
Arabic Handwritten Alphanumeric Character Recognition using Fuzzy 

Attributed Turning Functions 
 

 

Mohammad Tanvir Parvez and Sabri A. Mahmoud 

Information and Computer Science Department 

King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.  

Email: {tparvez, smasaad}@kfupm.edu.sa 

 

 

Abstract 

In this paper, we present a novel method for 

recognition of unconstrained handwritten Arabic 

alphanumeric characters. The algorithm binarizes 

the character image, smoothes it and extracts its 

contour. A novel approach for polygonal 

approximation of handwritten character contours is 

applied. The directions and length features are 

extracted from the polygonal approximation. These 

features are used to build character models in the 

training phase. For the recognition purpose, we 

introduce Fuzzy Attributed Turning Functions 

(FATF) and define a dissimilarity measure based on 

FATF for comparing polygonal shapes. 

Experimental results demonstrate the effectiveness of 

our algorithm for recognition of handwritten Arabic 

characters. We have obtained around 98% accuracy 

for Arabic handwritten characters and more than 

97% accuracy for handwritten Arabic numerals. 

1. Introduction 

Commercial Optical Character Readers (OCRs) 

for Latin scripts emerged in the 1950s. Today, the 

character and document recognition technology has 

advanced significantly, providing commercial 

products for the recognition of texts [7]. However, 

there is no operationally accurate Arabic handwritten 

OCR commercial product available in the market [5]. 

 The recognition of Arabic handwriting presents 

some unique challenges and benefits to the 

researchers [5]. Arabic letter shapes are context 

dependent and are written cursively both in print and 

handwriting. In addition, researchers have to 

consider different writing styles and issues related to 

the quality of scanned documents (like noise from 

scanning process, ink problem etc.). In Arabic 

handwritten text, the characters join at the writing 

line, unlike other scripts like Latin, and hence more 

simplified. 

There are a number of works related to Arabic 

handwritten character recognition. Abuhaiba et al. 

proposed a set of character graph models (CGM) to 

recognize isolated handwritten letters [2]. Skeletons 

of characters are generated using fuzzy clustering 

algorithm. The skeleton segments and their fuzzy 

directions are used as features. Each model is 

represented as a state machine with transitions 

corresponding to fuzzy directions of segments in the 

character skeleton and with additional “fuzzy” 

constraints to distinguish some characters. Adnan 

Amin [3] used inductive learning to recognize hand 

printed characters. Stroke types and relationships 

between the strokes are extracted from the characters 

to generate by induction the first-order Horn clauses 

representing the characters. These Horn clauses are 

then used for classification. 

Mozaffari et al. [12] proposed a method for 

Farsi/Arabic handwritten zip code recognition. The 

skeleton of the numeral is decomposed into 

primitives. Features are extracted from these 

primitives and a classifier based on nearest neighbor 

is used for recognition. Mezghani et al. [11] 

presented a method for Bayes classification of online 

Arabic characters. They used histograms of tangent 

differences and Gibbs modeling of the class-

conditional probability density functions. Abandah et 

al. [1] used principal component analysis to select 

best subset of features out of a large number of 

extracted features. They utilized both parametric and 

non-parametric classifiers to determine the best set of 

features. 

In this paper, we present a novel approach for 

the recognition of handwritten Arabic alphanumeric 

characters. The character image is binarized and 

smoothed. Then the character contour is extracted 

and represented by a polygonal approximation. The 

directions and length features of the polygonal 

approximation are extracted and character models 

are built. The edges of the polygonal approximation 

are modeled as fuzzy directional edges. A classifier 

based on fuzzy logic and turning angle functions is 

utilized in the recognition phase. Experimental 

results demonstrate the effectiveness of our 

algorithm for recognition of unconstrained Arabic 

handwritten alphanumeric characters. 

The rest of the paper is organized as follows. 

Section 2 presents our algorithm for recognition of 

handwritten Arabic alphanumeric characters. Section 
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3 details the experimental results. The conclusions 

are presented in Section 4. 

2. Recognition System 

The general outline of our algorithm for the 

recognition of unconstrained handwritten Arabic 

characters is shown in Figure 1. The image of the 

character sample first goes through the preprocessing 

steps, like binarization, smoothing etc. Then the 

contour of the character image is extracted and 

polygonal approximation of the contour is 

constructed. The directions of the polygonal 

approximation are modeled as fuzzy directional 

edges. Directions and length features are used to 

build character models. In the recognition phase, a 

fuzzy similarity measure based on turning angle 

functions is introduced for classification. In the 

following subsections, we describe each of these 

steps in detail. 

 
Figure 1: Overview of the Arabic handwritten 

character recognition system. 

2.1. Preprocessing 

The grayscale character image is first converted 

into binary (black and white) image. The algorithm 

used for this purpose is given by Otsu [13]. The 

binary image is then smoothed using statistical 

average based smoothing [10]. Smoothing the 

character image removes spurious strokes or noise 

from the image.  

2.2.  Polygonal Approximation 

Once the character image is binarized and 

smoothed, the image is converted into a more 

concise representation. Skeletonization or thinning 

and contour of the image are the two common 

representations. Although many researchers have 

used thinning, it may incur some difficulties like 

mislocalization of features, ambiguities, „hairs‟ 

(small spurious lines) etc [9].  The contour approach 

avoids these difficulties, preserves the shape 

information and is faster to generate. In the proposed 

method, we utilize the contour of the character for 

feature extraction. Contour extraction algorithm can 

be found in [14]. The extracted contour is then 

represented by a polygonal approximation.  

Polygonal approximation or dominant points 

schemes for contour representation are useful in 

handwriting recognition for several reasons. 

Information on the text curve is concentrated at the 

corner (dominant) points; a polygonal approximation 

is a more compact representation of the character 

contour; polygonal approximations can avoid small 

spurious lines / noise in the handwritten text which in 

turn can improve the recognition rate of the system. 

Figure 2 shows our novel approach for 

constructing the polygonal approximation of the 

character contour. The algorithm first selects an 

initial set of dominant points from the contour C = Pi 

(xi, yi), i = 1, 2, …, n. Let ci, i = 1, 2, …, n
 
be the 

Freeman chain code for n points of C. A point Pi 
is 

called a break point if ci and ci+1 are different. Here, 

cn+1 
is same as c1. The set of all break points in C are 

selected as the initial set of dominant points. The 

approximation defined by the break points is affected 

by noise on the contour. Thus it is required to 

remove redundant points from the initial set of 

dominant points, which is done as follows. 

Let Pi. Pj
 
and Pk 

be three consecutive dominant 

points on C.  The left-support region of Pj
 
consists of 

the points {Pi, Pi+1, …, Pj-1}. Similarly, the right-

support region of Pj consists of the points {Pj+1, Pj+2, 

…, Pk}. The total number of points in the left and 

right-support regions of Pj
 
is called the strength of 

Pj. Dominant points are sorted based on their 

strength, then based on the distance from the 

centroid of the contour C. Then, for each dominant 

point Pj from the sorted list (weakest point first), Pj 

is suppressed if the perpendicular distance dper
 
from 

Pj to the line joining Pi and Pk 
is less than some 

predefined threshold dcol and the following two 

constraints on Pi. Pj
 
and Pk 

are satisfied: 

Constraint 1: The triangle formed by the three points 

Pi. Pj
 
and Pk 

is an acute triangle, and 

Constraint 2: For each dominant point Pl 
other than 

Pi. Pj
 
and Pk, the minimum distance from Pl 

to the 

line segment joining Pi and Pk is greater than dcol. 

 
Algorithm FindPolygonalApproximation 

- The Candidate Set (CS) of 

dominant points consists of all 

break points in contour C. 

- Initial value for dcol = 0.5. 

- Repeat: 

o Suppress redundant dominant 

points from CS. Resulting 

set of dominant points is 

called Reduced Candidate 

Set (RCS) and denoted by 

RCSdcol. 

o Output the approximation 

defined by RCSdcol 

o CS   RCSdcol 

o Increase the value for dcol. 

- Until a terminating condition. 

 

Figure 2: Algorithm for polygonal 
approximation. 

This operation of removing redundant points is 

called constrained collinear-points suppression 

(CCS). Our algorithm iteratively applies this 



suppression technique until some terminating 

condition is satisfied. This condition is defined as 

follows. Let V
(k)

 be the set of dominant points 

retained at iteration k of FindCutPoints. We 

terminate FindPolygonalApproximation if V
(k) 

= 

V
(k+1)

, for some k  ≥  1. 

Figure 3 illustrates the application of 

FindPolygonalApproximation for the Arabic 

character Twaa (ط). Note that, the number of 

dominant points is reduced gradually as the value for 

the threshold dcol is increased. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3: Illustration of the algorithm 
FindPolygonalApproximation: (a) Arabic 

ligature Twaa (ط), (b) contour after 
smoothing, (c) break points of (b) and (d-f) 
polygonal approximations of (b) defined by

coldRCS where dcol = 1.0, 1.5 and 2.0. 

2.3. Modeling of Characters 

Let Di = (xi,yi), i=1, 2, .., nd be the sequence of 

dominant points of the polygonal approximation of 

the character contour C. These points define a 

polygon P of nd edges, where each edge di of P is a 

vector DiDi+1 with length li = |di|, where di = di+nd. A 

suitable representation of this polygon P turning 

function [4]. The turning function, or cumulative 

angle function, ѲA(s) of a polygon or polyline A 

gives the angle between the counterclockwise 

tangent and the x-axis as a function of the arc length 

s. Figure 4 illustrates the turning function for the 

Arabic character Daal (د). 

The dissimilarity measure for two turning 

functions ѲA and ѲB is defined as follows. The two 

polygons A and B are scaled so that they have unit 

length perimeters. A dissimilarity measure for A and 

B is the Lp metric applied to ѲA and ѲB:  

     
p

p

BA dsssBAd

/1
1

0
, 








   . In practice, the 

measure d(A,B) is evaluated as follows. For L2 

metric, the integral     
l

BA dsss
0

2
 is computed 

by adding up the value of the integral within each 

strip defined by a consecutive pair of discontinuities 

in  sA and  sB  (Figure 5). The integral within a 

strip is computed as: 
2
ss dw   , where sw is the width 

of the strip and    ssd BAs   . Note that sd is 

constant within a strip. 

 
(a) 

 
(b) 

 
(c) 

 
 

(d) 

Figure 4: Illustration of turning function: (a) 
Arabic character Daal (د), (b) contour of (a) 
after smoothing, (c) polygon defined by the 
dominant points of (b) and (d) the turning 

function representation of (c). 

 
Figure 5: The rectangular strips formed by 

the functions  sA and  sB . 

However, we found that the above definition of 

the dissimilarity measure d(A,B) perform poorly 

when used for recognition of unconstrained 

handwritten characters. The weakness arises from the 

way ds is computed: it is simply the difference in two 

turning functions within a strip. In reality, ds denotes 

the difference in writing directions within a strip. 

Due to the different writing styles, the computation 

of ds should tolerate some level of deviations in 

writing directions. To alleviate these problems, we 

propose Fuzzy Attributed Turning Functions. 

2.4. Fuzzy Modeling of Characters 

In modeling the character contour C, we 

describe the vector di as a fuzzy direction. Fuzzy 

directions are fuzzy sets that have membership 

functions similar to those of fuzzy numbers that are 

characterized by possibility distributions. The fuzzy 

distributions [8] used in character modeling are a) s-

numbers: (p/β), where p is the left peak point and β is 

the length of the transition interval (bandwidth) from 

πx = 0 to 1; b) z-numbers: (p\β), where p is the right 

peak point and β is the bandwidth; and c) s/z 

numbers: (p1/β1; p2\β2), which is the intersection of 

the possibility distribution of an s-number and a z-

number. Here the left peak point of s-number (p1) 
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lies to the left of the right peak point the z-number 

(p2). 

In the modeling of Arabic handwritten 

characters, a restricted set of s/z numbers, called 𝜋-

numbers, are used to model the directions di. These 

numbers are denoted by 𝜋 = (p1/β1;Ѳ; p2\β2), where 

p1 = Ѳ – γ1, γ1 > 0 and p2 = Ѳ + γ2, γ2 > 0.  Figure 6 

illustrates the concept of 𝜋-numbers. In a 𝜋-number, 

the membership value is 1 in [p1, p2], and decreases 

linearly in (p1, p1–β1] and (p2, p2+β2].  This simple 

modeling of directions can effectively handle 

variations in strokes. 

 
Figure 6: Illustration of a 𝝅-number. 

A polygonal approximation of the Arabic 

character Daal (د) of Figure 7(a) is shown in Figure 

7(c). This approximation contains 13 edges and each 

of these directions is modeled as a 𝜋-number. For 

example, the anticlockwise direction with respect to 

x-axis for the edge marked 1 is 315
o
.  This angle can 

be mapped to a 𝜋-numbers as 

(300
o
/15

o
;315

o
;330

o
\15

o
). For this fuzzy number, any 

direction d that falls between 300
o
 and 330

o
 will have 

a membership value of 1.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 7: Illustration of directions in a 
polygonal approximation. 

Sometimes it is useful to have Ѳ, in a 𝜋-number 

(p1/β1;Ѳ; p2\β2), take value from a finite set of 

directions SD, called standard writing directions. The 

set SD can be regarded as quantization in stroke 

directions. This enables us to use limited number of 

models for each character with sufficient coverage 

for our application. 

With this definition of a 𝜋-number, we now 

describe a novel fuzzy modeling of handwritten 

characters. We call 𝛷A(s) as Fuzzy Attributed 

Turning Function (FATF), where the angles in 𝛷A(s) 

are modeled as 𝜋-numbers (p1/β1;Ѳ;p2\β2). The 

dissimilarity measure 𝒹(A,B) for two FATF 𝛷A(s) 

and 𝛷B(s) is defined as follows:

 

𝒹(A,B) = 

   𝛷𝐴 𝑠 − 𝛷𝐵 𝑠  
𝑝𝑑𝑠

𝑙

0
 

1/𝑝

, where l is the length of 

the perimeter of the scaled polygons. 

Now for L2 metric, the integral   𝛷𝐴 𝑠 −
𝑙

0

𝛷𝐵 𝑠  
2𝑑𝑠 is computed as follows. Assume that, 

within a strip 𝛷A(s) = φ1 and 𝛷B(s) = φ2. Here, φ1 is 

represented by a 𝜋-number (p1/β1;Ѳ; p2\β2). Let 

𝑚𝜑2
be the membership value of φ2 in the fuzzy 

direction for φ1. Since ds is used as the dissimilarity 

measure for writing directions, ds is taken as (1 – 

𝑚𝜑2
). Therefore,  

𝑑𝑠 =

 
 
 

 
 0,                   𝜑2  ∈   Ѳ –  𝛾1,Ѳ + 𝛾2                                             

1,𝜑2  >   Ѳ +  𝛾2  +  𝛽2 or 𝜑2 <   Ѳ –  𝛾1  –  𝛽1                    

1 −
𝜑2−𝑝2

𝛽2
,   𝑝2 < 𝜑2 < 𝑝2 + 𝛽2                                                  

1 −
𝑝1−𝜑2

𝛽1
,   𝑝1 − 𝛽1 < 𝜑2 < 𝑝1                                                      

   

In Figure 8, turning functions of two different 

samples of the Arabic character Daal (د) are shown in 

the same scale. The directions of the first Daal in 

Figure 8(a) are marked with a suffix a and for the 

second Daal in Figure 8(c) with suffix b. As can be 

seen in Figure 8(e), the measure d(A,B) assumes that 

the differences in directions for Strip 1 and 2 are 

high because it blindly compute ds as the absolute 

difference in direction angles. However, Figure 8 (b) 

and (c) clearly show that directions 1a and 1b-2b 

refer to the same segment of the character contour 

and should be treated as „close‟. Directions 1b and 

2b differ from 1a because of the variations in writing 

styles. These variations must be tolerated in the 

dissimilarity measure. The proposed measure for 

FATF effectively achieves this goal by modeling the 

directions as fuzzy sets. This is illustrated pictorially 

by zooming Strip 1 and 2 in the upper-right box in 

Figure 8 (e). Here, the direction 1a is a „band‟ of 

directions, effectively accommodating variations in 

strokes due to different writing styles. Due to these 

fuzzy descriptions of the directional angles, 

directions 1b and 2b are considered as „close‟ to the 

direction 1a in FATF. 

The dissimilarity measure 𝒹(A,B) can be thought 

of utilizing local features on the character contour. 

There are also some global features which we need 

to consider at the recognition phase. These include 

length of the perimeter and the number of nodes in 

the polygonal approximations, presence of holes and 

dots in the character image etc. In addition, the 

nature of 𝜋-numbers incorporates a certain level of 

rotational invariance as rotation in Euclidean space is 

equivalent to vertical shifts in turning functions.  

3. Experimentations 

Two databases are used for experimentations: a 

database of handwritten Arabic characters and a 

database of handwritten Arabic numerals. In our 

experimentations, a nearest neighbor (NN) classifier 

based on fuzzy attributed turning function (FATF) is 

used. For simplicity, all the 𝜋-numbers in FATF 

have γ1 = γ2 = 15
o
, β1 = β2 = 20

o
 and standard 

directions SD = 20i, i = 0, 1, … ,17. Polygonal 

approximation of each character sample is obtained 

by restricting the highest value for dcol to 1.5. 
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Figure 8: Illustration of turning functions for two samples of Arabic character Daal (د). 

3.1 Character Recognition 

The proposed algorithm is trained and tested 

using a database of 1948 samples of unconstrained 

handwritten Arabic characters written by 4 writers 

[2]. The database contains the basic character 

shapes without dots, comprising a total of 51 

shapes (each character can have up to 4 shapes 

depending upon the context). The database is 

divided into 70% for training and 30% for testing 

(for each writer).  

Table 1 shows the recognition rates obtained 

by our algorithm in top n cases, where n = 1,2,…,5. 

As can be seen in Table 1, more than 97% success 

rate is obtained for all four writers when the 

proposed FATF with 1-NN is used for 

classification. However, recognition based on 

turning angle function (TF) gives much lower 

accuracy, with a maximum of 74.83% recognition 

rate for Writer 4 using 1-NN. Thus the proposed 

FATF based classifier is much more successful 

than traditional turning functions in recognition of 

unconstrained handwritten Arabic alphabetic 

characters. 

3.2 Arabic Numerals Recognition 

The proposed algorithm is also tested with a 

database of Arabic numerals called ADBase [6]. 

The ADBase is composed of 70,000 digits written 

by 700 writers. Each writer wrote each digit (from 

„0‟ to „9‟) ten times. The database is partitioned 

into two sets: a training set (60,000 digits samples) 

and a test set (10,000 digits samples). An average 

accuracy of 97.18% is obtained for this database. 

The confusion matrix and the recognition 

accuracies for each numeral are shown in Table 2. 

As can be seen from Table 2, the majority of 

the errors arise from the confusions between 0 and 

5, 0 and 1, 3 and 2, 5 and 2, and 9 and 2. After 

analyzing the erroneous cases manually, we have 

found that around 41% of the error occurred due to 

the bad handwriting, which is difficult to be 

recognized even by humans. Further 22% of the 

error occurred due to broken digits. Figure 9 shows 

some examples of misclassified digits. 

Table 1: Recognition accuracies in percentage for the four writers using FATF and TF. 

Writer FATF TF 

 Top 1 Top 2 Top 3 Top 4 Top 5 Top 1 Top 2 Top 3 Top 4 Top 5 
1 97.97 98.65 98.65 98.65 99.32 71.62 75.68 79.05 81.76 85.14 

2 97.84 98.56 98.56 98.56 98.56 67.63 73.38 82.73 82.73 89.21 

3 97.90 97.90 97.90 98.60 99.30 70.63 80.42 86.01 88.11 89.51 

4 97.20 97.90 98.60 98.60 98.60 74.83 82.52 84.62 85.31 88.81 
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Table 2: Confusion matrix and recognition accuracies for Arabic handwritten numerals.

Digits ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ Accuracy 

٠ 925 17 0 0 0 56 0 0 2 0 92.50% 

١ 1 984 1 3 0 1 0 5 3 2 98.40% 

٢ 1 4 988 2 1 2 0 0 2 0 98.80% 

٣ 0 6 14 964 0 0 1 7 6 2 96.40% 

٤ 0 4 12 0 978 1 3 0 0 2 97.80% 

٥ 8 3 15 1 2 955 0 4 6 6 95.50% 

٦ 0 6 1 0 1 0 981 0 0 11 98.10% 

٧ 0 7 0 0 0 2 0 991 0 0 99.10% 

٨ 1 3 1 0 0 0 0 0 990 5 99.00% 

٩ 0 9 14 2 1 1 5 0 6 962 96.20% 
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Figure 9: Examples of misclassified digits. 

4 Conclusions 

We have proposed a novel method utilizing 

polygonal approximations and fuzzy directional 

edges for recognition of handwritten Arabic 

characters. We also introduce an effective 

dissimilarity measure for comparing polygonal 

shapes which can be utilized in shape analysis and 

retrieval systems. The authors are extending the 

proposed technique to handwritten text recognition. 

A possible drawback of the proposed method is the 

high computational complexity. However, the 

authors are exploring template reduction techniques 

to reduce the complexity. 
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