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Abstract 

 
Arabic is a cursive script that lacks the ease of 

character segmentation. Hence, a unit for Arabic text 
recognition that is discrete in nature was suggested, 
viz. the connected component. A lexicon listing valid 
connected components of Arabic is necessary to any 
system that is to use such unit. Here, we produce and 
analyze a comprehensive lexicon of connected 
components in two ways. The resulting lexicon 
contains 684,743 entries, showing a percent decrease 
of 97.17% from the word-lexicon.  
 
1. Introduction 
 

It has been said that “the personal computer has 
grown in many directions since its birth, but one 
feature remains the same: The keyboard [1].” The 
substitute for the standard input unit is to recognize 
humans’ communication forms, mainly, speech and 
images. Text recognition systems have the advantage 
of keeping the interaction between the human and the 
computer quiet and private [2]. The aim of text 
recognition is to transform written text into a computer 
comprehensible representation [3-5]. 

Text recognition systems need to be presented with 
the list of units they are to learn. Such list of allowed 
vocabulary is referred to as the lexicon [6]. The unit of 
a lexicon may range from character shapes, as in 
optical character recognition systems (OCR’s), to 
complete words, as in holistic systems. The advantage 
of bigger units is that they require less effort for 
segmentation. The advantage of smaller units is in 
ease of learning and compact lexicons [7].  

When running an OCR, the input images need to be 
segmented into the units that constitute the lexicons 
used to train it. Arabic script is cursive in both printing 
and handwriting.  

Character segmentation in cursive scripts suffers 
from the classic ‘hen and egg’ dilemma: To recognize 

a character, segmentation is needed; and to segment a 
character, it needs to be recognized. Even the trained 
Arabic reader may need to backtrack between the 
segmentation and recognition steps [8]. Therefore, 
holistic word recognition, that doesn’t segment 
characters, is gaining attraction [9]. 

An alternative unit for Arabic optical text 
recognition (AOTR) which is readily segmentable is 
the connected component (CC). CCs can range in 
length between single letters and complete words. A 
thorough listing of all possible CCs explodes 
exponentially with the CC size. For connected 
components to be used as a semi-holistic unit for 
training and testing recognition systems, a lexicon of 
CCs with a tractable size needs to be present. In this 
work, we produce and assess a mere lexicon of 
connected components from Arabic words. 

The rest of this paper is organized as follows: 
related Arabic-script characteristics are exposed in 
Section 2. Section 3 presents literature briefly. Section 
4 details the steps followed to obtain the lexicon. In 
Section 5, we present and analyze results. Finally we 
conclude in Section  6. 
 
2. Characteristics of the Arabic scripting 
system 
 

Arabic script has some aspects that can make it 
peculiar. It enjoys well-defined rules governing the 
connection and separation of characters. Some letters 
never connect to subsequent letters in the same word. 
These are shown in Figure 1. The leftmost character in 
particular, Hamzah, is never connected from the right 
side either. Other letters always connect in both 
printing and handwriting [10]. See Table 1 for 
examples of the Arabic printed and handwritten 
matching in their cursive script. 

 
Figure 1. Non-connectable Arabic characters 
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In modern Latin scripting, as a contrasting 
example, a writer is free to connect or separate 
characters, as exemplified in Table I. Such freedom 
may form a source of ambiguity. This helps 
interpreting the following quote:  

“Arabic language is the easiest and clearest 
language in the world. It is useless to try to find new 
ways to make it easier and clearer. If you receive any 
letter you will not face any difficulty to read it even if 
it is written with the worst Arabic font [11]

 
Table 1. Printed and handwritten Arabic and 

Latin script samples
Samples Arabic 
Printed ھذه الصفحة 

Handwritten  
 

Another characteristic of Arabic script is that some 
characters share glyph shapes and differ only in points 
(dots and Hamzah). Typically, two to three letters 
share a glyph. Some letters share the glyph shape of 
others in some but not all positions. Figure 
examples of the above rule. 

 
Isolated Beginning

بـ تـ ثـ يـ ئـ نـ ب ت ث ي ئ ن
Ending Middle

ـبـ ـتـ ـثـ ـيـ ـئـ ـنـ ـب ـت ـث ـي ـئ ـن

Figure 2. Examples of letter-shapes that differ 
only in dots/Hamzah

 
A connected component (CC) refers to whatever 

can be written before the pen must be lifted and 
translated [12]. Hence, CCs seem to be the easiest unit 
for the task of segmentation from the script images. In 
Arabic, a CC appears when a non
character occurs, or, otherwise, at the end of the word. 
Besides, mere CCs don’t include points and other 
diacritic marks which appear abundantly in Arabic 
script [9]. Figure 3 shows the CCs of an Arabic text 
with distinctive black and white tiles. 

Figure 3. Connected components
 

3. Literature survey 
 

According to the level of interaction between 
segmentation and recognition, optical text recognition 
systems are associated to one of three strategies [13]:
1. Segmentation-based: where attempts to dissect 

images to classifiable units are done before passing 
the results to the classifier. 

In modern Latin scripting, as a contrasting 
example, a writer is free to connect or separate 
characters, as exemplified in Table I. Such freedom 

of ambiguity. This helps 

Arabic language is the easiest and clearest 
language in the world. It is useless to try to find new 
ways to make it easier and clearer. If you receive any 

to read it even if 
[11].” 
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Another characteristic of Arabic script is that some 
characters share glyph shapes and differ only in points 
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Beginning 
 بـ تـ ثـ يـ ئـ نـ
Middle 

 ـبـ ـتـ ـثـ ـيـ ـئـ ـنـ
shapes that differ 

only in dots/Hamzah 

A connected component (CC) refers to whatever 
can be written before the pen must be lifted and 
translated [12]. Hence, CCs seem to be the easiest unit 
for the task of segmentation from the script images. In 
Arabic, a CC appears when a non-connectable 

cter occurs, or, otherwise, at the end of the word. 
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diacritic marks which appear abundantly in Arabic 

shows the CCs of an Arabic text 

 
. Connected components 

According to the level of interaction between 
segmentation and recognition, optical text recognition 

strategies [13]: 
based: where attempts to dissect 

images to classifiable units are done before passing 

2. Recognition-based segmentation: where components 
of images which match with classes of the system’s 
alphabet are looked for and decided on by aid and 
feedback from the recognition stage. Segmentation 
and recognition of letters are accomplished at the 
same time [14]. A popular family of this strategy is 
Hidden Markov Models (HMM).

3. The holistic segmentation-free: w
recognized as a whole. 

Segmentation-based systems segment images into 
lines, words or characters [15]. Alternatively, over
segmentation techniques tend to break the images 
down into small strokes and then group these into 
characters [16]. However, it is reported that there 
exists no segmentation algorithm which is likely to 
separate the characters of Arabic script with 
reasonable accuracy [11]. On the other hand, holistic 
techniques have achieved high word recognition rates 
for cursive scripts [17]. Their disadvantage is that their 
lexicons are always limited to a manageable count of 
words.  
The CC unit was used, in limited form, by Allam [18] 
and has been recently declared as the basic pictorial 
block for AOTR [10,19]. Allam has located group
connected characters by contour tracing. Khorsheed 
[9] has inspected the vertical projection to determine 
whether a white column is an inter
spacing. Special treatment has been required to 
separate sub-words when an overlap exists [
are aware of no previous collection of a lexicon of 
CCs. 
 
4. Lexicon production and reduction
 

Production of a lexicon of CCs encompasses 
several steps. A lexicon that reflects valid surface
words in the Arabic language is first obtained. Then 
two reduction steps reduce it into lexical sub
(pointed CCs) and mere CCs (point
CCs). These steps, along with their input data and their 
outcomes, are illustrated in Figure 
the following subsections. 

Figure 4. The block diagram.
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4.1 Producing the surface-word lexicon 
 

The surface-word lexicon is obtained through two 
different approaches: analysis and synthesis. The 
analytical approach processes large amounts of 
representative texts, known as corpora, by parsing, 
normalizing, and discarding redundant entries.  The 
synthesis approach starts from the smallest linguistic 
meaningful parts, known as morphemes, and 
assembles them into valid words. Both approaches, 
along with their input data, are detailed below. 
4.1.1. The Analytical Approach. The input data for 
this approach consists of two corpora and a dictionary. 
Corpora are ideally expected to reflect natural 
language statistics. The dictionary plays a different 
role: it asserts seeing a complete list of words, 
regardless of the frequency of their usage. The input 
data is tokenized into words, which are then 
normalized and stored without repetitions. 

The first corpus, provided by the Dustour 
newspaper [21], consists of local Jordanian news for 
53 months. The second input source is the Corpus of 
Contemporary Arabic (CCA) [22] consisting of 
internet texts of distinct subjects. The dictionary used 
is the Salmone Arabic-to-English dictionary, encoded 
as part of the Perseus project at Tufts University [23]. 
The dictionary provides rich vocabulary and phrasal 
expressions, as well.  

The tokenization step parses files of mixed Arabic 
and Latin characters into lists of Arabic words. It 
filters out tags and non-Arabic alphanumeric 
characters, tokenizes words based on spaces and 
punctuation marks, and combines the output of each 
source into a single text file. Table 2 lists the counts of 
the result of word tokenization. It also reports the 
counts of CCs in the sources before processing. 

The normalization step removes characters causing 
linguistically acceptable variations of the same surface 
words. It removes optional diacritic marks and a 
calligraphic elongation character called Tatweel. After 
this step, repeated instances are removed. Counts of 
the entries of the word lexicon are reported in Table II. 
The low percent decrease1 of words in the dictionary is 
due to the low repetition there. 

Table 2. Counts of Arabic words and CCs in 
the analytical inputs 

Corpus With 
repetition  

Without 
repetition 

% de-
crease 

Dustour Words 11,386,925 235,973 97.93 
CCA Words 594,119 85,482 85.61 
Salmone Words 85,640 44,171 48.42 
Dustour CCs 28,519,734 47,676 99.83 
CCA CCs 1,348,019 24,027 98.22 
Salmone CCs 166,597 15,031 90.98 

4.1.2 The synthesis approach. The synthetic 
approach starts with dictionaries of morphemes to 
systematically produce variations of words. It depends 
on Buckwalter’s dictionaries of: prefixes (containing 
Arabic prefixes and their concatenations), stems 
(containing roots and their inflections from patterns) 
and suffixes (containing Arabic suffixes and their 
concatenations) and three compatibility tables listing 
the allowed combinations of entries from these 
dictionaries. The surface-word lexicon results from the 
Cartesian product of the three dictionaries filtering out 
entries containing incompatible parts. This results in 
39,399,206 words with repetition, 24,122,954 unique 
words and 2,162,960 unique CCs. The former 
behavior is depicted in the pseudo-code of Figure 5. 
 

 
Figure 5. Pseudo-code of the synthetic 

lexicon generation approach. 
 
4.2 Point-normalization and CC-tokenization 
 

Characters that share the same glyph, except for 
points, are mapped together. This lossy mapping is 
intended to ignore all dots and points. Table 3 shows 
the necessary replacements to achieve an encoding 
that doesn’t differentiate between characters sharing 
the same primary glyph.  

Characters in the thick cells act (and hence map) 
differently in the cases of their final and non-final 
positions. Characters that are not mentioned in Table 3 
have no similarities with other character glyphs. These 
remain untouched. 

Table 3. Replacements made to point-
normalize entries 
Final  Non final 

 أ إ آ ا�  أ إ آ � ا
 ثـ تـ بـ�  ت ث ب�
 جـ خـ حـ�  ج خ ح�

 ذ د�  ذ د�
 ز ر�  ز ر�
 شـ سـ�  ش س�
 ضـ صـ�  ض ص�

 ظ ط�  ظ � ط
 غـ عـ�  غ � ع
 قـ فـ�  ق � ق
 نـ بـ�  ن � ن
 --- --- ة � ه
 ؤ و�  ؤ � و
 ئـ بـ�  ئ � ى
 يـ  بـ�  ي � ى

For every prefix p 
  For every stem s 
    Filter out p+s if p,s incompatible  
    For every suffix f 
      Filter out p+s+f if p,f incompatible  
      Filter out p+s+f if s,f incompatible 
      store p+s+f  



Text of connected components can easily be 
tokenized based on the non-connectable characters of 
Figure 1 and on the word-end delimiter. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 6. Reduction in the count of units 

corpora due to redundancy removal for (a) 
Dustour words, (b) CCA words, (c) Dustour 
CCs, and (d) CCA CCs. (Higher curve is for 

the corpus and lower curve is for the lexicon.) 
 
 

5. Results and analysis 
 
This section presents graphs that show counts of 

entries (words or CCs) per entry length (in characters). 
The impact of different levels of reduction on the 
counts and distribution of the entries of the several 
word-lexicons is observed. 

 
5.1 Reduction due to redundancy removal 
 
The reduction in counts per object size for words 

and CCs of the two corpora we have, viz. Dustour and 
CCA, due to the surface-word lexicon extraction are 
shown in Figure 6. The Salmone dictionary is not 
studied here for it doesn’t represent natural 
frequencies of entry counts. Notice that the y-axis is 
logarithmic. 

These graphs show up phenomena that appear quite 
frequently in linguistics. The lexicon curves take the 
rough shape of a bell. In their ascending sides, the 
lexicon curves are governed by the maximum number 
of combinations that a small number of characters can 
produce. The difference of lexicon in counts from 
corpus curve is to its maximum in this part. This 
reflects the trend of languages to concentrate on 
shorter vocabulary for common use, which is a 
doctrine in data compression. The collapsing part in 
both, the lexicon and corpus curves, are due to the 
limited number of longer words that are actually used 
in a language. This phenomenon is stronger in CCs 
due to their reusability in many words. 
 
5.2 Lexicon-wise reduction 

 
Figure 7 shows the reduction on each of the four 

surface lexicons. It’s clear how the synthesized lexicon 
is by orders of magnitude larger than the others. The 
object lexicon and its PN version share the same range 
on x. 
 
5.2 Object-wise reduction 

  
Figure 8 shows almost the same information of 

Figure 7, but allowing the comparison of the 
performance of lexicons. We display one more 
category, the size of the set of all combinations of 
characters allowed in each category, given by:  
 
Combinations = |������ ��	
 �ℎ�	���	�| ×

                      (∑ |non − connectable characters|����

� )  
 
where N is the object size in number of characters, the 
magnitude operator refers to size in number of 
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characters, and ending form characters are all 
characters except Hamzah. 
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(d) 

 
Figure 7. Lexicon scripting unit distribution 
over length of object for the (a) Salmone (b) 

Dustour (c) CCA and (d) Synthesized 
lexicons. 
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(d)  

 
Figure 8. Comparisons between the counts of 
unique units per character length for the (a) 
word, (b) CCs, (c) PN-word, and (d) PN-CCs 
lexicons plus the full combinations curve. 
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Table 4 presents a summary of some statistics of 
the lexicons obtained.  

 
Table 4. Statistical summary of objects in the 

lexicons 

Lexicon  Category 
Longest 
Word 

PN- 
words 

Longest 
CCs PN-CCs 

Salmone  
Length 11 9 
Count 44171 28788 15031 7129 

decrease 83.86% 75.23 52.57 -- 

CCA 
Length 17 12 
Count 85482 70333 24027 13527 

decrease 84.18% 80.77 43.70 -- 

Dustour 
Length 24 13 
Count 235973 176122 47676 25157 

decrease 89.34% 85.71 47.23 -- 

Synthesiz-
ed 

Length 19 6 
Count 24122954 9925052 2162960 674583 

decrease 97.20% 93.20 68.812 -- 

Union 
Length 24 13 
Count 24166215 9965531 2173121 684743 

decrease 97.17% 93.13 68.49 -- 

 
6. Conclusion 
 

Arabic connected components have a level of 
diversity between that of single characters and that of 
words (inclusively). Besides, being bare of points 
reduces their number further. To be used, these units 
must be comprehensively listed in a lexicon of 
reasonable size. We address the problem of production 
of the lexicon analytically and synthetically. 
Reduction of the size of the lexicon comes inherently 
in the concept of mere CCs. The resulting lexicon 
contains 684,743 entries, having a percent decrease of 
97.17% from the corresponding word-lexicon. 

 
Acknowledgment 

 
Thanks to King Fahd University of Petroleum & 
Minerals and to the Jordanian University of Science 
and Technology for their support. Thanks are also due 
to Dr Sabri Mahmoud and Dr Gheith Abandah for 
their reviews. 

 
References 
 
[1] Powalka RK. An algorithm toolbox for on-line cursive script 

recognition [dissertation]. Nottingham Trent University; 1995. 
[2] Homayoon SMB, Nathan K, Clary GJ, Subrahmonia J. 

Challenges of handwriting recognition in Farsi, Arabic and 
other languages with similar writing styles an on-line digit 
recognizer. Proceedings of the 2nd Annual Conference on 
Technological Advancements in Developing Countries, 
Columbia University, New York, July 23-24, 1994. 

[3] Erlandson EJ, Trenkle JM, Vogt RC. Word-level recognition 
of multifont Arabic text using a feature-vector matching 
approach. Proceedings of the International Society for Optical 
Engineers, SPIE 1996; 2660: 63–70. 

[4] Hamami L, Berkani D. Recognition system for printed multi-
font and multi-size Arabic characters. The Arabian Journal for 
Science and Engineering; 2002 April; 27(1B): 57-72. 

[5] Schurmann J, Bartneck N, Bayer T, Franke J, Mandler E, 
Oberlander M. Document analysis from pixels to contents; 
Proc. IEEE, 1992, July. 1101-19. 

[6] Lexicon. (2010, May 8). In Wikipedia, The Free Encyclopedia. 
http://en.wikipedia.org/w/index.php?title=Lexicon&oldid=360
937035 

[7] Vinciarrelli A. A survey on off-line cursive word recognition. 
Pattern recognition 2002; 35:1433-1446. 

[8] Timar G, Karacs K, Rekeczky C. Analogic preprocessing and 
segmentation algorithms for offline handwriting recognition. 
Journal of Circuits, Systems, and Computers 2003; 12(6):783-
804. 

[9] Khorsheed MS. Off-line Arabic character recognition –a 
review. Pattern analysis & applications 2002; 5:31–45. 

[10] Khedher M, Abandah G. Arabic character recognition using 
approximate stroke sequence. Third Int’l Conf. on Language 
Resources and Evaluation (LREC 2002), Arabic Language 
Resources and Evaluation –status and prospects workshop; 
2002, June. 

[11] Abuhaiba ISI. A discrete Arabic script for better automatic 
document understanding. The Arabian Journal for Science and 
Engineering 2003; 28(1B): 77-94. 

[12] Abuhaiba ISI, Holt MJJ, Datta S. Recognition of off-line 
cursive handwriting. Computer Vision and Image 
Understanding 1998; 71: 19-38. 

[13] Safabakhsh R, Adibi P. Nastaaligh handwritten word 
recognition using a continuous-density variable-duration 
HMM. The Arabian Journal for Science and Engineering 
2005; 30:95-118. 

[14] Cheung A, Bennamoun M. An Arabic optical character 
recognition system using recognition-based segmentation. 
Pattern recognition 2001; 34:215-233. 

[15] Amin A. Recognition of printed Arabic text based on global 
features and decision tree learning techniques. Pattern 
recognition 2000; 33: 1309-23. 

[16] Romeo-Pakker K, Miled H, Lecourtier Y. A new approach for 
Latin/Arabic character segmentation. IEEE 1995; 874-7. 

[17] Khorsheed MS. Automatic recognition of words in Arabic 
manuscripts [dissertation]. University Of Cambridge; 2000, 
June. 

[18] Allam M. Segmentation vs. segmentation-free for recognising 
Arabic text. Proceedings of the International Society for 
Optical Engineers, SPIE 1995; 2422: 228–35. 

[19] Abandah G, Khedher M. Printed and handwritten Arabic 
optical character recognition –initial study. A report on 
research supported by the Higher Council of Science and 
Technology. Amman, Jordan, 2004, August. 

[20] Timsari B, Fahimi H. Morphological approach to character 
recognition in machine-printed Persian words Proc. SPIE Vol. 
2660, p. 184-191, Document Recognition III, Luc M. Vincent; 
Jonathan J. Hull; Eds. 

[21] Website at URL: http:\\www.Dustour.com.jo  
[22]  Al-Sulaiti L. Designing and developing a corpus of 

contemporary Arabic [dissertation]. The University of Leeds; 
2004, March. 

[23] Smith D. An advanced learner's Arabic-English dictionary 
encoded by the Perseus Project, Tufts University. [Online]. 
Available from URL: http://www.tei-c.org/P4X/DTD/tei2.dtd. 

 


