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∗Fakultät Statistik, CDI-Gebäude, TU Dortmund, 44221 Dortmund. Email: wied@statistik.tu-
dortmund.de, Phone: +49 231 755 3869.

1



Abstract

The paper suggests a CUSUM-type test for time-varying parameters in a re-

cently proposed spatial autoregressive model for stock returns and derives its asymp-

totic null distribution as well as local power properties. As can be seen from Euro

Stoxx 50 returns, a combination of spatial modelling and change point tests allows

for superior risk forecasts in portfolio management.
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1. Introduction

Spatial modelling of stock returns has recently become an important field of research

in the econometrics and statistics literature. Some recent approaches are Fernandez

(2011), who uses similarities of financial indicators to define spatial linkages of stocks

and estimates a spatial version of the capital asset pricing model, and Asgharian et al.

(2011), who consider different linkages like economic and monetary integration between

countries to explain the propagation of country specific shocks to other countries.

Arnold et al. (2011) propose a spatial autoregressive model which is partly an extension

of previous models proposed by Badinger and Egger (2011). It contains both a time

dimension and a cross-section dimension; in the latter it allows for distinguishing between

general dependencies, dependencies inside branches and local dependencies. As can be

seen in an out of sample study of Euro Stoxx 50 returns, this model can lead to forecasts

for risk measures which are superior to standard approaches like a factor model or the

sample covariance matrix.

In the out of sample study, the correlation parameters used for estimating the covariance

matrix of the returns are simply estimated by a rolling window of 100 days. However,

the question arises if the spatial correlation parameter can be assumed to be constant

over time and which data of the past can be used to estimate the parameters. Arnold

et al. (2011) find empirical evidence against this hypothesis, i.e. they identify increasing

general dependence during the financial crisis in 2008.

The present paper fills this gap by proposing a formal CUSUM-type statistical test for

constancy of spatial dependence over time. It compares successive parameter estimates

which are obtained by GMM estimation. There are comparable CUSUM tests in the

literature, e.g. Brown et al. (1975) test for parameter constancy in linear regression

models, Lee et al. (2003) propose a general framework for parameter constancy tests in

time series models, Busetti and Harvey (2011), Krämer and van Kampen (2011) and

van Kampen and Wied (2011) propose a copula constancy test and Wied et al. (2011)

propose a non-parametric test for constant Pearson correlation. However, as far as the
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author knows, a special test for spatial parameters does not exist in the literature up to

now.

The new test does not assume a particular distribution of the random variables and does

not assume potential break points to be known a priori, two properties which it shares

with other CUSUM-tests. It has considerable power in small samples. Combining the

backtesting study in Arnold et al. (2011) with the test procedure slightly improves the

former results.

2. Model and testing procedure

For t = 1, . . . , T , let yt be an n-dimensional random vector. In the cross-sectional di-

mension, the components of yt are assumed to be spatially correlated where we allow for

three different kinds of spatial dependence:

yt = ρ1,tW1yt + ρ2,tW2yt + ρ3,tW3yt + εt, t = 1, . . . , T. (2.1)

ρ1,t denotes the general dependence parameter, ρ2,t the parameter of dependence inside

branches and ρ3,t the local dependence parameter. W1,W2 and W3 are weighting matrices

which are specified in Arnold et al. (2011).

Denote ρt = (ρ1,t, ρ2,t, ρ3,t)
′, where A′ denotes the transpose of a matrix or a vector A.

We are interested in structural changes in the spatial parameters, i.e. we consider the

null hypothesis

H0 : ∀t ∈ {1, . . . , T} : ρt = ρ0 vs. H1 : ∃t ∈ {1, . . . , T − 1} : ρt 6= ρt+1

for a constant ρ0 ∈ R3.

We propose a CUSUM-type test, i.e. we first estimate ρt with a GMM-estimator succes-

sively from the data and then compare the estimates with the estimate from the whole

data set. To be more precise, let ρ̂t := h(y1, . . . , yt) be the estimator for ρt, then the test
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statistic is some suitably transformed version of the process

(ρ̂j − ρ̂T , j = 1, . . . , T ).

The vector ρt is estimated by a GMM-estimator. The estimator based on the first j

observations is defined as

ρ̂j := (ρ̂1,j, ρ̂2,j, ρ̂3,j)
′ := arg min

ρ∈S
||Gjλ+ gj||2 = arg min

ρ∈S
(Gjλ+ gj)

′(Gjλ+ gj)

with the Euclidean norm || · ||.

Here, Gj is a successive mean of (3, 9)-matrices, defined as

Gj =
1

j

j∑
t=1

fG(ρt, yt,W1,W2,W3),

where, for i, j ∈ {1, 2, 3}, the elements of fG(yt,W1,W2,W3) = fG(ρt, yt,W1,W2,W3) are

defined as

(fG(yt,W1,W2,W3))i,j = −y′t(Wi +W ′
i )Wjyt,

(fG(yt,W1,W2,W3))i,3+j = −y′tW ′
jWiWjyt,

(fG(yt,W1,W2,W3))i,7 = −y′tW ′
1(Wi +W ′

i )W2yt,

(fG(yt,W1,W2,W3))i,8 = −y′tW ′
1(Wi +W ′

i )W3yt,

(fG(yt,W1,W2,W3))i,9 = −y′tW ′
2(Wi +W ′

i )W3yt

and gj is a successive mean of (3, 1)-vectors, defined as

gj =
1

j

j∑
t=1

fg(yt,W1,W2,W3),

where, for i ∈ {1, 2, 3}, the elements of fg(yt,W1,W2,W3) = fg(ρt, yt,W1,W2,W3) are
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defined as

(fg(yt,W1,W2,W3))i = y′tWiyt.

Furthermore,

λ := λ(ρ) :=
(
ρ1, ρ2, ρ3, ρ

2
1, ρ

2
2, ρ

2
3, ρ1ρ2, ρ1ρ3, ρ2ρ3

)′
.

Under the null hypothesis, for the true parameter values,

E[fG(ρ0, yt,W1,W2,W3)λ(ρ) + fg(ρt, y0,W1,W2,W3)] =: Γλ+ γ = 0,

see Arnold et al. (2011), such that the ρ̂j are consistent for ρt(=: ρ0 = (ρ1, ρ2, ρ3)) under

the null hypothesis and the assumptions imposed below. These assumptions are also

needed for the derivation of the asymptotic null distribution.

Assumption 1. 1. The sequence (yt, t ∈ Z) has zero mean, is stationary and ergodic.

2. For i ∈ {1, 2, 3}, r = 1, . . . , n, s = 1, . . . , n, Wi,rs ≥ 0, Wi,rr = 0.

3. For i ∈ {1, 2, 3} and r = 1, . . . , n,
∑n

s=1Wi,rs = 1.

4. The parameter space S is defined as S = {ρ ∈ R3, |ρ|1 < 1}, where | · |1 denotes the

1-norm.

5. For t ∈ Z, Cov (εt) = diag{σ2
1, . . . , σ

2
n}.

6. The parameter ρ0 ∈ S is the unique solution of the theoretical system of equations,

i.e.

Γλ+ γ = 0⇔ ρ = ρ0.
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7. The matrix d0 := Γλ(1) with

λ(1)′(ρ0) =


1 0 0 2ρ1 0 0 ρ2 ρ3 0

0 1 0 0 2ρ2 0 ρ1 0 ρ3

0 0 1 0 0 2ρ3 0 ρ1 ρ2

 .

exists, is finite and has full rank.

8. The process (fG(yt,W1,W2,W3)λ(ρ) + fg(yt,W1,W2,W3), t = 1, . . . , T ) fulfills a

functional central limit theorem, i.e. it holds for the process

WT,SW
(s) :=

1√
T

[sT ]∑
t=1

[fG(yt,W1,W2,W3)λ(ρ0) + fg(yt,W1,W2,W3)], s ∈ [0, 1],

that, in D([0, 1],R3), the 3-dimensional cross product of the Càdlàg-spaces on the

interval [0, 1],

WT,SW
(·)⇒d WSW

(·),

where WSW
(s) is a 3-dimensional Wiener process with limiting 3-dimensional co-

variance matrix SW as specified in Arnold et al. (2011).

The spatial weighting matrices W1, W2 and W3 are known; the elements on the main

diagonals are zero and the matrices are row-standardized. We assume that the whole

amount of spatial dependence is captured by the three types of spatial dependence so

that the innovations, i.e. the elements of εt, can be assumed to be uncorrelated. However,

they may be heteroscedastic. The n variances may depend on additional parameters, re-

spectively, but for estimating ρj, the specific structure of εt is irrelevant. After estimating

ρj, the variances can be estimated in a two-stage procedure, see Arnold et al. (2011).

The model does not include any explanatory variables and in the context of daily stock

returns, the zero mean assumption is plausible, see also Aue et al. (2009). Due to the

structure of innovations, the spatial autoregressive model can be denoted as SAR(3, 0).
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Note that Assumption 1.3 is fulfilled if standard conditions on moments and serial de-

pendence for multivariate functional central limit theorems apply. Since the norm of

(fG(yt,W1,W2,W3)λ(ρ) + fg(yt,W1,W2,W3) is bounded by the second-order cross mo-

ments of yt, one typically needs finite fourth moments. Regarding serial dependence,

e.g. the functional central limit theorem in e.g. Wooldridge and White (1988) requires

near-epoch dependence with respect to a mixing process.

Lemma 1. Under H0 and Assumption 1, the suitably standardized estimator (ρ̂j, j =

1, . . . , T ) converges against a Gaussian process, i.e. it holds for the process WT,Σ(s) =

s
√
T (ρ̂[sT ] − ρ0), s ∈ [0, 1], that

WT,Σ(·)⇒d WΣ(·),

where WΣ(·) is a 3-dimensional Wiener process with mean zero and covariance matrix

Σ = d−1
0 SWd

′−1
0 , the asymptotic covariance matrix of ρ̂j.

Furthermore, Σ can be consistently estimated by an estimator Σ̂.

Note that the matrix d0 can be estimated by plug-in methods while estimation of SW

requires a kernel-based variance estimator, see e.g. de Jong and Davidson (2000) and

Arnold et al. (2011). This leads to

d̂0 = G ·


1 0 0 2ρ̂1,T 0 0 ρ̂2,T ρ̂3,T 0

0 1 0 0 2ρ̂2,T 0 ρ̂1,T 0 ρ̂3,T

0 0 1 0 0 2ρ̂3,T 0 ρ̂1,T ρ̂2,T


and

ŜW =
1

T

T∑
t=1

f(yt, ρ̂T )f(yt, ρ̂T )′

+
1

T

T∑
i=1

k

(
i

γT

) T−i∑
t=1

[f(yt, ρ̂T )f(yt+i, ρ̂T )′ + f(yt+i, ρ̂T )f(yt, ρ̂T )′]
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with

f(yt, ρ̂T )′ =

(
ε̂′tW1ε̂t ε̂′tW2ε̂t ε̂′tW3ε̂t

)
,

ε̂t = (In − ρ̂1,TW1 − ρ̂2,TW2 − ρ̂3,TW3)−1yt,

the kernel function k(·) and the bandwidth γT .

Similar to Lee et al. (2003), the test statistic is the maximum over a weighted quadratic

form of (ρ̂j − ρ̂T ) and is defined as

QT = max
1≤j≤T

j2

T
(ρ̂j − ρ̂T )′Σ̂−1(ρ̂j − ρ̂T ).

The central asymptotic result is

Theorem 1. Under H0 and Assumption 1,

QT →d sup
s∈[0,1]

3∑
i=1

B2
i (s),

where B1(s), . . . , B3(s), s ∈ [0, 1], are independent standard Brownian Bridges.

There is an explicit form of the distribution function of the limit random variable in The-

orem 1, see Aue et al. (2009), p. 4051. Some relevant critical values, which are provided

in Kiefer (1959), p. 438, are 2.623 for α = 0.90, 3.053 for α = 0.95 and 4.004 for α = 0.99.

We run a small simulation study to examine the size and power of our test in small

samples. For both, we use the weighting matrices from Arnold et al. (2011), i.e. n = 50

and the parameters ρ1 = 0.5, ρ2 = 0.2, ρ1 = 0.1 in the first part of the sample. In the

power study, we change the parameters after one half of the sample. We always use

several values of T , let the εt be NID, use 1000 replications, a nominal level of α = 5%

and for the long-run variance estimation the Barlett kernel with bandwidth log(T ).

The results can be found in Table 1. We see that the test asymptotically keeps its size

and has considerable power even for small values of T and small shifts of the correlations.
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– Table 1 here –

Analogously, one could obtain constancy tests for just one or two of the three parameters

by extracting the relevant parts of the 3-dimensional vector (ρ̂j − ρ̂T ) and the relevant

parts of the 3× 3 covariance matrix Σ. Then,

Q∗T →d sup
s∈[0,1]

k∑
i=1

B2
i (s),

for k ∈ {1, 2} and the “reduced” test statistic Q∗T . Relevant critical values for this case

are also provided in Kiefer (1959), p. 438.

3. Local power

In this section, we analyze local power properties of our fluctuation test. We formulate

the sequence of local alternatives in terms of the moment conditions, i.e. we have

H1 : E[fG(ρt, yt,W1,W2,W3)λ(ρ0) + fg(ρt, yt,W1,W2,W3)] =
1√
T
h

(
t

T

)
, t = 1, . . . , T,

(3.1)

where h(s) = (h1(s), h2(s), h3(s)) is a bounded 3-dimensional function that can be ap-

proximated by step functions in each component such that

sup
z∈[0,1]

sup
i∈{1,2,3}

∣∣∣∣∫ z

0

hi(u)du− z
∫ 1

0

hi(u)du

∣∣∣∣ > 0.

A typical example for hmight for example be a step function which jumps from 0 to h0 6= 0

in the point z0 = 1
2

in each component. Formally, we deal with triangular arrays in this

setup because the distribution of the yt changes with T , but we stick to the former notation

for ease of exposition. The local alternatives (3.1) are equivalent to changes in the spatial

correlation parameters. Note that λ(ρ0) does not change with t or T ; the changes in ρt

only affect the expectations of fG(ρt, yt,W1,W2,W3) and fg(ρt, yt,W1,W2,W3). To ensure

the local alternative to converge properly against the null hypothesis, we impose
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Assumption 2. For T → ∞ and fixed t = 1, . . . , T , E[fG(ρt, yt,W1,W2,W3) → Γ and

E[fg(ρt, yt,W1,W2,W3)→ γ.

With this assumption, it is also ensured that ρt =: (ρ1,t, ρ2,t, ρ3,)
′ converges to ρ0.

For the derivation of asymptotic properties, slight modifications of the previous assump-

tions are necessary. Assumption 1.1 and 1.8 are (in this order) replaced by

Assumption 3. 1. The sequence (yt, t ∈ Z) has zero mean and is ergodic.

2. The process (fG(yt,W1,W2,W3)λ(ρ) + fg(yt,W1,W2,W3)− 1√
T
h
(
t
T

)
, t = 1, . . . , T )

fulfills a functional central limit theorem, i.e. it holds for the process

WT,SW
(s) :=

1√
T

[sT ]∑
t=1

[
fG(yt,W1,W2,W3)λ(ρ0) + fg(yt,W1,W2,W3)− 1√

T
h

(
t

T

)]
,

s ∈ [0, 1], that

WT,SW
(·)⇒d WSW

(·),

where WSW
(s) is a 3-dimensional Wiener process with limiting 3-dimensional co-

variance matrix SW which is written down in Arnold et al. (2011).

The following two results are then corollaries of Theorem 1 and Theorem 1 as they can

be obtained with similar proofs.

Corollary 1. Under the sequence of local alternatives, Assumptions 1.2 - 1.7, 2 and

3, the suitably standardized estimator (ρ̂t, t = 1, . . . , T ) converges against a Gaussian

process, i.e. it holds for the process WT,Σ(s) = s
√
T (ρ̂[sT ] − ρ0), s ∈ [0, 1], that

WT,Σ(·)⇒d WΣ(·) +D(·),

where WΣ(·) is a 3-dimensional Wiener process with mean zero and covariance matrix Σ,
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and

D(s) = (D1(s), D2(s), D3(s)) = −d−1
0

∫ s

0

h(u)du.

Furthermore, Σ can be consistently estimated by an estimator Σ̂.

Corollary 2. Under the sequence of local alternatives, Assumptions 1.2 - 1.7, 2 and 3,

QT →d sup
s∈[0,1]

3∑
i=1

[Bi(s) + Σ−1/2(Di(s)− sDi(1))]2,

where B1(s), . . . , B3(s), s ∈ [0, 1] are independent standard Brownian Bridges.

Corollary 2 gives us two different information: First, for a given alternative, the Corol-

lary provides a detailed description of the test’s behavior and enables the applicant to

approximate the rejection probability for fixed T . Second, the rejection probability be-

comes arbitrarily large for sufficient large shifts in the alternatives.

4. Application to risk management

We investigate the utility of the test for structural breaks by comparing the accuracy of

predicted Values at Risk (VaR) for Euro Stoxx 50 members in the time period 2003-2009

using the spatial model with and without taking structural changes into account. Arnold

et al. (2011) compare the spatial model without taking structural changes into account

with a factor model and the sample covariance matrix with the same data set (see Arnold

et al., 2011 for a detailed description of the data) and demonstrate with this example

that the spatial model can lead to more accurate risk forecasts. The present paper shows

that the accuracy can be further improved by considering structural changes.

Replacing the unknown parameters by their estimates in the formula for the covariance
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matrix of yt,

Cov(yt) = (In − ρ1W1 − ρ2W2 − ρ3W3)−1 · diag{σ2
1, . . . , σ

2
n}

· (In − ρ1W
′
1 − ρ2W

′
2 − ρ3W

′
3)
−1

=: V, (4.1)

with the yields an estimate V̂spat for the stock returns’ covariance matrix V . Arnold et al.

(2011) estimate the parameters with a rolling window of 100 days. We will compare this

method by taking structural changes into account; our procedure is as follows: Basically,

we also use a rolling window, but at each time point, we perform the parameter constancy

test on a significance level of 0.01% to decide if the parameters have been constant in

the last 100 days. If the test does not reject, we use the 100 days for estimation. If

the test rejects, we only use the data after the change point (with the constraint that

we always use at least the past 10 days for estimation). The idea is that an estimator

for the correlation parameters based on all data cannot produce reasonable results if the

true parameters change. Of course, in practice the true change point is unknown, but we

estimate it by

argmax1≤j≤T
j2

T
(ρ̂j − ρ̂T )′Σ̂−1(ρ̂j − ρ̂T )

which is a common and intuitive estimator in change point analysis, see e.g. Inclán and

Tiao (1994), Galeano and Wied (2011) and the references therein. The procedure is

repeated for a rolling window of 200 days, respectively.

By performing several tests, the nominal significance level might not be attained, but we

do not discuss this issue here as we just use the test’s decisions in an explorative way.

Each of the methods suggests a different vector of portfolio weights to minimize portfolio

variance. The minimizing weights are given by

V̂ −1τ

τ ′V̂ −1τ
,
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where τ denotes a vector of ones. The two different ways of estimating the covariance

matrix can thus be compared in the following way: The covariance matrix provides

minimal variance portfolio weights as well as an estimate for the corresponding portfolio

variance, which is given by

σ̂2
port :=

(
τ ′V̂ −1τ

)−1

.

The resulting Gaussian VaR at level α is

V̂ aRα := uα

√
σ̂2
port,

where uα is the α-quantile of the standard normal distribution. Alternatively, one could

use quantiles from some heavy tailed distribution. We stay with the normal quantiles for

two reasons. On the one hand, the portfolio returns are weighted averages of 50 single

returns so that deviations from the normal distribution should be smaller than for single

stock returns. On the other hand, the choice of some other distribution would affect both

models in the same way so that the comparison of the models would remain the same.

For each α and each of the two models, we thus get daily updated estimated VaR. We

compare these with the realized portfolio returns of the following day. For a convincing

model, the percentage of days where the realized portfolio return is smaller than V̂ aRα

should be close to α. Consequently, we assess model performance by comparing α to the

share of days where the portfolio return falls below V̂ aRα. Figure 1 shows the results for

α ∈ (0, 0.05) and for the window lengths 100 days and 200 days.

- Figure 1 here -

Indeed, the spatial model with taking structural changes into account seems to be slightly

more adequate to estimate risk than the other approach. It is basically either closer to

or has equal distance to α. Consider e.g. the estimated VaR for α = 0.04 for a sample

period of 200 days. For the spatial model with structural breaks, portfolio returns fall

below V̂ aRα in 5.6% of all days, whereas this happens slightly more frequently for the
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other approach (6.2%). This pattern can be found for almost all values of α considered

here.

We conclude that accounting for structural breaks can lead to more accurate risk fore-

casts and might thus be relevant in practice.
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A. Proofs

Proof of Theorem 1

The proof bases on a Taylor expansion on the 3-dimensional derivative DΨj(ρ) :=
∂Ψj(ρ)

∂ρ

of the target function Ψj(ρ) = (Gjλ(ρ)+gj)
′(Gjλ(ρ)+gj) using the fact that DΨj(ρ̂j) = 0

due to the smoothness of Ψj(ρ). It holds

DΨj(ρ) = 2λ(1)′(ρ)G′j(Gjλ(ρ) + gj).

With the multivariate mean value theorem we have

DΨj(ρ̂j) = 0 = DΨj(ρ0) +

∫ 1

0

[
D2Ψj(ρ0 + t(ρ̂j − ρ0))dt

]
(ρ̂j − ρ0)

⇔ (ρ̂j − ρ0) = −
{∫ 1

0

[
D2Ψj(ρ0 + t(ρ̂j − ρ0))dt

]}−1

DΨj(ρ0) =: f(ρ0, ρ̂j)DΨj(ρ0)

with D2Ψj(ρ̄) = 2λ(1)′(ρ̄)G′jGjλ
(1)(ρ̄) + oP(1) for any ρ̄ between ρ0 and ρ̂j.

It follows

WT,SW
(s) = s

√
T (ρ̂[sT ] − ρ0)

= −sf(ρ0, ρ̂j)2λ
(1)′(ρ0)G′[sT ]

√
T (G[sT ]λ(ρ0) + g[sT ])

= −sf(ρ0, ρ̂j)2λ
(1)′(ρ0)G′[sT ]

√
T

1

T

[sT ]∑
t=1

[fG(yt,W1,W2,W3)λ(ρ0) + fg(yt,W1,W2,W3)].

Let ε > 0 arbitrary and s ≥ ε. With Assumption 1 and a standard argmin argument,

ρ̂[sT ] converges uniformly to ρ0 (see Arnold et al., 2011) so that f(ρ0, ρ̂j) converges to

2λ(1)′(ρ0)sΓ′sΓλ(1)(ρ0) and s
√
T (ρ̂[sT ] − ρ0) converges in distribution to the stochastic

process

− s[2λ(1)′(ρ0)sΓ′sΓλ(1)(ρ0)]−12λ(1)′(ρ0)sΓ′WSW
(s)

=− [λ(1)′(ρ0)Γ′Γλ(1)(ρ0)]−1λ(1)′(ρ0)Γ′WSW
(s)
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with the 3-dimensional Wiener process WSW
(s) with covariance matrix SW . This means

that s
√
T (ρ̂[sT ]−ρ0) converges to a 3-dimensional Wiener process with covariance matrix

d−1
0 SWd

′−1
0 and d0 = Γλ(1).

Now, let

W ε
T,SW

(s) =


WT,SW

(s), s ≥ ε

0 s < ε

,

W ε(s) =


WΣ(s), s ≥ ε

0 s < ε

.

The previous calculations imply that

W ε
T,SW

(·)→d W
ε(·)

in D([0, 1],R3) and also

W ε(·)→d WΣ(·)

for rational ε→ 0 in D([0, 1],R3).

The convergence ofWT,SW
(·) inD([0, 1],R3) follows with Theorem 4.2 in Billingsley (1968)

if we can show that

lim
ε→0

lim sup
T→∞

P( sup
s∈[0,1]

|W ε
T,SW

(s)−WT,SW
(s)| ≥ η) = lim

ε→0
lim sup
T→∞

P( sup
s∈[0,ε]

|WT,SW
(s)| ≥ η) = 0

for all η > 0.

For this, note that

lim sup
T→∞

P( sup
s∈[0,ε]

|WT (s)| ≥ η) ≤ P( sup
s∈[0,ε]

C|W ∗(s)| ≥ η)

where C is a constant and W ∗(s) is a Brownian Motion. This sum becomes arbitrarily

18



small for ε→ 0 and so the limit result is proved.

All entries of the limiting covariance matrix can be estimated consistently by plug-in-

methods and kernel-based estimators. �

Proof of Theorem 1

By Theorem 1, WT (·)⇒d W (·), so that the process

BT (s) = s
√
T (ρ̂[sT ] − ρ̂T ) = s

√
T (ρ̂[sT ] − ρ0)−

√
T (ρ̂T − ρ0)

converges weakly to the process BΣ(s) := WΣ(s) − sWΣ(1) which is a k-dimensional

Brownian Bridge with covariance matrix Σ. With Slutzky’s theorem, the process B∗T (s) =

Σ−1/2s
√
T (ρ̂[sT ] − ρ̂T ) converges weakly to B(s), a k-dimensional standard Brownian

Bridge, i.e. a k-dimensional vector whose components are independent one-dimensional

standard Brownian Bridges. With the consistent estimator Σ̂ from Theorem 1, the process

B∗∗T (s) = Σ̂−1/2s
√
T (ρ̂[sT ] − ρ̂T ) converges to the same limit. An application of the

Continuous Mapping Theorem with the function

f : D([0, 1],R3)→ R

(x1(·), x2(·), x3(·))→ sup
z∈[0,1]

3∑
i=1

xi(·)2

yields the convergence

sup
z∈[0,1]

(B∗∗T (s))′B∗∗T (s)→d sup
z∈[0,1]

(B(s))′B(s).

Using the identity j ∈ {1, . . . , T} ↔ [sT ] with s ∈ [0, 1] we directly see that

sup
z∈[0,1]

(B∗∗T (s))′B∗∗T (s) = QT .

�
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Proof of Corollary 1

The proof straightforwardly follows the arguments of the proof of Theorem 1 with the

additional argument

sup
z∈[0,1]

∣∣∣∣∣∣ 1

T

[sT ]∑
t=1

h

(
t

T

)∣∣∣∣∣∣→T→∞

∫ z

0

h(u)du

from e.g. Ploberger et al. (1989). �

Proof of Corollary 2

The proof straightforwardly follows the arguments of the proof of Theorem 1. �
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Table 1: Empirical size and empirical power

Parameter vector in the second half T = 200 T = 250 T = 300 T = 400
(0.5, 0.2, 0.1) 0.096 0.083 0.065 0.050
(0.55, 0.2, 0.1) 0.741 0.822 0.899 0.962
(0.5, 0.15, 0.1) 0.168 0.319 0.463 0.704

(0.45, 0.15, 0.05) 0.468 0.779 0.961 1
(0.55, 0.25, 0.15) 1 1 1 1

Figure 1: Estimated VaR for the spatial model with and without structural breaks

(a) Window length 100 days
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(b) Window length 200 days
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