
Arabic Handwritten Alphanumeric Character Recognition using Fuzzy

Attributed Turning Functions

Mohammad Tanvir Parvez and Sabri A. Mahmoud

Information and Computer Science Department

King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.

Email: {tparvez, smasaad}@kfupm.edu.sa

Abstract

In this paper, we present a novel method for

recognition of unconstrained handwritten Arabic

alphanumeric characters. The algorithm binarizes

the character image, smoothes it and extracts its

contour. A novel approach for polygonal

approximation of handwritten character contours is

applied. The directions and length features are

extracted from the polygonal approximation. These

features are used to build character models in the

training phase. For the recognition purpose, we

introduce Fuzzy Attributed Turning Functions

(FATF) and define a dissimilarity measure based on

FATF for comparing polygonal shapes.

Experimental results demonstrate the effectiveness of

our algorithm for recognition of handwritten Arabic

characters. We have obtained around 98% accuracy

for Arabic handwritten characters and more than

97% accuracy for handwritten Arabic numerals.

1. Introduction

Commercial Optical Character Readers (OCRs)

for Latin scripts emerged in the 1950s. Today, the

character and document recognition technology has

advanced significantly, providing commercial

products for the recognition of texts [7]. However,

there is no operationally accurate Arabic handwritten

OCR commercial product available in the market [5].

 The recognition of Arabic handwriting presents

some unique challenges and benefits to the

researchers [5]. Arabic letter shapes are context

dependent and are written cursively both in print and

handwriting. In addition, researchers have to

consider different writing styles and issues related to

the quality of scanned documents (like noise from

scanning process, ink problem etc.). In Arabic

handwritten text, the characters join at the writing

line, unlike other scripts like Latin, and hence more

simplified.

There are a number of works related to Arabic

handwritten character recognition. Abuhaiba et al.

proposed a set of character graph models (CGM) to

recognize isolated handwritten letters [2]. Skeletons

of characters are generated using fuzzy clustering

algorithm. The skeleton segments and their fuzzy

directions are used as features. Each model is

represented as a state machine with transitions

corresponding to fuzzy directions of segments in the

character skeleton and with additional “fuzzy”

constraints to distinguish some characters. Adnan

Amin [3] used inductive learning to recognize hand

printed characters. Stroke types and relationships

between the strokes are extracted from the characters

to generate by induction the first-order Horn clauses

representing the characters. These Horn clauses are

then used for classification.

Mozaffari et al. [12] proposed a method for

Farsi/Arabic handwritten zip code recognition. The

skeleton of the numeral is decomposed into

primitives. Features are extracted from these

primitives and a classifier based on nearest neighbor

is used for recognition. Mezghani et al. [11]

presented a method for Bayes classification of online

Arabic characters. They used histograms of tangent

differences and Gibbs modeling of the class-

conditional probability density functions. Abandah et

al. [1] used principal component analysis to select

best subset of features out of a large number of

extracted features. They utilized both parametric and

non-parametric classifiers to determine the best set of

features.

In this paper, we present a novel approach for

the recognition of handwritten Arabic alphanumeric

characters. The character image is binarized and

smoothed. Then the character contour is extracted

and represented by a polygonal approximation. The

directions and length features of the polygonal

approximation are extracted and character models

are built. The edges of the polygonal approximation

are modeled as fuzzy directional edges. A classifier

based on fuzzy logic and turning angle functions is

utilized in the recognition phase. Experimental

results demonstrate the effectiveness of our

algorithm for recognition of unconstrained Arabic

handwritten alphanumeric characters.

The rest of the paper is organized as follows.

Section 2 presents our algorithm for recognition of

handwritten Arabic alphanumeric characters. Section

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46910094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3 details the experimental results. The conclusions

are presented in Section 4.

2. Recognition System

The general outline of our algorithm for the

recognition of unconstrained handwritten Arabic

characters is shown in Figure 1. The image of the

character sample first goes through the preprocessing

steps, like binarization, smoothing etc. Then the

contour of the character image is extracted and

polygonal approximation of the contour is

constructed. The directions of the polygonal

approximation are modeled as fuzzy directional

edges. Directions and length features are used to

build character models. In the recognition phase, a

fuzzy similarity measure based on turning angle

functions is introduced for classification. In the

following subsections, we describe each of these

steps in detail.

Figure 1: Overview of the Arabic handwritten

character recognition system.

2.1. Preprocessing

The grayscale character image is first converted

into binary (black and white) image. The algorithm

used for this purpose is given by Otsu [13]. The

binary image is then smoothed using statistical

average based smoothing [10]. Smoothing the

character image removes spurious strokes or noise

from the image.

2.2. Polygonal Approximation

Once the character image is binarized and

smoothed, the image is converted into a more

concise representation. Skeletonization or thinning

and contour of the image are the two common

representations. Although many researchers have

used thinning, it may incur some difficulties like

mislocalization of features, ambiguities, „hairs‟

(small spurious lines) etc [9]. The contour approach

avoids these difficulties, preserves the shape

information and is faster to generate. In the proposed

method, we utilize the contour of the character for

feature extraction. Contour extraction algorithm can

be found in [14]. The extracted contour is then

represented by a polygonal approximation.

Polygonal approximation or dominant points

schemes for contour representation are useful in

handwriting recognition for several reasons.

Information on the text curve is concentrated at the

corner (dominant) points; a polygonal approximation

is a more compact representation of the character

contour; polygonal approximations can avoid small

spurious lines / noise in the handwritten text which in

turn can improve the recognition rate of the system.

Figure 2 shows our novel approach for

constructing the polygonal approximation of the

character contour. The algorithm first selects an

initial set of dominant points from the contour C = Pi

(xi, yi), i = 1, 2, …, n. Let ci, i = 1, 2, …, n

be the

Freeman chain code for n points of C. A point Pi
is

called a break point if ci and ci+1 are different. Here,

cn+1
is same as c1. The set of all break points in C are

selected as the initial set of dominant points. The

approximation defined by the break points is affected

by noise on the contour. Thus it is required to

remove redundant points from the initial set of

dominant points, which is done as follows.

Let Pi. Pj

and Pk

be three consecutive dominant

points on C. The left-support region of Pj

consists of

the points {Pi, Pi+1, …, Pj-1}. Similarly, the right-

support region of Pj consists of the points {Pj+1, Pj+2,

…, Pk}. The total number of points in the left and

right-support regions of Pj

is called the strength of

Pj. Dominant points are sorted based on their

strength, then based on the distance from the

centroid of the contour C. Then, for each dominant

point Pj from the sorted list (weakest point first), Pj

is suppressed if the perpendicular distance dper

from

Pj to the line joining Pi and Pk
is less than some

predefined threshold dcol and the following two

constraints on Pi. Pj

and Pk

are satisfied:

Constraint 1: The triangle formed by the three points

Pi. Pj

and Pk

is an acute triangle, and

Constraint 2: For each dominant point Pl
other than

Pi. Pj

and Pk, the minimum distance from Pl

to the

line segment joining Pi and Pk is greater than dcol.

Algorithm FindPolygonalApproximation

- The Candidate Set (CS) of

dominant points consists of all

break points in contour C.

- Initial value for dcol = 0.5.

- Repeat:

o Suppress redundant dominant

points from CS. Resulting

set of dominant points is

called Reduced Candidate

Set (RCS) and denoted by

RCSdcol.

o Output the approximation

defined by RCSdcol

o CS RCSdcol

o Increase the value for dcol.

- Until a terminating condition.

Figure 2: Algorithm for polygonal
approximation.

This operation of removing redundant points is

called constrained collinear-points suppression

(CCS). Our algorithm iteratively applies this

suppression technique until some terminating

condition is satisfied. This condition is defined as

follows. Let V
(k)

 be the set of dominant points

retained at iteration k of FindCutPoints. We

terminate FindPolygonalApproximation if V
(k)

=

V
(k+1)

, for some k ≥ 1.

Figure 3 illustrates the application of

FindPolygonalApproximation for the Arabic

character Twaa (ط). Note that, the number of

dominant points is reduced gradually as the value for

the threshold dcol is increased.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3: Illustration of the algorithm
FindPolygonalApproximation: (a) Arabic

ligature Twaa (ط), (b) contour after
smoothing, (c) break points of (b) and (d-f)
polygonal approximations of (b) defined by

coldRCS where dcol = 1.0, 1.5 and 2.0.

2.3. Modeling of Characters

Let Di = (xi,yi), i=1, 2, .., nd be the sequence of

dominant points of the polygonal approximation of

the character contour C. These points define a

polygon P of nd edges, where each edge di of P is a

vector DiDi+1 with length li = |di|, where di = di+nd. A

suitable representation of this polygon P turning

function [4]. The turning function, or cumulative

angle function, ѲA(s) of a polygon or polyline A

gives the angle between the counterclockwise

tangent and the x-axis as a function of the arc length

s. Figure 4 illustrates the turning function for the

Arabic character Daal (د).

The dissimilarity measure for two turning

functions ѲA and ѲB is defined as follows. The two

polygons A and B are scaled so that they have unit

length perimeters. A dissimilarity measure for A and

B is the Lp metric applied to ѲA and ѲB:

p

p

BA dsssBAd

/1
1

0
,

 . In practice, the

measure d(A,B) is evaluated as follows. For L2

metric, the integral
l

BA dsss
0

2
 is computed

by adding up the value of the integral within each

strip defined by a consecutive pair of discontinuities

in sA and sB (Figure 5). The integral within a

strip is computed as:
2
ss dw , where sw is the width

of the strip and ssd BAs . Note that sd is

constant within a strip.

(a)

(b)

(c)

(d)

Figure 4: Illustration of turning function: (a)
Arabic character Daal (د), (b) contour of (a)
after smoothing, (c) polygon defined by the
dominant points of (b) and (d) the turning

function representation of (c).

Figure 5: The rectangular strips formed by

the functions sA and sB .

However, we found that the above definition of

the dissimilarity measure d(A,B) perform poorly

when used for recognition of unconstrained

handwritten characters. The weakness arises from the

way ds is computed: it is simply the difference in two

turning functions within a strip. In reality, ds denotes

the difference in writing directions within a strip.

Due to the different writing styles, the computation

of ds should tolerate some level of deviations in

writing directions. To alleviate these problems, we

propose Fuzzy Attributed Turning Functions.

2.4. Fuzzy Modeling of Characters

In modeling the character contour C, we

describe the vector di as a fuzzy direction. Fuzzy

directions are fuzzy sets that have membership

functions similar to those of fuzzy numbers that are

characterized by possibility distributions. The fuzzy

distributions [8] used in character modeling are a) s-

numbers: (p/β), where p is the left peak point and β is

the length of the transition interval (bandwidth) from

πx = 0 to 1; b) z-numbers: (p\β), where p is the right

peak point and β is the bandwidth; and c) s/z

numbers: (p1/β1; p2\β2), which is the intersection of

the possibility distribution of an s-number and a z-

number. Here the left peak point of s-number (p1)

0 20 40 60 80 100 120 140
0

50

100

150

200

250

300

350

Ѳ 1

2

3

4
7

6
5

8
9

10

Pixels (s)

A
n

g
le

 (
Ѳ

)

3
2

1

10
9

8
7

6

5
4

lies to the left of the right peak point the z-number

(p2).

In the modeling of Arabic handwritten

characters, a restricted set of s/z numbers, called 𝜋-

numbers, are used to model the directions di. These

numbers are denoted by 𝜋 = (p1/β1;Ѳ; p2\β2), where

p1 = Ѳ – γ1, γ1 > 0 and p2 = Ѳ + γ2, γ2 > 0. Figure 6

illustrates the concept of 𝜋-numbers. In a 𝜋-number,

the membership value is 1 in [p1, p2], and decreases

linearly in (p1, p1–β1] and (p2, p2+β2]. This simple

modeling of directions can effectively handle

variations in strokes.

Figure 6: Illustration of a 𝝅-number.

A polygonal approximation of the Arabic

character Daal (د) of Figure 7(a) is shown in Figure

7(c). This approximation contains 13 edges and each

of these directions is modeled as a 𝜋-number. For

example, the anticlockwise direction with respect to

x-axis for the edge marked 1 is 315
o
. This angle can

be mapped to a 𝜋-numbers as

(300
o
/15

o
;315

o
;330

o
\15

o
). For this fuzzy number, any

direction d that falls between 300
o
 and 330

o
 will have

a membership value of 1.

(a)

(b)

(c)

Figure 7: Illustration of directions in a
polygonal approximation.

Sometimes it is useful to have Ѳ, in a 𝜋-number

(p1/β1;Ѳ; p2\β2), take value from a finite set of

directions SD, called standard writing directions. The

set SD can be regarded as quantization in stroke

directions. This enables us to use limited number of

models for each character with sufficient coverage

for our application.

With this definition of a 𝜋-number, we now

describe a novel fuzzy modeling of handwritten

characters. We call 𝛷A(s) as Fuzzy Attributed

Turning Function (FATF), where the angles in 𝛷A(s)

are modeled as 𝜋-numbers (p1/β1;Ѳ;p2\β2). The

dissimilarity measure 𝒹(A,B) for two FATF 𝛷A(s)

and 𝛷B(s) is defined as follows:

𝒹(A,B) =

 𝛷𝐴 𝑠 − 𝛷𝐵 𝑠
𝑝𝑑𝑠

𝑙

0

1/𝑝

, where l is the length of

the perimeter of the scaled polygons.

Now for L2 metric, the integral 𝛷𝐴 𝑠 −
𝑙

0

𝛷𝐵 𝑠
2𝑑𝑠 is computed as follows. Assume that,

within a strip 𝛷A(s) = φ1 and 𝛷B(s) = φ2. Here, φ1 is

represented by a 𝜋-number (p1/β1;Ѳ; p2\β2). Let

𝑚𝜑2
be the membership value of φ2 in the fuzzy

direction for φ1. Since ds is used as the dissimilarity

measure for writing directions, ds is taken as (1 –

𝑚𝜑2
). Therefore,

𝑑𝑠 =

 0, 𝜑2 ∈ Ѳ – 𝛾1,Ѳ + 𝛾2

1,𝜑2 > Ѳ + 𝛾2 + 𝛽2 or 𝜑2 < Ѳ – 𝛾1 – 𝛽1

1 −
𝜑2−𝑝2

𝛽2
, 𝑝2 < 𝜑2 < 𝑝2 + 𝛽2

1 −
𝑝1−𝜑2

𝛽1
, 𝑝1 − 𝛽1 < 𝜑2 < 𝑝1

In Figure 8, turning functions of two different

samples of the Arabic character Daal (د) are shown in

the same scale. The directions of the first Daal in

Figure 8(a) are marked with a suffix a and for the

second Daal in Figure 8(c) with suffix b. As can be

seen in Figure 8(e), the measure d(A,B) assumes that

the differences in directions for Strip 1 and 2 are

high because it blindly compute ds as the absolute

difference in direction angles. However, Figure 8 (b)

and (c) clearly show that directions 1a and 1b-2b

refer to the same segment of the character contour

and should be treated as „close‟. Directions 1b and

2b differ from 1a because of the variations in writing

styles. These variations must be tolerated in the

dissimilarity measure. The proposed measure for

FATF effectively achieves this goal by modeling the

directions as fuzzy sets. This is illustrated pictorially

by zooming Strip 1 and 2 in the upper-right box in

Figure 8 (e). Here, the direction 1a is a „band‟ of

directions, effectively accommodating variations in

strokes due to different writing styles. Due to these

fuzzy descriptions of the directional angles,

directions 1b and 2b are considered as „close‟ to the

direction 1a in FATF.

The dissimilarity measure 𝒹(A,B) can be thought

of utilizing local features on the character contour.

There are also some global features which we need

to consider at the recognition phase. These include

length of the perimeter and the number of nodes in

the polygonal approximations, presence of holes and

dots in the character image etc. In addition, the

nature of 𝜋-numbers incorporates a certain level of

rotational invariance as rotation in Euclidean space is

equivalent to vertical shifts in turning functions.

3. Experimentations

Two databases are used for experimentations: a

database of handwritten Arabic characters and a

database of handwritten Arabic numerals. In our

experimentations, a nearest neighbor (NN) classifier

based on fuzzy attributed turning function (FATF) is

used. For simplicity, all the 𝜋-numbers in FATF

have γ1 = γ2 = 15
o
, β1 = β2 = 20

o
 and standard

directions SD = 20i, i = 0, 1, … ,17. Polygonal

approximation of each character sample is obtained

by restricting the highest value for dcol to 1.5.

1
2

7
4

13
12

11

9 8

6
5

3
10

315o

(a)

(b)

(c)

(d)

(e)

Figure 8: Illustration of turning functions for two samples of Arabic character Daal (د).

3.1 Character Recognition

The proposed algorithm is trained and tested

using a database of 1948 samples of unconstrained

handwritten Arabic characters written by 4 writers

[2]. The database contains the basic character

shapes without dots, comprising a total of 51

shapes (each character can have up to 4 shapes

depending upon the context). The database is

divided into 70% for training and 30% for testing

(for each writer).

Table 1 shows the recognition rates obtained

by our algorithm in top n cases, where n = 1,2,…,5.

As can be seen in Table 1, more than 97% success

rate is obtained for all four writers when the

proposed FATF with 1-NN is used for

classification. However, recognition based on

turning angle function (TF) gives much lower

accuracy, with a maximum of 74.83% recognition

rate for Writer 4 using 1-NN. Thus the proposed

FATF based classifier is much more successful

than traditional turning functions in recognition of

unconstrained handwritten Arabic alphabetic

characters.

3.2 Arabic Numerals Recognition

The proposed algorithm is also tested with a

database of Arabic numerals called ADBase [6].

The ADBase is composed of 70,000 digits written

by 700 writers. Each writer wrote each digit (from

„0‟ to „9‟) ten times. The database is partitioned

into two sets: a training set (60,000 digits samples)

and a test set (10,000 digits samples). An average

accuracy of 97.18% is obtained for this database.

The confusion matrix and the recognition

accuracies for each numeral are shown in Table 2.

As can be seen from Table 2, the majority of

the errors arise from the confusions between 0 and

5, 0 and 1, 3 and 2, 5 and 2, and 9 and 2. After

analyzing the erroneous cases manually, we have

found that around 41% of the error occurred due to

the bad handwriting, which is difficult to be

recognized even by humans. Further 22% of the

error occurred due to broken digits. Figure 9 shows

some examples of misclassified digits.

Table 1: Recognition accuracies in percentage for the four writers using FATF and TF.

Writer FATF TF

 Top 1 Top 2 Top 3 Top 4 Top 5 Top 1 Top 2 Top 3 Top 4 Top 5
1 97.97 98.65 98.65 98.65 99.32 71.62 75.68 79.05 81.76 85.14

2 97.84 98.56 98.56 98.56 98.56 67.63 73.38 82.73 82.73 89.21

3 97.90 97.90 97.90 98.60 99.30 70.63 80.42 86.01 88.11 89.51

4 97.20 97.90 98.60 98.60 98.60 74.83 82.52 84.62 85.31 88.81

1b

2b

3b

4b
5b

6b
7b

8b
9b

10b

1a

1a

2a

3a
4a

5a
6a 7a

8a

9a

10a

2b

1b

Strip 1

Strip 2

Pixels (s)

A
n

g
le

 (
Ѳ

)

Table 2: Confusion matrix and recognition accuracies for Arabic handwritten numerals.

Digits ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ Accuracy

٠ 925 17 0 0 0 56 0 0 2 0 92.50%

١ 1 984 1 3 0 1 0 5 3 2 98.40%

٢ 1 4 988 2 1 2 0 0 2 0 98.80%

٣ 0 6 14 964 0 0 1 7 6 2 96.40%

٤ 0 4 12 0 978 1 3 0 0 2 97.80%

٥ 8 3 15 1 2 955 0 4 6 6 95.50%

٦ 0 6 1 0 1 0 981 0 0 11 98.10%

٧ 0 7 0 0 0 2 0 991 0 0 99.10%

٨ 1 3 1 0 0 0 0 0 990 5 99.00%

٩ 0 9 14 2 1 1 5 0 6 962 96.20%

Image
Actual

Digit

Digit

Found
Image

Actual

Digit

Digit

Found

 ١ ٤ ٥ ٠

٢ ٤ ٢ ٣

 ٢ ٥

٨ ٢

 ٩ ٦ ٩ ٨

Figure 9: Examples of misclassified digits.

4 Conclusions

We have proposed a novel method utilizing

polygonal approximations and fuzzy directional

edges for recognition of handwritten Arabic

characters. We also introduce an effective

dissimilarity measure for comparing polygonal

shapes which can be utilized in shape analysis and

retrieval systems. The authors are extending the

proposed technique to handwritten text recognition.

A possible drawback of the proposed method is the

high computational complexity. However, the

authors are exploring template reduction techniques

to reduce the complexity.

Acknowledgement

We acknowledge King Fahd University of

Petroleum & Minerals (KFUPM) for partially

supporting this research work.

References

[1] Abandah, G.A., Younis, K. S. and Khedher, M. Z.:

Handwritten Arabic character recognition using multiple

classifiers based on letter form, In Proc. 5th IASTED Int'l

Conf. on Signal Processing, Pattern Recognition, &

Applications (SPPRA 2008), 2008.

[2] Abuhaiba, I.S.I., Mahmoud, S.A., and Green, R.J.,

Recognition of handwritten cursive Arabic characters,

IEEE Trans. Pattern Analysis and Machine Intelligence,

vol. 16, pp. 664–672, 1994.

[3] Amin, A.: Recognition of hand-printed characters

based on structural description and inductive logic

programming, Pattern Recognition Letters, vol. 24, no.

16, pp. 3187–3196, 2003.

[4] E. Arkin, P. Chew, D. Huttenlocher, K. Kedem, and

J. Mitchel. An efficiently computable metric for

comparing polygonal shapes. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(3), pp.

209–215, 1991.

[5] Cheriet, M.: Visual recognition of Arabic

handwriting: challenges and new directions, Arabic and

Chinese Handwriting Recognition, LNCS 4768, pp. 1–

21, 2008.

[6] El-Sherif, E., Abdelazeem, S.: A two-stage system

for Arabic handwritten digit recognition tested on a new

large database. International Conference on Artificial

Intelligence and Pattern Recognition (AIPR-07),

Orlando, FL, USA, pp. 237–242, 2007.

[7] Fujisawa, H.: Forty years of research in character and

document recognition – an industrial perspective, Pattern

Recognition 41, pp. 2435–2446, 2008.

[8] Kandal, A.: Fuzzy Mathematical Techniques with

Applications, Reading MA, Addison-Wesley, pp. 38–40,

1986.

[9] Lorigo, L. and Govindaraju, V.: Offline Arabic

handwriting recognition: a survey, Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 28, pp.

712–724, 2006.

[10] Mahmoud, S. A.: Arabic character recognition using

Fourier descriptors and character contour encoding.

Pattern Recognition 27, pp. 815–824. 1994.

[11] Mezghani, N., Mitiche, A. and Cheriet, M,: Bayes

classification of online Arabic characters by Gibbs

modeling of class conditional densities, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 30, no. 7, pp. 1121–1131, 2008.

[12] Mozaffari, S., Faez, K., and Ziaratban, M.:

Structural decomposition and statistical description of

Farsi/Arabic handwritten numeric characters, Proc. Int‟l

Conf. Document Analysis and Recognition, pp. 237–241,

2005.

[13] Otsu, N.: A threshold selection method from gray-

level histograms, IEEE Transactions on Systems, Man,

and Cybernetics, vol. SMC–9 , no. 1, pp. 62–66, 1979.

[14] Pavlidis, T.: Algorithms for Graphics and Image

Processing, Computer Science Press, Rockville,

Maryland, 1982.

http://www.springerlink.com/content/p821jg623776/?p=77569edb48c04e22be04f7f5999e399c&pi=0
http://www.springerlink.com/content/p821jg623776/?p=77569edb48c04e22be04f7f5999e399c&pi=0
http://www.springerlink.com/content/p821jg623776/?p=77569edb48c04e22be04f7f5999e399c&pi=0

