Layer-by-Layer Sweep: This approach is developed to extend existing 1-
sided 2-LCM heuristics to deal with the k-LCM problem (Di Battista,
Eades, Tamassia, and Tollis [DETT99]). In a layer-by-layer sweep, an
initial node order of the first layer L1 is determined at the beginning.
Then a procedure called up-sweep is applied. In this up-sweep, the node
order on a layer Li is fixed and an 1-sided 2-LCM heuristic is used for
computing the node order on the layer Li+1. This procedure is applied
until the up-sweep reaches the top layer Lk. Thereafter, the obtained
node order of Lk is fixed and a down-sweep which works similar to an up-
sweep is performed from Lk to L1. Up- and down-sweep are alternately
applied until the number of crossings induced by L remains unchanged
or a certain number of iterations of up- and down-sweeps is reached.

Barycenter/Median: The barycenter crossing minimization heuristic (Su-
giyama, Tagawa, and Toda [STT81]) and the median crossing min-
imization heuristic (Eades and Wormald [EW86]) are simple and fast
heuristics for the 1-sided 2-LCM problem with runtime O(|L2| log |L2|))
and O(|L2|) respectively. The barycenter heuristic is based on the intu-
itive idea, that a node v should be placed near its adjacent neighbors.
Starting with an arbitrary initial node order, the barycenter value Bc(v)
is defined as follows:

Bc(v) = 1
Deg(v)

∑
u∈N(v)

Rank(u)

where Deg(v) denotes the degree of v, N (v) denotes the adjacent nodes
of v and Rank(u) the rank of u in the node order of its layer. Observe
that Bc(v) is the average of the rank value of the adjacent neighbors of
v. Due to this, in some literature the barycenter heuristic is also called
an averaging heuristic.
Another averaging heuristic is the median heuristic. Also starting with
an arbitrary initial order, the median heuristic assigns the median of
the ranks of the sorted adjacent neighbors of v to v.
The barycenter and median heuristic determine the final node order of
L2 by sorting the nodes according to their assigned barycenter respec-
tively median value. A random version of barycenter or median can be

3.1. Framework by Sugiyama, Tagawa, and Toda 29

easily obtained by using a random initial node ordering combined with
a randomized stable sorting algorithm. Based on the random versions
a multi-run variant can be derived. In a multi-run version, a random
heuristic is started several times and after obtaining the results of the
runs, the best one is chosen.
As shown by Mutzel and Jünger in [JM97], multi-run variants can give
a huge improvement. Their results reveal that on 1-sided 2-LCM, the
multi-run barycenter heuristic performs quite well, that is, the results
are not far away from the optimum.
We denote a layer-by-layer sweep algorithm based on the barycenter
heuristic with Barycenter.

Greedy-Switch: The greedy-switch crossing minimization heuristic (Eades
and Kelly [EK86]) swaps each pair of neighbored nodes u, v on L2 when
the number of crossings is reduced thereafter. The swap operations are
applied to L2 as long as a crossing minimizing pair can be found. Since
there are at most |L2|2 node pairs on L2, the runtime isO(|L2|2). Due to
the property that it only applies a swap operation if the number of cross-
ings can be reduced, the heuristic is often used as a post-processing step
after performing any crossing minimization heuristic (Mäkinen [Mäk90];
Gansner, North and Vo [GNV88]).
We refer to the greedy-switch heuristic as GreedySwitch.
Gansner et al. [GKNV93] used a median heuristic for crossing minimiza-
tion and then applied a layer-by-layer sweep based on GreedySwitch as
post-processing. They reported that the post-processing step “typically
provides an additional 20-50% reduction in edge crossings”. But on the
other hand, some publications [JM97, EK86] reported that the perfor-
mance of GreedySwitch on 1-sided and 2-sided 2-LCM instances is very
poor.

Sifting: The sifting heuristic was originally introduced by Rudell for reduc-
ing nodes of an ordered binary decision diagrams (OBDDs) [Rud93].
Matuszewski, Schönfeld and Molitor adapt the approach for the 2-LCM
problem [MSM99]. The heuristic computes a local crossing minimizing
position of a node v on the free layer L2 under the assumption that
the current node order of L2 is fixed. After node v is placed at the
computed position, the heuristic continues with the next node of L2 by
fixing the current obtained node order. The algorithm stops when all
nodes of L2 are placed. As shown by the authors, the results of sifting
on 1-sided 2-LCM instances is slightly better (2–2.5% less crossings)
than the barycenter heuristic but it is significant slower with runtime
O(|L2|2).
The authors also describe an extension of the sifting heuristic called

30 Chapter 3. Upward Drawing Algorithms

global sifting for k-level crossing minimization. Let J = 〈v1, . . . , vn〉 be
a list of the nodes of G sorted in descend order of their degree. A sifting
trial is an application of the sifting heuristic to each node v1, . . . , vn on
its corresponding layer. A trial is a failure if the number of crossings
cannot be reduced thereafter. Global sifting consists of two steps: In the
first step, sifting trials are performed on the nodes of J until failure.
Then in the second step, the order of J is reversed and sifting trials
are performed again on the nodes of J until failure. These steps are
repeated alternately until a certain number of failures is detected.
As reported in [MSM99], the results of global sifting are better than
that obtained by Barycenter (15–20% less crossings). However, the
runtime is also significantly increased, but according to the authors still
practical for digraph with small density (=|A|/|V |), and size |V | ≤ 100.
Based on the sifting idea, Bachmaier, Brandenburg, Brunner, and Hüb-
ner published a more sophisticated version of global sifting [BBBH10].
Instead of sifting a single node, they suggested to sift blocks, where a
block is a single node or a maximum connected subgraph of long arc
dummies. Compared to the original global sifting heuristic, their version
achieves a further crossing reduction by 5%− 10%. In the following we
refer to their version of global sifting as Global-Sifting.
The idea published in [BBBH10] was extended by Bachmaier, Brun-
ner, and Gleißner. They developed a sifting version called grid sift-
ing [BBG11] (in the following referred to as Grid-Sifting). While
the previous sifting approach allows a block only to change its position
on the corresponding layer (horizontal sifting), Grid-Sifting allows it
in addition to change the assigned layer if the upward property is not
violated (vertical sifting). Furthermore, the approach can modify the
given layering by introducing new layers, if it is required for vertical
sifting, or by deleting unnecessary layers. Due to the fact that many
positions are tried in order to find a local optimal position for a block,
the runtime of this approach is accordingly high, but the results are
very satisfying. As reported by the authors, grid sifting outmatched
most k-LCM heuristics including Barycenter.

ILP/SDP: In [JM97], Jünger and Mutzel investigated the 2-LMC problem.
They gave a branch-and-cut approach for the 1-sided 2-LCM problem
that can solve instances with size |L2| ≤ 60 optimally. In addition, they
also gave an approach for the more difficult 2-sided 2-LMC problem for
computing exact solutions. Due to the runtime this approach is only
practicable for small instances.
Buchheim, Wiegele and Zheng modeled the 2-sided 2-LCM problem as
an quadratic linear ordering problem and use a semidefinite program-
ming (SDP) approach to compute an exact solution [BWZ10]. On dense

3.1. Framework by Sugiyama, Tagawa, and Toda 31

or on large instances, the SDP approach is considerably faster than the
approach by Jünger and Mutzel suggested in [JM97].
The aforementioned approaches of Jünger et al. and Buchheim et al.
only consider the 2-LCM problem. An approach that is not limited to
k = 2 was suggested by Jünger, Lee, Mutzel and Oldenthal in [JLMO97].
The authors extended an ILP approach for 2-LCM to an approach for
k-LCM. However, due to the runtime, the algorithm is far away from
practical use.
Healy and Kursik [HK99a] gave a solution for k-LCM based on the ILP
formulation of [JLMO97] and on the idea of a so-called vertex exchange
graph. As reported in [HK99b], they managed to solve some practical
relevant instances optimally for the first time.
In [HR10], Hungerländer and Rendl investigated the quadratic linear
ordering problem and suggested a solution based on SDP. This SDP
formulation can also be used for optimally solving k-LCM instances,
since k-LCM can be formulated as a linear ordering problem. As re-
ported by the authors, on 2-LCM the SDP approach is significant faster
than the approach published in [BWZ10].
k-LCM was also investigated by Chimani, Hungerländer, Jünger and
Mutzel [CHJM11]. They suggested an SDP-based approach for comput-
ing optimal solutions and an SDP-based heuristic that gives in practice
solutions which are nearly optimal. Furthermore, the authors also com-
pared their SDP approach with a reimplemented ILP approach pub-
lished by Jünger, Lee, Mutzel and Odenthal [JLMO97]. They reported
that both the SDP and ILP approach managed to solve almost all in-
stances of the Rome benchmark set. The experimental evaluations also
showed that the SDP approach can solve more instances to optimality
than the ILP approach within a given time limit. Besides these results,
Chimani et al. evaluated the traditional barycenter crossing minimiza-
tion heuristic and our new layer-free upward planarization approach
introduced in Chapter 4. We will discuss their results in detail in Sec-
tion 4.3.

k-level Planarization: Due to the fact that k-LCM is hard, Mutzel [Mut97]
suggested to consider the k-level planarization problem instead, since
level planarity testing of a layered DAG can be performed in linear time
(Jünger, Leipert, and Mutzel [JLM98]; Di Battista and Nardelli [BN88]).
For k = 2, she gave an ILP formulation derived from the 2-level planar
graph characterization of Tomii, Kambayashi and Shuzo [TKS77] for
computing a maximum 2-level planar subgraph. Furthermore, she also
suggested a branch-and-cut algorithm for solving practical instances.
However, even when solving the 2-level planar subgraph problem opti-
mally, the final number of crossings may be far away from the optimum,

32 Chapter 3. Upward Drawing Algorithms

since reinserting the deleted edges into the subgraph may cause many
crossings.
Based on the results of [Mut97], Gange, Stuckey and Marriot intro-
duced in [GSM10] a hybrid approach, that is, a combination of k-level
crossing minimization and planarization. The authors reported that
drawings obtained by using the hybrid approach are considerably bet-
ter than drawings obtained by either using crossing minimization or
k-level planarization alone.

Counting crossings. Crossing counting is often needed for many crossing
minimization heuristics. As reported by Waddle and Malhotra, this task
can be a bottleneck in overall computational time of Sugiyama especially
for large instances (Waddle and Malhotra [WM99]). Hence, they suggested
a fast algorithm to solve this problem with runtime O(m logm). There, m
is the number of edges connecting the nodes on layer L1 and L2 (2-LCM
scenario). However, the algorithm is relatively complex to implement. Due
to this fact, Barth, Jünger and Mutzel [BJM02] published a simpler approach
with runtime O(m logn), where n = min{|L1|, |L2|}.

3.1.4 Coordinate Assignment

The outcome of the previous step is a proper layering L with given node order
of each layer. The task now is to assign the final coordinates to the regular
nodes and the long arc dummies which are considered as bend-points of the
corresponding arc. It is desirable that the coordinates are assigned such that
the final drawing is compact, and the number of bend-points occurring on
each polyline should be as small as possible. Moreover, the given constraints
like minimal node distance, minimal layer distance, etc., must be respected,
and besides these constraints, two crucial points have to be fulfilled: First,
the results achieved by the previous steps must not be violated. Second, an
arc a should be routed such that no line segment of the drawing of a overlaps
a node or overlaps another line segment.

After the final coordinates are computed, each arc a = (u, v) is represented
by a polyline whose bend-points are the long arc dummies of a.

In the following, we give three methods for coordinate assignment which
fulfill all the aforementioned constraints.

BJL: Buchheim, Jünger and Leipert gave a coordinate assignment approach
which consists of three steps [BJL99]. First, x-coordinates of long arc
dummies are determined such that line segments connecting two dum-
mies are drawn vertically. Then, in the second step, the x-coordinates
of the ordinary nodes are computed with respect to the already pre-
computed x-coordinates and the precomputed node ordering. Based on
the observation that a long line segment requires a larger level distance

3.1. Framework by Sugiyama, Tagawa, and Toda 33

than short ones in order to obtain a better readability, the y-coordinate
of each layer Li is determined with respect to such long segments which
connect the neighbored layer of Li.
The approach has some nice properties: Due to the runtime O((n +
m)(log(n + m))2) where n is the number of regular and dummy nodes
and m the number of arcs/subarcs connecting two consecutive layers,
it is quite fast. Furthermore, the algorithm computes a layout such
that each drawing of an arc has at most two bend-points, and inner
subarcs—subarcs whose end-points are dummies—are drawn vertically.
We refer to this layout algorithm as BJL-Layout.

GKNV: Let δ denote the minimal distance of two nodes, Width(u) the width
of the bounding box of node u and u′ the immediate left neighbor of node
u on the same layer (see Figure 3.2). Let X(u) denote the x-coordinate
of node u and let

ρ(w′, w) = Width(w′) + Width(w)
2 + δ.

In a nice drawing, the arcs should be short and as straight as possible.
The latter condition is preferable in order to prevent the ”spaghetti ef-
fect”. To achieve this goal, Gansner, Koutsofios, North and Vo [GKNV93]
suggested the following ILP-based solution:

X(w)−X(w′) ≥ ρ(w′, w) (3.5)
min

∑
a=(u,v)

Θ(a)|X(v)−X(u)| subject to (3.5) (3.6)

where Θ(a) gives the priority to draw a vertically and ρ(u′, u) ensures
the minimal distance between the bounding box of node u′ and u. Fur-
ther (3.5) must hold for each pair {w′, w} on the same layer with w′ is
the left neighbor of w.
Using standard techniques, this problem can be transformed into a lin-
ear program, and then it can be solved optimally using the simplex
method. However the transformation increases the overall runtime.
Nevertheless, the approach is still fast for practical instances and the
computed layouts are very satisfying.
We denote this layout algorithm as GKNV-Layout.

BK: Brandes and Köpf presented in [BK02] a very fast layout algorithm with
runtime O(n + m). Their approach minimizes the objective function
of (3.6) heuristically and guarantees that each inner subarc is drawn
vertically. As reported by the authors, the quality of the drawings is
nearly as good as those produced by GKNV-Layout.

34 Chapter 3. Upward Drawing Algorithms

u´ u

v

Width(u´)

|X(v)-X(u)|≥ ρ(u´,u)

Figure 3.2: Coordinate assignment by Gansner et al.: The algorithm minimizes
the distance |X(v) − X(u)| for each arc/subarc (u, v) with respect to some given
constraints.

3.1.5 Extensions

Besides the huge amount of suggested solutions for the individual steps, there
exists several extensions for certain graph classes or for specific applications.
We consider here two important extensions: the extension to directed hyper-
graphs and the extension for dealing with port constraints.

Hypergraphs

Many important applications such as data flow diagrams or electric schematics
require the drawing of directed hypergraphs rather than traditional directed
graphs. Furthermore, these application domains prefer drawings in orthogo-
nal style, which has become a quasi drawing standard for visualizing electric
schematics. However, only few approaches exist for drawing directed hyper-
graphs in orthogonal style. Most of them are based on Sugiyama’s framework
due to the fact that it can be easily modified for this task. Some of the few
publications is due to Sander [San96, San99]. He investigated the problem of
drawing directed hypergraphs with Sugiyama. We describe here some of his
ideas:

The hyperarcs can be considered as the main difference between ordinary
digraphs and directed hypergraphs. Sander suggested a solution where each
hyperarc is replaced by a set of ordinary arcs (see Figure 3.3). A layout for the
transformed graph is then computed by using a slightly modified Sugiyama.
The hyperarcs are “simulated” by overlapping the start line segment of all
regular arcs which correspond to the original hyperarc. However, since the
simulated hyperarcs branch out very early, the drawings are unnecessarily
complex. To overcome this problem, Sander developed a more sophisticated
approach also based on Sugiyama where the directed hypergraph is first trans-
formed into a suitable underlying digraph [San04].

In contrast to the ordinary digraphs, the crossings of the final layered
drawing of a directed hypergraph not only depend on the node order on each

3.1. Framework by Sugiyama, Tagawa, and Toda 35

1

32 45 32 45

1

32 45

1

(a) (b) (c)

Figure 3.3: Simulating a hyperarc by ordinary arcs: (a) A drawing of a hyperarc.
(b) The hyperarc of (a) is replaced by several ordinary arcs. (c) The ordinary arcs
are routed such that they overlap each other in the start line segment. Thus, the
final orthogonal drawing of the ordinary arcs looks like a drawing of a hyperarc.

layer, but also on the choice of the representation of the hyperarcs, that is,
the underlying trees. As shown by Eschbach, Günter, and Becker [EGB06], a
good hyperarc routing can also reduce the arc crossings. Furthermore, they
proved that orthogonal routing of hyperarcs with the objective to minimized
the number of arc crossings is NP-hard even if the node order on each layer is
fixed [EGB06]. Thus they suggested a heuristic solution where an orthogonal
routing for the arcs is computed with the objective to minimize the crossings.
Then, GreedySwitch is applied to each layer to improve the results.

Port Constraints

Some applications not only require the drawing of a special graph class like
the directed hypergraphs, they also come with special constraints. We con-
sider here the port constraints which is a very common type of constraint in
technical drawings.

The ports of a node v are prescribed positions that determine where the
end-points of the arcs incident to v can connect to the drawing of v. In
many applications the ports have a specific semantic interpretation, such as
being input- or output-channels for data tokens in data flow diagrams, or pins
of electric components in circuit schematics. Thus, in such applications the
positioning of ports is not arbitrary, but may be subject to specific constraints
(Spönemann, Fuhrmann, von Hanxleden, and Mutzel [SFvHM10]).

Given a set P of ports for the nodes of a graph G, P induces a set C of
certain drawing constraints called port constraints. The strictest variant of
port constraints is the fixed-port scenario where the exact position of each
port, relative to the respective node, is prescribed.

First approaches to include ports in layer-based drawings were given
by Gansner, Koutsofios, North, and Vo [GKNV93] and by Sander [San94].
Spönemann, Fuhrmann, von Hanxleden, and Mutzel suggested a more ad-
vanced adaption which considers different types of port constraints and in
addition also hyperarcs, as they are required for the layout of data flow dia-
grams [SFvHM10]. The approach leads to quite acceptable results for different

36 Chapter 3. Upward Drawing Algorithms

types of hypergraphs with port constraints, but is still limited by the fact that
a bad layering can lead to an unnecessarily high number of arc crossings.

Eiglsperger, Fößmeier, and Kaufmann [EFK00] proposed another ap-
proach based on ILP formulations to include constraints in the orthogonal-
ization phase for the topology-shape-metrics (Di Battista, Eades, Tamassia,
and Tollis [DETT99]) approach. However, due to the runtime, the approach
is not practical.

3.2 Alternative Upward Drawing Algorithms

We first describe the mixed upward planarization approach by Eiglsperger,
Eppinger, and Kaufmann [EKE03] which can be used to compute upward
planar representations of DAGs. An upward planar representation (UPR) is
an upward planar embedded DAG where crossings are modeled by crossing
dummy nodes (also called dummies in the following). We call approaches
following the idea of planarization but constructing upward representations
instead of planar representations upward planarization approaches.

The mixed upward planarization is one of the first approaches which suc-
cessfully adapts the idea of planarization. Before its publication, Di Battista,
Pietrosanti, Tamassia and Tollis have already suggested an upward planariza-
tion approach based on the planarization of st-graphs [BPTT89]. Like the
planarization approach, their approach first computes a planar subgraph and
then the remaining arcs are reinserted one by one under the premise that an
arc is reinserted such that the obtained intermediate graph is a planar st-
graph. In particular, the intermediate graph must be acyclic. Unfortunately
the authors do not clearly explain how this can be achieved.

In [DGL+00], Di Battista et al. experimentally evaluated the upward pla-
narization approach suggested in [BPTT89]. They found out that its perfor-
mance is very poor, that is, the approach produces drawings with twice the
number of arc crossings in comparison to the classical layered upward cross-
ing minimization heuristic where Barycenter was used for the second step.
Therefore we will only consider the mixed upward approach in this thesis.

Besides the mixed upward planarization approach, we also describe the
dominance and the visibility drawing approaches that can construct upward
drawings. Originally, the two layout algorithms require as input a planar
st-graph. Since upward planar DAGs can be augmented to planar st-graphs
by adding artificial arcs and nodes (Di Battista and Tamassia [BT88]), both
approaches can also be used for drawing upward planar DAGs as the artificial
auxiliary elements can be omitted in the final drawing. Moreover, they can
also be used for drawing UPRs by augmenting them to a planar st-graph. In
the final drawing the crossing dummies are replaced by crossings.

3.2. Alternative Upward Drawing Algorithms 37

3.2.1 Mixed Upward Planarization

The mixed upward planarization approach was originally proposed for draw-
ing mixed graphs, that is, graphs which contain both directed and undirected
edges. This class of graphs arises for example in software engineering. We
depict here the idea of upward planarization of DAGs by Eiglsperger et al.
The approach is divided into two main phases:

Subgraph Computation: The idea of this phase follows the idea by Gold-
schmidt and Takvorian published in [GA94]. First, a planar subgraph
is obtained by computing a node order π of the input graph G = (V,E).
Then, according to π the nodes are placed on a vertical line. Each edge
e can now be added to the “node line” by drawing e left or right of the
line when it does not cross an already added edge. Thus, the edges of
G are partitioned into three sets: Sl which contains edges drawn left of
the line, Sr which contains edges drawn right of the line, and Sb which
contains edges causing crossings. The arcs of Sb are not added to the
node line. Then a conflict graph is constructed for each crossing pair of
edges. Since an induced bipartite subgraph of the conflict graph corre-
sponds to a valid partition of E into the set Sl, Sr and Sb, a maximum
bipartite subgraph corresponds to a maximum set of Sl ∪Sr. Due to the
NP-hardness of the maximum bipartite subgraph problem (Garey and
Johnson [GJ83]), Goldschmidt and Takvorian use heuristics to tackle
this problem.
Eiglsperger et al. adapted the approach for DAGs by replacing the part
of the algorithm responsible for computing the node order π with a
variant of a standard topological sorting algorithm. This guarantees
that the final subgraph U is upward planar.

Arc Reinsertion: The main problem arising here is to compute an insertion
path for an arc a ∈ Sb such that after its insertion, the obtained inter-
mediate graph is upward planar, in particular acyclic. To achieve this
goal, the upward embedded subgraph U is augmented to an st-graph
U ′. Then a layering L of U ′ is computed, and a routing network R with
respect to a and U ′ is constructed. By the combination of L and R, a
computed insertion path for a can be realized such that the obtained
intermediate graph is upward planar. Particularly it can be used as
starting point for the reinsertion of the next arc.

The approach can be extended to mixed graphs and by using layout al-
gorithms described in the next subsection, a final upward drawing can be
constructed. Regarding the quality (the number of crossings), the authors
reported good results in comparison to multi-run versions of the classical
layered approaches based on Barycenter. We refer to the mixed upward
planarization approach as MUP.

38 Chapter 3. Upward Drawing Algorithms

3.2.2 Dominance Drawing

The dominance drawing method was suggested by Di Battista, Tamassia, and
Tollis for upward drawing of planar st-graphs [DTT92]. Notice that planar st-
graphs are upward planar (Garg and Tamassia [GT95]). A dominance drawing
of G is a drawing D such that for any pair of nodes u and v the following
holds: u dominates v in G if and only if X(u) < X(v) and Y (u) < Y (v).

There are two variants of the dominance drawing algorithm: the straight-
line and the polyline variant. For both variants, the dominance drawing
algorithm constructs in linear time a dominance drawing of the input st-
graph. Besides the fast runtime, it constructs an upward drawing with few
bend-points. Moreover, the straight-line variant always produces drawings
with minimum area requirement regardless of the given resolution rules, and
it is notable appropriate for displaying symmetries of G.

The straight-line version of dominance drawing can be depicted as follows:
LetG be a planar embedded reduced st-graph, that is, G contains no transitive
arcs. In a pre-processing step, a data structure is constructed in order to
provide a quick access to the arcs; in particular, the left and the right in-
and outgoing arc of each node. Then, in a preliminary layout phase, the
coordinates are assigned to the nodes by traversingG starting from the source.
In the first traversal, the order of the visited nodes π1 are determined by
the clockwise arc order. The x-coordinates are then assigned to the nodes
with respect to π1. The visited node order π2 in the second traversal is
determined by the counterclockwise arc order. Similar to the assignment of
the x-coordinate, the y-coordinates are assigned to the nodes according to
π2. After obtaining a preliminary layout, a compaction algorithm is applied
and the final coordinates of the nodes are determined. Finally, the arcs are
drawn as straight-lines.

The straight-line version is restricted to st-graphs without transitive arcs,
but it can be easily extended to general st-graphs by splitting each transitive
arc by introducing a dummy node. A polyline drawing can be obtained by
replacing the introduced dummy nodes with bend-points.

We refer to the polyline variant of the domination drawing approach as
Dominance.

3.2.3 Visibility Representation

In a visibility representation of a planar embedded st-graph G = (V,A),
a node u is drawn as a horizontal node-segment µ and an arc a = (u, v)
is drawn as a vertical arc-segment ε such that no node-segment and no arc-
segment overlaps each another. In addition, the end-points of the arc segment
ε corresponding with a is located at Y (u) and Y (v) and ε does not intersect
any other node-segment (see Figure 3.4).

The visibility drawing method has been introduced by Rosenstiehl and
Tarjan [RT86] and independently by Tamassia and Tollis [TT86]. Similar to

3.2. Alternative Upward Drawing Algorithms 39

2

0

1

1

2

3

4

5

2 3 4 5

3

4

6

8

9

1

7

5

6

(a)

0

1

1

2

3

4

5

2 3 4 5 6

3

2

6

9

7

4

8

5

1

(b)

Figure 3.4: Construction of upward drawings based on visibility representations
(Redrawn figures of a example in [DETT99]): (a) a visibility representation of di-
graph (b); (b) A drawing obtained from (a) by using arithmetic mean node position-
ing.

Dominance, the visibility approach requires a planar st-graph as input. The
algorithm requires further the construction of a directed dual graph GD of
G which can be constructed similar to an undirected dual graph as defined
in Definition 2. After the construction of GD, two topological numberings of
the nodes are computed. A topological numbering of G is a numbering #(·)
of the nodes of G such that for each arc a = (u, v), #(v) ≥ #(u) holds. The
first topological numbering of the nodes is considered as the x-coordinate. It
is obtained by applying a standard topological sorting algorithm to GD. The
second topological numbering is considered as the y-coordinates of the nodes
and is obtained by applying a topological sorting algorithm to G.

A visibility representation is then constructed by using the precomputed
coordinates of the node-segments. As we are interested in a drawing but
not in a visibility representation of G, the final task is to transform the
visibility representation into a drawing of G. This can be done easily by
choosing suitable coordinates for the nodes derived from the corresponding
node-segments. For example: Suppose the x-coordinate of the node-segment
µ corresponding to node u spans from xa to xb, then we can assign u to the
coordinate xa, xb, or the arithmetic mean bxa+xb

2 c. In a similar way, a suitable
routing for an arc a can be derived from the coordinates of the corresponding
arc-segment ε.

The visibility algorithm has some nice properties: It constructs a polyline
upward drawing in linear time. For any given resolution rules, the area of the
drawing is bounded by O(|V |2) and every drawing of an arc has at most two
bend-points. We denote the visibility drawing approach as Visibility.

40 Chapter 3. Upward Drawing Algorithms

Chapter 4

Upward Planarization

4.1 Introduction

Since for many applications the number of arc crossings arising in a drawing is
considered as an important aesthetic criterion, finding crossing minimization
algorithms is one of the main tasks in graph drawing. In the context of
drawing DAGs, this task can be stated as follows:

Definition 3 (Upward Crossing Minimization). Given a DAG G, we are
interested in an upward drawing of G with the minimum number of arc cross-
ings.

This problem is closely related to the problem of computing the upward cross-
ing number of G, where we are only interested in the minimum number of arc
crossings:

Definition 4 (Upward Crossing Number ucr(G)). The upward crossing num-
ber ucr(G) of a DAG G is the minimum possible number of arc crossings with
which G can be drawn in an upward fashion.

However, upward crossing minimization and hence also computing ucr(G)
is NP -hard since upward planarity testing is already NP -hard (Garg and
Tamassia [GT01]). To the best of our knowledge, only trivial exponential
algorithms exist for exact upward crossing minimization. Yet, there exist two
main approaches which can be used for computing heuristic solutions:

The first main approach for upward crossing minimization does not di-
rectly tackle the upward crossing minimization problem, instead, the related
k-LCM problem is considered. It consists of two steps: In the first step, a
k-LCM instance—a layering L of the input DAG G—is computed, then in
the second step, the obtained instance is solved by heuristics or solved exactly
by an ILP or an SDP formulation. This approach is known as the first and
the second step of the Sugiyama framework. We refer to it as layered upward
crossing minimization approach.

41

42 Chapter 4. Upward Planarization

The second main approach is upward planarization. Upward planarization
is based on the idea of planarization which is recognized as a very successful
heuristic for minimizing edge crossings of undirected graphs [GM04]. However
there exist only few approaches, for example, Eiglsperger et al. [EKE03] or
Di Battista et al. [BPTT89].

In this chapter, we propose a new approach referred to as layer-free upward
planarization (LFUP) for upward planarization of DAGs.

Organization of this chapter. In the first section of this chapter, the mo-
tivation for a new upward planarization approach is given. Since the adaption
of the planarization approach for DAGs is by far not trivial, Section 4.1.2 is
dedicated to the problems that arise on the way toward to a new upward pla-
narization algorithm. We then give an overview of LFUP (Section 4.2.1) and
thereafter depict its theoretical backgrounds. After analyzing the theoretical
runtime of LFUP in Section 4.2.4, we give some extensive experimental eval-
uations in Section 4.3. In Sections 4.4–4.5, we explain how to extend LFUP
such that it can handle port constraints and compute UPRs for directed hy-
pergraphs, and in Section 4.6, we give an illustrated example of LFUP.

4.1.1 Motivation

Since the publication of the Sugiyama drawing framework, the layered up-
ward crossing minimization approach has received a lot of attention. Though
various refinements and improvements were developed, one inherent draw-
back is not overcome by any of these modifications even when using optimal
solutions for the k-LCM problem: assigning nodes to fixed layers in the first
step can severely affect the subsequent crossing minimization step, requiring
arc crossings that would be unnecessary if a “better” layer assignment has
been chosen. Figure 4.1 gives an example: Obviously, when using the illus-
trated layering (a) for the crossing minimization step, the crossings can never
be totally eliminated. However, the example DAG can be drawing without
any arc crossings (b), since it is upward planar.

As mentioned before, planarization is considered as a very successful ap-
proach for crossing minimization of undirected graphs, but it cannot be used
for drawing digraphs in an upward fashion, since the approach does not take
the arc direction into account. But if we can develop an upward planariza-
tion approach based on the idea of planarization, then we may achieve similar
success for DAGs.

The results published by Eiglperger et al. [EKE03] strengthen our as-
sumption that upward planarization could be as successful as planarization
for undirected graphs. However the technique used by Eiglsperger et al. for
computing the upward planar subgraph is based on a simple idea. More-
over, their approach uses a layer-based algorithm for arc reinsertion which
can reduce the number of possible insertion paths, in particular “good” inser-

4.1. Introduction 43

(a) (b)

Figure 4.1: A bad layering (a) can force unnecessary crossings. In this example the
graph is in fact upward planar (b).

tion paths may not be considered. Sophisticated techniques for the subgraph
computation and the arc reinsertion step may lead to better results.

4.1.2 Challenges

Adapting the planarization approach for upward drawings is by no means
straight-forward. Firstly, while planarity can be tested efficiently, testing
upward planarity is NP-complete (Garey and Johnson [GT01]); on the other
hand, upward planarity can efficiently be tested for digraphs with a single
source (Hutton and Lubiw [HL96]; Bertolazzi, Di Battista, Mannino, and
Tamassia [BDMT98]).

Secondly, while any planar subgraph is suitable as starting point for the
edge reinsertion phase in the undirected case, further constraints are necessary
for upward drawings. For example, assume we construct the upward planar
subgraph straight-forwardly by adding arcs to an initially empty subgraph;
after each arc we test for upward planarity. The process stops when no more
arcs can be inserted without losing upward planarity.

As shown in Figure 4.2(a), the subgraph obtained by deleting the arc
(5, 4) has exactly two upward planar embeddings (Due to the fact that it is
a 3-connected planar graph.). One is as illustrated and the second can be
obtained by reversing the arc order on each node of (a). Obviously, in each
upward planar drawing of the subgraph the node 5 has to be drawn higher
than the node 4. Hence, we cannot insert the remaining arc (5, 4) at all,
no matter how many crossings we may use and which upward embedding
we choose for the subgraph. So the first challenge is to find an approach to
identify a feasible upward planar subgraph (FUPS).

And finally, even if we have a FUPS, we cannot easily insert arcs iteratively
into it in a crossing minimal fashion, without taking the not-yet inserted arcs
into account. Figure 4.3(a) shows that, even though it is possible to insert
both arcs into U , inserting one arc straight-forward may make inserting the
other one impossible. Therefore, the second challenge is to find an approach
to solve this problem without reducing the number of possible insertion paths.

44 Chapter 4. Upward Planarization

0

3

4

12

5

(a) An infeasible upward planar sub-
graph: the arc (5, 4) cannot be in-
serted.

0

3

4

12

5

(b) A feasible upward planar subgraph
(FUPS).

Figure 4.2: Problems with simple arc insertion approaches: Not every upward
planar subgraph (bold lines) is feasible with respect to the temporarily removed arcs
(dashed lines) of the original graph that have to be inserted in the subsequent steps.

4.2 Upward Planarization Algorithm

We first give an overview of the layer-free upward planarization algorithm,
then explain how to face the two main challenges: the feasible subgraph com-
putation and the arc reinsertion problem.

4.2.1 Algorithm Overview

Due to the NP-hardness of upward planarity testing of general DAGs, we
focus on the class of sT -graphs. If the input graph has multiple sources, we
can add a super source node ŝ, connect it to all original sources, and later set
the costs for crossing these additional arcs to zero. The additional arcs and
the new super source will be omitted in the final drawing.

Like the traditional planarization approach for undirected graphs, our
algorithm consists of two phases:

LFUP

Phase 1 Feasible Upward Planar Subgraph Computation

Phase 2 (Feasible) Arc Reinsertion

Algorithm 1 offers more details regarding the layer-free upward planariza-
tion approach: In the first phase we construct a feasible upward planar sub-
graph (line 2–12). This can be done by first computing a spanning tree U
(line 2) and add the arcs not in U one by one (line 4–12). Each time an arc ã

4.2. Upward Planarization Algorithm 45

0

12

5

6

7

4

3

0

12

5

6

7

4

3

0

12

5

7

3 C

4

6

(a) The given graph (left) and a FUPS (middle) obtained by removing the arcs (4, 3) and (6, 5).
A crossing minimal insertion path for (4, 3) is infeasible as (6, 5) can no longer be inserted
(right) due to the arising cycle 〈6, 5, C, 3, 6〉.

0

12

5

7

3

C
4

6

C

(b) The arc (4, 3) has to be inserted differently (and requiring one more
crossing), such that (6, 5) can be inserted.

Figure 4.3: Problems with simple arc insertion approaches: Not every upward
insertion path is feasible with respect to the temporarily removed arcs of the original
graph that have to be inserted in the subsequent steps.

46 Chapter 4. Upward Planarization

is added, an upward planarity test (which also upward embeds U ′ := U ∪{ã}
if possible) is performed (line 6). If U ′ is upward planar, then we obtain
an upward planar embedding Γ′ of U ′. An auxiliary graph M(Γ′)—called
merge graph—is then constructed with respect to Γ′. The special properties
ofM(Γ′) allow us to use an acyclicity test to decide whether U ′ is suitable as
starting point for the second phase or not (line 6). If U ′ is not upward planar
orM(Γ′) is cyclic, then U ′ is not suitable and we delete ã from U ′ and add it
to the set B (line 10). The arcs of B will be reinserted in the second phase.
We refer to the upward planarity testing of U ′ together with the acyclicity
testing of M(Γ′) (line 6) as fixed-embedding FUPS testing.

In the second phase (line 15–19), we iteratively insert the arcs not yet
in the FUPS U so that few crossings arise; these crossings are replaced by
dummy nodes so that the graph in which arcs are inserted can always be
considered as upward planar (line 17). Inserting an arc ã into a planar graph
thereby means that all arising crossings lie on ã; we do not introduce addi-
tional crossings purely on the planar graph itself. The final result, the upward
planar representation, can be turned into a drawing of the original graph by
using appropriate layout algorithms like Dominance, Visibility or the new
layout algorithms UPL introduced in Chapter 5. In the following, let G be an
sT -graph.

4.2.2 Feasible Subgraph

Feasible subgraph testing, that is, testing an subgraph U whether it is suitable
as starting point for the arc reinserting phase or not, is a fundamental step in
upward planarization. We consider here a more restricted variant of feasible
subgraph testing: the fixed-embedding FUPS testing.

Now, let U = (V,A′) be an upward planar subgraph of an sT -graph
G = (V,A) and B = A \ A′. We naturally extend Definition 1 (Insertion
Path):
Definition 5 (Upward Insertion Path (UIP)). An upward insertion path p
with respect to some arc ã = (x, y) ∈ B is an insertion path for ã such that
the graph U ′ obtained from realizing p is upward planar.

Let Γ′ be an upward planar embedding of U ′. We say Γ′ induces an
upward planar embedding Γ of U that is obtained by reversing the realization
procedure while maintaining the embedding. That is, we fix the embedding
Γ′ of U ′, replace the dummy nodes in U ′ by arc crossings and then delete the
arc ã. The result is the embedding Γ of U .

For example, the right drawing of Figure 4.3(a) shows the graph U ′ with
embedding Γ′ after arc (4, 3) has been inserted. Notice, arc (6, 5) is not an arc
of U ′. By reversing the realization of the insertion path for (4, 3), we obtain
U (middle) and its embedding Γ.

We will see that inserting the arcs of B one by one cannot be done without
taking the remaining arcs into account. Thus we define:

4.2. Upward Planarization Algorithm 47

Algorithm 1 Upward planarization algorithm LFUP

Require: sT -Graph G = (V,A)
Ensure: Upward planar representation of G

1: . Phase 1: FUPS Computation
2: Identify spanning tree U = (V,AT) of G, routed at source s.
3: B := ∅
4: for each ã ∈ A \AT do
5: U ′ := U + ã
6: if ∃ upward planar embedding Γ′ of U ′ and M(Γ′) is acyclic then
7: U := U ′, Γ := Γ′
8: continue
9: else

10: B := B ∪ {ã}
11: end if
12: end for
13: . We have a FUPS U = (V,A′), and arcs B = A \A′ to reinsert into U .
14: . Phase 2: Arc Reinsertion
15: for each ã ∈ B do
16: Compute insertion path p for ã into Γ that will ensure property (M)
17: Insert ã along p, replacing crossings by dummy nodes → new U , Γ.
18: Property (M): M(Γ) is acyclic
19: end for

Definition 6 (Upward Insertion Sequence). An upward insertion sequence
is a sequence of k UIPs for all arcs of B. The first arc in the sequence
is inserted into U—introducing dummy nodes—which results in an upward
planar embedded graph U ′ = U1 called intermediate UPR. The second arc is
then inserted into U1 which results in an intermediate UPR U2, etc. After
realizing all insertion paths, we hence obtain a final upward planar graph Uk,
which is a UPR of G.

Our approach is restricted to the fixed-embedding scenario, that is, we
start with a subgraph U with upward planar embedding Γ in the arc rein-
sertion phase and insert the arcs of B one by one. The upward planar em-
bedding Γi of the intermediate UPR Ui obtained after realizing the i-th arc
ãi ∈ B induces the embedding Γi−1 of the previous intermediate UPR Ui−1
for 0 < i ≤ k. Thus, the final embedding Γi induces Γ.

Definition 7 ((Constraint) Feasible Upward Insertion Path). The UIP p is
feasible with respect to Γ, if there exists an upward planar embedding Γ′ of the
graph U ′, obtained after realizing p, which induces Γ. It is constraint feasible
with respect to Γ, if it furthermore allows an upward insertion sequence for
the arcs B \ {ã} into U ′ such that there exists an upward planar embedding

48 Chapter 4. Upward Planarization

Γk of the final graph Uk that induces Γ. We say the path p is (constraint)
minimal if it requires the fewest crossings over all (constraint) feasible UIPs.

Obviously, a constraint feasible UIP is a feasible UIP and a feasible UIP
is a UIP. Moreover, in the fixed-embedding scenario, the insertion paths of
an upward planar insertion sequence are all constraint feasible.

Regarding the definition of constraint feasible UIP, Figure 4.3(a) gives an
example of its necessity: The right-most graph in Figure 4.3(a) illustrates a
minimal feasible UIP p1 for ã1 = (4, 3). We realize p1 by splitting arc (5, 7)
(introducing the crossing dummy C) and adding the arcs (4, C) and (C, 3)
to represent ã1 in the intermediate UPR U1. Since U1 is upward planar, p1
is a feasible UIP. However, inserting ã2 = (6, 5) in U1 would inevitably cause
a cycle; hence p1 is not a constraint feasible UIP. An alternative, constraint
feasible UIP for ã1 is illustrated in Figure 4.3(b).

Definition 8 (Feasible Upward Planar Subgraph (FUPS) and Embedding).
An upward planar subgraph U of G is feasible if there exists an upward
insertion sequence. An upward planar embedding Γ of a FUPS U is feasible
if there exists an upward insertion sequence such that the final embedding Γk
induces Γ.

Obtaining the formal definition of a FUPS, the goal now is to find an
approach for its construction; in particular finding a subgraph feasibility test.
For this purpose we introduce the central idea based on an auxiliary graph
called merge graph:

Definition 9 (Merge Graph). The merge graph M(Γ) of U with respect to
an upward planar embedding Γ of U is constructed as follows:

1. We start with M(Γ) being a copy of G.

2. For each internal face f of Γ, we add an arc from each non-top sink-
switch of f to the top sink-switch of f . We call these arcs sink-arcs.

A merge graph M(Γ) models the hierarchical information of the nodes
with respect to an embedded subgraph U and the set B. The arcs of M(Γ)
can be partitioned into the sink-arcs, the arcs of U , and the arcs of B. The
sink-arcs model the hierarchies between the top-sink-switches and non-top-
sink-switches on each internal face of Γ, therefore mapping the hierarchical
information of Γ to M(Γ). The arcs of U and the arcs of B reflect the node
hierarchy induced by G.

Let Y be the nodes of U dominated by y including y and let X be the
nodes of U dominating x including x. The dominated subgraph in G of y is
the subgraph induced by the nodes of Y and the dominating subgraph in U
of x is the subgraph induced by the nodes of X.

Let v1 and v2 be two nodes of G. Considering some specific upward
drawing of G, we denote by v1 ≺ v2 that v1 is drawn lower than v2. An
upward planar drawing clearly requires v1 ≺ v2 if v1 v2.

4.2. Upward Planarization Algorithm 49

Due to the fact that the hierarchy of the nodes is mapped to merge graph,
we observe:

Observation 1. For any fixed upward planar embedding Γ, there always ex-
ists an upward planar drawing with respect to Γ with v1 ≺ v2 if v2 6 v1 in
M(Γ).

The merge graph with respect to an embedded upward planar subgraph
has one crucial property:

Lemma 1 (Feasibility Lemma). The merge graphM(Γ) is acyclic if and only
if there exists an upward insertion sequence S such that the final graph Uk
obtained after inserting all arcs of B according to S is upward planar (with
embedding Γk).

Proof. ∃ Sequence =⇒ M(Γ) is acyclic: Let Uk be the UPR of a DAG G
obtained after inserting all arcs according to the upward insertion sequence S.
Let Γk be an upward planar embedding of Uk. Considering an upward planar
drawing Dk of Uk inducing Γk, we replace all dummy nodes with crossings
and delete the arcs of B in Dk. The graph associated with the new drawing
D is the upward planar subgraph U and the embedding induced by D is Γ.
For each inner face f ∈ Γ, we draw a sink-arc from each non-top sink-switch
to its corresponding top sink-switch. As Γ is upward planar, these arcs are
clearly oriented upwards in the drawing. Finally, we reintroduce the arcs of
B into D, drawing them exactly as in Dk. By these operations we obtain a
drawing of the merge graphM(Γ) and as all arcs in the drawing are oriented
upwards, M(Γ) is acyclic.
M(Γ) is acyclic =⇒ ∃ Sequence: Let U be a FUPS with an upward em-

bedding Γ and M(Γ) its acyclic merge graph. Let M(Γ)− be the graph
M(Γ) without the arcs of B. Ignoring the sink-arcs of M(Γ)− first, we em-
bedM(Γ)− like Γ, thereafter we embed the sink-arcs without crossings within
their corresponding faces. Let ΓM(Γ)− be the resulting embedding. Notice
that ΓM(Γ)− is an upward planar embedding. Let ãi = (xi, yi), 1 ≤ i ≤ k, be
the arcs not in U . Since M(Γ) contains these arcs and is acyclic, we know
that yi 6 xi in M(Γ)− and M(Γ), for all 1 ≤ i ≤ k. Hence, considering any
arc ãi individually, we can find a drawing of the graph M(Γ)− with respect
to ΓM(Γ)− where xi ≺ yi (Observation 1).

We show that this holds for all arcs together by induction over the number
of arcs to be inserted:

Induction basic: We start with an arbitrary upward drawing D1 ofM(Γ)−
inducing ΓM(Γ)− which is stepwise modified. If y1 ≺ x1, then we modify D1
without violating the embedding ΓM(Γ)− such that x1 ≺ y1 holds. This is
always possible since y1 6 x1 in M(Γ) (Observation 1).

Induction conclusion: Now consider the drawing Dk inducing ΓM(Γ)− in
the k-th step where by induction hypothesis, we have xi ≺ yi for all 1 ≤ i < k.

50 Chapter 4. Upward Planarization

If xk ≺ yk, then there is nothing to do in this step, so assume yk ≺ xk. Since
M(Γ) is acyclic, we know that yk 6 xk in M(Γ) and hence there exists a
drawing with xk ≺ yk (Observation 1). We show that we can fulfill the latter
condition without violating the respective embedding ΓM(Γ)− and the order
xi ≺ yi in Dk for each i < k.

Considering M(Γ), let Yk be the dominated subgraph in M(Γ) of yk
without any arcs of B. So Yk contains the subgraph of M(Γ)− which is
dominated by yk in M(Γ). Let Yk be the graph obtained from M(Γ)− after
deleting the nodes and arcs of Yk. An arc that connects a node of Yk and a
node of Yk has its source node in Yk and its target node in Yk, since Yk is a
dominated graph of yk (see Figure 4.4). We know that xk 6∈ Yk as M(Γ) is
acyclic. In Dk, we perform an upward shift of the subgraph Yk: we move yk
and all nodes of Yk such that yk is above xk. Due to the sink-arcs, M(Γ)−
does not have any maximal bi-connected component C that is within another
such component. Hence the upward shift will not result in any crossings.
Moreover, it preserves the induced embedding ΓM(Γ)− .

Assume that the shift would invalidate xi ≺ yi for some i. This would
mean that xi would be in Yk but yk would not. But since (xi, yi) is an arc in
the merge graph M(Γ) this cannot be the case. Therefore the upward shift
in the k-th step ensures an upward planar drawing of M(Γ)− where we have
xi ≺ yi for 1 ≤ i ≤ k. We now can draw the arcs ã1, . . . , ãk into Dk in an
upward fashion. Considering ã1, . . . , ãk as a sequence of arcs to be inserted,
we can generate a constraint feasible UIP pi for each ãi just by tracking ai
from xi to yi in the final drawing. pi can be derived by the order of the
crossed arcs along ãi.

The next corollary follows immediately from Lemma 1:

Corollary 1. An upward planar embedding Γ of a FUPS U is feasible if and
only if the corresponding merge graph M(Γ) is acyclic.

Hence line 6 of Algorithm 1 realizes a fixed-embedding FUPS test.
In Figure 4.5 the merge graph of the upward planar subgraph of Figure 4.2(a)
is illustrated. As it contains a cycle, the subgraph is not feasible.

Algorithm 1 computes a FUPS U = (V,A′) with embedding Γ which is
not necessarily maximal, that is, there may be a FUPS U ′ = (V,A′′) with
embedding Γ′ such that |A′| < |A′′| and Γ′ induces Γ. So after obtaining U ,
we can improve the results by fixing the embedding Γ, and try to reinsert the
arcs in B. The result is a maximal embedded FUPS.

4.2.3 Arc Reinsertion

Having solved the feasible subgraph problem, we now consider the problem
of inserting arcs into a FUPS with few arc crossings by iteratively adding
the arcs not in the FUPS. In the following we are again given an sT -graph

4.2. Upward Planarization Algorithm 51

yj

Yj

t̂

ŝ

xj

yj

Yj

t̂

ŝ

xj

Yj
_

Yj
_

Figure 4.4: Illustration for proof of Lemma 1: (left) An upward planar drawing of
M(Γ)−. Before the upward shift it is Y (yj) < Y (xj). (right) The drawing after the
upward shift of the subgraph Yj . Observe that arcs which connect the nodes of Yi
with the nodes of Yi are all pointing to Yi, that is, the target nodes of the arcs are
nodes of Yi, hence we can shift Yi without violating the hierarchies of the nodes in
Yi and in Yi.

G = (V,A), a FUPS U = (V,A′), and an upward planar embedding Γ of U .
Let B = A \ A′ and let ã = (x, y) ∈ B. Formally, we can define the arising
problem per arc as follows:

Definition 10 (Constraint Upward Arc Insertion with Fixed-embedding).
The constraint upward arc insertion problem with fixed-embedding is to find
a constraint feasible minimal UIP for ã into U with respect to Γ and the arcs
B \ {ã}.

Let p = 〈a1, . . . , an〉 be an insertion path for (x, y). Associated with p is
a sequence of faces F = 〈f1, . . . , fk〉 such that when p is realized, each face fi
of F is split into two or more faces (see Figure 4.6). The latter case occurs if
p contains more then two arcs of fi.

Let aj , aj+1 ∈ fi. Assume p is realized by splitting aj and aj+1 by intro-
ducing the dummy nodes dj and dj+1, respectively, and fi is split by the arc
(dj , dj+1) into two faces. We say p enters fi through aj and leaves fi through
aj+1 and fi is traversed by the insertion p.

Let now q = 〈a1, . . . , am〉 and r = 〈am+1, . . . , an〉. We denote a concatena-
tion of two (insertion) paths q and r with q+r. Thus p = q+r. A realization

52 Chapter 4. Upward Planarization

0

3

12

4

5

Figure 4.5: The merge graph of the upward planar subgraph of Figure 4.2(a). The
deleted arc (5, 4) is drawn as green dashed arc and the only sink-arc (4, 5) is drawn as
dotted arc with hollow arrow head. Since the merge graph is not acyclic, the upward
planar subgraph is not feasible.

of q is a partial realization of p. The path q ends at the arc am and we say q
is an insertion path from x to the arc am.

Since we will augment the subgraph U into a bi-connected graph, we can
assume that am is embedded on the boundary of two faces fl and fr with
fl 6= fr. Without loss of generality, let fl be the last face in the sequence of
traversed faces of q. Then, am is a dynamic entrance to the face fr of the
insertion path q. Referring to the example of Figure 4.6, the subpath q = 〈a1〉
of p has traversed the face f1 leaving f1 through arc a1 and enters the face
f2 through arc a1, so a1 is the dynamic entrance of q to face f2.

Routing Network

In order to compute a UIP for ã = (x, y) we use a routing network R. For its
construction, we first augment U and Γ with the sink-arcs as we did for the
merge graph. Furthermore, we add a super sink node t̂ and sink-arcs (t, t̂),
for each sink t on the external face of Γ. We denote the augmented graph
with Û and the upward planar embedding of Û with Γ̂. The augmentation
guarantees that all faces in Γ̂ are simple, that is, they have exactly one source-
and one sink-switch, hence alleviates the construction of the routing network.

Each simple face f ∈ Γ̂ consists of two directed paths—one on its left and
one on its right hand side—from the source-switch to the sink-switch of f .
We call the left/right directed path p`/pr just the left/right side of f . The
face f is called the right face of the arcs of p`, and the left face of the arcs of
pr.

For the traditional edge insertion problem, that is, without considering

4.2. Upward Planarization Algorithm 53

x

a2

fk
fk-1

f2
f1

y

a1

an-1
an

p

Figure 4.6: The insertion path p = 〈a1, . . . , an〉 traversing a sequence of faces
〈f1 . . . , fk〉. After realizing p, each face of sequence is split by subarcs which represent
the arc (x, y).

upward planarity, we simply use the bi-directed dual graph of U with respect
to Γ, augmented with the start and end nodes of ã. Due to the required
upward planarity, we have to use a more heavily augmented routing network.
We do not represent single faces as single nodes in R but as well-structured
sub-networks, as shown in Figure 4.7(a) schematically for an internal face
and (b) for the external face. Such a sub-network guarantees that when the
currently considered insertion path enters a face f through some arc, it can
only leave f either above that arc or on the other side of f . We call the arcs
that are the dual of some arc of Û the crossing-arc, as a path over these arcs
crosses an arc of Û . Arcs of R which are not crossing-arcs are called auxiliary
routing arcs.

Finally, we add the nodes x∗ and y∗ corresponding to x and y to R which
will be the start and end node of the insertion path, respectively.

Let Ax and Ay be the crossing-arcs corresponding to arcs starting at x
or ending at y, respectively. We add arcs from x∗ to each target node of the
arcs Ax, and arcs from each source node of the arcs Ay to y∗. We have:

Lemma 2. The routing network R has O(|V |) nodes and arcs.

Proof. Let Γ be an upward planar embedding of G = (V,A) and Ĝ = (V,A∪
F) the augmented digraph of G with respect to Γ, where F is the set of sink-
arcs. Since Ĝ is planar we know |A ∪ F | is bounded by O(|V |). As shown

54 Chapter 4. Upward Planarization

(a)

ŝ

t̂

(b)

Figure 4.7: Finding feasible UIPs using the routing network R: The routing sub-
network of a single internal face (a) and the external face (b). The dotted lines are
the arcs of the underlying graph Û , the bold blue arcs are crossing-arcs, and the
yellow and green arcs are the auxiliary routing arcs of R. Due to the augmentation,
each face has exactly one sink- and one source-switch.

schematically in Figure 4.7, the network contains at most four nodes for each
arc of Ĝ and the two additional nodes x∗, y∗ for x, y, respectively. Hence R
consists of O(|V |) nodes.

Every node of R, except for x∗ and y∗, has at most out-degree 4. The arcs
incident to x∗ and y∗ are limited by O(|V |) since the nodes of R are bounded
by O(|V |). Hence R contains O(|V |) arcs.

We assign length one to each crossing-arc which corresponds to the original
arc of the input graph, that is, not to sink-arcs in Û and not to arcs which
are added in order to obtain an sT -graph. All other arcs in R have length
zero. Notice that the assigned lengths are not final. We may change them
later due to the so-called static and dynamic locks. By construction of R we
can observe:

Observation 2. Let p be a feasible UIP for ã = (x, y) ∈ B.

(a) There exists a path p′ = x∗ y∗ in R corresponding to p.

4.2. Upward Planarization Algorithm 55

y

x

Figure 4.8: Finding feasible UIPs using the routing network: The routing in R
without locking can result in infeasible insertion paths. The thick gray arcs denote
substructures of Û which are expensive to cross. The dashed line denotes the arc
sequence p, which corresponds to a shortest path p′ in the underlying routing network
R, that makes loops. Thus p is an infeasible insertion path.

(b) The length of p′ in R gives the number of the required crossings when
realizing the corresponding insertion path p.

Locking Arcs

The routing network by itself is not strong enough to guarantee that the
shortest path between x∗ and y∗ corresponds to a feasible UIP for (x, y). A
shortest path p′ in R may contain loops, that is, after realizing the corre-
sponding arc sequence p of p′, there exists at least two subarcs of (x, y) in
the resulting intermediate UPR that cross each other; see Figure 4.8. This
clearly violates the upward property of the drawing. Therefore we will in-
troduce static and dynamic locks, that is, we prohibit arcs to be considered
during the shortest path computation. While the static locking by itself does
not directly ensures feasibility for the UIPs, it is necessary to make the dy-
namic locking strategy valid. So whenever we say an arc a is locked, we also
mean implicit that the corresponding crossing-arcs in R are also locked. This
can be achieved by setting its length to ∞.

Let Γ be a feasible upward planar embedding of FUPS U and let Γ̂ be the
upward planar embedding of the augmented subgraph Û inducing Γ.

Lemma 3 (Static Locking). Considering the merge graph M(Γ̂), let Y be
the dominated subgraph in M(Γ̂) of y; let X be the dominating subgraph in

56 Chapter 4. Upward Planarization

M(Γ̂) of x and let ã = (x, y) be the arc to be reinserted. A constraint feasible
UIP for ã will not cross arcs of Û that are also arcs of X or Y .

Proof. Assume a constraint feasible UIP p would cross an arc that connects
two nodes v1, v2 ∈ Y . Let C be the crossing dummy node created by this
crossing; it is dominated by either v1 or v2, hence also by y. Then through
the insertion of ã, we would have the path x C y in the resulting UPR
and since y dominates C, the cycle y C y would arise. This contradicts
the constraint feasibility of p. The analogous holds if v1, v2 ∈ X.

We call the arcs of X and Y the arcs of the static locks. These arcs can
be a priori locked before we start to compute a UIP for (x, y).

The static locks are necessary but not sufficient to prevent insertion paths
containing double-loops as illustrated in Figure 4.8. We require in addition
the dynamically locking of arcs during the insertion path computing phase.

Definition 11 (Face-Lock L(e)). Let e be a dynamic entrance of an insertion
path p to face f ∈ Γ̂. We denote the set of arcs of f that connect the source-
switch of f to the dynamic entrance e as the face-lock L(e) with respect to
p.

We observe: If an arc e is an arc of a feasible UIP p, then a successor arc of
e in the arc sequence p must not be an arc of face-lock L(e).

Definition 12 (Dynamic Locking). Let A be a shortest path algorithm that
visits the nodes of R in the order of their distance from the start node x∗.
Whenever A considers a path p that enters a face f through a dynamic
entrance e, A can lock (that is, forbid) all arcs of L(e) after p leaves f . We
refer to this procedure as dynamic locking.

From now on, we assume that A is a shortest path algorithm that utilizes
the procedure of dynamic locking and we further assume that the length of
the arcs of R corresponding to the static locking are set to ∞, thus in fact
not used for computing UIPs.

A priori we may fear that dynamically locking arcs may prevent a shortest-
path algorithm to find a feasible minimal UIP or even worse, all important
arcs are dynamically locked and no feasible UIP for inserting (x, y) can be
found. We will show that this is not the case. Moreover, we show that a path
computed by A is a feasible minimal UIP for (x, y). We first show that if p
is computed by A, then it is feasible. Observe:

Theorem 1 (Di Battista and Tamassia [BT88]; Kelly [Kel87]). A digraph is
upward planar if and only if it is a subgraph of a planar st-graph.

So, according to Theorem 1 we only need to prove that the graph obtained
after realizing p can be augmented to a planar st-graph, and hence conclude
p is feasible.

4.2. Upward Planarization Algorithm 57

Lemma 4. Let p′ = x∗ y∗ be a path in R computed by A. Let p be a
sequence of arcs of Û corresponding to p′. Then, p is an insertion path for
(x, y), that is, the graph obtained after realizing p into Û with respect to Γ̂ is
planar.

Proof. Let F = 〈f1, . . . , fk〉 be the face sequence traversed by p. Let H be
the graph obtained after realizing p. Assume H would be non-planar. Since
p is realized by inserting subarcs that split the faces of F , there would be a
face f ∈ F that cannot be split in a planar fashion. (p contains at least one
loop.) A single line segment of p crossing through f and split it into two faces
cannot lead to such a situation. Hence there have to be at least two segments
of p going through f , which together contradict the planarity of the drawing
and therefore cross each other (see Figure 4.9). Without loss of generality, we
assume that the first segment (in traversal order of p) ε = (zl, zr) goes from
point zl on the left side of f to point zr on the right side of f . In order to
conflict with ε, the second crossing segment ε′ = (z′l, z′r) occurring one of the
following cases:

• It starts at z′l on the left side of f above zl and ends on the right side
of f at z′r below zr (see Figure 4.9). But then A could find a shorter
path which goes directly from zl to the exit point z′r of ε′.

• It starts on the right side of f above zr and ends on the left side of f
below zl. Due to the dynamic locking, A has forbidden all arc crossings
that can occur over arcs below zl, hence ε′ cannot exist.

Lemma 5. Let p be an insertion path for (x, y) computed by A. Then the
graph obtained after realizing p into Û with respect to Γ̂ is acyclic.

Proof. Let H be the graph obtained after realizing p into Û with respect to Γ̂.
Assume H would be cyclic. We know from Lemma 4 that H is planar, hence
the path p cannot contain loops. Due to the static locks, we know that the
arcs of the dominated subgraph of y and the arcs of the dominating subgraph
of x cannot be crossed. So a cycle C in H can only arise if a subpath q of p
crosses a directed path r = u v in Û such that q first crosses an arc b and
then an arc a of r with a b (see Figure 4.10).

Let C be a smallest cycle (in terms of number of arcs) in H. Considering
any upward planar drawing of Û , r is drawn as an upward path. Without
loss of generality, we assume that p comes from the left side of r, then crosses
through b, and arrives at the right side of r. Thereafter, p crosses r again at
the arc a and arrives at the left side of r. Let 〈f1, . . . , fk〉 denote the sequence
of traversed faces when following p from x to y. Let fl denote the right face
of b and fm the right face of a. If fl = fm, then a and b are embedded on the

58 Chapter 4. Upward Planarization

zl

x

y

zr

z‘l

z‘r

p

f

Figure 4.9: Illustration for proof of Lemma 4. The segments ε = (zl, zr) and
ε′ = (z′l, z′r) of p are drawn in red. The shown situation would violate the planarity
of the drawing. But then A would have found a shorter path x zl → z′r y, and
hence this situation cannot occur.

same face and since a dominates b, both arcs are embedded on the same face
side such that a ∈ L(b), that is, a is below b. Due to the dynamic locking, arc
a cannot be an arc of p. Hence this case cannot occur, hence assume fl 6= fm.

Let fi be a face with l < i ≤ m. Let s be the source-switch of fi and let
p leave fi through c. Since s is source-switch, there is a directed path s c.
Furthermore, since Û is a single source graph, there is a path from the super
source ŝ to s. We know that s must be within the subgraph bounded by C,
hence the path ŝ s has to cross C. Let d be the crossed arc. We can
construct a cycle C∗ that consists of the subpath of p which starts at c and
ends at the arc d1, and the subpath d s c. Since fi 6= fl, the cycle C∗
consists of at least one arc less than C which contradicts the minimality of
C. Hence H is acyclic.

Lemma 6. Let p be an insertion path for (x, y) computed by A. Then p is a
feasible UIP.

Proof. Since Û is an upward planar single sink sT -graph, the graph U ′ (with
upward embedding Γ̂) obtained after realizing p is also a single sink sT -
graph. Further, we know from Lemma 4 and Lemma 5 that U ′ is planar
and acyclic. We can augment U ′ to an st-graph by adding the arc (ŝ, t̂)

1More precisely, the subpath starts and ends at the crossing occurring in c and d, re-
spectively.

4.2. Upward Planarization Algorithm 59

v

s

x

b

a

fi
p

c

ŝ

r

fm

fl

u

d

Figure 4.10: Illustration for proof of Lemma 5: The path r starts at u and ends
at v. Furthermore, we have a, b ∈ r. The green line denotes the insertion path
p. The subpath q of p starts at b and ends at a. By crossing b and a through p
a cycle C occurs. The path p also crosses the path ŝ s such that a new cycle
C∗ = d s c d arises.

connecting the source ŝ and the sink t̂ without violating the planarity and
the acyclicity of U ′, since they are embedded on the external face of Γ̂. Thus,
according to Theorem 1, U ′ is upward planar, therefore p is a feasible UIP by
Definition 7.

If p is computed by A, then we may fear that p it is not necessarily
minimal: because of the dynamic locking, the shortest path algorithm may
have be forced to use a detour. We now prove that this cannot happen.

Lemma 7. Let p be a feasible minimal UIP for (x, y). Let F be the sequence
of traversed faces when following p from x to y. Then each face in F is only
traversed once by p.

Proof. Assume there is a face f ∈ F which is traversed more than once by
p. Let p enter f the first time through the dynamic entrance e, then re-enter
f one or more times, and leave f through the arc b. Since p is feasible, b
is not an arc of the face-locked L(e). So we can construct a feasible UIP
x a + b y that is shorter than p. This contradicts the minimality of
p.

Two insertion paths p and q for (x, y) cross each other if they have an arc
in common or if there is a face f traversed by p and q such that a crossing

60 Chapter 4. Upward Planarization

occurs in f when realizing p and q simultaneously. In the first case, we can
always construct a new insertion path by concatenating appropriate subpaths
of p and q. We now show, that we also can construct a new insertion path
for (x, y) if q and p do not have any arc in common:

Lemma 8. Let p and q be two feasible minimal UIPs for inserting (x, y) into
Û with upward planar embedding Γ̂. Furthermore, let p and q cross and there
exists no arc e with e ∈ p and e ∈ q. Then, there exists a face f , where p and
q enter through an arc a and c and leave through an arc b and d, respectively,
such that a feasible minimal UIP r = x a+ d y can be concatenated.

Proof. If p crosses q more than once, then the crossings can occur in several
faces. Let f be the first face in the sequence of traversed faces of p where
such a crossing occurs. The subpaths x a of p and d y of q are feasible
minimal subpaths since p and q are feasible minimal. We know from Lemma 7
that p and q enter f only once, hence we have only the face locks L(a) and
L(c). If r has to be feasible, then it must not contain any arcs of L(a).
Considering any upward planar drawing of Û , no UIP for (x, y) can be routed
beneath x or above y due to the static locking (Lemma 3). Each UIP that
leaves f through an arc of d ∈ L(a) is routed underneath the subpath x a;
therefore it must cross p in order to reach y (see also proof of Lemma 9 and
Figure 4.11). Assume r is infeasible, then d ∈ L(a). So q has to cross p
somewhere in a face f ′ of Γ̂. Then f ′ would be the first face in the sequence
of traversed faces of p where p crosses q, which contradicts the assumption
of f . If p crosses q only once, then f ′ does not exist which also leads to a
contradiction. Thus r is feasible.

Implicitly the proof reveals that if p and q cross each other more than once
at some faces, then there may be a face where we cannot find appropriate
subpaths of p and q in order to concatenate a new insertion path for (x, y).

We know from Lemma 6 that a path computed by A is feasible. We now
proof that p is also minimal:

Lemma 9. Let p be a feasible UIP for (x, y) computed by A. Then p is a
feasible minimal UIP.

Proof. Assume p is feasible but not minimal. Then there exists a face f
traversed by p such that an arc a ∈ f is dynamically locked or cannot be
used for further path computation (see Figure 4.11). Therefore, the shortest
path algorithm A has to choose an alternative arc d that causes a detour
such that p is not minimal. Let f be the first such face in the sequence of the
traversed faces when following p from x to y. Let e be the entrance to f of the
path p. Thus, the subpath x e of p contains no arcs which cause a detour
and since it is computed by A, the subpath is also a shortest path from x
to e. Furthermore, it is feasible since p is feasible. Thus, x e is a feasible
minimal subpath of p. According to Lemma 7, f is visited the first time by A

4.2. Upward Planarization Algorithm 61

and since dynamic locking is only applied after p leaves f (see Definition 12),
no arcs of f are dynamically locked. Furthermore, the subpath d y of p is
not minimal since p is by assumption not minimal.

The path p enters f through e and by the construction of R, it cannot
leave f through an arc of L(e). Since no arcs of f are dynamically locked
and since p leaves f through d and therefore make a detour, we can conclude,
that a is an arc of L(e). Let r denote a feasible minimal UIP for (x, y) that
uses a. We have two cases:

(a) The arc a is the dynamic entrance of r into f and r leaves f through
an arc b /∈ L(e). Then b y is a feasible minimal subpath of r. Since
b /∈ L(e), A would not take a detour using the non-minimal path d y;
instead it would compute the path x e+ b x which is shorter than
p. Therefore this case does not arise.

(b) The path r leaves f through an arc of L(e). We have two subcases:

(1) r enters f through a and leaves f through an arc of L(e) or

(2) r enters f through an arc not identical to a and leaves f through
a.

In both subcases, the subpath x a of r is not shorter than the minimal
subpath x e of p. Since r leaves f through an arc of L(e), it is routed
underneath the subpath x e of p. We know from Lemma 3 that no
UIPs can be routed above y and below x, so the subpath a y of r
must cross the subpath x e of p. Let f ′ be the face where the two
paths cross each other. According to Lemma 8, a feasible minimal UIP
can be concatenated which consists of the minimal subpath of p from
x to f ′ and the minimal subpath of r from f ′ to y. This concatenated
path is shorter than r since f ′ is visited by p before f and the subpath
x a of r is not shorter than the minimal subpath x e of p. This
facts contradicts the assumption that r is minimal. So this case also
not arise.

So non of the two possible cases arise, hence the assumption that p is not
minimal is wrong.

Lemma 9 assumes that a feasible minimal UIP p can be found by A. But
due to the dynamic locking, we may fear that A may not always find such a
UIP for (x, y). Or even worse, all important arcs may be dynamically locked
and there exists no path in R that corresponds to a feasible UIP for (x, y).
We now show that A can always find a path x∗ y∗ in R:

62 Chapter 4. Upward Planarization

y

f´

d

e

f
a

x

p

r

Figure 4.11: Illustration for the proof of Lemma 9: The arcs of L(e) are drawn in
red. Due to the static locking, no UIP can be routed below x and above y, hence
the path r has to cross p in order to reach y. We assume that r is minimal but not
p. Since p arrives at f through e and before r, the arc a cannot be used. p is forced
to make a detour by crossing d.

Lemma 10. During the path computation of A from x∗ to y∗ there exists—
at any time—a path p′ = x∗ y∗ in R which contains no crossing-arcs
corresponding to any dynamically locked arcs and the corresponding path p of
p′ is a feasible UIP for (x, y). Furthermore, A always computes a path from
x∗ to y∗.

Proof. Let A currently consider the path r′ = x∗ a′ in R where a′ is a
crossing arc of a. Let f be the face in which the corresponding path r of r′
enters it through a. (Or in other words, a is the dynamic entrance of r to
f .) Due to the dynamic locking procedure, the path r does not contain any
locked arcs. According to Lemma 6 and Lemma 9, r is a feasible minimal
UIP from x to arc a. We know from Lemma 7 that f cannot have been
traversed before by r, so r enters the face f through a for the first time.
Therefore no arcs of f are dynamically locked due to the path computation
of r. But there maybe dynamically locked arcs of f due to other alternative
paths that traverse f . We show now that this is not the case: The dynamic
locking is only performed when the currently considered path leaves f (see
Definition 12). So if some arcs of f are dynamic locked, then there must be
an insertion path that enters f through an arc and leaves f through another

4.2. Upward Planarization Algorithm 63

arc. But since A visits the nodes of R in the order of their distance to x∗,
the corresponding path in R of such a path would be considered after the
path r′ has been considered by A. Hence we can assume that no arcs of f
are dynamically locked.

The shortest path algorithm A can add an arc e ∈ f that is not in L(a)
to extend r, leave f through e and dynamically lock the arcs of L(a). We
know that due to the static locking y 6 e in Û and M(Γ̂) and hence by
Observation 1, there exists an upward drawing with e ≺ y which preserves
the embedding Γ̂ of Û . Therefore there also exists a feasible minimal UIP q
from e to y and by Observation 2, there exists a path q′ = e′ y∗ in R. Since
A visits the node of R in the order of the their distances to x∗, non of the
crossing-arcs of q′ have been considered yet. So no arcs of q corresponding
to q′ are dynamically locked. Thus r + q = x a + e y does not contain
any dynamically locked arcs and since e /∈ L(a) by the construction of R, the
concatenated path r + q is also feasible. Notice that r + q is not necessarily
minimal since an insertion path for (x, y) that first visits f and then from
there the node y∗ can be a detour. Since there exists—at any time—a path
p′ = x∗ y∗ in R, A always computes a path from x∗ to y∗.

We summarize our result in the following theorem:

Theorem 2. Let R be a routing network constructed with respect to Γ̂ to
insert (x, y) into Û . Let A be a shortest path algorithm that uses static and
dynamic lockings and visits the nodes of R in the order of their distance
from the start node x∗. Then A computes a path p′ = x∗ y∗ in R that
corresponds to a feasible minimal UIP p for (x, y).

Proof. According to Lemma 10, a path p′ = x∗ y∗ can always be found by
A and according to Lemma 9, the corresponding path p is a feasible minimal
UIP for (x, y).

Upward Arc Insertion Algorithm

Feasible minimal UIP computation. Based on the above routing net-
work R and Theorem 2, we can compute a feasible minimal UIP using a BFS
algorithm, where arcs of R are assigned zero or one and arcs corresponding to
locked arcs are assigned∞ length. We called the algorithm FeasibleMinUIP.
Its pseudo-code is given in Algorithm 3. The algorithm starts with the con-
struction of R (line 2-3) and locks arcs specified by the static locks (line 10-12).
Furthermore, it dynamically forbids additional arcs: Whenever a crossing-arc
e′ is added to the currently considered path, the corresponding arc e ∈ Û is
a dynamic entrance to a corresponding face f with e ∈ f , and hence all arcs
of face-lock L(e) are locked (line 28-30) after f is left.

The procedure ExtractIP (line 37) constructs the feasible minimal UIP
p by reconstructing the computed path p′ = x∗ y∗ using the predecessor

64 Chapter 4. Upward Planarization

Algorithm 2 Relax: subprocedure of FeasibleMinUIP (Algorithm 3) and
ConstraintFeasibleUIP (Algorithm 4)
Require: node u, v

1: if d[v] + `((u, v)) < d[v] then
2: d[v] := d[v] + `((u, v))
3: Pred[v] = u
4: return true;
5: end if
6: return false;

matrix Pred and then deletes the auxiliary routing arcs in p′. Thereafter p′
consists of a sequence of crossing-arcs which corresponds to a sequence p of
arcs of Û .

Corollary 2. The algorithm FeasibleMinUIP computes a feasible minimal
UIP p for (x, y).

Corollary 3. Let p be a feasible minimal UIP obtained by FeasibleMinUIP,
and Γ′ the upward planar embedding arising from realizing p. If the merge
graph M(Γ′) is acyclic, p is a constraint minimal UIP.

Constraint feasible minimal UIP computation. There may be a sit-
uation when the computed minimal insertion path is not constraint feasible.
In such cases we have to resort to a heuristic for finding a constraint feasible
UIP:

The algorithm ConstraintFeasibleUIP (Algorithm 4) works similar to
FeasibleMinUIP but uses no dynamic locking and instead whenever the BFS
algorithm relaxes some crossing-arc b′, it tests each time whether the corre-
sponding arc b can be added to the current considered UIP q without violates
the constraint feasibility (line 8). This test is done by constructing an in-
termediate merge graph M(ΓC) (line 4-7) by partially realizing of ã along
the UIP q up to b such that the inserted path ends at a new dummy node ξ
(line 6). Then the merge graph M(ΓC) for this graph is built by adding the
arc (ξ, y) instead of (x, y) to M(ΓC) (line 7). If the test is positive, that is,
M(ΓC) is acyclic, then q is extended by adding b to it (line 9), otherwise the
considered arc b is forbidden in the BFS enumeration (line 11).

ConstraintFeasibleUIP—though always terminating—will in general not
give an optimal solution, as an alternative path up to the rejected arc b might
have allowed us to use b and find an overall shorter path.

Lemma 11. The algorithm ConstraintFeasibleUIP computes a constraint
feasible UIP p for (x, y).

4.2. Upward Planarization Algorithm 65

Algorithm 3 FeasibleMinUIP

Require: ã = (x, y), U , Γ
Ensure: Feasible minimal UIP for (x, y)

1: . routing network construction
2: augment U → result: Û , Γ̂
3: construct R with respect to Γ̂
4: . Initialization
5: for each node v of R do
6: d[v] :=∞ . distance matrice
7: Pred[v] := ∅ . predecessor
8: Visited[v] :=false
9: end for

10: for each statically locked arc a do
11: set the length ` of the crossing-arcs of a to ∞
12: end for
13: Queue Q:= ∅;
14: Q.enqueue(x∗)
15: Visited[x∗] :=true
16: d[x∗] := 0
17: . BFS traversing of R
18: while Q 6= ∅ do
19: node u :=Q.dequeue()
20: for each target node v of u do
21: if not Visited[v] then
22: arc b′ := (u, v)
23: if b′ is not a crossing-arc then
24: Relax(u, v)
25: else
26: if Relax(u, v) then
27: arc e := predecessor arc of b in the current path
28: for each a ∈ L(e) do
29: set the lengths of the crossing-arcs of a to ∞
30: end for
31: end if
32: end if
33: Visited[v]:=true
34: Q.enqueue(v)
35: end if
36: end for
37: end while
38: p:=ExtractIP(Pred[y∗]) . extract insertion path
39: return p

66 Chapter 4. Upward Planarization

Algorithm 4 ConstraintsFeasibleUIP (fragment); This pseudocode re-
places the else-block (line 25–31) of Algorithm 3 (FeasibleMinUIP)
Require: ã = (x, y), U , Γ
Ensure: ConstraintFeasible UIP for (x, y)

1: ...
2: else
3: arc b :=corresponding arc of b′ . recall: b ∈ Û and b′ ∈ R
4: q:=ExtractIP(Pred[v]) . current insertion path to b
5: C :=copy of G; embed C like G → ΓC
6: realize q in C with respect to ΓC → dummy ξ
7: replace (x, y) by (ξ, y) and construct M(ΓC)
8: if M(ΓC) is acyclic then
9: Relax(u, v) . q is a constraint feasible UIP

10: else
11: `(b) :=∞ . lock b
12: end if
13: end if
14: ...

Arc reinsertion strategy. Algorithm 5 gives an overview on the overall arc
reinsertion strategy: we try to add all arcs using the minimal path computed
by FeasibleMinUIP. Only if there is no more arc insertable by it (no con-
straints feasible minimal UIP can be found for the remaining arcs), we insert
a not-yet inserted arc using ConstraintFeasibleUIP. Afterwards we again
try to use FeasibleMinUIP for the remaining arcs. We iterate that process
until all arcs are inserted. As we will see in the experimental evaluations, the
heuristic procedure ConstraintFeasibleUIP is only used very rarely; hence
in most cases all arcs are inserted according to their corresponding feasible
minimal UIP.

4.2.4 Runtime Analysis

We conclude the theoretic description by analyzing the algorithms’ runtimes.

Lemma 12. Let G = (V,A) be an sT -graph. Algorithm 1 computes a FUPS
U of G with a feasible embedding Γ in O(|A|2) time.

Proof. Since we only have to consider connected digraphs, we have |V | ≤
|A| + 1. The computation of the spanning tree of G can be done in O(|A|),
and upward planarity testing of sT -graphs requires O(|V |) time (Bertolazzi
et al. [BDMT98]). The construction and cycle testing of the merge graph
M(Γ) within the for-loop can be done in O(|A|). In the worst case we have
to test O(|A|) arcs and hence obtain the above lemma.

4.2. Upward Planarization Algorithm 67

Algorithm 5 Reinsert all arcs (cf. Algorithm 1 (LFUP) line 15-19)
Require: sT -graph G = (V,A), FUPS U = (V,A′) with feasible upward

embedding Γ
Ensure: UPR U∗ of G with embedding Γ∗, inducing Γ

1: List L := A \A′
2: U∗ := U , Γ∗ := Γ
3: while L not empty do
4: boolean success:=false
5: for each ã ∈ L do
6: p := FeasibleMinUIP (ã, U∗,Γ∗)
7: U◦,Γ◦ := realizePath(p, U∗,Γ∗)
8: if M(Γ◦) acyclic then . p was constraint feasible
9: U∗ := U◦, Γ∗ := Γ◦

10: success:=true
11: L.remove(ã)
12: end if
13: end for
14: if not success then
15: ã := L.extractRandomElement()
16: p :=ConstraintFeasibleUIP(ã, U∗,Γ∗)
17: U∗,Γ∗ :=realizePath(p, U∗,Γ∗)
18: end if
19: end while

Lemma 13. Let Ū = (V̄ , Ā)—with upward planar embedding Γ̄—be the in-
termediate UPR obtained after inserting some arcs into the original FUPS U
of G. Let (x, y) be the next arc to be inserted, and let r be the number of arcs
to be inserted afterwards.

(a) Computing a feasible minimal UIP for (x, y) via FeasibleMinUIP re-
quires O(|V̄ |+ r) time.

(b) ConstraintFeasibleUIP computes a constraint feasible UIP for (x, y)
in O(|V̄ |2 + r|V̄ |) time.

Proof. By Lemma 2, the routing network for Ū with respect to Γ̄ can be
constructed in O(|V̄ |) time. To compute the static locks we have to construct
the merge graph M(Γ̄), which requires O(|V̄ |+ r) time. The runtime of the
BFS algorithm, including the computation of the dynamic locks, is bounded
by O(|V̄ |). For the constraint feasibility checking, we have to (temporarily)
insert the insertion path into Ū , construct the corresponding merge graph,
and test for acyclicity. This can be done in O(|V̄ |+ r) time. Thus the total
runtime of (a) is dominated by O(|V |+ r).

68 Chapter 4. Upward Planarization

The runtime analysis of ConstraintFeasibleUIP is similar. Instead of
computing the dynamic locks, we temporarily insert the current insertion path
into Ū after each arc relaxation, and check for acyclicity of the corresponding
merge graph. Hence the runtime is O

(
|V̄ | · (|V̄ |+ r)

)
.

Using these two lemmata, and since each arc insertion step generates a
linear number of additional dummy nodes, we can directly obtain a generous
runtime bound:

Theorem 3. Let G = (V,A) be any connected DAG. LFUP computes a UPR
of G in O(|A|5) time.

Proof. Clearly, |V | = O(|A|). Starting with a FUPS of size O(|V |), we have
to insert at most O(|A|) arcs. After each insertion step, the digraph into
which we insert the arcs grows by at most O(|A|) dummy nodes. Hence after
all arc insertions the size of the planarization can be bounded by O(|A|2).

For each arc insertion step we may have to run FeasibleMinUIP for each
not-yet-inserted arc but in the end resort to ConstraintFeasibleUIP. The
latter dominates the runtime of the insertion step. A single arc insertion
might hence require up to O(|V̄ |2 + |A| · |V̄ |) time. With |V̄ | = O(|A|2) we
obtain O(|A|4) for a single insertion step. As the computation of the FUPS
is dominated by the O(|A|) insertion steps, we obtain an overall running time
of at most O(|A|5).

Although the overall runtime of O(|A|5) of LFUP seems too high for a
practical algorithm, the experimental evaluations in the upcoming subsection
exhibit that the runtime bound of O(|A|5) is a rough estimate. It turns out
that LFUP is very practical even for digraphs with size |V | = 100.

4.3 Experimental Evaluation

We have implemented the new layer-free upward planarization approach using
the open-source C++-library Open Graph Drawing Framework (OGDF) [ogd]
which is available under the general public license (GPL) and have compared
its performance with state-of-the-art algorithms based on four benchmark
sets.

4.3.1 Benchmark Sets

Rome graphs. The Rome graphs (Di Battista et al. [DGL+97]) are a
widely used benchmark set in graph drawing, obtained from a basic set of
112 real-world graphs. It contains 11,528 instances with 10–100 nodes and
9–158 edges and with density 0.9–2 and average density of 1.29. Although
the graphs are originally undirected, they have been used as directed graphs
by artificially directing the edges according to the node order given in the
input files. Hence all edges are directed and the graphs are acyclic.

4.3. Experimental Evaluation 69

Algorithm 6 Random DAG
Require: number of nodes n, probability p

1: G = (V = {v1, . . . , vn}, A = ∅)
2: for i = 1, . . . , n do
3: for j = 1, . . . , i− 1 do
4: if UniformRandom[0..1[< p then
5: A := A ∪ {(vj , vi)}
6: end if
7: end for
8: end for

North DAGs. The North DAGs have been introduced in an experimental
comparison of algorithms for drawing DAGs by Di Battista et al. [DGL+00].
The benchmark set contains 1,277 DAGs collected by Stephen North which
were slightly modified by Di Battista et al. Since the North DAGs are a
collection of heterogeneous digraphs, that is, the density of the digraphs with
same number of nodes may vary from very dense to very sparse, the instances
are grouped into 9 sets, where set i contains graphs with 10i to 10i+ 9 arcs
for i = 1, . . . , 9. Hence we do not consider all 1,277 but 1,158 DAGs.

Random DAGs The real-world origin of the above benchmarks results
in sets where, for example, the relative graph densities are not uniformly
distributed over the different graph sizes; in particular larger graphs tend
to have lower density. This can make it hard to interpret the algorithm’s
performance with respect to graph density. Therefore we also consider a
set of random DAGs: All graphs have 100 nodes and each potential arc
occurs with uniform probability p: Each DAG G = (V,A) is generated using
Algorithm 6 and suitable p, such that we obtain the expected density % =
|A|/|V | = {1.5, 2, 2.5, . . . , 6}. We generate 20 random DAGs (ignoring runs
where the algorithm gives a disconnected graph) for each %, resulting in 200
connected random DAGs overall. Note that the density of the Rome and the
North instances are below 2–3.

DAGs with known upward crossing number ucr(G). To the best of
our knowledge, only trivial exponential approaches for computing the upward
crossing number of a DAG are known, but there exist ILP-based approaches
for computing the crossing number cr(G) of undirected graphs, and for many
instances of the Rome graphs, the crossing number is already known (Chi-
mani [Chi08]). We derive a set of DAGs with known upward crossing number
from these Rome instances as follows: We first compute a drawing D of an
instance G such that the number of edge crossings occurring in D is equal to
cr(G). Then we direct each edge e with end node u and v such that (u, v)
if Y (u) < Y (v) and (v, u) otherwise. In the new drawing there may be arcs

70 Chapter 4. Upward Planarization

which are not drawn in an upward fashion. For example, a drawing of e may
contain a segment ε1 which is drawn upward firstly then makes a downward
turn or a segment ε2 which is drawn downward firstly then makes an upward
turn. In this case, we manually replace ε1 by a “peak” 〈(u,w), (v, w)〉 and
ε2 by a “V“ 〈(w, u), (w, v)〉 by introducing new a node w. By these manual
modifications, the number of crossings occurring in D is not violated and D
becomes an upward drawing. However, the number of nodes can increase.

The set of DAGs with known upward crossing number consists of 20 DAGs
partitioned into five groups. Each group consists of four instances with 20, 40,
60–61, 80–81, and 100–101 nodes, respectively. The instances of the groups
are derived from the Rome graphs with |V | = 20, |V | = 40, |V | = 60, |V | = 80,
and |V | = 100 respectively. For the latter three groups, we have added a new
node to some instances in order to preserve the upward property. The upward
crossing numbers vary from 1 to 22.

4.3.2 Evaluated Algorithms

We have considered the following algorithms:

LFUP: In our implementation of LFUP, we randomize the order of the arcs
considered in the for-each loop (line 4 of Algorithm 1) of the FUPS
computation, and the order in which arcs are reinserted (for-each loop
in line 5 of Algorithm 5). We denote by LFUPi the best result obtained
after i independent random runs of the algorithm.

Sugiyama: The graph drawing library OGDF contains an implementation of
the traditional Sugiyama. The chosen settings are: GKNV-Layering,
Barycenter with GreedySwitch post-processing. A randomized run
start with a random order of the nodes on each layer. After each up-
and down-sweep GreedySwitch is applied to each layer in order to im-
prove the results. A randomized run is ended when no further crossing
reduction can be achieved. We denote by Sugiyamai the best results
obtained after i independent random runs.

Dot and Layers: In the experimental study of Di Battista et al. [DGL+00],
the algorithms Layers and Dot turned out to be the most successful
ones. Layers is an implementation of Sugiyama’s algorithm according
to the original paper [STT81] and Dot is a highly-optimized version of
this algorithm developed by Koutsofios and North (see also [GKNV93]).
We report on their results as they were published in [DGL+00], hence
the evaluation of Dot and Layers refers only to the North DAGs. In
[DGL+00], two further algorithms where considered, using a simple
method based on planarization of st-graphs. (The planarization al-
gorithms follow the idea published in [BPTT89].) We omit these in the
diagrams, as they perform very poorly, achieving roughly 300 crossings
on average for the largest North instances, that is, 90 ≤ |A| ≤ 99.

4.3. Experimental Evaluation 71

MUP: We also compare LFUPi with the mixed-upward planarization approach
as presented in [EKE03]. Again, due to the code’s unavailability, we
report on the published results for the comparison, hence the evaluation
of MUP only refers to the Rome graphs.

Global-Sifting and Grid-Sifting: The authors of these algorithms have
provided us with their experimental data as reported in the publica-
tion [BBG11]. Although their experiments are applied to two sets of
benchmark graphs—the Rome graphs and a random DAG set—, we
ignore the data of the latter set which contains very dense DAGs with
|V | ≤ 400 and |A| ≤ 4 · |V |, since even using state-of-the-art algorithms
for drawing such instances, the drawing quality not significantly im-
proves. (As reported in the technical report [BBG11], a drawing of a
such graph can contain up to 100,000 crossings.)
The authors use the following settings: Global-Sifting always start
with an initial layering where each node is assigned to one layer, hence
the number of layers is |V |. It uses the best results of 400 sifting rounds.
A sifting round computes for each block2 a local optimal position. After
a round, the obtained order is fixed and the algorithm again start to
compute for each block a local optimal position and so on. The results
obtained by i sifting rounds is denoted by Global-Siftingi.
Grid-Sifting allows the user to control the runtime by a parameter
called radius. When setting the radius to r, then a node/block b is
vertically sifted only between the layer Li+r and Li−r where Li is the
layer where b is assigned to. Due to the long runtime, the number of
sifting rounds is set to 8. Furthermore, as reported by the authors,
increasing the sifting round beyond 8 does not significantly improve the
results [BBG11]. We denote with Grid-Siftingr/i the results obtained
after i sifting rounds with radius r. In the case when the radius is not
limited, we set r := ∗. In the evaluation we consider Grid-Sifting10/8
and Grid-Sifting∗/8.

So we can hence only apply LFUPi and Sugiyama to all the benchmark
sets, but we can, for example, assume that Sugiyama and Dot would behave
roughly equivalently, as they are virtually indistinguishable on the known
common benchmark set (see Figure 4.14).

4.3.3 Comparison

Due to the code’s unavailability of Dot, Layers, MUP, Global-Sifting, and
Grid-Sifting, the plots are presented with respect to the corresponding pub-
lications. As results, the Rome graph are grouped according to the number

2Recall, a block is either a regular node or a maximum connected subgraph of long arc
dummies in the layering.

72 Chapter 4. Upward Planarization

of nodes and the North DAGs according to the number of arcs. Each data
point of the plots refers to the corresponding average value of all the graphs
within the same group.

Rome graphs. Considering the Rome graphs, Figure 4.12 shows the results
for MUP, OGDF’s Sugiyama, Global-Sifting and Grid-Sifting, and the
new approach LFUP. We observe: the classical Sugiyama50 clearly outmatched
Global-Sifting400 on most of the Rome instances. This is quite surpris-
ingly, since in the publications [MSM99] and [BBBH10] the authors reported
that Global-Sifting performs quite well. On the considered benchmark
sets of their experimental evaluations Global-Sifting clearly outmatched
Sugiyama.

As expected, the quality of the results of Grid-Sifting increases with in-
creasing radius. Though MUP is already considerably better than Sugiyama50,
LFUP1 and Grid-Sifting*/8 obtain solutions with only half as many cross-
ings as MUP. The performance of Grid-Sifting*/8 is quite similar to LFUP1;
while LFUP1 produces slightly better results for small graphs (|V | ≤ 50),
Grid-Sifting*/8 produces better results for graphs with |V | > 50. The best
results is obtained by LFUP50. In comparison to Sugiyama50 on the graphs
with |V | < 40 and |V | ≥ 40, the average number of crossings can be reduced
by 90% and 70% on average, respectively.

Figure 4.13 gives a comparison of the two best algorithms: LFUP50 and
Grid-Sifting*/8. Again, we can see that LFUP50 achieves the most im-
provement on small graphs. With increasing number of nodes, the relative
gap between LFUP50 and Grid-Sifting*/8 is getting smaller. We can observe
that LFUP50 has clearly outmatched Grid-Sifting*/8.

North DAGs. Figure 4.14 illustrates the central results for the North
DAGs. Again, the new algorithm LFUP clearly outperforms the three layer-
based algorithms Layers, Dot, and Sugiyama, leaving them far behind. While
OGDF’s Sugiyama50 achieves virtually the same results as Dot, LFUP1 obtains
solutions with roughly half as many crossings; the randomized version with
multiple runs LFUP50 again yields significant improvements, especially for
larger graphs. LFUP50 achieves results which have on average only 40% of the
crossings of Sugiyama50.

Random DAGs. The results of the random DAGs are illustrated in Fig-
ure 4.15. First of all, LFUP clearly outperforms Sugiyama. Furthermore, with
increasing density of the instances, the number of crossings generally increases
which was expected. We can observe that on the one hand, the absolute dis-
crepancy between Sugiyama and LFUP increases when the instances becoming
denser (Figure 4.15(a)). On the other hand, the relative gap between LFUP
and Sugiyama50 decreases (Figure 4.15(b)). It converges to 22% and 28%
for LFUP50 and LFUP, respectively. Regarding the impact of random runs on

4.3. Experimental Evaluation 73

0	

60	

120	

180	

240	

300	

360	

0	

50	

100	

150	

200	

250	

300	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

#c
ro
ss
in
gs
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

Global-­‐Si@ing400	

Sugiyama50	

MUP	

Grid-­‐Si@ing10/8	

LFUP1	

Grid-­‐Si@ing*/8	

LFUP50	

(a) Average number of crossings vs. number of nodes.

0	

50	

100	

150	

200	

250	

300	

350	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

140%	

160%	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

#nodes	
 (Rome	
 graphs)	
 	

#instances	
 (right	
 axis)	
 Global-­‐SiAing400	

MUP	
 LFUP1	

Grid-­‐SiAing10/8	
 Grid-­‐SiAing*/8	

LFUP50	

(b) Average number of crossings in relation to Sugiyama50 (=100%).

Figure 4.12: Rome graphs.

74 Chapter 4. Upward Planarization

0	

50	

100	

150	

200	

250	

300	

350	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

10
	

14
	

18
	

22
	

26
	

30
	

34
	

38
	

42
	

46
	

50
	

54
	

58
	

62
	

66
	

70
	

74
	

78
	

82
	

86
	

90
	

94
	

98
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

LFUP50	

Figure 4.13: Average number of crossing of LFUP50 in relation to Grid-Sifting*/8
(=100%).

the quality of the results, with increasing density, it decreases, but the rel-
ative gap between the results of one simple run and 50 random runs is still
significant. It converges to 5% with increasing density.

GD 2008 Challenge Graphs

The topic of the 2008 Graph Drawing Challenge (Dogrusoz, Duncan, Gut-
wenger, and Sander [DDGS08]) was upward crossing minimization. The com-
petition was won by Team Dortmund using the OGDF implementation of the
LFUP. From the six challenge DAGs, this implementation achieved the small-
est number of crossings for each DAG.

Table 4.1 shows the results for the 6 DAGs, both for LFUP20 and OGDF’s
Sugiyama50 algorithm; we observe that LFUP20 achieves clearly smaller num-
ber of crossings, improving the Sugiyama50 results by 25–82.9%.

4.3.4 Deeper Analysis

We give here a deeper evaluation of the layer-free upward crossing minimiza-
tion approach.

Dependency on the Number of Crossings

We examine the benefit of using multiple runs with respect to the number of
crossings obtained by applying LFUP50; see Figures 4.16(a), 4.16(b) and 4.17

4.3. Experimental Evaluation 75

0	

60	

120	

180	

240	

300	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

10–19	
 	
 	
 	
 20–29	
 30–39	
 	
 40–49	
 50–59	
 60–69	
 70–79	
 80–89	
 90–99	

#c
ro
ss
in
gs
	

#arcs	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

Layers	

Dot	

Sugiyama	

LFUP1	

LFUP50	

(a) Average number of crossings vs. number of arcs.

0	

50	

100	

150	

200	

250	

300	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

140%	

160%	

10–19	
 	
 	
 	
 20–29	
 30–39	
 	
 40–49	
 50–59	
 60–69	
 70–79	
 80–89	
 90–99	

#arcs	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

Layers	

Dot	

LFUP1	

LFUP50	

(b) Average number of crossings in relation to Sugiyama50 (=100%). Due to the measuring
inaccuracy, the data points of Dot and Layers in the first group (#arcs 10–19) is set
to zero.

Figure 4.14: North DAGs.

76 Chapter 4. Upward Planarization

0	

5	

10	

15	

20	

25	

0	

5	

10	

15	

20	

25	

<1
,75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

#c
ro
ss
in
gs
	
 	
 x
10
00
	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

Sugiyama50	

LFUP1	

LFUP50	

(a) Average number of crossings vs. density of the graphs.

0	

5	

10	

15	

20	

25	

30%	

35%	

40%	

45%	

50%	

55%	

60%	

65%	

70%	

75%	

80%	

<1
,75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

LFUP1	

LFUP50	

(b) Average number of crossings in relation to Sugiyama50 (=100%).

Figure 4.15: Random DAGs.

4.3. Experimental Evaluation 77

number of crossings
graph nodes arcs LFUP20 Sugiyama50 Impr
g1 24 46 4 12 66.7%
g2 99 157 18 24 25.0%
g3 159 241 30 175 82.9%
g4 248 356 108 236 54.2%
g5 729 912 58 113 48.7%
g6 993 1383 295 802 63.2%

Table 4.1: GD 2008 Challenge graphs. Impr denotes the relative improvement of
LFUP20 compared to Sugiyama.

for the Rome graphs, the North DAGs and the random DAGs, respectively.
The diagrams show the ratio between the number of crossings achieved by
Sugiyama and LFUP50, and between LFUP1 and LFUP50. We observe that
the gap is particularly large for small number of crossings. While the gap
between Sugiyama50 and LFUP50 is still relevant for large crossing numbers,
the benefit of multiple runs within the LFUP algorithm diminishes nearly. So
we observe that the effectiveness of multiple runs and LFUP decrease with
increasing number of crossings.

Dependency on the Number of Random Runs

The plots in Figure 4.18 illustrate the experimental results based on the Rome
graphs regarding random runs and the number of crossings. We can observe
that the quality of the results can be largely improved by using multiple
random runs: That is, using FLUP50 instead of LFUP1 can reduce the average
number of crossings by more than 50% for graphs with |V | ≤ 40 and more
than 30% for graphs with |V | = 100. However, with increasing number of
runs, the achieved improvement is getting smaller. We also can see that
for graphs with |V | ≤ 35, increasing the number of runs does not lead to a
significant improvement while for graphs with |V | > 35 better results can still
be achieved by increasing the number of runs. In context with the upcoming
results regarding the instances with known upward crossing number, we can
conclude that the optimum of many small instances is reached and no more
improvement can be achieved. We also can observe that for the large graphs,
significant improvement of the results of LFUP50 can only be achieved by
vastly increasing the number of runs.

LFUP in the Context of k-LCM

Chimani, Hungerländer, Jünger and Mutzel [CHJM11] published an SDP-
based approach for optimally solving k-LCM instances. The benchmark set
used for the experimental evaluations includes the Rome graphs and the North

78 Chapter 4. Upward Planarization

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

11	

12	

13	

14	

15	

16	

1	
 2	
 3-­‐5	
 6-­‐10	
 11-­‐20	
 21-­‐40	
 41-­‐80	
 81-­‐160	
 161-­‐320	

ra
#o

	

#crossings	
 LFUP50	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

cr.	
 Sugiyama50/LFUP50	

cr.	
 LFUP1/LFUP50	

(a)

0	

20	

40	

60	

80	

100	

120	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

1	
 2	
 3-­‐5
	

6-­‐1
0	

11
-­‐20
	

21
-­‐40
	

41
-­‐80
	

81
-­‐16
0	

16
1-­‐3
20
	

32
1-­‐6
40
	

>6
41
	

ra
#o

	

#crossings	
 LFUP50	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

cr.	
 Sugiyama50/cr.	
 LFUP50	

cr.	
 LFUP1/cr.	
 LFUP50	

(b)

Figure 4.16: Average ratio of the number of crossings: Sugiyama50/LFUP50 and
LFUP1/LFUP50 in dependency to the number of crossings achieved by LFUP50.

4.3. Experimental Evaluation 79

0	

10	

20	

30	

40	

50	

60	

0	

1	

2	

3	

4	

81
-­‐16
0	

16
1-­‐3
20
	

32
1-­‐6
40
	

64
1-­‐1
28
0	

12
81
-­‐25
60
	

25
61
-­‐51
20
	

51
21
-­‐10
24
0	

>1
02
41
	

ra
#o

	

#crossings	
 LFUP50	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

cr.	
 Sugiyama50/LFUP50	

cr.	
 LFUP1/LFUP50	

Figure 4.17: Average ratio of the number of crossings: Sugiyama50/LFUP50 and
LFUP1/LFUP50 in dependency to the number of crossings achieved by LFUP50.

DAGs. The authors generated two groups of instances: The first group con-
sists of instances (GKNV-instances) that are layered by GKNV-Layering, and
the second group consists of instances (UPL-instances) that are derived from
the layer free-upward planarization approach. That is, the Rome and the
North instances are first upward planarized and then are layered with respect
to the obtained UPRs by applying the new layering approach UPL-Layering
introduced in the upcoming chapter. A node order for each layer of a UPL-
instance L can also be derived from its UPR, hence we obtained a solution
for L which can be considered as a heuristic solution produced by LFUP.

The runtime of the SDP approach depends on the size of the so-called
matrix dimension ζ which corresponds to the number of variables of the
SDP formulation. It is defined as ζ = 1 +

∑k
i=1

(|Li|
2
)

where |Li| gives the
number of regular and dummy nodes on the i-th layer. Since optimally solving
large instances can take hours, a limitation is set such that only instances
with ζ < 900 (Rome graphs) and ζ < 1500 (North DAGs) are considered,
respectively.

Figure 4.19 shows some results published in [CHJM11]. “GKNV Barycen-
ter” denotes the results obtained by applying Barycenter53 to the GKNV-
instances and “GKNV optimum” the optimal solution of the GKNV-instances.
Analogously, “UPL5” denotes the results of LFUP5 and “UPL5 optimum” the

3Whose results are identical to Sugiyama5

80 Chapter 4. Upward Planarization

0	

50	

100	

150	

200	

250	

300	

350	

0	

20	

40	

60	

80	

100	

120	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

#c
ro
ss
in
gs
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

LFUP1	

LFUP20	

LFUP50	

LFUP100	

LFUP200	

LFUP400	

(a) Number of crossings in dependency on the number of random runs.

0	

50	

100	

150	

200	

250	

300	

350	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	
 LFUP20	

LFUP50	
 LFUP100	

LFUP200	
 LFUP400	

(b) Number of random runs in relation to the results achieved by one run (LFUP1=100%).

Figure 4.18: The influence of the number of random runs to the number of crossings.

4.3. Experimental Evaluation 81

optimal solution of the UPL-instances derived from the UPRs obtained by
applying LFUP5.

Evaluation. There are 7862 (Rome+North) GKNV-instances, all but two
North DAGs were solved optimally by the SDP approach. The barycenter
heuristic solved 24.44% (1922) of the considered instances optimally.

The UPL-instances consist of 3321 digraphs and all of them were solved
optimally by the SDP approach. LFUP optimally solves 52.51% thus 1744
instances. In considering the hardness of k-LCM, this is remarkable.

We observe a large gap between “GKNV optimum” and LFUP5; see Fig-
ure 4.19. When considering the plots of the Rome graph (Figure 4.12(a))
and the North DAGs (Figure 4.14(a)) in the previous evaluations and set-
ting them in relation to the plots of Figure 4.19, we can conclude that LFUP
outmatched the classical layered upward crossing minimization approach for
many instances, even when the k-LCM instances is solved optimally.

We end this subsection by citing the analyses of the authors regarding the
crossing minimization heuristics [CHJM11]:

Analyzing the distinct benchmark sets, we observe that the tra-
ditional leveling and crossing minimization heuristics leave plenty
of room for improvement when considering the minimum number
of crossings. In contrast to this, the graphs leveled by the UPL ap-
proach only allow much smaller improvements. In fact, it shows
that the upward planarization approach [CGMW10a] gives near-
optimal solutions for its respective leveling. We also observe that
the fact that UPL produces more but smaller levels and requires
less crossings is beneficial for both exact approaches4: they solve
all UPL instances, while the GKNV instances are harder.

DAGs with Known Upward Crossing Number

The best way to test the quality of our heuristic is to compare its results
with the optimum. For this, we have applied LFUP with 100, 500, and 1000
random runs on the instances with known crossing numbers. The results are
illustrated in Figure 4.20.

The x-axes gives the numbered instances from 1 to 20. The instances
1–4 correspond with the set of DAGs with |V | = 20, the instances 5–8 with
the set with |V | = 40, etc. First of all, we can see that LFUP can find the
optimal solutions for small instances, that is, |V | ≤ 40. This fact coincides
with the results of Figure 4.18 where the improvement for small instances
not significant increases even when we start more random runs. For mid-size
instances, that is, 40 < |V | ≤ 60, the computed solution is very close to the

4Besides the SDP approach, the authors had also considered an approach based on an
ILP.

82 Chapter 4. Upward Planarization

0	

10	

20	

30	

40	

50	

60	

70	

300	
 600	
 900	

#c
ro
ss
in
gs
	

dim	
 (Rome	
 graphs)	

GKNV	
 Barycenter	

GKNV	
 op9mum	

UPL5	

UPL5	
 op9mum	

0	

10	

20	

30	

40	

50	

60	

70	

80	

300	
 600	
 900	
 1200	
 1500	

#c
ro
ss
in
gs
	

dim	
 (North	
 DAGs)	

GKNV	
 Barycenter	

GKNV	
 op:mum	

UPL5	

UPL5	
 op:mum	

Figure 4.19: Optimal and heuristic solutions of the GKNV- and the UPL-instances.
(For two GKNV-instances, no solution could be found by the SDP approach.) Ob-
serve that the underlying DAG of the GKNV- and UPL-instances are not necessary
identical. (Data taken from[CHJM11].)

4.3. Experimental Evaluation 83

0	

20	

40	

60	

80	

100	

120	

0	

10	

20	

30	

40	

50	

60	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	
 17	
 18	
 19	
 20	

Cr
os
si
ng
s	

Instance	
 No.	

|V|	
 (right	
 axis)	

Op:mum	

LFUP1000	

LFUP500	

LFUP100	

Figure 4.20: DAGs with known upward crossing number.

optimum, but for large instances, that is, |V | > 60, even with more random
runs and even if the upward crossing number of the instances is small, LFUP
is not able to find the optimal solution. The computed number of crossings
are on average twice the optimum. So there is potential for improvement.

Upward Planar Graphs

There is another statistic of interest: While LFUP50 was able to find crossing-
free UPRs for 25.5% and 62.3% of the Rome and North instances, respectively,
Sugiyama50 was only able to find crossing-free layouts for 4.0% and 42.8% of
the respective instances. In absolute numbers, this means that our approach
found upward planar embeddings for 2249 and 250 (multi-source-multi-target)
graphs, respectively, where Sugiyama50 required crossings. It also means that
most of the North instances are upward planar. The random DAGs did not
contain any graphs that could be drawn without crossings.

Constraint Feasibility

A very interesting outcome of our studies is that the feasible minimal path
obtained by FeasibleMinUIP is already constraint feasible in most of the
cases and therefore allows us to insert the arc provably optimally.

From the 2,708,474 arc insertion calls performed by LFUP20 in total over all
Rome graphs, only 114 (0.004%) require to call the ConstraintFeasibleUIP
heuristic; this corresponds to 0.87% of the instances requiring this heuristic at

84 Chapter 4. Upward Planarization

all. Furthermore, the heuristic was never used for any North DAG or random
DAG.

4.3.5 Runtime

The experiments were conducted on an Intel i5 2.67GHz with 8GB RAM per
process under Windows 75. The maximum computation time of LFUP1 over all
Rome and North instances was 0.312 seconds. The large Rome graphs (|V | ≥
90) take under 0.065 seconds on average, the large North DAGs (|A| ≥ 90)
require 0.078 seconds on average. For comparison, the runtimes of OGDF’s
Sugiyama implementation were at most 0.187 second.

Figure 4.21 shows the average computation time for the Rome graphs
and the random DAGs. By construction, the computation time of LFUPi is
nearly i times larger than LFUP1. Clearly, the running time increases for
denser graphs, since we have to insert more arcs, and the respective insertion
paths can be expected to be longer. Not surprisingly, we can also observe
that the denser the graphs, the better becomes Sugiyama’s relative speed-
up. Furthermore, LFUP20 is a good compromise between effort (runtime) and
quality, also LFUP50 is not too slow.

Figure 4.22 gives the runtime of the considered sifting algorithms. Notice
that the sifting algorithms are implemented in Java within Gravisto [FBB+05]
and the data are obtained by running the algorithms on an Intel Xeon with
2.0 GHz, hence it cannot be used for a direct comparison with the runtime
of LFUP.

4.3.6 Summary

We have conducted the new upward planarization approach on several bench-
mark sets which include real-world-based and random instances. We summa-
rize the results as follows:

• LFUP can be considered as the new state-of-the-art upward crossing min-
imization heuristic. It outperforms all the considered upward crossing
minimization approaches.

• Multiple random runs of LFUP improve the results significantly.

• LFUP is able to find the optimum, that is, the upward crossing number,
for small and sparse instances. For mid-size instances, the solution is
near to the optimum.

• The maximal overall runtime of LFUP1 (Rome graphs and North DAGs)
was 0.312 seconds, hence the approach is practical.

5Hence the runtime data differ from the published results of [CGMW08, CGMW10a]
due to the different hardware.

4.3. Experimental Evaluation 85

0

50

100

150

200

250

300

350

0

1

2

3

4

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

tim
e

[s
ec

.]

#nodes (Rome graphs)

#instances (right axis)
LFUP50
LFUP20
LFUP1

(a) Rome graphs: average runtime (in seconds) vs. number of nodes.

0	

5	

10	

15	

20	

25	

30	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

<1
,75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

!m
e	

[s
ec
.]	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

LFUP1	

Sugiyama50	

(b) Random DAGs: average runtime (in seconds) relative to the graph’s density.

Figure 4.21: Runtime of LFUP.

86 Chapter 4. Upward Planarization

bt

0	

50	

100	

150	

200	

250	

300	

350	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

10
	

14
	

18
	

22
	

26
	

30
	

34
	

38
	

42
	

46
	

50
	

54
	

58
	

62
	

66
	

70
	

74
	

78
	

82
	

86
	

90
	

94
	

98
	

ru
n$

m
e	

[s
ec
.]	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

Grid-­‐Si>ing*/8	

Grid-­‐Si>ing10/8	

Global-­‐Si>ing400	

Figure 4.22: The runtime of the considered sifting algorithms (contribution of the
authors of [BBG11]).

4.4 Extension to Port Constraints

Many practical applications of graph drawing come with domain specific con-
straints. In this subsection, we consider the given port positions that prescribe
where a drawing of an arc can touch the images of its end nodes. Prescribed
port positions arise in many technical applications where they are used for
modeling the pins of electric components or the in- and output channels of
data devices.

In this section, we introduce an extension of the upward planarization
algorithm LFUP, allowing it to upward planarize digraphs with prescribed
ports. We consider the fixed-port scenario, that is, a node v has no constraints
or the given prescribed ports define a fixed circular arc order of the arcs
incident to v. This scenario arises in many applications. Analogously to the
upward planarization approach presented in the previous section, we focus on
simple sT -graphs.

Let π be the circular arc order of a node v induced by the prescribed port
positions. A circular arc order of v is port constraint valid (pc-valid) if it
does not violate π. An upward planar embedding Γ is pc-valid if the circular
arc order of each node induced by Γ is pc-valid. A UIP p is pc-valid if the
embedding obtained after realizing p is pc-valid.

4.4. Extension to Port Constraints 87

4.4.1 Chain Substitution

Given the prescribed positions of the ports of G, the port constraints C may
require arcs a = (u, v), with u being properly drawn below v,

(a) to leave u downwards, or

(b) to enter v from above, or

(c) to leave u downwards and enter v from above.

This clearly invalidates the pure upward drawing style (see Figure 4.23).
Nevertheless, we want to allow such constructs in order to fulfill the given port
constraints. Any such arc a requiring one of the three cases is substituted by
a chain of subarcs (see Figure 4.23(c)):

(a) a is substituted by the chain 〈(D,u), (D, v)〉 and the subarc (D,u) is
locked, that is, cannot be crossed.

(b) a is substituted by 〈(u,D), (v,D)〉 and the subarc (v,D) is locked.

(c) a is substituted by 〈(D′, u), (D′, D), (v,D)〉 and the subarcs (D′, u) and
(v,D) are locked.

The nodes D and D′ are new introduced dummy nodes of the correspond-
ing chain. Locking the accordant subarcs ensure that the corresponding line
segments in the final drawing is directly neighbored to node u and v, re-
spectively. For notational simplicity, we will continue to store the original
unmodified arcs in the graph, denoted by the set Chn. Whenever we consider
an arc a ∈ Chn, we in fact use the complete chain corresponding to a.

4.4.2 Feasible Subgraph

Besides ensuring the feasibility of the initial upward planar subgraph U , U
also has to additionally be pc-valid with respect to the port constraints C.
Therefore, we extend the fixed-embedded FUPS test by adding an additional
arc-wise test. This arc-wise test checks whether the arc orders of the nodes
u and v fulfill the given port order when inserting the arc (u, v) in the cur-
rent subgraph (also see Algorithm 1, line 7). In the end, we have a FUPS
with a pc-valid upward planar embedding Γ. We refer to the adapted FUPS
computation algorithm as FUPS-PC.

According to Lemma 12 a FUPS can be computed in runtime O(|A|2).
Since the arcs-wise test requires additional time O(|V |), we obtain the fol-
lowing corollary for the fixed port scenario:

Corollary 4. Let G = (V,A) be an sT -graph and C a set of given port
constraints. Algorithm FUPS-PC computes a FUPS U = (V,A′) of G with a
pc-valid feasible embedding Γ with respect to the arcs A \ A′ and the set C in
time O(|A|2).

88 Chapter 4. Upward Planarization

w

v

u

(a)

u

v

w

1 2

1

3 4

5

2

1

2

(b)

u

v

w

1 2 4

5

2

3

1

1

2

D1

D2

D3

D4

(c)

Figure 4.23: Port constraints: (a) No prescribed ports. (b) If u ≺ w ≺ v, then
the prescribed port positions violate the upward property. (c) Chain substitutions:
The bold subarcs of the chains are locked, that is, cannot be crossed in the upward
planarization process.

4.4.3 Arc Reinsertion

Let U = (V,A′) be a FUPS of G with pc-valid feasible upward planar embed-
ding Γ with respect to C.

Routing network. As the routing network requires simple faces, we first
augment each non-simple face of Γ to a simple face and thereafter substitute
each arc a ∈ Chn by its corresponding chain. The substitution may introduce
new sinks and sources. We get rid of the new sinks by connecting them
via sink-arcs to an appropriate top sink-switch of the faces incident to a.
Analogously, we get rid of the new sources by connecting them via source-
arcs to an appropriate source-switch. Again, the corresponding crossing-arcs
of the sink- and source-arcs have lengths zero. As result, we have a new graph
Û with pc-valid upward planar embedding Γ̂.

Merge graph. Assume a ∈ Chn is substituted in Û by the chain g =
〈(D1, u), (D1, D2),(v,D2)〉. When the merge graph M(Γ̂) is constructed,
then the hierarchy between u and v may not mapped correctly toM(Γ̂), since
due to the substitution, no path may exist in M(Γ̂) from u to v. Therefore,
whenever we consider a merge graph of a FUPS or an intermediate UPR,
we implicitly mean the merge graph that is constructed by ignoring the port

4.4. Extension to Port Constraints 89

constraints. In particular, no arcs of Chn are substituted in M(Γ̂). Also
recall that the statically locked arcs are computed based on an accordantly
merge graph. So if a ∈ Chn is locked, we in fact locked the whole chain
corresponding to a in Û .

Insert an arc. Let B = A \ A′ and ã = (x, y) ∈ B be the current arc to
be reinserted. Further, let R be the routing network for inserting (x, y) in Û
(with respect to Γ̂) and let p be an insertion path for (x, y). We call the first
face fs and the last face ft in the corresponding sequence of traversed faces
of p the start- and target-face of p, respectively.

If the port constraints require that ã leaves x or enters y at some special
positions, we can easily restrict the routing network R to use only applicable
start- or target-faces for the routing (see Figure 4.24). Yet, there are addi-
tional augmentations necessary when ã ∈ Chn. If ã has to leave x downwards
or enter y upwards, we have to extend the routing network. Assume that ã
only requires the second property (the first one is independent of the second
and can be solved analogously). Usually, all arcs dominated by y will be
statically locked, that is, we may not cross through them. Now, we unlock
the arcs that directly leave y and search for a path p entering y from there;
depending on the exact port constraints, only a single face above y may be a
valid target-face. We realize p by inserting the corresponding chain of a into
Γ̂. Such a realization is referred to as pc-valid realization of p. After pc-valid
realizing p, we maintain the simple face property by adding corresponding
sink- and source-arcs to the intermediate UPR if necessary.

We can now naturally extend Definition 5 (UIP) to the fixed port scenario:

Definition 13 (UIP (fixed-port scenario)). A UIP p for (x, y) is an inser-
tion path such that the embedding of the intermediate UPR obtained from
realizing p is upward planar. The realization can be an ordinary realization
according to Definition 1 or, if (x, y) ∈ Chn, a pc-valid realization.

This definition also extends Definition 7 ((constraint) feasible UIP). Now let
R∗ denote the adapted routing network.

Lemma 14. Let p be an insertion path for (x, y) computed by performing
FeasibleMinUIP on R∗. Then, p is a feasible minimal UIP with respect to
the arcs of B and p is pc-valid.

Proof. By the construction of R∗, p cannot violate the port constraints oc-
curring at the nodes x and y. The minimality and feasibility of p follows from
Corollary 2 together with the chain substitution.

Similar to the port-free case, if after the realization of p the corresponding
merge graph is acyclic, then p is also constraint feasible minimal and pc-valid.

We can use the insertion strategy introduced in Section 4.2.3 to insert
all arcs of B. Following similar argumentation of the proof of the previous
lemma, we can show that ConstraintFeasibleUIP also works fine on R∗.

90 Chapter 4. Upward Planarization

3

4

1

x
2

1

3

0

y
1

3

2

2

fs

ft

p

(a)

3

4

1

x
2

1

3

y
1

3

2

2

fs

ft

D‘

D

D
D

0

(b)

Figure 4.24: A simple example of a pc-valid realization: The nodes with given
prescribed ports are drawn as rectangles, the ports are drawn in small red octagons.
(a) An insertion path p for (x, y) with prescribed positions. Usually, the arc (y, 4) is
locked due to the static locking, but in order to fulfill the given port constraints, it is
unlocked now for the insertion path computation of (x, y). (b) A pc-valid realization
of p. Since (x, y) ∈ Chn, (x, y) is replaces by a chain (drawn in blue). The bold arcs
of the chain are locked for the further path computation. The intermediate UPR
is augmented to a single sink sT -graph by adding a source- and a sink-arc (dotted
arcs). Thus, the new UPR is again an upward planar single sink sT -graph.

Lemma 15. Let p be an insertion path for (x, y) computed by performing
ConstraintFeasibleUIP on R∗. Then, p is a constraints feasible UIP with
respect to the arcs of B and p is pc-valid.

Runtime. The fixed-port scenario distinguishes from the port-free scenario
in two aspects: the routing network construction and the chain substitutions.
The network construction and the chain substitutions are bounded by O(|V |)
(also see Lemma 2). Therefore, the runtime stated in Lemma 13 and Theo-
rem 3 also holds for the fixed-port scenario.

4.5 Extension to Hypergraphs

Many technical applications such as data flow diagrams or electric schematics
require the visualization of directed hypergraphs rather than digraphs. Layer-
based methods that consider this task, for example, Spönemann, Fuhrmann,
von Hanxleden, and Mutzel [SFvHM10], often suffer from too many arc cross-
ings, and thus planarization-based methods—where minimizing the number
of crossings is the main objective—may be preferable.

In this subsection, we describe a first approach for upward planarization
of directed hypergraphs based on the layer-free upward planarization algo-

4.5. Extension to Hypergraphs 91

rithm. The ideas depicted in the following can also be combined with the
port constraints extension.

Algorithm overview. Given a directed hypergraph H, a suitable directed
underlying graph H of H is first computed. Thereafter, H is transformed to
an sT -graph G and a special FUPS U of G is constructed such that it does
not contain any arc of F , where F is a minimal feedback arc set obtained
by transforming H into G. Then, one hyperarc after another is inserted
into U , that is, each hyperarc α is inserted by incrementally inserting the
arcs of the star-based underlying graph, reusing the already established tree-
based substructure of α as far as possible and using a special operation called
hypernode splitting to abbreviate the insertion path. By specially considering
original arc directions, we thereby guarantee that all hyperarcs can be drawn
as confluent trees. The final result of the upward planarization is a UPR R
of G, and hence of H. Within R, hyperarcs of H are represented as confluent
trees, and crossings are represented as dummy nodes.

4.5.1 Pre-processing

In this very first step, we transform a directed hypergraph H = (V,A) into
an ordinary digraph. We can assume that H contains no hyperarcs with self-
loops, as they could be easily reinserted as a post-processing step without
requiring any further crossings.

The choice of an appropriate underlying graph of H —star-based or tree-
based— can influence the final number of crossings. Since we are interested
in a UPR of H with as few crossing dummies as possible, but we do not know
which underlying graph of H will lead us to this goal, we start with the star-
based underlying graph of H. We will see that a star-based underlying tree
of a hyperarc can become any confluent tree-based underlying tree during the
upward planarization process, hence does not narrow down the possible in-
sertion path. So let now H be the star-based directed underlying graph of H.
We may assume that H is already transformed into a single source graph,
but H may not be acyclic. It remains to make H acyclic by reversing the
direction of the arcs in a minimal feedback arc set F . Unlike the case of or-
dinary digraphs, where the upward planarization process makes no difference
between the reversed arcs of F and the not reversed arcs, we have here to
take care of the set F due to the confluence property of the hyperarcs. So as
the final result of the pre-processing, we have a simple sT -graph G = (V,A)
and a set F with F ⊂ A.

4.5.2 Feasible Subgraph and Arc Reinsertion

Based on the techniques for hypergraph planarization published by Chimani
and Gutwenger [CG07], we explain in the following how to upward planarize

92 Chapter 4. Upward Planarization

directed hypergraphs.

Feasible Subgraph

The FUPS computation differs slightly from Algorithm 1 or FUPS-PC (see
Section 4.4.2) as we need here a FUPS that does not contain any arcs of F .
Fulfilling this demand allows us to deal with the arcs of F only in the arc
reinsertion phase. To achieve this goal we forbid the arcs of F for the FUPS
computation. That is, we first compute a spanning tree T = (V,A′) of G,
with A′ ∩ F = ∅, which clearly exists due to the minimality of F . Then we
insert the arcs a ∈ A\ (A′∪F) one by one into T . As result, we have a FUPS
U with an upward planar embedding Γ and an arc set B = (A \A′).

Arc Reinsertion

Starting from the FUPS U , we will now iteratively insert full hyperarcs,
until we obtain a UPR of G and thus of the input hypergraph H. Note
that hyperedge insertion in the tree-based paradigm is already NP-hard in
the undirected, non-upward setting (Chimani and Gutwenger [CG07]). We
therefore introduce a novel piecewise insertion strategy which realizes a low-
crossing number hyperarc reinsertion ensuring the confluence of the hyperarcs.

For any original hyperarc α ∈ A in H, G contains a set of arcs Aα ⊂ A
and a set of hypernodes Vα. Initially, |Vα| = 1 since we started with the star-
based underlying graph of H. We will see that both sets will grow during the
subsequent insertion steps. Also note that, in general, some arcs of Aα may
be in A′ and some in B.

Let U ′ = (V,A′) be an intermediate UPR obtained after reinserting some
arcs during the insertion process, B′ the not yet inserted arcs, and α ∈ A the
hyperarc to insert. The arc set A′α = Aα ∩ A′ forms a tree corresponding to
the partially tree-based underlying tree of α, which is already in U ′. In the
initial FUPS U , this tree is at most a star (and at least a single edge) and is
confluent. The arcs Bα = Aα ∩ B′ with Bα ⊂ B′ are the arcs corresponding
to α that have yet to be inserted in the current iteration step.

Inserting α into U ′ with respect to its upward embedding Γ′ means that
we insert each arc ã = (x, y) ∈ Bα one by one into U in a confluent way such
that ã is connected to the partial underlying tree induced by A′α. For now
we assume that ã 6∈ F . We first compute the minimal directed subtrees Ts, Tt
of A′α that contain all source and target nodes, respectively, that are already
connected by A′α (Figure 4.27). Let hs and ht be the sink and source of Ts
and Tt, respectively.

Since the input graph G is a star-based underlying graph of H, we have:
If x is a hypernode, then y is a target node of α, and we search for a shortest
feasible UIP from hs to y. Otherwise, y is a hypernode, x is a source node of
α, and we search for a shortest feasible UIP from x to ht. For this, we modify
the routing network in two ways:

4.5. Extension to Hypergraphs 93

Hypernode Splitting. The knowledge of the properties of hypernodes al-
low a further improvement, derived from [CG07] (Bokal, Fijavz and
Mohar), where it was used in the context of undirected edge insertion
for the so-called minor-monotone crossing number [BFM06]. We can
cross “through” a hypernode h of another hyperedge, that is, we split
h into two hypernodes h and h′ and add the arc (h, h′) which then will
be crossed by the insertion path. The idea is illustrated in Figure 4.25:
Instead of crossing two edges (in the fixed-embedding scenario), we can
reduce the number of crossings by one when the insertion path for (x, y)
is allowed to cross the hypernode h. However, since the hyperarcs must
drawn in a confluent fashion, the idea of hypernode splitting cannot
be adapted one by one without any modifications. For example, Fig-
ure 4.25(c) illustrates a directed case of the example in Figure 4.25(a),
where splitting node h leads to a non-confluent underlying tree. We can
observe: As long as we do not separate both, the source and the target
node of the hyperarc, from each other, splitting of h still allows us to
draw the hyperarc in a confluent fashion.
Let Ain and Aout be the arcs formerly entering and leaving h, respec-
tively. To ensure confluence, we only allow a split where

(a) all Ain remain incident to h;
(b) all Aout become incident to h′; or
(c) neither of both, but either no arcs of Ain is incident to h′ or no

arcs of Aout is incident to h.

After this split, the routing path can cross over the arc (h, h′). Notice
that since we consider a fixed-embedding, all valid hypernode-crossings
can be modeled via arcs in the routing network directly connecting two
faces. A schematic buildup of the modified network for faces incident
to a hypernode is given in Figure 4.26. We observe that a star-based
underlying tree becomes a tree-based underlying tree due to the split.
Hence, the cardinalities of Vα and Aα increase.

Arc Reuse. We want to reuse the already existing partial underlying tree
induced by A′α in U ′ in order to achieve a small total number of cross-
ings. Therefore, the routing allows zero length of the crossing-arcs cor-
responding to the arcs of A′α and to the arcs incident to crossing dum-
mies in A′α. In other words, the new path may reuse already established
paths of α in U ′. For example, Figure 4.27 illustrates the already exist-
ing partial tree induced by A′α in U ′. Inserting the arc ã into U ′ with
respect to Γ′ is equivalent to extend the tree A′α in a confluent way by
finding the shortest connection from node hs to node y. The insertion
path along the arcs of A′α has length zero, and thus does not cause any
crossings.

94 Chapter 4. Upward Planarization

y

h

x

t1

t2

t3

s2 s3

(a) The insertion path p for (x, y) crosses the hypernode h.

y

x

t1

t2

t3

s2 s3

h

C

h‘

(b) A realization of p with one crossing.

y

x

t1

t2

t3

s2 s3

h

h‘

C

(c) When considering the example as a directed graph as illustrated here, p
would lead to an infeasible split since node x does not dominate node t3.

Figure 4.25: Hypernode splitting: the undirected (a)-(b) and the directed (c) case.

4.5. Extension to Hypergraphs 95

h

f1
f2

f3

f4f5

f6

t3

s2

s3

t1
t2

s2

s3s1

Figure 4.26: Schematic illustration of the partial routing network for a confluent
hypernode splitting (also see Figure 4.7): Since a confluent split increases the number
of crossing by one (see Figure 4.25), we set the length of all auxiliary routing arcs
that “route in” the hypernode h to one. Notice: Some auxiliary routing arcs are
omitted for the sake of readability.

Inserting reversed arcs. Let ã ∈ F . In order to ensure that the hyperarcs
can be drawn in a confluent fashion, we have to take special care of the arcs
that were reversed in the pre-processing step. To avoid notational complexity,
we will add such arcs only after all arcs of Bα (that is, not arcs of F) are
already inserted.

Assume the arc ã = (x, y) originally connected a source node to the hyper-
node of the star-based underlying graph, but got reversed and hence connects
the hypernode to a target node. Nonetheless we have to ensure that it con-
nects to the aforementioned subtree Ts instead of Tt. Let S be the set of
original sources in Ts before inserting ã. A feasible UIP for ã can be obtained
by setting the length of the crossing-arcs corresponding to the arcs of Ts and
to the arcs incident to crossing dummies of Ts to zero and then computing
the minimal insertion path from any node in S to y. The analogous holds, if
ã originally connects a target node to the star-based hypernode.

Feasibility. We have sketched our ideas for upward planarizing directed
hypergraphs. From now on we can assume that these ideas are incorporate
into the algorithms FeasibleMinUIP and ConstraintFeasibleUIP. The re-
maining task is to prove the feasibility of hypernode splitting and arc reuse.
Let R∗ denote the modified routing network.

Lemma 16. Let p be an insertion path for (x, y) computed by performing
FeasibleMinUIP on R∗. Then p is a feasible minimal UIP with respect to

96 Chapter 4. Upward Planarization

t1

t2

s2

s1

s3

s4

t4

h

h

h

t3y

ht

p

Ts

Tt

hs

Figure 4.27: Arc reuse: The figure illustrates an already existing tree structure
induced by A′α in an intermediate UPR U ′. The tree can be divided into two subtrees
Ts and Tt. hs is the sink of tree Ts an ht the source of Tt. The insertion path p
for ã = (x, y) starts at node hs in order to ensure the confluence property of the
extended tree structure.

the arcs of B, and the intermediate UPR with embedding Γ′ —obtained after
realizing p—has a confluent drawing which induces Γ′.

Proof.
Hypernode splitting: If a hypernode h is an end node of a statically or dy-
namically locked arc, then hypernode splitting must not be applied. The
assignments of the length of the auxiliary routing arcs for hypernode split-
ting ensure that the length of a path p′ in R∗ corresponds to the number of
crossings caused by its corresponding insertion path p. Hence Corrolary 2
also holds for FeasibleMinUIP where the technique of hypernode splitting
is incorporate into. Thus p is feasible minimal. The underlying trees are
confluent due to the construction of the routing network R∗ for hypernode
splitting.
Arc reuse: As we do not change the routing network but the length of its
crossing arcs, we ensure that a path p computed by using the idea of arc reuse
is feasible and the number of crossings caused by p again corresponds to the
length of p′ in R∗. Furthermore, as we insert (x, y) by using the subtrees Ts
and Tt, the confluence of the extended underlying trees is ensured. Hence we
can also conclude that p, computed by FeasibleMinUIP using the technique
of arc reuse, is feasible.

Again, if after the realization of p the corresponding merge graph is acyclic,
then p is also a constraint feasible minimal UIP and if p is not constraint
feasible, then we have to resort to the algorithm ConstraintFeasibleUIP.

4.5. Extension to Hypergraphs 97

Lemma 17. Let p be an insertion path for (x, y) computed by performing
ConstraintFeasibleUIP on R∗. Then p is constraint feasible with respect to
the arcs of B, and the intermediate UPR with embedding Γ′ —obtained after
realizing p—has a confluent drawing which induces Γ′.

Proof. Since ConstraintFeasibleUIP uses an intermediate merge graph to
test whenever the currently considered path is constraint feasible or not, hy-
pernode splitting is only applied if the path obtained thereafter is constraint
feasible. Regarding arc reuse, an arc of the already existing tree structure is
only added to the currently considered path if the intermediate merge graph
is acyclic. Hence the computed UIP p is constraint feasible and does not
violate the confluence property.

98 Chapter 4. Upward Planarization

4.6 Example

We illustrate LFUP step by step on a directed hypergraph with given prescribed
port positions for some nodes.

15

11

9

4

14
1

2
3

3
1 2

3

12

6

7

10
1

3
2

13

5

8

16
1 2

34
5

2 1

2
3

17

1

Figure 4.28: The input hypergraph H with given prescribed port positions on the
node 2, 3, 10, 14, and 16. The ports are drawn as red octagons. The hypergraph
contains a cycle (drawn in red).

4.6. Example 99

15

11

9

4

14
1

2
3

3
1 2

3

12

6

7

10
1

3
2

13

5

8

16
1 2

34
5

2 1

2
3

17
1

h2

h1

h3

ŝ

(a) The augmented star-based underlying graph H of H. The red nodes
labeled with hi are hypernodes and the blue arcs are arcs of Chn.

Figure 4.29: Pre-processing: The input hypergraphH is transformed into a directed
star-based underlying graph H and then augmented to an sT -graph by adding the
super source ŝ and connecting it with the sources 13 and 3 of H. By reversing
the direction of arc (16, h1), H becomes a DAG, thus we have the feedback arc set
F = {(16, h1)}. The following arcs violates the upward property and hence must
later be substituted by chains: Chn = {(3, 17), (h3, 16), (16, 14)}

.

100 Chapter 4. Upward Planarization

15

11

9

4

6

5

8

h1

10
1

3
2

1

2
3 2

16
1 2

34
5

h3

14
1

2
3

ŝ

7

3
1 2

3

12

17

13

h2

1

(a) The spanning tree T of the underlying graph H.

Figure 4.30: Feasible subgraph computation: In the first step, a spanning tree T
of H is computed such that T does not contain any arcs of F .

4.6. Example 101

15

11 9

4

8

10
1

3
2

16
1 2

34
5

14
1

2
3

ŝ

3
1 2

3

12

17

1

1

2
3 2

5

h1 6

7

h2

13

h3

(a) The pc-valid embedded FUPS U of H.

Figure 4.31: Feasible subgraph computation: The following arcs of H are deleted:
{e1 = (17, 7), e2 = (3, 2), e3 = (16, 14), e4 = (h1, 16)} = B

102 Chapter 4. Upward Planarization

10
1

3
2

3
1 2

3

12

17

1

1

2
3 2

5

h1 6

7

h2

13

h3

t̂

11
4

14
1

2
3

9

d1

d2

16
1 2

34
5

15

8

ŝ

(a) The augmented embedded subgraph Û of U .

Figure 4.32: For inserting the first arc e1, U is augmented by adding appropriate
sink-arcs (drawn as dotted arcs) to a single sink sT -graph. Then, the arcs of Chn are
substituted by corresponding chains (drawn as blue arcs) and the resulting graph is
transformed to a single sink sT -graph again. Recall that the bold drawn subarcs of
the chains must not be crossed during the insertion path computation. We denote
the upward planar embedding of Û with Γ̂. The faces of Γ̂ are simple. This fact
allows us to construct well structured sub-network for each single face.

4.6. Example 103

10
1

3
2

ŝ

12

1

5

6

h2

13

h3

t̂

11
4

9

15 7

17

8

2

3

16

14

h1

(a) The merge graph M(Γ̂) of Û . The grey dashed arcs are the deleted arcs, that is,
arcs of B, and the red arcs are arcs of the static lock.

Figure 4.33: Computing the insertion path for the first arc e1 = (17, 7): In order
to compute the static lock, we first construct the merge graph M(Γ̂) of Û and then
compute the dominating subgraph X of node 17 and the dominated subgraph Y of
node 7. The arcs of both subgraphs are the arcs of the static lock and must not be
crossed by the insertion path for (17, 7). Recall that the merge graph is constructed
regardless of the given port constraints and no chain substitutions are applied.

104 Chapter 4. Upward Planarization

10
1

3
2

3
1 2

3

12

1

1

2
3 2

5

6

7

h2

13

h3

t̂

11
4

14
1

2
3

9

d1

16
1 2

34
5

15

17

h1

8

ŝ

d2

(a) The insertion path p1 (drawn in green) for the first arc e1 = (17, 7). The statically
locked arcs are drawn in red.

Figure 4.34: The technique of hypernode splitting is used for the insertion path
computation of e1: The path p1 crosses the hypernode h1.

4.6. Example 105

10
1

3
2

12

1

1

2
3 2

5

6

7

h2

13

h3

t̂

11
4

14
1

2
3

9

d1

16
1 2

34
5

15

h1'

17

c1

h1

3
1 2

3

8

ŝ

d2

(a) The intermediate UPR U1 after realizing p1. The subarcs (17, c1) and (c1, 7) corre-
sponds to p1 an represent the arc (17, 7) in the UPR.

Figure 4.35: The realization of p1: The hypernode h1 is split into two nodes,
which allows the insertion for p1 only causing one arc crossing. The corresponding
crossing dummy is drawn in red and labeled with c1. Also illustrated in the figure:
the insertion path for the arc e2 = (3, 2) (bold green path). Observe that from now
on, the static locks are not explicitly visualized (for the sake of readability).

106 Chapter 4. Upward Planarization

10
1

3
2

12

1

5

6

13

t̂

11
4

9

d1

15

h1'

17

C1

h1

ŝ

d2

3
1 2

3

C2

1

2
3 2

16
1 2

34
5

14
1

2
3

C3

h2

7

h3

8

(a) The intermediate UPR U2 obtained after real-
izing p2. Arc (3, 2) is represented by a chain
of green subarcs. Recall that the bold blue
arcs of the chains—(d1, 3), (16, d2)—must not be
crossed by any insertion paths.

Figure 4.36: The realization of p2: The insertion of p2 causes one arc crossing
(crossing dummy c2). The crossing occurring on arc (ŝ, 13) will not appear in the
final drawing because the arc has no counterpart in the original input graph H. Also
illustrated here: The insertion path p3 (green bold path) for the next arc (16, 14) to
be inserted.

4.6. Example 107

10
1

3
2

12

1

5

6

13

t̂

11
4

9

d1

15

h1'

17

C1

ŝ

8

d2

3
1 2

3

C2

1

2
3 2

16
1 2

34
5

h3

14
1

2
3

C4
C5

d3

d4

C3

h2

7

h1

(a) The intermediate UPR U3 after realizing p3. Inserting the arc e4 is
equivalent to connecting node 16 to the existing tree (drawn in yellow).

Figure 4.37: pc-valid realization of p3: Since e3 ∈ Chn, we have to apply a chain
substitution. Then add the source arc (9, d3) and the sink arc (d4, t̂) into the resulting
intermediate UPR in order to make the faces simple. Insertion of p4: The insertion
path p4 for the last arc e4 ∈ F requires the technique of arc reused and hypernode
splitting. We have to compute an insertion path from h1 to node 16, since e4 is
a reversed arc. Observe that the path along the yellow drawn arcs—the arcs of
the already existing tree of the corresponding hyperarc—has zero length due to the
construction of the routing network for inserting e4.

108 Chapter 4. Upward Planarization

10
1

3
2

12

1

5

6

13

t̂

11

4

9

d1

15

17

C1

h1

ŝ

d2

3
1 2

3

C2

1

2
3 2

16
1 2

34
5

h3

14
1

2
3

C4

C5

d3

d4

C3

h2'

h1'

h2

C6

7

8

(a) The final UPR U4 after realizing the path p4.

Figure 4.38: Due to the technique of hypernode splitting and arc reuse, realizing p4
causes only one arc crossing which is modeled by dummy node c6. We will continue
this example in Chapter 5 Section 5.4, and illustrate how to turn this UPR into an
upward drawing.

Chapter 5

Upward Planarization Layout

Organization of this chapter. In Section 5.1, we give an introduction
to the problem of drawing DAGs based on UPRs, and in Section 5.2, we
depict briefly how we can modify the Sugiyama framework for computing
upward drawings based UPRs. Section 5.3 describes an approach for deriving
a layering from a given UPR R. In the same section, we also depict how the
port constraints can be integrated into the obtained layering.

The second part of this chapter is dedicated to two layout approaches: the
polyline hierarchical upward layout (Section 5.3.3) and the orthogonal layout
approach (Section 5.3.5). In Section 5.3.4, we experimentally evaluate the
first layout approach. We illustrate the new layout approach by an example
in Section 5.4 and in the final section, we give some upward drawings produced
by Sugiyama and UPL.

5.1 Introduction

In the previous chapter we have presented a novel algorithm for upward pla-
narization of DAGs and directed hypergraphs. The final outcome of the
algorithm is a UPR of the input graph.

In this chapter, we introduce a new drawing framework referred to as
upward planarization layout (UPL) that combines the upward planarization
approach LFUP with the novel ideas for computing layouts based on a given
UPR.

In principle, each approach that can draw upward planar digraphs, for
example, Dominance, Visibility, or even a modified Sugiyama can be used
for constructing upward drawings based on UPRs. But the new approach UPL
constitutes the first approach which takes the crossing dummies into account,
hence is also the first algorithm specialized for layout digraphs and directed
hypergraphs using UPRs. As our experiments show, it generates drawings
that are preferable over the considered algorithms for upward drawings.

Figure 5.1 gives an overview of the considered algorithms for drawing

109

110 Chapter 5. Upward Planarization Layout

Layer

Assignment

Cr. Reduction

Coordinate Assignment

LFUP

Visibility/

Dominance

Coordinate

Assignment

UPL

Layering/Node

Ordering

UPSugiyama

Layering/Node

Ordering

Sugiyama UPL UPSugiyama
Visibility/

Dominance

Figure 5.1: Overview of the frameworks for polyline hierarchical drawings: the
classical drawing framework Sugiyama; the new upward planarization layout ap-
proach UPL; the straight-forward application of the Sugiyama framework on the UPRs
UPSugiyama; the Dominance and Visibility approaches. For the latter three draw-
ing algorithms, we use the layer-free upward crossing minimization approach LFUP
to compute a UPR.

digraphs: the classical framework by Sugiyama et al., and the drawing algo-
rithms based on upward planarization, which can be properly divided into
two main steps: the upward crossing minimization and the layout step. The
layout step of UPL and the straight-forward approach UPSugiyama based on
the Sugiyama framework can further be divided into two sub-steps: the lay-
ering/node ordering step and final coordinate assignment. A first impression
on the drawing characteristics of the considered drawing algorithms is given
in Figure 5.2.

Let R be a UPR of a digraph or directed hypergraph G and let Γ be
the upward planar embedding of R. We assume that R contains auxiliary
nodes and arcs. In particular, R is an upward planar embedded single source
sT -graph.

Definition 14 (Realization of a UPR). Let D′ be an upward planar drawing
of R inducing Γ. A realization of R is a drawing D obtained from D′ by:

• replacing the images of the crossing dummies with crossings,

• replacing the hypernodes with branching points,

• replacing the drawings of the chains with drawings of their correspond-
ing arcs, and by

5.2. Straight-forward Approach 111

• deleting the auxiliary elements of R, that is, nodes and arcs without
any corresponding counterpart in the original graph G.

Furthermore, all arcs are drawn according to their original direction.

So the main task here is to develop an algorithm for realizing UPRs.

5.2 Straight-forward Approach

The straight-forward approach—in the following referred to as UPSugiyama—
is a simple method for realizing UPRs of digraphs that combines the upward
planarization approach LFUP with existing layering and coordinate assign-
ment algorithms. A layering L is straight-forwardly obtained by layering
the UPR R using existing algorithms like LongestPath or GKNV-Layering.
Thereafter, the node order on each layer is determined by using the “left
path” method which is explained in the next subsection. Then a hierarchical
drawing is constructed with respect to L by applying existing coordinate as-
signment algorithms, for example, GKNV-Layout. The drawing of the nodes
are then replaced by arc crossings and artificial elements like sink-arcs, the
super source, or super sink are deleted. The final drawing is a realization of
R.

Our experimental evaluations reveal that UPSugiyama produces quite un-
satisfactory drawings with too many layers and much too long arcs. In addi-
tion, R often contains many crossing dummies which slow down the overall
computation time. Nevertheless, we consider this approach in order to show
the impact of the crossing dummies to the height of a layering.

5.3 Upward Planarization Layout

The upward planarization layout approach (UPL) addresses the weaknesses
of the straight-forward approach UPSugiyama. It considerably improves the
straight-forward approach by enhancing the computation of layers and node
orderings and taking the special roles of the crossing dummies into account.
This enhancement allows us to reduce the height of the drawings and lengths
of the arcs substantially, resulting in much more pleasant drawings.

Upward planarization layout overview. In the layer assignment and
node ordering step, we compute a proper ordered layering L ofG which reflects
the hierarchical order of the nodes of R. Unlike the approach UPSugiyama,
we do not compute a layering of R, instead, we use an auxiliary graph H
that allows us to ignore the crossing dummies, hence leads to a layering
with fewer layers. Furthermore, we determine the node order on each layer
of L by exploiting the information of Γ. However, due to the existence of
some auxiliary arcs in R, the layering L may contain unnecessary long arcs

112 Chapter 5. Upward Planarization Layout

2

7

5

0

9

4

6

3

8

2

1

0

4

5

6

7

8

9

8

7

6

2

0

5

9

3

1

2 5

1

7

3

4

8 9

0

5

6

7

8 9

3

2

1

0

(a)

(b)

(c)

(d)

(e)

Figure 5.2: Characteristic layouts of instance g.10.19 (North DAGs; see Sec-
tion 4.3): (a) Dominance; (b) Visibility; (c) Sugiyama; (d) UPSugiyama (e) UPL.
The drawing of (a),(b),(d), and (e) are based on the same upward planar represen-
tation computed by LFUP.

5.3. Upward Planarization Layout 113

dummies. Therefore we introduce a post-processing step for long arc dummy
reduction.

The coordinate assignment step is divided into two main parts. In the
first part, we address the problem of computing appropriate coordinates for
a polyline hierarchical layout. For this, we adopt existing techniques, for
example, GKNV-Layout [GKNV93]. The obtained layout may have arc-node
overlapping. We do not tackle this problem by enlarging the distance of the
layers, instead we introduce an arc bending approach to handle this problem.
The result is a more compact drawing.

In the second part we consider the problem of computing an orthogonal
layout. Again, we first apply existing coordinate assignment algorithms to
compute a layout and, by applying simple orthogonal arc routing, we obtain
an initial orthogonal drawing. We refine this drawing by applying orthogonal
compaction. For this, we extract orthogonal representations from the initial
drawing. By assigning appropriate lengths to the line segments, we prevent
the compaction algorithms from violating the goals achieved in the previous
steps, that is, upward property and port validity.

5.3.1 Layer Assignment and Node Ordering

Let L be a proper layering of a digraph G. The layering L is an ordered
layering if the node order on each layer of L is fixed.

Definition 15 (Realization of a Proper Ordered Layering L). Let L be a
proper ordered layering. A realization of L is a layered drawing D with
respect to L such that the order of the node images on each horizontal line
Λi is identical to the corresponding node order on layer Li of L;

With this definition, the layer assignment task in the context of realizing
UPRs can be decribed as follows:

Given a UPR R of G, find a layering L of G such that the real-
ization of L is also a realization of R .

We first depict how to extract a layering from a given UPR of a DAG.
Then we explain how to extend the introduced ideas to directed hypergraphs
and how to incorporate the port constraints into a proper ordered layering.

Layer Assignment

Let G = (V,A) be a DAG. Let H be a copy of G that we will use to obtain
a valid layering for G. For any two nodes u, v ∈ V , we add an auxiliary arc
(u, v) to H, that is, H := H ∪ (u, v) if:

(a) there exists no directed path from u to v in G and in H, but

114 Chapter 5. Upward Planarization Layout

(b) there exists a directed path from the corresponding nodes uR to vR in
R.

Part (a) prohibits the unnecessary generation of transitive arcs; part (b), in
conjunction with the sink-arcs and the single-source, single-sink property of
R, ensures that the hierarchical order of R is mapped to H. Since G and R
are DAGs, H is also acyclic and we can use any existing layering algorithm
on H to obtain a layering L = 〈L1, L2, ..., Lk〉 for H, and therefore also for
G. We assume that L is made proper after applying some layering algorithm
and refer to this layering approach as UPL-Layering.

Observe that even if G is only of moderate size, the upward planar repre-
sentation R can become much larger due to the number of inserted dummies.
This causes weak runtime performance, many layers, and overall unsatisfy-
ing drawings. By using the auxiliary graph H (which does not contain any
dummies) for computing a layering of G, we get rid of these problems.

Node Ordering

Considering the proper layering L, we now have to arrange the nodes on
each layer according to the order induced by R such that the number of arc
crossings occurring in the later realization of L is identical to the number of
crossing dummy nodes of R1. For this purpose, we consider the circular arc
order of each node, as given by the upward planar embedding Γ of R. In
particular, we can recognize the left incoming arc for any node v, which is
the embedding-wise left-most arc with target v. Note that this arc is defined
for each node except for the super source ŝ.

Now consider any two distinct nodes u and v on the same layer L. We
can decide their correct node order on L using the following strategy: we
construct a left path pu from ŝ to uR from back to front, that is, starting at
uR, we select its left incoming arc a as the end of pu and proceed from the
source node of a, choosing its left incoming arc as the second to last arc in pu,
and so on. The construction of pu ends when we reach the super source, which
will always happen as R is a single source and single sink graph. Analogously,
we construct the left path pv from ŝ to vR.

The paths pu and pv may share a common subpath starting at ŝ; let cR
be the last common node of pu and pv, and let au and av be the first different
arcs, respectively. We determine the ordering of u and v directly by the order
of au and av at cR.

Algorithmically, we can consider each layer independently. Introducing
an auxiliary digraph C, the above relationship between two nodes on the
same layer can be modeled as an arc between these two nodes in C. We can
construct a correct ordering for the layer by computing the topological order

1Observe: The number of crossing dummies refers to dummy nodes which occur in non
auxiliary arcs.

5.3. Upward Planarization Layout 115

in C. Note that therefore we do not have to compute the arc direction for all
node pairs, but only for the ones that are not already “solved” by other arcs
through transitivity. We obtain a final proper ordered layering such that the
node order of each layer is determined by Γ and the hierarchy of the nodes is
determined by R. In the following, we assume that UPL-layering computes
a proper ordered layering.

We observe that UPL-Layering utilizes exiting layering algorithms which
can have influence to the height of the final layering. We have:

Lemma 18. Let R be a proper ordered layering of a UPR R of G computed
by UPL-Layering. Then a realization of L is also a realization of R.

For the class of sT -graphs, the UPL-Layering has the following nice property:

Lemma 19. Let R be a UPR of an sT -graph G and L a proper ordered
layering of R obtained by applying UPL-Layering based on LongestPath.
Let h be the height of L. Let L′ be a layering of R with height h′ such that
any realization of L′ is also a realization of R. Then h ≤ h′ holds.

Proof. Let p = 〈a1, . . . , ak〉 be a directed path from uR to vR in R such that
there is no corresponding directed path from u to v in G and H (condition
(a)). By the construction of H, the auxiliary arc a′ = (u, v) is added to H.
We prove by induction over the number of arcs k of p that a′ is necessary
in order to map the hierarchy of R to H properly. The minimal height of L
follows by the property of LongestPath; it computes layerings with minimal
height.

Induction basic: Let k = 1. The path p consists of only one arc a1 =
(uR, vR). Since uR and vR are not crossing dummies, a1 is not a subarc
of any arcs. (Recall, a subarc arises by splitting an arc when introducing a
dummy node.) Also a1 does not correspond to an original arc of G due to
condition (a), hence a1 is a sink-arc. uR is sink-switch and vR is the top-sink-
switch of an inner face f of the embedding Γ of R. Due to uR vR in R in
any realization of R, u ≺ v must hold. Hence adding arc a′ to H ensures this
fact.

Induction hypothesis: Let p′ = 〈a1, . . . , ak−1〉. We assume that the hier-
archy order given by p′ is mapped to H and p′ ends at a node which has a
corresponding counterpart in the original graph G.

Induction conclusion: Let p = 〈a1, . . . , ak〉 with ak = (xR, vR). The arcs
of p are not incident to the source and to the sink of R since both nodes have
no corresponding original nodes in G. So we have three possible cases:

(i) ak is a sink-arc: Since ak is a sink-arc, in any realization of R, x ≺ v
must hold. By induction hypothesis, the hierarchy of the subpath uR
xR is mapped to H, hence u ≺ x and by transitivity u ≺ v. Adding arc
a′ to H ensures this fact.

116 Chapter 5. Upward Planarization Layout

0

1

3

5

2

4

ŝ

(a)

0

1

3

5

2

4

ŝ

D

(b)

2

5

43

1

2

3

4

5

0

1

(c)

Figure 5.3: An example of a layering with unnecessary layers: (a) input DAG
G which is augmented to an sT -graph; (b) a UPR R of G; (c) a proper ordered
layering of G with respect to R obtained by performing UPL-Layering based on
LongestPath. The number of layers can be reduced by one if we assign node 1 to
layer two (as the right neighbor of node 2), node 3 and 4 to layer three, and node 5
to layer four.

(ii) ak corresponds to an original arc (x, v) ∈ G : By the induction hypoth-
esis, the order u ≺ x is already mapped to H, hence there is the path
u x in H. Since H is a copy of G, the path can be extended to u v
via arc (x, y). Due to condition (a) no auxiliary arcs are added to H.

(iii) ak is a subarc: xR is a crossing dummy. Let wR be the node in p with
the shortest distance to xR (in p) with w ∈ G. By induction hypoth-
esis, the hierarchy given by the subpath uR wR of p is mapped to
H, hence x ≺ w. The subpath path wR xR consists of the sequence
〈(wR, C1), . . . , (Cl−1, Cl), (xR, vR) = ak〉, where Ci are crossing dum-
mies. Notice that the case C1 ≡ xR may occur. In order to preserve
the upward property, each crossing ξi that is modeled by the dummy
Ci must be drawn such ξ1 ≺, . . . ,≺ ξl ≺ ξxR , hence by transitivity we
have u ≺ ξxR . Due to the arc ak = (xR, vR) in R it is ξxR ≺ v and by
transitivity u ≺ v. Hence adding a′ to H is necessary.

Unfortunately, UPL-Layering does not compute a layering with minimum
height for general DAGs, for example, see Figure 5.3. Due to the artificial
augmentation of the input graph to an sT -graph (a), there exists a path from
node 2 to node 1 in the UPR (b). Therefore, node 1 is layered higher than
actually necessary.

5.3. Upward Planarization Layout 117

Extension to Directed Hypergraphs

We extend UPL-Layering to UPRs of directed hypergraphs. Let R be a UPR
of a directed hypergraph H. The layering algorithm consists of three stages:
In the first stage, a coarse layering L′ = 〈L′1, . . . , L′k〉 of the nodes ofH is com-
puted by performing UPL-Layering on R. Thus, the nodes of the subgraph
between two consecutive layers of L′ are either crossing dummies or hypern-
odes. In the second stage, we compute a fine layering L′′i for the hypernodes
and the crossing dummies between each two consecutive layers L′i and L′i+1 of
L′, again using UPL-Layering (If the final drawing is not drawn in orthogonal
style, then it is sufficient to layer the hypernodes only.). In the third stage,
we merge the layering L′ of the real nodes and the layering L′′i of the hyper-
nodes and crossing dummies to a whole layering L = 〈L1,L′′1, . . . ,L′′k−1, Lk〉.
Since the nodes on a layer of L′ are regular nodes, there may be hypernodes
and crossing dummies which are not uniquely located in the subgraph of two
consecutive layers L′i and L′i+1, for example, the adjacent regular nodes of a
dummy are assigned to layers L′i and L′j with |j − i| > 1. These nodes are
now assigned to the layers of L which were formally layers of the fine layering.
Thereafter, L is made proper by splitting long arcs and the node order of each
layer is determined.

Definition 16 (Realization of a Layering L). Let L be a proper ordered
layering of a directed hypergraph obtained as described above. Let D′ be
a realization of L where the hypernodes and the crossing dummies are con-
sidered as real nodes. A realization of L is a drawing obtained from D′ by
replacing the hypernodes with branching points and the images of the crossing
dummies with arc crossings.

The algorithm UPL-Layering computes a layering L such that the node
hierarchy induced by R is mapped to L and the node order (real or hypern-
odes) on each layer is induced by the embedding Γ of R, hence we obtain the
next Corollary which also summarizes the finding of this subsection:

Corollary 5. Let R be a UPR of a digraph or a directed hypergraph G and let
L be a proper ordered layering computed by UPL-Layering. Then a realization
of L is also a realization of R.

Observe that the dummy nodes of the chains (if any exist) are not assigned
to any layers yet. We now describe how to deal with them.

Chains and port constraints. If port constraints occur, then we have to
take care of the prescribed port positions and the chains which represent some
original arcs. Assume we have two end nodes u and v of a chain corresponding
to the arc a = (u, v). Let L(u) denote the assigned layer of the node u in
L. The dummy nodes of the chains are assigned to layers which contain no
regular nodes. If such a layer does not exist—this is in particular the case

118 Chapter 5. Upward Planarization Layout

when R is a UPR of a DAG—then we introduce a new layer directly above or
underneath the node u (see Figure 5.4 and also Figure 4.23 in Section 4.4). In
the final drawing these dummies are bend-points of the arc a. The dummies
of a chain a are assigned as follows:

(a) a leaves u downwards: The dummy node is assigned to layer L(u)− 1.

(b) a enters v from above: The dummy node is assigned to layer L(v) + 1.

(c) a leaves u downwards and enters v from above: We have the chain
C = 〈(D1, u), (D1, D2), (v,D2)〉. D1 is assigned to layer L(u) − 1 and
D2 is assigned to layer L(v) + 1.

Due to these assignment rules, the corresponding bend-point is drawn not
too far from the nodes u and v, respectively. Also recall that we does not
allow some subarcs of the chain to be crossed (see Section 4.4). If there are
more than one dummies on a layer Li, then the node order of Li is again
determined by the embedding Γ of R.

5.3.2 Post-processing

We introduce two post-processing algorithms to improve the quality of a
layering L = 〈L1, . . . , Lk〉. Although both algorithms have been developed for
drawing digraphs [CGMW11, CGMW10b], they can also be used for layerings
of directed hypergraphs.

Long-Arc Dummy Reduction

Most layering algorithms—in particular also the optimal LP-based approach
GKNV-Layering—will put the nodes on the lowest possible layer. While this
is in general a good idea, this approach can be counter-productive in the
context of the super source node that will be removed from the final drawing:
Since every source node s in G is attached to the super source node ŝ (which
is on the lowest layer), s may end up very low in the drawing, even though
most of its dominated subgraph requires higher layers, hence introducing long
arcs.

We tackle this problem using an approach similar to the promotion lay-
ering approach by Nikolov and Tarassov [NT06] by re-layering parts of the
dominated subgraphs after the removal of ŝ, without modifying the hierar-
chical order induced by R (see Algorithm 7). Layers that become empty by
these operations can be removed afterwards.

Repositioning the Sources

Since the upward planarization algorithm considers G as a regular sT -graph
although it has been augmented with an artificial super source ŝ and addi-
tional auxiliary arcs, the final upward drawing may contain artifacts in the

5.3. Upward Planarization Layout 119

h1

5
1 6

2 1

2
1

D3

4
2

1

h2

c1

h4

h3

32

1

c2

1
2

1

D2
D1

h1

(a)

h1

5
1

6
2 1

2
1

D3

4
2

1

h2

c1

h4h3

L í

L´2́

L í+1

32

1

c2

1
2

1

D2D1

h1 L´1́

(b)

Figure 5.4: A layering of a UPR of a directed hypergraph: The red nodes labeled
with h are hypernodes, nodes labeled with C are crossing dummies, and the red
cycles are long arc dummies. The blue arcs are subarcs of a chain. The ports of on
the nodes are numbered and drawn as red octagons. (a) A subgraph of a UPR of a
hypergraph. (b) Coarse and fine layering of the subgraph.

120 Chapter 5. Upward Planarization Layout

Algorithm 7 Reduce the number of long arc dummies.
Require: Layering L = 〈L1, . . . , Lk〉 of G

1: for each source s ∈ G in decreasing order of their layering index j do
2: mark the subgraph dominated by s
3: . Let Mi be the set of marked nodes on layer Li (1 ≤ i ≤ k).
4: for i = j + 1 to k do
5: if all nodes of Mi are long-arc dummies then
6: (a) remove the nodes Mi

7: (b) lift the marked subgraph on the layers below Li by one layer
8: → new layering L′
9: if L′ causes more crossings or more dummies then

10: undo step (a) and (b)
11: break . continue with next source
12: end if
13: end if
14: end for
15: end for

form of seemingly unnecessary crossings when these additional objects are
deleted; see, for example, the white node in Figure 5.5. To overcome this, we
sift each source s through all possible positions on its layer and choose the
position where it causes the fewest crossings.

5.3.3 Polyline Hierarchical Layout

We now discuss here how to compute a polyline hierarchical layout, that is,
a hierarchical upward drawing in non-orthogonal style, which is a realization
of R and L. During the layout we treat the hypernodes as ordinary nodes.
In the final drawing, the hypernodes are substituted by branching points and
the dummies by bend-points.

Coordinate Assignment

x-coordinate. Conceptually, we can use any coordinate assignment strat-
egy (for example, BJL-Layout by Buchheim et al. [BJL99]; GKNV-Layout by
Gansner et al. [GKNV93]), which is known for Sugiyama’s layout algorithm
to compute the x-coordinates. All these methods assign horizontal coordi-
nates to the nodes while preserving the given node ordering on each layer,
hence also preserve the number of crossings. The aim is to compute the x-
coordinates for the nodes and bend-points such that the subdivided long arcs
are drawn as vertical straight-lines.

y-coordinate. Usually, the vertical coordinates for the nodes on layer Li
are simply given by δ · i, where δ is the minimal layer distance. Yet, often we

5.3. Upward Planarization Layout 121

(a)

(b)

Figure 5.5: A drawing of graph grafo2379.35 (Rome graphs): (a) without post-
processing, (b) after applying source repositioning (white node) and long-arc dummy
reduction (black node).

122 Chapter 5. Upward Planarization Layout

may prefer larger distances between layers in order to counter the following
problems:

• node-arc crossings: A line segment connecting nodes or bend-points
between layer Li and Li+1 may cross through some nodes of these two
layers. This can easily happen when node sizes are relatively large
compared to the layer distance.

• long-line segments: The general direction of upward drawings should
naturally be along the vertical direction. Yet, there can be arc segments
between two consecutive layers Li and Li+1 which are very long since
they span a large horizontal distance. Such long segments can make
“Sugiyama-style” drawings hard to read.

Buchheim et al. [BJL99] propose a solution in which the distances of the
layers are variable computed with respect to the gradient of the line segments.
However, our experimental evaluations have shown that drawing DAGs using
upward planarization tends to produce drawings with large height. Therefore
we use a different approach which limits the maximal layer distance to 3δ.

Let σi be the number of arcs and subarcs between Li and Li+1 whose
lengths are at least 3δ. We set the vertical distance between these two layers
to (1 + min{σi/4, 2})δ (empirically evaluated).

Due to the limit of 3δ, the problems of node-arc crossings and long-line
segments may not always resolved. In the upcoming subsection, we will ex-
plain how to tackle this problem by introducing additional bends.

Port constraints. Regarding the port constraints, we need to consider
them only when we route (draw) the arcs, since they determine where the
arcs shall touch the connected nodes. But in case of ports that are located
on the left or right side of a node, we can artificially broaden the node prior
to the horizontal coordinate calculation in order to allocate enough space
for the arc routing (see Figure 5.6) and then add one bend-point per arc
such that incoming and outgoing arcs are redirected downwards and upwards,
respectively.

Drawing

In order to obtain a drawing of the original graph which realizes L, we have
to perform the following post-processing steps:

a) Connect the end nodes of each arc with span of one directly by a line
segment.

b) Substitute each sequence of subarcs corresponding to a long arc or to
a chain by a polyline. (Recall that the long arc dummies and dummies
of the chains are now considered as bend-points of the polyline.)

5.3. Upward Planarization Layout 123

h1

5
1

6
2 1

4
2

1

h2

h3 h4

1
2

1

2
1

L í+1

L í

L´´

L´1́

2

32

1

D2D1

D3

Figure 5.6: A drawing of the subgraph of Figure 5.4. Observe that due to the ports
located on the left hand side of the node 3, we have to artificial broaden this node
before the final coordinate assignment in order to allocate enough space between node
2 and 3. The bend-points D1–D3 are formally dummy nodes of the corresponding
chain.

c) Eliminate all hypernodes by directly connecting the line segments of
the incoming and outgoing arcs. Thus, the hypernodes are replaced by
branching points.

d) Reverse all arcs of F , which were previously reversed to break cycles.

Figure 5.6 shows a realization of the layering of Figure 5.4, where the
bend-points D1–D3 corresponding to the dummy nodes of the chains are
connected to their corresponding nodes via orthogonal polyline.

We can beautify the drawing by applying post-processing which bends
some arcs and then recompute the coordinate of the bend-points:

Bending arcs. While enlarging the layer distance also helps to prevent
node-line crossings, the required increase in height is usually not worth it
from the readability perspective. We therefore propose a strategy that allows
trading additional bend-points for layer distance. The strategy can be param-
eterized to find one’s favorite trade-off between these two measures, namely,
increase the layer distances to reduce the number of bend-points or keep the
layer distances small, and instead introduce new bend-points to avoid node-
line crossings. Note that these strategies are not only applicable to our layout
algorithm, but to any Sugiyama-style layout.

A line segment ε = (v, w) is pointing upward from left to right (right to
left) if X(v) < X(w) (X(v) > X(w), respectively). Since purely vertical line
segments cannot cross the nodes which are assigned to layer L(v) or L(w),
we distinguish four cases:

124 Chapter 5. Upward Planarization Layout

Layer i+1dw

a v Layer i

e

c

(a) Bending the arc/line segment e causes additional arc crossings.

Layer i+1w

a Layer i

e

(b) Avoiding node-line crossings by shifting up the bend-point on layer i.

Figure 5.7: Avoiding node-line crossings.

(a) ε is pointing upward from right to left and v is on layer i

(b) ε is pointing upward from right to left and w is on layer i

(c) ε is pointing upward from left to right and v is on layer i

(d) ε is pointing upward from left to right and w is on layer i

In all these cases, ε has to bend if it overlaps some nodes of Li. However,
bending ε might cause additional arc crossings; see Figure 5.9(a). To avoid
this, we also have to bend the line segments that cross the just bended line.
Without loss of generality, we only discuss the case (c). The other cases can
be solved analogously.

Let Width(v) and Height(v) denote the width and height of the bounding
box of a node v. Let a be the node on layer Li with the highest bounding
box, and let κ = Height(a)/2. If v is a bend-point and not shifted downwards
before, then we do not need to introduce an additional bend. Instead we move
v upwards by κ; see Figure 5.9(b) If v was already shifted downwards before
due to one of the other cases, then we bend ε by introducing a new bend-point
b and set X(b) = X(v) and Y (b) = Y (v) + 2κ. We observe: By setting Y (v)
to κ or in the latter case, setting the new bend-point b to Y (v) + 2κ, we
ensure that ε cannot overlap any nodes on layer Li.

Assume v is not a bend-point. Then we have to introduce a bend-point
along ε, and we have to consider that other arcs might also get rerouted and
so we must accommodate enough space for them as well, such that no two
bend-points may coincide. In particular, it might be that the arcs leaving
v’s left neighbor to the right might also require additional bend-points (see

5.3. Upward Planarization Layout 125

Layer i+1

u

w

a c v Layer i
Height(a)/2

d

e

Layer ivu
d

Height(a)/2

Figure 5.8: Avoiding node-line crossings by introducing new bend-points into an
arc e (top); all horizontal coordinates of the bend-points must be distinct, especially
when all involved arcs require a bend (bottom).

Figure 5.8). Let u be the left neighbor of v on Li and

d = X(v)−X(u)−Width(v)/2−Width(u)/2

their inner distance. Let r be the number of line segments adjacent to v and
pointing from right to left; among these, assume that ε is the j-th segment
when counting from left to right. Let q be the number of line segments
adjacent to u and pointing from left to right. Then, ∆ = d

q+r+1 gives the
distances between the potential bend-points, and the coordinates of the new
bend-point b are:

X(b) = X(u) + Width(u)
2 + ∆ · (j + min{q, j − 1})

Y(b) = Y(v) + κ

In the worse case we have to introduce a new bend-point for each line
segment in order to prevent overlapping of the bend-points and to prevent
newly arising arc crossings (see Figure 5.8 (bottom)). Therefore the number
of newly introduced bend-points for a layer Li is bounded by the number of
line segments connecting the nodes or bend-points of Li and Li+1. Figure 5.9
gives an example where arc bending is used.

5.3.4 Experimental Evaluation

Considered algorithms. We compare the new drawing framework UPL to
the following algorithms: Dominance, Visibility, UPSugiyama and Sugiyama.

126 Chapter 5. Upward Planarization Layout

21

18
16 17

10

11

0
14

12

23

3

2

76

1

9 8

132220

15

4

5 19

(a)

19

23

4

17

10

12

11

814

1

6

16

20 22 13

7

9

21

3
15

2

0
18

5

(b)

Figure 5.9: A drawing of graph grafo159.24 (Rome graphs) with random node
sizes: without (a) and with (b) the bending arc method and individual layer distance
assignment. The drawing in (a) contains two arc-node crossings (of nodes 5 and 6).

We call the first three drawing algorithms alternative upward drawing ap-
proaches.

As shown by our previous experiments, GKNV-Layering computes layer-
ings with similar height as LongestPath but it ensures that the total number
of long arc dummies is at the minimum, hence it offers very satisfying results.
Furthermore, it is quite fast. Thus, GKNV-Layering is used by UPSugiyama,
Sugiyama and also used by UPL. For coordinate assignment of Sugiyama and
UPL, the approach GKNV-Layout by Gansner et al. [GKNV93] is applied. Al-
though this approach offers the best results, it is not used for UPSugiyama due
to the fact that the LP-based approach requires too much time. Recall that
UPSugiyama layouts the whole UPR that possibly contains a huge number of
crossing dummies. Hence, instead of GKNV-Layout, the fast layout algorithm
BJL-Layout by Buchheim et al. [BJL99] is applied. So we can assume that
the most competitive algorithms for the individual steps of Sugiyama and
UPL are used.

All algorithms are implemented in the free and open-source Open Graph
Drawing Framework (OGDF) [ogd].

Benchmark sets. We use the following benchmark sets without any given
port constraints: Rome graphs, the North DAGs, and the random DAGs
(see Section 4.3.1). The North DAGs used in Section 4.3 were limited to

5.3. Upward Planarization Layout 127

instances with |A| < 100 and are grouped according to the number of arcs in
order to allow us to compare to the drawing algorithms Dot and Layers. The
North instances used here are not limited, hence all 1277 digraphs were used.
Further, the instances are grouped into nine sets, where the first set contains
digraphs with 10 to 20 nodes and the i-th set contains 10i + 1 to 10(i + 1)
nodes for i = 2, . . . , 9.

All data points of the diagrams represent average values for the corre-
sponding node or density group. This allows us to refer to the data of the
experimental evaluations of Section 4.3 for the Rome graphs and the random
DAGs.

Considered criteria. The algorithms Dominance and Visibility are sim-
ple drawing algorithms originally developed for drawing planar st-graphs.
Sugiyama follows a very different paradigm than UPL and the alternative
drawing approaches make it difficult to compare directly. Hence we use the
following conventions for the general evaluation:

height: The height of a drawing is simply the number of required layers (in
case of UPL and UPSugiyama) or the number of vertical grid coordinates
(in case of Dominance and Visibility), respectively.

width: The width of a drawing is defined as the maximum number of elements
per layer or horizontal grid line, respectively, where the elements on a
layer or grid line Λ are the nodes on Λ as well as the edge lines crossing
Λ.

area: The required drawing area is defined as height × width.

aspect ratio: The aspect ratio is defined as width/height.

impression: The aforemetioned criteria can only give us a hint about the
quality of the drawings, but the best way to evaluate is still by man-
ually inspecting the drawings. Therefore we introduce the criterion
impression which reflects the properties of a drawing that cannot be
straight-forwardly formalized, that is, in particular the reflected struc-
tures, clarity, and tidiness of the upward drawings. For evaluating this
criterion the author has inspected hundreds of drawings.

Observe that even when the coordinate assignment of Dominance and
Visibiliy is not elaborated, the definition of the criteria–except impression–
is given regardless of any differences which are only due to spacing parameters,
hence allows a fair comparison. One important criterion, the number of cross-
ings, is not listed above. For this, we refer to the experimental evaluation of
Section 4.3.

128 Chapter 5. Upward Planarization Layout

General Evaluation

As outlined in the introduction of this chapter, there are various alternatives
to realize a UPR of a digraph. Therefore, the UPR R used for UPL is also
used as input for the alternative drawing algorithms Dominance, Visibility,
and UPSugiyama.

Height. Figures 5.10–5.11 show the average height of the upward drawings
for the Rome graphs, the North DAGs, and the random DAGs, respectively.
We observe that except for the North DAGs, the height of the drawings tends
to increase with increasing number of nodes. This is not surprising, since
with increasing number of nodes, the length of the longest path typically also
increases. The diagram for the North DAGs (Figure 5.10) contains a break at
group 71–80. The reason is that this group has the shortest average longest
path and the lowest average density. Inspecting the plot of Figure 5.11, we
can see that the average height of the drawings increases when the graphs
become denser. Also the gap between UPL and the alternative upward drawing
algorithms decreases, and in addition, the height converges to the maximal
possible height. The plots of the Figures 5.10–5.11 illustrate the impact of
the layering approach UPL-Layering to the height of the upward drawings:
We can see a large gap between UPSugiyama and UPL.

Regarding Sugiyama, the plots reflect the strength and also the weakness
of this framework: On the one hand, it only takes into account the topological
order of the nodes and ignores all other graph theoretical properties, hence
its drawings have minimal height when using LongestPath or nearly minimal
height when using GKNV-Layering (see Section 3.1.2). But on the other hand,
such compact drawings may not always be an advantage, in particular in the
context of visualizing graph structures, for example, recall Figure 1.3. Fur-
thermore, we can see that the average height of the Sugiyama’s drawings only
increases slightly with increasing number of nodes and density of the graphs.
In particular, this holds for the Rome graph where the ascending slope of
the corresponding plot becomes flat with increasing number of nodes. Hence
straight-forwardly layering the Rome instances lead to very unsatisfying re-
sults. In contrast, the average height of the drawings of UPL increases with
increasing number of nodes which is more reasonable. We will discuss this
fact in detail in section 5.3.4.

Regarding height, we conclude that the new approach UPL computes lay-
erings with notably fewer layers than the alternative upward drawing ap-
proaches. Since these algorithms—as well as UPL—realize UPRs, we can con-
clude that, in contrast to Sugiyama, the low height is achieved without the
lost of the structure informations that are mapped from the input graph to
its UPR. Hence, the visualized structures in the upward drawings produced
by UPL and the alternative approaches are identical.

5.3. Upward Planarization Layout 129

0	

50	

100	

150	

200	

250	

300	

350	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

he
ig
ht
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

Visibility	

Dominance	

UPSugiyama	

UPL	

Sugiyama	

(a) Rome graphs: average height vs. number of nodes.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

10-­‐20	
 21-­‐30	
 31-­‐40	
 41-­‐50	
 51-­‐60	
 61-­‐70	
 71-­‐80	
 81-­‐90	
 91-­‐100	

he
ig
ht
	

#nodes	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

Visibility	

Dominance	

UPSugiyama	

UPL	

Sugiyama	

(b) North DAGs: average height vs. number of nodes.

Figure 5.10: Comparison of the height of the upward drawings.

130 Chapter 5. Upward Planarization Layout

0	

5	

10	

15	

20	

25	

0	

20	

40	

60	

80	

100	

<1
.75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

he
ig
ht
	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

Visibility	

Dominance	

UPSugiyama	

UPL	

Sugiyama	

(a) Rome graphs: average height vs. number of nodes.

Figure 5.11: Comparison of the height of the upward drawings.

Width. The results regarding the average width of the drawings are illus-
trated in Figures 5.12–5.13. As expected, the average width increases with
increasing density and the number of nodes of the instances. The reason is
that the digraphs with high numbers of nodes “need” more layers, and thus
there are more long arcs, hence, the number of long arc dummies on each
layer increases.

In comparison to the alternative upward drawing approaches, the new
approach UPL produces layerings with smaller width on the instances of the
Rome graphs and the North DAGs, while all upward planarization based al-
gorithms perform nearly the same on the random DAGs. In comparison with
Sugiyama, UPL often produces drawings with smaller width for the Rome and
North instances, while Sugiyama achieves better results for the random DAGs.
The latter observation is due to the lower average height of the Sugiyama
drawings which results in fewer long arc dummies. With increasing density,
the impact to the width by the increasing number of dummies becomes more
significant.

Aspect ratio and drawing area. The average aspect ratio and the av-
erage area requirement of the drawings are given in Figures 5.14–5.15 and
in Figure 5.16–5.17, respectively. Regarding the aspect ratio, we expected
that Sugiyama produces upward drawings that are broader than the draw-
ings of the upward planarization based algorithms, since it ignores the upward

5.3. Upward Planarization Layout 131

0	

50	

100	

150	

200	

250	

300	

350	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

w
id
th
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

Dominance	

Sugiyama	

UPSugiyama	

Visibility	

UPL	

(a) Rome graphs: average width vs. number of nodes.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	

10	

20	

30	

40	

50	

60	

10-­‐20	
 21-­‐30	
 31-­‐40	
 41-­‐50	
 51-­‐60	
 61-­‐70	
 71-­‐80	
 81-­‐90	
 91-­‐100	

w
id
th
	

#nodes	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

Dominance	

UPSugiyama	

Visibility	

UPL	

Sugiyama	

(b) North DAGs: average width vs. number of nodes.

Figure 5.12: Comparison of the width of the upward drawings.

132 Chapter 5. Upward Planarization Layout

0	

5	

10	

15	

20	

25	

0	

50	

100	

150	

200	

250	

300	

<1
.75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

w
id
th
	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

UPSugiyama	

Visibility	

Dominance	

UPL	

Sugiyama	

(a) Rome graphs: average width vs. number of nodes.

Figure 5.13: Comparison of the width of the upward drawings.

property of the input graphs. Indeed, we can observe this in the plots of Fig-
ures 5.14–5.15. Due to the characteristic of Visibility—it always requires a
height which is identical to the number of nodes—its aspect ratio is the small-
est among all considered algorithms. Overall, we can observe that in compar-
ison to Sugiyama, UPL and the alternative upward drawing approaches obtain
a more balanced aspect ratio, therefore they are more suitable for visualizing
flows.

In accordance with the plots regarding the average height and width of
the upward drawings, we see that the UPL drawings require less drawing area
than drawings of the alternative upward drawing approaches. We also observe
one characteristic of Sugiyama when used for visualizing the Rome instances:
The average area requirement of the drawings only increases slightly when the
graphs become larger. This results in too compact and unpleasant upward
drawings.

Deeper Analysis

The best way to evaluate the quality of the drawings is by manually inspecting
them and then setting the impression in relation to the obtained experimental
data. For this intension, the author has grouped the instances by the number
of nodes, density, and the number of crossings (computed by LFUP50), then
randomly selected drawings from each group and evaluated them manually
with respect to the criterion impression.

5.3. Upward Planarization Layout 133

0	

50	

100	

150	

200	

250	

300	

350	

400	

0	

1	

2	

3	

4	

5	

6	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

as
pe

ct
	
 ra

)o
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

UPL	

UPSugiyama	

Dominance	

Visibility	

Sugiyama	

(a) Rome graphs: average aspect ratio vs. number of nodes.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	

1	

2	

3	

4	

5	

10-­‐20	
 21-­‐30	
 31-­‐40	
 41-­‐50	
 51-­‐60	
 61-­‐70	
 71-­‐80	
 81-­‐90	
 91-­‐100	

as
pe

ct
	
 ra

)o
	

#nodes	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

Sugiyama	

UPSugiyama	

UPL	

Dominance	

Visibility	

(b) North DAGs: average aspect ratio vs. number of nodes.

Figure 5.14: Comparison of the aspect ratio of the upward drawings.

134 Chapter 5. Upward Planarization Layout

0	

5	

10	

15	

20	

25	

0	

2	

4	

6	

8	

10	

12	

14	

<1
.75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

as
pe

ct
	
 ra

)o
	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

UPL	

UPSugiyama	

Dominance	

Visibility	

Sugiyama	

(a) Rome graphs: average aspect ratio vs. number of nodes.

Figure 5.15: Comparison of the aspect ratio of the upward drawings.

Alternative Upward Drawing Algorithms

Regarding the algorithms Dominance, Visibility, and UPSugiyama, we con-
clude that drawing the UPR including dummy nodes and then replacing
the crossing dummies by arc crossings produces unsatisfying results, even
for small and sparse digraphs, which can be considered as to be drawn eas-
ily. The crossing points are often also bend-points of the corresponding arcs
(Visibility and UPSugiyama) and limiting the number of bends to at most
one for each arc (Dominance) is counter productive and increases the draw-
ing area significantly (see Figures 1.1 and 5.2). Considering the evaluation
of the criteria like height or width which are defined regardless of the final
coordinate assignment, we conclude that these alternative algorithms are not
competitive to UPL.

Framework by Sugiyama et al.

Due to the low height of the drawings, the visualized graph is compressed to
fit into the given limit. This has the side-effect that many nodes are assigned
to few layers which results in broader drawings and in a typical drawing
characteristic of Sugiyama, i.e, many arcs are routed criss-crossing between
the layers; for example, see Figure 5.36 in Section 5.5 (Drawing Gallery).

Structures of the input graph which require a height beyond the given limit
are not correctly or cannot be visualized. Even when a structure fits into the

5.3. Upward Planarization Layout 135

0	

50	

100	

150	

200	

250	

300	

350	

0	

5	

10	

15	

20	

25	

30	

35	

40	

10
	

14
	

18
	

22
	

26
	

30
	

34
	

38
	

42
	

46
	

50
	

54
	

58
	

62
	

66
	

70
	

74
	

78
	

82
	

86
	

90
	

94
	

98
	

ar
ea
	

x1
00
	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

Visibility	

Dominance	

UPSugiyama	

UPL	

Sugiyama	

(a) Rome graphs: average area requirement vs. number of nodes.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	

5	

10	

15	

20	

25	

30	

35	

40	

10-­‐20	
 21-­‐30	
 31-­‐40	
 41-­‐50	
 51-­‐60	
 61-­‐70	
 71-­‐80	
 81-­‐90	
 91-­‐100	

ar
ea
	

x1
00
	

#nodes	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

Visibility	

Dominance	

UPSugiyama	

UPL	

Sugiyama	

(b) North DAGs: average area requirement vs. number of nodes.

Figure 5.16: Comparison of the area requirement of the upward drawings.

136 Chapter 5. Upward Planarization Layout

0	

5	

10	

15	

20	

25	

30	

0	

5	

10	

15	

20	

25	

30	

<1
.75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

ar
ea
	

x1
00
0	

density	
 (random	
 DAGs)	

#instances	
 (right	
 axis)	

Visibility	

Dominance	

UPSugiyama	

UPL	

Sugiyama	

(a) Rome graphs: average area requirement vs. number of nodes.

Figure 5.17: Comparison of the area requirement of the upward drawings.

given limit of the height, due to the strong compactness of the drawing, it is
overlapped by the criss-crossing routed arcs, making it hardly to detect; for
example, see Figure 1.3. As shown by the previous evaluations, the average
length of a longest path is quite small with respect to the number of nodes,
arcs, and the density of the digraphs. So the visualization of the large or dense
digraphs often results in squeezed upward drawings. Hence, our impression
of the upward drawings can be summarized as follows:

The drawings produced by Sugiyama are unnaturally flat with many
arcs routed criss-crossing between the layers. Often, it seems that
the nodes are arbitrarily or randomly assigned to the layers and
structures of the visualized digraphs are hardly reflected.

Random runs and manual post-processing. A simple method for im-
proving the results is to start k random runs of the drawing algorithms and
then inspect the k drawings and choose the best one. For further improve-
ment, one can modify the chosen drawing by hand. However, since only the
crossing minimization step is randomized, the improvement for Sugiyama ob-
tained by random runs is marginal; for example, see Figure 5.25 in Section 5.5
(Drawing Gallery). Since the layering plays an important role regarding the
quality of an upward drawing, it requires more effort than a few minutes to
re-layer the upward drawing manually. Hence neither of both methods can
considerably improve the final results, but by re-positioning certain nodes,

5.3. Upward Planarization Layout 137

some arc crossings can be eliminated. Further, increasing the distance of the
nodes and the layers can reduce the squeezing effect of Sugiyama.

Upward Planarization Layout

Unlike the layered approach for upward crossing minimization, LFUP does not
require any layering of the input digraph, hence no squeezing effect arises in
the upward drawings of UPL. Most oft the arcs are drawn as vertical straight
line, hence, in contrast to Sugiyama, only very few arcs are routed criss-
crossing between the layers. However, the number of such arcs increases
with increasing size and density of the instances. As shown in the previous
subsection, for large (|V | > 70) or dense digraphs, the area requirement
increases considerably. This has the side-effect that the length of the arcs
increases since they span more layers. Another side-effect is that long arcs
connecting nodes between two consecutive layers may hardly to be distinguish
because the minimal distances between two arcs cannot be kept due to the
given maximal layer distance. Furthermore, the node order on each layer is
determined by the UPR, hence optimized for crossing minimization and not
for minimizing the arc length. Choosing another node order may decrease
the length of some arcs without to increase the number of arc crossings.
Fortunately, this negative effect occurs only for large or dense instances; for
instances with |V | ≤ 70 we conclude:

The upward drawings produced by UPL offer clarity, are tidy, and
have relatively few arc crossings. In comparison to Sugiyama, the
drawings better reflect the structures of the digraphs.

Random runs and manual post-processing. Unlike Sugiyama, random
runs have several effects to the final drawing since the layering and the order
of the nodes on each layer can be changed; for example, see Figure 5.26.
Hence, we can use random runs to obtain an UPR whose realization suffers
less from the negative effects due to the large area requirement. In addition,
by manual re-routing troublesome arcs and re-positioning certain nodes, the
results can be improved significantly.

Conclusion

On the crucial criteria crossings and impression UPL outperforms Sugiyama.
It delivers well structured and tidy drawings with considerably fewer arc
crossings for the most real-world based instances. Furthermore, UPL draws
upward planar sT -graphs without any arc crossings, while Sugiyama only
considers the hierarchy of the nodes, which can lead to unpleasant drawings
even when the digraphs are considered to be easy to draw; for example, see
Figure 5.34 in Section 5.5 (Drawing Gallery). Also recall that over 60% of the
North DAGs are upward planar which also includes non sT -graphs. Although

138 Chapter 5. Upward Planarization Layout

Rome graphs North DAGs random DAGs
Algorithm avg max avg max avg max
Visibility 0.00022 0.002 0.00013 0.006 0.035 0.125

Dominance 0.00025 0.002 0.00013 0.005 0.032 0.125

Table 5.1: Average and maximal runtime of Visibility and Dominance in seconds.

the upward drawings of large instances of UPL may contain miss-routed arcs,
it is worth to re-route them manually instead of using Sugiyama.

Sugiyama is only preferable if compact visualization has a high priority
or if the instances have a high upward crossing number. For these digraphs,
reducing the number of arc crossings does not considerably improve the read-
ability.

Runtime

We use here the same hardware as described in Section 4.3, hence the data
distinguishes from the data of publications [CGMW11] and [CGMW10b].

The UPL version which uses the fast layout algorithms BJL-Layout is
denoted as UPL Fast. The average runtimes (in seconds) of UPL, UPL Fast,
UPSugiyama and Sugiyama50 are shown in Figures 5.18–5.19. For the latter
one, the stated runtime is the runtime of the whole framework, in particular
including the runtime of the crossing minimization step, while the runtime of
the first three algorithms refer only to the layout.

The runtimes of the linear-time algorithms Dominance and Visibility
are omitted, since they are usually below any measurable threshold. Instead,
we give their average and maximum runtime values in Table 5.1.

On the one hand, UPL uses the same layering and layout algorithm as
Sugiyama50, but the runtime of the latter includes the crossing minimization
step, hence we expect that UPL is faster than Sugiyama50.

On the other hand, UPL produces layering with much more layers than
Sugiyama50, thus the layerings have more long arc dummies and hence the
runtimes increase. Another aspect which also has great influence to the run-
time of UPL is the size of the UPRs. These facts coincide with the plots of
the runtime data: Most instances (|V | ≤ 75) of the Rome graphs have small
UPRs and the layering computed by UPL is not too high, so we can observe
that UPL is faster than Sugiyama50, but for larger instances the impact of the
size of the UPRs to the runtime grows, hence the layout step requires more
runtime and Sugiyama becomes faster.

The instances of the north DAGs have in general fewer crossings than
the Rome graphs; see Section 4.3.1. Furthermore, over 62% of the North
DAGs are upward planar. Due to the fact that the OGDF implementation
of Sugiyama prematurely stops the k-level crossing minimization if no more
crossing reduction can be achieved, the runtime of the crossing minimization

5.3. Upward Planarization Layout 139

step is quite low, hence Sugiyama50 is faster than UPL on the North DAGs.
On the plot of the North DAGs we can see a runtime peak for the group of
DAGs with 51 ≤ |V | ≤ 60. This group contains few instances with very high
density which increases the average runtime. (The UPR of some instances
have more than 2000 nodes.)

Due to the UPL-Layering approach, UPSugiyama is generally slower than
UPL. The runtime of UPL increases rapidly when the instances become denser
since the size of the UPRs and the height of the layering also increase rapidly.
However, UPL is not too slow for practice, requiring below 0.25 seconds on
average for the large instances of the Rome graphs and the North DAG. Hence
the runtime of UPL based on LFUP is dominated by the upward planarization
step.

5.3.5 Orthogonal Layout

Orthogonal drawings arise in many technical applications like electric schemat-
ics or industrial process- and control models. In this section we depict a layout
approach for orthogonal drawing of digraphs/directed hypergraphs based on
a given proper ordered layering L which corresponds to a UPR R. The ap-
proach consists of three steps:

Orthogonal Layout

Step 1 Pre-processing

Step 2 Initial Orthogonal Layout

Step 3 Orthogonal Compaction

In the first step, we determine for each subarc incident to a crossing
dummy whether it is drawn as vertical or horizontal line. Then in the second
step, we assign the coordinates to the nodes and dummies and draw the arcs in
orthogonal style. We obtaine an initial orthogonal drawingD′ that realizes the
input layering L. In the final step, we extract orthogonal representations from
D′ which allow us to apply orthogonal compaction to D′ without violating
the previous achieved results, that is, the upward property and port validity
of D′.

Pre-processing

Let C by a crossing dummy that models a crossing of the arcs (a, b) and
(u, v) in the UPR R of the input graph. We have the subarcs (a,C), (C, b)
and (u,C), (C, v) in R. Let (a,C) be the left incoming arc in a realization of
R, thus (C, b) is the right outgoing arc of C. In an orthogonal drawing, we
have to decide whether (a,C) and (C, b) are drawn horizontally or vertically.

140 Chapter 5. Upward Planarization Layout

0	

50	

100	

150	

200	

250	

300	

350	

0	

0,05	

0,1	

0,15	

0,2	

0,25	

0,3	

10	
 15	
 20	
 25	
 30	
 35	
 40	
 45	
 50	
 55	
 60	
 65	
 70	
 75	
 80	
 85	
 90	
 95	
 100	

!m
e	

[s
ec
.]	

#nodes	
 (Rome	
 graphs)	

#instances	
 (right	
 axis)	

UPL	

Sugiyama50	

UPSugiyama	

UPL	
 Fast	

(a) Rome graphs: average runtime vs. number of nodes.

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

0	

0,05	

0,1	

0,15	

0,2	

0,25	

10-­‐20	
 21-­‐30	
 31-­‐40	
 41-­‐50	
 51-­‐60	
 61-­‐70	
 71-­‐80	
 81-­‐90	
 91-­‐100	

!m
e	

[s
ec
.]	

#nodes	
 (North	
 DAGs)	

#instances	
 (right	
 axis)	

UPL	

Sugiyama50	

UPSugiyama	

UPL	
 Fast	

(b) North DAGs: average runtime vs. number of nodes.

Figure 5.18: Comparison of the runtime.

5.3. Upward Planarization Layout 141

0	

5	

10	

15	

20	

25	

0	

0,5	

1	

1,5	

2	

2,5	

<1
.75
	

[1.
75
-­‐2.
25
[

[2.
25
-­‐2.
75
[

[2.
75
-­‐3.
25
[

[3.
25
-­‐3.
75
[

[3.
75
-­‐4.
25
[

[4.
25
-­‐4.
75
[

[4.
75
-­‐5.
25
[

[5.
25
-­‐5.
75
[

>=
5.7
5	

!m
e	

[s
ec
.]	

	
 x
10
0	

density	
 (random	
 DAGs)	

#instances	

UPL	

UPSugiyama	

UPL	
 Fast	

Sugiyama50	

(a) Random graphs: average runtime vs. number of nodes.

Figure 5.19: Comparison of the runtime.

Assume that we want to draw (a,C), (C, b) and (u,C),(C, v) horizontally and
vertically, respectively. We can attain this by the following modification of the
given layering L (see Figure 5.20(a)): We first split C by adding new dummy
nodes C ′ and C ′′ such that C ′ is the immediate left and C ′′ the immediate
right neighbor of C on the assigned layer of C. Thereby we incorporate this
information into the layering L. Then we redirect the left incoming and the
right outgoing arc of C such that C ′ is the new target and C ′′ is the new source
node of the incoming and outgoing arc, respectively. The arc (a, b) is now
represented by the path 〈a,D′, D,D′′, b〉. The subarc (D′, D) and (D,D′′)
will be drawn as horizontal lines, thus D′ and D′′ becomes to bend-points of
the arc (a, b) and segments of the arcs (u,C) and (C, v) are drawn as vertical
lines. Thus, the crossing corresponding with C is drawn in orthogonal style.

Observe that the number of bend-points occurring in the final drawing can
depend on the decision on which corresponding pair of line segments incident
to a crossing are drawn as horizontal lines.

Definition 17 (Bend Minimization with respect to a Proper Ordered Lay-
ering). Given a proper ordered layering L of a UPR, find an orthogonal real-
ization D of L with minimum number of bend-points.

In this thesis, we do not investigate this problem, instead, we randomly
decide on which corresponding pair of line segments incident to a crossing
dummy is drawn as horizontal lines.

142 Chapter 5. Upward Planarization Layout

h1

5
1

6
2 1

2
1

D3

4
2

1

h2

h4

L í

L´´

L´´

1

2

L í+1

32

1

1
2

1

D2D1

L´3́

L´4́h3

c2c
2́

c´
2́

h1

c´1́
c11c´

(a)

h1

5
1

6
2 1

h2

4
2

1

1
2

1

h4
h3

C1

C2

32

1

2
1

(b)

Figure 5.20: (a) Coarse and fine layering of the subgraph of Figure 5.4 obtained
after the pre-processing. Each crossing dummy Ci is split by adding two new ad-
ditional dummy nodes C ′i and C ′′i . This two new dummies are considered in the
initial drawing as bend-points (see Figure 5.20(b)) of the corresponding arcs. (b)
The initial orthogonal drawing realizing the layering of (a). The multiple incoming
or multiple outgoing arcs of branching points corresponding to h1 overlap each other.
These overlapping line segments need to be merged to single line segments. Further,
this drawing contains several unnecessary bend-points which also reduce the quality
of the drawing.

Initial Orthogonal Drawing

Now let L be a proper ordered layering where we have applied the above
pre-processing. Analogously to the non orthogonal layout approach of Sec-
tion 5.3.3, we compute the coordinates of the nodes and bend-points. Nodes
respectively bend-points on two consecutive layers can be connected via a
polyline drawn in orthogonal style, that is, the polyline consists of only hor-
izontal and vertical line segments (see Figure 5.20(b)). Since the embedding
of R is planar, the polylines can be drawn without causing additional arc
crossings. One results of this procedure is that all incoming and outgoing
arcs of the hypernodes and dummy nodes end in the same point, where in-
coming arcs reach the nodes from below and outgoing arcs leave the nodes
upwards. If there are multiple incoming or multiple outgoing arcs of a node
u, the corresponding vertical line segments that touch u overlap each other.
These overlapping line segments need to be merged to single line segments.
As results we obtain an initial orthogonal drawing D′.

Orthogonal compaction

The initial orthogonal drawing D′ may contain various unnecessary bend-
points which reduce the quality of the drawing. We therefore apply orthogonal

5.3. Upward Planarization Layout 143

compaction techniques as final step in order to get rid of these bend-points.
We first give a brief introduction to the idea of flow-based compaction tech-
niques and then explain how we can apply them to the initial drawing in
order to get pleasant drawings.

Compaction algorithms. An orthogonal representation of a graph G is an
extension of a planar representation of G. It describes besides the topology
also the “shape”, that is, the bends occurring in the edges and the angles in-
side the faces. Informally, an orthogonal representation is an equivalence class
of the planar orthogonal drawings of G with similar shapes. In particular,
two drawings of the same orthogonal representation have the same number
of bend-points [DETT99].

There are two main approaches for orthogonal compaction: approaches
based on network flows and approaches based on longest paths. We consider
only flow-based compaction algorithms, since they allow us to assign weights,
minimal and maximal capacity to the arcs of the corresponding flow network.
By choosing appropriate parameters, we can set constraints such that the
upward planarity and the port constraints are not violated by the compaction
process.

The flow-based compaction algorithms are based on the main idea of two
flow networks Nh and Nv that are constructed with respect to a given orthog-
onal representation. The network Nh is associated with the horizontal line
segments and the network Nv is associated with the vertical line segments of
the orthogonal representation. Thus, a line segment ε corresponds to an arc a
of Nh or Nv. The given minimal length of ε corresponds to the lower capacity
and the given maximal length of ε corresponds to the upper capacity of a. If
no constraints are given, then the lower capacity of a is set to zero, the upper
capacity set to ∞ and the cost is set to one. After computing a minimum
cost flow for both network, the flow value of Nh and Nv corresponds to the
width and height of the drawing, respectively. Moreover, the assigned flow
value of a gives the length of ε and the sum of the flow value of the arcs in
Nh and Nv gives the sum of total edge length of the drawing.

However, flow-based compaction have two main drawbacks: Firstly, the
orthogonal representation must represent a 4-planar graph, that is, G is pla-
nar and for each node v of G, the degree of v does not exceed four. As
depicted in [DETT99], a planar but non-4-planar graph can be expanded to
a 4-planar graph by replacing each node v with degree d > 4 by a cycle
C = 〈v1, . . . , vd, v1〉, where each node in C is incident to exactly one edge
that was formally incident to v. The arcs of the cycle are constrained not to
have any bends. It can be proven that C is aways drawn as a rectangle, thus
it can represent the drawing of v.

Secondly, flow-based compaction algorithms presume, that all faces of
the orthogonal representation have rectangular shapes. This goal can be
achieved by adding additional artificial edges and nodes to the representation.

144 Chapter 5. Upward Planarization Layout

Although this artificial elements do not appear in the final drawing, they
constitute additional constraints that can lead to unpleasant drawings. Due to
this facts, Bridgeman et al. [BBD+00] suggested an approach which requires a
so-called turn-regular orthogonal representation as input. The transformation
of a representation to a turn-regular orthogonal representation requires less
artificial nodes and edges than a transformation to a representation where
each face has rectangular shape.

In [KKM01], Klau, Klein, and Mutzel suggested an improvement heuristic
that directly operates on a given layout by exploiting the visibility property
of the layout. Their improvement heuristic can be used for a pre-processing
step after obtained an orthogonal drawing.

Applying compaction. Since compaction algorithms preserve the embed-
ding, we have only to ensure that the achieved upward property and the port
feasibility of the drawing will not be destroyed. For this intention, we first
connect in D′ the ports of each pair of consecutive layers Li and Li+1 of the
coarse layering L′ by horizontal lines. Then we connect the most left port and
the most right port on these layers by lines with two new bend-points and
add two vertical lines connecting the bend-points such that these additional
lines form a surrounding rectangular frame (see Figure 5.21(a)). Since there
may be ports which are located on the top or on the bottom of a node, not
all ports can be connected by the horizontal lines. In that case, a new node u
is created as representative for each such port p and we assigned u to the po-
sition where the line segment incident to p cross the corresponding horizontal
line segment of the rectangular frame. In a similar manner, the bend-points
(which formally were long arc dummies) on Li and Li+1 are handled.

We derive a drawing Di of the subgraph between Li and Li+1 where the
regular nodes are omitted, instead, we have nodes represents the ports and the
bend-points on the both layers. We extract an orthogonal representation ORi

from Di and thereafter applying flow-based orthogonal compaction algorithms
to ORi. The flow networks allow us to assign cost, lower, and upper capacity
to its arcs corresponding to the lengths of line segments of Di.

Let S0 denote the set of arcs corresponding to the line segments of Di
adjacent to two bend-points with a 90 and a 270 degree angle in a face. The
arcs in S0 are assigned maximal cost and zero lower capacity. Therefore, we
give high priority to the compaction algorithm for reducing the length of the
line segments corresponding to the arcs of S0. The lower and upper capacity
of the arcs corresponding to the line segments of the rectangular frame are
set according to their lengths, hence the frame is fixed. Thus, the upward
property and the port feasibility are preserved. The lower capacity of the
remaining arcs is set to the minimum lengths of their corresponding line-
segment in the initial drawing and a desired spacing, making sure that the
initial drawing is a feasible solution for the compaction. Each corresponding
line segment of an arc in S0 for which the compaction achieves zero flow value

5.3. Upward Planarization Layout 145

h1

5
1

6
2 1

h2

4
2

1

1
2

1

h4

h3

C1

C2

32

1

2
1

L í+1

L´i

2 1 2

1

(a)

h1

h2

h4

h3

C1

C2

2
1

4
2

1

5
1

32

1

1
2

1

6
2 1

2 1 2

1

(b)

h1

5
1

6
2 1

h2

4
2

1

1
2

1

h4

h3

C1

C2

32

1
2
1

(c)

Figure 5.21: Orthogonal compaction: (a) Before starting the compaction, each
drawing Di (of the initial drawing D′) of the subgraph between two consecutive
layers is framed by a rectangle (red lines). The framed drawing contains no regular
nodes, instead, it has nodes representing the ports and bend-points. The red lines
are assigned a fixed length for compaction in order to fixe the relative position of the
ports and the layers. (b) The drawing obtained after the first compaction round. We
frame the drawing again for the final compaction. The red lines are assigned a fixed
length, the dashed red lines are assigned only a minimal length for compaction. (c)
The final drawing.

is then removed from the orthogonal representation by merging its adjacent
segments.

After applying compaction to each drawings Di of the subgraphs between
each pair of consecutive layers, we can add an additional compaction step
on the whole layout similar as before. But this time, it is applied not only
to reduce the number of bend-points but also to improve the compactness of

146 Chapter 5. Upward Planarization Layout

the drawing. Notice that when considering the whole layout, we do not need
to fix the x-coordinates; we only have to ensure that the horizontal distance
between ports and the vertical distance of the layers of the coarse layering is
fixed (see Figure 5.21(c)).

5.4. Example 147

5.4 Example

We continue the example of Section 4.6 and apply UPL to the UPR illustrated
in Figure 4.38.

10
1

3
2

12

15

6

13

114 9

d1

15

17

h1

8

d2

3
1 2

3

1

2
3 2

16
1 2

34
5

h3

14
1

2
3

d3

d4

h2'

h1'

h2

7

(a) The layering L of the final UPR U4 (Fig-
ure 4.38) for hierarchical layout. For the
sake of readability, the crossing dummies
are drawn as small red cycles.

15

6

114 9

15

8

1

2
3 2

14
1

2
3

16
1 2

34
5

13

3
1 2

3

12

7

17

10
1

3
2

(b) The hierarchical upward drawing
of the input hypergraph H with
respect to L. Observe that now all
reversed arc are drawn according
to their original direction.

Figure 5.22: (a) The coarse and fine layering of the regular nodes and hypernodes,
respectively. Each node of the chains is assigned to a corresponding fine layer. The
distances of the layers are dynamically computed.

148 Chapter 5. Upward Planarization Layout

10
1

3
2

12

15

6

13

114 9

d1

15

17

h1

8

d2

3
1 2

3

1

2
3 2

16
1 2

34
5

h3

14
1

2
3

d3

d4

h2'

h1'

h2

7

(a) The layering L∗ of the final UPR U4
(Figure 4.38) for orthogonal layout.

10
1

3
2

1

114 9

15

8

14
1

2
3

16
1 2

34
5

3
1 2

3

13

5

6 1

2
3 2

7

12

17

(b) The initial orthogonal drawing with re-
spect to L∗.

Figure 5.23: (a) The coarse layering of the regular nodes and the fine layering of
the hypernodes, nodes of the chains, and the crossing dummies. Unlike the layering
L, the crossing dummies are split here. (b) The arcs incident to a branching point
may overlap each other. These arcs are merged together and new branching points
are introduced. Then orthogonal representations for compaction are extracted from
the initial drawing.

5.4. Example 149

10
1

3
2

1

114 9

15

8

14
1

2
3

16
1 2

34
5

3
1 2

3

13

5

6

7

1

2
3 217

12

Figure 5.24: The final orthogonal drawing obtained after compaction has been
applied.

150 Chapter 5. Upward Planarization Layout

5.5 Drawing Gallery

All drawings are computed using the following settings if not otherwise noted:

Sugiyama: Barycenter+Greedy-Switch, GKNV-Layering, GKNV-Layout

UPL: LFUP50, UPL-Layering basend GKNV-Layering, GKNV-Layout

The algorithms were conducted on: Windows XP, 2 GB, on an virtual
machine (Parallels Desktop 6.0) on a Macbook Pro, Intel Core 2 Duo, 2.4GHz,
8 GB.

44

43

3426

0

18

25

16

5

32

40

21

30

383342

7

6

8

111

2215

24 336

9

37

28

414

41

27

19

23

31

13

39

2

35

2012

17 29

34 33 24 3

37

9

16

39

7 22

30

12 20

28 233242

44

1

13

6

38

15

40

26

43

35

41

2718

531

17

10 14

36

21

4

29

25

11

2 8 19

39

3828

543

11

44

20

29

9

26 42 35

14

24 3327

37

16

41

2

17

8 19

31

3

0 15

32

227

36

21

12

18

4025

6

34

30

13

410

23

Figure 5.25: The effect of multiple random runs: The upward drawings of instance
grafo3151.45 (Rome graphs) obtained from Sugiyama10, 20, 30, respectively.

5.5. Drawing Gallery 151

35

24

0

30

6

20

15

25

422

32

9

19

29

23

34

11

37

12

3

14

27

42

44

43

10

28

39

41

17

2

33

16

7

13

40

38

21

1

31

26

8

5

18

39

16

15

29

43

35

44

36

32

40

11

42

10

6

22 0

14

17

13

18

3

24

7

27

37

2

8

33

20

41

38

31

19

4

26 28

12

30

25

21

1

23

9

5

22

26

21

39

14

41

34

11

17

0

16

8

37

1

20

23

25

19

42

40

13

24

4

9

32

2

10

30

5

12

29

35

44

27

6

28

43

18

36

31

338

15

7

Figure 5.26: The effect of multiple random runs: The upward drawings of instance
grafo3151.45 (Rome graphs) obtained from UPL based on LFUP10, 20, 30, respectively.

152 Chapter 5. Upward Planarization Layout

5

2

6

8

14

3

17

19

12

9

13

7

11

1

16

4

10

0

15

(a) Sugiyama50, 5 crossings, runtime
< 0.2 sec.

6

18

8

13 7

10

5

19 16

17

1114

9

3

15

4

2

1 0

(b) UPL with LFUP50, 2 crossings (op-
timal), 0.2 sec.

Figure 5.27: DAGs with known ucr(G): Instance g2670.20.02 with ucr(G) = 2.

31

32

1

6

1425

15

34

39

13

16

240

33

8

12

5

26

29

28

18

27

10

30

23

11

35

19

4

7

22

37

21

3836

32

17 9

(a) Sugiyama100, 22 crossings, runtime
< 0.2 sec.

24

28

33

25

19

14

8

20

38

15

1317

32

39

9

18

16

10

11

30

4

3

37

34

0

1

29

7

2

6

31

21

23

26

27

22

5

12

36

(b) UPL with LFUP1000, 5 crossings (op-
timal), 10.5 sec.

Figure 5.28: DAGs with known ucr(G): Instance g11498.40.05 with ucr(G) = 5.

5.5. Drawing Gallery 153

5

1

4

3937

22

7

13

36

2

38

31

16

26

24

18

34

27

10

32

20

35

8

28 23

12

6

25

21

33

11

0

15

3

9

29

19

14

30

(a) Sugiyama50, 12 crossings, run-
time < 0.2 sec.

0

26

6

25

1720

32

31

38

16

3

15

35

12

5

22

7

36

34

24 18

10

30

11

19

37

23

8

39

21

13

28

27

4

33

2

1

14

9

(b) UPL with LFUP50, 5 crossings,
0.5 sec.

Figure 5.29: DAGs with known ucr(G): Instance g10054.40.04 with ucr(G) = 4.

154 Chapter 5. Upward Planarization Layout

3

42

13

38

32

53

43

7

9

8

14

5

4

16

20

19

11

44

58

26

40

55

18

49

37

30

10

47

50

6

51

56

57

0

31

1 39

2

17

15

12

46

33

25

35

36

54 45

52

2759

48

34

23

22

21

29

28

24

(a) Sugiyama100, 23 crossings, runtime
< 0.2 sec.

51

6

833

16

44

12

28 17

56

50

43

29

46

41

40

20

26

32

24

10

38

48

42

11

31

4

3

55

2

9

52

0

54

53

5

13

36

23

45

18

25

22

27

39

7

59

30

15

5847

49

57

14

37

35

34

19

21

(b) UPL with LFUP200, 14 crossings, 5.9
sec.

Figure 5.30: DAGs with known ucr(G): Instance g4335.60.12 with ucr(G) = 12.

5.5. Drawing Gallery 155

1915 14

13

12

11

4

10

9 8

7

6

5

0

1

3

22

23

24

2526

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

6970

71

72

73

74

75

76

77

78

79

80

81

82

83 84

85 86

87

88

89

90

91

92

93

94

95

96

97

98

99

2

21

16

18 17

(a) Sugiyama100, 62 crossings, runtime < 0.2 sec.

15

56

19

62

31

32

9

60

51

1

96

50

12

41

14 21

55

34

30

20

3

28

7

78

446

36

2

49

11

75

39

73

24

57

61

8

33

53

45

37

63

59

13

23

67

48

52

38

42

29

72

5

69

35

46

66

26

27

17

68

10

47

58

43

65

4

71

54

64

25

16

97

98

93

94

95

40

18

76

77

79

80

81

74

82

83

84

85

86

87

88

89

90

91

92

99

70

22

(b) UPL with LFUP500, 7 crossings, 33 sec.

Figure 5.31: DAGs with known ucr(G): Instance g10106.100.03 with ucr(G) = 3.

156 Chapter 5. Upward Planarization Layout

doprnt

merge

udiv

safeoutfilmorecore

start

main

getpagesize

on_exit

findiop endopen

initree sort

qsort

div

term

mul

copyproto

cmpsave

newfile

creat

localeconv

rlineunlink

demote

umul

sigvec

putfreehdr

sprintf

insert

exit

write

xflsbuf

cmpasiglbocck readflsbuf

filbuf

free

maloc

urem fflush

getpidoldfile

fclose

sbrk

signal

wline setfil

setbuf

close

brk

remsigsetmask

open

fopen

msort

strlen

(a) Sugiyama50, 54 crossings

sort

sigsetmask

localeconv

xflsbuf

demote

write

sigvec

creat

term

signal

getpid

merge

exit

cmpa

unlink

strlen

fflush

oldfilesafeoutfil

open

qsort

newfile

sprintf

setfil

endopen

mul

umul

close
cmpsave

insert

findiop

flsbuf

setbuf

urem

on_exit

start

initree

fclose

brk

siglbocck

udiv

sbrk

rline

rem

read

wline

filbuffopen

copyproto

getfreehdr

maloc

main

msort

putfreehdr getpagesize

doprnt

free div

(b) UPL20, 11 crossings

Figure 5.32: Drawing of the graph “profile” (from the webpage www.graphviz.org).
The original graph is not connected and consists of two connected components. The
small component consists of two nodes and one arc is omitted, since the current
OGDF UPL implementation does not support unconnected digraphs yet.

5.5. Drawing Gallery 157

1

0

24

3

5 8 6

26 27 9

7

10 11 12 13 28

24 14 15 16 17 18 19 20 21 22 23 25

(a) Sugiyama20, 24 crossings. The arc crossings and the packed drawings
of the subgraph on layer 4 and 5 reduce the readability.

2

14

3

4

0

1

8765 24 15 16 17 18 19 20 21 22 23 24

28 10

11

26 27

21

9

13

(b) UPL20, 4 crossings

Figure 5.33: North DAGs: Drawing of instance g.29.16.

158 Chapter 5. Upward Planarization Layout

20 422 17

14

3 27

236

25

26

2813

19

11161 29

12

24

8

2021 515 10

18

9

(a) Sugiyama20, 41 crossings.

4

3010

13

18

22

26

29

24

23

25

16

7127

17

28

20

9

8

11

19

21

15 6

5

2

12

(b) UPL20, no crossings

Figure 5.34: North DAGs: A drawing of the upward planar instance g.30.8. Due
to its moderate size and its upward planarity, this DAG can be considered as easy
to draw. Yet, the drawing of Sugiyama (a) is very unsatisfying, no characteristics
of the input DAG can be detected. In contrast to (a), the drawing in (b) is well
structured and reflects the upward planar property of the DAG.

5.5. Drawing Gallery 159

31

42

43

561

41

26

25

30 53

17

27

3

59 10

50 60 484 29

15

32

12
23

44

40 20

9

54

5

217

47 57

13

51

37

33

16
18

8

24
11

36

39
35

49

34

286

61

1419

58

55

22

45

0

2

38

46

52

(a) Sugiyama, 250 crossings.

18

0

57

46

45

36

12

41

35

26

10

9

33

13

5

14

43

60

7

39

32

2

42

37

59

4

31

47

56

40

25

53

27

50

16

24

61

15

20

34

19

23

55

29

30

28

1

48

17

11

58

22

21

49

3

54

44

52

8
38

6

51

(b) UPL, 82 crossings

Figure 5.35: North DAGs: Drawing of the graph instance g.60.0 with random
node size.

160 Chapter 5. Upward Planarization Layout

15

44

48

3

46

25 26

160

32 35

1

27 24

39

10

47

33

11

28

385

9

7

29 30

2

12

51

6

31

4

22

18

13

8

14

20

43

17

50 42

1945 23 49

2141

40

34

3736

(a) Sugiyama20, 76 crossings

49

48

16

19

42

8

6

15

36

31

2

38

33

27

26

37

50

23

17

46

4544

3

5 14

51

1210

7

11

39

40

13

28

18

21

41

9

0

32

1

25

443

35 30

22

29

20

34

47

24

(b) UPL20, 9 crossings

Figure 5.36: Rome graphs. Drawing of the graph instance grafo3579.52. The
drawing of (a) represent the typical weaknesses of Sugiyama. The arcs are routed in
a criss-crossing fashion and the drawing is unnaturally flat, unstructured, and has
many arc crossings.

5.5. Drawing Gallery 161

69

82

2141

78

83

3

65

18

23

13

22

79

33

62

30

71

42

80

45

38

70

51

77

39

72

52
43

2558

63

1020

67

48

8

44

46

50

28

29

32

6

73

61

59

56

1754

53

7

16

66

57

36

12

24

49

76

37

26

55 2

19

47

4

27

68

15 0

31

35

11

14

9

3460

40

81

64

1

75

74

5

(a) Sugiyama20, 134 crossings

3

14

5

7

16

20

49

78

63

38

12

41

26

76

47

31

53

35

59

15

36

72

70

73

79

33

62

50

22

77

48

43

46

42

52

24

68

56

82

75

18

66

83

65

64

8

19

23

27

1

6

9

54

67

25

51

2

81

17

30

37

4
80

74

40

57

32

58

60

13

10

39

71

69

0

11

21

44

28

34

55

45

29

61

(b) UPL20, 41 crossings

Figure 5.37: Rome graphs. Drawing of the graph instance grafo8087.84.

162 Chapter 5. Upward Planarization Layout

Chapter 6

Discussion

6.1 Conclusion

The main goal of this thesis was to develop a new drawing algorithm for
digraphs and directed hypergraphs based on the idea of upward planarization
to overcome the drawbacks of the existing approaches. In order to achieve
this goal, we tackled the following two challenges:

1. Develop a new upward planarization approach which can exploit the
potential of the upward planarization idea.

2. Develop a new layout approach tailored to the construction of upward
drawings based on a given upward planar representation.

We gave the motivations for the first challenge by illustrating the weak-
ness of the classical layered approach. We also showed that the mixed upward
planarization approach does not exploit the potential of the idea of upward
planarization, since its upward planar subgraph computation is based on a
simple idea and inserting the arcs by utilizing layering techniques may limit
the possible insertion paths. Therefore our goal was to develop an upward
planarization approach with sophisticated techniques for the subgraph com-
putation and without any layering techniques for the arc reinsertion step.
We identified the problems that arise on the way toward the new upward pla-
narization approach; as we illustrated that in contrast to planarization, the
subgraph cannot be straight-forwardly computed (feasible subgraph problem)
and a deleted arc cannot be reinserted without taking the remaining deleted
arcs into account (feasible arc reinsertion problem). We tackled these two
problems by modeling the hierarchies of the input DAGs by an auxiliary
graph called merge graph. Using this auxiliary graph, the feasible subgraph
problem can be reduced to a simple cycle test. The arc reinsertion problem
was solved by a routing network using the idea of static and dynamic locking
of arcs, that is, we do not allow certain arcs to be crossed.

163

164 Chapter 6. Discussion

The performance of the new layer-free upward planarization approach
(LFUP) was evaluated by experiments based on real-world and artificial DAGs.
Our experiments showed that our new approach outperforms the layered up-
ward crossing minimization heuristics regardless of the techniques used for
solving the k-level crossing minimization problem. This also included the case
when the k-level crossing minimization problem was optimally solved. It also
outperforms the mixed upward planarization (MUP) and the Grid-Siftig ap-
proach, which does not strictly follow the idea of the layered upward crossing
minimization approach, that is, Grid-Siftig can modify the given layering
by introducing new layers. Furthermore, the evaluation based on DAGs with
known upward crossing numbers revealed that the solutions of LFUP for small
and mid-size instances are optimal or nearly optimal. Due to these facts, we
conclude:

The layer-free upward planarization approach is a state-of-the-
art upward crossing minimization heuristic. On the considered
benchmark sets, it outperforms all existing upward crossing min-
imization heuristics.

We also gave an extension of LFUP for upward planarizing directed hyper-
graphs and for dealing with given port constraints. We combined our ideas
of upward arc insertion and the known idea of inserting a single edge in the
undirected minor crossing number scenario with a novel heuristic method to
insert a hyperarc in a confluent fashion. Our approach not only solves the
upward planarization problem for DAGs and directed hypergraphs with and
without port constraints, but it is also the first port-constraint-aware upward
planarization approach for these classes of graphs.

Regarding the second goal—the problem of realizing upward planar rep-
resentations (UPR), that is, constructing upward drawings based on a given
UPR R—the published layout algorithms for step three of Sugiyama’s frame-
work offer good and sophisticated solutions for the coordinate assignment
phase. Due to this fact, we decided to develop a new layout approach for
realizing UPRs by adopting these existing algorithms. This would allow us
to benefit from both, the advantage of upward planarization and the well
known and elaborated layout techniques of Sugiyamas step three. In order
to apply the layout algorithms, we had to derive a layering from the UPR.
In our fist approach UPSugiyama, a layering L was straight-forwardly de-
rived from R and we especially developed a new technique for determining
the node order on each layer of L with respect to R. Although UPSugiyama
produces much better upward drawings than the alternative upward drawing
approaches Dominance and Visibility, the results are still unsatisfying; in
particular the drawing area requirements are too high. This flaw is due to
the handling of dummy nodes, which inevitably results in larger drawing area
requirements and hence, it is also symptomatic for the alternative upward
drawing approaches. We tackled this problem by mapping the hierarchies

6.1. Conclusion 165

induced by the UPR into an auxiliary graph H. This auxiliary graph allows
us to ignore the crossing dummies when deriving a layering of an input graph
with respect to H, hence leading to a more compact drawing. We also utilized
existing and new techniques for incorporating port constraints into a layering.
Furthermore, we described how to deal with a UPR of a directed hypergraph;
hence our new layout approach called upward planarization layout (UPL) can
draw both digraphs and directed hypergraphs (with and without given port
constraints). For further improving the quality of the final drawing, we also
introduced techniques for the long arc dummy reduction and for arc bending.

We evaluated UPL extensively regarding runtime, several common aes-
thetic criteria, and by manually inspecting hundreds of drawings where we
focused on the clarity, the reflected structures of the input digraphs, and tidi-
ness of the drawings. These properties were summarized under the criterion
impression.

Based on the results of the evaluation, we concluded that UPL should
be preferred over the other considered algorithms, including Sugiyama, even
when the drawing area requirement increases with increasing size of the in-
stances. We summarized the impression of the drawings as follows:

The drawings produced by Sugiyama are unnaturally flat with
many arcs routed criss-crossing between the layers. Often, it
seems that the nodes are arbitrary or randomly assigned to the
layers. In contrast to Sugiyama, the upward drawings produced
by UPL offer clarity, better reflect the structures of the digraphs,
are tidy, and have relatively few arc crossings.

We also developed an approach for realizing UPRs in orthogonal style.
We combined existing ideas for orthogonal arc routing with our new layering
technique for obtaining an initial orthogonal drawing. Furthermore, we intro-
duced an approach for extracting orthogonal representations from the initial
drawing such that we could adopt existing compaction algorithms without vi-
olating the achieved results, that is, the number of arc crossings, the upward
property, and the fulfilled port constraints. The orthogonal layout approach
is the first approach in hierarchical drawing of digraphs where compaction
techniques were used. In addition, by applying compaction, we addressed
the problem of large drawing area requirements for large instances of the
hierarchical (non-orthogonal) layout approach.

The algorithms LFUP and UPL were implemented as part of the open-
source graph drawing framework OGDF. The author hopes that the access
to the source code will increase the acceptance of the new drawing technique
and allows practitioners to investigate the quality of the drawing algorithm
by themself. The author also hopes, that LFUP and UPL will convince many
practitioners to use them and inspire researchers for further investigation
regarding this very interesting topic.

166 Chapter 6. Discussion

6.2 Future Works

We have suggested a new drawing algorithm for visualizing digraphs based
on novel ideas. Although it computes very pleasant upward drawings, there
are still many challenges left. Here, we briefly depict some open problems.

Maximum FUPS: A maximum FUPS U of an sT -graph G is a FUPS such
that the number of arcs of U is the highest among all FUPS of G.
Following the idea that if few arcs have to be reinserted, then few arc
crossings should arise in the final drawing, computing a maximum FUPS
sould lead to a further reduction of arc crossings.

Constraint feasible minimal UIP: We proved that we can find a min-
imum feasible UIP in polynomial time. Although our experiments
showed that nearly always the minimum feasible UIP is also constraint
feasible, no non-trivial algorithm for computing a minimal constraint
feasible UIP is known.

Arc reinsertion: As reported by Gutwenger and Mutzel [GM04], there are
different edge reinserting strategies which can lead to further reduction
of the edge crossings. The question arises here: Can we achieve similar
improvements for upward planarization of DAGs, when we adapt the
reinserting strategies suggested in [GM04]?

Upward crossing number ucr(G): The upward crossing number ucr(G)
of a DAG G is not only of theoretical interest, but knowing the ucr(G)
of a DAG can also help to evaluate the quality of the existing upward
crossing minimization heuristics. However, only trivial exponential al-
gorithms are known for computing ucr(G).

Height of a layering: As shown by our experiments, there is a gap between
Sugiyama’s and the UPL approach regarding the height of the drawings,
that is, the number of layers of the corresponding layering. We could
prove that the layering is optimal with respect to the given UPR R, if
R represents an upward planarized sT -graph (see Lemma 19), but it is
unknown how this results can be extended to general digraphs.

Bend minimization: Given a layering L with respect to a UPR, we are in-
terested in a realization D of L such that the number of bends occurring
in D is minimized (also see Definition 17). Such a drawing can improve
the readability.

Compaction: As shown by the experimental evaluations in Section 5.3.4, the
area requirement of the hierarchical upward drawings produced by UPL
is relatively high, especially for large instances. A compaction approach

6.2. Future Works 167

for upward drawing in orthogonal style (Section 5.3.5) was already in-
troduced, but an approach for the polyline hierarchical upward drawing
is still missing.

168 Chapter 6. Discussion

Bibliography

[BBBH10] C. Bachmaier, F.-J. Brandenburg, W. Brunner, and F. Hübner.
A global k-level crossing reduction algorithm. In WALCOM,
pages 70–81, 2010.

[BBD+00] S. S. Bridgeman, G. Di Battista, Walter Didimo, G. Liotta,
R. Tamassia, and L. Vismara. Turn-regularity and optimal
area drawings of orthogonal representations. Comput. Geom.,
16(1):53–93, 2000.

[BBG11] C. Bachmaier, W. Brunner, and A. Gleißner. Grid sifting: Lev-
eling and crossing reduction. Technical report, University of
Passau, 2011.

[BDMT98] P. Bertolazzi, G. Di Battista, C. Mannino, and R. Tamas-
sia. Optimal upward planarity testing of single-source digraphs.
SIAM J. Comput., 27(1):132–169, 1998.

[BFM06] D. Bokal, G. Fijavz, and B. Mohar. The minor crossing number.
SIAM J. Discrete Math., 20:344–356, 2006.

[BJL99] C. Buchheim, M. Jünger, and S. Leipert. A fast layout algo-
rithm for k-level graphs. In Proc. Graph Drawing ’00, volume
1984 of LNCS, pages 229–240. Springer, 1999.

[BJM02] W. Barth, M. Jünger, and P. Mutzel. Simple and efficient bi-
layer cross counting. In Graph Drawing, pages 130–141, 2002.

[BK02] U. Brandes and B. Köpf. Fast and simple horizontal coordinate
assignment. In Proc. Graph Drawing ’01, pages 31–44, London,
UK, 2002. Springer-Verlag.

[BLME02] J. Branke, S. Leppert, M. Middendorf, and P. Eades. Width-
restricted layering of acyclic digraphs with consideration of
dummy nodes. Inf. Process. Lett., 81(2):59–63, 2002.

[BN88] G. Di Battista and E. Nardelli. Hierarchies and planarity the-
ory. Systems, Man and Cybernetics, IEEE Transactions on,
Issue:6:1035 – 1046, Nov/Dec 1988.

169

170 Bibliography

[BPTT89] G. Di Battista, E. Pietrosanti, R. Tamassia, and I.G. Tollis.
Automatic layout of PERT diagrams with X-PERT. In Proc.
IEEE Workshop on Visual Languages, pages 171–176, 1989.

[BT88] G. Di Battista and R. Tamassia. Algorithms for plane represen-
tations of acyclic digraphs. Theor. Comput. Sci., 61:175–198,
1988.

[BTT84] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout
of entity relationship diagrams. J. Syst. Software, 4:163–173,
1984.

[BWZ10] C. Buchheim, A. Wiegele, and L. Zheng. Exact Algorithms for
the Quadratic Linear Ordering Problem. INFORMS JOUR-
NAL ON COMPUTING, 22(1):168–177, 2010.

[CG72] E. Coffman and R. Graham. Optimal scheduling for two pro-
cessor systems. Acta Informatica, 1:200–213, 1972.

[CG07] M. Chimani and C. Gutwenger. Algorithms for the hypergraph
and the minor crossing number problems. In Proc. ISAAC’07,
volume 4835 of LNCS, pages 184–195. Springer-Verlag, 2007.

[CGM+10] M. Chimani, C. Gutwenger, P. Mutzel, M. Spönemann, and
H.-M. Wong. Crossing minimization and layouts of directed
hypergraphs with port constraints. In Graph Drawing, pages
141–152, 2010.

[CGMW08] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-
free upward crossing minimization. In WEA 2008: Workshop
on Experimental Algorithms, volume 5038 of LNCS, pages 55–
68. Springer, 2008.

[CGMW10a] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Layer-
free upward crossing minimization. ACM Journal of Experi-
mental Algorithmics, 15, 2010.

[CGMW10b] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Up-
ward planarization layout. In Proc. Graph Drawing ’09, volume
5849 of LNCS, pages 94–106. Springer, 2010.

[CGMW11] M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong. Up-
ward planarization layout. Journal of Graph Algorithms and
Applications, 15(1):127–155, 2011.

[Chi08] M. Chimani. Computing Crossing Numbers. PhD thesis, Tech-
nische Universität Dortmund, 2008.

Bibliography 171

[CHJM11] M. Chimani, P. Hungerländer, M. Jünger, and P. Mutzel. An
sdp approach to multi-level crossing minimization. Workshop on
Algorithm Engineering and Experiments 2011 (ALENEX11),
2011.

[DDGS08] U. Dogrusoz, C. A. Duncan, C. Gutwenger, and G. Sander.
Graph drawing contest report. In Proc. Graph Drawing ’08,
LNCS, 2008.

[DEGM03] M. T. Dickerson, D. Eppstein, M. T. Goodrich, and J. Yu Meng.
Confluent drawings: visualizing non-planar diagrams in a pla-
nar way. In Proc. 11th Int. Symp. Graph Drawing (GD 2003),
number 2912 in Lecture Notes in Computer Science, pages 1–12.
Springer-Verlag, September 2003.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice-
Hall, 1999.

[DGL+97] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari,
and F. Vargiu. An experimental comparison of four graph draw-
ing algorithms. Comput. Geom. Theory Appl., 7(5-6):303–325,
1997.

[DGL+00] G. Di Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia,
E. Tassinari, F. Vargiu, and L. Vismara. Drawing directed
acyclic graphs: An experimental study. Int. J. Comput. Geom.
Appl., 10(6):623–648, 2000.

[Die05] R. Diestel. Graph Theory (Graduate Texts in Mathematics).
Springer, August 2005.

[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement
and symmetry display of planar upward drawings. Discrete
Comput. Geom., 7(4):381–401, 1992.

[EFK00] M. Eiglsperger, U. Fößmeier, and M. Kaufmann. Orthogonal
graph drawing with constraints. In Proc. SODA ’00, pages 3–
11. SIAM, 2000.

[EGB06] T. Eschbach, Wolfgang Guenther, and B. Becker. Orthogonal
hypergraph drawing for improved visibility. J. Graph Algo-
rithms Appl., 10(2):141–157, 2006.

[EK86] P. Eades and D. Kelly. Heuristics for drawing 2-layered net-
works. Ars Combinatoria, 21A:89–98, 1986.

172 Bibliography

[EKE03] M. Eiglsperger, M. Kaufmann, and F. Eppinger. An approach
for mixed upward planarization. J. Graph Algorithms Appl.,
7(2):203–220, 2003.

[ELS89] P. Eades, X. Lin, and W. F. Smyth. Heuristics for the feed-
back arc set problem. Technical Report 1, Curtin University of
Technology, Perth, Australia, 1989.

[ELS93] P. Eades, Xuemin Lin, and W. F. Smyth. A fast effective heuris-
tic for the feedback arc set problem. Information Processing
Letters, 47:319–323, 1993.

[ES90] P. Eades and K. Sugiyama. How to draw a directed graph. J.
Inf. Process., 13(4):424–437, 1990.

[EW86] P. Eades and N.C. Wormald. The median heuristic for drawing
two-layered networks. Technical Report 69, University Queens-
land, 1986.

[FBB+05] M. Forster, C. Bachmaier, F.-J. Brandenburg, Marcus Raitner,
and Paul Holleis. Gravisto: Graph visualization toolkit. In
J. Pach, editor, Proc. Graph Drawing, GD 2004, volume 3383
of Lecture Notes in Computer Science, pages 502–503. Springer,
2005.

[GA94] O. Goldschmidt and A.Takvorian. An efficient graph planariza-
tion two-phase heuristic. Networks, 24:69–73, 1994.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-
complete. SIAM J. Algebraic and Discrete Methods, pages 312–
316, 1983.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman &
Co., New York, NY, USA, 1990.

[GJR85] M. Grötschel, M. Jünger, and G. Reinelt. On the acyclic sub-
graph polytope. Mathematical Programming, 33:28–42, 1985.
10.1007/BF01582009.

[GKNV93] E. Gansner, E. Koutsofios, S. North, and K.-P. Vo. A technique
for drawing directed graphs. Software Pract. Exper., 19(3):214–
229, 1993.

[GM04] C. Gutwenger and P. Mutzel. An experimental study of crossing
minimization heuristics. In Proc. Graph Drawing 03, volume
2912 of LNCS, pages 13–24, 2004.

Bibliography 173

[GNV88] E. R. Gansner, S. C. North, and K. P. Vo. DAG - a programm
that draws directed graphs. Software Practice and Experiments,
18(11):1047–1062, 1988.

[GSM10] G. Gange, P. J. Stuckey, and K. Marriott. Optimal k-level
planarization and crossing minimization. In Graph Drawing
2010, 2010.

[GT95] A. Garg and R. Tamassia. Upward planarity testing. Order:
A Journal on the Theory of Ordered Sets and Its Applications,
12:109–133, 1995.

[GT01] A. Garg and R. Tamassia. On the computational complexity
of upward and rectilinear planarity testing. SIAM J. Comput.,
31(2):601–625, 2001.

[HK99a] P. Healy and A. Kuusik. The vertex-exchange graph: A new
concept for multi-level crossing minimisation. In Graph Draw-
ing, volume 1731 of Lecture Notes in Computer Science, pages
205–216. Springer Berlin / Heidelberg, 1999.

[HK99b] P. Healy and A. Kuusik. The vertex-exchange graph and its
use in multi-level graph layout. In In Kratochvil [Kra99, pages
205–216, 1999.

[HL96] M. D. Hutton and A. Lubiw. Upward planar drawing of single-
source acyclic digraphs. SIAM J. Comput., 25(2):291–311,
1996.

[HN02a] P. Healy and N. S. Nikolov. A branch-and-cut approach to
the directed acyclic graph layering problem. In GD ’02: Re-
vised Papers from the 10th International Symposium on Graph
Drawing, pages 98–109, London, UK, 2002. Springer-Verlag.

[HN02b] P. Healy and N. S. Nikolov. How to layer a directed acyclic
graph. In GD ’01: Revised Papers from the 9th International
Symposium on Graph Drawing, pages 16–30, London, UK, 2002.
Springer-Verlag.

[HR10] P. Hungerländer and F. Rendl. Semidefinite relaxations of or-
dering problems. Technical report, Alpen-Adria Iniversiät Kla-
genfurt Institut für Mathematik Austria, August 2010.

[HT74] J. Hopcroft and R. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974.

[JLM98] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing
in linear time (extended abstract). In S. H. Whitesides, editor,

174 Bibliography

Proc. 6th International Symposium on Graph Drawing ’98, vol-
ume 1547 of Lecture Notes in Computer Science, pages 224–237.
Springer, 1998.

[JLM99] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing
in linear time. Technical report, Angewandte Mathematik und
Informatik, Universität zu Köln, 1999.

[JLMO97] M. Jünger, E. Lee, P. Mutzel, and T. Odenthal. A polyhedral
approach to the multi-layer crossing minimization problem. In
G. DiBattista, editor, Graph Drawing, volume 1353 of Lecture
Notes in Computer Science, pages 13–24. Springer Berlin / Hei-
delberg, 1997.

[JM96] M. Jünger and P. Mutzel. Maximum planar subgraphs and nice
embeddings: Practical layout tools. Algorithmica, 162:33–59,
1996.

[JM97] M. Jünger and P. Mutzel. 2-layer straightline crossing mini-
mization: Performance of exact and heuristic algorithms. Jour-
nal of Graph Algorithms and Applications, 1:1–25, 1997.

[Kel87] D. Kelly. Fundamentals of planar ordered sets. Discrete Math.,
63(2-3):197–216, 1987.

[KKM01] G. W. Klau, K. Klein, and P. Mutzel. An experimental com-
parison of orthogonal compaction algorithms. In Proc. Graph
Drawing ’00, pages 37–51, London, UK, 2001. Springer-Verlag.

[KW01] M. Kaufmann and D. Wagner, editors. Drawing graphs: meth-
ods and models. Springer-Verlag, London, UK, 2001.

[Lin95] X. Lin. Analysis of Algorithms for Drawing Graphs. PhD thesis,
University of Queensland, 1995.

[LS77] S. Lam and R. Sethi. Worst case analysis of two scheduling
algorithms. SIAM J. Computing, 6:518–536, 1977.

[Luc76] C.L. Lucchesi. A minimax equality for directed graphs. PhD the-
sis, University of Waterloo, Waterloo, Ontario, Canada, 1976.

[Mäk90] E. Mäkinen. Experiments in drawing two-level hierarchical
graphs. Intern. J. Computer Math., 37:129–135, 1990.

[Meh84] K. Mehlhorn. Graph algorithms and NP-completeness.
Springer-Verlag New York, Inc., New York, NY, USA, 1984.

Bibliography 175

[MSLN+09] H. Mi, F. Schreiber, N. Le Novére, S. Moodie, and A. Sorokin.
Systems Biology Graphical Notation: Activity Flow language
Level 1. Nature Precedings, (713), September 2009.

[MSM99] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for
k-layer straightline crossing minimization. In J. Kratochv́ıyl,
editor, Graph Drawing, volume 1731 of Lecture Notes in Com-
puter Science, pages 217–224. Springer Berlin / Heidelberg,
1999.

[Mut97] P. Mutzel. An alternative method to crossing minimization on
hierarchical graphs. In SIAM J. Optimization, pages 318–333.
Springer Verlag, 1997.

[NHM+09] N. L. Novere, M. Hucka, H. Mi, S. Moodie, F. Schreiber,
A. Sorokin, E. Demir, K. Wegner, M. I. Aladjem, S. M.
Wimalaratne, F. T. Bergman, R. Gauges, P. Ghazal, H. Kawaji,
L. Li, Y. Matsuoka, A. Villeger, S. E. Boyd, L. Calzone,
M. Courtot, U. Dogrusoz, T. C. Freeman, A. Funahashi,
S. Ghosh, A. Jouraku, S. Kim, F. Kolpakov, A. Luna, S. Sahle,
E. Schmidt, S. Watterson, G. Wu, I. Goryanin, D. B. Kell,
C. Sander, H. Sauro, J. L. Snoep, K. Kohn, and H. Kitano.
The Systems Biology Graphical Notation. Nature Biotechnol-
ogy, 27(8):735–741, August 2009.

[NT06] N. S. Nikolov and A. Tarassov. Graph layering by promotion
of nodes. Discrete Applied Mathematics, 154(5):848–860, 2006.

[NTB05] N. S. Nikolov, A. Tarassov, and J. Branke. In search for efficient
heuristics for minimum-width graph layering with consideration
of dummy nodes. J. Exp. Algorithmics, 10, December 2005.

[ogd] OGDF – the Open Graph Drawing Framework. Technical
University of Dortmund, Chair of Algorithm Engineering; see
http://www.ogdf.net.

[PCJ96] H. C. Purchase, R. F. Cohen, and M. James. Validating graph
drawing aesthetics. In GD ’95: Proceedings of the Sympo-
sium on Graph Drawing, pages 435–446, London, UK, 1996.
Springer-Verlag.

[Pur97] H. C. Purchase. Which aesthetic has the greatest effect on
human understanding? In GD ’97: Proceedings of the 5th
International Symposium on Graph Drawing, pages 248–261,
London, UK, 1997. Springer-Verlag.

http://www.ogdf.net

176 Bibliography

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and
bipolar orientations of planar graphs. Discrete Comput. Geom.,
1(1):343–353, 1986.

[Rud93] R. Rudell. Dynamic variable ordering for ordered binary deci-
sion diagrams. In Proceedings of the 1993 IEEE/ACM interna-
tional conference on Computer-aided design, ICCAD ’93, pages
42–47, Los Alamitos, CA, USA, 1993. IEEE Computer Society
Press.

[San94] G. Sander. Graph layout through the VCG tool. Technical
Report A03/94, Universität des Saarlandes, FB 14 Informatik,
66041 Saarbrücken, October 1994.

[San96] G. Sander. A fast heuristic for hierarchical Manhattan layout.
In Proc. Graph Drawing ’95, volume 1027 of LNCS, pages 447–
458. Springer-Verlag, 1996.

[San99] G. Sander. Graph layout for applications in compiler construc-
tion. Theor. Comput. Sci., 217(2):175–214, 1999.

[San04] G. Sander. Layout of directed hypergraphs with orthogonal
hyperedges. In Proc. Graph Drawing ’03, volume 2912 of LNCS,
pages 381–386. Springer-Verlag, 2004.

[SFvHM10] M. Spönemann, H. Fuhrmann, R. von Hanxleden, and
P. Mutzel. Port constraints in hierarchical layout of data flow
diagrams. In Proc. Graph Drawing ’09, volume 5849 of LNCS,
pages 135–146. Springer, 2010.

[Spö09] M. Spönemann. On the automatic layout of data flow dia-
grams. Diploma thesis, Christian-Albrechts-Universität zu Kiel,
Department of Computer Science, March 2009.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual
understanding of hierarchical system structures. IEEE Trans.
Sys. Man. Cyb., 11(2):109–125, 1981.

[TKS77] N. Tomii, Y. Kambayashi, and Y. Shuzo. On planarization
algorithms of 2-level graphs. Papers of tech. group on electronic
computers, IECEJ, EC77–38, pages 109–125, 1977.

[TT86] R. Tamassia and I. G. Tollis. A unified approach a visibil-
ity representation of planar graphs. Discrete & Computational
Geometry, 1:321–341, 1986.

[WM99] V. E. Waddle and A. Malhotra. An e log e line crossing al-
gorithm for levelled graphs. In Graph Drawing, pages 59–71,
1999.

Bibliography 177

[Zie00] T. Ziegler. Crossing Minimization in automatic Graph Drawing.
PhD thesis, Max-Planck-Institut für Informatik, Saarbrücken,
2000.

178 Bibliography

Index

2-LCM
1-sided, 28
2-sided, 28

Chn, 87
ucr(G), 41
f ∈ γ, 16
k-LCM, 27
k-level crossing minimization, 27
k-level planarization, 31
sT -graph, 10
st-graph, 10
u ≺ v , 48
u v, 10
u 6 v, 10
x ∈ f , 16
M(Γ), 48

adjacent, 9
aesthetic criteria, 13

angular resolution, 14
area, 13
aspect ratio, 15
bend, 14
crossings, 13
edge length, 14
general direction, 14

alternative upward drawing ap-
proach, 126

arc, 10
incoming arc, 10
outgoing arc, 10

arc reuse, 93
auxiliary routing arc, 53
averaging heuristic, 28

balancing post-processing step, 26
barycenter heuristic, 28
bend minimization, 141
bend-point , 15
BJL-Layout, 33
block, 10
block (sifting), 30

chain substitution, 87
Coffman-Graham layering, 25
component, 10
confluent

directed hypergraph, 11
drawing, 11
tree, 11

connected, 10
constraint feasible upward insertion

path, 48
constraint upward arc insertion with

fixed-embedding, 51
ConstraintFeasibleUIP, 64
crossing dummy node, 36
crossing-arc, 53
cycle

directed, 10
undirected, 9

cycle removal, 22
greedy, 22
DFS, 22
optimal, 23

DAG, 10
layered, 23
leveled, 23

179

180 Index

DAGs with known upward crossing
number, 69

degree, 9
density of a graph, 30
digraph, 10
directed hypergraph, 11
directed tree, 10
directed underlying graph

of a directed hypergraph, 11
Dominance, 38
dominance drawing, 38
dominance drawing approach, 38
dominate, 10
dominated subgraph, 48
dominating subgraph, 48
down-sweep, 28
drawing, 11

upward planar, 12
grid, 13
hierarchical, 12
layered, 12
orthogonal, 12
planar, 12
polyline, 12
straight-line, 12
strictly upward, 12
upward, 12

drawing style, 12
dual graph, 17
dynamic entrance, 52
dynamic locking, 56

edge, 9
embedding

underlying combinatorial, 16
combinatorial, 15
planar, 16
upward planar, 16

end node, 9
external face, 16

face, 15
left face of an arc, 52
left side, 52
right face of an arc, 52

right side, 52
simple, 52

face-cycle, 15
face-lock, 56
face-sink-graph, 16
Feasibility Lemma, 49
feasible upward insertion path, 48
feasible upward planar subgraph, see

FUPS
FeasibleMinUIP, 63
feedback arc set, 22
fixed-embedding scenario, 47
fixed-port scenario, 35
forest, 10
FUPS, 48

GKNV-instance, 79
GKNV-Layering, 26
GKNV-Layout, 33
global sifting heuristic, 30
Global-Sifting, 30
graph

4-planar, 143
upward planar, 12
acyclic, 9
directed, 10
planar, 12
simple, 10
undirected, 9

greedy switch heuristic, 29
Greedy-CR, 23
GreedySwitch, 29
grid sifting heuristic, 30
Grid-Sifting, 30

height
of a layering, 24

hierarchical drawing
w.r.t. a layering, 24

hyperarc, 11
hypernode, 11
hypernode splitting, 93

ILP for k-LCM, 30
in-degree, 10

Index 181

incident, 9
induce

combinatorial embedding of a
planar drawing, 15

upward planar embedding, 46
initial orthogonal drawing, 142
inner node of a tree, 10
inner subarc, 33
insertion path, 17
intermediate UPR, 47

layer-by-layer sweep, 28
layer-free upward planarization, 42
layered drawing

w.r.t. a layering, 24
layered upward crossing minimiza-

tion, 41
layering, 23

proper ordered, 113
coarse, 117
fine, 117
proper, 24

leave of a tree, 10
left incoming arc, 114
left path, 114
length

of a path, 9
length function, 9
level planar, 27
leveling, see layering
LFUP, 42
locks, 55
long arc dummies, 24
long arc dummy reduction, 118
longest path layering, 24
LongestPath, 24
loop, 55

median heuristic, 28
merge graph, 48
minimum feedback arc set, 22
MinWidth layering, 27
mixed upward planarization, 37
multi-level crossing minimization, 27
multi-run, 29

multi-set, 10
multigraph

directed, 10
undirected, 10

MUP, 37

node, 9
node-arc crossing, 122
North DAGs, 69

orthogonal compaction, 143
orthogonal representation, 143
out-degree, 10

path
directed, 10
undirected, 9

pc-valid
arc order, 86
embedding, 86
insertion path, 86

planarization, 18
port, 35
port constraint valid, see pc-valid
promotion layering, 25

random DAG set, 69
realization

of a layering, 113
of a pc-valid path, 89
of a UPR, 110
of an insertion path, 17

realization of a layering (hyper-
graph), 117

regular node, 24
resolution rules, 13
Rome graphs, 68
routing network, 52

SBGN, 2
SDP for k-LCM, 30
self-loop, 9
sifting heuristic, 29
sifting trial, 30
sink, 10

182 Index

sink-switch, 16
source, 10
source node, 10
source-arc, 88
source-switch, 16
spaghetti effect, 15
static locking, 56
StretchWidth layering, 27
subarc

of a chain, 87
of a long arc, 24

subgraph, 10
maximum planar, 17

Sugiyama’s drawing framework, 21

target node, 10
top-sink-switch, 16
tree, 10
two-cycle, 23

UIP, 46
fixed-port scenario, 89

UML, 3
underlying graph

of a directed graph, 10
of a directed hypergraph, 11
star-based, 11

underlying tree
of a hyperarc, 11
star-based, 11
tree-based, 11

up-sweep, 28
UPL, 109
UPL-instance, 79
UPL-Layering, 114
UPSugiyama, 111
upward crossing minimization, 41
upward crossing number ucr(G), 41
upward insertion path, 46
upward insertion sequence, 47
upward planarization, 36

Visibility, 39
visibility drawing approach, 38

width
of a layer, 24
of a layering, 24

	Introduction
	Corresponding Publications
	Main Results
	Organization of the Thesis

	Preliminaries
	Graphs
	Drawings and Embeddings
	Upward Planarity
	Planarization

	Upward Drawing Algorithms
	Framework by Sugiyama, Tagawa, and Toda
	Cycle Removal
	Layer Assignment
	Crossing Minimization
	Coordinate Assignment
	Extensions

	Alternative Upward Drawing Algorithms
	Mixed Upward Planarization
	Dominance Drawing
	Visibility Representation

	Upward Planarization
	Introduction
	Motivation
	Challenges

	Upward Planarization Algorithm
	Algorithm Overview
	Feasible Subgraph
	Arc Reinsertion
	Runtime Analysis

	Experimental Evaluation
	Benchmark Sets
	Evaluated Algorithms
	Comparison
	Deeper Analysis
	Runtime
	Summary

	Extension to Port Constraints
	Chain Substitution
	Feasible Subgraph
	Arc Reinsertion

	Extension to Hypergraphs
	Pre-processing
	Feasible Subgraph and Arc Reinsertion

	Example

	Upward Planarization Layout
	Introduction
	Straight-forward Approach
	Upward Planarization Layout
	Layer Assignment and Node Ordering
	Post-processing
	Polyline Hierarchical Layout
	Experimental Evaluation
	Orthogonal Layout

	Example
	Drawing Gallery

	Discussion
	Conclusion
	Future Works

	Bibliography
	Index

