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Abstract

We generalize an empirical likelihood approach to missing data to the case of con-
sumer credit scoring and provide a Hausman test for nonignorability of the missings.
An application to recent consumer credit data shows that our model yields param-
eter estimates which are significantly different (both statistically and economically)
from the case where customers who were refused credit are ignored.

Key words: Missing data; reject inference; credit scoring; logistic regression.

1 Introduction and summary

Statistical models for predicting defaults in the consumer credit industry and
elsewhere suffer from the non-availability of default information for customers
who were denied credit in the first place (Crook and Banasik 2004; Hand
and Henley 1993). This does not matter as far as estimation goes if such
data are missing at random (MAR) in the sense of Rubin (1976), i.e. if the
probability of default, given all the relevant exogenous variables of the model,
is the same whether an applicant is granted a credit or not. In applications,
this can reasonably be assumed if creditors base their decision on the same
statistical model (or a preliminary version thereof) which is to be estimated.

However, such procedures are illegal in many countries. In Germany, for in-
stance, the federal data privacy act (“Bundesdatenschutzgesetz”) explicitly
forbids banks to grant consumer credits solely on the basis of a statistical
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model – there must be some human judgement involved as well. This means
that in practice, among applicants with otherwise identical sets of “official”
explanatory variables, some may be granted a credit and some may not. Or
technically speaking, the probability of not being granted a credit, given the
observed regressors, is not the same as the probability given the observed
regressors and future default information whenever human judgement adds
any additional information on the latter. Therefore, data are missing not at
random (MNAR) in the Rubin (1976) sense.

The present paper proposes a new approach to cope with this. It is based
on Qin et al. (2002), who show how to reweight observations in the light of
missing data, given a parametric model for the missings, using empirical like-
lihood (Owen 2001). In the context of a logistic regression model for defaults,
we show that this reweighting delivers consistent and asymptotically normal
parameter estimates even when credit decisions and defaults are still corre-
lated, given all regressors. We also propose a Hausman test to check whether
this dependency prevails. Finally we apply our model to a recent data set of
9,000 individuals applying for credit with a major German bank and show
that it yields parameter estimates which are significantly different both in a
statistical and in an economic sense.

2 Reweighting observations in the context of missing data

We consider iid data sets of the type (Yi,Xi, Ri) (i = 1, . . . , N), where Yi = 1
in case of default and Yi = 0 in case of no default, Xi (k × 1) is a vector
of regressors, and Ri = 1 if credit is granted and Ri = 0 if credit is denied.
Without loss of generality, we assume that Ri = 1 for the first n < N data
sets, i.e. Yi is missing for i = n+1, . . . , N . We also assume that the dependence
of Y on X can be described by a logistic regression model

P (Yi = 1|Xi = xi,β) :=
exp(β0 + β1x1,i + β2x2,i + · · ·+ βkxk,i)

1 + exp(β0 + β1x1,i + β2x2,i + · · ·+ βkxk,i)
. (1)

Ignoring all data beyond n produces inconsistent ML-estimates for the model (1)
whenever data are missing not at random in the sense that

P (R = 1|X, Y ) 6= P (R = 1|X). (2)

We now show, following Qin et al. (2002), how this inconsistency can be re-
moved. To that purpose, let F (y,x) be the joint distribution function of (Y,X)
(no parametric model is needed for this), let

w(y,x,θ) := P (R = 1|Y,X,θ)
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be some parametric model for observability, let W := P (R = 1), and consider
the following semiparametric likelihood for θ, W , and F :

Ln(θ,W, F ) =

[
n∏

i=1

w(yi,xi,θ)dF (yi,xi)

]
· (1−W )N−n. (3)

This function is maximized under the constraints

pi ≥ 0,
n∑

i=1

pi = 0,
n∑

i=1

pi [xi − µX ] = 0,

and
n∑

i=1

pi [w(yi,xi,θ)−W ] = 0,

(4)

where pi = dF (yi,xi) = F (yi,xi)−F−(yi,xi), i.e. pi is the increase in the joint
distribution function at (yi,xi) and µX is either the known expectation or the
empirical mean of X. By introducing Lagrange multipliers and profiling for
all values of pi, it is seen that

pi =
1

n
[
1 + λ>1 (xi − µX) + λ2(w(yi,xi,θ)−W )

] ,
where λ1 and λ2 are Lagrange multipliers. Substituting pi into (3) results
in a profile likelihood that can be maximized numerically. Qin et al. (2002,
Theorem 1) show that under mild regularity conditions, the resulting empirical
likelihood estimates for θ and W are consistent and asymptotically normal.

This however shall not concern us here. We are interested in the plug-in esti-
mate p̂i of pi in order to reweight the likelihood derived from (1) to obtain

L?
n(β) =

n∏
i=1

p̂if(yi|xi,β), (5)

where f(yi|xi,β) = [P (Yi = 1|Xi = xi,β)]yi · [1− P (Yi = 1|Xi = xi,β)]1−yi .

The conventional ML-estimator β̂, which ignores all missings, is the solution
to (5) without the weights p̂i. Our main theoretical result is that maximizing
(5) yields a consistent and asymptotically normal estimator β̃ for β even in
the case of (2), i.e. when missingness cannot be ignored.

Theorem 1 Let β be from some compact subset of Rk+1. Also, the marginal
distribution of X must not depend on β. Then, under mild additional regu-
larity conditions to be specified in the appendix, the modified ML-estimator β̃
is weekly consistent and

√
N
(
β̃ − β0

)
d−→ N (0,V ) ,

where β0 denotes the true value of β.
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The proof of this theorem and the description of the limiting covariance matrix
V are in the appendix.

Table 1 provides some finite sample Monte Carlo evidence for N = 10, 000,

a common sample size in consumer credit scoring applications, k = 1, Xi
iid∼

N (0, 4) and

P (Yi = 1|Xi = xi,β) =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
(i = 1 . . . , N).

The observability of Y is governed by

w(yi, xi,θ) =
exp(θ0 + θ1yi)

1 + exp(θ0 + θ1yi)
(i = 1 . . . , N). (6)

In the table, we keep β1, β2 and θ1 fixed at 2, -1, and 1, respectively, and report
the empirical bias and the empirical mean square error for various values of
the crucial parameter θ0 which determines the proportion of missing data (the
larger θ0, the smaller the proportion of missing y’s). 1,000 runs are performed
for each parameter combination.

The table documents a considerable gain in efficiency for our new estimator
when the percentage of missings is large, both in terms of bias and mean

Table 1. Bias and Mean Square Error of new and conventional parameter estimates
(each multiplied by 1,000)

θ0 (resulting percentage of missings in parentheses)

-2 (76.5) -1 (55.2) 0 (32.1) 1 (15.3) 2 (6.4)

bias(β̂1) 818.276 618.419 380.993 187.864 77.567

bias(β̃1) 3.200 -2.432 2.108 1.275 -0.202

bias(β̂2) -3.757 -0.568 -0.356 -0.127 0.543

bias(β̃2) -4.291 -0.786 -0.322 -0.151 0.538

var(β̂1) 11.883 5.406 2.778 2.149 1.834

var(β̃1) 21.521 8.537 4.089 2.475 1.988

var(β̂2) 3.476 1.459 0.906 0.664 0.599

var(β̃2) 3.645 1.492 0.919 0.666 0.600

mse(β̂) 684.933 389.301 148.836 38.102 8.448

mse(β̃) 25.169 10.026 5.007 3.140 2.586
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square error. This advantage becomes smaller as the percentage of nonignor-
able missings decreases, but the MSE of the standard ML-estimator is still
more than three times the MSE of our modified estimator for a percentage of
missings as small as 6.4%.

Similar results were obtained for other parameter combinations and can be
obtained from the authors upon request.

A major drawback of the proposed estimation method is the non-identifiability
in the case of too many covariates in the missing data process. More precisely,
the parameter θ of the missing data process must not have length larger than
k + 1 since the number of free parameters must not exceed the number of
estimation equations in (4). Therefore, if w(y,x,θ) is a logistic regression
model and the missingness depends on Y we can only identify the parameters
of k − 1 covariates in addition to the intercept and the parameter of Y .

3 A Hausman test for nonignorability

If the y’s are missing at random, the conventional ML-estimator β̂ is asymp-
totically normal and efficient with covariance matrix V ?, say, so

√
N
(
β̃ − β̂

)
d−→ N (0,V − V ?)

(Hausman 1978). This follows from the fact that the difference β̃ − β̂ must
be asymptotically uncorrelated with the modified ML-estimator β̃ due to the
efficiency of the conventional ML-estimator β̂. In the MNAR case, however,
β̃

p−→ β0 and β̂ is inconsistent, so the statistic

h := N
(
β̃ − β̂

)>
(V − V ?)−

(
β̃ − β̂

)
, (7)

where ( )− denotes some generalized inverse, provides a consistent test of the
MAR null hypothesis.

Under the null and some regularity conditions, h is asymptotically χ2, with
degrees of freedom equal to the rank of V − V ?. This leads to all sorts of
complications in applications where V − V ? is singular, but the estimate for
V − V ? that is used in finite samples for the statistic (7) has full rank nev-
ertheless (Krämer and Sonnberger 1986). Also, the estimate of the differences
of the covariance matrices can fail to be positive-definite (Schreiber 2008). We
therefore propose to estimate the finite sample covariance matrix of β̃− β̂ via
the bootstrap. Table 2 provides some Monte Carlo results. The model is the

same as in section 2, with an additional regressor X2i
iid∼ N (0, 4) independent

of the first and also of the missingness. Thus, as in section 2, we now allow
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for random missings by generalizing (6) to

w(yi,xi,θ) =
exp(θ0 + θ1yi + θ2x1,i)

1 + exp(θ0 + θ1yi + θ2x1,i)
(i = 1 . . . , N).

We let θ2 = −1 in all experiments. The MAR-case corresponds to θ1 = 0, the
MNAR case corresponds to θ1 = −1. As in section 2, we let θ0 vary across
some range of values, and perform 1,000 runs for each parameter combination.

Table 2. Empirical rejection frequencies of the Hausman test for various percentages
of missing data

a) MAR (θ1 = 0)

θ0 (resulting percentage of missings in parentheses)

nominal significance level α -2 (77.5) -0.5 (57.5) 0.5 (42.5) 2 (22.5)

0.01 0.010 0.017 0.018 0.028

0.05 0.067 0.059 0.063 0.076

0.10 0.116 0.100 0.110 0.125

b) MNAR (θ1 = −1)

θ0 (resulting percentage of missings in parentheses)

nominal significance level α -2 (85.8) 0 (61.5) 1.5 (38.1) 3 (18.4)

0.01 0.265 0.956 0.996 1.000

0.05 0.481 0.989 1.000 1.000

0.10 0.596 0.995 1.000 1.000

4 An Application to consumer credit

Next we analyze 9,780 credit histories provided to us by a major German bank.
For 4,000 clients the repayment status is known, all other clients have been
denied credit. The lending institution holds information about the following
covariates: age, marital status, number of children, job, working time, house-
hold income, potential bail, purchasing power of the area where the applicant
lives, number of credits raised, a rating by the German General Credit Pro-
tection Agency “Schufa”, new customer or not, housing type, and habitation
time at the current address. The variables age (in years), working time (in
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months), income (in Euro), and habitation time (in months) are metric, the
other covariates are measured on a categorical scale.

The variable habitation time turns out to be independent of the missingness
and can thus be disregarded as a covariate for the model w. Hence we are able
to estimate the weights p̂i. By means of these weights we compute the estima-
tors for β. Table 3 reports the parameter estimates of a conventional logistic
regression model ignoring all missings as well as the estimates resulting from
our new approach. The results indicate that the new approach leads to signif-
icantly different estimates, for some variables even the sign of the estimate is
reversed. For instance, working time has a negative effect on repayment in the
conventional model whereas the effect is positive in our new model. Similarly,
potential bail shows a positive effect in the standard model, which turns neg-
ative with our new estimator. A possible explanation for this reversal is the
requirement of a co-signer only for clients with a high default risk.

To perform the Hausman test for nonignorability of the rejects, we need to
estimate the covariance matrix of q := β̃ − β̂. As the bootstrap is known to
lead to poor results in models with categorical covariates we use a jackknife-
estimator proposed by Shao (1992) and obtain

V̂arJ(q) =
n− (k + 1)

n

n∑
i=1

(q(i) − q)(q(i) − q)>,

where q(i) comprises the estimators obtained from all but the ith observation.
The resulting test statistic is 478.367 (p = 0.000), so the null hypothesis of
nonignorability of the rejects is indeed rejected

The goodness of fit of both models can be compared by McFadden’s R2.
The conventional model yields R2

McF = 0.103 and for the new model we have
R2

McF = 0.341.

5 Discussion

The technique developed here can be applied to arbitrary parametric models
of the dependency of Y on X. Future research could include an enhancement
of the method so that parameters for all covariates are identifiable in the miss-
ingness model. Additional applications for the new estimator can be imagined
like clinical studies with nonrespondents or further inquiries where missing
response occur.
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Table 3. Conventional and new parameter estimates of the logistic regression model
for creditworthiness. For categorical variables the reference class is given in paren-
theses.

β̂ sd β̃ sd

Intercept 5.726 0.930 4.638 0.983

Age -0.032 0.013 -0.053 0.012

Marital status Widowed 0.264 0.873 0.997 0.806

(Married) Single -0.299 0.269 -0.585 0.287

Cohabitee 1.632 1.030 3.134 1.178

Divorced -0.121 0.336 -0.053 0.370

Separated -0.663 0.424 -1.028 0.505

Children 1 child 0.007 0.271 0.240 0.333

(No child) 2 children -0.450 0.293 -1.033 0.450

3-6 children -0.124 0.517 -0.754 0.325

Job Employee -0.826 0.447 -0.997 0.431

(Civil servant) Crafter -1.336 0.468 -1.788 0.301

Self-Employed -1.958 0.578 -3.296 0.618

Retiree 0.635 1.321 3.459 1.229

Other -0.621 0.876 -1.433 1.240

Working time 0.003 0.001 -0.002 0.001

Household income 0.000 0.000 0.001 0.000

Bail (not available available 0.102 0.284 -0.240 0.267

Purchasing power high -0.188 0.327 -0.178 0.391

(Very high) medium -0.219 0.311 -0.941 0.348

low -0.129 0.353 -0.067 0.414

Other -0.669 0.401 -2.248 0.385

Credits 2 credits -0.119 0.259 -0.058 0.340

(1 credit) 3 credits -0.113 0.312 -0.222 0.450

4 or more -0.365 0.290 -1.165 0.306

no credit -0.294 0.239 -1.360 0.287

Other -0.800 0.353 -1.574 0.403

Schufa score B-E -0.830 0.205 -0.922 0.229

(A-D) F-J -1.548 0.271 -2.741 0.295

K-M -4.202 0.615 -7.086 1.541

P -0.804 0.477 -2.143 0.393

New customer (no) yes 0.068 0.329 -0.091 0.500

House type 1 family 0.340 0.496 0.959 0.741

(No family) 2 families -0.165 0.506 0.394 0.691

3-5 families 0.331 0.503 0.572 0.701

6-10 families -0.069 0.481 0.682 0.772

11-14 families 0.124 0.543 0.875 0.770

15-20 families -0.165 0.633 -0.229 0.719

>20 families 0.334 0.604 1.551 0.953

Other 0.256 0.525 2.686 0.612

Habitation time -0.001 0.001 0.001 0.001
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A Proof of theorem

Let

Ψn(β) :=
1

n

n∑
i=1

np̂i
∂ ln f(yi|xi,β)

∂β

be the derivative of the log of the likelihood (5). In addition, let

ψn
i (β) := np̂i

∂ ln f(yi|xi,β)

∂β

and

sn
i (β) :=

∂ ln f(yi|xi,β)

∂β

be functions in β. From Qin et al. (2002) it can be seen that

np̂i
p−→ W0

w(yi,xi,θ0)
.

Let E be the expectation with respect to F (y,x) and EC as the expectation
with respect to the conditional distribution w(y,x,θ0)dF (y,x)/W0, where θ0
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and W0 represent the true values of θ and W respectively. Then it is easily
verified that

EC

(
W0

w(yi,xi,θ0)

∂ ln f(yi|xi,β)

∂β

)
= E

(
∂ ln f(yi|xi,β)

∂β

)
.

Similar to Qin et al. (2002), let

γ = λ1(1−W ), η = (θ>,W,γ>)>,

η0 = (θ>0 ,W0,0
>)>, aN =

N

n
− 1

W0

.

Then

npi =
1−W

1− W
W0

+ 1−W0

W0
w(yi,xi,θ) + γ>(xi − µX) + aN(w(yi,xi,θ)−W )

.

Defining

Ξn(β,η, aN) :=
1

n

n∑
i=1

ξi(β,η, aN) (A.1)

where

ξi(β,η, aN)

:=
1

n

n∑
i=1

1−W
1− W

W0
+ 1−W0

W0
w(yi,xi,θ) + γ>(xi − µX) + aN(w(yi,xi,θ)−W )

si(β)

we have

Ξn(β, η̂, aN) = Ψn(β).

Also, let Ξn
j (β,η, aN) denote the jth component of Ξn(β,η, aN).

For the proof of theorem 1, we impose the following assumptions:

(A1) ψn(β) is asymptotically uniformly integrable,
(A2) EC (ψn

i (β)) is equicontinuous,
(A3) ψn(β) is continuous in β for almost all y,x,
(A4) ∃d(x, y) with EC(d(X, Y )) <∞ and ||ψn(β)|| ≤ d(x, y) ∀β,
(A5) the operations of integration with respect to y,x and differentiation with

respect to β can be interchanged,
(A6) E (∂ ln f(yi|xi,β)/∂β) has a unique root,
(A7) Ψn(β̂) = op(1),

(A8)
∂2Ξn

j (βj ,ηj ,aj
n)

∂β>∂β
,

∂2Ξn
j (βj ,ηj ,aj

n)

∂η>∂η
und

∂2Ξn
j (βj ,ηj ,aj

n)

(∂aN )2
exist and are bounded by an

integrable function ∀ j,
(A9) E

(
∂s(β0)
∂β>

)
exists and is invertible.
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Proof of Theorem 1 We prove the consistency of the M-estimator β̂ by
showing that under the additional conditions (A1)-(A7), Ψn(β) converges
uniformly in probability to Ψ(β) := E (si(β)) with unique root β0.

From the uniform integrability of ψn(β) and the equicontinuity of EC (ψn(β))
it follows that

sup
β
||EC (ψn

i (β))− E (si(β))|| p−→ 0.

Also, by the uniform law of large numbers,

sup
β

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

[ψn
i (β)− EC (ψn

i (β))]

∣∣∣∣∣
∣∣∣∣∣ p−→ 0.

Finally, the consistence of β̂ follows from the fact that

sup
β
||Ψn(β)−Ψ(β)||

= sup
β

∣∣∣∣∣∣
∣∣∣∣∣∣ 1n

n∑
i=1

[ψn
i (β)− EC (ψn

i (β))] +
1

n

n∑
i=1

EC (ψn
i (β))− E (si(β))

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
β

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

[ψn
i (β)− EC (ψn

i (β))]

∣∣∣∣∣
∣∣∣∣∣ + sup

β

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

EC (ψn
i (β))− E (si(β))

∣∣∣∣∣
∣∣∣∣∣ p−→ 0,

where the second term converges as it contains a Cesàro mean.

The normality of the estimator can be derived by a componentwise Taylor
expansion of (A.1) similar to the proof of Theorem 2 in Qin et al. (2002). We
have

0 = Ξn
j (β̃, η̂, aN)

= Ξn
j (β0,η0, 0)

+
∂Ξn

j (β0,η0, 0)

∂β>

(
β̂ − β0

)
+
∂Ξn

j (β0,η0, 0)

∂η>
(η̂ − η0)

+
∂Ξn

j (β0,η0, 0)

∂aN

(aN − 0) + op(1)
(
β̂ − β0

)
+ op(N−

1
2 )

= Ξn
j (β0,η0, 0) +

(
∂Ξn

j (β0,η0, 0)

∂β>
+ op(1)

)(
β̂ − β0

)
+
∂Ξn

j (β0,η0, 0)

∂η>
(η̂ − η0) +

∂Ξn
j (β0,η0, 0)

∂aN

(aN − 0) + op

(
N−

1
2

)
,

and so from the central limit theorem

√
N
(
β̃ − β0

)
=
√
NC−1

n ζn + op(1),
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where

ζn =
1

n

n∑
i=1

[
ξi(β0,η0, 0) +

∂ξi(β0,η0, 0)

∂η>
(η̂ − η0) +

∂ξi(β0,η0, 0)

∂aN

(aN − 0)

]

and

Cn = −
(
∂Ξn(β0,η0, 0)

∂β>
+ op(1)

)
p−→ E

(
−∂

2 ln f(Y |X,β0)

∂β∂β>

)
=: F .

In addition,

ζn =
1

n

n∑
i=1

[
ξi(β0,η0, 0) +

∂ξi(β0,η0, 0)

∂η>
(η̂ − η0) +

∂ξi(β0,η0, 0)

∂aN

(aN − 0)

]

=
1

W0

1

N

N∑
i=1

ri

(
W0

w(yi,xi,θ0)
si(β0)

)
+ b1U

−1
N φN + b2aN + op

(
N−

1
2

)

=
1

N

N∑
i=1

ri

(
si(β0)

w(yi,xi,θ0)

)
+

1

N

N∑
i=1

[
rib1U

−1gi +
(
b1U

−1h+ b2

)
aN

]
+ op

(
N−

1
2

)
,

where

b1 = EC

(
∂ξi(β0,η0, 0)

∂η>

)
und b2 = EC

(
∂ξi(β0,η0, 0)

∂aN

)

and gi, U and h given as in Qin et al. (2002). That means the components of
gi are given by

g1
i (η, aN) =

∂ lnw(yi,xi,θ)

∂θ

−

[
aN + 1−W0

W0

]
∂w(yi,xi,θ)

∂θ

1− W
W0

+
(

1
W0
− 1

)
w(yi,xi,θ) + γ>(x− µX) + aN (w(yi,xi,θ)−W )

,

g2
i (η, aN)

=
w(yi,xi,θ)−W

1− W
W0

+
(

1
W0
− 1

)
w(yi,xi,θ) + γ>(x− µX) + aN (w(yi,xi,θ)−W )

,

and

g3
i (η, aN)

=
xi − µX

1− W
W0

+
(

1
W0
− 1

)
w(yi,xi,θ) + γ>(x− µX) + aN (w(yi,xi,θ)−W )

,

the matrix U is defined by

U = W0 · EC(T )
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with

T =



0 ∂w(Y,X,θ0)/∂θ
(1−W0)w2(Y,X,θ0)

−W0(X−µX)∂w(Y,X,θ0)/∂θ
(1−W0)w2(Y,X,θ0)

−W 2
0 ∂w(Y,X,θ0)/∂θ

(1−W0)w2(Y,X,θ0)
− W 2

0 (w(Y,X,θ0)−1)

(1−W0)2w2(Y,X,θ0)

W 2
0 (X−µX)(w(Y,X,θ0)−W0)

(1−W0)2w2(Y,X,θ0)

W0(X−µX)∂w(Y,X,θ0)/∂θ
(1−W0)w2(Y,X,θ0)

− W0(X−µX)
(1−W0)2w2(Y,X,θ0)

W 2
0 (X−µX)2

(1−W0)2w2(Y,X,θ0)


and finally

h = − W 3
0

(1−W0)2
EC


1−W0

(w(Y,X,θ0))2
∂w(Y,X,θ0)

∂θ

(w(Y,X,θ0)−W0)2

(w(Y,X,θ0))2

(X−µX)(w(Y,X,θ0)−W0)
(w(Y,X,θ0))2

 .
Therefore, we have

√
Nζn

P−→ N (0,H) ,

where

H = Var

(
R

(
s(β0)

w(Y,X,θ0)

)
+Rd1gi + d2

1

W0

(
1− R

W0

))

and

d1 = b1U
−1 und d2 =

(
b1U

−1h+ b2

)
.

Finally, we get √
N
(
β̃ − β0

)
p−→ N (0,V )

with V = F−1HF−1. 2

In the proof of Theorem 1 the exact form of f(y|x,β) need not to be a lo-
gistic regression model but can be rather arbitrary as long as it meets the
assumptions. For a logistic regression, however, (A1), (A2), and (A4) can be
simplified. In this case we have

ψn(β) = np̂x

(
y − exp(x>β)

1 + exp(x>β)

)
.

so that the uniform integrability follows from EC

(
(np̂)2 ||X||2

)
<∞ because

EC

(
||ψn(β)||2

)
= EC

∣∣∣∣∣
∣∣∣∣∣np̂X

(
Y − exp(X>β)

1 + exp(X>β)

)
︸ ︷︷ ︸

∈(−1,1)

∣∣∣∣∣
∣∣∣∣∣
2
 ≤ EC

(
(np̂)2 ||X||2

)
.

13



In a similar manner one can show that (A4) holds if

EC ((np̂) ||X||) <∞

and (A2) is valid if there exists an M <∞, so that for all n ∈ N

EC

(
np̂λmax

(
XX>

))
≤M,

where λmax (A) denotes the greatest eigenvalue of A>A.
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