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BUCKLING INSTABILITY OF VIRAL CAPSIDES - A CONTINUUM

APPROACH

SEBASTIAN ALAND, ANDREAS RÄTZ, MATTHIAS RÖGER, AND AXEL VOIGT

Abstract. The crystallographic structure of spherical viruses is modeled using a multiscale
approach combining a macroscopic Helfrich model for morphology evolution with a microscopic
approximation of a classical density functional theory for the protein interactions. The derivation
of the model is based on energy dissipation and conservation of protein number density. The
resulting set of equations is solved within a diffuse domain approach using finite elements and
shows bluckling transitions of spherical into faceted viral shapes.

1. Introduction

A capsid is the protein shell of a virus. It encloses the genetic material of a virus and protect
it from enzymatic digestion. The capsid proteins are expressed from the DNA or RNA genome
of the virus and in physiological conditions self-assemble in very effcient structures which can
withstand high forces and at the same time effectively disassemble to allow the viral genome to
be released in the host cell. Capsides are broadly classified according to their structure. Most viral
capsids are spherical. The crystallographic structures of spherical viruses have been extensively
investigated by techniques such as X-ray spectroscopy and cryotransmission electron microscopy.
Structural analyses of major capsid protein architectures have been used to categorise viruses
into families and the analysed structure of the capsid forms part of the core knowledge of modern
virology.

The capsid proteins are grouped in subunits called capsomers, oligomers made of either five
(pentamer) or six (hexamer) proteins. Spherical viruses typically posses icosahedral symmetry
with twelve pentamers located at the vertices of a regular icosahedron and otherwise hexamers.
The diameters of spherical viruses span the range from 10 to 100 nm. While small capsids are
almost perfectly spherical, large viruses, such as the bacteriophage HK97 or the phycodnavirus,
typical exhibit a faceted geometry with nearly flat portions separated by ridges and sharp corners
corresponding to the twelve pentamers. One explaination for the transition between spherical and
faceted shapes is a buckling transition resulting from a balance between the stretching energy
associated with the pentamers in capsomer lattices and the bending elasticity of the viral capsid
[18]. Viruses with different overall capsid size are composed of nearly identical monomers and
the capsid proteins have nearly identical size, weight, composition and folded structure [21]. This
allows to view the 12 isolated points of fivefold symmetry as disclinations in an otherwise six-
folded medium. As in flat space in which the large strain associated with an isolated disclination
leads to buckling into a conical shape, the icosahedral shell becomes aspherical if the Föppl-von
Karman number γ = Y R2/κN � 1, with Y the Young’s modulus, κN the normal bending rigidity
and R the radius. Most viruses have γ ≤ 150 with a close to spherical shape, or 200 ≤ γ ≤ 1500
with a strong buckling effect. In [18] the mean square aspherisiti is computed as a function of γ,
using the classical Caspar and Klug model [8] in combination with a discrete Helfrich model [16].
The icosahedral shape of the capsid is thereby given.

We will follow a different approach to model the buckling transition, which is not restricted
to spherical or almost spherical shapes and does not impose icosahedral structure. We therefore
postulate that the condensed matter order of the capside proteins induces an anisotropy in the
bending rigidity which can lead to morphological changes. We consider the classical Helfrich
model [16], which is based on the assumption that the surface energy associated with bending
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of the capside can be expanded in the mean curvature H = κ1 + κ2 and the Gaussian curvature
K = κ1κ2, with κ1,2 the principle curvatures of a surface Γ. The energy FHelfrich consists of the
following parts:

• the normal bending energy

FHelfrich,B(Γ) =
1

2

∫
Γ
κN
(
H −H0

)2
dµ(x)

• the Gaussian bending energy

FHelfrich,G(Γ) =

∫
Γ
κGK dµ(x)

with H0 the spontaneous curvature, which reflects a possible asymmetry of the capside. H0 is
usually assumed to be spatially homogeneous. κN is the normal bending stiffness and κG is
the Gaussian bending stiffness. For constant κG the Gaussian bending energy is proportional to
the Euler characteristic of the capsid (Gauss-Bonnet theorem) and so changes in shape, which
preserve the topology do not contribute to the energy. Hence FHelfrich,G can be dropped for such
cases. In addition we might need to incorporate constraints on volume and/or area. For a review
on models based on this energy we refer to [25].

To model the ordering of capside proteins we follow the approach in [3] and introduce a protein
number density %, for which we formulate a Swift-Hohenberg (or phase field crystal) energy. The
energy FPFC reads

• phase field crystal energy

(1) FPFC(%,Γ) =

∫
Γ

(
−‖∇Γ%‖2Γ +

1

2
(∆Γ%)2 + f(%)

)
dµ(x)

with a potential f(%) = 1
2(1−ε)%2 + 1

4%
4 with a parameter ε ∈ R. In [3] it has been demonstrated

that a H−1 gradient flow of this energy converges to a minimal energy configuration which is in
correspondence with known results for the classical Thomson problem [28] for optimal ordering
of particles on a sphere. In flat space the energy in minimized by a hexagonal structure [12],
however due to the geometric frustration, which are incorporated through the surface gradient
∇Γ and the surface Laplacian ∆Γ defects are introduced if the energy is minimized on a curved
surface. For typical virus sizes, which are e.g. for the polyoma virus 72 capsomeres, or for the
herpes virus 252 units, a minimal energy configuration with 12 isolated disclinations is expected.

The coupling of the macroscopic continuum Helfrich model and the microscopic discrete phase
field crystal model, comes from the dependency of κN on the defect structure, which allows
a multiscale coupling of the discrete protein arrangements of the capsid and the continuous
morphology evolution. It is essentially this interplay between geometry and condensed matter
order which provides a fascinating venue for theoretical models, see [6, 29] for two recent reviews.

The paper is organized as follows: In Section 2 we will derive a thermodynamically consistent
evolution equation to minimize F = FHelfrich+FPFC with respect to Γ and %. Simplifications of
the model acording to scale seperations are discussed in Section 3. In order to numerically solve
the derived equations a diffuse interface approximation is used in Section 4. In Section 6 the
adaptive finite element discretization used is described and implementational details are given.
Numerical results are shown in Section 7 and conclusions are drawn in Section 8.

2. Model Derivation

We consider initial data Γ(0) = Γ0, %(0, ·) = %0 and an evolution (Γ(t), %(t))t≥0. We assume
that Γ(t) is a smoothly evolving family of smooth hypersurfaces with normal velocity v(t, ·) that
is parametrized over Γ0,

Γ(t) = Φt(Γ0),

∂tΦt(x) = v(t, x)ν(t, x),
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where ν(t, x) denotes the outward normal to Γ(t) in x ∈ Γ(t). The protein number density %(t, ·)
is assumed to be a smooth function on Γ(t).

We propose evolution equations for % and Φ, which guarantee conservation of protein number
density and energy dissipation. Defining the total (material) derivative dt, we first consider
conservation of protein number density %:

d

dt

∫
Γ(t)

%(x, t) dµ(x) =

∫
Γ(t)

dt%(t, x) dµ(x) +

∫
Γ(t)

%(t, x)v(t, x)H(t, x) dµ(x),

where H(t, ·) denotes the scalar mean curvature of Γ(t), chosen positive if the region enclosed by
Γ(t) is convex, and where dµ(x) denotes integration with respect to the corresponding surface
measure. For a detailed definition of the geometric notations we refer to Appendix B.1. One gets
conserved dynamics, if one assumes

(2) dt% = −%vH −∇Γ · q
for a tangential flux q defined by

(3) q = −∇Γ∂%F ,
where ∂%F denotes the variational derivative of F with respect to %.

The value of the functional F changes under the evolution (%(t, ·),Γ(t)), t ∈ (0, T ) according
to the equation

(4) dtF(%,Γ) =

∫
Γ
(∂ΦF · dtΦ + ∂%Fdt%) dµ(x).

By (2), (3) we compute that

dtF(%,Γ) =

∫
Γ
∂ΦF · dtΦ dµ(x)−

∫
Γ
∂%F(%vH +∇Γ · q) dµ(x)

≤
∫

Γ
v∂ΦF · ν dµ(x)−

∫
Γ
∂%F%vH dµ(x),

where we have used that ∂tΦ is normal and partial integration on Γ(t). Therefore, dissipative
dynamics are obtained by

(5) v = −∂ΦF · ν + %∂%FH.
To summarize, (2), (3), (5) provide a system of evolution equations which guarantee conservation
of protein number density and energy dissipation. The model allows to simultaneously change
the order of proteins and the morphology of the capsid. Thus in principal the formation of
new defect structures in the protein arrangement is possible within the interplay of minimizing
bending energy and elastic energies of the disclinations. The phase field crystal model used here
was introduced by Elder et al. [13] and results from phenomenological arguments. However it can
also be derived via a classical dynamic density functional theory form an interatomic potential
for the protein interactions, see [2], [14], [27] for a general discussion.

The variational derivatives ∂ΦF and ∂%F are computed in Appendix B. The resulting system
of partial differential equations forms a highly nonlinear system of a coupled 4th order equation
for the evolution of a surface and a 6th order equations which has to be solved on the evolving
surface. We will not directly use these equations but consider only a special case and prefer a
phase field approximation to numerically simulate the evolution equations. For completeness,
however, we compute the variational derivatives in the Appendix.

3. Special Cases

Instead of solving the full problem (2),(3),(5) we consider the following simplification

(6) dt% = −%vH + ∆Γ∂%FPFC .

(7) v = −∂ΦFHelfrich · ν + %∂%FH,
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which considers only FPFC in the first equation and FHelfrich in the first term of the second
equation. The remaining system is no longer thermodynamically consistent. However, besides
the achieved simplification, which allows a numerical treatment, there are also physical reasons
for these approximations. FPFC and FHelfrich consider aspects of the energy on different spatial
scales, whereas FPFC models particle interactions on a molecular scale on a macroscopic surface,
FHelfrich models this surface. To describe the evolution of the surface, we are thus not interested
in variations on a molecular scale, but only on a macroscopic scale. We thus neglect terms in eq.
(7) varying on a molecular scale. On the other hand in eq. (6) we are interested in the molecular
scale which is primarily determined by FPFC , the dependency of FHelfrich on % is only due to
the definition of κN and thus should not influence the evolution of %.

The protein number density % remains a conserved quantity as

d

dt

∫
Γ(t)

%(x, t) dµ(x) =

∫
Γ(t)

dt%+ %vH dµ(x) =

∫
Γ(t)

∆Γ∂%FPFC dµ(x) = 0.

4. Diffuse interface approximation

We use a diffuse interface approximation and follow the approach in [22] to numerically solve
(6)–(7). Therefore we approximate the evolution of the surface that represents the virus capside
by an evolution of smooth phase fields. These take values close to 1 inside the virus and close
to 0 outside, with a smooth, but rapid transition. The corresponding transition layer represents
the capside location. The phase field variables and the governing equations for these fields are
defined in a fixed volume domain Ω ⊂ R3 that represents an outer container of the virus. This is
a key advantage as the (diffuse) evolution equations now can be numerically solved with standard
tools. The main challenge is being computationally efficient and this requires an adaptive mesh
refinement allowing for a fine resolution within the diffuse interface and a coarse resolution away
from it.

The phase field approach is based on a diffuse surface area energy for the transition layer. For
ϕ : Ω → R representing a phase field variable and a small parameter κ > 0 such energy is given
by

(8) Aκ(ϕ) =

∫
Ω

(κ
2
|∇ϕ|2 + κ−1G(ϕ)

)
dx,

where G(r) is a suitable double-well potential with zeros at r = 0 and r = 1 that we here choose
as G(r) = 36r2(1 − r)2. For energies of order one with respect to the small parameter κ fields
are forced to attain values zero and one in most of the domain Ω, with a transition layer that has
finite but small thickness of order κ. Moreover Aκ approximates the surface area energy.

4.1. Energies. We follow [19] and [1] to approximate the ‘sharp interface energy’ F by energies
for phase fields ϕ and protein number densities %. We also include penalty terms that account for
constraints on the capside surface area and on the enclosed volume. We assume that the capside
surface is conserved and for all times equals a constant A0 > 0. We relax this condition and
introduce in the energy a penalty term

(9) PκA(ϕ) =
Mκ
A

2
(Aκ(ϕ)−A0)2,

where Mκ
A is a large positive constant. Similarly we include a volume penalty term

(10) PκV (ϕ) =
Mκ
V

2
(V κ(ϕ)− V0)2, V κ(ϕ) =

∫
Ω
ϕdx

where V0 is a prescribed value for the enclosed volume and Mκ
V is a large positive constant.

As diffuse interface approximation of the Helfrich energy we follow [11] and use

(11) FκHelfrich[%, ϕ] =
1

2

∫
Ω
κ−1κN (%)

(
κ∆ϕ− κ−1G′(ϕ) + 6ϕ(1− ϕ)H0

)2
dx,
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where H0 and κN describe the spontaneous curvature and the normal bending stiffness. Here
we take κN depending on the concentration field %, see below for the precise implementation.
Further extensions are possible by allowing the spontaneous curvature to depend on the ordering,
e.g. H0 = H0(%). We will however consider H0 to be constant. For the special choices H0 = 0 and
κN constant (11) reduces to the well-known approximation for the Willmore functional proposed
by De Giorgi [9, 23].

Next we have to formulate a phase field version of the PFC energy. With this aim we introduce
some expressions for a given phase field ϕ that correspond to the relevant geometric differential
operators on a hypersurface Γ. For integration over Γ we choose integration against the surface
area density eκ(ϕ),

(12) eκ(ϕ) =
κ

2
|∇ϕ|2 + κ−1G(ϕ).

A diffuse version of the surface gradient of a function η is given by

(13) ∇κη = Pκ(ϕ)∇η,

where Pκ(ϕ) denotes the ‘tangential projection’ (and νκ the ‘normal direction’)

(14) Pκ(ϕ) = Id− νκ ⊗ νκ, νκ =
∇ϕ
|∇ϕ|

.

Finally the Laplace-Beltrami operator of a function η is approximated by

(15) ∆κη =
1

eκ(ϕ)
∇ · (eκ(ϕ)Pκ(ϕ)∇η) .

With this definition we retain analogues of the usual partial integration formulas on surfaces,

(16)

∫
Ω
η∆κψ eκ(ϕ) dx = −

∫
Ω
∇κη · ∇κψ eκ(ϕ) dx =

∫
Ω
ψ∆κη eκ(ϕ) dx

for all smooth functions η, ψ with compact support in Ω.
With these preparations the natural choice of an diffuse PFC energy is

(17) FκPFC(%, ϕ) =

∫
Ω

(
f(%)− |∇κ%|2 +

1

2
(∆κ%)2

)
eκ(ϕ) dx.

4.2. Variational derivatives. To formulate the diffuse evolution equations corresponding to
(6)-(7) we have to compute the derivatives of the diffuse energies chosen above. For the diffuse
surface area energy we obtain

(18) ∂ϕAκ(ϕ) = −κ∆ϕ+ κ−1G′(ϕ).

In analogy to the formula for the first variation of a surface Γ the expression on the right-hand
side is the diffuse interface description of (minus) the scalar mean curvature. For the volume
functional we obtain

(19) ∂ϕV
κ(ϕ) = 1.

Therefore we deduce that

(20) ∂ϕPκA(ϕ) + ∂ϕPκV (ϕ) = Mκ
A(Aκ(ϕ)−A0)

(
− κ∆ϕ+ κ−1G′(ϕ)

)
+Mκ

V (V (ϕ)− V0).

For the variational derivative of the diffuse Helfrich energy with respect to the phase field variable
we obtain

∂ϕFκHelfrich(%, ϕ) = ∆ω − κ−2G′′(ϕ)ω + κ−1H06(1− 2ϕ)ω,

with

ω = κN (%)
(
κ∆ϕ− κ−1G′(ϕ) + 6ϕ(1− ϕ)H0

)
.
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To obtain the derivative of the diffuse PFC energy with respect to % we recall that for a smooth
variation field η we have∫

Ω
∂%FκPFC(%, ϕ) · ηeκ(ϕ) dx =

d

ds

∣∣∣
s=0
FκPFC(%+ sη, ϕ).

We compute the right-hand side and start with the first term in the energy and obtain that

d

ds

∣∣∣
s=0

∫
Ω
f(%+ sη) eκ(ϕ) dx =

∫
Ω
f ′(%)ηeκ(ϕ) dx.

For the second term we obtain by the partial integration formula (16)

d

ds

∣∣∣
s=0

∫
Ω
|∇κ(%+ sη)|2 eκ(ϕ) dx = 2

∫
Ω
∇κ% · ∇κη eκ(ϕ) dx = −2

∫
Ω

∆κ%η eκ(ϕ) dx.

Finally, for the last term in the energy we similarly derive

d

ds

∣∣∣
s=0

1

2

∫
Ω

(∆κ(%+ sη))2 eκ(ϕ) dx =

∫
Ω

∆κ%∆κηeκ(ϕ) dx =

∫
Ω
η(∆κ)2%eκ(ϕ) dx.

From this, we obtain the complete result

∂%FκPFC(%, ϕ) = f ′(%) + 2∆κ%+ (∆κ)2%.

4.3. Diffuse evolution equations. We derive a system of evolution equations for phase fields ϕ
and protein number densities % that corresponds to the sharp interface equations (6)-(7). Again
we start with mass conservation of the protein number densities and compute

(21)
d

dt

∫
Ω
% eκ dx =

∫
Ω
∂t%eκ − κ∇% · ∇ϕ∂tϕ+ (−κ∆ϕ+ κ−1G′(ϕ))%∂tϕ. dx

From this equality mass conservation follows if we prescribe that

(22) ∂t%eκ − κ∇% · ∇ϕ∂tϕ = (κ∆ϕ− κ−1G′(ϕ))%∂tϕ+∇ ·
(
eκPκ(ϕ)∇µ

)
,

where we choose µ in analogy to (6) as

(23) µ = ∂%FκPFC(%, ϕ).

The dynamics (22) now corresponds to (6) as the expressions on the left-hand side both describe
the total derivative.

We translate the surface evolution equation (7) in a similar way and obtain the evolution
equation

(24) κ∂tϕ = −∂ϕFκHelfrich − %µ(κ∆ϕ− κ−1G′(ϕ))

with µ the chemical potential defined through (23).
The resulting system of equations for % and ϕ is of 6th and 4th order, respectively. We expect

that the protein density % and the chemical potential µ are in highest order constant in the
direction normal to the transition layer of ϕ, see [22] for an asymptotic analysis of a similar (yet
simpler) case. In this case we can neglect the projection map Pκ and can further reduce (22)-(24).

5. Definition of the Bending Stiffness

We will demonstrate two ways of defining the particle dependent bending stiffness. In the
first approach, which we will refer to as discrete defect localisation (DDL), we divide the set of
particles into defects and non-defects. Then we set the bending stiffness to a certain value in
the defects and to a different value in the non-defects and interpolate in between. In the second
approach, which will be called variational bending stiffness (VBS), we will use the variational
derivative ∂ϕFPFC(%,Γ) to define the bending stiffness what makes it a rather natural way.
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5.1. Discrete Defect Localisation. To make the normal bending stiffness dependent on the
occurrence of defects, we first need to determine the defects. This is done in four steps.

(1) Calculate a restriction of % to the interface:

%̃ = eκ · %.

(2) Locate the positions pi of isolated maxima of %̃ passing a threshold: %̃(pi) > 0.
(3) Count the number of neighbors ni of the protein at position pi. We use the euclidean

distance and set:

ni =
∑

j 6=i:||pi−pj ||2<1.5a

1,

where a = 4√
3
π is the default distance of particles in the PFC model in a perfect hexagonal

structure. Of course, the euclidean distance only a good approximation for small curvature
values. It worked very well in all of our examples.

(4) We set the normal bending stiffness

κN (x) = MN min{ min
i:ni 6=6

|x− pi|, a}.

with a constant scaling factor MN .

Note that this gives κN = 0 in the defects and κN = MNa away from the defects with a
linear transition in between, which will allow for the desired faceting of the structure. Besides the
limitations corresponding with large curvatures wrong classification of neighbors may also occur
if the particle distribution is not equilibrated using the DDL approach.

5.2. Variational Bending Stiffness. As an alternative to the DDL method we might describe
the ordered arrangement in terms of the interactions of its defects, which leads to a more meso-
copic approach. Thereby the energetics of the defects provide a useful starting point to derive
inhomogeneities in the normal bending stiffness. On a spherical topology defects are necessarily
introduced into the lattice structure. The number of disclinations for a spherical topology has
to be at least 12. Their repulsive interaction will favor an arrangement which maximizes their
separation leading to a configuration with icosahedral symmetry. In [18] it was shown that the
competition of the strain associated with the disclinations and the bending energy leads to a
buckling transition from a smooth round shape to a sharpely faceted shape with increasing size.
We demonstrate the increase of the strain energy in the disclinations with increasing size by con-
sidering capsides with icosahedral symmetry. An icosahedron is build by 20 identically, curved,
equilateral triangles. Therefore it is sufficient to consider only one of these triangles. In Fig.
1 we computed equilibrium particle arrangments on one of these triangles for increasing R and
thus increasing number of particles N . Note that N denotes the total number of particles on the
whole sphere.

A comparison of the energy density in pentamers and hexamers for these configurations is
shown in Fig. 2 indicating an increase in the elastic energy in the pentamers.

Using the differences in the energy density in FPFC between pentamers and hexamers to
define an effective dependency of the normal bending rigidity on the defect structure allows to
circumvent to DDL approach described above. Due to an increase in the difference between
the energy density in pentamers and hexamers for increasing radius R also the strength of the
anisotropy in the normal bending rigidity can be modeled as a function of R. This allows to tune
the asphericality of the capsid as a function of R. But, as the difference in the energy density
becomes significant only for large particle numbers this approach requires to solve much larger
systems, which can no longer be handled without massively parallel computing.

Hence, instead of using the energy density, we will use the variation of FPFC(%,Γ) with respect
to Γ. In fact, this is a natural way to define the evolution of Γ so that the energy is minimized.
As shown in the Appendix the computation of ∂ΦFPFC(%,Γ) leads to rather complicated terms.
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Figure 1. Icosahedral arrangment on sphere with N = 42, 92, 162, 252 and
362 (from top left to bottom right). Shown is one portion of the sphere, with
pentamers arranged in the corners. The radius R increases to realize the different
particle numbers by keeping the physical parameters in FPFC fixed at ε = 0.4 and
%̄ = −0.3.

Figure 2. Energy density of FPFC in the pentamers and hexamers as a function
of N , corresponding to the arrangements shown in Fig. 1.

Similarly the variational ϕ-derivative of the diffuse approximation FκPFC(%, ϕ) is rather complex.
However assuming that equipartition of energy

κ

2
|∇ϕ|2 =

1

κ
G(ϕ)

holds to lowest order in κ and moreover that % and ∆κ% are to lowest order constant in normal
direction (cf. [22]) we can approximate (see Appendix A)

∂ϕFκPFC(%, ϕ) ≈ wκg + 2κ∇% ·D2ϕ∇%− wκ∇(∆κ%) · ∇%− 2κ∇(∆κ%) ·D2ϕ∇%,(25)
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where

wκ = −κ∆ϕ+
1

κ
G′(ϕ), g = f(%)− |∇%|2 − 1

2
(∆κ%)2.

The corresponding variational derivative of the sharp interface analogues (see Appendix B) for-
mally agree with this approximation, in the sense that

δϕFκPFC(%, ϕ)(−∇ϕ · η) + δ%FκPFC(%, ϕ)(−∇% · η) ≈ δΦFPFC(%,Γ)(η)

for smooth variation fields η ∈ C2
c (Ω,Rn). Note that in the diffuse case both variational deriva-

tives appear since we have moved the concentration field with the variation of the surface when
computing the sharp interface variational derivatives. Furthermore, the inner variation in the
direction of η that we have used in the sharp interface case translate in variations of the diffuse
variables ϕ, % in direction of −∇ϕ · η and −∇% · η, respectively.

Note that the usual energy minimizing evolution laws

∂tϕ = −∂ϕFκPFC(%, ϕ)

and

∂tϕ = ∆ (∂ϕFκPFC(%, ϕ))

result in an anisotropic Allen-Cahn and Cahn-Hilliard equation, respectively. Still these equations
vary on the spatial scale of the proteins which is not desired. And, even worse, the equations are
ill-posed since g can be (and in fact is) negative in some areas. Hence one can not directly use
the evolution laws, but the derivation suggests that ∂ϕFκPFC(%, ϕ) describes the anisotropy and
can therefore be used to design the bending stiffness. Since we do not want to consider variations
of ∂ϕFκPFC(%, ϕ) on spacial scales smaller than the particle distance, it is sufficient to evaluate
∂ϕFκPFC(%, ϕ) in the particle position, thus at the discrete maxima of %. In these locations ∇%
vanishes and the approximation to ∂ϕFκPFC(%, ϕ) simplifies to wκg. Hence the information about
the anisotropy is contained in g.

Figure 3. Left: A sphere with 73 particles colored with the function g evaluated
at the next neighboring particle position. The black lines are added to enhance the
edges for visibility. Right: The corresponding histogram showing distinct values
for pentamers and hexamers.

Figure 3 shows a sphere colored with the value of g at the position of the closest neighboring
particle. We see that g is also well-suited to be used as an indicator for the defects since it has
significantly distinct values in the pentamers and in the hexamers. This indicator is quite natural
and does not put any restrictions on the curvature as the discrete approach (DDL) does.
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We have a closer look at the dependence of g on the number of particles N . Again we use
the equilibrium distribution on the curved triangles building an icosahedron (see fig. 1). Figure
4 shows g for N = 42, 92, 162, 252, 362. As expected the anisotropy, that is the difference in g
between pentamers and hexamers, increases with N . Therefore using g for the bending stiffness
should give a reasonable model and should yield more faceted shapes for higher particle numbers
which reflects the experimentally observed increase in asphericality of viral capsides for increasing
N .

Figure 4. The value of g in the pentamers and hexamers as a function of N ,
corresponding to the arrangements shown in Fig. 1.

To build the bending stiffness κN we will, as before, evaluate g only at the particle positions
pi. Therefore we interpolate in between using radial basis functions. We use the interpolant

g̃(x) :=
∑
i

wie
−β||x−pi||2

where the weights wi are calculated by requiring g̃(pi) = g(pi). To avoid negative values we finally
set the bending stiffness

(26) κN (x) = MN (g(x)−min{g(x) : x ∈ Ω}) ,
with the scaling factor MN .

6. Numerical Approach

We will write the equations as a system of 2nd order equations and solve it using linear finite
elements. To discretize in time we decompose the time interval [0,T] into M ∈ N equidistant
intervals of mesh size τ := T/M . We define the discrete time derivative dtv

m+1 := (vm+1−vm)/τ
where the superscripts denote the time iteration. We use a semi-implicit Euler scheme where we
keep as many terms implicit as possible. Hence, in every time step the following coupled system
has to be solved:

κdtϕ
m+1 = −κN (∆ωm+1 + κ−2G′′(ϕm)ωm+1)

−%mµmωm+1Mκ
A(Aκ(ϕm)−A0)ωm+1 +Mκ

V (V κ(ϕm)− V0),(27)

ωm+1 = κ∆ϕm+1 − κ−1G′(ϕm+1),(28)

emκ dt%
m+1 = (κ∇ · (%m∇ϕm)− κ−1G′(ϕm)%m)dtϕ

m+1 +∇ · (emκ ∇µm+1),(29)

emκ µ
m+1 = emκ f

′(%m+1) + 2emκ ν
m+1 +∇ · (emκ ∇νm+1),(30)

emκ ν
m+1 = ∇ · (emκ ∇%m+1),(31)

with Neumann boundary conditions for all variables. The potentials f ′(%) and G′(ϕ) are linearized
by a Taylor expansion dropping terms of order two and higher so that the equations are linear at
the implicit time step.
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For the spatial derivatives we use the adaptive finite element toolbox AMDiS [31] with linear
test functions for all variables. The linear system is solved using BiCGStab(ell). To ensure the
well-posedness of the equations eκ is replaced by eκ + ξ with a small parameter ξ = 10−6.

Adaptive meshes are indispensible for providing a high spatial resolution along the interface.
For local mesh adaptation, we use a L2-like error indicator based on a jump residual (see e.g.
[30, 31]) for ϕ to maintain approximately 5 grid points across the transition layers.

7. Numerical Results

We do simulations with both models for the bending stiffness, that is DDL and VBS. All
computations are carried out in the following way: The initial condition for ϕ is prescribed by
ϕ = 0.5

(
1 + tanh(d/

√
2κ)
)

for a given signed distance function d. First, we keep this ϕ fixed and
only solve the PFC equations (29)-(31). We use a uniform distributed random perturbation in
[−0.4,−0.2] as initial value for %. We stop the pure PFC system when a steady state is reached,
that is when an equilibrium distribution of particles on the surfaces is reached. Then in a second
step we allow the interface to move. Therefore we solve the complete coupled system (27)-(31)
taking % from the previous calculation as initial value.

In all simulations we neglect spontaneous curvature H0 in the normal bending energy. The
incorporation of this term is not an issue in the computational approach and might be of relevance
if the viral building blocks had a pronounced conical shape [7].

Figure 5. Evolution of a sphere covered with 32 proteins towards an icosahedral
shape. The times shown are t = 0, 0.01, 0.02, 1.0.

First, we present results of the discrete defect localisation. Fig. 5 shows an example for the
evolution of a sphere towards the faceted icosahedral shape. Here we use Ω = [−15, 15]3 and
a radius of 11.5 (i.e. d = 11.5 − |x|). The sphere is covered with 32 particles which yields 12
disclinations. Further parameters are κ = 0.6, MN = 120, Mκ

A = 15.0, Mκ
V = 0, T = 1, τ = 0.001

and ε = 0.4. For A0 we use the value of Aκ(ϕ) at time t = 0.
We also do simulations for smaller spheres of radius 5.0, 6.0 and 7.0 yielding 6, 9 and 12

proteins. In the DDl approach every particle is a disclination and the sphere buckles in each of
them. Fig. 6 shows initial condition, steady state and the bending stiffness on the surface.

The last DDL example shows the evolution of a sphere with radius 40 covered with 344 particles.
Here, particles with 5, 6 and 7 neighbors occur. The arrangement of particles is irregular and leads
to a non-icosahedral shape. Fig. 7 shows initial condition, steady state and the bending stiffness
on the surface. One can also see chains of particles with alternately 5 and 7 neighbors, so-called
grain boundary scars which have been discussed for droplets covered by colloidal particles [5]. For
this simulation we take Ω = [−60, 60]3, τ = 0.01, MN = 1200, Mκ

A = 3 and further parameters
as before.

Next, we do simulations with the VBS model. We start with a sphere of radius 6.0 which
yields nine particles. Three of them have only four neighbors, the remaining six particles have
five neighbors. Fig. 8 shows a time evolution of the morphology. In contrast to the DDL
approach this configuration leads to a quasi triangular shape, where the three particles with only
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Figure 6. Spheres with 6, 9, 12 and 32 proteins. Initial condition (left), final
state (middle) and bending stiffness at final time (right).

Figure 7. Sphere covered with 344 proteins. Initial condition (left), final state
(middle) and bending stiffness at final time (right).
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four neighbors occupy the edges. The parameters are chosen as β = 0.06, τ = 0.1, T = 30,
MN = 3, Mκ

A = 1

Figure 8. A sphere covered with 9 proteins evolves to a triangular-like shape.
Shown times are t = 0, 5, 30.

In order to validate the approach further we compute the PFC surface energy. Fig. 9 shows
the evolution over time and indicates a decrease of the PFC energy. This clearly demonstrates
the validity of our effective multiscale approach for surface evolution.
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Figure 9. PFC surface energy, FκPFC(%, ϕ) over time.

Finally we demonstrate evolutions of bigger spheres with 12, 32 and 93 particles, respectively.
Fig. 10 shows the morphology at final time. The parameters are as before except for β = 0.03
and MN = 300 which speeds up the evolution.

Figure 10. Final shape of surfaces with 9, 12, 32 and 93 proteins.

8. Discussion

The different shapes of spherical like viral capsides which change from spherical to faceted
can be explained by a buckling transition resulting from a balance between the stretching energy
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associated with the pentamers in capsomer lattices and the bending elasticity of the viral capsid
[18]. We model this within a continuum multiscale approach allowing for reordering of proteins
and shape changes simulataneously. In [17] a similar approach is used to study crystalline order
on flexible surfaces within a lattice model. The interplay between formation of grain boundary
scars to minimize the stretching energy associated with disclinations on rigid surfaces and the
possibility to minimize the energy by buckling is investigated for surfaces with spherical topology.
In [17] it is computationally found that the buckling transition shifts to higher values of the
Föppl-von Karman number γ due to the presence of scars. Due to the high computational cost
of the used diffuse domain approach we could not confirm these results. But we also observe the
formation of grain boundary scars for the largest considered example. However grain boundary
scars have not been observed on viruses as they are to small in size. But the coupling between
in-plane order and the geometry with the possibility to change local arrangements and the shape
of the surface simultaneously might play a crucial role in other structures, e.g. in membranes
[20] with lipids playing the role of interacting particles. Other applications consider crystalline
monolayers of colloids confined on curved interfaces between immiscible fluids [10, 4, 26] which
has been considered within a similar continuum approach in [1]. In all these applications the
number of interacting particles is much larger and within the regime of the formation of grain
boundary scars.

In our approach we use the crystalline order, or to be more precise, the defects within the
crystalline structure in the microscopic model to define an effective anisotropy in the macroscopic
description of the geometry. The normal bending rigidity κN becomes a function of the underlying
defect structure and thus incorporates their stretching energy.

The computational approach is based on a diffuse interface approximation which allows to
formulate the problem as a system of partial differential equations within a three-dimensional
domain, and thus allows its solution using only standard tools. To be computational efficient
adaptive refinement is required along the diffuse interface. The approach is not restricted to
spherical like shapes but can be used for arbitrary shapes, even with topological transitions dur-
ing evolution.

Appendix A. Variational ϕ-derivative of the diffuse PFC energy

In this section we compute the variational derivative δϕFκPFC |(%,ϕ)(η) of the diffuse PFC energy
at (%, ϕ) with respect to the variable ϕ in direction of a smooth variation field η ∈ C∞c (Ω) and
justify the approximation (25) that was used in the variational approach to define a reasonable
bending stiffness. We first collect some derivatives that we will need in our computations.

For the variational derivative of the diffuse surface energy we obtain

δϕeκ|ϕ(η) = κ∇ϕ · ∇η +
1

κ
G′(ϕ)η = ∇ · (κη∇ϕ) + wκ(ϕ)η,(32)

with the diffuse scalar mean curvature

wκ(ϕ) = −κ∆ϕ+
1

κ
G′(ϕ).

The inner normal to the level sets of ϕ is

ν = ν(ϕ) :=
∇ϕ
|∇ϕ|

,

we compute that

δϕν|ϕ(η) =
1

|∇ϕ|
P (ϕ)∇η,(33)
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with the tangential projection

P = P (ϕ) = Id− ν(ϕ)⊗ ν(ϕ).

Next we obtain for the variational derivative of this projection

δϕP |ϕ(η) = − 1

|∇ϕ|

(
P∇ηνT + ν∇ηTP

)
.(34)

Furthermore we need several spatial derivatives that we collect for further use. First

∇eκ = κD2ϕ∇ϕ+
1

κ
G′(ϕ)∇ϕ.(35)

For r > 0 we have

D
( ∇ϕ
|∇ϕ|r

)
=

1

|∇ϕ|r
(

Id− rννT
)
D2ϕ.(36)

For the projection we deduce

∂kPij = − 1

|∇ϕ|
Pil∂

2
lkϕνj − νi

1

|∇ϕ|
Pjl∂

2
lkϕ(37)

∇ · P (ϕ) = − 1

|∇ϕ|

(
Id− 2ννT

)
D2ϕν − 1

|∇ϕ|
∆ϕν.(38)

We now compute the variational derivative of the second order term in the PFC energy.

δϕ

(∫
Ω

1

2

(
∆κ%

)2
eκ dx

)
(η) =

∫
Ω

1

2

(
∆κ%

)2
δϕeκ(η) +

(
∆κ%

)
δϕ
(
∆κ%

)
(η)eκ dx =: I.(39)

We obtain

δϕ
(
∆κ%

)
(η) = δϕ

( 1

eκ
∇ · (eκP∇%)

)
(η) = − 1

eκ
δϕeκ(η)∆κ%+

1

eκ
∇ ·
(
δϕeκ(η)P∇%

)
+

1

eκ
∇ ·
(
eκδϕP (η)∇%

)
,

hence

I = I1 + I2 + I3 :=

∫
Ω
−1

2

(
∆κ%

)2
δϕeκ(η) dx+

∫
Ω

(
∆κ%

)
∇ ·
(
δϕeκ(η)P∇%

)
dx+

∫
Ω

(
∆κ%

)
∇ ·
(
eκδϕP (η)∇%

)
dx.

Using (32) we have

I1 =

∫
Ω
−1

2

(
∆κ%

)2(∇ · (κη∇ϕ) + wκ(ϕ)η
)
dx =

∫
Ω

[(
∆κ%

)
∇
(
∆κ%

)
· κ∇ϕ− 1

2

(
∆κ%

)2
wκ

]
η dx

(40)

and

I2 = −
∫

Ω
P∇

(
∆κ%

)
· ∇%

(
∇ · (κη∇ϕ) + wκη

)
dx

=

∫
Ω
∇
(
P∇

(
∆κ%

)
· ∇%

)
· κ∇ϕη dx−

∫
Ω
P∇

(
∆κ%

)
· ∇%wκη dx =: I21 + I22.(41)

With (37) it follows that

I21 = −
∫

Ω
η∇% · κ

|∇ϕ|

(
PD2ϕ∇ϕνT + ν∇ϕTD2ϕP

)
∇
(
∆κ%

)
dx

+

∫
Ω
η
[
P∇% ·D2(∆κ%)κ∇ϕ+ P∇(∆κ%) ·D2%κ∇ϕ

]
dx.(42)

With (34) we next compute

I3 =

∫
Ω

(
∆κ%

)
∇ ·
(
eκδϕP (η)∇%

)
dx = −

∫
Ω

(
∆κ%

)
∇ ·
(
eκ

1

|∇ϕ|

(
(ν · ∇%)P∇η + (∇η · P∇%)ν

))
dx

=

∫
Ω
eκP∇(∆κ%) · 1

|∇ϕ|
(ν · ∇%)∇η dx+

∫
Ω
∇(∆κ%) · eκ

|∇ϕ|
(
∇η · P∇%

)
ν dx =: I31 + I32,

(43)
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further by a partial integration and by (36)

I31 = −
∫

Ω
(∆2

κ%)
eκ
|∇ϕ|

(ν · ∇%)η dx−
∫

Ω
eκP∇(∆κ%) · ∇

( 1

|∇ϕ|
(ν · ∇%)

)
η dx

= −
∫

Ω
(∆2

κ%)
eκ
|∇ϕ|

(ν · ∇%)η dx−
∫

Ω
eκP∇(∆κ%) ·

[ 1

|∇ϕ|2
(

Id− 2ννT
)
D2ϕ∇% +

1

|∇ϕ|
D2% ν

]
η dx.

(44)

Finally we have by (35), (36)

I32 = −
∫

Ω
η
eκ
|∇ϕ|

[
ν ·D2

(
∆κ%

)
P∇%+

(
ν · ∇(∆κ%)

)(
(∇ · P ) · ∇%+ P : D2%

)]
dx

−
∫

Ω
ηeκ∇(∆κ%) · 1

|∇ϕ|2
(

Id− 2ννT
)
D2ϕP∇% dx

−
∫

Ω
η

1

|∇ϕ|
(
∇(∆κ%) · ν

)(
κD2ϕ∇ϕ+

1

κ
G′(ϕ)∇ϕ

)
· P∇% dx.(45)

For the L2-gradient of the second order part of the FκPFC energy we thus obtain from (40)-(45),
using (38) in (45)

∂ϕ

(∫
Ω

1

2

(
∆κ%

)2
eκ dx

)
=
(
∆κ%

)
∇
(
∆κ%

)
· κ∇ϕ− 1

2

(
∆κ%

)2
wκ − ∇% · κ

(
PD2ϕννT + ννTD2ϕP

)
∇
(
∆κ%

)
+ P∇% ·D2(∆κ%)κ∇ϕ+ P∇(∆κ%) ·D2%κ∇ϕ − P∇

(
∆κ%

)
· ∇%wκ − (∆2

κ%)
eκ
|∇ϕ|

(ν · ∇%)

− eκP∇(∆κ%) ·
[ 1

|∇ϕ|2
(

Id− 2ννT
)
D2ϕ∇% +

1

|∇ϕ|
D2% ν

]
− eκ
|∇ϕ|

[
ν ·D2

(
∆κ%

)
P∇%+

(
ν · ∇(∆κ%)

)(
− ∇%
|∇ϕ|

·
(

Id− 2ννT
)
D2ϕν − 1

|∇ϕ|
∆ϕ(ν · ∇%) + P : D2%

)]

− eκ∇(∆κ%) · 1

|∇ϕ|2
(

Id− 2ννT
)
D2ϕP∇% − 1

|∇ϕ|
(
∇(∆κ%) · ν

)(
κD2ϕ∇ϕ+

1

κ
G′(ϕ)∇ϕ

)
· P∇%

(46)

= − 1

2

(
∆κ%

)2
wκ − P∇

(
∆κ%

)
· ∇%wκ − P∇(∆κ%) · eκ

|∇ϕ|2
D2ϕ∇% −

(
Id− 2ννT

)
∇(∆κ%) · eκ

|∇ϕ|2
D2ϕP∇%

+ [∇
(
∆κ%

)
· ν]
(
∆κ%

)
κ|∇ϕ| − [∇

(
∆κ%

)
· ν]∇% · κPD2ϕν − [∇% · ν]ν · κD2ϕP∇

(
∆κ%

)
− [ν · ∇%](∆2

κ%)
eκ
|∇ϕ|

+ [ν · ∇(∆κ%)]
eκ
|∇ϕ|2

(
∇% ·

(
Id− 2ννT

)
D2ϕν + [ν · %][ν · ∇(∆κ%)]

eκ
|∇ϕ|2

∆ϕ

− [ν · ∇(∆κ%)]
eκ
|∇ϕ|

P : D2%− [∇(∆κ%) · ν]κD2ϕν · P∇%

+ [κ|∇ϕ| − eκ
|∇ϕ|

]
(
ν ·D2

(
∆κ%

)
P∇%+ P∇(∆κ%) ·D2%ν

)(47)

≈ − 1

2

(
∆κ%

)2
wκ − ∇

(
∆κ%

)
· ∇%wκ − 2∇(∆κ%) · κD2ϕ∇%,

(48)

where in the last line we have used that to lowest order of κ we have that %,∆κ% are constant in
normal direction and that we have to lowest order in κ equipartition of energy.
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Next we consider the first order term in FκPFC and compute the variational derivative in the
direction of a variation field η ∈ C∞c (Ω).

δϕ

(∫
Ω
|P∇%|2 eκ dx

)
(η) =

∫
Ω
|P∇%|2δϕeκ(η) dx+ 2P∇% · δϕP (η)∇% eκ dx

=

∫
Ω
|P∇%|2

(
∇ · (κη∇ϕ) + wκη

)
dx− 2

∫
Ω

(ν · ∇%)P∇% · ∇η eκ
|∇ϕ|

dx

=

∫
Ω
η|P∇%|2wκ dx−

∫
Ω

2ηP∇% · ∂k(P∇%)κ∂kϕdx+ 2

∫
Ω
η∇ ·

(
(ν · ∇%)P∇% eκ

|∇ϕ|

)
dx.(49)

For the L2-gradient we therefore obtain by similar calculations as above that

∂ϕ

(∫
Ω
|P∇%|2 eκ dx

)
= |P∇%|2wκ + 2

κ

|∇ϕ|
P∇% · (ν · ∇%)PD2ϕ∇ϕ

− 2P∇% · κPD2%∇ϕ+ 2∇
( 1

|∇ϕ|
(ν · ∇%)

)
· P∇% eκ + 2

eκ
|∇ϕ|

(ν · ∇%)∆κ%

= |P∇%|2wκ + 2(ν · ∇%)P∇% · κD2ϕν − 2P∇% · κPD2%∇ϕ

+ 2
[ 1

|∇ϕ|2
(

Id− 2ννT
)
D2ϕ∇% +

1

|∇ϕ|
D2% ν

]
· P∇%eκ + 2

eκ
|∇ϕ|

(ν · ∇%)∆κ%

≈ |∇%|2wκ − 2κ|∇ϕ|∇% ·D2%ν + 2
eκ
|∇ϕ|2

∇% ·D2ϕ∇% + 2
eκ
|∇ϕ|

D2% ν · ∇%

≈ |∇%|2wκ + 2∇% · κD2ϕ∇%,(50)

where we again have used that to lowest order normal derivatives of % and |∇%|2 vanish and that
to lowest order equipartition of energy holds.

Finally we compute the variational derivative of the zeroth order term in the diffuse PFC
energy.

δϕ

(∫
Ω
f(%) eκ dx

)
(η) =

∫
Ω
f(%)δϕeκ(η) dx =

∫
Ω
−ηf ′(%)∇% · κ∇ϕ+ ηf(%)wκ

and therefore

∂ϕ

(∫
Ω
f(%) eκ dx

)
= −(∇% · ν)κ|∇ϕ|f ′(%) + f(%)wκ ≈ f(%)wκ.(51)

Putting together (48),(50),(51) we arrive at the approximation (25).

Appendix B. Variational derivatives: Sharp interface energies

The evolution of the n-dimensional surface Γ ⊂ Rn+1 is based on the energy (see [16])

(52) FHelfrich(%,Γ) =

∫
Γ
κN (%)(H −H0(%))2 dµ(x).

The phase field crystal model (PFC) on an n-dimensional surface Γ ⊂ Rn+1 is based on the energy

(53) FPFC(%,Γ) =

∫
Γ

(
−‖∇Γ%‖2Γ +

1

2
(∆Γ%)2 + f(%)

)
dµ(x)

for a number density % and a potential f(%) = 1
2(1− ε)%2 + 1

4%
4 with a parameter ε ∈ R.

In order to derive a dynamic model for both the density % and the surface Γ from a gradient
flow perspective, one needs functional derivatives of (52) and (53), which are computed in the
following. Note that, since %(t, ·) is a function on Γ(t), with a variation of Γ we also vary %.
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B.1. Geometric notations. We introduce some basic geometric notations. Thereby, sum con-
vention is used. Our object of interest is a closed moving surface Γ = Γ(t) ⊂ Rn+1 parametrized
by a one parameter family of smooth embeddings ϕ : M × [0, T ] → Rn+1 where M denotes a
smooth closed n-dimensional manifold. To be more precise, we have Γ(t) = ϕ(M, t). We define
the trivial immersion Φ : Γ→ Rn+1 through

(54) Φ(x) := x = (x1, . . . , xn+1) for x ∈ Γ.

In addition, we introduce the mapping φ : M × [0, T ]→ Γ by the relation ϕ = Φ ◦ φ. We denote

the Euclidean scalarproduct x · y =
∑n+1

i=1 xiyi for x, y ∈ Rn+1. Local coordinates in M are

dentoted with ξ1, . . . , ξn and corresponding derivatives we denote by ∂ξiu = ∂u
∂ξi

, i = 1, . . . , n, for

a function u : M → R. On Γ, we obtain induced local coordinates z1, . . . , zn via z = ξ ◦φ−1. The
tangent space TxΓ of the surface Γ at the point x = ϕ(p, t) ∈ Γ(t) is spanned by ∂ξ1ϕ, . . . , ∂ξnϕ
in the “embedded” sense and by ∂z1 |x, . . . , ∂zn |x in the sense of derivations, and deviating from
the previous sections, by ν we denote in this section the inner normal.

We further introduce γij := ∂ξiϕ · ∂ξjϕ (pullback) and gij(x) = ∂ziΦ(x) · ∂zjΦ(x) such that

γij(p, t) = gij(φ(p, t)), p ∈ M , holds. We define the coefficients gij of the inverse (gij) := (gij)
−1

and g := det(gij) (and accordingly for γ). For tangent vectors v = vi∂ξiϕ = vi∂zi |x and w =

wi∂ξiϕ = wi∂zi |x, we then have the metric

(55) 〈v, w〉Γ = gijv
iwj = viwj∂ξiϕ · ∂ξjϕ = v · w.

For convenience, we will often use ∂i := ∂zi , i = 1, . . . , n in the following. The norm on TxΓ

is thus defined through ‖v‖Γ :=
√
〈v, v〉Γ and the second fundamental form is given by hij =

II(∂ξiϕ, ∂ξjϕ) = −∂iν · ∂ξjϕ with II(u, v) = hijv
iwj . We define 〈X,Y 〉Γ,n+1 :=

∑n+1
i=1 〈Xi, Yi〉Γ for

X,Y ∈ (TΓ)n+1. Thereby, a typical example of X ∈ (TΓ)n+1 is given by

X = ∇ΓΦ =

 ∇ΓΦ1
...

∇ΓΦn+1

 .

In addition, we define

〈X, v〉Γ = 〈v,X〉Γ =

 〈X1, v〉Γ
...

〈Xn+1, v〉Γ

 ∈ Rn+1

for X ∈ (TΓ)n+1 and v ∈ TΓ.
Furthermore, we need the shape operator S, which is given by Sij = gikhkj . The norm of

S is defined through ‖S‖ =
√

tr(SST ) =
√
SijSji. The mean curvature we define through

H = trS =
∑n

i=1 κi, with κi the principal curvatures. The Christoffel symbols are given by

Γkij = 1
2g
kl(∂igjl +∂jgil−∂lgij). Furthermore, we will need the Weingarten equations, which read

∂iν = −Sij∂jΦ.
We use the surface divergence∇Γ·W = 1√

g∂i(
√
gηi) for a tangential vector fieldW = ηi∂ξiϕ, the

surface gradient ∇Γ = gij∂ξiϕ∂j , the Laplacian ∆Γ = ∇Γ ·∇Γ = 1√
g∂i(
√
ggij∂j) = gij∂ij−gijΓkij∂k

and the following identities (see [32, 24])

∆ΓΦ = Hν,(56)

〈∇ΓΦ,∇Γ%〉Γ = ∇Γ% = gij∂i%∂ξjϕ.(57)

Furthermore, we denote the Riemannian connection by D. The Hessian Hess % : TΓ → TΓ of
a function % : Γ→ R is defined as the covariant derivative of the gradient of %

(58) (Hess %)Y := DY∇Γ%
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for a vector field Y ∈ TΓ. Then one obtains

(59) 〈∇Γ〈∇Γ%,∇Γψ〉Γ,∇Γη〉Γ = 〈(Hess %)∇Γη,∇Γψ〉Γ + 〈∇Γ%, (Hess ψ)∇Γη〉Γ

for functions %, ψ, η : Γ→ R. In addition, the Hessian is symmetric

(60) 〈(Hess %)X,Y 〉Γ = 〈X, (Hess %)Y 〉Γ.

Furthermore, for a function % : Γ→ R, the integral of % over Γ is given by∫
Γ(t)

%(x) dµ(x) =

∫
M
%(ϕ(p, t))

√
γ(p, t) dµ(p).

B.2. Basic variations. We provide the variational derivatives of F with respect to ϕ and %. The
calculations closely follow the approach in [32]. The basic strategy is to consider the derivative

d

dt
F(%,Γ)

∣∣
t=0

and represent the result of the derivative as

d

dt
F(%,Γ)

∣∣
t=0

=

∫
Γ

(
∂ΦF(%(x, 0),Γ(0)) · d

dt
Φ
∣∣
t=0

+ ∂%F(%(x, 0),Γ(0))
d

dt
%
∣∣
t=0

)
dµ(x)

which can be interpreted as the definition of the partial functional derivatives ∂ΦF and ∂%F .

Furthermore, we use the notation δ := d
dt

∣∣
t=0

.
In order to compute the variation of the energy we need the following variations.

δ(dµ(ϕ(p, t))) = δ(
√
γ(p, t) dµ(p)) = 〈∇ΓδΦ,∇ΓΦ〉Γ,n+1 dµ(x),(61)

δ(γij(p, t)) = −gki (∂kδΦ · ∂lΦ + ∂lδΦ · ∂kΦ) glj .(62)

Proof. We only scetch the proof and follow the calculations in [32]. We use ∂iΦ(x) = ∂ξiϕ(p, t)
with x = ϕ(p, t), the sum convention and write

(63) δΦ = gijδΦ · ∂iΦ∂jΦ + δΦ · νν.

One essential result that is needed is the variation of the metric

(64) δgij = ∂iδΦ · ∂jΦ + ∂jδΦ · ∂iΦ.

For a differentiable matrix A = A(t) ∈ Rn×n one has

d

dt
detA(t)

∣∣∣
t=0

= detA(0)tr

(
A(0)−1 d

dt
A(t)

∣∣∣
t=0

)
.

Because of dµ(ϕ(p, t)) =
√

det(γij)i,j dµ(p) we get

2dµ(ϕ(p, t))δ(dµ(ϕ(p, t))) = δ(det(γij)) dµ(p) = det(γij)γijδγij dµ(p)

= γij(∂ξiδϕ · ∂ξjϕ+ ∂ξjδϕ · ∂ξiϕ)dµ(ϕ(p, t)),

which yields (61). The proof of (62) easily follows from (64). �

B.3. Variation of FHelfrich. The derivation of the functional derivatives of the Helfrich energy
can be found e.g. in [32, 24, 15] for H0 and κN constant.
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B.3.1. Variation of the normal bending energy. In the case of the normal bending energy, one
obtains

d

dt
FHelfrich,B(%,Γ)

∣∣
t=0

=

∫
Γ

∆Γ(κN (%)(H −H0(%)))δΦ · ν dµ(x) +

∫
Γ
κN (%)(H −H0(%))‖S‖2δΦ · ν dµ(x)

− 1

2

∫
Γ
κN (%)(H −H0(%))2HδΦ · ν dµ(x)

+

∫
Γ

1

2
κ′N (%)(H −H0(%))δ%dµ(x)−

∫
Γ
κN (%)(H −H0(%))H ′0(%)δ%dµ(x)

and therefore partial functional derivatives

∂ΦFHelfrich,B(%(x, 0),Γ(0)) = ∆Γ(κN (%)(H −H0(%)))ν

+ κN (%)(H −H0(%))‖S‖2ν − 1

2
κN (%)(H −H0(%))2Hν,

∂%FHelfrich,B(%(x, 0),Γ(0)) =
1

2
κ′N (%)(H −H0(%))− κN (%)(H −H0(%))H ′0(%).

B.4. Variation of FPFC . For a computation of a functional derivatve of a Ginzburg-Landau
free energy on a surface, we refer to [15].

B.4.1. Variation of the zero order term. We define

FPFC,0(%,Γ) :=

∫
Γ
f(%) dµ(x)

and obtain as an intermediate result

(65)
d

dt
FPFC,0(%,Γ)

∣∣∣
t=0

=

∫
Γ
f ′(%)δ%dµ(x) +

∫
Γ
f(%)〈∇ΓδΦ,∇ΓΦ〉Γ,n+1 dµ(x)

which is part of the basis for a weak formulation, δ% and δΦ being the test functions. Furthermore,
we compute

d

dt
FPFC,0(%,Γ)

∣∣∣
t=0

=

∫
Γ
f ′(%)δ%dµ(x)−

∫
Γ
f(%)δΦ ·∆ΓΦ dµ(x)

=

∫
Γ
f ′(%)δ%dµ(x)−

∫
Γ
f(%)Hν · δΦ dµ(x),

where we have used (57). In other words

∂ΦFPFC,0(%(x, 0),Γ(0)) = −f(%)Hν,

∂%FPFC,0(%(x, 0),Γ(0)) = f ′(%).

B.4.2. Variation of the first order term. We define

FPFC,1(%,Γ) :=
1

2

∫
Γ
‖∇Γ%‖2Γ dµ(x) =

1

2

∫
Γ
gij∂i%∂j%dµ(x)

and compute

1

2
(δgij)∂i%∂j% = −1

2
gki (∂kδΦ · ∂lΦ + ∂lδΦ · ∂kΦ) glj∂i%∂j%

= −〈∇ΓδΦ,∇Γ%〉Γ · 〈∇ΓΦ,∇Γ%〉Γ,
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and we obtain as an intermediate result

d

dt
FPFC,1(%,Γ)

∣∣∣
t=0

= −
∫

Γ
〈∇ΓδΦ,∇Γ%〉Γ · 〈∇ΓΦ,∇Γ%〉Γ dµ(x)(66)

+

∫
Γ
〈∇Γδ%,∇Γ%〉Γ dµ(x) +

∫
Γ

1

2
‖∇Γ%‖2Γ 〈∇ΓδΦ,∇ΓΦ〉Γ,n+1 dµ(x)

which is part of the basis for a weak formulation. Furthermore, we finally get

d

dt
FPFC,1(%,Γ)

∣∣∣
t=0

= −
∫

Γ
〈∇ΓδΦ,∇Γ%〉Γ · 〈∇ΓΦ,∇Γ%〉Γ dµ(x)

−
∫

Γ
∆Γ%δ%dµ(x) +

∫
Γ

1

2
‖∇Γ%‖2Γ 〈∇ΓδΦ,∇ΓΦ〉Γ,n+1 dµ(x)

from this we obtain by (59) and by (60)

∂ΦFPFC,1(%(x, 0),Γ(0))

= ∆Γ%∇Γ%+ 〈∇Γ〈∇Γ%,∇ΓΦ〉Γ,∇Γ%〉Γ −
1

2
〈∇Γ ‖∇Γ%‖2Γ ,∇ΓΦ〉Γ

− 1

2
‖∇Γ%‖2ΓHν

= ∆Γ%∇Γ%+ 〈(Hess %)∇Γ%,∇ΓΦ〉Γ + 〈∇Γ%, (Hess Φ)∇Γ%〉Γ

− 〈(Hess %)∇ΓΦ,∇Γ%〉Γ −
1

2
‖∇Γ%‖2ΓHν

= ∆Γ%∇Γ%+ 〈∇Γ%, (Hess Φ)∇Γ%〉Γ −
1

2
‖∇Γ%‖2ΓHν.

Furthermore, we get

∂%FPFC,1(%(x, 0),Γ(0)) = −∆Γ%.

B.4.3. Variation of the second order term. We define

FPFC,2(%,Γ) :=

∫
Γ

1

2
(∆Γ%)2 dµ(x).

Here, we need

δ∆Γ% = δ
( 1
√
g
∂i(
√
ggij∂j%)

)
= −1

g
δ(
√
g)∂i(

√
ggij∂j%) +

1
√
g
∂i(δ(

√
g)gij∂j%)

+
1
√
g
∂i(
√
gδ(gij)∂j%) +

1
√
g
∂i(
√
ggij∂jδ%)

= − 1
√
g
〈∇ΓδΦ,∇ΓΦ〉Γ,n+1∂i(

√
ggij∂j%) +

1
√
g
∂i(〈∇ΓδΦ,∇ΓΦ〉Γ,n+1

√
ggij∂j%)

− 1
√
g
∂i(
√
ggki (∂kδΦ · ∂lΦ + ∂lδΦ · ∂kΦ) glj∂j%) + ∆Γδ%

= −〈∇ΓδΦ,∇ΓΦ〉Γ,n+1∆Γ%+∇Γ · (〈∇ΓδΦ,∇ΓΦ〉Γ,n+1∇Γ%)

−∇Γ · (∇ΓδΦ · 〈∇ΓΦ,∇Γ%〉Γ + 〈∇ΓδΦ,∇Γ%〉Γ · ∇ΓΦ) + ∆Γδ%.
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and we obtain as an intermediate result

d

dt
FPFC,2(%,Γ)

∣∣∣
t=0

= −
∫

Γ
〈∇ΓδΦ,∇ΓΦ〉Γ,n+1(∆Γ%)2 dµ(x)(67)

−
∫

Γ
〈∇Γ∆Γ%,∇Γ%〉Γ〈∇ΓδΦ,∇ΓΦ〉Γ,n+1 dµ(x)

+

∫
Γ
〈∇Γ∆Γ%,∇ΓδΦ · 〈∇ΓΦ,∇Γ%〉Γ + 〈∇ΓδΦ,∇Γ%〉Γ · ∇ΓΦ〉Γ dµ(x)

+

∫
Γ

∆Γ%∆Γδ%dµ(x) +
1

2

∫
Γ
(∆Γ%)2〈∇ΓδΦ,∇ΓΦ〉Γ,n+1 dµ(x)

which is part of the basis for a weak formulation. With this we obtain

d

dt
FPFC,2(%,Γ)

∣∣∣
t=0

=

∫
Γ
δΦ ·∆ΓΦ(∆Γ%)2 dµ(x) + 2

∫
Γ
δΦ · 〈∇ΓΦ,∇Γ∆Γ%〉Γ∆Γ%dµ(x)

+

∫
Γ
〈∇Γ∆Γ%,∇Γ%〉ΓδΦ ·∆ΓΦ dµ(x)

+

∫
Γ
〈∇Γ〈∇Γ∆Γ%,∇Γ%〉Γ,∇ΓΦ〉Γ · δΦ dµ(x)

−
∫

Γ
∆2

Γ%δΦ · 〈∇ΓΦ,∇Γ%〉Γ dµ(x)

−
∫

Γ
δΦ · 〈∇Γ∆Γ%,∇Γ〈∇ΓΦ,∇Γ%〉Γ〉Γ dµ(x)

−
∫

Γ
δΦ · 〈∇Γ∆Γ%,∇ΓΦ〉Γ∆Γ% dµ(x)

−
∫

Γ
δΦ · 〈∇Γ〈∇Γ∆Γ%,∇ΓΦ〉Γ,∇Γ%〉Γ dµ(x)

+

∫
Γ

∆2
Γ%δ%dµ(x)− 1

2

∫
Γ
(∆Γ%)2δΦ ·∆ΓΦ dµ(x)

−
∫

Γ
∆Γ%〈∇Γ∆Γ%,∇ΓΦ〉Γ · δΦ dµ(x).
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From this one gets

∂ΦFPFC,2(%(x, 0),Γ(0))

=
1

2
(∆Γ%)2Hν + 〈∇Γ∆Γ%,∇Γ%〉ΓHν + 〈∇Γ〈∇Γ∆Γ%,∇Γ%〉Γ,∇ΓΦ〉Γ

−∆2
Γ%〈∇ΓΦ,∇Γ%〉Γ − 〈∇Γ∆Γ%,∇Γ〈∇ΓΦ,∇Γ%〉Γ〉Γ

− 〈∇Γ〈∇Γ∆Γ%,∇ΓΦ〉Γ,∇Γ%〉Γ

=
1

2
(∆Γ%)2Hν + 〈∇Γ∆Γ%,∇Γ%〉ΓHν + 〈(Hess ∆Γ%)∇Γ%,∇ΓΦ〉Γ

+ 〈(Hess %)∇Γ∆Γ%,∇ΓΦ〉Γ −∆2
Γ%〈∇ΓΦ,∇Γ%〉Γ

− 〈∇Γ∆Γ%, (Hess Φ)∇Γ%〉Γ − 〈∇Γ∆Γ%, (Hess %)∇ΓΦ〉Γ
− 〈(Hess ∆Γ%)∇ΓΦ,∇Γ%〉Γ − 〈(Hess Φ)∇Γ∆Γ%,∇Γ%〉Γ

=
1

2
(∆Γ%)2Hν + 〈∇Γ∆Γ%,∇Γ%〉ΓHν − 2〈(Hess Φ)∇Γ∆Γ%,∇Γ%〉Γ

−∆2
Γ%〈∇ΓΦ,∇Γ%〉Γ

Furthermore,

∂%FPFC,2(%(x, 0),Γ(0)) = ∆2
Γ%.

B.4.4. Variation of total PFC energy. For the variations of the total PFC energy

FPFC(%,Γ) = FPFC,0(%,Γ)− 2FPFC,1(%,Γ) + FPFC,2(%,Γ)

one has to sum up the corresponding variations of the energies FPFC,i, i = 0, 1, 2.
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