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OPTIMAL DESIGN FOR LINEAR MODELS WITH
CORRELATED OBSERVATIONS

By Holger Dette∗, Andrey Pepelyshev† and Anatoly
Zhigljavsky‡

Ruhr-Universität Bochum∗, RWTH Aachen† and Cardiff University‡

In the common linear regression model the problem of determin-
ing optimal designs for least squares estimation is considered in the
case where the observations are correlated. A necessary condition
for the optimality of a given design is provided, which extends the
classical equivalence theory for optimal designs in models with un-
correlated errors to the case of dependent data. For one parameter
models this condition is also shown to be sufficient in many cases and
for several models optimal designs can be identified explicitly. For the
multi-parameter regression models a simple relation which allows ver-
ifying the necessary optimality condition is established. Moreover, it
is proved that the arcsine distribution is universally optimal for the
polynomial regression model with a correlation structure defined by
the logarithmic potential. It is also shown that for models in which
the regression functions are eigenfunctions of an integral operator in-
duced by the correlation kernel of the error process, designs satisfying
the necessary conditions of optimality can be found explicitly. To the
best knowledge of the authors these findings provide the first explicit
results on optimal designs for regression models with correlated ob-
servations, which are not restricted to the location scale model.

1. Introduction. Consider the common linear regression model

y(x) = θ1f1(x) + . . .+ θmfm(x) + ε(x) ,(1.1)

where f1(x), . . . , fm(x) are given linearly independent functions, ε(x) de-
notes a random error process or field, θ1, . . . , θm are unknown parameters
and x is the explanatory variable, which varies in a compact design space
X ⊂ Rd. We assume that N observations, say y1, . . . , yN , can be taken
at experimental conditions x1, . . . , xN to estimate the parameters in the
linear regression model (1.1). If an appropriate estimate, say θ̂, of the pa-
rameter θ = (θ1, . . . , θm)T has been chosen, the quality of the statistical
analysis can be further improved by choosing an appropriate design for the
experiment. In particular, an optimal design minimizes a functional of the
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variance-covariance matrix of the estimate θ̂, where the functional should
reflect certain aspects of the goal of the experiment. In contrast to the case
of uncorrelated errors, where numerous results and a rather complete theory
are available [see for example the monograph of Pukelsheim (2006)], the con-
struction of optimal designs for dependent observations is intrinsically more
difficult. However, this problem is of particular practical interest as in most
applications there exists correlation between different observations. Typical
examples include models, where the explanatory variable x represents the
time and all observations correspond to one subject. In such situations op-
timal experimental designs are very difficult to find even in simple cases.
Some exact optimal design problems were considered in Boltze and Näther
(1982), Näther (1985a), Ch. 4, Näther (1985b), Pázman and Müller (2001)
and Müller and Pázman (2003), who derived optimal designs for the location
scale model

y(x) = θ + ε(x).(1.2)

Exact optimal designs for specific linear models have been investigated in
Dette et al. (2008a); Kiselak and Stehlik (2008); Harman and Štulajter
(2010). Because explicit solutions of optimal design problems for correlated
observations are rarely available several authors have proposed to determine
optimal designs based on asymptotic arguments [see for example Sacks and
Ylvisaker (1966, 1968), Bickel and Herzberg (1979), Näther (1985a), Zhigl-
javsky et al. (2010)]. Roughly speaking, there exist three approaches to
embed the optimal design problem for regression models with correlated ob-
servations in an asymptotic optimal design problem. The first one is due to
Sacks and Ylvisaker (1966, 1968), who assumed that the covariance struc-
ture of the error process ε(x) is fixed and that the number of design points
tends to infinity. Alternatively, Bickel and Herzberg (1979) and Bickel et al.
(1981) considered a different model, where the correlation function depends
on the sample size. Recently, Zhigljavsky et al. (2010) extended the Bickel-
Herzberg approach and allowed the variance (in addition to the correlation
function) to vary as the number of observations changes. As a result, the
corresponding optimality criteria contain a kernel with a singularity at zero.
The focus in all of these papers is again mainly on the location scale model
(1.2).

The difficulties in the development of the optimal design theory for corre-
lated observations can be explained by a different structure of the covariance
of the least squares estimator in model (1.1), which is of the formM−1BM−1

for certain matrices M and B depending on the design. As a consequence
the corresponding design problems are in general not convex (except for the
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location scale model (1.2) where M = 1).
The present paper is devoted to the problem of determining optimal de-

signs for more general models with correlated observations than the sim-
ple location scale model (1.2). In Section 2 we present some preliminary
discussion and introduce some notation. Section 3 is devoted to necessary
conditions for design optimality. In Section 4 we prove the optimality of the
arcsine distribution and a class of Beta distributions (called generalized arc-
sine designs) for specific one-parameter regression models. In Section 5 we
derive necessary conditions for the universal optimality of designs in multi-
parameter regression models with correlated errors. By relating the optimal
design problems to eigenvalue problems for integral operators we identify a
broad class of models where these conditions are satisfied. One of the main
results of the paper is Theorem 5.2, where we prove that the arcsine design
is universally optimal for the polynomial regression model with the logarith-
mic correlation kernel. To our best knowledge these results provide the first
explicit solution of optimal design problems for regression models with cor-
related observations which differ from the location scale model. In Section
6 we provide an algorithm for computing optimal designs for any regression
model with specified covariance function and investigate the efficiency of the
arcsine and uniform distribution in polynomial regression models with expo-
nential correlation functions. Finally, some conclusions are given in Section
7.

2. Preliminaries. Consider the linear regression model (1.1), where
ε(x) is a stationary process with

Eε(x) = 0, Eε(x)ε(x′) = σ2K(x, x′) , x ∈ X ⊂ Rd .(2.1)

Throughout this paper we assume that the function K(x, x′) is continuous
at all points (x, x′) ∈ X × X except possibly the diagonal points (x, x). We
also assume that K(x, x′) ̸= 0 for at least one pair (x, x′) with x ̸= x′. An
important case appears when the correlation kernel of the error process is of
the form K(x, x′) = ρ(x− x′), where ρ(·) is called the correlation function.
If N observations, say y = (y1, . . . , yN )T are available at experimental con-
ditions x1, . . . , xN and the knowledge of the correlation kernel is available,
the vector of parameters can be estimated by the weighted least squares
method, i.e. θ̂ = (XTΣ−1X)−1XTΣ−1y where X = (fi(xj))

i=1,...,m
j=1,...,N and

Σ = (K(xi, xj))i,j=1,...,N . The variance-covariance matrix of this estimate is
given by

Var(θ̂) = σ2(XTΣ−1X)−1 .
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If the correlation structure of the process is not known, one usually uses the
ordinary least squares estimate θ̃ = (XTX)−1XT y, which has the covariance
matrix

Var(θ̃) = σ2(XTX)−1XTΣX(XTX)−1.(2.2)

An exact experimental design ξN = {x1, . . . , xN} is a collection of N
points in X , which defines the time points or experimental conditions where
observations are taken. Optimal designs for weighted or ordinary least squares
estimation minimize a functional of the covariance matrix of the weighted or
ordinary least squares estimate, respectively, and numerous optimality crite-
ria have been proposed in the literature to discriminate between competing
designs [see Pukelsheim (2006)].

Note that the weighted least squares estimate can only be used if the
correlation structure of errors is known, and its misspecification can lead
to a severe loss of efficiency. On the other hand, the ordinary least squares
estimate does not employ the structure of the correlation. Obviously the
ordinary least squares estimate can be less efficient than the weighted least
squares estimate but in many cases the loss of efficiency is often negligible.
Throughout this article we will concentrate on optimal designs for the ordi-
nary least squares estimate. These designs require also the specification of
the correlation structure but a potential loss by its misspecification in the
stage of design construction is typically much smaller than the loss caused
by the misspecification of the correlation structure in the weighted least
squares estimate [see Tables 1 and 3 in Dette et al. (2009)].

Because even in simple models the exact optimal designs are difficult to
find, most authors usually use asymptotic arguments to determine efficient
designs for the estimation of the model parameters. Following Sacks and
Ylvisaker (1966, 1968) and Näther (1985a), Chapter 4, we assume that the
design points {x1, . . . , xN} are generated by the quantiles of a distribution
function, that is

xiN = a
(
(i− 1)/(N − 1)

)
, i = 1, . . . , N,

where the function a : [0, 1] → X is the inverse of a distribution function.
If ξN denotes a design with N points and corresponding quantile function
a(·), the covariance matrix of the least squares estimate θ̃ = θ̃ξN given in
(2.2) can be written as

Var(θ̃) = σ2D(ξN ) = σ2M−1(ξN )B(ξN , ξN )M−1(ξN ),(2.3)
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where

M(ξN ) =

∫
X
f(u)fT (u)ξN (du),(2.4)

B(ξN , ξN ) =

∫ ∫
K(u, v)f(u)fT (v)ξN (du)ξN (dv),(2.5)

and f(u) =
(
f1(u), . . . , fm(u)

)T
denotes the vector of regression functions.

Following Kiefer (1974) we call any probability measure ξ on X (more pre-
cisely on an appropriate Borel field) an approximate design or simply design.
The set of all designs (that is, the set of all probability measures on X ) will
be denoted by Ξ. The definition of the matrices M(ξ) and B(ξ, ξ) can be
extended to an arbitrary design ξ, provided that the corresponding integrals
exist. The matrix

D(ξ) =M−1(ξ)B(ξ, ξ)M−1(ξ),(2.6)

is called the covariance matrix for the design ξ and can be defined for any
probability measure ξ supported on the design space X such that the matri-
ces B(ξ, ξ) and M−1(ξ) are well-defined. An (approximate) optimal design
minimizes a functional of the covariance matrix D(ξ) over the set Ξ.

Note that in general the function D(ξ) is not convex (with respect to the
Loewner ordering) on the space of all approximate designs. This implies that
even if one determines optimal designs by minimizing a convex functional,
say Φ, of the matrix D(ξ), the corresponding functional ξ → Φ(D(ξ)) is
generally not convex on the space of designs Ξ. Consider for example the
case m = 1 where D(ξ) is given by

D(ξ) =

[∫
f2(u)ξ(du)

]−2∫ ∫
K(u, v)f(u)f(v)ξ(du)ξ(dv) ,(2.7)

and it is obvious that this functional is not necessarily convex. On the other
hand, for the location scale model (1.2) we have m = 1, f(x) = 1 for all
x and this expression reduces to D(ξ) =

∫∫
K(u, v)ξ(du)ξ(dv) . In the case

K(u, v) = ρ(u − v), where ρ(·) is a correlation function, this functional is
convex on the set of probability measures on the domain X , see Lemma
1 in Zhigljavsky et al. (2010) and Lemma 4.3 in Näther (1985a). For this
reason (namely the convexity of the functional D(ξ)) most of the literature
discussing asymptotic optimal design problems for least squares estimation
in the presence of correlated observations considers the location scale model,
which corresponds to the estimation of the mean of a stationary process [see
for example Boltze and Näther (1982), Näther (1985a,b)].
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3. A necessary condition for optimality.

3.1. General optimality criteria. Recall the definition of the information
matrix in (2.4) and define

B(ξ, ν) =

∫
X

∫
X
K(u, v)f(u)fT (v)ξ(du)ν(dv),

where ξ and ν ∈ Ξ are two arbitrary designs and K(u, v) is an arbitrary
kernel. The two main examples of the kernel function K will be K(u, v) =
ρ(u− v) and K(u, v) = r(u−v) where ρ(t) is a correlation function and r(t)
is a non-negative definite function with singularity at zero. The latter type
arises naturally if the Bickel-Herzberg approach [see Bickel and Herzberg
(1979)] is extended such that the variance (in addition to the correlation
function) varies as the number of observations changes [see Zhigljavsky et al.
(2010)] .

According to the discussion in the previous paragraph, the asymptotic
covariance matrix of the least squares estimator θ̂ is proportional to the
matrix D(ξ) defined in (2.3). Let Φ(·) be a monotone functional defined on
the space of symmetricm×mmatrices where the monotonicity of Φ(·) means
that A ≥ B implies Φ(A) ≥ Φ(B). Then the optimal design ξ∗ minimizes
the function

Φ(D(ξ))(3.1)

on the space Ξ of all approximate designs. In addition to monotonicity, we
shall also assume the differentiability of the functional Φ(·); that is, the
existence of the matrix of derivatives

C =
∂Φ(D)

∂D
=

(
∂Φ(D)

∂Dij

)
i,j=1,...,m

,

where D is any symmetric non-negative definite matrix of size m×m. The
following lemma is crucial in the proof of the optimality theorem below.

Lemma 3.1 Let ξ and ν be two designs and Φ be a differentiable functional.
Set ξα = (1− α)ξ + αν and assume that the matrices M(ξ) and B(ξ, ξ) are
nonsingular. Then the directional derivative of Φ at the design ξ in the
direction of ν − ξ is given by

∂Φ(D(ξα))

∂α

∣∣∣∣
α=0

= 2[b(ν, ξ)−φ(ν, ξ)]

where
φ(ν, ξ) = tr(M(ν)M−1(ξ)B(ξ, ξ)M−1(ξ)C(ξ)M−1(ξ)),
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b(ν, ξ) = tr(M−1(ξ)C(ξ)M−1(ξ)B(ξ, ν))

and

C(ξ) =
∂Φ(D)

∂D

∣∣∣∣
D=D(ξ)

.

Proof. Straightforward calculation shows that

∂

∂α
M−1(ξα)

∣∣∣
α=0

=M−1(ξ)−M−1(ξ)M(ν)M−1(ξ)

and

∂

∂α
B(ξα, ξα)

∣∣∣
α=0

= B(ξ, ν) +B(ν, ξ)− 2B(ξ, ξ).

Using the formula for the derivative of a product and the two formulas above,
we obtain

∂

∂α
D(ξα)

∣∣∣
α=0

=

(
∂

∂α
M−1(ξα)

)
B(ξα, ξα)M

−1(ξα)
∣∣∣
α=0

+M−1(ξα)B(ξα, ξα)

(
∂

∂α
M−1(ξα)

) ∣∣∣
α=0

+M−1(ξα)

(
∂

∂α
B(ξα, ξα)

)
M−1(ξα)

∣∣∣
α=0

= −M−1(ξ)M(ν)M−1(ξ)B(ξ, ξ)M−1(ξ)

−M−1(ξ)B(ξ, ξ)M−1(ξ)M(ν)M−1(ξ)

+M−1(ξ)
(
B(ξ, ν) +B(ν, ξ)

)
M−1(ξ).

Note that the matrices M(ξα) and B(ξα, ξα) are nonsingular for small non-
negative α (that is, for all α ∈ [0, α0) where α0 is a small positive number)
which follows from the non-degeneracy of M(ξ) and B(ξ, ξ) and the conti-
nuity of M(ξα) and B(ξα, ξα) with respect to α.

Using the above formula and the fact that tr(H(A+AT )) = 2 tr(HA) for
any m×m matrix A and any m×m symmetric matrix H, we obtain

∂Φ(D(ξα))

∂α

∣∣∣∣
α=0

= tr
(
C(ξ)

∂

∂α
D(ξα)

)∣∣∣
α=0

= 2 tr
(
C(ξ)M−1(ξ)B(ξ, ν)M−1(ξ)

)
−2 tr

(
C(ξ)M−1(ξ)M(ν)M−1(ξ)B(ξ, ξ)M−1(ξ)

)
= 2[b(ν, ξ)−φ(ν, ξ)] .
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�
Note that the functions b(ν, ξ) and φ(ν, ξ) can be represented as

b(ν, ξ) =

∫
b(x, ξ)ν(dx), φ(ν, ξ) =

∫
φ(x, ξ)ν(dx)

where

φ(x, ξ) = φ(ξx, ξ) = fT (x)M−1(ξ)B(ξ, ξ)M−1(ξ)C(ξ)M−1(ξ)f(x)(3.2)

b(x, ξ) = b(ξx, ξ) = tr(C(ξ)M−1(ξ)B(ξ, ξx)M
−1(ξ))(3.3)

and ξx is the probability measure concentrated at a point x.

Lemma 3.2 For any design ξ such that the matrices M(ξ) and B(ξ, ξ) are
nonsingular we have∫

φ(x, ξ)ξ(dx) =

∫
b(x, ξ)ξ(dx) = tr(M−1(ξ)B(ξ, ξ)M−1(ξ)C(ξ))(3.4)

where the functions φ(x, ξ) and b(x, ξ) are defined in (3.2) and (3.3), re-
spectively.

Proof. Straightforward calculation shows that∫
φ(x, ξ)ξ(dx) = tr(M−1(ξ)B(ξ, ξ)M−1(ξ)C(ξ)M−1(ξ)

∫
f(x)fT (x)ξ(dx))

= tr(M−1(ξ)B(ξ, ξ)M−1(ξ)C(ξ)).

We also have∫
B(ξ, ξx)ξ(dx) =

∫ [ ∫ ∫
K(u, v)f(u)fT (v)ξ(du)ξx(dv)

]
ξ(dx)

=

∫ [ ∫
K(u, x)f(u)fT (x)ξ(du)

]
ξ(dx) = B(ξ, ξ),

which implies∫
b(x, ξ)ξ(dx) = tr(M−1(ξ)C(ξ)M−1(ξ)

∫
B(ξ, ξx)ξ(dx))

= tr(M−1(ξ)C(ξ)M−1(ξ)B(ξ, ξ))

= tr(M−1(ξ)B(ξ, ξ)M−1(ξ)C(ξ)).

�

The main result of this section provides a necessary condition for the
optimality of a given design.
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Theorem 3.1 Let ξ∗ be any design minimizing the functional Φ(D(ξ)).
Then the inequality

φ(x, ξ∗) ≤ b(x, ξ∗)(3.5)

holds for all x ∈ X , where the functions φ(x, ξ) and b(x, ξ) are defined
in (3.2) and (3.3), respectively. Moreover, there is equality in (3.5) for ξ∗-
almost all x, that is, ξ∗(A) = 0 where

A = A(ξ∗) = {x ∈ X | φ(x, ξ∗) < b(x, ξ∗)}

is the set of x ∈ X such that the inequality (3.5) is strict.

Proof. Consider any design ξ∗ minimizing the functional Φ(D(ξ)). The nec-
essary condition for an element to be a minimizer of a differentiable func-
tional states that the directional derivative from this element in any direction
is non-negative. In the case of the design ξ∗ and the functional Φ(D(ξ)) this
yields that for any design ν

∂Φ(D(ξα))

∂α

∣∣∣∣
α=0

≥ 0

where ξα = (1 − α)ξ∗ + αν. The inequality (3.5) follows now from Lemma
1. The assumption that the inequality (3.5) is strict for all x ∈ A with
ξ∗(A) > 0 is in contradiction with the identity (3.4). �

Remark 3.1 In the classical theory of optimal design, convex optimality
criteria are almost always considered. However, in at least one paper, namely
Torsney (1986), an optimality theorem for a rather general non-convex op-
timality criteria was established and used (in the case of non-correlated
observations).

3.2. Special optimality criteria. For the L-optimality criterion defined
by Φ(D) = tr(LD), where L is a symmetric non-negative matrix, we have
C(ξ) = L for any ξ. The formulas above do not simplify much. In a particular
case of the A-optimality criterion Φ(D) = trD we have C(ξ) = I for any ξ.
For the case of c-optimality criterion Φ(D) = cTDc = tr(ccTD) we obtain
C(ξ) = ccT for any ξ. In both cases, simplifications in the expressions for
φ(x, ξ) and b(x, ξ) are insignificant.

For the D-optimality there exists an analogue of the celebrated ‘Equiva-
lence Theorem’ of Kiefer and Wolfowitz (1960), which characterizes optimal
designs minimizing the D-optimality criterion Φ(D(ξ)) = ln det(D(ξ)).
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Theorem 3.2 Let ξ∗ be any D-optimal design. Then for all x ∈ X we have

d(x, ξ∗) ≤ b(x, ξ∗),(3.6)

where the functions d and b are defined by d(x, ξ) = fT (x)M−1(ξ)f(x)

b(x, ξ) = tr
(
B−1(ξ, ξ)B(ξ, ξx)

)
= fT (x)B−1(ξ, ξ)

∫
K(u, x)f(u)ξ(du),(3.7)

respectively. Moreover, there is equality in (3.6) for ξ∗-almost all x.

Proof. In the case of the D-optimality criterion Φ(D(ξ)) = ln det(D(ξ)),
we have

C(ξ) = D−1(ξ) = (M−1(ξ)B(ξ, ξ)M−1(ξ))−1 =M(ξ)B−1(ξ, ξ)M(ξ),(3.8)

which gives

φ(x, ξ)=fT(x)M−1(ξ)B(ξ,ξ)M−1(ξ)M(ξ)B−1(ξ,ξ)M(ξ)M−1(ξ)f(x)=d(x, ξ).

Similarly we simplify an expression for b(x, ξ). Reference to Theorem 1 com-
pletes the proof. �

The following statement illustrates a remarkable similarity between D-
optimal design problems in the cases of correlated and non-correlated ob-
servations. The proof easily follows from the formulas (3.4) and (3.8).

Corollary 3.1 For any design ξ such that the matrices M(ξ) and B(ξ, ξ)
are nonsingular we have∫

d(x, ξ)ξ(dx) =

∫
b(x, ξ)ξ(dx) = m

where b(x, ξ) is defined in (3.7) and m is the number of parameters in the
regression model (1.1).

As an illustration we consider the quadratic regression model y(x) = θ1+
θ2x+θ3x

2+ε(x) with design space X = [−1, 1] and correlated observations.
In Figure 1 we plot functions b(x, ξ) and d(x, ξ) for different covariance
kernels K(u, v) = e−|u−v|, K(u, v) = max{0, 1 − |u − v|} and K(u, v) =
− log(u− v)2, where the design is the arcsine distribution with density

p(x) = 1/(π
√

1− x2) , x ∈ (−1, 1) .(3.9)

Throughout this paper this design will be denoted by ξa. By the definition,
the function d(x, ξ) is the same for different covariance kernels but the func-
tion b(x, ξ) depends on the choice of the kernel. From the left and middle
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panel we see that the arcsine distribution does not satisfy the necessary con-
dition of Theorem 3.1 for the kernelK(u, v) = e−|u−v| and max{0, 1−|u−v|}
and is therefore not D-optimal for the quadratic regression model. On the
other hand, for the logarithmic kernel K(u, v) = − log(u − v)2 the neces-
sary condition is satisfied and the arcsine distribution is a candidate for the
D-optimal design. We will prove in Theorem 5.2 that the arcsine design ξa
is optimal with respect to a broad class of optimality criteria including the
D-optimality criterion.
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Fig 1. The functions b(x, ξ) and d(x, ξ) for the regression model (1.1) with f(x) =
(1, x, x2)T and the covariance kernels K(u, v) = e−|u−v| (left), K(u, v) = max(0, 1−|u−v|)
(middle) and K(u, v) = − log(u− v)2 (right), and the arcsine distribution ξa.

4. Optimal designs for one-parameter models. In this section we
study one-parameter regression models

y(x) = θf(x) + ε(x), x ∈ X(4.1)

with correlated observations. It turns out that in this case a more explicit
characterization of the optimal designs is available. Moreover, the results
indicate a general strategy to deal with optimal designs in the general re-
gression model (1.1) with correlated observations, which will be further de-
veloped in Section 5.

4.1. Set of admissible designs. For a one-parameter model of the form
(4.1) D(ξ) is a scalar and no functional Φ is needed to define an optimal
design problem. In this case the optimality criterion reduces to

D(ξ) =
B(ξ, ξ)

(M(ξ))2
=

[∫
f2(u)ξ(du)

]−2∫ ∫
K(u, v)f(u)f(v)ξ(du)ξ(dv) .(4.2)

This criterion has to be minimized on the set Ξ is of all admissible designs,
which will be defined below.
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Throughout this section we assume that the function f(·) is not identically
zero so that the estimation of the parameter θ is possible. We also assume
that the kernel K(u, v) guarantees the existence of at least one design with
D(ξ) < ∞ so that the problem of minimizing the functional D(ξ) is well
defined. For the following discussion define X0 = {x ∈ X : f(x) = 0} and
X1 = X\X0 = {x ∈ X : f(x) ̸= 0}.

In the one-parameter case the (ordinary) least squares estimator θ̃ based
on observations y1, . . . , yN at points x1, . . . , xN is given by

θ̃ = (XTX)−1XTY =

∑N
i=1 f(xi)yi∑N
i=1 f

2(xi)
.(4.3)

This estimator makes sense only if at least one of the predictors xi belongs
to the set X1. Otherwise, if all xi ∈ X0, the parameter θ in (4.1) is not
identifiable. Hence, in the formulation of the optimal design problem, all
designs, that are concentrated entirely on the set X0, should be excluded
from the set of admissible designs Ξ.

Assume now that at least one of the design points xi belongs to the set
X1. Then the variance of the estimate θ̃ is given by

Var(θ̃)=σ2(XTX)−1XTΣX(XTX)−1=σ2
∑

i,j f(xi)K(xi, xj)f(xj)

(
∑

i f
2(xi))

2 .(4.4)

Any admissible design ξ can be represented as

ξ = αξ1 + (1− α)ξ0(4.5)

where 0 < α ≤ 1 and ξk is the restriction of the measure ξ to the set Xk, that
is ξk(A) = ξ(A ∩ Xk)/ξ(Xk) for k = 0, 1 and any measurable set A ⊂ X .
Note that the case α = 0 means that the design ξ is concentrated on the set
X0; the corresponding designs have been excluded from the set of admissible
designs.

The formulas (4.3) and (4.4) now imply that the observations xi ∈ X0 do
not change both the estimator θ̃ and its variance Var(θ̃). That is, D(ξ) =
D(ξ1) whatever the value of α ∈ (0, 1] is. This can also be checked directly
using the formula (4.2); here we have to note that even if the kernel K(u, v)
has a singularity at u = v, we have

∫∫
K(u, v)f(u)f(v)ξ0(du)ξ0(dv) = 0.

Since D(ξ1) = D(αξ1 + (1 − α)ξ0) for all α ∈ (0, 1], we can assume that
α = 1.

Summarizing we assume that the set of admissible designs Ξ in the for-
mulation of the optimal design problem (4.2) is a subset of all approximate
designs defined on X containing all designs ξ such that f(x) ̸= 0 for ξ-almost
all x ∈ X .
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4.2. Optimality conditions. In the case of a one-parameter model, the
functions d(x, ξ) and b(x, ξ) defined in (3.2) and (3.3) are given by

d(x, ξ) =
f2(x)∫

f2(u)ξ(du)

b(x, ξ) =
f(x)

∫
K(u, x)f(u)ξ(du)∫∫

K(u, v)f(u)f(v)ξ(du)ξ(dv)
,

respectively. In addition to the general necessary condition of optimality
formulated in Theorem 3.1, we can formulate other conditions.

Theorem 4.1 Consider a one-parameter model of the form (4.1) and an
admissible design ξ ∈ Ξ.

(i) If the design ξ is optimal, then there exists λ > 0 such that the identity

λf(x) =

∫
K(u, x)f(u)ξ(du)(4.6)

holds for ξ-almost all x ∈ X .
(ii) If there exists λ > 0 such that the condition (4.6) holds for all x ∈ X ,

then the design ξ satisfies the necessary condition of optimality formulated
in Theorem (3.1).

(iii) If there exists exactly one pair (ξ, λ), where ξ is an admissible design
and λ is a positive scalar, such that (4.6) holds for ξ-almost all x ∈ X ,
then ξ is the unique design minimizing the criterion (4.2) in the set of all
admissible designs.

Proof. (i) For an admissible design ξ ∈ Ξ define

g(x) =

∫
K(u, x)f(u)ξ(du).

Represent this function in the form g(x) = λf(x) + h(x), where

λ =

∫
f(x)g(x)ξ(dx)∫
f2(x)ξ(dx)

and

∫
h(x)f(x)ξ(dx) = 0;

that is, λf is the projection of g onto the line {cf(x) | c ∈ R} and h is the
orthogonal complement in the space L2(X , ξ). Observing the definition of g
we have

b(x, ξ) =
f(x)

∫
K(u, x)f(u)ξ(du)∫∫

K(u, v)f(u)f(v)ξ(du)ξ(dv)
=

f(x)g(x)∫
f(x)g(x)ξ(dx)

=
λf2(x)+f(x)h(x)

λ
∫
f2(u)ξ(du)

=
f2(x)∫

f2(u)ξ(du)
+

f(x)h(x)

λ
∫
f2(u)ξ(du)

= d(x, ξ)+
f(x)h(x)

λ
∫
f2(u)ξ(du)
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and therefore

b(x, ξ)− d(x, ξ) =
f(x)h(x)

λ
∫
f2(u)ξ(du)

.(4.7)

If the design ξ is optimal then, according to Theorem 3.1, it satisfies the
condition b(x, ξ) = d(x, ξ) for ξ-almost all x ∈ X . Since the design ξ is
admissible, it follows f(x) ̸= 0 for ξ-almost all x ∈ X , which yields that
for the optimal design ξ we have h(x) = 0 for ξ-almost all x ∈ X . This is
equivalent to the statement (i).

(ii) If the condition (4.6) holds for all x ∈ X , then in view of (4.7) we have
b(x, ξ) = d(x, ξ) for all x ∈ X , and the optimality condition of Theorem 3.1
is satisfied.

(iii) If there is only one pair (ξ, λ) such that the condition (4.6) is satisfied
for ξ-almost all x ∈ X , then there is only one admissible design such that the
necessary condition of optimality is satisfied. Hence the necessary condition
becomes sufficient as well. �

4.3. Optimality of the arcsine design. In the remaining part of this sec-
tion we will concentrate on the design problem for the domain X = [−1, 1].
To present results on optimality of the arcsine design for a number of one-
parameter models, we start with the following lemma, which results in the
theory of Fredholm-Volterra integral equations [see Mason and Handscomb
(2002), Ch. 9, page 211].

Lemma 4.1 The Chebyshev polynomials of the first kind Tn(x) =
cos(n arccosx) are the eigenfunctions of the integral operator with the kernel
H(x, v) = − ln(x− v)2/

√
1− v2. More precisely, for all n = 0, 1, . . . we have

for all n ∈ N

λnTn(x) = −
∫ 1

−1
Tn(v) ln(x− v)2

dv

π
√
1− v2

, x ∈ [−1, 1],

where λ0 = 2 ln 2 and λn = 2/n for n ≥ 1.

In the following theorem we give a new characterization of the arcsine
distribution and present a number of models for which the arcsine distri-
bution is the optimal design for the regression model (4.1) with correlation
function γ − β ln(u− v)2, β > 0, γ ≥ 0.

Theorem 4.2
(a) Let ζ be a random variable supported on the interval [−1, 1]. Then ζ is
given by the arcsine distribution with density (3.9) if and only if the equality

ETn(ζ)
(
− ln(ζ − x)2

)
= cnTn(x)
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holds for almost all x ∈ [−1, 1], where cn = 2/n if n ∈ N and c0 = 2 ln 2 if
n = 0.
(b) Consider the one-parameter model (4.1) with f(x) = Tn(x) and the
covariance kernel K(u, v) = ρ(u − v) = γ − β ln(u − v)2 with β > 0 and
γ ≥ 0. Then the optimal design is unique (in the class of admissible designs)
and given by the arcsine distribution with density (3.9).

Proof. For a proof of part (a) we notice that the part “if” of the statement
follows from Lemma 4.1 and we should prove the part “only if”. Nevertheless,
we provide a proof of the part “if” since it will be the base for proving the
part “only if”.

Since the statement for n = 0 is proved in Schmidt and Zhigljavsky (2009),
we consider the case n ∈ N in the rest of proof. Using the transformation
φ = arccosu and ψ = arccosx we obtain Tn(cosφ) = cos(nφ) and∫ 1

−1

ln(u− x)2

π
√
1− u2

Tn(u)du =

∫ π

0

ln(cosφ− x)2

π sinφ
cos(nφ) sinφdφ.

Consequently, in order to prove part (a) of Theorem 4.2 we have to show
that the function ∫ π

0
ln(cosφ− cosψ)2 cos(nφ)µ(dφ)

is proportional to cos(nψ) if and only if µ has a uniform density on the in-
terval [0, π]. Extending µ to the interval [0, 2π] as a symmetric (with respect
to the center π) measure, µ(A) = µ(2π−A), and defining the measure µ̃ as
µ̃(A) = µ(2A)/2 for all Borel sets A ∈ [0, π], we obtain∫ π

0

ln(cosφ− cosψ)2 cos(nφ)µ(dφ) =
1

2

∫ 2π

0

cos(nφ) ln(cosφ− cosψ)2 µ(dφ)

=
1

2

∫ 2π

0

cos(nφ) ln
(
2 sin

φ− ψ

2
sin

φ+ ψ

2

)2

µ(dφ)

=
1

2

∫ 2π

0

cos(nφ) ln 22µ(dφ) +
1

2

∫ 2π

0

cos(nφ) ln
(
sin

φ− ψ

2

)2

µ(dφ)

+
1

2

∫ 2π

0

cos(nφ) ln
(
sin

φ+ ψ

2

)2

µ(dφ)

= 0 +

∫ π

0

cos(2nφ) ln sin2(φ− ψ/2)µ̃(dφ) +

∫ π

0

cos(2nφ) ln sin2(φ+ ψ/2)µ̃(dφ)

= 2

∫ π

0

cos(2nφ− nψ + nψ) ln sin2(φ− ψ/2)µ̃(dφ)

= 2 cos(nψ)

∫ π

0

cos(2nφ− nψ) ln sin2(φ− ψ/2)µ̃(dφ)

+2 sin(nψ)

∫ π

0

sin(2nφ− nψ) ln sin2(φ− ψ/2)µ̃(dφ).
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The part “if” follows from the facts that the functions cos(2nz) ln sin2(z)
and sin(2nz) ln sin2(z) are π-periodic and∫ π

0
sin(2nφ− nψ) ln sin2(φ− ψ/2)

dφ

π
=

∫ π

0
sin(2nφ) ln sin2(φ)

dφ

π
= 0,

∫ π

0
cos(2nφ− nψ) ln sin2(φ− ψ/2)

dφ

π
=

∫ π

0
cos(2nφ) ln sin2(φ)

dφ

π
= −1/n.

To prove the part “only if”, we need to show that the convolution of
cos(2nz) ln sin2(z) and µ̃(z), i.e.∫ π

0
cos(2n(φ− t)) ln sin2(φ− t)µ̃(dφ),

is constant for almost all t ∈ [0, π] if and only if µ̃ is uniform; and the same
holds for the convolution of sin(2nz) ln sin2(z) and µ̃(z). This, however, fol-
lows from (Schmidt and Zhigljavsky, 2009, Lem. 3) since cos(2nz) ln sin2(z) ∈
L2([0, π]) and all complex Fourier coefficients of these functions are non-zero.
Indeed, ∫ π

0
cos(2nt) ln sin2(t) sin(2kt)dt = 0 ∀ k ∈ Z

∫ π

0
cos(2nt) ln sin2(t) cos(2kt)dt = (γ|n+k| + γ|n−k|)/2 ∀ k ∈ Z ,

where γ0 = −2π log 2 and γk = −π/k for k ∈ N, see formula 4.384.3 in
Gradshteyn and Ryzhik (1965).

In order to prove part (b) of Theorem 4.2 we assume without loss of
generality that β = 1. Next, assume also γ = 0 and thus consider the
logarithmic kernel ρ(x) = − lnx2. Let p denote the density of the arcsine
distribution defined in (3.9). Applying Lemma 4.1, we obtain that

B(ξ∗, ξ∗) =

∫ 1

−1

∫ 1

−1
ρ(u− v)Tn(u)Tn(v)p(u)p(v)dudv

=

∫ 1

−1
Tn(u)λTn(u)du = λM(ξ∗).

Consequently, we obtain b(x, ξ∗) = Tn(x)(λnM(ξ∗))−1λnTn(x) and

d(x, ξ∗) =M−1(ξ∗)T 2
n(x).
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Therefore the inequality (3.6) holds as an equality and the required state-
ment (for γ = 0) immediately follows from Theorem 4.1.

To prove the statement for the function ρ(x) = − lnx2 + γ with positive
γ, we consider two cases: n ∈ N and n = 0. For n ∈ N we obtain∫ 1

−1
(− ln(u− x)2 + γ)Tn(u)p(u)du=−

∫ 1

−1
ln(u− x)2Tn(u)p(u)du=λnTn(x)

since
∫
Tn(u)p(u)du = 0 whenever n ≥ 1. Consequently, b(x, ξ∗) = ν−1T 2

n(x)
which implies b(x, ξ∗) = d(x, ξ∗) and the statement follows from Theo-
rem 4.1.

For n = 0 we have f(x) = T0(x) ≡ 1. It is easy to see that M(ξ∗) = 1 and
d(x, ξ∗) = 1. We also have B(ξ∗, ξ∗) = γ − λ0,

B(ξ∗, ξx)=

∫ 1

−1
(− ln(u− x)2 + γ)p(u)du=γ−

∫ 1

−1
ln(u− x)2p(u)du=γ − λ0

and, consequently, b(x, ξ∗) = B(ξ∗, ξx)/B(ξ∗, ξ∗) = 1. Thus, d(x, ξ∗) =
b(x, ξ∗) for all x ∈ [−1, 1] and the statement again follows from Theorem 4.1.
�

4.4. Generalized arcsine designs. Take any α ∈ (0, 1) and consider the

Gegenbauer polynomials C
(α)
m (x) which are orthogonal with respect to the

weight function

pα(x) =
(Γ(α+ 1

2))
2

2αΓ(2α+1)
(1− x2)α−1/2 , x ∈ [−1, 1].(4.8)

For the choice α = 0 the Gegenbauer polynomials C
(α)
m (x) are proportional

to the Chebyshev polynomials Tm(x). Throughout this paper we will call
the corresponding beta-distributions generalized arcsine designs emphasiz-
ing the fact that the distribution is symmetric and the parameter α varies in
the interval (0, 1). The following result establishes an analogue of Lemma 4.1
for the kernel

H(u, v) =
1

|u− v|α(1− v2)(1−α)/2
.(4.9)

It appears in the theory of Fredholm-Volterra integral equations of the first
kind with special kernel, see Fahmy et al. (1999).

Lemma 4.2 The Gegenbauer polynomials C
(α/2)
n (x) are the eigenfunctions

of the integral operator with the kernel defined in (4.9). More precisely, for
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all n = 0, 1, . . . we have

λnC
(α/2)
n (x) = −

∫ 1

−1

1

|x− v|α
C(α/2)
n (v)

dv

(1− v2)(1−α)/2

for all x ∈ [−1, 1], where λn = πΓ(n+α)
cos(απ/2)Γ(α)n! .

In the following result we generalize Theorem 8 of Zhigljavsky et al. (2010)
from the case of location scale model to more general one-parameter models.

Theorem 4.3 Consider the one-parameter model (4.1) with f(x)=C
(α
2
)

n (x)
and the covariance kernel K(u, v) = ρ(u − v) = γ + β/|u − v|α, where
0 ≤ α < 1, γ ≥ 0, β > 0 and n = 0, 1, . . . Then the design with the
generalized arcsine density

pα/2(x) =
2−α

B((1 + α)/2, (1 + α)/2)
(1− x2)(α−1)/2

satisfies the necessary condition of optimality stated in Theorem 4.1.

Proof. It is easy to see that the optimal design does not depend on β and
we thus assume β = 1. The statement for γ = 0 follows from Lemma 4.2.

To prove the statement for the kernel ρ(x) = 1/|x|α + γ with positive γ
we recall the definition of pα in (4.8) and we consider the two cases n ∈ N
and n = 0 separately. For n ∈ N we have by Lemma 4.2∫ ( 1

|u− x|α
+ γ

)
C

(α
2
)

n (u)pα
2
(u)du =

∫
1

|u− x|α
C

(α
2
)

n (u)pα
2
(u)du ∝ C

(α
2
)

n (x)

since
∫
C

(α/2)
n (u)pα/2(u)du = 0. Then d(x, ξ∗) = (C

(α/2)
n (x))2M−1(ξ∗) =

b(x, ξ∗) and ξ∗ obviously satisfies the necessary condition in Theorem 4.1.
For n = 0 we have that M(ξ∗) = 1, B(ξ∗, ξ∗) = γ + λα for some constant

λα and

B(ξ∗, ξx)=

∫ ( 1

|u− x|α
+ γ

)
pα/2(u)du = γ+

∫
1

|u− x|α
pα/2(u)du = γ + λα.

Consequently, d(x, ξ∗) = b(x, ξ∗) = 1 which completes the proof. �

5. Universally optimal designs for multi-parameter models. In
this section we consider the matrix D(ξ) defined in (2.6) as the matrix opti-
mality criterion which we are going to minimize on the set of all admissible
designs, which is the set Ξ of all probability measures ξ ∈ Ξ supported on the
design space X such that the matrices B(ξ, ξ) and M−1(ξ) (and therefore
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the matrix D(ξ)) are well-defined. We call a design ξ∗ universally optimal
if D(ξ∗) ≤ D(ξ) in the sense of Loewner ordering for any admissible design
ξ ∈ Ξ.

Note that a design ξ∗ is universally optimal if and only if ξ∗ is c-optimal for
any vector c ̸= 0. Correspondingly, a necessary condition for the universal
optimality of a design ξ∗ is a combination of necessary conditions of c-
optimality for all c ̸= 0. Moreover, a design that is universally optimal is
also D-, E-, A- and L-optimal for any matrix L ≥ 0.

5.1. A general result.

Theorem 5.1 Consider the regression model (1.1) with correlation struc-
ture (2.1) and a design ξ∗ with support on X . Assume that the regression
functions f1(x), . . . , fm(x) are linearly independent eigenfunctions of the in-
tegral operator defined by the correlation kernel K with respect to the design
ξ∗, that is ∫

K(x, u)f(u)ξ∗(du) = Λf(x)(5.1)

for all x ∈ X , where Λ is an m ×m diagonal matrix. If the matrix M(ξ∗)
is non-degenerate then the design ξ∗ satisfies the necessary condition for the
universal optimality for the model (1.1); that is, the inequality

fT (x)M−1(ξ∗)B(ξ∗, ξ∗)ccTM−1(ξ∗)f(x) ≤(5.2)

cTM−1(ξ∗)B(ξ∗, ξx)M
−1(ξ∗)c

holds for all vectors c ̸= 0;

Proof. The assumption (5.1) implies

B(ξ∗, ξ∗) =

∫ [∫
K(u, x)f(u)ξ∗(du)

]
fT (x)ξ∗(dx) = ΛM(ξ∗) ,(5.3)

while the symmetry of the correlation kernel K(u, x) and (5.1) yield∫
K(u, x)fT (x)ξ∗(dx) = fT (u)Λ .(5.4)

Similarly to (5.3) it follows using (5.4)

B(ξ∗, ξ∗) =

∫
f(u)

[∫
K(u, x)fT (x)ξ∗(dx)

]
ξ∗(du) = M(ξ∗)Λ .(5.5)
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Expressing B(ξ, ξ) by the formula (5.5) in the expression (3.2) for the
function φ we obtain

φ(x, ξ∗) = fT (x)M−1(ξ∗)B(ξ∗, ξ∗)M−1(ξ∗)CM−1(ξ∗)f(x)

= fT (x)ΛM−1(ξ∗)CM−1(ξ∗)f(x) ,

where C = ccT for the c-optimality criterion determined by the vector c. For
the function b(x, ξ) defined in (3.3), we obtain using (5.1)

b(x, ξ∗) = fT (x)M−1(ξ∗)CM−1(ξ∗)

∫
K(u, x)f(u)ξ∗(du)

= fT (x)M−1(ξ∗)CM−1(ξ∗)Λf(x) .

In view of the identity aTAa = aTATa, which holds for any square matrix
A and vector a of suitable size, the last two formulas imply that identity
φ(x, ξ) = b(x, ξ) for all x. Therefore ξ∗ satisfies the necessary condition for
c-optimality, for any vector c ̸= 0. �

The following result immediately follows from Theorem 5.1.

Corollary 5.1 Under the assumptions of Theorem 5.1, the design ξ∗ sat-
isfies the necessary condition for the universal optimality for any submodel
y = θi1fi1(x)+ θi2fi2(x)+ . . .+ θikfik(x)+ ε of the original regression model
(1.1), where 1 ≤ k < m and 1 ≤ i1 < . . . < ik ≤ m, as well as for any other
model of the form y =

∑m
i=1 θigi(x)+ ε, where the vector of regression func-

tions g(x) = (g1(x), . . . , gm(x))T is a linear transformation of the vector of
regression functions f(x)= (f1(x), . . . , fm(x))T , that is, g(x) = Lf(x) with
a non-degenerate m×m matrix L.

5.2. Optimality of the arcsine design. The following theorem establishes
universal optimality of the arcsine design for the polynomial regression
model with the logarithmic correlation function. To our best knowledge this
is the first explicit solution of an optimal design problem for a regression
model with correlated observations with more than one parameter.

Theorem 5.2 Consider the polynomial regression model (1.1) with f(x) =
(1, x, . . . , xm−1)T , x ∈ [−1, 1], and covariance kernel K(x, y) = − ln |x−y|2.
Then the design ξa with the arcsine density (3.9) is universally optimal.

Proof. Let c ̸= 0 be any fixed vector in Rm. Consider the c-optimality cri-
terion Ψ(ξ) = cTM−1(ξ)B(ξ, ξ)M−1(ξ)c. Straightforward calculation shows
that the arcsine design ξa satisfies the optimality condition for c-optimality.
We will demonstrate that there is no other design that is better than ξa
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with respect to the criterion Ψ(ξ). Specifically, we will show that if there
exists another design ξ0 satisfying the necessary condition for c-optimality,
then Ψ(ξa) = Ψ(ξ0). Because the vector c is arbitrary the assertion is then
obvious. The proof of this equality is divided into three steps.

(i) For any design ξ0, we have the following representation of the integral∫
K(u, x)f(u)ξ0(du) in two orthogonal components:∫

K(u, x)f(u)ξ0(du) = Λ0f(x) + g0(x)(5.6)

where Λ0 is am×m-matrix and the function g0 satisfies
∫
g0(x)f

T (x)ξ0(dx) =
0 ∈ Rm. Using (5.6) we rewrite the function b(x, ξ0) in (3.3) as

b(x, ξ0)=tr
(
M−1(ξ0) cc

TM−1(ξ0)

∫
K(u, x)f(u)fT (x)ξ0(du)

)
=cTM−1(ξ0)Λ0f(x)f

T (x)M−1(ξ0) c+c
TM−1(ξ0)g0(x)f

T (x)M−1(ξ0)c.

Therefore, b(x, ξ0) = φ(x, ξ0) + r(x, ξ0), where the function φ is defined in
(3.2) and

r(x, ξ0) = cTM−1(ξ0)g0(x)f
T (x)M−1(ξ0)c.

Thus, the necessary condition for c-optimality of ξ0 can be reformulated
as follows: if the design ξ0 is c-optimal then r(x, ξ0) ≥ 0 for all x and
r(x, ξ0) = 0 for x ∈ supp ξ0.

Suppose now that ξ0 is a c-optimal design. Since fT (x)M−1(ξ0)c ̸= 0
for almost all x ∈ [−1, 1], we have aT g0(x) = 0 for all x ∈ supp ξ0, where
aT = cTM−1(ξ0).

(ii) Now we want to prove that aT g0(x) = 0 for all x ∈ [−1, 1]. Note that
elements of B(ξ, ξ) are equal to infinity and Ψ(ξ) = ∞ if ξ has a discrete part.
Therefore, ξ0 is a continuous measure or a singular continuous measure or a
mixture of them. This implies that supp ξ0 contains more than a countable
number of points.

From the optimality condition (or multiplying (5.6) by aT on the left) it
follows

aT
∫ 1

−1
K(u, x)f(u)ξ0(du) = aTΛ0f(x)

for all x ∈ supp ξ0. For the assumed regression model, we have

m−1∑
j=0

aj

∫ 1

−1
ln(x− u)2Tj(u)ξ0(du) =

m−1∑
j=0

bjTj(x)(5.7)
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for all x ∈ supp ξ0, where b
T = (b0, . . . , bm−1) = aTΛ0.

Following the arguments given in the proof of Theorem 4.2, we can rewrite
(5.7) as

m−1∑
j=0

2aj

∫ π

0
ln sin2(φ− ψ/2) cos(2jφ)µ̃(dφ) =

m−1∑
j=0

bj cos(2jψ/2)(5.8)

where ψ ∈ Ω = {ψ : cos(ψ) ∈ supp ξ0} and the measure µ̃ denotes the
”symmetrization” of the design ξ0 introduced in the proof of Theorem 4.2.
Note that the left hand side of (5.8) is a convolution. Thus, the equation
(5.8) can be written as

(Ks ⋆ ν)(v) = g(v)(5.9)

where v = ψ/2, 2v ∈ Ω,Ks(v) = ln sin2(v), ν(dφ) =
∑m−1

j=0 aj cos(2jφ)µ̃(dφ)

and g(v) =
∑m−1

j=0 bj cos(2jv).
Note that the function G(v) := (Ks ⋆ ν)(v) is π-periodic and continuous

and, therefore, can be uniformly approximated by a linear combination of
{e2ikv|k ∈ Z}. Consequently, we have the equality G(v) = g(v) for all v
such that 2v ∈ Ω and the fact that g(v) is a finite sum of cosines implies
that G(v) = g(v) for all v. Thus, we have proved that aT g0(x) = 0 for all
x ∈ [−1, 1].

(iii) We are now ready to prove that Ψ(ξa) = Ψ(ξ0). By the definition of
B(ξ0, ξa) and (5.6) we obtain

B(ξ0, ξa) = Λ0M(ξa) +

∫
g0(x)f

T (x)ξa(dx)(5.10)

and Lemma 4.1 implies B(ξa, ξ0) = ΛaM(ξ0), B(ξa, ξa) = ΛaM(ξa) for some
matrix Λa ∈ Rm×m Since B(ξ0, ξa) = BT (ξa, ξ0), we obtain another repre-
sentation for B(ξ0, ξa):

B(ξ0, ξa) =M(ξ0)Λ
T
a .(5.11)

Multiplying (5.10) and (5.11) by aT on the left and using the identity
aT g0(x) = 0 for all x ∈ [−1, 1], we get

aTB(ξ0, ξa) = aTΛ0M(ξa) +

∫
aT g0(x)f

T (x)ξa(dx) = aTΛ0M(ξa)(5.12)

and

aTB(ξ0, ξa) = aTM(ξ0)Λ
T
a .(5.13)
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Combining (5.12) and (5.13) we obtain

aTΛ0M(ξa) = cTΛT
a .(5.14)

Let us now compute Ψ(ξa) and Ψ(ξ0). Using (5.14), we get

Ψ(ξa) = cTD(ξa)c = cTM−1(ξa)B(ξa, ξa)M
−1(ξa)c

= cTM−1(ξa)ΛaM(ξa)M
−1(ξa)c = cTM−1(ξa)Λac

= cTΛT
aM

−1(ξa)c = aTΛ0M(ξa)M
−1(ξa)c = aTΛ0c.

Using Λ0 = B(ξ0, ξ0)M
−1(ξ0) (which also follows from (5.6) and part (ii) of

this proof) and the definition of a, we get

Ψ(ξ0) = cTD(ξ0)c = cTM−1(ξ0)B(ξ0, ξ0)M
−1(ξ0)c = aTΛ0c.

Comparing the last two formulas we obtain the desired equality Ψ(ξa) =
Ψ(ξ0), which completes the proof of Theorem 5.2. �

The next result follows from Theorems 5.2 and 4.2.

Corollary 5.2 The statement of Theorem 5.2 remains true for the covari-
ance kernel K(x, y) = γ − β ln |x− y|2 with γ ≥ 0, β > 0.

5.3. Optimality and the generalized arcsine design. The following result
for the generalized arcsine design is a direct consequence of Theorems 4.3
and 5.1.

Corollary 5.3 Consider the polynomial regression model (1.1) with f(x) =
(1, x, x2, . . . , xm−1)T , x ∈ [−1, 1], and covariance kernel K(x, y) = γ+β/|x−
y|α with α ∈ (0, 1), γ ≥ 0, β > 0. Then the design with generalized arcsine
density defined in (4.8) satisfies the necessary conditions for universal opti-
mality.

5.4. Optimality and Mercer’s theorem. In this section we consider the
case when the regression functions are proportional to eigenfunctions from
Mercer’s theorem. To be precise let X denote a compact subset of a met-
ric space and let ν denote an absolute continuous probability measure on
the corresponding Borel field with positive density. Consider the integral
operator

TK(f)(·) =
∫
X
K(·, y)f(y)ν(dy)(5.15)

on L2(ν). Under certain assumptions on the kernel (for example if K is sym-
metric, continuous and positive definite) TK defines a symmetric, compact
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self-adjoint operator. In this case Mercer’s Theorem [see e.g. Kanwal (1997)]
shows that there exist a countable number of eigenfunctions φ1, φ2, . . . with
positive eigenvalues λ1, λ2, . . . of the operator K, that is

Tk(φℓ) = λℓφℓ , ℓ = 1, 2, . . .(5.16)

Theorem 5.3 Let X be a compact subset of a metric space and assume
that the covariance kernel K(x, u) defines a integral operator TK of the form
(5.15), where the eigenfunctions satisfy (5.16) and the measure ν is absolute
continuous with positive density. Consider the regression model (1.1) with
f(x) = L(φi1(x), . . . , φim(x))

T and the covariance kernel K(x, u), where L ∈
Rm×m is a non-singular matrix. Then the design ν satisfies the necessary
conditions for universal optimality.

Proof. By construction, the regression functions are the eigenfunctions of
the integral operator with covariance kernel K(x, u). Therefore the result
follows by exactly the same arguments for the measure ν on X as given in
the proof of Theorem 5.1. �

We note that the Mercer expansion is known analytically for certain co-
variance kernels. For example, if ν is the uniform distribution on the in-
terval X = [−1, 1] and the covariance kernel is of exponential type, that is
K(x, u) = e−λ|x−u|, then the eigenfunctions are given by

φk(x) = sin(ωkx+ kπ/2), k ∈ N,

where ω1, ω2, . . . are positive roots of the equation tan(2ω) = −2λω/(λ2 −
ω2). Similarly, consider as a second example, the covariance kernelK(x, u) =
min{x, u} and X = [0, 1], In this case the eigenfunctions of the corresponding
integral operator are given by

φk(x) = sin((k + 1/2)πx), k ∈ N.

In the following subsection we provide a further example of the application
of Mercer’s theorem.

5.5. Uniform design for periodic covariance functions. Consider the re-
gression functions

fj(x) =

{
1 if j = 1√
2 cos(2π(j − 1)x) if j ≥ 2

(5.17)

and the design space X = [0, 1]. Assume that the correlation function ρ(x)
is periodic with period 1, that is ρ(x) = ρ(x+1), and let a correlation kernel
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be defined by K(u, v) = ρ(u− v). An example of the covariance kernel ρ(x)
satisfying this property is provided by a convex combination of the functions
{cos(2πx), cos2(2πx), . . .}.

Theorem 5.4 Consider the regression model (1.1) with regression functions
fj(x) defined in (5.17) and a correlation function ρ(x) that is periodic with
period 1. Then the uniform design satisfies the necessary conditions for uni-
versal optimality.

Proof. We will show that the identity∫ 1

0
K(u, x)fj(u)du =

∫ 1

0
ρ(u− x)fj(u)du = λjfj(x)(5.18)

holds for all x ∈ [0, 1], where λj =
∫
ρ(u)fj(u)du (j ≥ 1). To prove (5.18),

we define Aj(v) =
∫ 1
0 ρ(u− v)fj(u)du which should be shown to be λjfj(x).

For j = 1 we have A1(v) = λ1 because
∫ 1
0 ρ(u − v)du =

∫ 1
0 ρ(u)du = λ1 by

the periodicity of the function ρ(x). For j = 2, 3, . . . we note that

Aj(v) =

∫ 1

0
ρ(u− v)fj(u)du =

∫ 1−v

−v
fj(u+ v)ρ(u)du

=

∫ 1−v

0
fj(u+ v)ρ(u)du+

∫ 0

−v
fj(u+ v)ρ(u)du.

Because of the periodicity we have∫ 0

−v
fj(u+ v)ρ(u)du =

∫ 1

1−v
fj(u+ v)ρ(u)du

which gives Aj(v) =
∫ 1
0 fj(u+ v)ρ(u)du. A simple calculation now shows

A′′
j (v) = −b2jAj(v)(5.19)

where b2j = (2π(j − 1))2 and

Aj(0) =

∫ 1

0
cos(2π(j − 1)u)ρ(u)du = λj

A′
j(0) = −bj

∫ 1

0
sin(2π(j − 1)u)ρ(u)du = 0.

Therefore (from the theory of differential equations) the unique solution of
(5.19) is of the form Aj(v) = c1 cos(bjv) + c2 sin(bjv), where c1 and c2 are
determined by initial conditions, that is A(0) = c1 = λj , A

′(0) = bjc2 = 0.
This yields Aj(v) = λj cos(2π(j − 1)v) = λjfj(v) and proves the identity
(5.18). �
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5.6. Optimality for the triangular covariance function. Let us now con-
sider the triangular correlation function defined by

ρ(x) = max{0, 1− λ|x|}.(5.20)

The following theorem presents a candidate for the optimal design in the
linear model with a triangular correlation function.

Theorem 5.5 Consider the model (1.1) with f(x) = (1, x)T , X = [−1, 1],
and the triangular correlation function (5.20).

(a) If λ ∈ (0, 1/2], then the design ξ∗ = {−1, 1; 1/2, 1/2} satisfies the
necessary condition for universal optimality.

(b) If λ ∈ N, then the design supported at 2λ+1 points xk = −1+k/λ, k =
0, 1, . . . , 2λ, with equal weights satisfies the necessary condition for universal
optimality.

Proof. For a proof of part (a) we use arguments as given in the proof of
Theorem 4.2 in Zhigljavsky et al. (2010) and obtain

∫
ρ(x−u)fi(u)ξ∗(du) =

fi(x) for i = 1, 2. Thus, the assumptions of Theorem 5.1 are fulfilled.
Part (b). Straightforward but tedious calculations show that M(ξ∗) =

diag(1, γ), where γ =
∑2λ+1

k=0 x2k/(2λ + 1) = (λ + 1)/(2λ). Also we have∫
ρ(x−u)fi(u)ξ∗(du) = fi(x) for i = 1, 2. Thus, the assumptions of Theorem

5.1 are fulfilled. �

Note that the designs provided in Theorem 5.5 are optimal for the location
scale model, see Zhigljavsky et al. (2010). It is also worthwhile to note that
unlike the results of previous subsections the result of Theorem 5.5 cannot
be extended to polynomial models of higher order.

6. Numerical construction of optimal designs.

6.1. An algorithm for computing optimal designs for non-singular kernels.
Numerical computation of optimal designs for a common linear regression
model (1.1) with given correlation function can be performed by an extension
of the multiplicative algorithm proposed by Dette et al. (2008b). Note that
the results of this algorithm is a discrete design which approximates the
optimal design with arbitrary precision.

To be precise, let ξ(r) = {x1, . . . , xn;w(r)
1 , . . . , w

(r)
n } be a design at the

iteration r. Assume that x1, . . . , xn is a rather uniform dense set in the

interval [−1, 1] and w
(0)
1 , . . . , w

(0)
n are nonzero weights, for example, uniform.
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We propose the following updating rule for the weights

w
(r+1)
i =

w
(r)
i

(
ψ(xi, ξ

(r))− β
)∑n

j=1w
(r)
j

(
ψ(xj , ξ(r))− β

) i = 1, . . . , n,(6.1)

where β is a tuning parameter, ψ(x, ξ) = φ(x, ξ)/b(x, ξ) and the functions
φ(x, ξ) and b(x, ξ) are defined in (3.2) and (3.3), respectively. The condition
(3.5) takes the form ψ(x, ξ∗) ≤ 1. Note that ψ(x, ξ) ≥ 0 for all x and ξ. The
rule (6.1) means that the weight of a point increases if the condition (3.5)
does not hold.

The algorithm above can be easily extended to cover the case of singular
covariance kernels. Alternatively, a singular kernel can be approximated by
a non-singular one using the technique described in Zhigljavsky et al. (2010),
Section 4.

6.2. Efficiencies of the uniform and arcsine densities. In the present
section we numerically study the D-efficiency of two designs for different
models. Specifically, we consider the uniform design and the arcsine design
for the model (1.1) with f(x) = (1, x, . . . , xm−1)T and different correlation
functions where the design space is given by the interval [−1, 1]. We deter-
mine the D-efficiency as

Eff(ξ) =

(
detD(ξ∗)

detD(ξ)

)1/m

,

where ξ∗ is the design computed by the algorithm described in the previous
section. We considered polynomial regression models of degree ≤ 3 and the
correlation functions ρ(x) = e−λ|x| and ρ(x) = e−λx2

for various values of
λ. The results are depicted in Tables 1 and 2, respectively. We observe that
the efficiency of the arcsine design is always larger than the efficiency of the
uniform design. Moreover, the absolute difference between the efficiencies of
the two designs increases as the degrees m of the polynomial increases. On
the other hand, the efficiency of the uniform design and the arcsine design
decreases as m increases.

7. Conclusions. In this paper we have addressed the problem con-
structing optimal designs for least squares estimation in regression models
with correlated observations. The main challenge in problems of this type is
that - in contrast to ”classical” optimal design theory for uncorrelated data -
the corresponding optimality criteria are not convex (except for the location
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Table 1
D-Efficiencies of the uniform design ξu and the arcsine design ξa for the polynomial

regression model of degree m− 1 and the exponential correlation function ρ(x) = e−λ|x|.

λ 0.5 1.5 2.5 3.5 4.5 5.5

m = 1 Eff(ξu) 0.913 0.888 0.903 0.919 0.933 0.944
Eff(ξa) 0.966 0.979 0.987 0.980 0.968 0.954

m = 2 Eff(ξu) 0.857 0.832 0.847 0.867 0.886 0.901
Eff(ξa) 0.942 0.954 0.970 0.975 0.973 0.966

m = 3 Eff(ξu) 0.832 0.816 0.826 0.842 0.860 0.876
Eff(ξa) 0.934 0.938 0.954 0.968 0.976 0.981

m = 4 Eff(ξu) 0.826 0.818 0.823 0.835 0.849 0.864
Eff(ξa) 0.934 0.936 0.945 0.957 0.967 0.975

Table 2
D-Efficiencies of the uniform design ξu and the arcsine design ξa for the polynomial

regression model of degree m− 1 and the Gaussian correlation function ρ(x) = e−λx2

.

λ 0.5 1.5 2.5 3.5 4.5 5.5

m = 1 Eff(ξu) 0.758 0.789 0.811 0.830 0.842 0.853
Eff(ξa) 0.841 0.907 0.924 0.932 0.934 0.935

m = 2 Eff(ξu) 0.756 0.698 0.709 0.725 0.739 0.753
Eff(ξa) 0.843 0.833 0.853 0.868 0.877 0.885

m = 3 Eff(ξu) 0.803 0.662 0.684 0.699 0.711 0.720
Eff(ξa) 0.866 0.771 0.818 0.844 0.859 0.869

m = 4 Eff(ξu) 0.797 0.630 0.617 0.627 0.648 0.665
Eff(ξa) 0.842 0.713 0.722 0.746 0.776 0.799

scale model). Necessary conditions for optimality have been derived, which
can be easily used to identify candidates of optimal designs. By relating
the design problem to an integral operator problem these candidates can be
identified explicitly for a broad class of regression models and correlation
structures. Moreover, for one parameter regression models these designs can
be shown to be optimal in many cases. Particular attention is paid to the
classical polynomial regression model with a logarithmic covariance kernel,
where it is proved that the arcsine distribution is universally optimal (for
any degree).

So far optimal designs for regression models with correlated observations
have only be derived explicitly for the location scale model and to our best
knowledge the results presented in this paper provide the first explicit solu-
tions to this type of problem for a general class of models with one parameter
and specific models with more than one parameter. By investigating more
integral operator problems it is expected that further design problems can
be solved explicitly in the future. It is usually easy to find designs explicitly
satisfying the necessary condition of universal optimality. However, proving
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in fact optimality of the candidate designs is substantially harder and the
necessary arguments will depend on specific properties of the model under
investigation (see the arguments given in the proof of Theorem 5.2).

We finally point out that we have concentrated on the construction of
optimal designs for least squares estimation (LSE), because the best linear
unbiased estimator (BLUE) requires the knowledge of the correlation ma-
trix. While the BLUE is often sensitive with respect to misspecification of
the correlation structure the corresponding optimal designs for LSE show a
remarkable robustness [see Dette et al. (2009)]. Moreover, the difference be-
tween BLUE and LSE is often surprisingly small and in many cases BLUE
and LSE with certain correlation functions are asymptotically equivalent
[see Rao (1967), Kruskal (1968)].

Indeed, consider the location scale model y(x) = θ+ ε(x) with K(u, v) =
ρ(u− v), where the knowledge of a full trajectory of a process y(x) is avail-
able. Define the (linear unbiased) estimate θ̂(G) =

∫
y(x)dG(x), where G(x)

is a distribution function of a signed probability measure. A remarkable re-
sult of Grenander (1950) states that the ”estiamtor” θ̂(G∗) is BLUE if and
only if

∫
ρ(u− x)dG∗(u) is constant for all x ∈ X . This result was extended

by Näther (1985a), Sect. 4.3 to the case of random fields with constant mean.
Consequently, if G∗(x) is a distribution function of a non-signed (rather than
signed) probability measure, then LSE coincides with BLUE and an asymp-
totic optimal design for LSE is also an asymptotic optimal design for BLUE.
Hajek (1956) proved that G∗(x) is a distribution function of a non-signed
probability measure if the correlation function ρ(x) is convex on the interval
(0,∞). Zhigljavsky et al. (2010) showed that G∗(x) is a proper distribution
function for a certain families of correlation functions including non-convex
ones. An interesting direction of future research is to investigate if and how
these results can be extended to more general regression models as consid-
ered in this paper.
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