
SFB 
823 

Partial frontier efficiency 
analysis for Stata 

 D
iscussion P

aper 

 
Harald Tauchmann      
 

 
 

 
Nr. 25/2011 

 
 
 
 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46911352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 



Partial frontier efficiency analysis for Stata

Harald Tauchmann
Rheinisch-Westfälisches Institut für Wirtschaftsforschung (RWI)

Hohenzollernstraße 1-3, 45128 Essen, Germany
harald.tauchmann@rwi-essen.de

Abstract. Despite its frequent use in applied work, nonparametric approaches
to efficiency analysis, namely data envelopment analysis (DEA) and free disposal
hull (FDH), have bad reputations among econometricians. This is mainly due
to DEA and FDH representing deterministic approaches that are highly sensitive
to outliers and measurement errors. However, recently, so-called partial frontier
approaches namely order-m and order-α have been developed. They generalize
FDH by allowing for super-efficient observations to be located beyond the esti-
mated production-possibility frontier. Although these methods are purely non-
parametric too, sensitivity to outliers is substantially reduced by partial frontier
approaches enveloping just a sub-sample of observations. We introduce the new
Stata commands orderm and orderalpha that implement order-m, order-α, and
FDH efficiency analysis in Stata. The commands allow for several options, such
as statistical inference based on sub-sampling bootstrap.

Keywords: orderalpha, orderm, non-parametric, efficiency, partial frontier, free
disposal hull, outlier-robust, decision making unit.

1 Introduction

Countless empirical analyses address the efficiency of production units, which in this
literature are frequently referred to as decision making units (DMUs). Two major
methodical approaches to efficiency measurement exist: parametric and non-parametric
ones. Among the former the most common are stochastic frontier models (Aigner et al.
1977), which augment a classical regression model by a non-positive error term capturing
inefficiency in production. Stochastic frontier analysis is implemented in Stata by the
frontier command. In contrast, non-parametric approaches, namely data envelopment
analysis (DEA) introduced by Charnes et al. (1978) and the free disposal hull (FDH)
introduced by Deprins et al. (1984), are not embedded in a regression framework familiar
to econometricians. Rather, they are based on non-parametrically enveloping a given
sample of data by a piecewise linear hull. While DEA assumes a convex technology and
employs linear programming for enveloping the data, FDH is based an the principle of
weak dominance and departs from the convexity assumption inherent to DEA. That is,
FDH envelopes the data by a non-convex staircase-hull; see e.g. Cooper et al. (2007) for
a comprehensive discussion of DEA and FDH. Data envelopment analysis has recently
been made available to Stata users through the ado-file dea written by Yong-Bae Ji and
Choonjoo Lee (Ji and Lee 2010).
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The pros and cons of parametric and non-parametric approaches have intensely been
debated. The former have been criticized for relying on restrictive assumptions con-
cerning the functional form and the distribution of random errors, for relying on input
quantities as explanatory which in all likelihood are endogenous, and for only accommo-
dating single-output technologies.1 The latter have been criticized by econometricians
for being deterministic approaches, lacking a well-defined data generating process, and,
most relevant, for being extremely vulnerable to outliers and measurement error.

The final objection to non-parametric efficiency measurement has recently been ad-
dressed by so-called partial frontier approaches, namely order-m (Cazals et al. 2002)
and order-α (Aragon et al. 2005) efficiency. These approaches generalize FDH by al-
lowing for super-efficient observations to be located beyond the estimated production-
possibility frontier. Hence, the estimated frontier will not entirely be shaped by few
abnormal observations, which might represent artifacts of measurement error. This
renders partial frontier approaches less vulnerable to outliers than DEA or FDH. The
present paper contributes to non-parametric efficiency analysis by introducing the new
Stata commands orderm and orderalpha that implement order-m and order-α, respec-
tively.

The following section sets out the framework of partial frontier efficiency analysis.
The syntax of orderalpha and orderm is described in section 3. Section 4 illustrates
the application of orderalpha and orderm by a simple example. Section 5 summarizes
and concludes the article.

2 The concept of partial frontier analysis

Consider a sample of N decision making units. For each DMU i = 1, . . . , N a set of
inputs to production xi1, . . . , xiK and a set of outputs from production yi1, . . . , yiL is ob-
served. The prime objective of efficiency measurement is calculating an efficiency score
θi for each DMU. Typically, two variants are considered: (i) input-oriented efficiency
θinpi , i.e. the factor by which input consumption of DMU i can proportionally be re-
duced leaving outputs unchanged, and (ii) output-oriented efficiency θouti , i.e. the factor
by which output generation can proportionally be increased leaving input consumption
unchanged. Both concepts differ in terms of the direction in which the distance of
an observed data point from the efficiency frontier is measured. While input-oriented
efficiency measured the relative radial distance in input-direction, output-oriented effi-
ciency measures the relative radial distance in output direction.2 For full frontier models
for which all DMUs are enveloped by the production possibility frontier, θinpi ∈ (0, 1]
and θouti ∈ [1,∞) holds. That is, efficient DUMs are characterized by efficiency scores

1. This objection does not apply if a cost frontier – rather than a production frontier – is estimated.
2. Notwithstanding may consider other directions too, yet the above ones are most common. Note that

for full frontier models (DEA, FDH) the estimated production possibility frontier is the same for
input- and output-oriented efficiency. Nevertheless, DMUs which are located at the FDH-frontier
– but not at one of its corners – are FDH-efficient only in terms of either output- or input-oriented
efficiency; cf. the discussion about ‘slack values’ in the context of DEA. For partial frontier models
the estimated frontier depends on direction.
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taking the value of one, while downward (input-oriented) and upward (output-oriented)
deviations from unity indicate inefficiency. In contrast, partial frontier approaches allow
scores to exceed (input-oriented) or to fall short of (output-oriented) the value of one.
In order to avoid redundancies, in the following, we focus on input-oriented efficiency.
Yet, all arguments below analogously apply to output-oriented efficiency.

2.1 The Freed Disposal Hull

As partial frontier approaches generalize FDH, we first shortly discuss the latter. Here
(input-oriented) efficiency is estimated by comparing each DMU i = 1, . . . , N with all
other DMUs j = 1, . . . , N in the data that produce at least as much of any output
as DMU i. The set of peer DMUs in the sample that satisfy the condition ylj ≥
yli ∀ l is denoted as Bi. Among the peer DMUs, the one that exhibits minimum input
consumption serves as reference to i, and θ̂FDH

i is calculated as relative input use:3

θ̂FDH
i = min

j∈Bi

{
max

k=1,...,K

{
xkj

xki

}}
(1)

Decision making units that exhibit minimum input consumption among all their peers
serve as their own reference. For these DMUs, which span the estimated production
possibility frontier, θ̂FDH takes the value of one. Evidently, even a single DMU in the
data that exhibits abnormally little – possibly misreported – input consumption renders
all its peers inefficient. Thus, FDH is highly sensitive to outliers and measurement error.

2.2 Order-m efficiency

Order-m generalizes FDH by adding a layer of randomness to the computation of ef-
ficiency scores. That is, rather than benchmarking a DMU by the best performing
peer in the sample at hand, order-m is based an the idea of benchmarking the DMU
by expected best performance in sample of m peers. In computational terms order-m
efficiency follows a four steps procedure (Daraio and Simar 2007, 72):

1. From Bi a sample of m peer DMUs is randomly drawn with replacement.

2. Pseudo FDH efficiency θ̂F̃DHd
mi is calculated using this artificial reference sample.

3. Steps 2 and 3 are repeated D times.

4. Order-m efficiency is calculated as the average of pseudo FDH scores:

θ̂OM
mi =

1

D

D∑
d=1

θ̂F̃DHd
mi . (2)

3. Equation (1) focusses on calculating θ̂FDH
i from a given sample of data. This analogously ap-

plies to (2) and (4). For a more theory oriented coverage of FDH, order-m, and order-α, see
Daraio and Simar (2007), pages 34, 68, and 72, respectively.
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Not that due to random re-sampling, in each replication d, DMU i may or may not
be available as its own peer. For this reason (input-oriented) order-m efficiency scores
may exceed the value of one. That is, order-m allows for super-efficient DMUs that are
located beyond the estimated production possibility frontier. This is the key difference
from FDH, where a decision making unit is always available as its own peer, which
rules out that relative input consumption exceeds unity. Calculating order-m efficiency
requires choosing values for two parameters, D and m. While the choice of D is a
pure matter of accuracy, where improving accuracy comes to the expense of prolonged
computing time, the choice of m is critical. The smaller one chooses the value for m,
the larger the share of super-efficient DMUs gets. For m → ∞ order-m coincides with
FDH, while for m = N super-efficient DMUs will still occur. Unlike FDH and order-α,
for order-m no reference DMU exists that serves as unique4 benchmark for DMU i. One
may, nevertheless, determine a pseudo-reference DMU jprefi as:

jprefi = argmin
j∈Bi

∣∣∣∣ max
k=1,...,K

{
xkj

xki

}
− θ̂OM

mi

∣∣∣∣ . (3)

2.3 Order-α efficiency

Order-α also generalizes FDH, yet in a different way. Rather than using minimum input
consumption among the available peers as benchmark, order-α uses the (100 − α)th
percentile:

θ̂OA
αi = P(100−α)

j∈Bi

{
max

k=1,...,K

{
xkj

xki

}}
(4)

For α = 100 order-α coincides with FDH, while for α < 100 some DMUs will be classified
as super-efficient and not be enveloped by the estimated production possibility frontier.
That is, just like m for order-m efficiency, α can be regarded as a tuning parameter
that determines the number of super-efficient DMUs. Since calculating order-α efficiency
scores does not involve a re-sampling procedure, θ̂OA

αi can much faster be computed than

θ̂OM
mi .

2.4 Graphical illustration

Figures 1 and 2 provide a graphical illustration of the non-parametric frontier approaches
discussed above. The former displays generated5 input use for 40 artificial DMUs, which
are characterized by a two-inputs, single-output technology. The output level is uniform
across all decision making units. The production possibility frontier, hence, represent an
isoquant. For 36 DMUs, the data is generated using a Cobb-Douglas technology with
random excess use of inputs. The true Cobb-Douglas isoquant is displayed together
with the artificial observations. For four DMUs, input consumption is inconsistent with
this technology, exhibiting values which, according to the true frontier, are impossibly

4. For ties in the data, uniqueness may be violated for FDH and order-α.
5. The Stata do-file used for generating the data and the figure is available upon request.
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Figure 1: Scatter plot of input use and true production possibility frontier (isoquant).
Source: Own calculations based on artificial data.

small. These DMUs represent outliers or, alternatively, observations that suffer from
severe measurement error.

In addition, Figure 1 graphicly illustrates the concept of input-oriented efficiency.
Consider DMU A, for instance. Here, the true efficiency score θinpA can graphically

be expressed as the ratio of two distances, i.e. OA*/OA, where O denotes the origin.
That is, hypothetical efficient input consumption is related to its actually observed
counterpart. Yet, as the true frontier is typically unknown, an estimate is required.
Figure 2 displays the frontiers estimated by DEA, FDH, order-α, and order-m. The
points at the estimated frontiers are constructed as observed input consumption scaled
by the relevant estimated efficiency score. For DEA and FDH, the irregular DMUs span
the estimated frontiers, rendering all the rest of the DMUs highly inefficient. In fact,
the regular observations do not at all affect the frontiers estimated by DEA and FDH.
In contrast order-α (α = 95) and order-m (m = 12) allow the abnormal DMUs to be
located outside of the estimated production possibility frontiers. By this, order-α and
order-m use the information on the regular DMUs for estimating the frontier, which in
turn are compared to more appropriate benchmark.
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DEA order−α (95) true frontier
FDH order−m (12)

Figure 2: Non-parametrically estimated production possibility frontiers (isoquants).
Source: Own calculations based on artificial data.

2.5 Statistical inference

Bootstrapping allows for determining standard errors for efficiency scores obtained from
non-parametric efficiency analysis. However, due to the boundary estimation nature
of (full) frontier analysis, the naive bootstrap does not yield as consistent approxi-
mation of the desired sampling distribution. Yet, sub-sampling bootstrapping, which
is based on bootstrap samples smaller than N , is consistent for boundary estimation
(Daraio and Simar 2007, 57). Standard errors provided by orderalpha and orderm are
calculated using this method. For relatively small values for α and m, respectively, the
boundary nature of the estimation procedure vanishes and one may use the naive boot-
strap instead. As calculating order-m efficiency scores already involves a re-sampling
procedure, bootstrapping orderm results in nested re-sampling which – unless the sam-
ple is very small – requires an enormous amount of computing time.
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2.6 Partial frontier based outlier detection

Partial frontier analysis can be used for detecting potential outliers in data meant for
subsequent non-parametric efficiency analysis by DEA or FDH; see Daraio and Simar
(2007, 79). The suggested approach rests on (i) carrying out a series of partial frontier
analyses for different values of α or m, (ii) plotting the share of super-efficient DMUs
against α or m, respectively, and (iii) identifying discontinuities in the resulting curve.
Such discontinuities which point at those DMUs being outliers that are classified as
super-efficient for the corresponding values of α and m, respectively. This procedure
may also be used for determining appropriate choices for α and m. The forthcoming6

Stata command oaoutlier implements order-α based outlier-detection. Yet, discussing
oaoutlier in detail goes beyond the scope of this article.

3 The orderalpha and orderm commands

orderalpha and orderm require Stata 11 or higher. weights and prefix commands
such as bootstrap, by, and svy are not allowed. The number of DUMs is limited to
the value of matsize. For orderm the maximum allowed number of DMUs may further
be reduced, if bootstrapping is requested or a large value is specified for m.

3.1 Syntax for orderalpha

The syntax for orderalpha reads as follows:

orderalpha varname
[
if
] [

in
]
, inputs(varlist1) outputs(varlist2)[

ort(input|output) alpha(#) bootstrap reps(#) tune(#) level(#)

table(full|scores) dots(1|2) invert generate(newvarlist) replace

nogenerate
]

where varname is an identifier that must uniquely identify DUMs. It may be either a nu-
meric or a string variable. varlist1 and varlist2 specify inputs and outputs, respectively.
Both lists of variables must be mutually exclusive. At least one input-variable and one
output-variable is required. Any variable in varlist1 and varlist2 needs to be numeric
and strictly positive. DMUs with missing or non-positive values in any input-variable
or output-variable are dropped.

3.2 Options for orderalpha

ort(input|output) specifies whether input- or output-oriented efficiency is considered,
where input-oriented efficiency is the default.

alpha(#) specifies the alpha()th percentile as benchmark. The default is alpha(100)

6. A beta version of oaoutlier is available at http://www.stata.com/meeting/germany11/abstracts.html.
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that is FDH. Note that specified values smaller than unity are still interpreted in
terms of percentiles not quantiles. Values outside (0, 100] are not allowed.

bootstrap invokes bootstrapping using 100 replications. If neither bootstrap nor
reps() is specified, orderalpha does not compute standard errors for the estimated
efficiency scores. The bootstrap will fail in determining non-zero SEs for DMUs, for
which no (or only few) peers are available in the sample, apart from the DUM itself.
For large samples, bootstrapping generates a huge N×N variance-covariance matrix
and requires substantial computing time, which quadratically increases in N .

reps(#) is equivalent to option bootstrap, besides allowing for choosing the number
of bootstrap replications.

tune(#) determines the size of the bootstrap samples as int(Ntune()). The default
value is (1 + exp(50− α/2))/(2 + exp(50− α/2)) that is 2/3 for FDH.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level.

table(full|scores) invokes displaying a results table. For table(scores) estimated
efficiency scores are displayed as if thy were regression coefficients. For table(full)
efficiency ranks and reference dmus are also displayed. Displayed results are sorted
by the values of varname. orderalpha may generate a huge table as N scores are
computed. For this reason, suppressing table display is the default. table(full)

is not allowed for N > 2994 and cannot be re-displayed by typing the command
without arguments.

dots(1|2) invokes displaying replication dots and loop dots. For dots(1) one dot
character is displayed for each bootstrap replication. For dots(2) one dot character
is also displayed for each DMU being analyzed. Type 2 dots are not displayed during
bootstrap replications.

invert makes output-oriented efficiency being reported analogously to input-oriented
efficiency by taking the reciprocal. That is, with invert specified, inefficient DMUs
exhibit efficiency scores smaller than one, irrespective of how ort() is specified.
invert has no effect on input-oriented efficiency.

generate(newvarlist) specifies the names of a new variables containing estimation re-
sults. newvarlist may consist of up to three names. newvar1 denotes estimated effi-
ciency scores, newvar2 denotes efficiency ranks, and newvar3 denotes the reference
DUMs. If – because of ties in the data – for some DMUs more than one refer-
ence DMU is identified, further variables newvar3 2, newvar3 3, ... are created. If
generate() is not specified or less than three names are assigned, default names are
oa ort alpha, oarank ort alpha, and oaref ort alpha. For FDH default names
are fdh ort, fdhrank ort, and fdhref ort.

replace specifies that existing variables named newvar1, newvar2, and newvar3 are
replaced.

nogenerate specifies that results are not saved to new variables.
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3.3 Saved results for orderalpha

orderalpha saves the following results to e():

Scalars
e(N) number of DMUs e(super) share of super-efficient DMUs
e(alpha) value of alpha() e(mean e) mean estimated efficiency
e(inputs) number of inputs e(med e) median estimated efficiency
e(outputs) number of outputs e(med e) median estimated efficiency
e(efficient) share of efficient DMUs e(level) confidence level

Macros
e(cmd) orderalpha e(table) scores, full, or no
e(cmdline) command as typed e(invert) either inverted or notinverted

(not for ort(input))
e(title) Order-alpha efficiency analysis e(ort) either input or output
e(dmuid) varname e(properties) either b or b V
e(model) either Order-alpha or FDH e(depvar) dmu
e(saved) names of new variables

(not for option nogenerate)

Matrices
e(b) vector of efficiency scores e(reference) matrix of reference DMUs

(not if varname is string)
e(ranks) vector of efficiency ranks

Functions
e(sample) marks estimation sample

Further results are saved in e() if the option boot or reps() is specified:

Scalars
e(N reps) number of bootstrap repetitions e(N bs) size of bootstrap samples
e(tune) value of alpha()

Macros
e(vce) bootstrap e(vcetype) Bootstrap

Matrices
e(b) variance-covariance matrix e(reps) number of non-missing results
e(bias) estimated biases e(b bs) bootstrap estimates

3.4 Syntax for orderm

The syntax for orderm reads as follows:

orderm varname
[
if
] [

in
]
, inputs(varlist1) outputs(varlist2)[

ort(input|output) m(#) draws(#) bootstrap reps(#) tune(#)

level(#) table(full|scores) dots(1|2) invert generate(newvarlist)

replace nogenerate
]

That is, the syntax for orderm differs from the syntax for orderalpha only by the
options m() and draws(), which replace the option alpha().
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3.5 Special options for orderm

m(#) specifies the size of the artificial reference sample. The default is ceil(N2/3). Non-
integer and non-positive values are not allowed. Most applications choose values
substantially smaller than N . Though orderm coincides with FDH for large values
of m, FDH efficiency analysis can by carried out more efficiently using orderalpha.

draws(#) specifies the number of re-sampling replications. The default is draws(200),
as suggested by Daraio and Simar (2007). Yet, depending an the data at hand,
making estimated efficiency scores converge may require values that substantially
exceed the default. Non-integer and non-positive values are not allowed.

tune(#) as above ... . The default value is (2 + exp(−m/N))/3 that is 2/3 for FDH.

generate(newvarlist) as above ... newvar3 denotes the name of the pdeudo-reference
DUM. ... default names are om ort m, omrank ort m, and omref ort m

3.6 Saved results for orderm

Saved results for orderm are the same as above, except for the scalar e(alpha) that is
not saved to e() and:

Scalars
e(m) value of m() e(draws) value of draws()

Macros
e(cmd) orderm e(model) Order-m
e(title) Order-m efficiency analysis

4 Examples for orderalpha and orderm

4.1 Basic syntax and FDH

We use Stata’s famous auto.dta example dataset for a simply example, which is only
meant for illustrating the Stata commands. For serious real data applications of partial
frontier approaches see, for example Pilyavsky and Staat (2008) and Binder and Broekel
(2008). In the present example, the string variablemake serves as identifier. We consider
a cars’ repair record (rep78)7, its headroom (headroom), and its trunk space (trunk)
as outputs from the cars’ service production. Inputs are inverse milage, i.e. gallons
per mile (gpm), weight (weight), length (length), and displacement (displacement). As
partial frontier analysis may involve re-sampling procedures, we firstly set the see of
the random number generator to guarantee replicability. Confining us to foreign cars,
running the basis syntax of orderalpha yields some information on model specifications
and descriptive statistics for input-oriented FDH efficiency scores.

(Continued on next page)

7. Since rep78 is measured on an ordinal scale, it is ill-suited for entering an efficiency analysis. Yet,
as the example is only for illustrating the syntax, we ignore this caveat.
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. sysuse auto.dta, clear
(1978 Automobile Data)

. gen gpm = 1/mpg

. set seed 987654321

. orderalpha make if foreign, inp(weight length displacement gpm) out(rep78 hea
> droom trunk)

FDH input-oriented efficiency scores estimated (variable _fdh_input)

Number of dmus = 21
Number of inputs = 4
Number of outputs = 3
Mean efficiency = .9344
Median efficiency = .9324
Share of efficient dmus = .381

Yet, no DUM-level results are displayed, which, nevertheless, are saved to the data.
To request a table of DMU-level results, we specify the options table(full) and
reps(200), where the latter requests bootstrapped standard errors. The option nog

prevents Stata from re-saving results to the data.

. orderalpha make if foreign, inp(weight length displacement gpm) out(rep78 hea
> droom trunk) reps(200) tab(full) nog

FDH input-oriented efficiency scores estimated (no variable saved)

Number of dmus = 21
Number of inputs = 4
Number of outputs = 3
Mean efficiency = .9344
Median efficiency = .9324
Share of efficient dmus = .381

dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Ref. DMU

Audi 5000 .8201058 .0869334 2.069334 20 VW Diesel
Audi Fox .9323671 .0933896 .724201 11 VW Rabbit
BMW 320i .8757062 .2033932 .6111012 18 VW Diesel

Datsun 200 .9058824 .0280815 3.351586 14 Mazda GLC
Datsun 210 1 .2981914 0 1 Datsun 210
Datsun 510 .9058824 .0624617 1.506806 14 Mazda GLC
Datsun 810 .8369565 .0403014 4.0456 19 Mazda GLC

Fiat Strada 1 . . 1 Fiat Strad
Honda Accord .9107143 .2199731 .4058938 13 VW Diesel
Honda Civic 1 .1142507 0 1 Honda Civi

Mazda GLC 1 . . 1 Mazda GLC
Renault Le Car 1 .1531418 0 1 Renault Le

Subaru .995122 .4936048 .0098825 9 VW Diesel
Toyota Celica .8908046 .1553441 .7029261 16 VW Diesel
Toyota Corolla .9393939 .3038749 .1994441 10 VW Diesel
Toyota Corona .8857143 .0943252 1.211614 17 VW Diesel

VW Dasher .92 .2036947 .3927448 12 VW Rabbit
VW Diesel 1 .6822315 0 1 VW Diesel
VW Rabbit 1 .1951341 0 1 VW Rabbit

VW Scirocco 1 . . 1 VW Scirocc
Volvo 260 .8031088 .0886606 2.220728 21 VW Diesel

Note: z-Statistic is abs(Eff.Score - 1)/Std.Err.
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If output-oriented efficiency is requested instead, the option ort(output) has to be
specified.

. orderalpha make if foreign, inp(weight length displacement gpm) out(rep78 hea
> droom trunk) ort(output) reps(200) tab(full) nog

FDH output-oriented efficiency scores generated (no variable saved)

Number of dmus = 21
Number of inputs = 4
Number of outputs = 3
Mean efficiency = 1.06
Median efficiency = 1
Share of efficient dmus = .7143

dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Ref. DMU

Audi 5000 1 .1123844 0 1 Audi 5000
Audi Fox 1.2 .1473373 1.35743 16 VW Diesel
BMW 320i 1.2 .135962 1.471 16 VW Diesel

Datsun 200 1.25 .1104965 2.262514 21 Datsun 210
Datsun 210 1 . . 1 Datsun 210
Datsun 510 1.2 .1148945 1.740727 16 VW Diesel
Datsun 810 1.2 .0999874 2.000253 16 Honda Acco

Fiat Strada 1 .1710402 0 1 Fiat Strad
Honda Accord 1 .1079517 0 1 Honda Acco
Honda Civic 1 . . 1 Honda Civi

Mazda GLC 1 . . 1 Mazda GLC
Renault Le Car 1 . . 1 Renault Le

Subaru 1 . . 1 Subaru
Toyota Celica 1 .1142397 0 1 Toyota Cel
Toyota Corolla 1 .1180334 0 1 Toyota Cor
Toyota Corona 1 .0752533 0 1 Subaru

VW Dasher 1.2 .1563238 1.279396 16 VW Diesel
VW Diesel 1 . . 1 VW Diesel
VW Rabbit 1 .1592883 0 1 VW Rabbit

VW Scirocco 1 .2130136 0 1 VW Scirocc
Volvo 260 1 .0897516 0 1 Audi 5000

Note: z-Statistic is abs(Eff.Score - 1)/Std.Err.

The above output indicates that either choosing the input-oriented or the output-
oriented approach clearly makes a difference.

4.2 Order-α

The above examples all apply FDH efficiency as alpha() is left unspecified und the
default alpha(100) is used. In order to carry out a non-degenerated partial frontier
order-α analysis, we choose the 90th percentile as benchmark by specifying alpha(90).
Moreover we assign our own names to the new generated variables.

. orderalpha make if foreign, inp(weight length displacement gpm) out(rep78 hea
> droom trunk) alp(90) reps(200) tab(full) gen(escore erank eref) replace

(Continued on next page)
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Order-alpha(90) input-oriented efficiency scores estimated (variable escore)

Number of dmus = 21
Number of inputs = 4
Number of outputs = 3
Mean efficiency = .9421
Median efficiency = .9394
Share of efficient dmus = .3333
Share of super-efficient dmus = .0476

dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Ref. DMU

Audi 5000 .8201058 .081434 2.209081 20 VW Diesel
Audi Fox .9565217 .0229673 1.893054 10 Mazda GLC
BMW 320i .8757062 .0747637 1.66249 18 VW Diesel

Datsun 200 .9117647 .0140217 6.292751 13 VW Diesel
Datsun 210 1 .0933255 0 2 Datsun 210
Datsun 510 .9117647 .0308705 2.858237 13 VW Diesel
Datsun 810 .8423913 .0198544 7.938216 19 VW Diesel

Fiat Strada 1 . . 2 Fiat Strad
Honda Accord .9107143 .1729695 .5161934 15 VW Diesel
Honda Civic 1.12 .0597623 2.007952 1 VW Rabbit

Mazda GLC 1 . . 2 Mazda GLC
Renault Le Car 1 .0694423 0 2 Renault Le

Subaru .995122 .3621871 .0134683 9 VW Diesel
Toyota Celica .8908046 .1177655 .9272276 16 VW Diesel
Toyota Corolla .9393939 .1665016 .363997 11 VW Diesel
Toyota Corona .8857143 .0450777 2.535306 17 VW Diesel

VW Dasher .92 .0655968 1.219572 12 VW Rabbit
VW Diesel 1 .6390733 0 2 VW Diesel
VW Rabbit 1 .1328049 0 2 VW Rabbit

VW Scirocco 1 . . 2 VW Scirocc
Volvo 260 .8031088 .0801618 2.456172 21 VW Diesel

Note: z-Statistic is abs(Eff.Score - 1)/Std.Err.

Here only the Honda Civic is classified a super-efficient, while Audi 5000 and Volvo
260 perform worst. In order to determine whether the latter two are more or less equally
inefficient, or whether a statistical significant efficiency differential exists, on can use
Stata’s test command in the same way as for performing tests on regression coefficients.
This also applies to testnl, lincom, and nlcom. Yet, if necessary, one has to convert
DMUs names provided by the identifier to Stata names when used with test:

. test _b[Audi_5000]-_b[Volvo_260]=0

( 1) [make]Audi_5000 - [make]Volvo_260 = 0

chi2( 1) = 0.24
Prob > chi2 = 0.6260

4.3 Order-m

Finally we also run orderm on the data, choosing a reference sample of size 16 by
specifying m(16). In order to improve accuracy we request a large number of re-sampling
replications with d(1000). As orderm requires substantial computing time, we neither
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specify bootstrap nor reps() and abstain from calculating standard errors.

. orderm make if foreign, inp(weight length displacement gpm) out(rep78 headroo
> m trunk) m(16) d(1000) tab(full)

Order-m(16) input-oriented efficiency scores estimated (variable _om_input_16)

Number of dmus = 21
Number of inputs = 4
Number of outputs = 3
Mean efficiency = .9386
Median efficiency = .9387
Share of efficient dmus = .2381
Share of super-efficient dmus = .1429

dmu (make) Eff. Score Std. Err. z Stat. Eff. Rank Pseudo Ref

Audi 5000 .8201058 . . 20 VW Diesel
Audi Fox .9387439 . . 11 VW Rabbit
BMW 320i .8855254 . . 18 VW Diesel

Datsun 200 .9097788 . . 15 VW Diesel
Datsun 210 1.011718 . . 2 Datsun 210
Datsun 510 .9109988 . . 13 VW Diesel
Datsun 810 .8390924 . . 19 Mazda GLC

Fiat Strada 1 . . 4 Fiat Strad
Honda Accord .9108928 . . 14 VW Diesel
Honda Civic 1.03713 . . 1 Honda Civi

Mazda GLC 1 . . 4 Mazda GLC
Renault Le Car 1.00376 . . 3 Renault Le

Subaru .9953073 . . 9 VW Diesel
Toyota Celica .8916782 . . 16 VW Diesel
Toyota Corolla .9400606 . . 10 VW Diesel
Toyota Corona .88872 . . 17 VW Diesel

VW Dasher .9223844 . . 12 VW Rabbit
VW Diesel 1 . . 4 VW Diesel
VW Rabbit 1 . . 4 VW Rabbit

VW Scirocco 1 . . 4 VW Scirocc
Volvo 260 .8045222 . . 21 VW Diesel

Note: no bootstrapping; no standard errors computed

Results are similar to those obtained from order-α (90), yet order-m (16) yields a
larger share of super-efficiency DUMs.

5 Summary and conclusions

In this article the new commands orderalpha and orderm were introduced that imple-
ment non-parametric order-α, order-m, and FDH efficiency analysis in Stata. Besides
calculating point estimates, the commands also accommodate sub-sampling bootstrap
based inference. Implementing partial frontier analysis may open up further areas of
application to Stata, as non-parametric efficiency analysis is frequently applied in many
fields such es managerial economics und health economics. In this, the present arti-
cle complements to Ji and Lee (2010), who have already introduced data envelopment
analysis to Stata.
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