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Abstract

This paper studies, for the first time, the dependence of extreme
events in energy markets. Based on a large data set comprising quotes
of crude oil and natural gas futures, we estimate and model large
co-movements of commodity returns. To detect the presence of tail
dependence we apply a new method based on the concept of tail cop-
ulas which accounts for different scenarios of joint extreme outcomes.
Moreover, we show that the common practice to fit copulas to the
data cannot capture the dynamics in the tail of the joint distribution
and, therefore, is unsuitable for risk management purposes.

Keywords: Extreme events; Crude oil; Natural gas; Tail depen-
dence; Tail copulas
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1 Introduction

As energy and commodity markets have become more volatile and in-
creasingly interconnected in recent years, the need to capture the joint
dynamics of commodity prices has become indispensable for managing
energy risk. In contrast to the vast literature on modelling dependence
between stock returns, there is a relative paucity of related research
for the energy market. Alexander (2004) shows that the log-returns of
futures on crude oil and natural gas exhibit asymmetric behaviour and
strong, nonlinear dependence and are, therefore, a far cry from the as-
sumption that their joint distribution is bivariate normal. The same
problem is studied in Grégoire et al. (2008). They model the log-
returns individually as time series, and account for the dependence
between them by fitting various families of copulas to the error terms.
In order to select the best copula, the authors perform a range of
goodness-of-fit tests, which again show that the dependence between
crude oil and natural gas log-returns cannot be characterized by the
Gaussian copula. Accioly and Aiube (2008) studies the dependence of
oil and gasoline prices. After adjusting auto regressive GARCH mod-
els to filter the linear and the nonlinear time dependence in the series
of returns they fit various copulas to the residuals of these models. Di-
viding the sample in two periods, it is shown that the dependence is
well represented by the t-copula and the Plackett copula, respectively.

The departure from normality in a multivariate setting poses an
additional problem from the perspective of risk management, whose
primary concern is the occurrence of extreme events. In the univari-
ate case non-normality is associated to the skewness and leptokurto-
sis phenomena, or briefly the fat-tail problem. In the multivariate
case, the fat-tail problem can be referred not only to the marginal
distributions but also to the probability of large co-movements of the
individual returns, i.e. tail dependence. Consequently, a thorough un-
derstanding of energy portfolio risk requires an adequate assessment
of the probability that large price movements in energy markets occur
together.

The latest statistical standard to describe the amount of extreme
dependence is represented by the concept of tail dependence. To the
best of our knowledge, however, the problem of modelling and esti-
mating tail dependence between returns of energy commodities has
not yet been addressed in the literature. The present paper opens this
line of research by analyzing a large data set comprising quotes of the
Light Sweet Crude Oil Futures and the Henry Hub Natural Gas Fu-
tures traded on the NYMEX (New York Mercantile Exchange). From
a methodological point of view, the main tool is the theory of copulas,

3



which allows the separate specification of the marginal distributions
and the dependence structure.

The purpose of the paper is twofold: First, to provide an applica-
ble model which estimates adequately the likelihood of joint extreme
events in energy markets. Second, to illustrate the pitfalls of fitting
copulas to data for risk management purposes. Undoubtedly, copulas
represent the current standard for modelling stochastic dependence.
However, we argue that a general goodness-of-fit test for copulas does
not necessarily provide a good model for tail dependence. The rea-
son therefor is that the procedure is based on minimizing the distance
between observed and model values over the whole support of the
distribution and therefore cannot capture the joint dynamics in the
tail of the underlying distribution. Thus, to some extent the paper is
also meant as an educative warning against adopting general copula
inference techniques for modelling dependence of extreme events.

In order to overcome this difficulty, we apply the concept of tail
copulas. A tail copula is a function of the underlying copula, which
describes the dependence structure in the tail of multivariate distri-
butions, but works more generally than the simple tail dependence
coefficient, which is just the value of the tail copula at the point (1, 1).
Therefore, tail copulas enable the modelling of tail dependence of arbi-
trary form and, thus, account for all possible scenarios of joint extreme
outcomes.

The paper is organized as follows. In the next section we briefly re-
view some fundamental properties of copulas and introduce the closely
related concept of tail copulas and tail dependence. Section 3 describes
the data. To account for serial dependence in the data we estimate
numerous univariate GARCH and APARCH models with various dis-
tributions for the error term. Section 4 presents our methodology and
the empirical results. In a first step we fit different families of copulas
to the residuals of the individual time series. Then, we estimate non-
parametrically (Schmidt and Stadtmüller, 2006) the lower and upper
tail copulas and show that the joint distribution of the log-returns of
the crude oil and natural gas futures are both lower and upper tail
dependent – a fact, which can not be detected by fitting a copula to
the whole data set. The final Section 5 summarizes and provides an
outlook for further research.

2 Preliminaries

The theory of copulas dates back to Sklar (1959), but its application to
statistical modelling is far more recent. A copula is a function that em-
bodies all the information about the dependence structure between the
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components of a random vector. From a probabilistic point of view, it
is a multivariate distribution function with uniformly distributed mar-
gins on the interval [0, 1]. For notational convenience, all further defi-
nitions and results are provided for the bivariate case only. In the fol-
lowing, we consider a random vector (X,Y ) with continuous marginal
distribution functions F (x) := P[X ≤ x] and G(y) := P[Y ≤ y],
x, y ∈ R, respectively. By Sklar’s theorem, there exists a unique cop-
ula C, called the copula of X and Y , such that

P[X ≤ x, Y ≤ y] = C(F (x), G(y)), (1)

for all x, y ∈ R. Conversely, if C is a copula and F,G are distribution
functions, then the function defined via (1) is a bivariate distribution
function with margins F,G. It follows that copulas can be interpreted
as dependence functions since they separate the marginal distributions
from the dependence structure. In fact, the copula of X and Y is the
joint distribution function of the probability integral transformations
U := F (X) and V := G(Y ), which are uniform on [0, 1]. It follows
that

C(u, v) = P[U ≤ u, V ≤ v] = P[X ≤ F−1(u), Y ≤ G−1(v)], (2)

for all u, v ∈ [0, 1], where F−1 and G−1 denote the generalized inverses
of F and G, respectively, i.e. F−1(u) = inf{x ∈ R|F (x) ≥ u}, for all
u ∈ [0, 1] (analogously for G).

LetF (x) := 1−F (x) = P[X > x] andG(y) := 1−G(y) = P[Y > y]
denote the corresponding survival functions of X and Y . Define a
function Ĉ by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v), (3)

for all u, v ∈ [0, 1]. Then, for all x, y ∈ R, we have

P[X > x, Y > y] = Ĉ(F (x),G(y)). (4)

The function Ĉ is a copula itself and is called the survival copula of
X and Y . In view of (4), the survival copula links the joint survival
function to its univariate margins in a manner completely analogous
to the one in which the copula connects the joint distribution function
to its margins. Hence, for all u, v ∈ [0, 1], we have

Ĉ(u, v) = P[U > 1− u, V > 1− v]

= P[X > F−1(1− u), Y > G−1(1− v)].
(5)

For further details regarding the theory of copulas we refer the reader
to Nelsen (2006).
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As the focus of this paper is to characterize and measure extreme
dependence, the rest of this section is devoted to the concept of tail
dependence, which concentrates on the upper and lower quadrant tails
of the joint distribution. The standard way to determine whether X
and Y are tail dependent is to look at the so-called lower and upper
tail dependence coefficients, denoted by λL and λU , respectively. λL

is the limit (if it exists) of the conditional probability that X is less
than or equal to the u-th quantile of F , given that Y is less than or
equal to the u-th quantile of G as u approaches 0, i.e.

λL := lim
u→0+

P[X ≤ F−1(u) | Y ≤ G−1(u)]. (6)

Similarly, λU is the limit (if it exists) of the conditional probability
that X is greater than the u-th quantile of F , given that Y is greater
than the u-th quantile of G as u approaches 1, i.e.

λU := lim
u→1−

P[X > F−1(u) | Y > G−1(u)]. (7)

The random vector (X,Y ) is said to have lower (upper) tail depen-
dence if λL(λU ) ∈ (0, 1], and no lower (upper) tail dependence if
λL(λU ) = 0.

The following identities show that the tail dependence coefficients
are nonparametric and depend only on the copula C of X and Y . In
particular, we have (see Nelsen, 2006)

λL = lim
u→0+

C(u, u)

u
(8)

and

λU = lim
u→1−

1− 2u+ C(u, u)

1− u
= lim

u→0+

Ĉ(u, u)

u
, (9)

where Ĉ is the survival copula ofX and Y defined in (3). Since copulas
are invariant under strictly increasing transformations of the random
variables, it follows that λL and λU exhibit the same invariance prop-
erty.

From a practitioner’s point of view, tail dependence can be inter-
preted as the limiting likelihood of an asset/portfolio return falling
below its Value at Risk at a certain level, given that another as-
set/portfolio return has fallen below its Value at Risk at the same
level. However, like any scalar measure of dependence, λL and λU suf-
fer from a certain loss of information concerning the joint behaviour
in the tails of the distribution. In the context of tail dependence, the
immediate analogue to copulas, which describe the entire dependence
structure, is given by tail copulas; see Schmidt and Stadtmüller (2006)
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for further details on tail copulas. The lower tail copula ΛL associated
with X and Y is a function of their copula C and is defined by

ΛL(x, y) := lim
t→0+

C(tx, ty)

t
, (10)

if the above limit exists for all x, y ∈ [0,∞). The upper tail copula ΛU

associated with X and Y is a function of their survival copula Ĉ and
is defined by

ΛU (x, y) := lim
t→0+

Ĉ(tx, ty)

t
(11)

if the above limit exists for all x, y ∈ [0,∞).
The probabilistic interpretation of ΛL and ΛU is provided by the

following relationships:

ΛL(x, y) = y lim
t→0+

P[X ≤ F−1(tx) | Y ≤ G−1(ty)], (12)

ΛU (x, y) = y lim
t→0+

P[X > F−1(1− tx) | Y > G−1(1− ty)]. (13)

It is easy to show that the tail dependence coefficients are a special
case of the respective tail copulas. More precisely, we have

λL = ΛL(1, 1) and λU = ΛU (1, 1). (14)

As pointed out in Schmidt and Stadtmüller (2006), another reason to
embed the tail dependence coefficients in the framework of tail copulas
is to facilitate their estimation, which is a non-trivial task, especially
for non-standard distributions.

3 Data

Our empirical investigation focuses on the dependence between crude
oil and natural gas prices. The data set covers quotes of the Light
Sweet Crude Oil Futures and the Henry Hub Natural Gas Futures
traded on the NYMEX (New York Mercantile Exchange) between
July 2, 2007 and July 2, 2010. Both futures contracts are generic
one-month-ahead futures. The quotes are collected from Bloomberg’s
Financial Information Services. The log-returns for both series are
plotted in Figure 1. In order to estimate and model the dependence
between the two commodities, it is necessary to consider dependence
within the individual time series. To detect the presence of het-
eroscedasticity we perform standard Box-Pierce and Ljung-Box tests
on the squared log-returns for three different lags (lag 1, lag 5 and
lag 10). For crude oil, both tests are significant at the 1% level for all
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Figure 1: Log-returns of one-month-ahead futures on crude oil (top) and
natural gas (bottom). Source: Bloomberg

lags. Applied to the natural gas data, the same is true for lag 5 and
lag 10, while the null hypothesis that none of the autocorrelation co-
efficients up to a certain lag are different from zero cannot be rejected
for lag 1 (p-value = 0.18).

These findings show that the assumption of an i.i.d. sample is
unrealistic and therefore one has to account for heteroscedasticity
in the marginal series. For this purpose, we employ GARCH(p, q)
and APARCH(p, q)-models, p, q ∈ {1, . . . , 6}, with various distribu-
tions for the error term, including the normal, the skew normal, the
general error, the skewed generalized error and the skew Student’s t-
distribution. After careful evaluation of the 360 models under test we
conclude that the APARCH(1, 1)-model with skew normal distribution
describes adequately the data generating process for the log-returns
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Ot, t = 1, . . . , T of the crude oil futures:

Ot = 2.639 × 10−5 + σtXt,

σ2

t = 1.193 × 10−5

+ 9.542 × 10−2(|Ot−1| − 2.385 × 10−1Ot−1)
2

+ 8.880 × 10−1σ2

t−1.

(15)

Thus, the standardized residuals X1,X2, . . . ,XT can be viewed as a
random sample from a skew normal distribution with skewness pa-
rameter α = 0.986; see Azzalini and Dalla Valle (1996) for details on
the skew normal distribution.

With respect to the log-returns Nt, t = 1, . . . , T of the natural gas
futures, the GARCH(1,1)-model with skew Student’s t-distribution

Nt = −4.841 × 10−4 + σtYt,

σ2

t = 2.648 × 10−5 + 5.106 × 10−2N2

t−1

+ 9.281 × 10−1σ2

t−1

(16)

provides the best fit to the data. Analogously, we conclude that the
standardized residuals Y1, Y2, . . . , YT are randomly drawn from a skew
Student’s t-distribution with skewness parameter α = 1.113 and ν =
8.094 degrees of freedom. For the definition and properties of the skew
Student’s t-distribution we refer to Azzalini and Capitano (2003).

Applying now the Box-Pierce and Ljung-Box tests to the squared
standardized residuals of both series for lag 1, lag 5 and lag 10, pro-
vides completely different test results than initially obtained. None
of the tests detects the presence of auto correlation at the 5% level.
In fact, apart from the test results for the crude oil futures at lag 1
(p-value = 0.06), the p-values exceed 0.4.

4 Methodology and results

4.1 Copula estimation

Having specified adequate models for the log-returns of the crude oil
and natural gas futures, Ot and Nt, we now address the problem of
modelling their dependence. For this purpose, we employ the theory
of copulas, briefly introduced in Section 2. The main advantage of
copulas is that they allow the separate specification of the marginal
distributions and the dependence structure.

As shown in the preceding section, (Ot, Nt), t = 1, . . . , T certainly
does not constitute an i.i.d. sample. Therefore, in order to estimate
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their copula, we consider the sample (Xt, Yt) of the standardized resid-
uals of the individual time-series models (15) and (16). The next step
is to transform each pair of observation into its rank based represen-
tation (ut, vt), calculated by

ut =
rank(Xt)

T + 1
and vt =

rank(Yt)

T + 1
. (17)

Figure 2 shows a scatter plot of the 758 pairs (ut, vt). It reveals a
certain tendency of ut and vt, and thus of Xt and Yt to vary together,
regardless of their marginal distributions.

To confirm this judgement, we first estimate the two most common
rank correlation coefficients, Spearman’s ρ and Kendall’s τ , which
depend solely on the underlying copula via

ρ(C) = −3 + 12

∫
1

0

∫
1

0

C(u, v) du dv (18)

τ(C) = −1 + 4

∫
1

0

∫
1

0

C(u, v)c(u, v) du dv (19)

where c(u, v) = ∂2C(u, v)/∂u∂v is the density of C (assuming it ex-
ists). For the empirical measures �T and �T (Genest and Favre (2007))
we find that �T = 0.314 and �T = 0.214, which are both significantly
different from zero (p-value < 0.001). For details about the test statis-
tics and their asymptotic distributions we refer to Genest and Favre
(2007). These preliminary results are in accordance with the ones re-
ported in Grégoire et al. (2008), who perform the same tests on their
data set.

Note that, as any scalar measure of dependence, ρ and τ can-
not describe the whole dependence structure of the joint distribution.
Therefore, having concluded that the log-returns of the crude oil and
natural gas futures are positively dependent, we now address the prob-
lem of estimating their copula. For this purpose we first compute the
empirical copula CT (Deheuvels, 1979) and the empirical survival cop-
ula ĈT , defined byCT (u, v) =

1

T

T∑

t=1

1(ut ≤ u, vt ≤ v) (20)

and ĈT (u, v) =
1

T

T∑

t=1

1(ut > u, vt > v), (21)

where 1 denotes the indicator function.
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Figure 2: Scatter plot of the ranks of the standardized residuals ut and vt.

In order to find an appropriate copula model, we consider differ-
ent parametric families of copulas commonly used in economics and
finance. Beside the independence copula C(u, v) = uv, we fit two ellip-
tical copulas, Gaussian and t, and three Archimedean copulas, Pareto,
Frank and Gumbel. Each of these families is completely characterized
by a single parameter, θ, with exception of the t-copula, which, in
addition, requires the specification of its degree of freedom ν. For
each copula family, we estimate the unknown parameter θ by inver-
sion of Kendall’s τ (Genest and Rémillard, 2008). More precisely,
the estimate �T is computed by substituting �T for τ in formula (19),
and then solving the equation to obtain �T , which gives us the best
copula fit C�T within the respective copula family. The inversion ap-
proach utilizes the fact that, for the considered copula families, θ is a
monotone function of τ , which, for example, for the Gaussian and the
t-copula is given by θ = sin(τπ/2).

Finally, to select the optimal copula model, we apply a goodness-
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Copula p-value

Independence 0.000

Pareto (�T = 0.545) 0.000

Frank (�T = 2.001) 0.027

Gaussian (�T = 0.330) 0.289

t (�T = 0.330, ν = 9) 0.311

Gumbel (�T = 1.272) 0.712

Table 1: Test results for the goodness-of-fit of different copula models.

of-fit test, based on the Cramér-von Mises statistic

ST =

T∑

t=1

{CT (ut, vt)−C�T (ut, vt)}2 . (22)

A review and comparison of goodness-of-fit procedures is given by
Genest et al. (2009). This statistic measures how close the fitted cop-
ula C�T is from the empirical copula CT . Since the distribution of ST

depends on the unknown value of �T under the null hypothesis that
the true copula C is from the respective copula family, we compute
the p-values of the test using the parametric bootstrap procedure de-
scribed by Genest and Rémillard (2008).

The test results together with the estimates �T are summarized
in Table 1. They clearly show that the log-returns of crude oil and
natural gas are not independent. Furthermore, the Pareto copula
and, to a great extent, the Frank copula seem inappropriate to model
the dependence structure. As to the specific form of the dependence,
no definite conclusion can be drawn. The null hypothesis cannot be
rejected for any of the other three candidates. In particular, even the
Gaussian copula could be an applicable alternative, which of course
does not imply that the joint distribution is bivariate normal. Using
the highest p-value as a criterion to select the model with the best fit
to the data, we conclude that the Gumbel copula, with �T = 1.272,
describes best the dependence between crude oil and natural gas.

Finally, we point out, that our results differ substantially from
those of Grégoire et al. (2008), who find, for example, that for the
Gumbel copula the null hypothesis can be rejected on the basis of the
same test procedure. In fact, in view of the extremely low p-values, not
exceeding 0.03, none of the six copula models considered in Grégoire
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et al. (2008) provides an adequate description of the dependence be-
tween crude oil and natural gas log-returns.

4.2 Tail copula estimation

We now address the question whether the joint distribution of the
log-returns of the crude oil and natural gas futures has a tendency to
generate extreme values simultaneously and is, in this sense, a dan-
gerous distribution for risk managers. The scatter plot in Figure 2
reveals a pronounced concentration of data points in both tails of the
distribution. As concluded above, however, the overall dependence
structure is well represented by the Gumbel copula, which exhibits
no lower tail dependence since, in view of Equation (8), its lower tail
dependence coefficient λL is 0. Thus, as to the modelling of extreme
dependence in the lower tail of the distribution, the Gumbel copula is
no better choice than the independence copula.

We point out that this seeming contradiction suggests neither that
the variables are tail independent, nor that the selected copula is un-
suitable to model the overall dependence. It rather shows that a gen-
eral goodness-of-fit test for copulas does not necessarily provide an
appropriate model for tail dependence, simply because the procedure
is based on minimizing the distance between observed and model val-
ues over the whole support of the distribution. In fact, one of the
main aims of this paper is to illustrate the lack of effectiveness of fit-
ting copulas to the data in capturing the dependence in the tail of the
underlying distribution.

In order to assess the risk of joint extreme events, we apply the the-
ory of tail copulas, briefly introduced in Section 2. For the estimation
of the tail copulas, we use the lower and upper empirical tail copulas,
denoted by �L,T and �U,T , respectively. These non-parametric esti-
mators, introduced and studied by Schmidt and Stadtmüller (2006),
are defined by�L,T (x, y) :=

T

k
CT

(
kx

T
,
ky

T

)

≈
1

k

T∑

t=1

1

(
ut ≤

kx

T + 1
, vt ≤

ky

T + 1

) (23)

and �U,T (x, y) :=
T

k
ĈT

(
kx

T
,
ky

T

)

≈
1

k

T∑

t=1

1

(
ut >

T − kx

T + 1
, vt >

T − ky

T + 1

) (24)
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with some parameter k ∈ {1, . . . , T} to be chosen by the statisti-
cian. Under the assumptions that k = k(T ) → ∞ and k/T → 0
for T → ∞, Schmidt and Stadtmüller (2006) establishes weak con-
vergence and strong consistency for �L,T and �U,T . The paper also
describes a method of choosing the optimal threshold k via a simple
plateau-finding algorithm. Implementing this procedure, we calculate
the empirical tail copulas for the log-returns of the crude oil and nat-
ural gas futures. These are visualized in Figures 3 and 4.

Figure 3: Empirical lower tail copula of the log-returns of the crude oil and
natural gas futures.

Schmidt and Stadtmüller (2006) develops a consistent non-para-
metric estimator for the lower and upper tail dependence coefficients,
given by �L,T := �L,T (1, 1) and �U,T := �U,T (1, 1), (25)

respectively. The estimators �L,T and �U,T , based on the empirical
counterparts of the identities given in (14), emphasize that tail copulas
are an intuitive generalization of the tail dependence coefficients via
a function describing the complete dependence structure in the tail
of a distribution. Therefore, tail copulas constitute a powerful tool

14



Figure 4: Empirical upper tail copula of the log-returns of the crude oil and
natural gas futures.

for modelling tail dependence of arbitrary form. Moreover, as pointed
out in Schmidt and Stadtmüller (2006), tail copulas also provide a
convenient method for the, otherwise, non-trivial task of estimating
λL and λU .

For our data set, we find �L,T = 0.32 and �U,T = 0.28, which
implies that the log-returns of the crude oil and natural gas futures
exhibit tail dependence. Our estimates clearly demonstrate that the
Gumbel copula, with �T = 1.272, which according to the goodness-of-
fit test conducted in Section 4.1 provides the best fit to the data, does
not describe adequately the risk of extreme events in the lower tail of
the distribution. This raises the question of the optimal copula choice
from a risk management perspective.

One possibility to deal with this problem is to select the copula,
whose tail dependence coefficients are closest to their empirical coun-
terparts. Table 2 lists the tail-dependence coefficients of the copulas
considered for the goodness-of-fit test. Note that the t-copula here has
the same value of �T , but less degrees of freedom ν than the fitted one
in Table 1 since the lower ν, the higher the tail dependence coefficients.
Our choice ν = 2.7 is dictated by the fact that for smaller degrees of
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Copula λL λU

Independence 0.00 0.00

Pareto (�T = 0.545) 0.28 0.00

Frank (�T = 2.001) 0.00 0.00

Gaussian (�T = 0.330) 0.00 0.00

t (�T = 0.330, ν = 2.7) 0.25 0.25

Gumbel (�T = 1.272) 0.00 0.28

Empirical 0.32 0.28

Table 2: Tail dependence coefficients of the copulas considered for the
goodness-of-fit test presented in Table 1.

freedom the null hypothesis of the goodness-of-fit test conducted in
Section 4.1 must be rejected at the 5%-level.

It turns out that λL of the Pareto copula, with �T = 0.545, is
closest to our estimate �L,T , although according to the goodness-of-fit
test results, presented in Table 1, the Pareto copula clearly fails to
capture the overall dependence structure of the crude oil and natural
gas returns. With respect to the upper tail of the distribution, the
situation changes completely. Here the Gumbel copula, �T = 1.272,
which exhibits the highest p-value of the goodness-of-fit test, remains
the best model, since its λU = 0.28 even coincides with the value
of �U,T .

At this point, we emphasize again that λL and λU , as scalar mea-
sures of tail dependence, cannot characterize the entire dependence
structure in the tails of the distribution. For example, two tail copulas
with the same value at (1, 1), corresponding to λL or λU , respectively,
could differ substantially at other points in their domain. Thus, they
could incorporate different levels of risk, although judging from the tail
dependence coefficients alone, they would seem equally dangerous. In
order to account for all possible scenarios of joint extreme outcomes
one should utilize more information from the tail copula than simply
its value at the point (1, 1).

From Table 2, it is evident that, beside the Pareto and Gumbel
copulas, the only alternative for modelling tail dependence between
the log-returns of crude oil and natural gas is the t-copula since all
other copula models exhibit no tail dependence. Figures 5 and 6 vi-
sualize the values of the respective tail copulas and their empirical
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Figure 5: Parametrization of the circle around the origin through the
point (1, 1) in the first quadrant with values of the empirical lower tail copula
(solid line) as well as the lower tail copulas of the Pareto copula, �T = 0.545
(dashed line), and the t-copula, �T = 0.330, ν = 2.7 (dotted line).

counterparts along the circle passing through the point (1, 1). Thus,
the (empirical) tail dependence coefficients are the values of the func-
tions at π/4. Instead of comparing the plotted functions at a single
point in their domain, we propose a least squares approach and calcu-
late the Cramér-von Mises statistic for the empirical tail copula and
the tail copula of each of the fitted copulas. This approach has the
advantage of taking into account simultaneously different scenarios of
extreme co-movements of the two variables. We find that the Pareto
and Gumbel copulas remain the best models for lower and upper tail
dependence, respectively.

5 Concluding remarks

This paper studies, for the first time, the dependence of extreme events
in energy markets. In particular, we estimate and model both the over-
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Figure 6: Parametrization of the circle around the origin through the
point (1, 1) in the first quadrant with values of the empirical upper tail copula
(solid line) as well as the upper tail copulas of the Gumbel copula, �T = 1.272
(dashed line), and the t-copula, �T = 0.330, ν = 2.7 (dotted line).

all and the tail dependence of crude oil and natural gas returns. The
main conclusions which can be drawn from our empirical investigation
can be summarized as follows.

According to the conducted goodness-of-fit test, the Gumbel cop-
ula describes best the overall dependence structure, but is unable to
generate the joint occurrence of large drops in the analyzed commodity
prices. However, applying the nonparametric technique for estimation
of the tail copula introduced in Schmidt and Stadtmüller (2006), we
detect the presence of such extreme events. This shows that a good
model for the overall dependence between commodity returns can be
a very bad model for their tail dependence. In fact, we see that using
the copula which provides the best fit to the data can be very mis-
leading for risk management which requires an adequate assessment
of the probability that large price movements occur together.

With respect to the applicability of our results, it must be said
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that although the Pareto and Gumbel copulas describe well the lower
and upper tail dependence in the data, respectively, they perform very
badly in the other tail of the joint distribution. Among the considered
copula families, the only copula which delivers satisfactory results as
a general and, at the same time, as a tail dependence model is the
t-copula.
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