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Chapter 1

Introduction

1.1 Motivation and summary

In this thesis two lines of statistical research meet that, so far, have coexisted and very little interfered
with each other: graphical modelling and robustness.
Graphical model is a very broad term, used whenever graphs are employed to express associations
between several entities. When talking about graphical models in statistics, these entities, represented
by the nodes of the graph, are random variables, and an edge between two nodes, directed or undirec-
ted, reflects some form of probabilistic dependence. In the large majority of cases the type of relation
expressed by an edge is of conditional nature, for example, conditional independence of two variables
given all other variables. There are several reasons that favour conditional over ordinary, marginal
dependence, reasons that lie in the benefits of the graphical representation, see Section 2.2.2, espe-
cially Theorem 2.2.7, as well as reasons concerning the relevance for multivariate data analysis in
general, see, e.g., the many examples in Lauritzen (1996, Chapter 4), Edwards (2000, Chapter 1) or
any instance of what is known as the Yule-Simpson paradox. It can be argued that, whenever one has
more than two variables of interest, conditional dependence is much more meaningful than marginal
dependence.
Graphical modelling then refers to the statistical task of selecting a graph that appropriately reflects
the dependence structure of a given data set, and the body of statistical tools and methods applied
towards this end. While graphical models are already a wide area, generated by the many possible
interpretations of an edge (neither is a graph restricted to one type of edges), graphical modelling is
an even larger field. The statistical modelling substantially differs with type of distribution, e.g. if it is
continuous or discrete. Moreover, it may be approached in the frequentist or the Bayesian framework.
Graphical modelling is ultimately a model choice problem, and there is generally not one best answer
to it.
This thesis is about the graphical modelling of continuous data. Graphical modelling of continuous
data, may it be frequentist or Bayesian, is some way or another, based on Gaussianity. There is only
one exception known to me, and that is the use of the skew normal distribution (Capitanio et al.,
2003). Contrary to the categorical case such a restrictive distributional assumption is necessary in the
continuous case in order to have some workable, useful statistical model. Nevertheless it remains a
restriction, and it emerges in many statistical applications that data tends to have larger than normal
tails. The driving goal of this thesis is to free graphical modelling of this dependence on Gaussianity.
This is meant in two ways:

(I) Allow a larger class of distributions and devise methods that are valid and efficient on the whole
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class. This can be phrased as robustness against non-normality.

(II) While generally sticking to the normality assumption, reduce the susceptibility towards outliers
and model misspecifications of the statistical methods, which are usually likelihood based and
known to be sensitive in the respect. This means robustness in the classical sense, as described
e.g. in Hampel et al. (1986).

Having set the goal, the next question is where to begin its implementation. Naturally at the be-
ginning, with the basic case1: we consider graphical models with only undirected edges, i.e. mutual
dependencies, not directed influences, and with only continuous variables, as compared to a mixture
of, say, continuous and categorical variables. In such a situation, the joint distribution of all variables
is assumed to be multivariate normal, and such models go under the name Gaussian graphical models
in the literature. Equivalently used terms are covariance selection models and concentration graph
models.
The whole dependence information is then fully contained in the covariance matrix, and classical,
likelihood based Gaussian graphical modelling is an analysis of the sample covariance matrix. An
appealing way of robustifying Gaussian graphical modelling is thus an plug-in approach: replace the
highly non-robust sample covariance matrix by an alternative, more robust scatter estimator and apply
any subsequent analysis in analogous manner.
The first proposal of this kind, to my knowledge, is by Becker (2005), who suggested to use the re-
weighted minimum covariance determinant (RMCD) estimator, underpinned by a simulated example
demonstrating that, if the contamination is severe enough, the RMCD will eventually outperform the
sample covariance matrix. This thesis gives, among other things, answers to all open questions Becker
(2005) poses at the end of the article.
The RMCD is not the only potential robust substitute for the sample covariance matrix and not in
the focus of the thesis. We identify proportional affine equivariance (i.e. affine equivariance up to
a multiplicative constant) as a key property that allows to formulate simple modifications of Gaus-
sian graphical modelling tools in a unified framework. Many proposals of robust scatter estimators
possessing this property have been made over the last decades, see Sections 2.4.1 and 3.4.1.
By employing the class of elliptical distributions as data model—as a convenient way of modelling
large tails of several variates—we can analyze our statistical methods under non-normality and thus
quantify what we lose by, say, going away from normality towards heavier tails. This motivates to
consider graphical models for elliptical distributions, which we label elliptical graphical models in
analogy to Gaussian graphical models. The thesis indeed approaches both formulated aims (I) and
(II): Besides robustifying the statistical methodology used under Gaussianity we devise graphical
models for the broader class of elliptical distributions and give instructions for estimating and testing
within these models.
Rather than aiming at high performance at a specific distribution we are interested in a good perfor-
mance over a preferably broad range of distributions. In this respect we particularly mention Tyler’s
scatter estimator, which is (asymptotically) distribution-free within the elliptical model.

1We may call it simple case, in the sense that more complex situations build on results from the basic case. For
instance, before looking at chain graphs we should know how to analyze a chain element. This view equally encourages the
terminology fundamental case.
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1.2 Outline of the thesis

This is a cumulative thesis. It has two main parts: the actual thesis stretching over Chapters 2 to 4 and
several supplements making up Chapter 5.

The first part: Chapters 2 and 3 are two fully self-contained expositions that may be read individually,
which entails that both have a separate introduction. The notation is consistent except that vectors are
not bold in Chapters 3, which is a stylistic requirement of the journal it has been submitted to. Chapter
4 uses the notation of Chapter 3. Despite the cumulative structure of the thesis all three chapters fit
tightly together and build upon each other with almost no overlap. The chapters in detail:
Chapter 2 On robust Gaussian graphical modelling gives the current state of research on the to-
pic. Sections 2.1 and 2.2 give an instructive introduction to Gaussian graphical models, Section 2.3
briefly recollects the important terms of robustness, particularly robust multivariate scatter estimation
and surveys the (yet manageable amount of) literature on robust Gaussian graphical modelling. The
chapter was written in autumn 2009 and has been published as

Vogel, D., Fried, R.: On robust Gaussian graphical modelling. In: Devroye, L., Ka-
rasözen, B., Kohler, M., Korn, R. (eds.) Recent Developments in Applied Probability and
Statistics. Dedicated to the Memory of Jürgen Lehn, pp. 155-182. Berlin, Heidelberg:
Springer-Verlag (2010).

It is a review article with no genuine research results except Proposition 2.4.5 and lays the groundwork
for the subsequent Chapters 3 and 4.
In Chapter 3 Elliptical graphical modelling — the decomposable case a new class of graphical
models is proposed along with suggestions of how to estimate and test, allowing to employ basically
any model selection scheme from classical Gaussian graphical modelling in an analogous manner.
The main result is the validity of a generalized version of the deviance test, cf. Proposition 3.3.9. All
mathematical derivations are formulated for decomposable graphs. Decomposable graphical models
are of particular interest, due to better interpretability. They are at the same time better tractable ma-
thematically and thus dominate the literature on the theoretical as well as on the applied side. Tyler’s
M-estimator and the RMCD are mentioned as examples of robust, affine equivariant scatter estimators.
Their finite sample performance is evaluated and compared to that of the sample covariance matrix
in a small simulation study. Chapter 3 was written mainly in the first half of 2010, and has been
submitted for publication on September 29, 2010, under the name Elliptical graphical modelling.
Chapter 4 Elliptical graphical modelling — the non-decomposable case is the newest part, written
in September 2010, and contains unsubmitted material. An explicit formula for the asymptotic co-
variance of a constrained shape estimator ŜG for a general, not necessarily decomposable graph G is
given. The formula of the asymptotic distribution of ŜG for decomposable G in Chapter 3 (Proposition
3.3.4) is derived by means of the perfect sequence representation of the cliques of G. The correspon-
ding formula for general G given in Proposition 4.1.3, which is deduced from the implicit function
theorem, is in fact completely different and hardly recognizable to describe the same quantity. Both
approaches are worthwhile in their own right.
I consider Corollary 4.1.5 and Proposition 4.1.9 as the most important results of this thesis.

The second part of the thesis, also roughly the second half in page numbers, consists of Chapter 5
Supplements, that assembles six manuscripts that were written from 2008 to 2010. These manuscripts
do what the chapter title says: they supplement, they do not amend, complete or complement the
thesis. They provide additional information and insight, e.g., further examples of scatter estimators
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(Sections 5.1, 5.2) and extended simulation results (Section 5.5), they reflect earlier stages of the work
(Section 5.4) and report intermediate results on work in progress that is related to, but at some point
branched off of the main course of the thesis (Sections 5.3 and 5.6). The thesis may be read and judged
without them. Sections 5.1, 5.2, 5.4 and 5.5 have appeared in conference proceedings, Sections 5.3
and 5.6 are not published elsewhere. A description of all manuscripts is given at the beginning of
Chapter 5 on page 62.

The Appendix On how to differentiate matrix-valued functions w.r.t. matrices gives a brief intro-
duction to matrix differential calculus, in particular explains how to differentiate functions of symme-
tric matrices, which is a vital tool of most proofs in the thesis. Section A.1 is a three-pages aggregation
of the essentials of matrix differential calculus as it is explained in Magnus and Neudecker (1999).
Section A.2 is a suggestion on how to deal with derivatives w.r.t. symmetric matrices, which I have
not found as such in the literature.

1.3 Outlook

It is my personal impression that graphical models become increasingly popular and relevant, which
is reflected in an ongoing active research in graphical modelling. The material presented here must
fall short of covering more than just a tiny fraction of what we set out as our prime objective: non-
Gaussian graphical modelling. We give an outlook guided by the question what still is to be done. A
set of answers is generated by the limitations and alternatives of our approach. We want to name a
few:

• In recent years the research on Gaussian graphical models has been particularly driven by the
desire to analyze high-dimensional data sets, (e.g. Drton and Perlman, 2004; Meinshausen and
Bühlmann, 2006; Castelo and Roverato, 2006; Yuan and Lin, 2007; Verzelen and Villers, 2009).
Our plug-in method fails to provide a solution in the p > n situation and does neither allow a
simple transfer of standard techniques, like e.g. regularization, that are used in Gaussian gra-
phical models. We face the inherent problem that any affine equivariant, robust estimator re-
quires more than p + 1 data points, because the only affine equivariant scatter estimator in the
p+1 > n situation is the sample covariance estimator (Tyler, 2010). Droppung the affine equiva-
riance property is inevitable for robust, high-dimensional graphical modelling, and alternative
estimators should be examined, see also Section 3.4.3.

• The tests proposed in Sections 3.3.3 and 4.1.2 rely on asymptotic approximations, which give
good answers if n is sufficiently large, but may be rather inaccurate for small n. This has been
noted in the context of classical graphical modelling, improved small-sample approximations
have been proposed (Porteous, 1985, 1989), but also the exact distribution of the deviance test
statistic is known for decomposable models, cf. Lauritzen (1996, Sections 5.2.2 and 5.3.3).
While the exact distribution of most robust, affine equivariant estimators is hardly accessible
and eludes a unified treatment as it is possible for the asymptotics, finite sample correction
techniques may be applicable in an analogous manner. It seems worthwhile to devote some
further attention to the small-sample properties of the proposed elliptical graphical modelling
methods.

• The class of affine equivariant scatter estimators contains the elliptical maximum likelihood
estimators (MLEs). Hence, assuming knowledge of the population distribution the use of the
appropriate MLE is an efficient way of unconstrained estimation. However, the constrained
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estimation that we propose for elliptical distributions, see Section 3.3.2, is derived from the
Gaussian likelihood equations. We may increase the efficiency of the test procedure by em-
ploying also an elliptical constrained MLE. The challenge here is less the statistical distribution
theory—this is covered by the general maximum likelihood framework—, but the numerical
theory: find a suitable algorithm solving the likelihood equations and prove its convergence.
In a way, this situation is antipodal to what we do here: we make use of the well-developed
numerical theory in the Gaussian case, where we know how to compute the estimators, but have
to derive their asymptotics under different assumptions.

• We have motivated the elliptical model as a convenient way of modelling heavy tails, following
the statistical modelling principle to make things as complicated as necessary but as simple as
possible. However, data may deviate from normality in many ways and does not have to be
elliptical. An alternative model for continuous multivariate data is the independent-components
model (ICM), as it is considered in Oja et al. (2010). It is also a semiparametric model, where
the dependencies are coded in the parametric part (the mixing matrix in the ICM, the shape
matrix in the elliptical model). Using the ICM we may investigate the robustness against non-
ellipticity of our methods. But it is much more interesting to model the conditional indepen-
dence graph (CIG) of such a distribution, i.e. to study full probabilistic dependence (including
linear as well as non-linear dependencies) as opposed to only linear dependencies that we consi-
der when modelling the partial correlation graph (PCG). Note that in the elliptical model the
CIG is either saturated or, in case of the normal distribution, coincides with the PCG. This leads
to a completely different way of generalizing Gaussian graphical models that still holds many
theoretical challenges. Some thoughts are gathered in Section 5.6.

At the beginning we hinted at the diversity of what is understood as graphical models and graphical
modelling, but have also pointed out that very little research so far has been devoted to the problem of
robustness in this context. Going back to the prime objectives (I) and (II) we are still left to examine
all other types of graphical models with continuous variables w.r.t. their robustness properties and
potential relaxation of the normality assumption, including:

• models with directed edges,

• models with both, directed and undirected edges,

• models with continuous and categorical variables and

• graphical models for dynamic data, i.e. variables recorded over time, allowing dependencies
along time and across the variables. This includes static graphical models, that reflect the de-
pendence structure for process-valued random variables (e.g. Brillinger, 1996; Dahlhaus, 2000;
Fried and Didelez, 2003) as well as dynamic graphical models, allowing the dependence struc-
ture to vary over time.

On July 1, 2010, Xuming He gave a keynote lecture entitled “Robust Statistics 2020” at the 10th Inter-
national Conference on Robust Statistics in Prague, Czech Republic. He was asked by the organizers
to attempt a prediction of the future development of robust statistics, manifested in the session topics
of a potential ICORS meeting in 2020. He particularly mentioned Gaussian graphical models and
formulated a personal wish list that included a session on robust Graphical models. I consider this
thesis a step in this direction.
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Chapter 2

On robust Gaussian graphical modelling

2.1 Introduction

Graphical modelling is the analysis of conditional associations between random variables by means
of graph theoretic methods. The graphical representation of the interrelation of several variables is
an attractive data analytical tool. Besides allowing parsimonious modelling of the data it facilitates
the understanding and the interpretation of the data generating process. The importance of conside-
ring conditional rather than marginal associations for assessing the dependence structure of several
variables is vividly exemplified by Simpson’s paradox, see e.g. Edwards (2000), Chap. 1.4. The sta-
tistical literature knows several different types of graphical models, differing in the type of relation
coded by an edge, in the type of data and hence in the statistical methodology. In this chapter we deal
with undirected graphs only, that is, the type of association we consider is mutual. Precisely, we are
going to define partial correlation graphs in Sect. 2.2.2.
Undirected models are in a sense closer to the data. A directed association suggests a causal relation-
ship. Even though it can often be justified, e.g. by chronology or knowledge about the physiological
process, the direction of the effect is an additional assumption. Undirected models constitute the sim-
plest case, the understanding of which is crucial for the study of directed models and models with
both, directed and undirected edges.
Furthermore we restrict our attention to continuous data, which are assumed to stem from a mul-
tivariate Gaussian distribution. Conditional independence in the normal model is nicely expressed
through its second order characteristics, cf. Sect. 2.2.3. This fact, along with its general predominant
role in multivariate statistics (largely due to the Central limit theorem justification), is the reason for
the almost exclusive use of the multivariate normal distribution in graphical models for continuous
data.
With rapidly increasing data sizes, and on the other hand computer hardware available to process
them, the need for robust methods becomes more and more important. The sample covariance matrix
possesses good statistical properties in the normal model and is very fast to compute, but highly non-
robust, cf. Sect. 2.4.1. We are going to survey robust alternatives to the classical Gaussian graphical
modelling, which is based on the sample covariance matrix.
The paper is organized as follows. Section 2.2 introduces Gaussian graphical models (GGMs). We
start by studying partial correlations, a purely moment based relation, without any distributional as-
sumption and then examine the special case of the normal distribution where partial uncorrelatedness
coincides with conditional independence. The better transferability of the former concept to more ge-
neral data situations is the reason for taking this route. Section 2.3 reviews the classical, non-robust,
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likelihood-based statistical theory for Gaussian graphical models. Each step is motivated, and impor-
tant points are emphasized. Sections 2.2 and 2.3 thus serve as a self-contained introduction to GGMs.
The basis for this first part are the books Whittaker (1990) and Lauritzen (1996). Other standard vo-
lumes on graphical models in statistics are Cox and Wermuth (1996) and Edwards (2000), both with
a stronger emphasis on applications. Section 2.4 deals with robust Gaussian graphical modelling. We
focus on the use of robust affine equivariant scatter estimators, since the robust estimators proposed for
GGMs in the past belong to this class. As an important robustness measure we consider the influence
function and give the general form of the influence functions of affine equivariant scatter estimators
and derived partial correlation estimators.
We close this section by introducing some of the mathematical notation we are going to use. Bold
letters b, µ, etc., denote vectors, capital letters X, Y , etc., indicate (univariate) random variables and
bold capital letters X, Y, etc., random vectors. We view vectors, by default, neither as a column nor
as a row, but just as an ordered collection of elements of the same type. This makes (X,Y) again a
vector and not a two-column matrix. However, if matrix notation, such as (·)T , is applied to vectors,
they are always interpreted as n × 1 matrices.
Matrices are also denoted by non-bold capital letters, and the corresponding small letter is used for an
element of the matrix, e.g., the p × p matrix Σ is the collection of all σi, j, i, j = 1, ..., p. Alternatively,
if matrices are denoted by more complicated compound symbols (e.g. if they carry subscripts already)
square brackets will be used to refer to individual elements, e.g. [Σ̂−1

G ]i, j. Throughout the paper upright
small Greek letters will denote index sets. Subvectors and submatrices are referenced by subscripts,
e.g. for α, β ⊆ {1, ..., p} the |α| × |β| matrix Σα,β is obtained from Σ by deleting all rows that are not in
α and all columns that are not in β. Similarly, the p × p matrix [Σα,β]p is obtained from Σ by putting
all rows not in α and all columns not in β to zero. We want to view this matrix operation as two
operations performed sequentially: first (·)α,β extracting the submatrix and then [·]p writing it back
on a “blank” matrix at the coordinates specified by α and β. Of course, the latter is not well defined
without the former, but this allows us e.g. to write [(Σα,β)−1]p.
We adopt the general convention that subscripts have stronger ties than superscripts, for instance, we
write Σ−1

α,β
for (Σα,β)−1. Let Sp and S +

p be the sets of all symmetric, respectively positive definite
p × p matrices, and define for any A ∈ S +

p

Corr(A) = A
− 1

2
D AA

− 1
2

D , (2.1)

where AD denotes the diagonal matrix having the same diagonal as A. Recall the important inversion
formula for partitioned matrices. Let r ∈ {1, ..., p − 1}, α = {1, ..., r} and β = {r + 1, ..., p}. Then(

Σα,α Σα,β
Σβ,α Σβ,β

)−1

=

 Ω−1 −Ω−1Σ
α,β

Σ−1
β,β

−Σ−1
β,β

Σ
β,α

Ω−1 Σ−1
β,β

+ Σ−1
β,β

Σ
β,α

Ω−1Σ
α,β

Σ−1
β,β

 , (2.2)

where the r × r matrix Ω = Σα,α − Σ
α,β

Σ−1
β,β

Σ
β,α

is called the Schur complement of Σβ,β. The inverse
exists if and only if Ω and Σβ,β are both invertible. Note that, by simultaneously re-ordering rows and
columns, the formula is valid for any partition {α, β} of {1, ..., p}.
Finally, the Kronecker product A ⊗ B of two matrices A, B ∈ Rp×p is defined as the p2 × p2 matrix
with entry ai, jbk,l at position ((i − 1)p + k, ( j − 1)p + l). Let e1, ..., ep be the unit vectors in Rp and 1p

the p vector consisting only of ones. Define further the following matrices:

Jp =

p∑
i=1

eie
T
i ⊗ eie

T
i , Kp =

p∑
i=1

p∑
j=1

eie
T
j ⊗ e je

T
i and Mp =

1
2

(
Ip2 + Kp

)
,
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where Ip2 denotes the p2 × p2 identity matrix. Kp is also called the commutation matrix. Let vec(A)
be the p2 vector obtained by stacking the columns of A ∈ Rp×p from left to right underneath each
other. More on these concepts and their properties can be found in Magnus and Neudecker (1999).

2.2 Partial correlation graphs and properties of the Gaussian distribu-
tion

This section explains the basic concepts of Gaussian graphical models: We define the terms partial
variance and partial correlation (Sect. 2.2.1), review basic graph theory terms and explain the merit
of a partial correlation graph (Sect. 2.2.2). Gaussianity enters in Sect. 2.2.3, where we deduce the
conditional independence interpretation of a partial correlation graph which is valid under normality.
Statistics is deferred to Sect. 2.3.

2.2.1 Partial variance

Let X = (X1, ..., Xp) be a random vector inRp with distribution F and positive definite variance matrix
Σ = ΣX ∈ R

p×p. The inverse of Σ is called concentration matrix (or precision matrix) of X and shall
be denoted by K or KX.
Now let X be partitioned into X = (Y, Z), where Y and Z are subvectors of lengths q and r, respecti-
vely. The corresponding index sets shall be called α and β, i.e. α = {1, ..., q} and β = {q + 1, ..., q + r}.
The variance matrix of Y is ΣY = Σα,α ∈ R

q×q and its concentration matrix KY = Σ−1
α,α = (K−1

X )−1
α,α.

The covariance matrix of Y and Z is Σα,β ∈ R
q×r. The orthogonal projection of Y onto the space of

all affine linear functions of Z shall be denoted by Ŷ(Z) and is given by

Ŷ(Z) = EY + Σ
α,βΣ

−1
β,β(Z − EZ). (2.3)

This is the best linear prediction of Y from Z, in the sense that the squared prediction error E||Y −
h(Z)||2 is uniquely minimized by h = Ŷ(·) among all (affine) linear functions h. The partial variance
of Y given Z is the variance of the residual Y − Ŷ(Z). It shall be denoted by ΣY•Z , i.e.

ΣY•Z = Var
(
Y − Ŷ(Z)

)
= Σα,α − Σ

α,βΣ
−1
β,βΣβ,α. (2.4)

The notation Y•Z is intended to resemble Y | Z, that is, we look at Y in dependence on Z, but instead
of conditioning Y on Z the type of connection we consider here is a linear regression. In particular,
ΣY•Z is—contrary to a conditional variance—a fixed parameter and not random.
If Y is at least two-dimensional, we partition it further into Y = (Y1,Y2) with corresponding index
sets α1 ∪ α2 = α and lengths q1 + q2 = q, and define

ΣY1,Y2•Z = (ΣY•Z)α1,α2 = Σα1,α2
− Σ
α1,β

Σ−1
β,βΣβ,α2

as the partial covariance between Y1 and Y2 given Z. If ΣY1,Y2•Z = 0, we say Y1 and Y2 are partially
uncorrelated given Z and write

Y1⊥Y2 • Z.

Furthermore, if Y1 = Y1 and Y2 = Y2 are both one-dimensional, ΣY•Z is a positive definite 2×2 matrix.
The correlation coefficient computed from this matrix, i.e. the (1, 2) element of Corr(ΣY•Z), cf. (2.1),
is called the partial correlation (coefficient) of Y1 and Y2 given Z and denoted by %Y1,Y2•Z . This is
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nothing but the correlation between the residuals Y1 − Ŷ1(Z) and Y2 − Ŷ2(Z) and may be interpreted as
a measure of the linear association between Y1 and Y2 after the linear effects of Z have been removed.
For α1 = {i} and α2 = { j}, i , j, we use the simplified notation %i, j• for %Xi,Xj•X\{i, j} .

The simple identity (2.4) is fundamental and the actual starting point for all following considerations.
We recognize ΣY•Z as the Schur complement of ΣZ in ΣX, cf. (2.2), implying that

Σ−1
Y•Z = Kα,α. (2.5)

In words: the concentration matrix of Y − Ŷ(Z) is the submatrix of KX corresponding to Y, or—
very roughly put—while marginalizing means partitioning the covariance matrix, partializing means
partitioning its inverse. This has some immediate implications about the interpretation of K, which
explain why K, rather than Σ, is of interest in graphical modelling.

Proposition 2.2.1 The partial correlation %i, j • between Xi and X j, 1 ≤ i < j ≤ p, given all remaining
variables X\{i, j} is

%i, j• = −
ki, j√
ki,ik j, j

.

Another way of phrasing this assertion is to say, the matrix P = −Corr(K) contains the partial corre-
lations (of each pair of variables given the respective remainder) as its off-diagonal elements. We call
P the partial correlation matrix of X. Proposition 2.2.1 is a direct consequence of (2.5) involving the
inversion of a 2 × 2 matrix. For a detailed derivation see Whittaker (1990), Chap. 5.

2.2.2 Partial correlation graph

The partial correlation structure of the random variable X can be coded in a graph, which originates
the term graphical model. An undirected graph G = (V, E), where V is the vertex set and E the edge
set, is constructed the following way: the variables X1, ..., Xp are the vertices, and an undirected edge
is drawn between Xi and X j, i , j, if and only if %i, j• , 0. The thus obtained graph G is called the
partial correlation graph (PCG) of X. Formally we set V = {1, ..., p} and write the elements of E as
unordered pairs {i, j}, 1 ≤ i < j ≤ p. Before we dwell on the benefits of this graphical representation,
let us briefly recall some terms from graph theory. We only consider undirected graphs with a single
type of nodes.
If {a, b} ∈ E, the vertices a and b are called adjacent or neighbours. The set of neighbours of the
vertex a ∈ V is denoted by ne(a). An alternative notation is bd(a), which stands for boundary, but
keep in mind that in graphs containing directed edges the set of neighbours and the boundary of a
node are generally different.
A path of length k, k ≥ 1, is a sequence (a1, ..., ak+1) of distinct vertices such that {ai, ai+1} ∈ E,
i = 1, ..., k. If k ≥ 2 and additionally {a1, ak+1} ∈ E, then the sequence (a1, ..., ak+1, a1) is called a cycle
of length k + 1 or a (k + 1)-cycle. Note that the length, in both cases, refers to the number of edges.
The n-cycle (a1, ..., an, a1) is chordless, if no other than successive vertices in the cycle are adjacent,
i.e. {ai, a j} ∈ E ⇒ |i− j| ∈ {1, n− 1}. Otherwise the cycle possesses a chord. All cycles of length 3 are
chordless.
The graph is called complete, if it contains all possible edges. Every subset α ⊂ V induces a subgraph
Gα = (α, Eα), where Eα contains those edges in E with both endpoints in α, i.e. Eα = E ∩ (α × α).
A subset α ⊂ V , for which Gα is complete, but adding another vertex would render it incomplete, is
called a clique. Thus the cliques identify the maximal complete subgraphs.

14



The set γ ⊂ V is said to separate the sets α, β ⊂ V in G, if α, β, γ are mutually disjoint and every path
from a vertex in α to a vertex in β contains a node from γ. The set γ may be empty.

Definition 2.2.2 A partition (α, β, γ) of V is a decomposition of the graph G, if

(1) α, β are both non-empty,

(2) γ separates α and β,

(3) Gγ is complete.

If such a decomposition exists, G is called reducible (otherwise irreducible). It can then be decompo-
sed into or reduced to the components Gα∪γ and Gβ∪γ.

Our terminology is in concordance with Whittaker (1990), Chap. 12, however, there are different
definitions around. For instance, Lauritzen (1996) calls a decomposition in the above sense a “proper
weak decomposition”. Also be aware that the expression “G is decomposable”, which is defined
below, denotes something different than “there exists a decomposition of G”, for which the term
“reducible” is used.
Definition 2.2.2 suggests a recursive application of decompositions until ultimately the graph is fully
decomposed into irreducible components, which then are viewed as atomic building blocks of the
graph. It is not at all obvious, if such atomic components exist or are well defined, since, at least in
principle, any sequence of decompositions may lead to different irreducible components, cf. Example
12.3.1 in Whittaker (1990). With an additional constraint, the irreducible components of a given graph
are indeed well defined.

Definition 2.2.3 The system of subsets {α1, ...,αk} ⊂ 2|V | is called the (set of) maximal irreducible
components of G, if

(1) Gαi is irreducible, i = 1, ..., k,

(2) αi and α j are mutually incomparable, i.e. αi is not a proper subset of α j and vice versa, 1 ≤ i <
j ≤ k, and

(3)
⋃k

i=1 αi = V.

The maximal irreducible components of any graph G are unique and can be obtained by first fully
decomposing the graph into irreducible components (by any sequence of decompositions) and then
deleting those that are a proper subset of another one—the maximal irreducible components remain.

Definition 2.2.4 The graph G is decomposable, if all of its maximal irreducible components are com-
plete.

Decomposability also admits the following recursive definition: G is decomposable, if it is complete
or there exists a decomposition (α, β, γ) into decomposable subgraphs Gα∪γ and Gβ∪γ. Another cha-
racterization is to say, a decomposable graph can be decomposed into its cliques. Figure 2.1 shows
two reducible graphs and their respective maximal irreducible components. The decomposability of a
graph is a very important property, with various implications for graphical models, and decomposable
graphs deserve and receive special attention, cf. e.g. Whittaker (1990), Chap. 12. The most notable
consequence for Gaussian graphical models is the existence of closed form maximum likelihood es-
timates, cf. Sect. 2.3.1. The recursive nature of Definition 2.2.4 makes it hard to determine whether
a given graph is decomposable or not. Several equivalent characterizations of decomposability are
given e.g. in Lauritzen (1996). We want to name one, which is helpful for spotting decomposable
graphs.
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Figure 2.1: a a non-decomposable graph and b its maximal irreducible components, c a decomposable
graph and d its maximal irreducible components

Definition 2.2.5 The graph G is triangulated, if every cycle of length greater than 3 has a chord.

Proposition 2.2.6 A graph G is decomposable if and only if it is triangulated.

For a proof see Lauritzen (1996), p. 9, or Whittaker (1990), p. 390.
We close this subsection by giving a motivation for partial correlation graphs. Clearly, the informa-
tion in the graph is fully contained in Σ and can directly be read off its inverse K: a zero off-diagonal
element at position (i, j) signifies the absence of an edge between the corresponding nodes. Of course,
graphs in general are helpful visual tools. This argument is valid for representing any type of asso-
ciation between variables by means of a graph and is not the sole justification for partial correlation
graphs. The purpose of a PCG is explained by the following theorem, which lies at the core of gra-
phical models.

Theorem 2.2.7 (Separation theorem for PCGs) For a random vector X with positive definite cova-
riance matrix Σ and partial correlation graph G the following is true: γ separates α and β in G if and
only if Xα⊥Xβ • Xγ.

This result is not trivial, but its proof can be accomplished by matrix manipulation. It is also a co-
rollary of Theorem 3.7 in Lauritzen (1996) by exploiting the equivalence of partial uncorrelatedness
and conditional independence in the normal model, cf. Sect. 2.2.3. The theorem roughly tells that
the association “partial uncorrelatedness” (of two random vectors given a third one) exhibits the same
properties as the association “separation” (of two sets of vertices by a third one). Thus it links pro-
bability theory to graph theory and allows to employ graph theoretic tools in studying properties of
multivariate probability measures. First and foremost it allows the succinct formulation of Theorem
2.2.7. The theorem lets us, starting from the pairwise partial correlations, conclude the partial uncor-
relatedness Xα⊥Xβ • Xγ for a variety of triples (Xα, Xβ, Xγ) (which do not have to form a partition
of X). It is the graph theoretic term separation that allows not only to concisely characterize these
triples, but also to readily identify them by drawing the graph.
Finally, Theorem 2.2.7 can be re-phrased, saying that in a PCG the pairwise and the global Markov
property are equivalent: We say, a random vector X = (X1, ..., Xp) satisfies the pairwise Markov
property w.r.t. the partial correlation graph G = ({1, ..., p}, E), if {i, j} < E ⇒ Xi⊥X j • X\{i, j}, that is,
the edge set of the PCG of X is a subset of E. X is said to satisfy the global Markov property w.r.t.
the partial correlation graph G, if, for α, β, γ ⊂ V , “γ separates α and β” implies Xα⊥Xβ • Xγ. The
graph is constructed from the pairwise Markov property, but can be interpreted in terms of the global
Markov property.
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2.2.3 The multivariate normal distribution and conditional independence

We want to make further assumptions on the distribution F of X. A random vector X = (X1, ..., Xp)
is said to have a regular p-variate normal (or Gaussian) distribution, denoted by X ∼ Np(µ,Σ), if it
possesses a Lebesgue density of the form

fX(x) = (2π)−
p
2 (det Σ)−

1
2 exp

{
−

1
2

(x − µ)T Σ−1(x − µ)
}
, x ∈ Rp, (2.6)

for some µ ∈ Rp and Σ ∈ S +
p . Then EX = µ and Var(X) = Σ. The term regular refers to the positive

definiteness of the variance matrix. We will only deal with regular normal distributions—which allow
the density characterization given above—without necessarily stressing the regularity.
The multivariate normal (MVN) distribution is a well studied object, it is treated e.g. in Bilodeau and
Brenner (1999) or any other book on multivariate statistics. Of the properties of the MVN distribution
the following three are of particular interest to us. Let, as before, X be partitioned into X = (Y, Z).
Then we have:

(I) The (marginal) distribution of Y is Nq(µα,Σα,α).

(II) Y and Z are independent (in notation Y⊥⊥ Z) if and only if Σα,β = 0 (which is equivalent to
Kα,β = 0).

(III) The conditional distribution of Y given Z = z is

Nq
(
EY + Σ

α,βΣ
−1
β,β(z − EZ), ΣY•Z

)
.

These fundamental properties of the MVN distribution can be proved by directly manipulating the
density (2.6). We want to spare a few words about assertion (III). It can be phrased as to say,
the multivariate normal model is closed under conditioning—just as (I) tells that it is closed under
marginalizing. Moreover, (III) gives expressions for the conditional expectation and the conditional
variance:

E(Y| Z) = Ŷ(Z) and Var(Y| Z) = ΣY•Z .

In general, E(Y| Z) and Var(Y| Z) are random variables that can be expressed as functions of the
conditioning variable Z. Thus (III) tells us that in the MVN modelE(Y| ·) is a linear function, whereas
Var(Y| ·) is constant. Further,E(Y| Z) is the best prediction of Y from Z, in the sense thatE||Y−h(Z)||2

is uniquely minimized by h = Ŷ(·) among all measurable functions h. Here this best prediction
coincides with the best linear prediction Ŷ(Z) given in (2.3). Finally, Var(Y| Z) being constant means
that the accuracy gain for predicting Y that we get from knowing Z is the same no matter what value
Z takes on. It is not least this linearity of the MVN distribution that makes it very appealing for
statistical modelling.
The occupation with the conditional distribution is guided by our interest in conditional independence,
which is—although it has not been mentioned yet—the actual primary object of study in graphical
models. Let, as in Sect. 2.2.1, Y = (Y1,Y2) be further partitioned. Y1 and Y2 are conditionally
independent given Z—in writing: Y1⊥⊥Y2| Z—if the conditional distribution of (Y1,Y2) given Z = z
is for (almost) all z ∈ Rr a product measure with independent margins corresponding to Y1 and Y2.
If X possesses a density fX = f(Y1,Y2,Z) w.r.t. some σ-finite measure, conditional independence admits
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the following characterization: Y1⊥⊥Y2| Z if and only if there exist functions g : Rq1+r → R and
h : Rq2+r → R such that

f(Y1,Y2,Z)(y1, y2, z) = g(y1, z)h(y2, z) for almost all (y1, y2, z) ∈ Rp.

This factorization criterion ought to be compared to its analogue for (marginal) independence. It shall
serve as a definition here, saving us a proper introduction of the terms conditional distribution or
conditional density.
We can construct for any random variable X in Rp a conditional independence graph (CIG) in an
analogous way as before the partial correlation graph: We put an edge between nodes i and j unless
Xi⊥⊥ X j| X\{i, j}. Then, for “nice” distributions F—for instance, if F has a continuous, strictly positive
density f w.r.t. some σ-finite product measure—we have in analogy to Theorem 2.2.7 a separation
property for CIGs: Xα⊥⊥ Xβ| Xγ if and only if γ separates α and β in the CIG of X.
Assertions (I) to (III) are the link from conditional independence to the analysis of the second moment
characteristics in Sect. 2.2.1. A direct consequence is:

Proposition 2.2.8 If X = (Y1,Y2, Z) ∼ Np(µ,Σ), Σ ∈ S +
p , then

Y1⊥Y2 • Z ⇐⇒ Y1⊥⊥Y2| Z.

In other words, the PCG and the CIG of a regular normal vector coincide. It must be emphasized
that this is a particular property of the Gaussian distribution. Conditional independence and partial
uncorrelatedness are generally different, cf. Baba et al. (2004), and so are the respective association
graphs.

2.3 Gaussian graphical models

We have defined the partial correlation graph of a random vector and have recalled some properties
of the multivariate normal distribution. We have thus gathered the ingredients we need to deal with
Gaussian graphical models.
We understand a graphical model as a family of probability distributions onRp satisfying the pairwise
zero partial correlations specified by a given (undirected) graph G = (V, E), i.e. for all i, j ∈ V

{i, j} < E ⇒ %i, j• = 0. (2.7)

If the model consists of all (regular) p-variate normal distributions satisfying (2.7) we call it a Gaus-
sian graphical model (GGM). Another equivalent term is covariance selection model, originated by
Dempster (1972).
We write M (G) to denote the GGM induced by the graph G. The model M (G) is called saturated if
G is complete. It is called decomposable if the graph is decomposable. A Gaussian graphical model is
a parametric family, which may be succinctly described as follows. Let S +

p (G) be the subset of S +
p

consisting of all positive definite matrices with zero entries at the positions specified by G, i.e.

K ∈ S +
p (G) ⇐⇒ K ∈ S +

p and ki, j = 0 for i , j and {i, j} < E.

Then

M (G) =
{
Np(µ,Σ)

∣∣∣ µ ∈ Rp, K = Σ−1 ∈ S +
p (G)

}
. (2.8)
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In the context of GGMs it is more convenient to parametrize the normal model by (µ,K), which may
be less common, but is quite intuitive considering that K directly appears in the density formula (2.6).
The GGM M (G) is also specified by its parameter space Rp ×S +

p (G).
The term graphical modelling refers to the statistical task of deciding on a graphical model for given
data and the collection of the statistical methods employed toward this end. Within the parametric
family of Gaussian graphical models we have the powerful maximum likelihood theory available. We
continue by stating the maximum likelihood estimates and some of their properties (Sect. 2.3.1), then
review the properties of the likelihood ratio test for comparing two nested models (Sect. 2.3.2) and
finally describe some model selection procedures (Sect. 2.3.3).

2.3.1 Estimation

Suppose we have i.i.d. observations X1, ..., Xn sampled from the normal distribution Np(µ,Σ) with
Σ ∈ S +

p . Let furthermore Xn = (X1, ..., Xn)T be the n × p data matrix containing the data points as
rows. We will make use of the following matrix notation. For an undirected graph G = (V, E) and an
arbitrary square matrix A define the matrix A(G) by

[A(G)]i, j =

ai, j if i = j or {i, j} ∈ E,
0 if i , j and {i, j} < E.

The saturated model We start with the saturated model, i.e. there is no further restriction on K. The
main quantities of interest in Gaussian graphical models are the concentration matrix K and the partial
correlation matrix P. Their computation ought to be part of any initial explorative data analysis. Both
are functions of the covariance matrix Σ, thus we start with the latter.

Proposition 2.3.1 If n > p, the maximum likelihood estimator (MLE) of Σ in the multivariate normal
model (with unknown location µ) is

Σ̂ =
1
n

n∑
i=1

(Xi − X̄)(Xi − X̄)T =
1
n
XT

n HnXn,

where Hn = In −
1
n 1n1T

n is an idempotent matrix of rank n− 1. The MLEs of K and P are K̂ = Σ̂−1 and
P̂ = −Corr(K̂), respectively.

Apparently XT
n HnXn has to be non-singular in order to be able to compute K̂ and P̂. It should be

noted that this is also necessary for the MLE to exist in the sense that the ML equations have a unique
solution. If n is strictly larger than p, this is almost surely true, but never if n ≤ p.
We want to review some properties of these estimators. The strong law of large numbers, the conti-
nuous mapping theorem, the central limit theorem and the delta method yield the following asymptotic
results, see also Propositions 3.3.3 and 3.4.2.

Proposition 2.3.2 In the MVN model Σ̂, K̂ and P̂ are strongly consistent estimators of Σ, K and P,
respectively. Furthermore,

(1)
√

n vec
(
Σ̂ − Σ

) L
−→ Np2

(
0, 2Mp(Σ ⊗ Σ)

)
,

(2)
√

n vec
(
K̂ − K

) L
−→ Np2

(
0, 2Mp(K ⊗ K)

)
,
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(3)
√

n vec
(
P̂ − P

) L
−→ Np2

(
0, 2ΓMp(K ⊗ K)ΓT

)
,

where Γ = (K
− 1

2
D ⊗ K

− 1
2

D ) + Mp(P ⊗ K−1
D )Jp.

Since the normal distribution and the empirical covariance matrix are of such utter importance, the
exact distribution of the MLEs has also been the subject of study.

Proposition 2.3.3 In the MVN model, if n > p, Σ̂ has a Wishart distribution with parameter 1
nΣ and

n − 1 degrees of freedom, for which we use the notation Σ̂ ∼ Wp(n − 1, 1
nΣ).

For a definition and properties of the Wishart distribution see e.g. Bilodeau and Brenner (1999),
Chap. 7, or Srivastava and Khatri (1979), Chap. 3. It is also treated in most textbooks on multiva-
riate statistics. The distribution of K̂ is then called an inverse Wishart distribution. Of the various
results on Wishart and related distributions we want to name the following three, but remark that
more general results are available.

Proposition 2.3.4 In the MVN model with n > p we have

(1) EΣ̂ = n−1
n Σ and

(2) Var(vec Σ̂) = 2
n Mp(Σ ⊗ Σ).

(3) If furthermore %i, j• = 0, then

√
n − p

%̂i, j•√
1 − %̂2

i, j•

∼ tn−p, which implies %̂2
i, j• ∼ Beta

(
1
2
,

n − p
2

)
,

where tn−p denotes Student’s t-distribution with n − p degrees of freedom and Beta(c, d) the beta
distribution with parameters c, d > 0 and density

b(x) =
Γ(c + d)
Γ(c)Γ(d)

xc−1(1 − x)d−11[0,1](x).

The last assertion (3) ought to be compared to the analogous results for the empirical correlation
coefficient %̂i, j = σ̂i, j/

√
σ̂i, jσ̂ j, j: if the true correlation is zero, then

√
n − 2

%̂i, j√
1 − %̂2

i, j

∼ tn−2 and %̂2
i, j ∼ Beta

(
1
2
,

n − 2
2

)
.

Estimation under a given graphical model We have dealt so far with unrestricted estimators of Σ,
K and the partial correlation matrix P. Small absolute values of the estimated partial correlations sug-
gest that the corresponding true partial correlations may be zero. However assuming a non-saturated
model, using unrestricted estimates for the remaining parameters is no longer optimal. The estimation
efficiency generally decreases with the number of parameters to estimate. Also, for stepwise model
selection procedures, as described in Sect. 2.3.3, which successively compare the appropriateness of
different GGMs, estimates under model constraints are necessary.
Consider the graph G = (V, E) with |V | = p and |E| = m, and let X1, ..., Xn be an i.i.d. sample from
the model M (G) given in (2.8). Keep in mind that K is then an element of the (m + p)-dimensional
vector space Sp(G), where m may range from 0 to p(p − 1)/2. The matrix Σ is fully determined by
the m + p values k1,1, ..., kp,p and ki, j, {i, j} ∈ E (which have to meet the further restriction that K is
positive definite) and in this sense has to be regarded as an (m + p)-dimensional object.
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Theorem 2.3.5

(1) The ML estimate Σ̂G of Σ in the model M (G) exists if Σ̂ = 1
nX

T
n HnXn is positive definite, which

happens with probability one if n > p.

(2) If the ML estimate Σ̂G exists, it is the unique solution of the following system of equations

[Σ̂G]i, j = σ̂i, j, {i, j} ∈ E or i = j,

[Σ̂−1
G ]i, j = 0, {i, j} < E and i , j,

which may be succinctly formulated as

Σ̂G(G) = Σ̂(G) and K̂G = K̂G(G), (2.9)

where K̂G = Σ̂−1
G .

This result follows from general maximum likelihood theory for exponential models. The key is to
observe that a GGM is a regular exponential model, cf. Dempster (1972) or Lauritzen (1996), p. 133.
It is important to note that, contrary to the saturated case, the positive definiteness of XT

n HnXn is
sufficient but not necessary. In a decomposable model, for instance, it suffices that n is larger than the
number of nodes of the largest clique, cf. Proposition 2.3.6. Generally this condition is necessary but
not sufficient. Details on stricter conditions on the existence of the ML estimate in the general case
can be found in Buhl (1993) or Lauritzen (1996), p. 148.
Theorem 2.3.5 gives instructive information about the structure of Σ̂G, in particular, that it is a function
of the sample covariance matrix Σ̂. The relation between Σ̂G and Σ̂ is specified by (2.9), and Theorem
2.3.5 states furthermore that these equations always have a unique solution Σ̂G, if Σ̂ is positive definite.
What remains unclear is how to compute Σ̂G from Σ̂. This is accomplished by the iterative propor-
tional scaling (IPS) algorithm, sometimes also referred to as iterative proportional fitting, which is
explained in the following.

Iterative proportional scaling The IPS algorithm generally solves the problem of fitting a multi-
variate density that obeys a given interaction structure to specified marginal densities. Another appli-
cation is the computation of the ML estimate in log-linear models, i.e. graphical models for discrete
data. In the statistical literature the IPS algorithm can be traced back to at least Deming and Stephan
(1940). In the case of multivariate normal densities the IPS procedure comes down to an iterative
matrix manipulation. The IPS algorithm for GGMs, as it is described in the following, is mainly due
to Speed and Kiiveri (1986).
Suppose we are given a graph G with cliques γ1, ..., γc and an unrestricted ML estimate Σ̂ ∈ Sp. Then
define for every clique γ the following matrix operator Tγ : Sp → Sp:

Tγ(K) = K +
[
(Σ̂γ,γ)−1

]p
−

[
(K−1)−1

γ,γ

]p
.

The operator Tγ has the following properties:

(I) If K ∈ S +
p (G), then so is TγK.

(II) (TγK)−1
γ,γ = Σ̂γ,γ, i.e. if the updated matrix TγK is the concentration matrix of a random vector,

X say, then Xγ has covariance matrix Σ̂γ,γ.
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Figure 2.2: example graph

Apparently Tγ preserves the zero pattern of G. That it also preserves the positive definiteness and
assertion (II) is not as straightforward, but both can be deduced by applying (2.2) to K−1, cf. Lauritzen
(1996), p. 135. The IPS algorithm then goes as follows: choose any K0 ∈ S +

p , for instance K0 = Ip,
and repeat

Kn+1 = Tγ1Tγ2 ...Tγc Kn

until convergence is reached. If the ML estimate Σ̂G exists (for which Σ̂ ∈ S +
p is sufficient but not

necessary), then (Kn) converges to K̂G = Σ̂−1
G , where Σ̂G is the solution of (2.9), see again Lauritzen

(1996), p. 135. Thus the IPS algorithm cycles through the cliques of G, in each step updating the
concentration matrix K such that the clique has marginal covariance Σ̂γ,γ while preserving the zero
pattern specified by G.

Decomposable models In the case of decomposable models the ML estimate can be given in explicit
form, and we do not have to resort to iterative approximations. As a decomposable graph can be
decomposed into its cliques, the ML estimate of a decomposable model can be composed from the
(unconstrained) MLEs of the cliques. Let G = (V, E) be a decomposable graph with cliques γ1, ..., γc

and c > 1. Define the sequence (δ1, ..., δc−1) of successive intersections by

δk = (γ1 ∪ ... ∪ γk) ∩ γk+1, k = 1, ..., c − 1.

We assume that the numbering γ1, ..., γc is such that for every k ∈ {1, ..., c − 1} there is a j ≤ k
with δk ⊆ γ j. It is always possible to order the cliques of a decomposable graph in such a way, cf.
Lauritzen (1996), p. 18. The sequence (γ1, ...γc) is then said to be perfect, and it corresponds to a
reversed sequence of successive decompositions. The δk do not have to be distinct. For instance, the
graph in Fig. 2.2 has four cliques and, for any numbering of the cliques, δi = {3}, i = 1, 2, 3.

Proposition 2.3.6

(1) The ML estimate Σ̂G of Σ in the decomposable model M (G) exists with probability one if and only
if n > maxk=1,...,c | γk|.

(2) If the ML estimate Σ̂G = K̂G exists, then it is given by

K̂G =

c∑
k=1

[
(Σ̂γk ,γk )

−1
]p
−

c−1∑
k=1

[
(Σ̂δk ,δk )

−1
]p
.

See Lauritzen (1996), p. 146, for a proof. Results on the asymptotic distribution of the restrained
ML-estimator Σ̂G in the decomposable as well as the general case can be found in Lauritzen (1996),
Chap. 5. The exact, non-asymptotic distribution of Σ̂G has also been studied. For decomposable G, it
is known as the hyper Wishart distribution (Dawid and Lauritzen, 1993), and the distribution of K̂G as
inverse hyper Wishart distribution (Roverato, 2000).
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2.3.2 Testing

We want to test a graphical model against a larger one, possibly but not necessarily the saturated
model. Consider two graphs G = (V, E) and G0 = (V, E0) with E0 ⊂ E, or equivalently M (G0) ⊂
M (G). Then the likelihood ratio for testing M (G0) against the larger model M (G) based on the
observation Xn reduces to

LR(G0,G) =

 det Σ̂G

det Σ̂G0

 n
2

,

small values of which suggest to dismiss M (G0) in favour of M (G). It follows by the general theory
for LR tests that the test statistic

Dn(G0,G) = −2 ln LR(G0,G) = n
(
ln det Σ̂G0 − ln det Σ̂G

)
(2.10)

is asymptotically χ2 distributed with |E| − |E0| degrees of freedom under the model M (G0). The test
statistic Dn may be interpreted as a measure of how much the appropriateness of model M (G0) for
the data deviates from that of M (G). It is thus also referred to as deviance and the LR test in GGMs
is called deviance test.
It has been noted that the asymptotic χ2 approximation of the distribution of Dn is generally not
very accurate for small n. Several suggestions have been made on how to improve the finite sample
approximation. One approach is to apply the Bartlett correction to the LR test statistic (Porteous,
1989). Another approximation, which is considerably better than the asymptotic distribution, is given
by the exact distribution for decomposable models in Proposition 2.3.7 (Eriksen, 1996).

Decomposable models Again decomposable models play a special role. We are able to give the
exact distribution of the deviance if both models compared are decomposable. Thus assume in the
following that G and G0 are decomposable. Then one can find a sequence of decomposable models
G0 ⊂ G1 ⊂ ... ⊂ Gk = G such that each successive pair (Gi−1,Gi) differs by exactly one edge ei,
i = 1, ..., k, cf. Lauritzen (1996), p. 20. Let ai denote the number of common neighbours of both
endpoints of ei in the graph Gi.

Proposition 2.3.7 If G0 and G are decomposable and G0 ⊂ G, then

det Σ̂G

det Σ̂G0

= exp
(
−

Dn

n

)
∼ B1B2...Bk,

where the Bi are independent random variables with Bi ∼ Beta
(

n−ai−2
2 , 1

2

)
.

Since a complete graph and a graph with exactly one missing edge are both decomposable, the test
of conditional independence of two components of a random vector is a special case of Proposition
2.3.7. If we let G0 be the graph with all edges but {i, j}, some matrix calculus yields (cf. Lauritzen
(1996), p. 150)

det Σ̂

det Σ̂G0

= 1 − %̂2
i, j•.

By Proposition 2.3.7 this has a Beta( n−p
2 , 1

2 ) distribution, which is in concordance with Proposition
2.3.4 (3).
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2.3.3 Model Selection

Contrary to estimation and statistical testing in GGMs there is no generally agreed-upon, optimal
way to select a model. Statistical theory gives a relatively precise answer to the question if a certain
model fits the data or not, but not which model to choose among those that fit. There are many model
selection procedures (MSPs), and comparing them is rather difficult, since many aspects play a role—
computing time being just one of them. Furthermore, theoretic results are usually hard to derive. For
most MSPs, consistency can be shown, but distributional results are seldom available. Selecting a
graphical model means to decide, based on the data, which partial correlations should be set to zero
and which should be estimated freely. This decision, of course, heavily depends on the nature of
the problem at hand, for example, if too few or too many edges are judged more severe. Ultimately,
the choice of the MSP is a matter of personal taste, and the model selection has to be tailored to
the specific situation. Expert knowledge should be incorporated to obtain sensible and interpretable
models, especially when it comes to choosing from several equally adequate models.
The total number of p-dimensional GGMs is 2(p

2), and only for very small p an evaluation of all
possible models, based on some model selection criterion like AIC or BIC, is feasible. With respect to
interpretability one might want to restrict the search space to decomposable models, cf. e.g. Whittaker
(1990), Chap. 12, or Edwards (2000), Chap. 6. Otherwise a non-complete model search is necessary.

Model search The system of all possible models possesses itself a (directed) graph structure, cor-
responding to the partial ordering induced by set inclusion of the respective edge sets. A graph G0,
say, is a child of a graph G, if G has exactly one edge more than G0. The fact that we know how to
compare nested models, as described in Sect. 2.3.1, suggests a search along the edges of this lattice.
A classic, simple search, known as backward elimination, is carried out as follows. Start with the
saturated model, and in each step remove one edge. To determine which edge, compute all deviances
between the current model and all models with exactly one edge less. The edge corresponding to the
smallest deviance difference is deleted, unless all deviances are above the significance level, i.e. all
edges are significant. Then the algorithm stops. The search in the opposite direction, starting from
the empty graph and including significant edges, is also possible and known as forward selection. Al-
though both schemes have been reported to produce similar results, there is a substantial conceptual
difference that favours backward elimination. The latter searches among models consistent with the
data, while forward selection steps through inconsistent models. The result of an LR test has no sen-
sible interpretation if both models compared are actually invalid. On the other hand, forward selection
is to be preferred for sparse graphs.
Of course, many variants exist, e.g., one may remove all non-significant edges at once, then successi-
vely include edges again, apply an alternative stopping rule (e.g. overall deviance against the saturated
model) or generally alternate between elimination and selection steps. Another model search strategy
in graphical models is known as the Edwards-Havránek procedure (Edwards and Havránek (1985,
1987), Smith (1992)). It is a global search, but reduces the search space, similar to the branch-and-
bound principle by making use of the lattice structure.

One step model selection The simplicity of a one step MSP is, of course, very appealing. They
become increasingly desirable as there has been an enormous growth in the dimensionality of data sets,
and several proposals have been made in the recent past (Drton and Perlman, 2004, 2008; Meinshausen
and Bühlmann, 2006; Castelo and Roverato, 2006). For instance, the SINful procedure by Drton and
Perlman (2008) is a simple model selection scheme, which consists of setting all partial correlations
to zero for which the absolute value of the sample partial correlation is below a certain threshold. This
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threshold is determined in such a way that the overall probability of selecting incorrect edges, i.e. the
probability that the estimated model is too large, is controlled.

2.4 Robustness

Most of what has been presented in the previous section, the classical GGM theory, has been deve-
loped in the seventies and the eighties of the last century. Since then graphical models have become
popular tools of data analysis, and the statistical theory of Gaussian graphical models remains an ac-
tive field of research. Many authors have in particular addressed the n < p problem (a weak point of
the ML theory) as in recent years one often encounters huge data sets, where the number of variables
exceeds by far the number of observations. Another line of research considers GGMs in the Baye-
sian framework. It is beyond the scope of a book chapter to give an exhaustive survey of the recent
approaches—even if we restrict ourselves to undirected graphical models for continuous data. We
want to focus on another weak point of the normal ML theory: its lack of robustness, which has been
pointed out, e.g., by Kuhnt and Becker (2003) and Gottard and Pacillo (2007).
Robustness denotes the property of a statistical method to yield good results also if the assumptions
for which it is designed are violated. Small deviations from the assumed model shall have only a small
effect, and robustness can be seen as a continuity property. This includes the often implied meaning
of robustness as invulnerability against outliers. For example, any neighbourhood of a normal distri-
bution (measured in the Kolmogorov metric) contains arbitrarily heavy-tailed distributions (measured
in kurtosis, say). Outlier generating models with a small outlier fraction are actually very close to the
pure data model.
There are two general conceptual approaches when it comes to robustifying a statistical analysis:
identify the outliers and remove them, or use robust estimators that preferably nullify, but at least
reduce the harmful impact of outliers. Graphical modelling—as an instance of the model selection
problem—is a field where the advantages of the second approach become apparent. In its most general
perception an outlier is a “very unlikely” observation under a given model, cf. Davies and Gather
(1993). Irrespective of the particular rule applied to decide whether an observation is deemed an
outlier or not, any sensible rule ought to give different answers for different models. An outlier in a
specific GGM may be a quite likely observation in the saturated model.
This substantially complicates outlier detection in any type of graphical models, suggesting it must
at least be applied iteratively, alternating with model selection steps. For Gaussian graphical models,
however, we have the relieving fact that an outlier w.r.t. a normal distribution basically coincides with
an outlier in its literal meaning: a point far away from the majority of the data. Hence, strongly
outlying points tend to be ouliers w.r.t. any Gaussian model, no matter which—if any—conditional or
marginal independences it obeys.
Our focus will therefore lie in the following on robust estimation. Note that Gaussian graphical
modelling, as presented in the previous section, exclusively relies on Σ̂. It is a promising approach to
replace the initial estimate Σ̂ by a robust substitute and hence robustify all subsequent analysis. We
can make use of the well developed robust estimation theory of multivariate scatter.

2.4.1 Robust estimation of multivariate scatter

Robust estimation in multivariate data analysis has long been recognized as a challenging task. Over
the last four decades much work has been devoted to the problem and many robust alternatives of
the sample mean and the sample covariance matrix have been proposed, e.g. M-estimators (Maronna,

25



1976; Tyler, 1987a), Stahel-Donoho estimators (Stahel, 1981; Donoho, 1982; Maronna and Yohai,
1995; Gervini, 2002), S-estimators (Davies, 1987; Lopuhaä, 1989; Rocke, 1996), MVE and MCD
(Rousseeuw, 1985; Davies, 1992; Butler et al., 1993; Croux and Haesbroeck, 1999; Rousseeuw and
Van Driessen, 1999), τ-estimators (Lopuhaä, 1991), CM-estimators (Kent and Tyler, 1996), reweigh-
ted and and data-depth based estimators (Lopuhaä, 1999; Gervini, 2003; Zuo and Cui, 2005). Many
variants exist, and the list is far from complete. For a more detailed account see e.g. the book Maronna
et al. (2006) or the review article Zuo (2006).
The asymptotics and robustness properties of the estimators are to a large extent well understood. The
computation often requires to solve challenging optimization problems, but improved search heuristics
are nowadays available. What remains largely an open theoretical question is the exact distribution
for small samples. Constants of finite sample approximations usually have to be assessed numerically.
There are several measures that quantify and thus allow to compare the robustness properties of es-
timators. We want to restrict our attention to the influence function, introduced by Hampel (1971).
Toward this end we have to adopt the notion that estimators are functionals S : F → Θ defined on
a class of distributions F . In the case of matrix-valued scatter estimators S , the image space Θ is
Sp. The specific estimate computed from a data set Xn is the functional evaluated at the correspon-
ding empirical distribution function Fn = 1

n
∑n

i=1 δXi , where δx denotes the Dirac-measure which puts
unit mass at the point x ∈ Rp. For instance, the sample covariance matrix Σ̂ is simply the functional
Var(·), which is defined on all distributions with finite second moments, evaluated atFn. The influence
function of S at the distribution F is defined as

IF(x; S , F) = lim
ε↘0

1
ε

(
S (Fε,x) − S (F)

)
, x ∈ Rp,

where Fε,x = (1 − ε)F + εδx. In words, the influence function is the directional derivative of the
functional S at the “point” F ∈ F in the direction of δx ∈ F . It describes the influence of an
infinitesimal contamination at point x ∈ Rp on the functional S , when the latter is evaluated at the
distribution F. Of course, in terms of robustness, the influence of any contamination is preferably
small. A robust estimator has in particular a bounded influence function, i.e. the maximal absolute
influence sup{ ||IF(x; S , F)|| | x ∈ Rp}, also known as gross-error sensitivity, is finite.
The influence function is said to measure the local robustness of an estimator. Another important
robustness measure, which in contrast measures the global robustness but which we will not pur-
sue further here, is the breakdown point (asymptotic breakdown point (Hampel, 1971), finite-sample
breakdown point (Donoho and Huber, 1983)), see also Davies and Gather (2005). Roughly, the finite-
sample replacement breakdown point is the minimal fraction of contaminated data points that can
drive the estimate to the boundary of the parameter space. For details on robustness measures see e.g.
Hampel et al. (1986).
It is a very desirable property of scatter estimators to transform in the same way as the (population)
covariance matrix—the quantity they aim to estimate—under affine linear transformations. A scatter
estimator Ŝ is said to be affine equivariant, if it satisfies Ŝ (XnAT + 1nbT ) = AŜ (Xn)AT for any full
rank matrix A ∈ Rp×p and vector b ∈ Rp. We want to make a notational distinction between S ,
the functional working on distributions, and Ŝ , the corresponding estimator working on data (strictly
speaking a series of estimators indexed by n), i.e. S (Fn) = Ŝ (Xn). The equivariance is indeed an im-
portant property, due to various reasons. For instance, any statistical analysis based on such estimators
is independent of any change of the coordinate system, may it be re-scaling or rotations of the data.
Also, affine equivariance implies that at any elliptical population distribution (such as the Gaussian
distribution) indeed a multiple of the covariance matrix is unbiasedly estimated, cf. Proposition 2.4.2
below. Furthermore the estimate obtained is usually positive definite with probability one, which is
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crucial for any subsequent analysis, e.g. we know that the derived partial correlation matrix estimator
−Corr(Ŝ −1) actually reflects a “valid” dependence structure.
The classes of estimators listed above all possess this equivariance property—or at least the pseudo-
equivariance described below. Historically though, affine equivariance for robust estimators is not a
self-evident property. Contrary to univariate moment-based estimators (such as the sample variance),
the highly robust quantile-based univariate scale estimators (such as the median absolute deviation,
MAD) do not admit a straightforward affine equivariant generalization to higher dimensions.
In Gaussian graphical models we are interested in partial correlations and zero entries in the inverse
covariance matrix, for which we need to know Σ only up to a constant. The knowledge of the overall
scale is not relevant, and we require a slightly weaker condition than affine equivariance in the above
sense, which we want to call affine pseudo-equivariance or proportional affine equivariance.

Condition C2.4.1 Ŝ (XnAT + 1nbT ) = g(AAT )AŜ (Xn)AT for b ∈ Rp, A ∈ Rp×p with full rank, and
g : Rp×p → R satisfying g(Ip) = 1.

This condition basically merges two important special cases, the proper affine equivariance described
above, i.e. g ≡ 1, and the case of shape estimators in the sense of Paindaveine (2008), which corres-
ponds to g = det(·)−1/p. The following proposition can be found in a similar form in Bilodeau and
Brenner (1999), p. 212.

Proposition 2.4.2 In the MVN model, i.e. Xn = (X1, ..., Xn)T with X1, ..., Xn ∼ Np(µ,Σ) i.i.d., any
affine pseudo-equivariant scatter estimator Ŝ = Ŝ (Xn) satisfies

(1) EŜ = anΣ and

(2) Var(vec Ŝ ) = 2 bn Mp(Σ ⊗ Σ) + cn vec Σ(vec Σ)T ,

where (an), (bn) and (cn) are sequences of real numbers with an, bn ≥ 0 and cn ≥ −2bn/p for all
n ∈ N.

Proposition 2.3.4 tells us that for Ŝ = Σ̂ we have an = n
n−1 , bn = 1

n and cn ≡ 0. For root-n-consistent
estimators the general form of the variance re-appears in the asymptotic variance, and they fulfil

Condition C2.4.3 There exist constants a, b ≥ 0 and c ≥ −2b/p such that

√
n vec(Ŝ − a Σ)

L
−→ Np2

(
0, 2a2bMp(Σ ⊗ Σ) + a2c vec Σ(vec Σ)T

)
.

The continuous mapping theorem and the multivariate delta method yield the general form of the
asymptotic variance of any partial correlation estimator derived from a scatter estimator satisfying
C2.4.3.

Proposition 2.4.4 If Ŝ fulfils C2.4.3, then the partial correlation estimator P̂S = −Corr(Ŝ −1) satisfies

√
n vec(P̂S − P)

L
−→ Np2(0, 2bΓMp(K ⊗ K)ΓT ), (2.11)

where b is the same as in Condition C2.4.3 and Γ is as in Proposition 2.3.2.

Thus the comparison of the asymptotic efficiencies of partial correlation matrix estimators based on
affine pseudo- equivariant scatter estimators reduces to the comparison of the respective values of the
scalar b. For Ŝ = Σ̂ we have b = 1 by Proposition 2.3.2. Also, general results for the influence
function of pseudo-equivariant estimators can be given, cf. Hampel et al. (1986), Chap. 5.3.
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Proposition 2.4.5

(1) At the Gaussian distribution F = Np(µ,Σ) the influence function of any functional S satisfying
Condition C2.4.1 has, if it exists, the form

IF(x; S , F) = g(Σ)
(
α(d(x))(x − µ)(x − µ)T − β(d(x))Σ

)
, (2.12)

where d(x) =
√

(x − µ)T K(x − µ), g is as in Condition C2.4.1 and α and β are suitable functions
[0,∞)→ R.

(2) Assuming that Ŝ is Fisher-consistent for aΣ, i.e. S (F) = aΣ, with a > 0, cf. Condition C2.4.3, the
influence function of the corresponding partial correlation matrix functional PS = −Corr(S −1) is

IF(x; PS , F) =
α(d(x))g (Σ)

a

(
1
2

(
ΠDK−1

D P + (ΠDK−1
D P)T

)
− K

− 1
2

D ΠK
− 1

2
D

)
,

where Π = K(x − µ)(x − µ)T K.

In the case of the sample covariance matrix Σ̂(Xn) = Var(Fn) we have a = 1 and α = β ≡ 1. Thus
(2.12) reduces to IF(x; Var, F) = (x−µ)(x−µ)T −Σ, which is not only unbounded, but even increases
quadratically with ||x − µ||. We will now give two examples of robust affine equivariant estimators,
that have been proposed in the context of GGMs.

The minimum covariance determinant (MCD) estimator The idea behind the MCD estimator
is that outliers will increase the volume of the ellipsoid specified by the sample covariance matrix,
which is proportional to the square root of its determinant. The MCD is defined as follows. A subset
η ⊂ {1, ..., n} of fixed size h = bsnc with 1

2 ≤ s < 1 is determined such that det(Σ̂η) with

Σ̂η =
1
h

∑
i∈η

(Xi − X̄η)(Xi − X̄η)T and X̄η =
1
h

∑
i∈η

Xi

is minimal. The mean µ̂MCD and covariance matrix Σ̂MCD computed from this subsample are called
the raw MCD location, respectively scatter estimate. Based on the raw estimate (µ̂MCD, Σ̂MCD) a
reweighted scatter estimator Σ̂RMCD is computed from the whole sample:

Σ̂RMCD =

 n∑
i=1

wi

−1 n∑
i=1

wi(Xi − µ̂MCD)(Xi − µ̂MCD)T ,

where wi = 1, if (Xi − µ̂MCD)T Σ̂−1
MCD(Xi − µ̂MCD) < r for some suitably chosen constant r > 0,

and zero otherwise. Usually the the scatter estimate (reweighted as well as raw) is multiplied by a
consistency factor (corresponding to 1/a in Condition C2.4.3) to achieve consistency for Σ at the MVN
distribution. Since this is irrelevant for applications in GGMs we omit the details. The respective
values of the constants b and c in Condition C2.4.3 as well as the function α and β in Proposition 2.4.5
are given in Croux and Haesbroeck (1999).
The reweighting step improves the efficiency and retains the high global robustness (breakdown point
of roughly 1− s for s ≥ 1/2) of the raw estimate. Although the minimization over

(
n
h

)
subsets is of non-

polynomial complexity, the availability of fast search heuristics (e.g. Rousseeuw and Van Driessen,
1999) along with the aforementioned good statistical properties have rendered the RMCD a very
popular robust scatter estimator, and several authors (Becker, 2005; Gottard and Pacillo, 2010) have
suggested its use for Gaussian graphical modelling.
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The proposal by Miyamura and Kano Miyamura and Kano (2006) proposed another affine equi-
variant robust scatter estimator in the GGM framework. The idea is here a suitable adjustment of the
ML equations. The Miyamura-Kano estimator Σ̂MK falls into the class of M-estimators, as considered
in Huber and Ronchetti (2009), and is defined as the scatter part Σ of the solution (µ,Σ) of

1
n

n∑
i=1

exp
(
−
ξ d2(Xi)

2

)
(Xi − µ) = 0 and

1
n

n∑
i=1

exp
(
−
ξ d2(Xi)

2

) (
Σ − (Xi − µ)(Xi − µ)T

)
=

ξ

(ξ + 1)(p+2)/2 Σ,

where ξ ≥ 0 is a tuning parameter and d(x) is, as in Proposition 2.4.5, the Mahalanobis distance of
x ∈ Rp w.r.t. µ and Σ. Large values of ξ correspond to a more robust (but less efficient) estimate,
i.e. less weight is given to outlying observations. The Gaussian likelihood equations are obtained for
ξ = 0.

2.4.2 Robust Gaussian graphical modelling

The classical GGM theory is completely based on the sample covariance matrix Σ̂: the ML estimates
in Theorem 2.3.5, the deviance test statistic Dn in (2.10) and model selection procedures such as back-
ward elimination, Edwards-Havránek or Drton-Perlman. Thus replacing the normal MLE by a robust,
affine equivariant scatter estimator and applying the GGM methodology in analogous manner is an
intuitive way of performing robust graphical modelling, insensitive to outliers in the data. Since the
asymptotics of affine (pseudo-)equivariant estimators are well established (at the normal distribution),
and, as described in Sect. 2.4.1, their general common structure is not much different from that of the
sample covariance matrix, asymptotic statistical methods can rather easily be adjusted by means of
standard asymptotic arguments.

Estimation under a given graphical model We have discussed properties of equivariant scatter
estimators and indicated their usefulness for Gaussian graphical models. However they just provide
alternatives for the unconstrained estimation. Whereas the ML paradigm dictates the solution of (2.9)
as an optimal way of estimating a covariance matrix with a graphical model and exact normality, it is
not quite clear what is the best way of robustly estimating a covariance matrix that obeys a zero pattern
in its covariance. Clearly, Theorem 2.3.5 suggests to simply solve equations (2.9) with Σ̂ replaced by
any suitable robust estimator Ŝ . This approach has the advantage that consistency of the estimator
under the model is easily assessed. In case of a decomposable model the estimator can be computed
by the decomposition of Proposition 2.3.6, or generally by the IPS algorithm, for which convergence
has been shown and which comes at no additional computational cost. Becker (2005) proposed to
apply IPS to the reweighted MCD.
However, a thorough study of scatter estimators under graphical models is still due, and it might be
that other possibilities are more appropriate in certain situations. Many robust estimators are defined
as the solution of a system of equations. A different approach is to alter these estimation equations in a
suitable way that forces a zero pattern on the inverse. This requires a new algorithm, the convergence
of which has to be assessed individually. This route has been taken by Miyamura and Kano (2006).
Their algorithm performs an IPS approximation at each step and is hence relatively slow.
A problem remains with both strategies. Scatter estimators, if they have not a structure as simple
as the sample covariance, generally do not possess the “consistency property” that the estimate of
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a margin appears as a submatrix of the estimate of the whole vector. The ML estimate Σ̂G in the
decomposable as well as the general case is composed from the unrestricted estimates of the cliques,
cf. Theorem 2.3.5 and Proposition 2.3.6, which makes it in particular possible to compute the MLE
for p ≥ n. One way to circumvent this problem is to drop the affine equivariance and resort to robust
“pairwise” estimators, such as the Gnanadesikan-Kettenring estimator (Gnanadesikan and Kettenring,
1972; Maronna and Zamar, 2002) or marginal sign and rank matrices (Visuri et al., 2000), see also
Section 5.2. Besides having the mentioned consistency property pairwise estimators are also very fast
to compute.

Testing and model selection The deviance test can be applied analogously with minor adjustments
when based on an affine equivariant scatter estimator. Similarly to the partial correlation estimator
P̂S in Proposition 2.4.4, the asymptotic distribution of the generalized deviance DS

n , computed from
any root-n-consistent, equivariant estimate Ŝ, differs from that of the ML-deviance (2.10) only by a
factor, see Tyler (1983) or Bilodeau and Brenner (1999), Chap. 13, for details. However, as noted in
Sect. 2.3.2, the χ2 approximation of the uncorrected deviance may be rather inaccurate for small n.
Generalizations of finite-sample approximations or the exact test in Proposition 2.3.7 are not equally
straightforward. Since the exact distribution of a robust estimator is usually unknown, one will have
to resort to Monte Carlo or bootstrap methods.
Model selection procedures that only require a covariance estimate can be robustified in the same way.
Besides the classical search procedures this is also true for the SINful procedure by Drton and Perlman
(2008), of which Gottard and Pacillo (2010) studied a robustified version based on the RMCD.

2.4.3 Concluding remarks

The use of robust methods is strongly advisable, particularly in multivariate analysis, where the whole
structure of the data is not immediately evident. Even if one refrains from relying solely on a robust
analysis, it is in any case an important diagnostic tool. A single gross error or even mild deviations
from the assumed model may render the results of a sample covariance based data analysis useless.
The use of alternative, robust estimators provides a feasible safeguard, which comes at the price of a
small loss in efficiency and a justifiable increase in computational costs.
Although there is an immense amount of literature on multivariate robust estimation and applica-
tions thereof (robust tests, regression, principal component analysis, discrimination analysis etc., see
e.g. Zuo (2006) for references), the list of publications addressing robustness in graphical models is
(still) rather short. We have described how GGMs can be robustified using robust, affine equivariant
estimators. An in-depth study of this application of robust scatter estimation seems to be still open.
The main limitation of this approach is that it works well only for sufficiently large n, and on any
account only for n > p, since, as pointed out above, usually an initial estimate of full dimension is
required. Also note that, for instance, the computation of the MCD requires h > p. The finite-sample
efficiency of many robust estimators is low, and with the exact distributions rarely accessible, methods
based on such estimators rely even more on asymptotics than likelihood methods.
The processing of very high-dimensional data (p >> n) becomes increasingly relevant, and in such
situations it is unavoidable and (even if n is sufficiently large) dictated by computational feasibility, to
assemble the estimate of Σ, restricted to a given model, from marginal estimates. A high dimensional,
robust graphical modelling, combining robustness with applicability in large dimensions, remains a
challenging topic of future research.
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Chapter 3

Elliptical graphical modelling — the
decomposable case

Abstract. We propose elliptical graphical models as a generalization of Gaussian graphical models,
also known as covariance selection models or concentration graph models, by letting the population
distribution be elliptical instead of normal, allowing to fit data with arbitrarily heavy tails. We dis-
cuss the interpretation of an absent edge in the partial correlation graph of an elliptical distribution,
which is equivalent to a zero-entry in the inverse of its shape matrix. We further study the class of
proportionally affine equivariant scatter estimators and show how they can be used to perform ellipti-
cal graphical modelling, leading to a new class of partial correlation estimators and analogues of the
classical deviance test. General expressions for the asymptotic variance of partial correlation estima-
tors, unconstrained and under decomposable models, are given, and the asymptotic χ2 approximation
of the pseudo-deviance test statistic is proved. The feasibility of our approach is demonstrated by a
simulation study, using, among others, Tyler’s scatter estimator, which is distribution-free within the
elliptical model. Our approach provides a robustification of Gaussian graphical modelling, which is
likelihood-based and known to be very sensitive to model misspecifications and outlying observations.

3.1 Introduction and notation

Graphical modelling of continuous variables is almost exclusively based on the assumption of mul-
tivariate normality. This has two disadvantages: the assumption is not always met (for example,
multivariate normality allows only linear dependencies among the variables), and the statistical tools
are based on the normal likelihood and highly non-robust. Among the many ways that data may be
non-Gaussian outliers pose a problem of particular gravity, due to two reasons: they frequently occur,
may it be as contamination or as “valid” observations, and the normal likelihood methods (such as
the sample covariance matrix) are particularly susceptible to outliers. Our objective is to deal with
heavy-tailed data and to safeguard graphical modelling against the impact of faulty outliers. We res-
trict our attention to the basic yet important case where we have only continuous variables and want
to model mutual dependence, rather than directed “influence”, i.e we consider only undirected graphs.
Traditionally, joint multivariate normality is assumed in this situation, and the statistical methodology
goes under the name Gaussian graphical modelling. We propose the class of elliptical distributions as
a more general data model and call our approach elliptical graphical modelling.
The lack of robustness of Gaussian graphical modelling has been noted by several authors before.
Three proposals of a robust approach to Gaussian graphical modelling are known to us: Becker
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(2005) and Gottard and Pacillo (2010) suggest to replace the sample covariance matrix by the re-
weighted MCD estimator, Miyamura and Kano (2006) propose to replace it by an M-estimator. A
common feature of both estimators is affine equivariance. This article delivers a systematic and theo-
retically grounded treatment of the affine equivariant approach. We show that the sample covariance
matrix may be substituted by basically any affine equivariant, root-n-consistent estimator. As long
as ellipticity can be assumed, the classical Gaussian graphical modelling tools can be employed with
simple adjustments. Thus the data analyst is free to choose the appropriate estimator, delivering the
degree of robustness that seems necessary for the data situation at hand.
The paper is divided into seven sections. Section 2 defines elliptical graphical models. The subsequent
Sections 3 on unconstrained estimation, 4 on constrained estimation and 5 on testing provide the basics
of elliptical graphical modelling. Section 6 gives examples of affine equivariant estimators. Some
deeper attention is paid to Tyler’s M-estimator. Finally, in Section 7 we compare different estimators
by means of simulation and bring the attention to some practical aspects. We summarize the article
and discuss limitations of the approach. Proofs are deferred to the appendix.
We close this section by introducing some mathematical notation. We use ∼ for “distributed as”, L

=

for equality in distribution and a
∼ for asymptotic equivalence, i.e. Xn

a
∼ Yn ⇔ ||Xn − Yn||

p
−→ 0. The

symbol ∝ is used for “proportional to”. Matrices are denoted by capital letters, the corresponding
small letter is used for an element of the matrix, e.g., the p × p matrix P is the collection of all
pi, j, i, j = 1, ..., p. Alternatively, if matrices are denoted by more complicated compound symbols,
e.g. if they carry subscripts already, square brackets will be used to refer to individual elements, e.g.
[Ŝ −1

G ]i, j. Index sets are denoted by usually non-italic small Greek letters. Subvectors and submatrices
are referenced by subscripts, e.g. for α, β ⊆ {1, ..., p} the |α| × |β| matrix S α,β is obtained from S by
deleting all rows that are not in α and all columns that are not in β. Similarly, the p× p matrix [S α,β]p

is obtained from S by putting all rows not in α and all columns not in β to zero. We want to view this
matrix operation as two operations performed sequentially: first (·)α,β extracting the submatrix and
then [·]p writing it back on a “blank” matrix at the coordinates specified by α and β. Of course, the
latter is not well defined without the former, but this allows us e.g. to write [(S α,β)−1]p.
We adopt the general convention that subscripts have stronger ties than superscripts, for instance, we
write S −1

α,β
for (S α,β)−1. Let Sp and S +

p be the sets of all symmetric, respectively positive definite
p × p matrices, and define AD as the diagonal matrix having the same diagonal as A ∈ Rp×p. The
Kronecker product A ⊗ B of two matrices A, B ∈ Rp×p is defined as the p2 × p2 matrix with entry
ai, jbk,l at position ((i− 1)p + k, ( j− 1)p + l). Let e1, ..., ep be the unit vectors inRp and 1p the p-vector
consisting only of ones. Define further the following matrices:

Jp =

p∑
i=1

eie
T
i ⊗ eie

T
i , Kp =

p∑
i=1

p∑
j=1

eie
T
j ⊗ e je

T
i and Mp =

1
2

(
Ip2 + Kp

)
,

where Ip2 denotes the p2 × p2 identity matrix. Kp is also called the commutation matrix. Finally, let
vec A be the p2-vector obtained by stacking the columns of A ∈ Rp×p from left to right underneath
each other. More on these concepts and their properties can be found in Magnus and Neudecker
(1999).

3.2 Elliptical graphical models

We introduce elliptical graphical models. Construction and terminology are in analogy to Gaussian
graphical models. For details on the latter, also known as covariance selection models and concen-
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tration graph models, see Whittaker (1990), Cox and Wermuth (1996), Lauritzen (1996) or Edwards
(2000).
Consider the class Ep of all continuous, elliptical distributions on Rp. A continuous distribution F on
Rp is said to be elliptical if it has a Lebesgue-density f of the form

f (x) = det(S )−
1
2 g

(
(x − µ)T S −1(x − µ)

)
(3.1)

for some µ ∈ Rp and symmetric, positive definite p × p matrix S. We call µ the location or symmetry
center and S the shape matrix of F and denote the class of all continuous elliptical distributions on
Rp having these parameters by Ep(µ, S ). A continuous distribution on Rp is called spherical, if it is
elliptical with the shape matrix S proportional to the identity matrix.
In the parametrization (µ, S ), the symmetry center µ is uniquely defined whereas the matrix S is
unique only up to scale, that is, Ep(µ, S ) = Ep(µ, cS ) for any c > 0. Some form of standardization
can be imposed on S to uniquely define the shape matrix of an elliptical distribution. Several have
been suggested in the literature, e.g., setting the trace of S to p or a specific element to 1. Paindaveine
(2008) argues to choose det(S ) = 1.
Since the standardization of S is irrelevant for the following considerations, we will completely omit
it. We understand the shape of an elliptical distribution as an equivalence class of positive definite
random matrices being proportional to each other and call any matrix S satisfying (3.1) for a suitable
function g a shape matrix of F. In the same manner we view its inverse K = S −1, which we call
pseudo concentration matrix of F. Let furthermore

h : S +
p → Sp : A 7→ −

(
A−1

)− 1
2

D
A−1

(
A−1

)− 1
2

D
, (3.2)

and P = h(S ). The function h is invariant to scale changes, i.e. P is a uniquely defined parameter
of F ∈ Ep(µ, S ). The diagonal elements of P are equal to −1. If the second-order moments of
X ∼ F ∈ Ep(µ, S ) exist, then Σ = var(X) is proportional to S . Consequently, the element pi, j of P at
position (i, j), i , j, is the partial correlation of Xi and X j given the remaining components of X. For
a definition and properties of partial correlation see Section 2.2.1. We call P the generalized partial
correlation matrix of F and refer to it as partial correlation matrix for brevity, but keep in mind that
partial correlations are defined for distributions with finite second-order moments only.
The qualitative information of P can be coded in an undirected graph G = (V, E), where V is the vertex
set and E the edge set, in the following way: the variables X1, ..., Xp are the vertices, and an undirected
edge is drawn between Xi and X j, i , j, if and only if pi, j , 0. The thus obtained graph G is called
the generalized partial correlation graph of F, where again, for brevity’s sake, we will usually drop
the leading generalized and use the abbreviation PCG. Formally we set V = {1, ..., p} and write the
elements of E as unordered pairs {i, j}, 1 ≤ i < j ≤ p. The benefits of such a graphical representation
will not be discussed here. Our focus lies on the modelling, but we should point out that the global
and the local Markov property w.r.t. any PCG G are equivalent for any F ∈ Ep without any moment
assumptions, cf. Theorem 2.2.7.
Let S +

p (G) be the subset of S +
p consisting of all positive definite matrices with zero entries at the

positions specified by the graph G = (V, E), i.e.

K ∈ S +
p (G) ⇐⇒ K ∈ S +

p and ki, j = 0 for i , j and {i, j} < E,

and define

Ep(G) =
{

F ∈ Ep(µ,K−1)
∣∣∣ µ ∈ Rp, K ∈ S +

p (G)
}

(3.3)
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as the elliptical graphical model induced by G. In words, an elliptical graphical model Ep(G) is the
collection of all p-dimensional continuous elliptical distributions that share the property that the in-
verse of the shape matrix has zero-entries at certain off-diagonal positions specified by G. We call the
elliptical graphical model Ep(G) decomposable if the graph G is decomposable. A graph is decom-
posable, if it possesses no chordless cycle of length greater than 3. For alternative characterizations
and properties of decomposable graphs see e.g. Lauritzen (1996), Chapter 2. Decomposable graphi-
cal models constitute an important class of models—in terms of interpretability as well as in terms
of mathematical tractability, cf. Whittaker (1990), Chapter 12. Our focus will lie on decomposable
models.
In the remainder of this section we discuss the interpretation of an absent edge in the PCG of F ∈ Ep.
Let us assume that the second-order moments of X ∼ F are finite. The partial uncorrelatedness of, say,
X1 and X2 given X3, ..., Xp, i.e. p1,2 = 0, is to be understood as linear independence of X1 and X2 that
remains after the common linear effects of X3, ..., Xp have been removed. A relation of similar type
is conditional independence: roughly, X1 and X2 are conditionally independent given X3, ..., Xp, if the
conditional distribution of (X1, X2) is a product measure for almost all values of the conditioning va-
riable (X3, ..., Xp). In comparison to partial uncorrelatedness we understand conditional independence
as full independence of X1 and X2 after the removal of all common effects of X3, ..., Xp.
Another term, lying in-between, is conditional uncorrelatedness: the conditional distribution of
(X1, X2) given (X3, ..., Xp) has correlation zero for almost all values of (X3, ..., Xp). We must point
out an important qualitative difference between partial and conditional correlation: the former is a
real value, whereas the latter is a function of the conditioning variable. For elliptical distributions it is
known that all marginal and conditional distributions are again elliptical, cf. Fang and Zhang (1990),
Section 2.6. It follows that partial uncorrelatedness implies conditional uncorrelatedness, cf. Baba
et al. (2004). Hence p1,2 = 0 allows to conclude linear independence of X1 and X2 after all common
effects of X3, ..., Xp have been removed.
On the other hand, the only spherical distributions with independent margins are Gaussian distribu-
tions, which is known as the Maxwell-Hershell-Theorem, cf. e.g. Bilodeau and Brenner (1999), p. 51.
Thus contrary to Gaussian graphical models a missing edge in the PCG of an elliptical distribution can
in general not be interpreted as conditional independence. It appears that, by going from the normal to
the elliptical model, the gain in generality is paid by a loss in the strength of inference. But this loss is
illusive. From a data modelling perspective the conditional independence interpretation of partial un-
correlatedness under normality is an assumption, not a conclusion. By modelling multivariate data by
a joint Gaussian distribution one models the linear dependencies and assumes that there are no other
than linear associations among the variables. By fitting an appropriate non-Gaussian model one may
still model the linear dependencies and allow non-linear dependencies. Using semiparametric models
embodies this idea: the aspects of interest (here linear dependencies) are modelled parametrically,
whereas other aspects remain unspecified.

3.3 Elliptical graphical modelling: statistical theory

3.3.1 Unconstrained estimation

An important initial step towards elliptical graphical modelling is the unconstrained estimation of P.
Unconstrained, since we do not assume a graphical model to hold, not forcing any constraints on P.
We will consider estimators of the type P̂n = h(Ŝ n), where Ŝ n is a suitable estimator of a multiple of
S , therefore start by considering shape estimators Ŝ n.
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Now we consider i.i.d. random vectors X1, ..., Xn sampled from an elliptical distribution F ∈ Ep(µ, S ).
(Depending on the context, Xk may denote the k-th p-dimensional observation or the k-th component
of the vector X.) Let furthermore Xn = (X1, ..., Xn)T be the n× p data matrix containing the data points
as rows and Ŝn = Ŝn(Xn) a scatter estimator. (The symbol Ŝn may have two meanings: a function on
the sample space, or as abbreviation for Ŝn(Xn), a random variable.) We use the term scatter estimator
in a very informal way for any symmetric matrix-valued estimator that gives some information about
the spread of the data. We restrict our attention to scatter estimators satisfying the following condition
which we call affine pseudo-equivariance.

Assumption 3.3.1 Ŝn(XnAT + 1nbT ) = ξ(AAT )AŜn(Xn)AT for b ∈ Rp, A ∈ Rp×p with full rank, and
ξ : Rp×p → R continuously differentiable, satisfying ξ(Ip) = 1.

This is a generalization of the (strict) affine equivariance for scatter estimators, which corresponds to
ξ ≡ 1. We use this weaker condition since overall scale is irrelevant for partial correlations, and we
want to include estimators which only estimate shape, but not scale, and do not satisfy strict affine
equivariance. Examples and further explanations are given in Section 3.4.1.
We call estimators satisfying Assumption 3.3.1 shape estimators. Evaluated at an elliptical distribu-
tion their first two moments (if existent) can be shown to have a common structure, the same given for
strictly affine equivariant scatter estimators in Corollary 1 in Tyler (1982). The following condition
is therefore natural for shape estimators at elliptical distributions F, and many shape estimators have
been shown to satisfy it under suitable additional conditions on F.

Assumption 3.3.2 There exist constants η ≥ 0, σ1 ≥ 0 and σ2 ≥ −2σ1/p such that

Ŝ n
p
−→ ηS and

√
n vec (Ŝ n − ηS )

L
−→ Np2

(
0, η2WS (σ1, σ2)

)
,

where WS = WS (σ1, σ2) = 2σ1Mp(S ⊗ S ) + σ2 vec S (vec S )T , and the constants σ1 and σ2 do not
depend on S .

Tyler (1982) calls an estimator Ŝ n satisfying this assumption to be asymptotically of the radial type.
Under this assumption we have the following proposition, which is proved in the appendix.

Proposition 3.3.3 If Ŝ n fulfils Assumption 3.3.2, then we have with K = S −1 that

(1) the derived concentration matrix estimator K̂n = Ŝ−1
n satisfies

K̂n
p
−→ η−1K and

√
n vec (K̂n − η

−1K)
L
−→ Np2

(
0, η−2WK(σ1, σ2)

)
,

where WK = WK(σ1, σ2) = 2σ1Mp(K ⊗ K) + σ2 vec K(vec K)T , and

(2) the derived partial correlation estimator P̂n = h(Ŝn) satisfies

P̂n
p
−→ P and

√
n vec (P̂n − P)

L
−→ Np2

(
0, 2σ1Γ(S )Mp(K ⊗ K)Γ(S )T

)
,

where

Γ(S ) = (K
− 1

2
D ⊗ K

− 1
2

D ) + Mp(P ⊗ K−1
D )Jp. (3.4)

An important aspect of Proposition 3.3.3 is that the asymptotic distribution of any partial correlation
estimator P̂n derived from an affine equivariant shape estimator Ŝn is a function of the shape except for
the scalar σ1.
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3.3.2 Constrained estimation

In this section we deal with the task of estimating P under a given graphical model Ep(G) specified
by the graph G = (V, E), i.e. estimating P with zero-entries. A crude approach is to simply put the
concerning elements in an unconstrained estimate P̂n to zero. This will generally destroy the positive
definiteness of the estimate. We pursue the path laid by the Gaussian MLE and define the function
hG : S +

p → S +
p (G) : A 7→ AG by [AG]i, j = ai, j, {i, j} ∈ E or i = j,

[A−1
G ]i, j = 0, {i, j} < E and i , j.

(3.5)

It is not trivial and a deeper result of the theory of Gaussian graphical models that a unique and
positive definite solution AG of (3.5) exists for any positive definite A. The positive definiteness of A
is sufficient but not necessary. For details see Lauritzen (1996), p. 133. Since we deal mainly with
asymptotics, and, for sufficiently large n, shape matrix estimators Ŝn are usually a.s. positive definite
at continuous distributions, we assume positive definiteness for simplicity’s sake.
Let G = (V, E) be a decomposable graph with cliques γ1, ..., γc, c ≥ 1, and define the sequence
δ1, ..., δc−1 of successive intersections by

δk = (γ1 ∪ ... ∪ γk) ∩ γk+1, k = 1, ..., c − 1.

We assume that the ordering γ1, ..., γk is such that the cliques form a perfect sequence, i.e. for all
k = 1, ..., c− 1 there is a j ∈ {1, ..., k} such that δk ⊆ γ j. It is always possible to arrange the cliques of a
decomposable graph in a perfect sequence (Lauritzen, 1996, Prop. 2.17). For notational convenience
we let

αk =

γk k = 1, ..., c,
δk−c k = c + 1, ..., 2c − 1,

and ζk =

1 k = 1, ..., c,
−1 k = c + 1, ..., 2c − 1.

Then hG(A) allows the following explicit formulation

hG(A) = AG =

2c−1∑
k=1

ζk
[
A−1
αk ,αk

]p

−1

, A ∈ S +
p . (3.6)

We will use this representation of hG to further analyse the properties of the estimators ŜG = hG(Ŝn),
K̂G = Ŝ−1

G and P̂G = h(ŜG) for a decomposable graph G. Using the notation SG = hG(S ), KG = S−1
G ,

PG = h(SG) ∈ Rp×p and

ΩG(S ) =

2c−1∑
k=1

ζk
[
S−1
αk ,αk

]p
⊗

[
S−1
αk ,αk

]p
∈ Rp2×p2

we have the following result about the asymptotic distribution.

Proposition 3.3.4 If Ŝ n fulfils Assumption 3.3.2 and G is decomposable, then

(1) K̂G
p
−→ η−1KG and

√
n vec (K̂G − η

−1KG)
L
−→ Np2(0, η−2WKG (σ1, σ2))

with WKG = WKG (σ1, σ2) = 2σ1MpΩG(S )(S ⊗ S )ΩG(S ) + σ2 vec KG(vec KG)T ,
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(2) ŜG
p
−→ ηSG and

√
n vec (ŜG − ηSG)

L
−→ Np2(0, η2WSG (σ1, σ1)) with

WSG = WSG (σ1, σ2) = 2σ1Mp (SG ⊗ SG) ΩG(S )(S ⊗ S )ΩG(S ) (SG ⊗ SG) +σ2 vec SG(vec SG)T ,

(3) P̂G
p
−→ PG and

√
n vec (P̂G − PG)

L
−→ Np2(0,WPG (σ1)) with

WPG = WPG (σ1) = 2σ1Γ(SG)MpΩG(S )(S ⊗ S )ΩG(S )Γ(SG)T and Γ(·) defined in (3.4).

Since ΩG(S ) (SG ⊗ SG) ΩG(S ) = ΩG(S ) for any S ∈ S +
p , which is proved in the appendix, the

expressions for the asymptotic variances of the estimators simplify, if the true shape S satisfies the
graph G, i.e. if S = SG.

Corollary 3.3.5 If Ŝn satisfies Assumption 3.3.2 with S −1 ∈ S +
p (G) for a decomposable graph G,

then the assertions of Proposition 3.3.4 are true with

(1) WKG (σ1, σ2) = 2σ1MpΩG(S ) + σ2 vec K(vec K)T and

(2) WSG (σ1, σ2) = 2σ1Mp(S ⊗ S )ΩG(S )(S ⊗ S ) + σ2 vec S (vec S )T ,

(3) WPG (σ1) = 2σ1Γ(S )MpΩG(S )Γ(S )T .

3.3.3 Testing

An essential tool of most model selection procedures is to test if a model under consideration fits the
data or not. In this respect it is of particular interest to compare the fit of two nested models. Again,
we restrict our attention here to the important subclass of decomposable models. For example, the
stepwise model search routine of the MIM software, cf. Edwards (2000), by default only considers
decomposable models. Models with at most one missing edge are decomposable.
We need to declare some notation first. On the set Πp = {(i, j)| 1 ≤ i, j ≤ p} of the positions of a p × p
matrix we declare a strict ordering ≺p by

(i, j) ≺p (k, l) if ( j − 1)p + i ≤ (l − 1)p + k for (i, j), (k, l) ∈ Πp.

For any subset Z = {z1, ..., zq} ⊂ Πp, where zk = (ik, jk), k = 1, ..., q, and z1 ≺p ... ≺p zq, define the
matrix QZ ∈ R

q×p2
as follows: each line consists of exactly one entry 1 and zeros otherwise. The 1-

entry in line k is in column (ik − 1)p + jk. Thus QZvec A picks the elements of A at positions specified
by Z in the order they appear in vec A. For a graph G = (V, E) with V = {1, ..., p} let

D(G) = {(i, j)|1 ≤ j < i ≤ p, {i, j} < E} ,

i.e. the set D(G) gathers all sub-diagonal zero-positions that G enforces on a concentration matrix.
Thus F ∈ Ep(G) is equivalent to QD(G) vec K = 0.
Now let G0 = (V, E0) and G1 = (V, E1) be two decomposable graphs with V as above and E0 ( E1, or
equivalently, Ep(G0) ( Ep(G1). For notational convenience let

Q0 = QD(G0), Q1 = QD(G1), Q0,1 = QD(G0)\D(G1),

furthermore

q0 = |D(G0)|, q1 = |D(G1)| and q0,1 = q0 − q1.
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An intuitive approach to testing G0 against the broader model G1 is to reject G0 in favour of G1, if
all entries at positions in D(G0) \ D(G1) of an estimate P̂G1 of P under G1 are close to zero. For
example, a sum of suitably weighted squared entries of P̂G1 , such as T̂n(G0,G1) below, is a possible
test statistic. Let

RG(S ) = Γ(S )MpΩG(S )Γ(S )T .

For invertible S , RG1(S ) has rank 1
2 (p−1)p−q1. This can be shown by applying the fact that invertible

functions have full rank derivatives, which is a consequence of the chain rule, to suitably constructed
functions. The proof is worked out in Section 4.1.2. Then Q0,1RG1(S )QT

0,1 is of full rank, and the
probability that the Wald-type test statistic

T̂n(G0,G1) =
n
2

(
vec P̂G1

)T
QT

0,1

(
Q0,1RG1(Ŝn)QT

0,1

)−1
Q0,1 vec P̂G1

exists tends to one as n → ∞. The next proposition describes the asymptotic behaviour of the test
statistic T̂n(G0,G1) under the null hypothesis that G0 is true, part (1), and under a local alternative,
part (2).

Proposition 3.3.6 Let G0 and G1 be as above and Ŝn = Ŝn(Xn) satisfy Assumptions 3.3.1 and 3.3.2
for i.i.d. data XT

n = (X1, ..., Xn).

(1) Under the model G0, i.e. if X1, ..., Xn, ... are i.i.d. with X1 ∼ F ∈ Ep(µ, S ) ⊂ Ep(G0), then

T̂n(G0,G1)
L
−→ σ1χ

2
q0,1
.

(2) Let X1, ..., Xn, ... be as in part (1). Furthermore, for m, k ∈ N, let X(m)
k

L
= S

1
2
mS −

1
2 Xk and

X(m)
1 , ..., X(m)

n , ... be independent (which implies that X(m)
1 , ..., X(m)

n , ... are i.i.d. elliptical with shape
matrix S m), where S m is such that there exists a matrix B ∈ Sp with

lim
m→∞

√
m(S m − S ) = B.

If, for each n ∈ N, Ŝ n is applied to X(n)
1 , ..., X(n)

n , then

T̂n(G0,G1)
L
−→ σ1χ

2
q0,1

(
δ(B, S )
σ1

)
, (3.7)

where

δ(B, S ) =
1
2

vT QT
0,1

(
Q0,1RG1(S )QT

0,1

)−1
Q0,1v

with the abbreviation v = v(B, S ) = Γ(S )ΩG1(S ) vec B.

Here we define the non-centrality parameter of the χ2 distribution χ2
r (δ) ∼ (Nr(µ, Ir))2 as δ = µTµ.

Remark 3.3.7 In part (2) of Proposition 3.3.6 above we do not require that the sequence of alterna-
tives “lies in” the model G1, i.e. that S −1

n ∈ S +
p (G1), as it is not necessary for the convergence (3.7)

to hold. When choosing a model by forward selection one usually compares two wrong models, so it
of interest to know the behaviour of T̂n(G0,G1) also if G1 is not true.
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A nuisance of the test in Proposition 3.3.6 may be the complicated formulation of the test statistic
T̂n(G0,G1). The classical test in Gaussian graphical models is the deviance test, an instance of a
likelihood ratio test. The next proposition gives the analogue for elliptical graphical modelling. In
order to treat parts (1) and (2) of the previous proposition simultaneously, we replace Assumptions
3.3.1 and 3.3.2 by the following assumption.

Assumption 3.3.8 Let Ŝ n be a sequence of almost surely positive definite random p× p matrices that
satisfies

Ŝ n
p
−→ ηS and

√
n vec (Ŝ n − ηS )

L
−→ Np2

(
η vec C, η2WS (σ1, σ2)

)
,

for some C ∈ Sp, S ∈ S +
p with S −1 ∈ S +

p (G0) and suitable constants η ≥ 0, σ1 ≥ 0 and σ2 ≥

−2σ1/p. The matrix WS (σ1, σ2) is as in Assumption 3.3.2.

If Ŝn(·) is a shape estimator satisfying Assumptions 3.3.1 and 3.3.2, then, in the situation of Proposition
3.3.6 (1), Ŝn(Xn) fulfils Assumption 3.3.8 with C = 0, and, in the situation of Proposition 3.3.6 (2),
Ŝn(Xn) fulfils Assumption 3.3.8 with C = B + cS , cf. Lemma 3.5.1.

Proposition 3.3.9 Let G0 and G1 be as above and Ŝ n satisfy Assumption 3.3.8. Then

D̂n(G0,G1) = n
(
ln det hG0(Ŝn) − ln det hG1(Ŝn)

)
is asymptotically equivalent to T̂n(G0,G1), i.e. T̂n(G0,G1) − D̂n(G0,G1)

p
−→ 0.

Proposition 3.3.9 implies that both assertions (1) and (2) of Proposition 3.3.6 remain true, if T̂n(G0,G1)
is replaced by D̂n(G0,G1). In the special case that the larger model G1 is the saturated model Propo-
sition 3.3.9 is a corollary of Theorem 2 in Tyler (1983). We basically consider an extension of Tyler’s
result to the case of two nested models.

Remark 3.3.10 Model search based on the pseudo-deviance tests is not restricted to decomposable
models. The convergence of the test statistic D̂n(G0,G1) to a χ2 distribution holds true, also if one
of G0 and G1 is not decomposable. The general case requires some further mathematical techniques
and is treated in Chapter 4.

3.4 Elliptical graphical modelling: practical aspects

3.4.1 Examples of affine pseudo-equivariant scatter estimators

We have been talking about affine pseudo-equivariant estimators without naming a single one, which
we will make up for in this section. But first, we want to spare a few words about the relevance
of Assumption 3.3.1. For practical purposes it may be replaced by the following, formally weaker
condition.

Assumption 3.4.1 Ŝn(XnAT + 1nbT ) ∝ AŜn(Xn)AT for b ∈ Rp and A ∈ Rp×p with full rank.

Assumption 3.3.1 additionally requires that the proportionality factor is a function solely of the affine
linear transformation and not random, which ensures that the covariance of such an estimator has the
form WS (σ1, σ2) as in Assumption 3.3.2. Our claim, Assumption 3.3.1 may be replaced by Assump-
tion 3.4.1, has two justifications. (1) Any estimator Ŝn satisfying Assumption 3.4.1 can be turned into
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an estimator satisfying Assumption 3.3.1, say S̃n, by putting S̃n = det(Ŝn)−1/pŜn, i.e. S̃n has determi-
nant 1. (2) Our main results concern scale-invariant functions of Ŝn (partial correlation estimators in
Propositions 3.3.3 and 3.3.4 and the Wald-type and deviance test statistics in Propositions 3.3.6 and
3.3.9, respectively) and directly apply to any Ŝ n satisfying Assumption 3.4.1. While (1) suggests to
formulate all results for thus standardized scatter estimators, (2) indicates why we refrain from doing
so: to avoid the impression that a particular standardization was necessary.
Second, we want to point out that the class of affine pseudo-equivariant estimators is huge. Over
the last decades the robustness literature has produced many proposals of affine equivariant, robust
estimators that are at the same time preferably efficient and computationally feasible. Prominent
classes of such estimators are M-estimators, S-estimators and Stahel-Donoho estimators, see e.g. the
overview article by Zuo (2006) or the book by Maronna et al. (2006).
Let us now come to some specific examples. Of course, the classical estimator, the sample covariance
matrix, is affine equivariant. The following can be found in Tyler (1982).

Proposition 3.4.2 If X1, ..., Xn are i.i.d. with distribution F ∈ Ep(µ, S ) and E||X1 − µ||
4 < ∞, then

Σ̂n = Σ̂n(Xn) fulfils Assumption 3.3.2 with σ1 = 1 + κ/3 and σ2 = κ/3, where κ is the excess kurtosis
of the first (or equivalently any other) component of X1.

Proposition 3.4.2 indicates the inappropriateness of the sample covariance matrix for heavy-tailed
distributions: fourth moments are required to make it root-n-consistent, and its asymptotic distribution
depends on the kurtosis, which may be large at heavy-tailed distributions, thus rendering this estimator
rather inefficient. An alternative is Tyler’s M-estimator, which is defined as the solution T̂n = T̂n(Xn)
of

p
n

n∑
i=1

(Xi − Xn)(Xi − Xn)T

(Xi − Xn)T T̂−1
n (Xi − Xn)

= T̂n

which satisfies det T̂n = 1. Existence, uniqueness and asymptotic properties are treated in the original
publication Tyler (1987a), where the following result is proven.

Proposition 3.4.3 If X1, ..., Xn are i.i.d. with distribution F ∈ Ep(µ, S ), furthermore E||X1 − µ||
2 < ∞

and E||X1 − µ||
− 3

2 < ∞, then T̂n fulfils Assumption 3.3.2 with σ1 = 1 + 2
p and σ2 = − 2

p

(
1 + 2

p

)
.

We have the following remarks.

(I) An important aspect of Proposition 3.4.3 is that the scalars σ1 and σ2 are constant, irrespective
of the function g, meaning that the Tyler matrix is asymptotically distribution-free within the
elliptical model. This has the nice practical implication that, when carrying out any of the tests
from Section 3.3.3, σ1 does not need to be estimated.

(II) The assumption of finite second moments is only required for location estimation by the mean.
The mean may be replaced by any root-n-consistent location estimator. The Hettmansperger-
Randles median (Hettmansperger and Randles, 2002) is a canonical candidate, which follows
a similar conceptual idea as Tyler’s scatter estimator, but has turned out to be rather difficult to
handle analytically. We note, however, that Tyler’s matrix can cope with arbitrarily heavy tails.

(III) The inverse moment condition E||X1 − µ||
− 3

2 < ∞ can generally not be dropped by choosing a
different location estimator, cf. Tyler (1987a, Theorem 4.2). But this is a fairly mild condition:
for p ≥ 2 it is fulfilled if g has no singularity at 0, thus including normal and tν,p-distributions.
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(IV) The Tyler matrix T̂n is an example of a pure shape estimator, which only gives information
about the shape but none about the scale. Other such estimators are, for example, Oja sign and
rank covariance matrices (Ollila et al., 2003, 2004), which are also affine pseudo-equivariant.

(V) Tyler (1987a) uses tr(T̂n) = p to fix the scale of T̂n. The estimator thus standardized, let us call
it T̃n, fulfils

T̃n(XnAT + 1bT ) =
p

tr(AT̃n(Xn)AT )
AT̃n(Xn)AT

and is hence an example of an estimator satisfying Assumption 3.4.1, but not Assumption 3.3.1.
As a consequence T̃n does not satisfy Assumption 3.3.2. Its asymptotic covariance matrix has
indeed a different form than WS (σ1, σ2), which can be verified by the delta method.

Interestingly, Tyler’s original publication, which considers T̃n, contains a formula for the asymp-
totic covariance matrix under ellipticity of exactly the same type as in Assumption 3.3.2 (Tyler,
1987a, (3.10)). But this formula applies to the estimator p/ tr(T−1T̃n) T̃n, which again fulfils
Assumption 3.3.1. Here T denotes the population Tyler matrix, i.e. the shape matrix with the
trace set to p.

(VI) Tyler’s estimator T̂n fulfils Assumption 3.3.2 with the restriction σ2 ≥ −2σ1/p being satisfied
with equality. If equality holds, the matrix WS (σ1, σ2) has exactly one rank less than in the
case of strict inequality. For details see Tyler (1982, Section 2). As a consequence the rank
of the asymptotic covariance matrix of T̂n at any non-degenerate elliptical distribution is by
one smaller than that of the sample covariance matrix Σ̂n. This is plausible considering that T̂n

satisfies the additional constraint det(T̂n) = 1.

Another affine equivariant estimator is the RMCD, the reweighted version of Rousseeuw’s minimum
covariance determinant estimator (Rousseeuw, 1985; Rousseeuw and Leroy, 1987; Croux and Haes-
broeck, 1999), which has become a very popular highly robust scatter estimator and has previously
been proposed in the context of graphical modelling (Becker, 2005; Gottard and Pacillo, 2010). It is
defined as follows. A subset τ ⊂ {1, ..., n} of size h = dtne, where 1

2 ≤ t < 1 is fixed, is determined
such that det(Σ̂τ) with

Σ̂τ =
1
h

∑
i∈τ

(Xi − X̄τ)(Xi − X̄τ)T and X̄τ =
1
h

∑
i∈τ

Xi

is minimal. The mean µ̂MCD and covariance matrix Σ̂MCD computed from this minimizing subsample
are called the raw MCD location, respectively scatter estimate. The covariance part is multiplied by
a consistency factor to achieve consistency for the covariance at the Gaussian distribution. Based on
the raw estimates (µ̂MCD, Σ̂MCD) a reweighted scatter estimator Σ̂RMCD is computed from the whole
sample:

Σ̂RMCD =

 n∑
i=1

wi

−1 n∑
i=1

wi(Xi − µ̂MCD)(Xi − µ̂MCD)T ,

where wi = 1 if (Xi − µ̂MCD)T Σ̂−1
MCD(Xi − µ̂MCD) < χ2

p,1−α and zero otherwise, where α is a small
“rejection probability”, e.g. α = 0.05. The reweighted covariance estimate is again multiplied by a
consistency factor, but since this is not necessary for our applications we omit the details.
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Figure 3.1: Example model, edge labels indicate non-zero partial correlations

3.4.2 Simulations

We present the results of a small simulation study, comparing several estimators, to give an impression
how the approach works in practice. The set-up is as follows. For each of several elliptical distribu-
tions we sample 100 i.i.d. observations of a 5-dimensional random vector. We use the same shape
matrix throughout, with equal diagonal elements and partial correlation matrix

P =


−1
−0.14 −1
−0.39 0 −1
0.75 0.22 0 −1

0 −0.76 0 0 −1


.

Figure 3.1 shows the corresponding partial correlation graph. Of the total of ten possible edges five
are present. We have chosen some variety in the magnitude of the non-zero partial correlations, their
absolute values ranging from 0.14 to 0.76. So we leave the shape fixed and let the tail behaviour
vary, using the normal distribution and several members of the tν,p-family as a prominent example of
a heavy-tailed distribution. The tν,p-distribution is a p-dimensional elliptical distribution specified by,
cf. (3.1),

gtν,p(y) =
Γ( ν+p

2 )

(νπ)
p
2 Γ( ν2 )

(
1 −

y
ν

)− ν+p
2
,

where the index ν ∈ N is referred to as the degrees of freedom. The moments of tν,p are finite only
up to order ν − 1. For ν ≥ 3 its covariance matrix is ν

ν−2 S , and for ν ≥ 5 the excess kurtosis (of
each component) is 6

ν−4 . Hence from Propositions 3.4.2 and 3.4.3 we know that the Tyler matrix
is asymptotically more efficient than the sample covariance matrix at tν,p if ν < p + 4. For each
distribution considered, cf. Table 3.1, we generate 2000 samples, and for each sample compute the
estimates described in Section 3.4.1. Based on each estimate we select a model. By comparing the
selected models to the true model we evaluate the performance of the estimators in elliptical graphical
modelling.
Our model selection scheme is the simplest possible: we carry out an edge-exclusion test for each
of the 10 possible edges, i.e. we test, for each pair {i, j}, the model with all edges but {i, j} against
the saturated model and exclude the edge {i, j} if the test accepts the smaller model. The significance
level α = 0.05 is an ad hoc choice. We do neither claim that this choice is (near) optimal in any sense
nor address the question of multiple testing, as e.g. in Dahlhaus (2000). More sophisticated model
search procedures, such as backward elimination, showed strictly better results (in terms of mean edge
difference), but of comparable magnitude and lead to the same conclusions as far as the comparison of
the estimators is concerned. Our simple one-step model selection allows to concentrate on the effects
of the different estimators. In our simulations the Wald-type test statistic T̂n of Proposition 3.3.6 and
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the deviance test statistic D̂n of Proposition 3.3.9 showed a very similar behaviour. The tables below
report the results of the deviance test.
We pursue two main goals: besides getting an impression of the general performance we want to
examine the finite-sample behaviour of the estimators, i.e. check if the asymptotic approximations
derived in Section 3.3.3 are useful in practice. A sample size of 100 seems large enough to expect
some “validity” of the asymptotics. We therefore consider several criteria. The main criterion by
which we measure the goodness of the model selection is the mean edge difference, i.e. the average
number of edges that are wrongly specified in the selected model, may it be that an existing edge was
rejected or an absent edge was wrongly included. Any sensible model selection must yield, in our
example, a mean edge difference of less than 5, which makes it superior to random guessing. It is
also of interest to know, although in our opinion less suited as an overall performance criterion, how
often the edge difference is zero, i.e. how often the true model is found. Although incorrect omission
of edges is usually the more severe error, because subsequent inference is then based on an incorrect
model, any model selection procedure that is based on testing for zero parameters aims at controlling
the probability of correctly specifying the non-edges. For instance, in our example, the probability of
correctly specifying all five absent edges is at least 0.75. We may also look at how often a specific
non-edge is correctly specified, which should turn out to be true in about 95% of the cases.
In a first experiment we compare the sample covariance matrix Σ̂n to Tyler’s estimator T̂n with the
Hettmansperger-Randles median as location estimator. The findings are summarized in Table 3.1. The
benchmark is traditional graphical modelling, i.e. the performance of Σ̂n at the normal distribution.
Even in this case we find that the true model is reconstructed in only 20% of the cases (24% when
using simple backward elimination). But this is not surprising considering that some alternatives are
close to the null, so that the test evidently has poor power. For instance, the probability of wrongly
dismissing the edge 1–2 is about 0.7. As we would expect, we see by the last two columns of Table
3.1 that the test goes wrong, if we move away from normality. We assume ellipticity but no further
knowledge about the distribution and are interested in methods that are valid and preferably efficient
over the whole class of elliptical distributions. As a consequence of Proposition 3.4.2 we adjust the
Σ̂n-based test statistic by the sample kurtosis. This repairs the test, and does so to some extent even
in the case of the t3-distribution where the population kurtosis is not finite. But we also see that
this does not necessarily imply a better model selection. The estimator Σ̂n is inefficient under heavy
tails, resulting in a test with low power. On the other hand, for Tyler’s estimator we recognize the
asymptotic properties: the χ2-quantile fits, it outperforms Σ̂n at tν-distributions with ν < 9, requires no
moment conditions and is distribution-free within the elliptical model. So we can advise to employ the
Tyler matrix instead of the sample covariance matrix to perform graphical modelling of heavy-tailed
data, but again, these are just two examples of affine equivariant estimators.
In a second experiment we want to know if the same robustness against heavy-tailedness may be
achieved by equally simple means using other robust estimators. In particular, how do the previous
proposals of robust GGM, the RMCD and the Miyamura-Kano estimator, perform in this situation?
Some results are given in Table 3.2.
Outlier-robust estimators interpret the bulk of the data as approximately normal and the observations in
the tails as faulty outliers, that should be downweighted or rejected. Although there are some common
aspects (elliptical MLEs of heavy-tailed distributions downweight outlying observations as compared
to the normal MLE), this is in principle a different situation, and it is consequently not surprising that
both estimators do not meet the performance of Tyler’s estimator at heavy-tailed distributions. Also,
we did not estimate σ1 from the data, but used its value for the normal distribution. For the RMCD
the values can be found in Croux and Haesbroeck (1999). But also in the Gaussian case, when σ1 was
chosen “asymptotically correct”, the asymptotic χ2-distribution does not seem to provide a sensible
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Table 3.1: One-step model selection based on Σ̂ or T̂

distribution estimator
mean edge
difference

% true
model found

% non-edges
correctly found

% ¬6−°
correctly found

normal Σ̂ 1.40 21 79 95
Σ̂∗ 1.41 20 77 94
T̂ 1.65 14 78 94

t8 Σ̂ 1.65 17 64 89
Σ̂∗ 1.65 15 76 93
T̂ 1.62 13 79 94

t5 Σ̂ 1.90 14 51 84
Σ̂∗ 1.87 10 74 93
T̂ 1.63 14 78 94

t3 Σ̂ 2.49 8 29 72
Σ̂∗ 2.28 7 71 91
T̂ 1.65 14 78 95

approximation. This small-sample inefficiency of the RMCD is known and usually taken care of
by multiplying the test statistic by a correction factor. This correction factor has to be determined
numerically, some values are given in Croux and Haesbroeck (1999). Using such an appropriate
finite-sample value of σ1 (depending on n) allows to repair the test (see last column), but again,
this does not improve the model selection in our example (see first column). The 50% RMCD is,
even more so at small sample sizes, a relatively inefficient estimator and is only recommended when
the data is heavily corrupted. For the Miyamura-Kano proposal we note that they also devise an
alternative way of constrained estimation, but propose a very slow algorithm. Also, there is a tuning
parameter to choose, which was set 0.3 in our experiment, following the recommendation of the
authors. All calculations were done in R 2.9.1, employing routines from the packages mvtnorm
(random sampling), ggm (constrained estimation, i.e. the function hG), ICSNP (Tyler matrix), rrcov
(RMCD) and rggm (M-K estimator).

3.4.3 Summary and discussion

We have proposed a unified framework for graphical modelling of elliptical data, generalizing Gaus-
sian graphical modelling and allowing in particular to deal with heavy tails. As a very simple and
efficient technique to safeguard graphical modelling of continuous data against the impact of heavy
tails, non-normality in general and, to some degree, also faulty outliers we recommend to use Tyler’s
estimator in place of the empirical covariance matrix. The gain in robustness comes at a very mode-
rate loss in efficiency, which becomes smaller with increasing dimension, and a justifiable increase
in computing time. Section 5.5 reports average computing times on a 2.83 GHz Intel Core2 CPU for
n = 200 and p = 50 of less than a second for the Tyler matrix, compared to less than three seconds for
the RMCD. Moreover, Tyler’s estimator is computable for n > p (for data in general position), and its
distribution generally shows an equally fast convergence to the normal limit as the law of the sample
covariance matrix. Besides the convenience of this simple technique our approach allows to use any
affine pseudo-equivariant, root-n-consistent estimator in an analogous way. When additional infor-
mation about the data is available (concerning possible contamination, tail-behaviour,...), estimators
tailored for the specific situation may be used. Alternatively, sophisticated adaptive methods, which
attempt to extract such information from the data, also fall into the class under consideration.
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Table 3.2: One-step model selection based on robust estimators

distribution estimator
mean edge
difference

% true
model found

% non-edges
correctly

found

% ¬ 6−°
correctly

found

normal RMCD 0.5 2.05 11 54 85
RMCD 0.5∗∗ 2.06 5 81 94
RMCD 0.75 1.66 15 72 92

RMCD 0.75∗∗ 1.69 13 80 94
M-K+ 1.61 14 81 95

t3 RMCD 0.5 2.18 9 45 82
RMCD 0.5∗∗ 2.13 5 76 93
RMCD 0.75 2.02 11 51 85

RMCD 0.75∗∗ 1.96 10 61 89
M-K+ 1.82 12 67 91

∗∗ with finite-sample correction, + Miyamura & Kano (2006).

Although we have used Assumption 3.3.1 as a technical requirement at some point in the proofs, the
statistical theory presented is of asymptotic nature, and Assumption 3.3.2 is the important property of
the estimator Ŝn. Our results also apply to estimators that are only asymptotically affine equivariant,
like the rank-based estimation technique by Hallin et al. (2006).
Finally we should mention the main limitation of our approach. It works well only for sufficiently
large n, and on any account only for n > p. However, the processing of very high-dimensional data,
where we have more variables than observations, becomes increasingly relevant. The empirical co-
variance matrix possesses the nice “consistency property” that the estimate of a margin appears as a
submatrix of the estimate of the whole vector. This allows the constrained estimate Σ̂G under some
model G, not necessarily decomposable, to be “assembled” from the unrestricted marginal estimates
corresponding to the cliques. This makes it possible to compute the MLE for p ≥ n. In the decom-
posable case it suffices to have as many observations as the size of the largest clique. For details see
Lauritzen (1996), Chapter 5. Affine pseudo-equivariant shape estimators generally do not possess this
consistency property, and we need an initial estimate of full size. Also note that, for instance, the
computation of the 50% MCD requires more than twice as many obervations as variables. One way to
tackle this problem is to drop the affine equivariance and resort to robust “pairwise” estimators, such
as the Gnanadesikan-Kettenring estimator (Gnanadesikan and Kettenring, 1972; Maronna and Zamar,
2002) or marginal sign and rank matrices (Visuri et al., 2000), see also Section 5.2. Besides having
the mentioned consistency property pairwise estimators are also very fast to compute.

3.5 The proofs

The following proofs repeatedly apply the delta method to functions mapping matrices to matrices. We
define the derivative of such a function, say, g : Rp×p → Rp×p at point X as the derivative of vec g(X)
w.r.t. vec X and denote its Jacobian at point X (which is of size p2 × p2) by Dg(X). The symmetry
of the argument poses a technical difficulty: there are actually only p

2 (p + 1) instead of p2 variables,
and the function must be viewed as a function g : R

p
2 (p+1) → Rp×p in order to sensibly define a

derivative. A practical way of dealing with this issue is to compute the Jacobian of g interpreted as
a function from Rp×p to Rp×p and post-multiply it by Mp. This is justified by the chain rule applied
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to g = g2 ◦ g1, where g1 duplicates the off-diagonal elements and g2 : Rp×p → Rp×p, see Section
A.2. Pre- or post-multiplying the covariance matrix of vec X, where X is a random symmetric p × p
matrix, by Mp leaves it unchanged. Hence for application of the delta method the symmetry may as
well be ignored, and we will omit Mp in the derivative expressions in the proofs of Propositions 3.3.3
and 3.3.4. However, it should not be forgotten, for instance it must be included to render the formula
in Theorem 1 in Tyler (1983) correct. The page numbers below refer to the textbook Magnus and
Neudecker (1999). It covers most of the tools of the proofs, in particular calculation rules concerning
the vec operator, the Kronecker product and derivatives of matrix functions. We repeatedly use the
following without reference.

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (vec A)T vec B = tr(AT B), vec (ABC) = (CT ⊗ A) vec B (3.8)

Mp(A ⊗ A)Mp = Mp(A ⊗ A) = (A ⊗ A)Mp (3.9)

for matrices A, B,C,D ∈ Rp×p (MN pp. 28, 30, 31). Let ι : A 7→ A−1 denote the matrix inversion. Its
Jacobian is (MN p. 184)

Dι(A) = −(AT )−1 ⊗ A−1. (3.10)

Proof of Proposition 3.3.3. The weak consistency follows from the continuous mapping theorem
and the asymptotic normality from the delta method. It remains to calculate the asymptotic variances.
Part (1): With K = ι(S ) and (3.10) application of the delta method yields

WK(σ1, σ2) = (K ⊗ K)WS (σ1, σ2)(K ⊗ K)

which is transformed to the expression given in Proposition 3.3.3 employing (3.8).

Part (2): P̂n = h̃(K̂n) with h̃ : A 7→ −A
− 1

2
D AA

− 1
2

D . We want to compute the derivative of h̃ in or-

der to apply the delta method. We start by considering h̃0 : A 7→ A
− 1

2
D . Its Jacobian Dh̃0(A) =

− 1
2

(
A
− 1

2
D ⊗ A−1

D

)
Jp is obtained by elementwise differentiation. Applying the multiplication rule to

h̃(A) = −h̃0(A)Ah̃0(A) yields

Dh̃(A) = −Mp
(
h̃(A) ⊗ A−1

D

)
Jp − A

− 1
2

D ⊗ A
− 1

2
D . (3.11)

By the delta method,
√

n vec
(
P̂n − P

)
=
√

n vec
(
h̃(K̂) − h̃(η−1K)

)
converges in distribution to a p2-dimensional normal distribution with mean zero and covariance ma-
trix

Dh̃(η−1K)η−2WK(σ1, σ2)
(
Dh̃(η−1K)

)T
,

which reduces to the expression given in Proposition 3.3.3. In particular, σ2 vanishes. By applying
(3.8) it can be seen that Dh̃(K) vec K = 0. This is generally true for any scale-invariant function h̃,
which is e.g. employed in Tyler (1983), Theorem 1. �

Proof of Proposition 3.3.4.
Part (1): Since KG = h̃G(S ) with

h̃G : A 7→
2c−1∑
k=1

ζk
[
A−1
αk ,αk

]p
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we want to compute the derivative of h̃G. Let h̃α : A 7→ [A−1
α,α]

p for any subset α ⊂ {1, ..., p}. The
mapping h̃α is a composition of (·)α,α, ι and [·]p. We obtain by the chain rule

Dh̃α(A) = −
[
(A−1
α,α)

T
]p
⊗

[
A−1
α,α

]p
and hence Dh̃G(A) = −

2c−1∑
k=1

ζk
[
(A−1
αk ,αk

)T
]p
⊗

[
A−1
αk ,αk

]p
.

Then η−2WKG (σ1, σ2) = Dh̃G(ηS )η2WS (σ1, σ2)
(
Dh̃G(ηS )

)T
is shown to have the form given in Pro-

position 3.3.4 (2) by noting that Dh̃G(S ) vec S = vec KG. This holds true because[
S −1
α,α

]p
S

[
S −1
α,α

]p
=

[
S −1
α,α

]p
, (3.12)

which is a consequence of the inversion formula for partitioned matrices.
Part (2): In analogy to the proof of Proposition 3.3.3 (1) we have to left- and right-multiply WKG by
the Jacobian of ι evaluated at KG. Note that (S G ⊗ S G) vec KG = vec S G.
Part (3): In analogy to the proof of Proposition 3.3.3 (2) we left- and right-multiply WKG by the
Jacobian of h̃, given in (3.11), evaluated at KG. �

Proof of Corollary 3.3.5. Let S ∈ S +
p be such that hG(S ) = S and write Ω short for ΩG(S ). We

want to prove

Ω(S ⊗ S )Ω = Ω. (3.13)

As short-hand notation let 〈α, β〉S =
[
S −1
α,α

]p
S

[
S −1
β,β

]p
∈ Rp×p for any two subsets α, β ⊂ {1, ..., p}.

Equation (3.13) can thus be rewritten as
2c−1∑
j=1

2c−1∑
k=1

ζ jζk
(
〈α j,αk〉S ⊗ 〈α j,αk〉S

)
=

2c−1∑
k=1

ζk
[
S −1
αk ,αk

]p
⊗

[
S −1
αk ,αk

]p
. (3.14)

We have to show that the left-hand double sum reduces to the right-hand side, and indeed, most
summands cancel. By (3.12) 〈αk,αk〉S =

[
S −1
αk ,αk

]p
, furthermore, for i = 1 ≤ i < j ≤ p,

〈γi, γ j〉S = 〈γi, δ j−1〉S and 〈δi, γ j〉S = 〈δi, δ j−1〉S .

This is true because δ j−1 separates γ j \δ j−1 and γi \δ j−1 as well as γ j \δ j−1 and δi \δ j−1 in the graph G
for i = 1 ≤ i < j ≤ p, cf. Lauritzen (1996), Lemma 2.11. Both sides of each pair appear with different
signs in the left-hand side of (3.14). We remark furthermore that we can deduce

MpΩ(S ⊗ S )Ω = MpΩ,

which is sufficient for the proof of Corollary 3.3.5, by comparing the expression for the asymptotic
covariance of the inverse of the sample covariance matrix Σ̂−1

G at the normal distribution with cova-
riance S that is given by Proposition 3.3.4 (1) in connection with Proposition 3.4.2 to the one given
by formula (5.50), p. 149, in Lauritzen (1996). �

As an intermediate step towards the proof of Proposition 3.3.6 we note the next lemma.

Lemma 3.5.1 Consider the situation of Proposition 3.3.6 (2). Using the notation Xn = (X1, ..., Xn)T

and X(m)
n = (X(m)

1 , ..., X(m)
n )T we have

√
n vec

(
Ŝ n(X(n)

n ) − ηS
) L
−→ Np2

(
η(B + cS ), η2WS (σ1, σ2)

)
,

where WS (σ1, σ2) is as in Assumption 3.3.2 and

c = lim
n→∞

√
n
(
ξ(S

1
2
n S −1S

1
2
n ) − 1

)
= Dξ(Ip) vec (S −

1
2 BS −

1
2 ).
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Proof of Lemma 3.5.1. The X(m)
k , k ∈ N, are independent, and X(m)

k
L
= S

1
2
mS −

1
2 Xk, hence

X(m)
n

L
= XnS −

1
2 S

1
2
m. We conclude from Assumption 3.3.1 that

Ŝ n(X(m)
n ) L

= ξ(S
1
2
mS −1S

1
2
m)S

1
2
mS −

1
2 Ŝ n(Xn)S −

1
2 S

1
2
m.

For brevity let ξn = ξ(S
1
2
n S −1S

1
2
n ). Then

√
n vec

(
Ŝ n(X(n)

n ) − ηξnS n
)

L
= ξn vec

(
S

1
2
n S −

1
2
[√

n(Ŝ n(Xn) − ηS )
]

S −
1
2 S

1
2
n

)
L
−→ Np2

(
0, η2WS (σ1, σ2)

)
follows from Assumption 3.3.2 by Slutsky’s lemma. Finally
√

n vec
(
Ŝ n(X(n)

n ) − ηS
)

=
√

n vec
(
Ŝ n(X(n)

n ) − ηξnS n
)

+ η
√

n (ξn − 1) vec S n + η
√

n vec (S n − S )

L
−→ Np2

(
0, η2WS (σ1, σ2)

)
+ ηc vec S + ηB = Np2

(
η vec (B + cS ), η2WS (σ1, σ2)

)
.

The existence of the limit c = limn→∞
√

n(ξn − 1) follows from the continuous differentiability of the

function ξ. By means of the first order Taylor expansion of ξ(S
1
2
n S −1S

1
2
n ) around Ip the limit can be

identified as c = Dξ(Ip) vec (S −
1
2 BS −

1
2 ). �

Proof of Proposition 3.3.6. Part (1): Since S −1 ∈ S +
p (G0) ⊂ S +

p (G1), we have SG1 = hG1(S ) = S ,
and by Corollary 3.3.5 (3)

√
n vec

(
P̂G1 − P

) L
−→ Np2

(
0, 2σ1RG1(S )

)
, (3.15)

and since Q0,1vec P = 0,

√
nQ0,1vec P̂G1

L
−→ Nq0,1

(
0, 2σ1Q0,1RG1(S )QT

0,1

)
.

The mapping S 7→ RG1(S ) is almost surely continuous, hence by the continuous mapping theorem
and Slutsky’s lemma√

n
2σ1

(
Q0,1RG1(Ŝn)QT

0,1

)− 1
2 Q0,1vec P̂G1

L
−→ Nq0,1(0, Iq0,1),

and, again by the continuous mapping theorem, we conclude 1
σ1

T̂n(G0,G1)
L
−→ χ2

q0,1
.

Part (2): In analogy to (3.15) we obtain from Lemma 3.5.1:

√
n vec

(
P̂G1 − P

) L
−→ Np2

(
Γ(S )ΩG1(S ) vec B, 2σ1RG1(S )

)
. (3.16)

Note that Γ(S )ΩG1(S ) vec S = 0. From (3.16) we proceed as from formula (3.15) in part (1) above to
obtain the stated convergence result. �

Towards the proof of Proposition 3.3.9 we state Lemmas 3.5.2 to 3.5.4. For A ∈ S +
p let fA : S +

p → R:

fA(B) = ln det B + tr(B−1A).
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From the theory of Gaussian graphical models we know that for any graph G and A ∈ S +
p the matrix

AG = hG(A) is the unique solution of the constrained optimization problem minimize fA(B)
subject to QD(G) vec h(B) = 0, B ∈ S +

p ,
(3.17)

because AG is the maximum likelihood estimate of the covariance matrix under the model G at a mul-
tivariate normal distribution, if A is the observed sample covariance, cf. Lauritzen (1996, p. 133). Now
consider, as in Section 3.3.3, two nested graphs G0 = (V, E0) and G1 = (V, E1) with V = {1, ..., p} and
E0 ( E1, and let H0(·) = QD(G0) vec h(·), H1(·) = QD(G1) vec h(·) and H0,1(·) = QD(G0)\D(G1) vec h(·).

Lemma 3.5.2 AG0 = hG0(A) is a solution of the constrained optimization problem minimize fAG1
(hG1(C))

subject to H0,1(hG1(C)) = 0, C ∈ S +
p .

(3.18)

The solution is in general not unique.

Proof. It follows from (3.17) and the defining equations (3.5) that AG0 uniquely solves the constrained
OP  minimize fAG1

(B)
subject to H0(B) = 0, B ∈ S +

p .
(3.19)

The restriction H0(B) = 0 is equivalent to

H1(B) = 0 and H0,1(B) = 0,

and any matrix B with H1(B) = 0 can be written as B = hG1(C) for some C ∈ S +
p . Thus the sets

B =
{
B

∣∣∣ H0(B) = 0, B ∈ S +
p

}
and C =

{
B = hG1(C)

∣∣∣ H0,1(hG1(C)) = 0,C ∈ S +
p

}
are equal, and so

are hence the solution sets of the constrained OPs (3.19) and minimize fAG1
(B)

subject to B ∈ C .
(3.20)

Thus AG0 uniquely solves (3.20), and all matrices C ∈ S +
p with hG1(C) = AG0 , among them AG0 ,

solve (3.18). �

The following asymptotic equivalence will be used in the proof of Proposition 3.3.9.

Lemma 3.5.3 Let H : Rp×p → Rq be continuously differentiable. Then, under Assumption 3.3.8,
√

n
(
H(Ŝ G0) − H(Ŝ G1)

)
a
∼
√

nDH(Ŝ G0) vec
(
Ŝ G0 − Ŝ G1

)
.

Proof. The sequences
√

n(Ŝ G0 − ηS ) and
√

n(Ŝ G1 − ηS ) converge in distribution, and so do hence
√

n(H(Ŝ G0) − H(ηS )) and
√

n(H(Ŝ G1) − H(ηS )). We expand H(Ŝ G0) and H(Ŝ G1) both around H(ηS )
to obtain

√
n
(
H(Ŝ G0) − H(Ŝ G1)

)
a
∼
√

nDH(ηS ) vec
(
Ŝ G0 − Ŝ G1

)
a
∼
√

nDH(Ŝ G0) vec
(
Ŝ G0 − Ŝ G1

)
.

The last equivalence holds because DH is continuous. �

The following derivatives are stated without proof. Expressions (3.22) and (3.23) can be deduced from
the proofs of Propositions 3.3.3 and 3.3.4, and (3.21) can be assembled from the standard derivatives
given in MN.
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Lemma 3.5.4 For A, B ∈ S +
p ,

D fA(B) = vec (B − A)T (B−1 ⊗ B−1)Mp, (3.21)

DhG(B) = (hG(B) ⊗ hG(B)) ΩG(B)Mp, (3.22)

DH0,1(B) = Q0,1Γ(B)
(
B−1 ⊗ B−1

)
Mp. (3.23)

Proof of Proposition 3.3.9. The second order Taylor expansion of ln det(·) is

ln det(A+ X) = ln det A +
(
vec (AT )−1

)T
vec X −

1
2

(
vec (XT )

)T (
(AT )−1 ⊗ A−1

)
vec X + o(||X||2),

cf. MN pp. 108, 179, 184. Applying this to the deviance test statistic yields

D̂n(G0,G1) = n
(
ln det(Ŝ G0) − ln det(Ŝ G1)

)
= −n ln det

(
Ŝ G1 Ŝ −1

G0

)
= −n tr

(
Ŝ G1 Ŝ −1

G0
− Ip

)
+

n
2

tr
((

Ŝ G1 Ŝ −1
G0
− Ip

)2
)

+ o
(
n||Ŝ G1 Ŝ −1

G0
− Ip||

2
)

a
∼

n
2

(
vec

(
Ŝ G1 − Ŝ G0

))T (
Ŝ −1

G0
⊗ Ŝ −1

G0

)
vec

(
Ŝ G1 − Ŝ G0

)
. (3.24)

The asymptotic equivalence follows because

• tr
(
Ŝ G1 Ŝ −1

G0
− Ip

)
=

(
vec

(
Ŝ G1 − Ŝ G0

))T
vec Ŝ −1

G0
= 0, which is a consequence of equations

(3.5),

• n
2 tr

((
Ŝ G1 Ŝ −1

G0
− Ip

)2
)

= n
2

(
vec

(
Ŝ G1 − Ŝ G0

))T (
Ŝ −1

G0
⊗ Ŝ −1

G0

)
vec

(
Ŝ G1 − Ŝ G0

)
and

• n||Ŝ G1 Ŝ −1
G0
− Ip||

2 ≤
(√

n||Ŝ G1 − ηS || +
√

n||Ŝ G0 − ηS ||
)2
||Ŝ −1

G0
||2 = OP(1).

Applying Lemma 3.5.3 to H = hG1 and using (3.22) we find further

√
n vec

(
Ŝ G0 − Ŝ G1

)
a
∼
√

n
(
Ŝ G0 ⊗ Ŝ G0

)
ΩG1(Ŝ G0)Mp vec

(
Ŝ G0 − Ŝ G1

)
and from (3.24)

D̂n(G0,G1) a
∼

n
2

(
vec

(
Ŝ G1 − Ŝ G0

))T
MpΩG1(Ŝ G0) vec

(
Ŝ G1 − Ŝ G0

)
. (3.25)

Next we introduce the Lagrange multiplier, cf. MN p. 131. Since Ŝ G0 solves the constrained OP (3.18)
with A = Ŝn, there is a λ ∈ Rq0,1 such that

D

(
fŜ G1
◦ hG1

) (
Ŝ G0

)
= λTD

(
H0,1 ◦ hG1

) (
Ŝ G0

)
,

which transforms to, cf. Lemma 3.5.4,

MpΩG1(Ŝ G0) vec
(
Ŝ G1 − Ŝ G0

)
= MpΩG1(Ŝ G0)Γ(Ŝ G0)T QT

0,1λ.

We left-multiply both sides by (Ŝ
1
2
G0
⊗ Ŝ

1
2
G0

) and solve for λ.

MpΩG1(Ŝ G0) vec
(
Ŝ G1 − Ŝ G0

)
= MpΩG1(Ŝ G0)Γ(Ŝ G0)T QT

0,1

[
Q0,1RG1(Ŝ G0)QT

0,1

]−1
Q0,1Γ(Ŝ G0)MpΩG1(Ŝ G0) vec

(
Ŝ G1 − Ŝ G0

)
.
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We substitute the right-hand side for the left-hand side in (3.25), apply again Lemma 3.5.3, this time
to H = H0,1 ◦ hG1 , which leads to

√
nQ0,1 vec P̂G1

a
∼
√

nQ0,1Γ(Ŝ G0)MpΩG1(Ŝ G0) vec
(
Ŝ G1 − Ŝ G0

)
,

and obtain

D̂n(G0,G1) a
∼

n
2

(vec P̂G1)T QT
0,1

[
Q0,1RG1(Ŝ G0)QT

0,1

]−1
Q0,1 vec P̂G1 .

The last step is to note that RG1(Ŝ G0) a
∼ RG1(Ŝ ), since both sides converge to RG1(S ). �
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Chapter 4

Elliptical graphical modelling — the
non-decomposable case

4.1 The results

In the previous chapter we have analyzed estimators Ŝ G = hG(Ŝ n) for decomposable models G, using
the representation (3.6) of hG, which is valid for decomposable G. In this chapter we treat the general
case, where G = (V, E) may be any graph, and derive analogues of Propositions 3.3.4 (asymptotic
distribution of Ŝ G), 3.3.6 (Wald-type test) and 3.3.9 (deviance test). The corresponding results for
general G are Corollary 4.1.3, Proposition 4.1.8 and Proposition 4.1.9, respectively.
We use only the definition of hG, cf. (3.5),

hG : S +
p → S +

p : A 7→ AG,

where [AG]i, j = ai, j, {i, j} ∈ E or i = j,

[A−1
G ]i, j = 0, {i, j} < E and i , j.

(4.1)

and the knowledge that hG(A) is uniquely defined and positive definite for any A ∈ S +
p , or in other

words, that such a function hG exists, cf. Lauritzen (1996, p. 133). The main tool of the proofs is the
implicit function theorem, cf. Forster (1982, pp. 66-81). The chapter has two sections: The remainder
of Section 4.1 states the main results, divided into results on estimation (Subsection 4.1.1) and tests
(Subsection 4.1.2). Section 4.2 contains their derivations in detail. We make use of the notation that
is introduced in Sections 3.1 to 3.3.

4.1.1 Constrained estimation

Let G = (V, E) be an arbitrary, potentially non-decomposable, graph with V = {1, ..., p} and q missing
edges. Related to G we define the matrices

Q = QD(G),

where D(G) and QD(G) are defined in Section 3.3.3, and

Ip2,G = diag(d1,1, ..., d1,p, . . . , dp,1, ..., dp,p) ∈ Rp2
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with

di, j =

 1 if {i, j} ∈ E or i = j,
0 if {i, j} < E and i , j.

In words, Ip2,G is the identity matrix with those rows that correspond to non-edges in G put to zero.

Proposition 4.1.1 The function hG is differentiable. Its derivative is

DhG(A) =

(
Ip2 − MpQT

[
QMp(A−1

G ⊗ A−1
G )QT

]−1
Q(A−1

G ⊗ A−1
G )

)
MpIp2,G (4.2)

for A ∈ S +
p and AG = hG(A).

Proposition 4.1.2 For A ∈ Sp,

(1) DhG(A) has rank p(p+1)
2 − q,

(2) Dh(A) = Γ(A)(A−1 ⊗ A−1)Mp has rank p(p−1)
2 ,

where h is defined in (3.2), and

(3) D (h ◦ hG) (A) has rank p(p−1)
2 − q.

Corollary 4.1.3 Let Ŝ n be a sequence of positive definite random p × p matrices satisfying
√

n vec(Ŝ n − S )
L
−→ N for some random variable N in Rp2

. Then

(1) Ŝ G = hG(Ŝ n) fulfils Ŝ G
p
−→ S G and

√
n vec(Ŝ G − S G)

L
−→ DhG(S )N

with S G = hG(S ),

(2) K̂G = Ŝ −1
G fulfils K̂G

p
−→ KG and

√
n vec(K̂G − KG)

L
−→ −(KG ⊗ KG)DhG(S )N

with KG = S −1
G , and

(3) P̂G = h(Ŝ G) fulfils P̂G
p
−→ PG and

√
n vec(P̂G − PG)

L
−→ Γ(S G)(KG ⊗ KG)DhG(S )N,

where Γ(·) is defined in (3.4).

Remark 4.1.4 In a personal communication David E. Tyler proves the following theorem.
Let Ŝ n be as in Corollary 4.1.3, furthermore H : Rp×p → Rq a continuously differentiable function
with H(S ) = 0 and rank(DH(S )) = q. Then the random set

Bn = arg min
{
log det(B) + tr(B−1Ŝ n)

∣∣∣ B ∈ S +
p ,H(B) = 0

}
is non empty, and for any sequence of random variables Bn, where Bn lies almost surely in Bn, n ∈ N,

√
n vec(Bn − S )

L
−→

(
Ip2 − MH(S )

)
N,
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where MH(S ) = (S ⊗ S )DH(S )T
[
DH(S )(S ⊗ S )DH(S )T

]−1
DH(S ).

Applying this in the graphical modelling context to the function H(S ) = Q vec(S −1) yields

√
n vec(Ŝ G − S )

L
−→ ΨG(S )N, (4.3)

for any S with H(S ) = 0, where

ΨG(A) = Ip2 − MpQT
[
QMp(A−1 ⊗ A−1)QT

]−1
Q(A−1 ⊗ A−1)Mp. (4.4)

Corollary 4.1.3 (1) generalizes (4.3) to any S ∈ S +
p . One apparent difference between expressions

(4.4) and (4.2) is the matrix Ip2,G in the formula (4.2) for DhG. It is very reasonable that this matrix is
there, since by a closer inspection of the function hG we observe that its value hG(A) does not depend
on those elements of its argument A that correspond to non-edges of G, hence the corresponding
columns of the derivativeDhG(A) must be zero everywhere. This is exactly what right-multiplying by
Ip2,G does: putting the rows that correspond to non-edges of G to zero.
For any S with H(S ) = 0 (⇔ S −1 ∈ S +

p (G)) we find by comparing (4.3) and 4.1.3 (1) that

ΨG(S )N L
= DhG(S )N,

and since the expectation of N, apart from being symmetric, can be arbitrary, cf. Lemma 3.5.1, we
have ΨG(S ) vec C = DhG(S ) vec C for any symmetric C ∈ Rp×p and hence ΨG(S )Mp = DhG(S )Mp =

DhG(S ). We can deduce that for any S ∈ S +
p the non-edge rows of

ΨG(S G)Mp =

(
Ip2 − MpQT

[
QMp(S −1

G ⊗ S −1
G )QT

]−1
Q(S −1

G ⊗ S −1
G )

)
Mp

are already zero, and Ip2,G may be dropped from expression (4.2).

Making use of this observation we obtain a very nice and short expression for the asymptotic variance
of shape estimators under the elliptical graphical model G.

Corollary 4.1.5 If Ŝ n fulfils Assumption 3.3.2 and S −1 ∈ S +
p (G), then

√
n vec(Ŝ G − ηS )

L
−→ Np2

(
0, η2WSG (σ1, σ2)

)
,

with

WSG (σ1, σ2) = 2σ1Mp

(
S ⊗ S − QT

[
QMp(S −1 ⊗ S −1)QT

]−1
Q
)

+ σ2 vec S (vec S )T . (4.5)

Formula (4.5) should be compared to formula 3.3.5 (2), that gives the asymptotic covariance under
the same assumptions on Ŝ n but for decomposable G. Both formulas have been proven to be true and
they describe the same quantity WSG (σ1, σ2), but the connection between both is not at all obvious.
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4.1.2 Testing

Lemma 4.1.6 For S ∈ S +
p ,

RG(S ) = D(h ◦ hG)(S )Mp(S ⊗ S )D(h ◦ hG)(S )T . (4.6)

has rank p(p−1)
2 − q.

Considering that RG(S ) is proportional to the asymptotic covariance matrix of vec P̂G (derived from
some shape estimator Ŝ n) this is plausible: All rows (and columns) corresponding to diagonal posi-
tions of P̂G and to non-edge positions are zero, since these elements of P̂G do not vary. All remaining
p(p − 1) − 2q rows appear as pairs due to the symmetry.
Let G0 = (V, E0),G1 = (V, E1) be two graphs with V = {1, ..., p}, E0 ( E1 and q0, q1, q0,1, Q0, Q1 and
Q0,1 as in Section 3.3.3.

Lemma 4.1.7 If Ŝ n fulfils Assumption 3.3.2, then the probability that

T̂n(G0,G1) =
n
2

(
vecP̂G1

)T
QT

0,1

[
Q0,1RG1(Ŝ n)QT

0,1

]−1
Q0,1 vec P̂G1

exists converges to 1 as n→ ∞.

The last two propositions of this section are stated without proof. The proofs are analogous to those
of Propositions 3.3.6 and 3.3.9.

Proposition 4.1.8 Let Ŝ n = Ŝ n(Xn) satisfy Assumption 3.3.1 and
Assumption 3.3.2 for Xn = (X1, ..., Xn)T with i.i.d. random variables X1, ..., Xn, ....

(1) If X1, ..., Xn, ... are i.i.d. with X1 ∼ F ∈ Ep(µ, S ) ⊂ Ep(G0), then T̂n(G0,G1)
L
−→ σ1χ

2
q0,1

.

(2) Let X(m)
n =

(
X(m)

1 , ..., X(m)
n

)T
, where X(m)

1 , ..., X(m)
n , ... are i.i.d. with X(m)

1 ∼ F ∈ Ep(µ, S m) and S m is
such that there exists a matrix B ∈ Sp with limm→∞

√
m(S m − S ) = B. Then

T̂n(G0,G1)
L
−→ σ1χ

2
q0,1

(
δ(B, S )
σ1

)
,

where

δ(B, S ) =
1
2

vT QT
0,1

(
Q0,1RG1(S )QT

0,1

)−1
Q0,1v

with the abbreviation v = v(B, S ) = D(h ◦ hG)(S ) vec B.

The non-centrality parameter of the χ2 distribution χ2
r (δ) ∼ (Nr(µ, Ir))2 is δ = µTµ.

Proposition 4.1.9 If Ŝ n is a sequence of positive definite random p× p matrices such that
√

n(Ŝ n−S )
converges in distribution for some S ∈ S +

p with S −1 ∈ S +
p (G0). Then

D̂n(G0,G1) = n
(
ln det hG0(Ŝn) − ln det hG1(Ŝn)

)
a
∼ T̂n(G0,G1).

Proposition 4.1.9 implies that Proposition 4.1.8 remains true if T̂n(G0,G1) is replaced by D̂n(G0,G1).
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4.2 The proofs

Initial remark. As mentioned in Section 3.5 the symmetry of the matrices generally poses some
nuisance, which is not very severe once one is familiar with it. Since I am not (yet) familiar with it
and neither assume the reader to be, I decided to write things down in detail in the space Rp(p+1)/2.

Let m = p(p + 1)/2 and matp×p : Rp2
→ Rp×p be the inverse operator to vec for p × p matrices. For

a matrix A ∈ Sp let v(A) be the m-vector that is obtained by deleting the super-diagonal elements of
A from vec A. The duplication matrix, cf. Magnus and Neudecker (1999, p. 49) Dp ∈ R

p2×m is the
matrix that maps v(A) to vec A. It has exactly one 1-entry in each row and is zero otherwise. Its Moore-
Penrose inverse D+

p then reduces vec A to v(A) for any symmetric matrix A ∈ Rp×p. We will henceforth
identify A ∈ Sp with v(A) ∈ Rm. We denote the inverse function of v : Sp → Rm : A 7→ D+

p vec A
by

θ : Rm → Sp : a 7→ matp×p Dpa.

I try to stick to the following notational convention: For a function ϕ defined on Sp, taking, say, the
symmetric matrix A as argument, the corresponding function working on { a | matp×p(a) ∈ Sp} ⊂ R

p2
,

which takes then vec A as argument, goes under the same name (as it is always done when we compute
derivatives of matrix functions) The corresponding function defined on Rm applying to v(A) shall be
denoted by ϕ̄.
Recall the notation introduced in Section 3.3.3, in particular the set Πp and the ordering ≺p. For a
graph G = (V, E) with p vertices and q absent edges let QD(G) and Ip2,G be defined as in Section 4.1,
likewise QK(G), cf. Section 3.3.3, where

K(G) = { (i, j) | 1 ≤ i < j ≤ p, {i, j} ∈ E } ∪ { (i, i) | 1 ≤ i ≤ p } ⊂ Πp.

The set K(G) gathers all matrix positions on the diagonal and all sub-diagonal positions that corres-
pond to edges of G. The matrix QD(G)∪K(G) = QK(G)∪D(G) sends vec A to v(A) for any A ∈ Rp×p.
Furthermore, let Q̄D(G) = QD(G)Dp and Q̄K(G) = QK(G)Dp.
For vectors a and b that correspond to distinct subsets of matrix positions define the concatenation
c = (a; b) in such a way that its elements are ordered according to ≺p, cf. Section 3.3.3, i.e. if we can
write a = QC vec A and b = QD vec A for some matrix A ∈ Rp×p and distinct sets C,D ⊂ Πp, then
(a; b) = QC∪D vec A.

Lemma 4.2.1 The set U =
{
x ∈ Rm

∣∣∣ θ(x) ∈ S +
p

}
is open in Rm.

Proof. Let a ∈ U, A = θ(a) and B(p) = {x ∈ Rp | ||x|| = 1}. Then xT Ax > 0 for all x ∈ B(p), and since
B(p) is closed, there exists an ε > 0 such that xT Ax ≥ ε for all x ∈ B(p). Let c ∈ Rm and C = θ(c)
with ||a − c|| < ε/(2

√
2), hence ||A −C|| < ε/2. Then, for x ∈ B(p),

xTCx = xT Ax + xT (C − A)x = xT Ax + tr
(
(C − A)xxT

)
= xT Ax +

[
vec(CT − AT )

]T
vec(xxT ) ≥ xT Ax + || vec(C − A)|| ≥

ε

2

by Cauchy-Schwarz. Thus all points c ∈ Rm in an ε/(2
√

2)-ball around a are also in U. �

It follows from Lemma 4.2.1 that UG =
{
QK(G)x

∣∣∣ x ∈ U
}

is open in Rm−q, since, roughly speaking,
lower-dimensional projections and cuts through open sets are again open in the lower-dimensional
space. We take a closer look at the function hG and define related functions. Let

h̄G : U → U : a 7→ v (hG(θ(a))) .

56



We observe that h̄G(a) depends only on those elements of a that correspond to edges of G and define
further

h̆G : UG → U : a 7→ h̄G ((a; b)) ,

where b ∈ Rq may be any vector such that (a; b) ∈ U. We furthermore observe that h̆G(a) ∈ Rm

contains all components of its argument a ∈ Rm−q. It is the other q components that we are interested.
Let

tG : UG → Rq : a 7→ Q̄D(G)h̆G(a).

The function hG maps an unconstrained covariance estimate Σ̂n to the corresponding constrained co-
variance estimate Σ̂G under the model G. It takes p(p + 1)/2 − q values, p estimated variances σ̂i,i,
1 ≤ i ≤ p and p(p − 1) − q estimated covariances σ̂i, j, {i, j} ∈ E, and produces q new values: cova-
riances estimates σ̂i, j for {i, j} < E, i , j. So it is actually a function from Rm−q to Rq and may be
reduced to the function tG defined above.
We want to apply the implicit function theorem, precisely Satz 1, p. 68, and Satz 2, p. 71, in Forster
(1982), to the function

H̄ : U → Rq : a 7→ QD(G) vec
(
θ(a)−1

)
(4.7)

in the role of F in Satz 1 and Satz 2. Note that θ(a)−1 means matrix inversion, not inverse function,
for which we would write v(A) in this situation. For a ∈ U ⊂ Rm let

aK = Q̄K(G)a ∈ Rm−q and aD = Q̄D(G)a ∈ Rq.

Then, following our convention, a = (aK ; aD). Furthermore, let

∂H̄
∂xD

(aK ; aD) ∈ Rq×q

denote the matrix of all partial derivatives of H̄ with respect to those components of its argument that
are picked up by Q̄D(G), evaluated at a = (aK ; aD), likewise ∂H̄/∂xK(aK ; aD). The only assumption of
Satz 2 that still needs to be checked is that ∂H̄/∂xD (aK ; aD) is invertible.

Lemma 4.2.2

∂H̄
∂xD

(aK ; aD) = −QD(G)(A−1 ⊗ A−1)DpQ̄T
D(G),

where A = θ(a), has full rank.

Proof. The derivate is a consequence of the chain rule applied to H̄ given by (4.7). The proof of the
invertibility consists of four steps.

(1) Since a ∈ U, A = θ(a) ∈ S +
p and A−1 ⊗ A−1 has full rank. Its columns are linearly independent.

(2) Each column of (A−1 ⊗ A−1)Dp ∈ R
p2×m is either a column of (A−1 ⊗ A−1) or the sum of two of its

columns. In any case, the columns of (A−1 ⊗ A−1)Dp are linear combinations of mutually distinct
sets of columns of (A−1 ⊗ A−1). Hence (A−1 ⊗ A−1)Dp has full column rank m.
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(3) Right-multiplying B = (A−1 ⊗ A−1)Dp by Q̄T
D(G) selects q out of the m linearly independent co-

lumns of B. Hence BQ̄T
D(G) ∈ R

p2×q has full column rank q.

(4) BQ̄D(G) ∈ R
p2×q has row rank q, hence picking any q of them, i.e. left-multiplying by QD(G),

yields a matrix with linearly independent rows. �

Proof of Proposition 4.2. The proof is divided into two parts: proof of differentiability and
computation of the derivative.
Part I: differentiability.
Let a ∈ UG be fixed. Since hG is well defined, there exists a unique b ∈ Rq such that H̄(a; b) = 0 and
(a; b) ∈ U. By Lemma 4.2.2,

∂H̄
∂xD

(a; b)

is invertible and by Satz 2 (Forster, 1982, p. 71), there exists a continuous function

ta : Ua → Rq,

defined on some open neighbourhood Ua of a with Ua ⊂ UG such that

ta(a) = b and H̄(x; ta(x)) = 0 for all x ∈ Ua.

By Satz 1 (Forster, 1982, p. 68), ta is differentiable. Since tG is the unique function defined on UG

that satisfies

H̄(x; tG(x)) = 0 for all x ∈ UG,

we have

ta = tG |Ua .

This holds true for every a ∈ UG, hence tG is continuous and differentiable.
Part II: the derivative.
Let a ∈ UG and AG = θ(a; tG(a)). By Bemerkung 1 (Forster, 1982, p. 71),

DtG(a) = −

[
∂H̄
∂xD

(a; tG(a))
]−1

∂H̄
∂xK

(a; tG(a)).

We have

∂H̄
∂xD

(a; tG(a)) = −QD(G)(A−1
G ⊗ A−1

G )DpQ̄T
D(G),

∂H̄
∂xK

(a; tG(a)) = −QD(G)(A−1
G ⊗ A−1

G )DpQ̄T
K(G)

and hence

DtG(a) = −
[
QD(G)(A−1

G ⊗ A−1
G )DpQ̄T

D(G)

]−1
QD(G)(A−1

G ⊗ A−1
G )DpQ̄T

K(G).
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Next we obtain the derivative of h̆ : UG → Rm : a 7→ (a; tG(a)):

Dh̆(a) =

(
Im − Q̄T

D(G)

[
QD(G)(A−1

G ⊗ A−1
G )DpQ̄T

D(G)

]−1
QD(G)(A−1

G ⊗ A−1
G )Dp

)
Q̄T

K(G)

by noting that

Q̄D(G)Dh̆(a) = DtG(a) ∈ Rq×(m−q),

Q̄K(G)Dh̆(a) = Im−q ∈ R
(m−q)×(m−q),

which gives

Dh̆(a) = PT

 Im−q

DtG(a)

 , where P =

 Q̄K(G)

Q̄D(G)

 ∈ Rm×m

is a permutation matrix and hence orthogonal. Recall that left-multiplying by a permutation matrix
permutes the rows, right-multiplying the columns.
In the following a = (aK ; aD) denotes an element of U, thus aK taking the role of a. As the next step
we compute the derivative of h̄G : U → U : a 7→ h̄G(a) = h̆G(aK). We have

∂h̄G

∂xK
(aK ; aD) = Dh̆G(aK) and

∂h̄G

∂xD
(aK ; aD) = 0 ∈ Rm×q,

hence

Dh̄G (aK ; aD) =
[
Dh̆G(aK) 0

]
P = Dh̆G(aK)Q̄K(G).

Finally, the derivative of hG : S +
p → S +

p : A 7→ θ
(
h̄G (v(A))

)
= matp×p Dph̄G(D+

p vec A) is

DhG(A) = DpDh̆G(aK)Q̄K(G)D+
p

=

(
Ip2 − DpQ̄T

D(G)

[
QD(G)(A−1

G ⊗ A−1
G )DpQ̄T

D(G)

]−1
QD(G)(A−1

G ⊗ A−1
G )

)
DpQ̄T

K(G)Q̄K(G)D+
p

for any A ∈ S +
p , where aK = Q̄K(G)v(A) = QK(G) vec A and AG = hG(A) = θ(aK ; tG(aK)). This

expression reduces to formula (4.2) by noting that

DpQ̄T
K(G)Q̄K(G)D+

p = MpIp2,G and DpQ̄T
D(G) = 2MpQD(G)

The matrix MpIp2,G is obtained from Mp by putting all rows, or equivalently all columns, to zero that
correspond to non-edges of G. �

Proof of Proposition 4.1.2. Only part (3) is proven, since it is the only prerequisite for Lemma 4.1.6,
and the other parts are treated likewise. The result is deduced from the fact that bijective, continuously
differentiable functions have invertible Jacobi matrices. The main task of this proof is to construct a
suitable invertible function, which is called φ below.
Let L = {(i, i)|1 ≤ i ≤ p}, J(G) = K(G) \ L, Q̄L = QLDp and Q̄J(G) = QJ(G)Dp. The notation QL, QJ(G)
is analogous to QD(G) and is defined in Section 3.3.3. Let furthermore

VG =
{

a ∈ U
∣∣∣ Q̄La = 1, Q̄D(G)a = 0

}
⊂ Rm
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and

WG =
{

Q̄J(G)a
∣∣∣ a ∈ VG

}
⊂ R

p(p−1)
2 −q.

From any vector b ∈ R
p(p−1)

2 −q we can construct a symmetric p×p matrix B as follows: The elements of
b are put on the sub-diagonal positions of B that correspond to edges of G (in the right order according
to ≺p, cf. Section 3.3.3), the non-edge subdiagonal positions are filled up with zeros, the superdiagonal
part is filled symmetrically, and the diagonal is filled up with ones. The set WG gathers all vectors b for
which the thus obtained matrix B is positive definite. Then define the function φ : UG → WG×(0,∞)p:

φ(a) =

(
QJ(G) vec

[
(A−1

G )
− 1

2
D A−1

G (A−1
G )
− 1

2
D

]
, QL vec

(
A−1

G

))
,

where AG = θ(a; tG(a)) = (θ ◦ h̆)(a). Note that (·, ·) is the usual concatenation, that does not re-order
the components. The function φ does the following: for given variance and covariance estimates:
σ̂i, j, {i, j} ∈ E ∪ {{1}, ..., {p}} it determines the remaining covariance estimates σ̂i, j, {i, j} < E, i , j,
as specified by the model G, inverts the thus generated matrix Σ̂G and returns the non-zero partial
correlation estimates as well as the diagonal values of Σ̂−1

G . The sets UG and WG × (0,∞)p are both
open inRm, and φ is bijective and continuously differentiable, hence its derivativeDφ(a) has full rank
m − q for every a ∈ UG. The first p(p − 1)/2 − q components of φ(a) are equal to

QJ(G) vec [(h ◦ hG)(A)]

for any A ∈ S +
p with QK(G) vec A = Q̄K(G)v(A) = a, hence deleting the last p rows of Dφ(a) gives

QJ(G)D(h ◦ hG)(A)DpQ̄T
K(G),

which consequently has p(p − 1)/2 − q linearly independent rows. The p2 × (m − q) matrix

D(h ◦ hG)(A)DpQ̄T
K(G)

is obtained from QJ(G)D(h ◦ hG)(A)QT
K(G) by duplicating all rows and adding some rows consisting

entirely of zeros (corresponding to the diagonal- and non-edge positions), and has thus also rank
p(p − 1)/2 − q. Finally

D(h ◦ hG)(A)

is formed from D(h ◦ hG)(A)DpQ̄T
K(G) by duplicating some of its columns multiplied by 1

2 and adding
some zero-columns, which leaves the column rank unchanged. �

Remark. In the proof above it is not claimed that one may generally reconstruct a p2 × p2 matrix, say
M, from

QJ(G)MDpQ̄T
K(G).

We have additional information about the structure ofD(h◦hG)(A), which allows to do that. Basically,
we know that the relevant information ofD(h◦hG)(A) is contained in QJ(G)D(h◦hG)(A)DpQ̄T

K(G). Also
keep in mind thatD(h◦hG) denotes a derivative w.r.t. symmetric matrices, cf. Appendix A.2. Therefore
the derivative of the first p(p − 1)/2 − q components of φ(a) is given by QJ(G)D(h ◦ hG)(A)DpQ̄T

K(G)
and not by QJ(G)D(h ◦ hG)(A)QT

K(G).
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For the proof of Lemma 4.1.6 recall that

D(h ◦ hG)(S )Mp = D(h ◦ hG)(S ),

which is generally true for derivatives w.r.t. symmetric matrices, and can be seen directly at formula
(4.2). Hence RG(S ) can be written shorter as

RG(S ) = D(h ◦ hG)(S )(S ⊗ S )D(h ◦ hG)(S )T .

The Mp in (4.6) is merely a reminder.
Proof of Lemma 4.1.6. We make use of the following. For any matrix A and any square, full rank
matrix B,

(a) B ⊗ B is of full rank, cf. Magnus and Neudecker (1999, p. 28, Theorem 1) ,

(b) A and AAT have the same rank, cf. MN. p. 8, (3), and

(c) A and AB have the same rank, cf. MN. p. 8, (5).

Then S ⊗ S is of full rank by (a) and hence also (S ⊗ S )
1
2 . By (c), D(h ◦ hG)(S )(S ⊗ S )

1
2 has rank

p(p − 1)/2 − q. With (b),

RG(S ) =

(
D(h ◦ hG)(S )(S ⊗ S )

1
2

) (
D(h ◦ hG)(S )(S ⊗ S )

1
2

)T

has the same rank. �

Proof of Lemma 4.1.7. From the proof of Proposition 4.1.2 it is clear that

QJ(G1)D(h ◦ hG1)(S ) ∈ R( p(p−1)
2 −q)×p2

has full row rank. By applying the same argumentation as in the proof of Lemma 4.1.6 to this matrix
instead of D(h ◦ hG1)(S ) we find that

QJ(G1)RG1(S )QT
J(G1)

has full rank p(p − 1)/2 − q. From this matrix

Q0,1RG1(S )QT
0,1

is obtained by simultaneously selecting certain rows and columns, hence it has also full rank. Since
U is open, there is an ε-ball Uε(s) around s = v(S ) with Uε(s) ⊂ U. By Assumption 3.3.2,

P
(
v(Ŝ n) ∈ Uε(s)

)
→ 1,

and the lemma follows with

P
(
v(Ŝ n) ∈ Uε(s)

)
≤ P

(
v(Ŝ n) ∈ U

)
≤ P

(
Q0,1RG1(Ŝ n)QT

0,1 has full rank
)
≤ P

(
T̂n(G0,G1) exists

)
.

�
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Chapter 5

Supplements

Summary

This chapter is a collection of six manuscripts, written over the years 2008 to 2010, that are connected
in some way to the material presented in the previous chapters. They provide additional information
directly about elliptical graphical modelling (e.g. Section 5.5) or treat related problems that emerged
during my occupation with graphical models (e.g. Section 5.6). I want to emphasize that these manus-
cript supplement the thesis, they do not amend, complete or complement it. Four of the manuscripts
(Sections 5.1, 5.2, 5.4 and 5.5) have appeared in conference proceedings.

Estimating partial correlations using the Oja sign covariance matrix (Section 5.1) was written in
January 2008 and has appeared as

Vogel, D., Fried, R.: Estimating partial correlations using the Oja sign covariance matrix.
In: Brito, P. (ed.) Compstat 2008: Proceedings in Computational Statistics. Vol. II, pp.
721–729. Heidelberg: Physica-Verlag (2008).

When I started working on graphical models I was in particular considering the Oja sign covariance
matrix and the Oja rank covariance matrix (Visuri et al., 2000), because of their intriguing property to
estimate a multiple of the concentration matrix directly without inversion. This article examines the
applicability of these estimators in elliptical graphical modelling.

Partial correlation estimates based on signs (Section 5.2) has appeared as

Vogel, D., Köllmann, C., Fried, R.: Partial correlation estimates based on signs. In:
Heikkonen, J. (ed.) Proceedings of the 1st Workshop on Information Theoretic Methods
in Science and Engineering. TICSP series # 43 (2008)

and was written in summer 2008. When studying Oja signs the natural question arises how they
relate to other multivariate generalizations of the sign function, the marginal sign and the spatial
sign, and if correlation estimators based on such concepts may be of use in the context of graphical
modelling. Using simple sign functions in data analysis means generally throwing away information.
They are nevertheless relevant in nonparametric statistics, because they lead to distribution-free and
robust methods. This paper gives an impression of the benefits of affine equivariance. Marginal and
spatial sign methods turn out to be less suited in the Gaussian graphical modelling context due to their
lack of affine equivariance.
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When examining the spatial sign covariance matrix I learned that it has the same eigenvectors as the
covariance matrix, but no functional relation between the eigenvalues seemed to be known. Formula
(5.8) on page 75 appeared to be the first result in this direction. I was following up on that, which led
to Section 5.3 and the Bachelor’s thesis Dürre (2010).

The spatial sign covariance matrix in the elliptical model (Section 5.3) contains the essential part
of the proof of formula (5.8) in Section 5.2 and gathers literature on the spatial median and the spatial
sign covariance matrix. A first draft was written in July 2009 and has undergone some revision in
February 2010. A similar result was published recently by Croux et al. (2010), and it seems that it is
already contained in the Ph.D. thesis Yadine (2006).

On generalizing Gaussian graphical models (Section 5.4) has appeared as

Vogel, D.: On generalizing Gaussian graphical models. In: Ciumara, R., Bădin, L. (eds.)
Proceedings of the 16th European Young Statisticians Meeting, pp. 149–153. University
of Bucharest (2009)

and was written in early summer 2009. It contains a subset of Chapter 3, showing some interim
results, covering basically the unconstrained estimation.

Elliptical graphical modelling in higher dimensions (Section 5.5) was written in June 2010 and has
appeared as

Vogel, D., Dürre, A., Fried, R.: Elliptical graphical modelling in higher dimensions. In:
Wessel, N. (ed.) Proceedings of International Biosignal Processing Conference, July 14-
16, 2010, Berlin, Germany, 17:001–005 (2010)

Simulations results similar to those in Section 3.4.2 are presented. We consider an example graph with
50 nodes, as compared to the five nodes of the example graph in Section 3.4.2, demonstrating that the
method developed in Chapter 3 is also feasible in higher dimensions. This is a decisive advantage
over the proposal by Miyamura and Kano (2006).

On the hypothesis of conditional independence in the IC model (Section 5.6), written in fall 2008,
tells of an entirely different route towards a generalization of Gaussian graphical modelling, on which
I was led by Hannu Oja. Instead of the elliptical model the independent-components-model is consi-
dered. The multivariate normal model is the intersection of both. The work on this topic is a joint
project with Hannu Oja and Klaus Nordhausen from the University of Tampere.
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5.1 Estimating Partial Correlations Using the Oja Sign Covariance Ma-
trix

Abstract. We investigate the Oja sign covariance matrix (Oja SCM) for estimating partial correlations
in multivariate data. The Oja SCM estimates directly a multiple of the precision matrix and is based
on the concept of Oja signs, a multivariate generalization of the univariate sign function, which obey
some form of affine equivariance property. Our simulations show that the asymptotic distribution
gives a good approximation of the exact finite-sample distribution already for samples of moderate
size. We find it to equal the performance of the classical sample partial correlation in the normal
model and outperform it in the case of heavy-tailed distributions. The high computational costs are its
main disadvantage.

5.1.1 Introduction

Let k ≥ 3 and Z = (X,Y) with X = (X1, X2), Y = (Y1, ...,Yk−2) be a k-dimensional random vector
having a non-singular covariance matrix Σ. Let X̂i(Y), i = 1, 2, be the projection of Xi onto the space
of all affine linear functions of Y. Then the partial correlation of X1 and X2 given Y is defined as

%1,2•Y =
cov

(
X1 − X̂1(Y), X2 − X̂2(Y)

)
√

var
(
X1 − X̂1(Y)

)
var

(
X2 − X̂2(Y)

) ,
i.e. it is the correlation between the residuals X1− X̂1(Y) and X2− X̂2(Y). The partial correlation %1,2•Y
can be computed from the covariance matrix Σ. It holds

%1,2•Y = −
k1,2√

k1,1k2,2
.

where ki, j, i, j = 1, ..., k, are the elements of K = Σ−1, see e.g. Whittaker (1990). The matrix K is
called the concentration matrix (or precision matrix) of Z.
Partial correlations play an important role for instance in graphical models, where the key notion is
conditional independence. Roughly, a graphical model is a family of k-dimensional distributions of
Z = (Z1, ...,Zk) that satisfy some given pairwise conditional independence restrictions on the com-
ponents of Z. One can then, based on these pairwise conditional independence conditions, draw
inferences about conditional independencies between arbitrary disjoint subsets of {Z1, ...,Zk} given
some other subvector. The classical theory of graphical models for continuously distributed variables
is built on the normality assumption. If Z = (X1, X2,Y) has a multivariate normal distribution, then X1
and X2 are conditionally independent given Y if and only if %1,2•Y = 0, which is equivalent to k1,2 = 0.
A Gaussian graphical model is thus specified by the concentration matrix K.
Now if we wish to estimate the partial correlation %1,2•Y from a sample of n independent realizations
of the vector Z = (X1, X2,Y), then

%̂1,2•Y = −
k̂1,2√
k̂1,1k̂2,2

(5.1)

is a natural choice of an estimator for %1,2•Y , where K̂ = (k̂i, j)i, j is a suitable estimator of the precision
matrix K. Equivalent to looking at %̂1,2•Y is looking at the matrix-valued estimator

Ĉ = (K̂D)−
1
2 K̂(K̂D)−

1
2 , (5.2)
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where K̂D denotes the diagonal matrix having the same diagonal as K. The matrix Ĉ is 1 on the
diagonal and contains the negative estimated partial correlations as its off-diagonal elements, i.e.
%̂1,2•Y = −ĉ1,2. The estimator K̂ can be the inverse of basically any multivariate covariance or shape
estimator. We compare the partial correlation estimator based on the Oja SCM K̂O to the classical
normal MLE K̂E . Both estimators are properly defined in Section 2. Section 3 presents asymptotic
distributions and influence functions under the elliptical model. Section 4 reports the findings of some
finite-sample simulations on the distribution of the estimators and their sensitivity against contamina-
tions. Section 5 is a short summary.

5.1.2 The Oja sign covariance matrix

In this section we define the Oja sign covariance matrix (Oja SCM), as it is done in Visuri et al.
(2000). For an instant suppose we have a univariate data set X = (x1, ..., xn), n ∈ N. We want to
call sgnX(x) = sgn(x − med(X)), x ∈ R, the sign of x w.r.t. the data sample X. Here sgn denotes the
usual univariate sign function (sgn(x) = x

| x| if x , 0 and zero otherwise) and med(X) the univariate
median function applied to X. There are several possibilities how to generalize this notion to the
multivariate setting. One possibility is the Oja median and the Oja sign. Consider the k-variate data
sample X = (x1, ..., xn), n ∈ N, and let

Qp =
{
q = {i1, ..., ip}

∣∣∣ 1 ≤ i1 < ... < ip ≤ n
}
, 0 ≤ p ≤ n,

be the system of all subsets of {1, ..., n} with p elements and Np = |Qp| =
(

n
p

)
. Then the Oja median

of the data sample X is defined as

Omed(X) = arg min
x∈Rk

∑
Qk

∣∣∣∣ det
(

1 ... 1 1
xi1 ... xik x

) ∣∣∣∣,
and omed(X) as the gravity center of the set Omed(X). The Oja sign of the point x ∈ Rk w.r.t. X is

osgnX(x) =
1

Nk−1

∑
Qk−1

∇x
∣∣∣∣ det(yi1 ... yik−1

y)
∣∣∣∣,

where y = x − omed(X) and yi = xi − omed(X), i = 1, ..., n. Note that contrary to sgnX the Oja
sign osgnX does not only depend upon the data sample X through its center point omed(X). The Oja
median and the Oja sign are proper multivariate generalizations of the univariate concepts, in the sense
that for k = 1 they yield med and sgnX as defined above. If k = 1,

Omed(X) = arg min
x∈R

n∑
1

∣∣∣∣ det
(

1 1
xi x

) ∣∣∣∣
and

osgnX(x) =
∂

∂x
| det(x − omed(X))|.

Finally we construct a scatter estimate based on the Oja sign. The most frequently used estimate of
scatter is the empirical covariance matrix

ECM(X) =
1
n

n∑
i=1

(xi − xn)(xi − xn)T ,
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where xn is the mean of x1, ..., xn. ECM is the (biased) MLE of the covariance matrix Σ at the normal
distribution. The Oja sign covariance matrix follows the same construction principle as the ECM,
with xi − xn being replaced by osgnX(xi). Thus we write down

OSCM(X) =
1
n

n∑
i=1

osgnX(xi)osgnX(xi)T .

Now we define two estimators of the shape of the precision matrix, i.e. the precision matrix up to
scale, K̂E = ECM−1 and K̂O = OSCM. It is on purpose that OSCM(X) is not inverted. It already
estimates the precision matrix up to scale, cf. section 5.1.3. We denote the corresponding estimators
for C and %1,2•Y by ĈE and %̂E

1,2•Y , respectively ĈO and %̂O
1,2•Y . As usual ĉE

i, j and ĉO
i, j denote the elements

of ĈE and ĈO, respectively.

5.1.3 Some asymptotic results

A common generalization of the multivariate normal model is the family of elliptical distributions. It
is often considered in multivariate data analysis since the first and second order characteristics are an
intuitive description of the actual shape of the distribution.
The density f0 of a spherical distribution F0 on Rk is of the form f0(x) = g(xT x), x ∈ Rk, where
g : [0,∞) → [0,∞) is such that f0 integrates to 1. If furthermore the covariance matrix of F0 is
the identity matrix Ik, we call F0 a standardized spherical distribution. In the following we assume
that X0 ∼ F0, where F0 is a standardized spherical distribution admitting the Lebesgue-density f0.
Then, for any non-singular A ∈ Rk×k and b ∈ Rk the random variable X = AX0 + b has an elliptical
distribution F with mean vector b, non-singular covariance matrix Σ = AAT and density

f (x) = det(Σ)−
1
2 g((x − b)T Σ−1(x − b)).

Following the notation of Bilodeau und Brenner (1999) we denote the class of all elliptical distribu-
tions on Rk having mean b and covariance Σ by Ek(b,Σ). By choosing the function g we model the tail
behaviour of the distribution F. The most prominent member of the class of elliptical distributions is
the normal distribution Nk(b,Σ), which corresponds to gNk (y) = (2π)−

k
2 exp

(
− 1

2 y
)
. Another important

subclass of the elliptical model is the family of multivariate tν,k-distributions with

gtν,k (y) =
Γ( ν+k

2 )

(νπ)
k
2 Γ( ν2 )

(1 −
y
ν

)−
ν+k

2 .

Here the first subscript ν denotes the degrees of freedom. The tν,k(b,Σ) distribution converges to
Nk(b,Σ) as ν → ∞ and is, for small ν, a popular example of a heavy-tailed distribution. Its moments
are finite only up to order (ν − 1).
It is considered a shortcoming of the elliptical model that it does not include independent margins,
unless the margins are normal, cf. e.g. Bilodeau and Brenner (1999), page 51. Consequently, partial
uncorrelatedness (i.e. an off-diagonal zero entry in the precision matrix K) does in general not mean
conditional independence. It is, however, equivalent to conditional uncorrelatedness, cf. Baba et
al. (2004). Thus in any statistical analysis incorporating only first and second order characteristics
(which is very often the case) partial correlation still provides a useful measure of conditional linear
independence.
The estimator Ĉ is via (5.2) a function of K̂. Hence, if the asymptotic distribution of K̂ is known, the
asymptotic distribution of Ĉ can be assessed applying the delta method. Ollila et al. (2003) state the
following lemma about the Oja SCM K̂O.
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Lemma 5.1.1 If F ∈ Ek(b,Σ) and F0 is its corresponding standardized spherical distribution, fur-
thermore Xn = (X1, ..., Xn), Xi ∼ F i.i.d., i = 1, ..., n, then

(I) K̂O(Xn)
p
−→ γF0 det(Σ)Σ−1,

(II)
√

n
(
K̂O(Xn) − γF0 det(Σ)Σ−1

) L
−→ Nk(0,Γ),

where γF0 is a constant depending only on the dimension k and E||X0||, X0 ∼ F0, and Γ can be written
as a function of Σ, k and E||X0||. Both, γF0 and Γ, are made explicit in Ollila et al. (2003).

If the true partial correlation is zero, we can also apply Slutsky’s lemma to (5.1) and deduce the
following from Lemma 5.1.1 by straightforward calculations.

Lemma 5.1.2 If F, F0 and X0 are as in Lemma 5.1.1 and k1,2 = 0 (K = Σ−1), then
√

n%̂O
1,2•Y

L
−→ N

(
0,

k
k + 2

( 4k
(E||X0||)2 − 3

))
.

If X0 ∼ Nk(0, Ik), then E||X0|| =
√

2Γ( k+1
2 )

Γ( k
2 )

. The corresponding expression for the asymptotic variance

can be shown to converge to 1 as k → ∞. For k = 4 (as in Figure 5.1) it equals 44

33π
− 2 ≈ 1.018. Ollila

et al. (2003) also report the value of E||X0|| at the t-distribution. In the case of k = 4 and ν = 3 (as in
Figure 5.2) it results in an asymptotic variance of 27

33 − 2 ≈ 2.741.
Lemma 5.1.2 allows to construct an asymptotic level-α-test for conditional independence, e.g. based
on n−1(%̂O

1,2•Y )2, which – appropriately standardized – will converge to a χ2
1-distribution. It is intuitive

from the results reported here that such a test – although its properties still need to be thoroughly
assessed – is at the normal model asymptotically almost as efficient as the usual normal LR-test but
has better robustness properties. Furthermore this test can easily be extended to an asymptotic test for
conditional uncorrelatedness in the elliptical model by additionally estimating E||X0||.
The asymptotics of the normal MLE K̂E under normality can be found in textbooks on graphical
models such as Lauritzen (1996), but a rigorous treatment under elliptical distributions is not known
to us. However, since K̂E = Σ̂−1 is a function of the covariance estimator Σ̂, one can again apply the
delta method. The asymptotics of Σ̂ in the elliptical model can be found in textbooks on multivariate
statistics such as Bilodeau and Brenner (1999). In analogy to Lemma 5.1.2 we get

Lemma 5.1.3 If F = Nk(b,Σ), Σ non-singular, then
√

n(%̂E
1,2•Y − %1,2•Y )

L
−→ N

(
0, (1 − %2

1,2•Y )2).
In the general elliptical model a similar expression for the asymptotic variance is obtained, which in
addition depends on the fourth order characteristics of F. However, if the fourth moments of F are
not finite, as it is the case for t3,4 in Figure 5.2, %̂E

1,2•Y will converge at a slower than the
√

n rate to the
true value %1,2•Y , if at all.
The influence function is an important tool in robust analysis. It describes the robustness of a statistical
procedure against infinitesimal contaminations. For reasons of simplicity we consider the influence
functions of our estimators at the standardized spherical distribution F0. If we write u = x

||x|| , then

IF(x, ĈO, F0) = k
(
1 −

2||x||
E||X0||

)(
uuT − (uuT )D

)
whereas the influence function of ĈE is

IF(x, ĈE , F0) = −||x||2
(
uuT − (uuT )D

)
,

cf. Croux and Haesbroeck (2000). The former is affine linear and the latter quadratic in ||x||.
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Figure 5.1: Densities of two partial correlation estimators at the multivariate normal distribution

5.1.4 Simulation results

We carried out a simulation study using several elliptical distributions to examine how the finite-
sample performance relates to the asymptotics. In the examples that follow we fix the mean to zero
and the covariance matrix to

Σ =


1 −0.865 0.657 −0.231

−0.865 1 −0.510 0.077
0.657 −0.510 1 −0.601
−0.231 0.077 −0.601 1

 ,
which corresponds to the following matrix of partial correlations

−C =


−1 −0.8 0.4 0
−0.8 −1 0 −0.2
0.4 0 −1 −0.6
0 −0.2 −0.6 −1

 .
Figure 5.1 shows the approximated densities of −ĉO

1,4 and −ĉE
1,4 (left plot) and −ĉO

1,3 and −ĉE
1,3 (right

plot) calculated from 30 observations drawn from a normal distribution with covariance Σ as above.
The true values to be estimated, %1,4•2,3 = −c1,4 = 0 and %1,3•2,4 = −c1,3 = 0.4, respectively, are indi-
cated by the vertical lines. The density estimation is based on 2000 repetitions, using the R function
density() with a Gauss kernel and bandwidth .04. The solid grey lines are the asymptotic distribu-
tions of −ĉO

1,4 (left) and −ĉO
1,3, cp. Section 5.1.3. We can not detect any relevant difference between

both estimators. In fact, the asymptotic relative efficiency of ĉO
i, j at the normal model (compared to the

MLE ĉE
i, j) is more than 98%.

Figure 5.2 shows the results of an experiment with the same parameters except that the population
distribution is now t3,4(b,Σ). We find that both estimators have a higher variability (compared to the
normal model), but the Oja SCM estimator ĉO

i, j performs substantially better than the MLE ĉE
i, j. It
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Figure 5.2: Densities of two partial correlation estimators at the t3-distribution

should be noted, though, that in the case of light tails the picture is reversed, but still both estimators
are more variable than in the normal model. Again, the solid grey lines represent the asymptotic
distributions of −ĉO

1,4 and −ĉO
1,3, respectively.

In the simulation study we also examined the partial correlation estimator ĈO under outlier scenarios.
We found that it, though not highly robust, is less susceptible to outliers than the normal MLE ĈE .
This is an expected behaviour considering the structure of its influence function.

5.1.5 Conclusion

The Oja SCM is well suited to the task of estimating partial correlations, in particular at heavy-tailed
distributions. Note that

√
n-consistency of the Oja SCM only requires finite second moments. In

the normal model its asymptotic and finite-sample efficiencies (almost) equal those of the MLE. The
advantage is higher robustness against model misspecification. If the true distribution has heavier than
Gaussian tails, the normal MLE looses strongly in efficiency whereas the Oja SCM estimator is little
affected. Still, one undetected heavy outlier can make it break down.
Its major drawback remains the computational costs. Its computation necessitates the evaluation of(

n
k−1

)
(k − 1)-dimensional hyperplanes. Using a randomized version, i.e. drawing at random a sub-

sample of these
(

n
k−1

)
hyperplanes, allows to push the limit a little bit further up to which n and k

the Oja SCM is computable. In our computer experiments the approximation error turned out to be
negligible compared to the estimation error up to n = 60 when the size of the subsample was 10%.
Finally, Visuri et al. (2000) also propose the Oja rank covariance matrix, which is based on Oja ranks
instead of Oja signs. It is very similar to the Oja SCM in construction and statistical properties and
exhibited the same performance in simulations.
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5.2 Partial correlation estimates based on signs

Abstract. We investigate the Oja sign covariance matrix (Oja SCM) for estimating partial correlations
in multivariate data. The Oja SCM estimates directly a multiple of the precision matrix and is based
on the concept of Oja signs, which generalize the univariate sign function and obey some form of
affine equivariance property. We compare it to the classical MLE as well as to estimates based on two
alternative multivariate signs: the marginal sign and the spatial sign.

5.2.1 Introduction: partial correlation and the elliptical model

Let k ≥ 3 and X = (Z,Y) with Z = (Z1,Z2), Y = (Y1, ...,Yk−2), be a k-dimensional random vector
having distribution F and a non-singular covariance matrix Σ. Let furthermore Ẑi(Y), i = 1, 2, be the
projection of Zi onto the space of all affine linear functions of Y. Then the partial correlation of Z1
and Z2 given Y is defined as

%1,2•Y =
cov

(
Z1 − Ẑ1(Y), Z2 − Ẑ2(Y)

)
√

var
(
Z1 − Ẑ1(Y)

)
var

(
Z2 − Ẑ2(Y)

) ,
i.e. it is the correlation between the residuals Z1 − Ẑ1(Y) and Z2 − Ẑ2(Y). The partial correlation %1,2•Y
can be computed from the covariance matrix Σ of X. It holds

%1,2•Y = −
k1,2√

k1,1k2,2
,

where ki, j, i, j = 1, ..., k, are the elements of K = Σ−1, see e.g. Whittaker (1990), p. 143. K is called
the concentration matrix (or precision matrix) of X. The matrix

C = (KD)−
1
2 K(KD)−

1
2 ,

where KD denotes the diagonal matrix having the same diagonal as K, equals 1 on the diagonal
and contains the negative partial correlations as its off-diagonal elements, i.e. %1,2•Y = −c1,2. The
correlation matrix R of X can be written as

R = (ΣD)−
1
2 Σ(ΣD)−

1
2 .

One easily checks that

C = ((M−1)D)−
1
2 M−1((M−1)D)−

1
2

for any k × k matrix M that is proportional to Σ or R.
Partial correlations play an important role for instance in graphical modelling, where the key notion
is conditional independence. Roughly, a graphical model is a family of k-dimensional distributions
for X = (X1, ..., Xk) that satisfy some given pairwise conditional independence restrictions on the
components of X. One can then, based on these pairwise conditional independence assumptions,
draw inferences about conditional independencies between arbitrary disjoint subsets of {X1, ..., Xk}.
The classical theory of graphical models for continuously distributed variables is built on the normality
assumption. If X = (Z1,Z2,Y) has a multivariate normal distribution, then Z1 and Z2 are conditionally
independent given Y if and only if %1,2•Y = 0, which is equivalent to k1,2 = 0. A Gaussian graphical
model is thus specified by the concentration matrix K.
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We consider the problem of estimating partial correlations, but do so in the broader situation of the
elliptical model, which is a popular generalization of the multivariate normal model. Its first and
second order characteristics still provide an intuitive description of the geometry of the distribution,
and it is mathematically tractable. In addition it allows to model different tail behaviours.
The density f0 of a spherical distribution F0 on Rk is of the form f0(x) = g(xT x), x ∈ Rk, where
g : [0,∞)→ [0,∞) is such that f0 integrates to 1. If furthermore

med |X1| = u.75, (5.3)

where X1 is the first component of X ∼ F0 and u.75 the 75% quantile of the standard normal distri-
bution, we call F0 a standardized spherical distribution. In the following we assume that X0 ∼ F0,
where F0 is a standardized spherical distribution admitting the Lebesgue-density f0. A random vector
X has an elliptical distribution F if

X L
= S

1
2 X0 + b

for some b ∈ Rk and symmetric, positive definite k × k matrix S . Then its density is

f (x) = det(S )−
1
2 g

(
(x − b)T S −1(x − b)

)
. (5.4)

We use the standardization assumption (5.3) in order to fix S and g in (5.4) without requiring the exis-
tence of any moments of F. It is a major advantage of sign methods that they usually work without
any moment assumptions. The existence of partial correlations, of course, necessitates the existence
of second moments. If expectation and variance of X exist, then E(X) = b and Var(X) = Σ(F) is pro-
portional to S . If F is normal, then Σ(F) = S . We call b the symmetry center and S the shape matrix
of F, and – following Bilodeau and Brenner (1999) – denote the class of all elliptical distributions
on Rk having these parameters by Ek(b, S ). By choosing the function g we model the tail behaviour
of the distribution F. The normal distribution Nk(b,Σ) corresponds to gNk (y) = (2π)−

k
2 exp

(
− 1

2 y
)
.

Another important subclass of elliptical distributions is the multivariate tν,k-family with

gtν,k (y) = cν
Γ( ν+k

2 )

(νπ)
k
2 Γ( ν2 )

(1 −
c2
νy
ν

)−
ν+k

2 .

Here the first subscript ν denotes the degrees of freedom. The constant cν = tν;.75/u.75 is due to
the standardization (5.3), tν;.75 being the 75% quantile of the usual, univariate tν-distribution with ν
degrees of freedom. The tν,k(b, S ) distribution converges to Nk(b, S ) as ν → ∞ and is, for small ν, a
popular example of a heavy-tailed distribution. Its moments are finite only up to order (ν − 1).
It is considered a shortcoming of the elliptical model that it does not include independent margins,
unless the margins are normal, cf. e.g. Bilodeau and Brenner (1999), p. 51. Consequently, partial
uncorrelatedness (i.e. an off-diagonal zero entry in the precision matrix K) does in general not mean
conditional independence. It is, however, equivalent to conditional uncorrelatedness, cf. Baba et al.
(2004). Thus partial correlation is a measure of conditional linear dependence.

5.2.2 Multivariate signs

A common approach in nonparametric statistics is to replace the observations by their signs or ranks.
This means in general loosing efficiency under normality, but one can hope to get robust and dis-
tribution-free methods. For reasons of simplicity we only consider signs here. Since we analyse
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multivariate data we are interested in multivariate signs. There are several possible generalizations
of the univariate notion sign to the multivariate setting, three of which we want to name here: the
marginal sign, the spatial sign and the Oja sign. We start by recalling the usual, univariate sign
function. Suppose we have a univariate data set X = (x1, ..., xn), n ∈ N. We call sgnX(x) = sgn(x −
med(X)), x ∈ R, the sign of x w.r.t. the data sample X, where sgn is the univariate sign function
(sgn(x) = x

| x| if x , 0 and zero otherwise), and med(X) is the univariate median of X. One obvious
extension of this concept to multivariate data is the component-wise application of the univariate sign,
leading to the marginal sign. We call

msgnX(x) = msgn(x −mmed(X))

the marginal sign of x ∈ Rk w.r.t. the k-variate data sample X = (x1, ..., xn), n ∈ N, where mmed(X)
is the component-wise, marginal median of X. Another fairly straightforward multivariate generali-
zation is obtained from the spatial sign function

ssgn(x) =

 1
|| x|| x if x , 0,
0 if x = 0.

The spatial median smed(X) is the gravity point of arg min
x∈Rk

∣∣∣∣∣∣ n∑
i=1

ssgn(xi − x)
∣∣∣∣∣∣, and as before

ssgnX(x) = ssgn(x − smed(X)), x ∈ Rk,

is the spatial sign of x w.r.t. X. A third possible multivariate extension is the Oja sign. For 0 ≤ p ≤ n
let

Qp =
{
q = {i1, ..., ip}

∣∣∣ 1 ≤ i1 < ... < ip ≤ n
}

be the system of all subsets of {1, ..., n} of size p and Np = |Qp| =
(

n
p

)
. Then the Oja median omed(X)

of the data sample X is defined as the gravity point of

arg min
x∈Rk

∑
Qk

∣∣∣∣ det
(

1 ... 1 1
xi1 ... xik x

) ∣∣∣∣. (5.5)

The Oja sign of the point x ∈ Rk w.r.t. X is

osgnX(x) =
1

Nk−1

∑
Qk−1

∇x
∣∣∣∣ det(yi1 ... yik−1

y)
∣∣∣∣,

where y = x − omed(X) and yi = xi − omed(X), i = 1, ..., n. Note that contrary to msgnX and ssgnX
the Oja sign osgnX does not only depend upon the data sample X through its center point omed(X).
Note that for k = 1 expression (5.5) comes down to

arg min
x∈R

n∑
1

∣∣∣∣ det
(

1 1
xi x

) ∣∣∣∣,
and

osgnX(x) =
∂

∂x
| det(x − omed(X))|.
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Thus the Oja median and the Oja sign are indeed proper multivariate generalizations of med and sgnX.
It should be noted that these three multivariate signs have different invariance properties. All of them
are invariant w.r.t. translations. The marginal sign is also invariant w.r.t. component-wise rescaling.
The spatial sign on the other hand is equivariant under orthogonal transformations, i.e. if we let AX =

(Ax1, ..., Axn) for some orthogonal matrix A, then

ssgnAX(Ax) = AssgnX(x).

The Oja sign even obeys some form of affine linear equivariance:

osgnAX(Ax) = det(A)A−1osgnX(x)

for any full rank k × k matrix A, cf. e.g. Ollila et al. (2003) or Hettmansperger and McKean (1998), p.
330.

5.2.3 Sign covariance matrices

Now we construct scatter estimates based on the multivariate signs introduced in the previous section:
the marginal sign covariance matrix (MSCM), the spatial sign covariance matrix (SSCM) and the
Oja sign covariance matrix (OSCM). All of these, along with some basic properties, can be found
in Visuri et al. (2000). We start with the most frequently used estimate of scatter, the empirical
covariance matrix (ECM)

ECM(X) =
1
n

n∑
i=1

(xi − xn)(xi − xn)T ,

where xn is the mean of x1, ..., xn. The ECM is the (biased) MLE of the covariance matrix Σ at the
normal distribution. The sign covariance matrices follow the same construction principle as the ECM,
with xi − xn being replaced by the respective signs:

MSCM(X) =
1
n

n∑
i=1

msgnX(xi)msgnX(xi)T ,

SSCM(X) =
1
n

n∑
i=1

ssgnX(xi)ssgnX(xi)T ,

OSCM(X) =
1
n

n∑
i=1

osgnX(xi)osgnX(xi)T .

The next lemma tells what these estimators estimate in the elliptical model. We understand the theo-
retical counterpart Σm(F) of the MSCM as the functional

E
[
msgn(X−mmed(F)) msgn(X−mmed(F))T

]
with X ∼ F. If F is the empirical distribution function generated by the data X, then Σm(F) =

MS CM(X). Similarly we define the theoretical counterparts of SSCM and OSCM, the latter is also
explicitly stated in Ollila et al. (2003).

Lemma 5.2.1 Let X ∼ F and X0 ∼ F0 with F ∈ Ek(0, S ) and F0 the corresponding standardized
spherical distribution. The theoretical counterparts of the MSCM, SSCM and OSCM at F, denoted by
Σm(F), Σs(F) and ΣO(F), respectively, are given by:
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Figure 5.3: Functions σs (solid) and σm (dashed), defined in (5.6) and (5.7), respectively.

(I) σm
i, j(F) = 2

π arcsin(%i, j),

where %i, j, i, j = 1, ..., k, are the elements of (S D)−
1
2 S (S D)−

1
2 , which equals the correlation

matrix R, provided it exists.

(II) Σs(F) = E

(S
1
2 XXT S

1
2

XT S X

)
.

(III) ΣO(F) = γF0 det(S )S −1,
if E||X0|| < ∞. The constant γF0 depends only on E||X0|| and the dimension k.

Parts (I) and (II) are straightforward, the proof of (III) is carried out in Ollila et al. (2003), where
the constant γF0 is also made explicit. Ollila et al. (2003) show furthermore that, if the second order
moments of F exist, OSCM converges in probability to ΣO(F) and is asymptotically normal. It is
intuitive that similar convergence results hold for MSCM and SSCM without any moment condition
on F.
There is not such a simple relation between Σs and S , as there is in (I) between Σm and R. In particular
there is in general no one-to-one correspondence between individual matrix entries. For example, in
the very simple case of the 2 × 2 shape matrix

S =

(
1 ρ

ρ 1

)
− 1 ≤ ρ ≤ 1,

we have

Σs =
1
2

(
1 σs(ρ)

σs(ρ) 1

)
(5.6)

and

Σm =

(
1 σm(ρ)

σm(ρ) 1

)
, (5.7)
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where σm(ρ) = 2
π arcsin(ρ) and

σs(ρ) =
2
√

1 + ρ√
1 + ρ +

√
1 − ρ

− 1. (5.8)

Thus Figure 5.3 shows the relation of marginal-sign-correlation (also known as quadrant correlation)
and spatial-sign-correlation to the usual Pearson-correlation at a two-dimensional standardized ellip-
tical distribution. Theorem 1 in Visuri (2001) sheds some light on the structure of Σs in general. There
is always a one-to-one connection between Σs and S and both matrices share the same eigenvectors.

5.2.4 Partial correlation estimators

For notational convenience we define

K̂e = ECM−1, K̂O = OSCM and

K̂m =
(
h(MSCM)

)−1,

where the mapping h is the element-wise application of x 7→ sin(π2 x). We call h(MSCM) the modified
MSCM. From Lemma 5.2.1 we know that (if the covariance exists) K̂e and K̂O estimate the concen-
tration matrix K, respectively a multiple of it, and K̂m the inverse of R. From what has been said in
Section 5.2.1 we can thus construct estimators of the matrix C:

Ĉe =
(
K̂e

D
)− 1

2 K̂e(K̂e
D
)− 1

2 ,

ĈO =
(
K̂O

D
)− 1

2 K̂O(
K̂O

D
)− 1

2 ,

Ĉm =
(
K̂m

D
)− 1

2 K̂m(
K̂m

D
)− 1

2 .

Ĉe is the normal MLE of C, see e.g. Lauritzen (1996). Ĉm as above is not well defined. It may happen
– especially for small n – that Mm is not positive definite. The common structure of ECM and the sign
covariance matrices guarantees that these matrices are always positive semi-definite, and – as long
as k < n and the underlying distribution F has a Lebesgue-density – ECM, OSCM and SSCM are
positive definite with probability 1. This is not true for the MSCM. The additional modification step
h may furthermore lead to negative eigenvalues of Mm. A remedy could be to perform an eigenvalue
decomposition and set the non-positive eigenvalues to small positive values. Such a manipulation does
not affect the asymptotics. We carried out a simulation study using several elliptical distributions to
examine the finite-sample performance of the proposed estimators. In the examples that follow we fix
the mean to 0 and the shape matrix to

S =


1 −0.865 0.657 −0.231

−0.865 1 −0.510 0.077
0.657 −0.510 1 −0.601
−0.231 0.077 −0.601 1

 ,
which corresponds to the following matrix of partial correlations

−C =


−1 −0.8 0.4 0
−0.8 −1 0 −0.2
0.4 0 −1 −0.6
0 −0.2 −0.6 −1

 .
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Figure 5.4: Densities of three partial correlation estimators at the multivariate normal distribution
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Figure 5.5: Densities of three partial correlation estimators at the t3-distribution
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Figure 5.6: Densities of partial correlation estimators under outlier scenario
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Figure 5.4 shows the estimated densities of −ĉe
1,4 −ĉO

1,4 and −ĉm
1,4 (left plot) and −ĉe

1,3, −ĉO
1,3 and −ĉm

1,3
(right plot) calculated from 30 observations drawn from a normal distribution with covariance Σ = S
as above. The true values to be estimated, %1,4•2,3 = −c1,4 = 0 and %1,3•2,4 = −c1,3 = 0.4, respectively,
are indicated by vertical lines. The density estimation is based on 4000 repetitions, using the R
function density() with a Gauss kernel and bandwidth .1. There does not seem to be any relevant
difference between −ĉe

i, j and −ĉO
i, j. In fact, the asymptotic relative efficiency of ĉO

i, j at the normal model
(compared to the MLE ĉE

i, j) is more than 98%, cf. Section 5.1.
In Figure 5.5 we see the results of an experiment with the same parameters except that the population
distribution is now t3,4(0, S ). We find that −ĉe

i, j and −ĉO
i, j have a higher variability (compared to the

normal model), but the Oja SCM estimator ĉO
i, j performs substantially better than the MLE ĉe

i, j. The
marginal SCM estimator ĉm

i, j is distribution-free w.r.t. g. It should be mentioned, though, that its high
variability is to a large portion due to the modification by applying h.
We also examined the behaviour of the estimators under outlier scenarios. Figure 5.6 shows the effect
of a systematic outlier. We sampled again from the multivariate normal distribution (with S = Σ as
above), but added each time (6, 0, 0, 6) to the first observation. The direction of this contamination was
particularly aimed at destroying the partial uncorrelatedness of the variables X1 and X4, suggesting
instead a strong positive partial dependence. Ĉm is little affected by the outlier. On the other hand Ĉe

and ĈO can both be made to break down by one single outlying observation, but we also find that the
impact is quantitatively smaller on ĈO than on Ĉe. These findings are in agreement with the structure
of the respective influence functions. At a standardized spherical distribution F0 the influence function
IF(x, ĈO, F0) of ĈO equals

k
(
1 −

2||x||
E||X0||

)(
uuT − (uuT )D

)
,

where u = x
||x|| and X0 ∼ F0, cf. Section 5.1. For any fixed direction u this is an affine linear function

of the distance ||x||, whereas the influence functions of Ĉe and Ĉm are quadratic, respectively constant,
in ||x||.

5.2.5 Conclusion

The Oja SCM is well suited to the task of estimating partial correlations in elliptical models, better
than the related concepts MSCM and SSCM, since – contrary to these – it retains the whole shape
information. It almost equals the efficiency of the MLE Ĉe in the Gaussian case, but behaves quali-
tatively better under model misspecifications. The loss of efficiency under heavy-tailed distributions
is considerably smaller, and the same is true for the impact of outliers. We can recommend the Oja
SCM as an estimator for partial correlations in graphical models, but – and this is the main drawback
– only for data sets of moderate size. The reason is that its computation necessitates the evaluation of(

n
k−1

)
(k − 1)-dimensional hyperplanes.
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5.3 The spatial sign covariance matrix in the elliptical model

Abstract. This note identifies the spatial sign covariance matrix (SSCM) of a two-dimensional ellipti-
cal distribution and discusses statistical applications.

5.3.1 Definitions

For x ∈ Rp define the spatial sign s(x) of x as

s(x) =

 x
|| x|| if x , 0,
0 otherwise.

Let X be a p-dimensional random vector (p ≥ 2) having distribution F, furthermore

µ(F) = µ(X) = arg min
µ∈Rp

E (||X − µ|| − ||X||)

the spatial median and

S (F) = S (X) = E
(
s(X − µ)s(X − µ)T

)
the spatial sign covariance matrix (SSCM) of F (or X). If there is no unique minimizing point of
E (||X − µ|| − ||X||), then µ(F) is the barycenter of the minimizing set. This may only happen if F is
concentrated on a line. For results on existence and uniqueness of the spatial median see Haldane
(1948), Kemperman (1987), Milasevic and Ducharme (1987) or Koltchinskii and Dudley (2000).

Remarks.

(I) If the first moments of F are finite, then the spatial median allows the more descriptive charac-
terization as arg minµ∈Rp E||X − µ||, but keep in mind that the spatial median always exists.

(II) Consider the univariate case p = 1 and let F be the empirical measure corresponding to the
data set x1, ...., xn ∈ R. The spatial median generalizes the idea that the (univariate) median µ
has minimum average distance to all data points, mathematically speaking, that it minimizes
the L1-distance between (µ, ..., µ) ∈ Rn and (x1, ..., xn). This motivates the alternative name
L1-median.

The term spatial sign covariance matrix has been introduced in Visuri et al. (2000). In the following
we address the question if S (F) can be given a more explicit form, say, in terms of the covariance
matrix, when F belongs to a certain parametric class of distributions, e.g. the normal model.
Call J ∈ Rp×p a reflection matrix (or sign change matrix), if it is a diagonal matrix with 1 or −1 on the
diagonal. We say that a p-dimensional random vector Z is reflection invariant, if JZ L

= Z for every
reflection matrix J. Consider the following two models.

Model M1: X L
= OZ,

where Z = (Z1, ...,Zp) is a reflection invariant random vector in Rp and O ∈ Rp×p is orthogonal.

Model M2: X L
= AY, where the p-dimensional random vector Y has a spherical distribution with

center 0, i.e. s(Y)⊥⊥ ||Y||, and A ∈ Rp×p is non-singular.
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M2 constitutes the elliptical model. In this model, the matrix V = AAT is called shape matrix of the
elliptical distribution F. Precisely we call any positive definite matrix Ṽ ∈ Rp×p for which Ṽ

1
2 X is

spherical a shape matrix of F. The shape matrix is unique up to scale (and can thus be made unique
by imposing some form of normalization, like fixing the determinant to 1, say). V is proportional
to the covariance matrix, provided the latter exists. If Y has a density f0 : Rp → [0,∞) w.r.t. the
p-dimensional Lebesgue-measure, then it is of the form f0(y) = g(yT y) for some suitable function
g : [0,∞)→ [0,∞), and consequently the density f of X has the form

f (x) = (det V)−
1
2 g(xT V−1x).

Finally, let V = UΛUT be an eigenvalue decomposition of V (with the usual ambiguities: permutation
and the choice of eigenspace basis), where U is orthogonal and Λ = diag(λ1, ..., λp). Since A is non-
singular, V is positive definite, and hence λi > 0, i = 1, ..., p.

Remark. Note that M2 is a sub-model of M1: Another way of characterizing a spherical distribution
is to say that it is rotationally invariant, i.e. OY L

= Y for any orthogonal matrix O ∈ Rp×p. Hence it
is in particular reflection invariant. Then, with the eigenvalue decomposition V = AAT = UΛUT , we
find that Λ−

1
2 UT A is orthogonal. Thus Ỹ = Λ−

1
2 UT AY is also spherical, and Ỹ as well as Λ

1
2 Ỹ are

reflection invariant. Hence X L
= AY = UΛ

1
2 Ỹ belongs to M1 with O = U and Z = Λ

1
2 Ỹ.

5.3.2 Propositions

Proposition 5.3.1 If X belongs to M1, then

(a) µ(X) = 0 and

(b) S (X) = E
(

XXT

||X||2
)

= OΛ̃OT where Λ̃ = diag(λ̃1, ..., λ̃p) and

λ̃i = E

 Z2
i∑p

j=1 Z2
j

 , i = 1, ..., p. (5.9)

The proof is fairly straightforward employing the definitions of µ(X) and S (X). The key is the ortho-
gonal equivariance of the spatial median, respectively the orthogonal invariance of the spatial sign.
Keep in mind that orthogonal transformations are norm preserving. Part (b) can be found in a similar
form in Visuri (2001). The next result appears to be new.

Proposition 5.3.2 If X belongs to M2 and p = 2, then S (X) = UΛ̃UT , where Λ̃ = diag(λ̃1, λ̃2) with

λ̃i =

√
λi

√
λ1 +

√
λ2
, i = 1, 2, (5.10)

and UΛUT is the eigenvalue decomposition of V = AAT .

In words, in the elliptical model (which includes the multivariate normal model) the SSCM has the
same eigenvectors as the shape matrix, and the eigenvalues transform according to (5.10). Note that
λ̃1 = λ̃2 iff λ1 = λ2, thus V can be (up to scale) reconstructed from S (X).

Proof of Proposition 5.3.2. We only consider the non-trivial case λ1 , λ2, also note that model M2
implies that both eigenvalues are strictly positive, because we require the matrix A to be of full rank.
By Proposition 5.3.1 and the remark above it remains to solve the integral

λ̃1 = E

 λ1Y2
1

λ1Y2
1 + λ2Y2

2


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for a spherical distribution of Y = (Y1,Y2). The other eigenvalue λ̃2 is obtained simultaneously, since
a spherical distribution is permutation invariant (i.e. permuting the components of the vector leaves
its distribution unchanged). In case p = 2 we also have λ̃2 = 1 − λ̃1 (and in general tr(Λ̃) = tr S (X) =

||s(X)|| = 1).
Spatial signs are distribution free within the elliptical model, i.e. s(X) L

= s(X̃) for two elliptical vectors
X and X̃ sharing the same shape matrix V , and hence S (X) = S (X̃). The distribution of s(X) for
elliptical X is also known as the angular central Gaussian distribution, cf. Tyler (1987b). Thus any
spherical distribution can be chosen for Y, for instance the uniform distribution on the unit circle with
density

f0(x) =
1
π
1[0,1](xT x),

resulting in

λ̃1 =
1
π

∫ 1

−1

∫ √1−z2
1

−
√

1−z2
1

α2z2
1

α2z2
1 + z2

2

dz2 dz1 with α =

√
λ1

λ2
.

Using the identity∫
1

a2 + x2 dx =
1
a

arctan
( x
a

)
, a > 0, (5.11)

we solve the inner integral and get with a = αz1:

λ̃1 =
4α
π

∫ 1

0
z1 arctan


√

1 − z2
1

αz1

 dz1.

For the remaining integral we substitute

x =

√
1 − z2

1

αz1
, 0 < z1 ≤ 1.

This mapping is bijective on (0, 1]. We get:

λ̃1 =
4α
π

∫ ∞

0

α2x
(α2x2 + 1)2 arctan(x) dx.

Note that x 7→ α2 x
(α2 x2+1)2 is the derivative of x 7→ − 1

2(α2 x2+1) . By means of partial integration we obtain:

λ̃1 =
2α
π

∫ ∞

0

1
(α2x2 + 1)(x2 + 1)

dx.

Employing partial fraction expansion the integrand can be written as

1
(α2x2 + 1)(x2 + 1)

=
1

1 − α2

(
−α2

α2x2 + 1
+

1
x2 + 1

)
and thus integrated applying again the identity (5.11), which yields

λ̃1 =
α

1 + α
=

√
λ1

√
λ1 +

√
λ2
.

This completes the proof. �
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5.3.3 Statistical applications

Consider a p-dimensional data sample Xn = (XT
1 , . . . , X

T
n )T of size n, where the Xi, i = 1, ..., p, are

i.i.d., each with distribution F. Define

Ŝ n(Xn; t) = ave
i=1,...,n

(Xi − t)(Xi − t)T

||Xi − t||2

and

Ŝ n(Xn; Tn) = ave
i=1,...,n

(Xi − Tn)(Xi − Tn)T

||Xi − Tn||
2 ,

where t ∈ Rp, and (Tn)n∈N is a sequence of p-valued random vectors. For t = µ(F) the functional
Ŝ n(Xn; t) is the empirical SSCM with known location, whereas, if Tn is a suitable location estimator,
Ŝ n(Xn; Tn) is to be interpreted as an empirical SSCM with unknown location. The canonical location
functional in this case is the (empirical) spatial median

µ̂n = µ̂n(Xn) = min
m∈Rp

n∑
i=1

||Xi − m||.

Under regularity conditions (the data points do not lie on a line and none of them coincides with µ̂n,
see Kemperman (1987), p. 228) the (empirical) spatial signs w.r.t. the (empirical) spatial median are
centered, i.e.

n∑
i=1

s(Xi − µ̂n) = 0.

Hence the (empirical) spatial sign covariance matrix Ŝ n(Xn; µ̂n) is indeed the covariance matrix of the
spatial signs, if the latter are taken w.r.t. the spatial median.

Proposition 5.3.1 basically tells that, in the broad semiparametric model M1, the SSCM consistently
estimates the eigenvectors (and the order of the eigenvalues) of the covariance matrix, which may
be phrased as “it gives information about the orientation of the data” (Bensmail and Celeux, 1996,
cp.)), and thus its use has been proposed for such kind of multivariate analysis that is based on this
information only, most notably principal component analysis, (Marden, 1999; Locantore et al., 1999;
Croux et al., 2002; Gervini, 2008). Other such applications are direction-of-arrival estimation (Visuri
et al., 2001), or testing of sphericity in the elliptical model (Sirkiä et al., 2009). The latter makes use
of the fact that under the null hypothesis that X is spherical, s(X) is uniformly distributed on the p-
dimensional unit sphere, thus also spherical, and the covariance matrix of Ŝ n takes on a rather simple
form.
With Proposition 5.3.2 it is now possible to reconstruct the whole shape information, i.e. eigenvectors
and eigenvalue ratios of the covariance matrix. Thus the SSCM can be directly employed for applica-
tions that rely on this type of information (but do not require any knowledge about the overall scale),
most notably correlations and partial correlations. In higher dimensions one can, based on Proposition
5.3.2, construct a pairwise correlation estimator, which is robust, distribution-free within the elliptical
model, and most of all very fast to compute.
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5.4 On generalizing Gaussian graphical models

Abstract. We explore elliptical graphical models as a generalization of Gaussian graphical models,
that is, we allow the population distribution to be elliptical instead of normal. Towards a statistical
theory for such graphical models, consisting of estimation, testing and model selection, we consider
the problem of estimating partial correlations. We derive the asymptotic distribution of a class of
partial correlation matrix estimators based on affine equivariant scatter estimators.

5.4.1 Introduction: partial correlations and graphical models

Let p ≥ 3 and X = (Z,Y) with Z = (Z1,Z2), Y = (Y1, ...,Yp−2), be a p-dimensional random vector
having distribution F and a non-singular covariance matrix Σ. Let furthermore Ẑi(Y), i = 1, 2, be the
projection of Zi onto the space of all affine linear functions of Y. Then the partial correlation of Z1
and Z2 given Y is defined as

%1,2•Y =
cov

(
Z1 − Ẑ1(Y), Z2 − Ẑ2(Y)

)
√

var
(
Z1 − Ẑ1(Y)

)
var

(
Z2 − Ẑ2(Y)

) ,
i.e. it is the correlation between the residuals Z1 − Ẑ1(Y) and Z2 − Ẑ2(Y). One can extend the defini-
tion of partial correlation (and thus partial uncorrelatedness) to vector-valued random variables in a
straightforward manner. The partial correlation %1,2•Y can be computed from the covariance matrix Σ

of X:

%1,2•Y = −
k1,2√

k1,1k2,2
,

where ki, j, i, j = 1, ..., p, are the elements of K = Σ−1, see e.g. Whittaker (1990), p. 143. K is called
the concentration matrix (or precision matrix) of X. Let

P = (pi, j)i, j=1,...,k = K
− 1

2
D KK

− 1
2

D ,

where KD denotes the diagonal matrix having the same diagonal as K and K
− 1

2
D is to be read as (KD)−

1
2 .

The matrix P equals 1 on the diagonal and contains the negative partial correlations as its off-diagonal
elements, i.e. %1,2•Y = −p1,2. We will also refer to P as partial correlation matrix even though it
contains negative partial correlations. In this paper we consider the task of estimating P in the ellip-
tical model, which is a popular generalization of the multivariate normal model. Its first and second
order characteristics provide an intuitive description of the geometry of the distribution, and it is ma-
thematically tractable. In addition it allows to model different tail behaviours, and is often chosen to
model data with heavy tails.
Our interest in partial correlation is originated in its application in graphical models. A thorough
introduction of the latter would go beyond the scope of this exposition, we refer to standard volumes,
e.g. Lauritzen (1996) or Whittaker (1990). If the population distribution is jointly normal, due to the
particular properties of the normal family (most notably that it is closed under conditioning, and that
correlation zero implies independence) partial uncorrelatedness implies conditional independence. A
spherical distribution, however, has independent margins if and only if it is a normal distribution.
This is also known as the Maxwell-Hershell-theorem cf. e.g. Bilodeau and Brenner (1999), p. 51.
Consequently, in the elliptical model partial uncorrelatedness (i.e. an off-diagonal zero entry in the
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precision matrix K) does not imply conditional independence. It does, however, imply conditional
uncorrelatedness, cf. Baba et al. (2004), i.e. the conditional distribution of (Z1,Z2) given Y = y
(which is a bivariate distribution depending on y) is for almost all values y such that it has correlation
zero. Thus, in the elliptical model partial correlation is a measure of conditional correlation.

5.4.2 Elliptical distributions and shape matrices

In this introduction to elliptical distributions we mainly follow the notation of chapter 13 of Bilodeau
and Brenner (1999). A continuous distribution F in Rp is said to be elliptical if it has a Lebesgue-
density f of the form

f (x) = det(S )−
1
2 g

(
(x − µ)T S −1(x − µ)

)
. (5.12)

for some µ ∈ Rp and symmetric, positive definite p × p matrix S . We call µ the symmetry center
and S the shape matrix of F, and denote the class of all continuous elliptical distributions on Rp

having these parameters by Ep(µ, S ). If second-order moments of X ∼ F exist, then E(X) = µ,
and Var(X) = Σ(F) is proportional to S . In the parametrization (µ, S ), the symmetry center µ is
uniquely defined whereas the matrix S is unique only up to scale, that is, Ep(µ, S ) = Ep(µ, cS ) for
any c > 0. One is tempted to impose some form of general standardization on S (several have been
suggested in the literature, e.g., setting the trace to p or the determinant or a specific element of S
to 1) and thus uniquely defining the shape matrix of an elliptical distribution. However, we refrain
from such a standardization and call any matrix S satisfying (5.12) for a suitable function g a shape
matrix of F. This allows, for example, to work always with the “simplest” function g. We want to
mention two examples of elliptical distributions, the normal distribution Np(µ, S ), which corresponds
to gNp(y) = (2π)−

p
2 exp

(
− 1

2 y
)
, and the multivariate tν,p-family with

gtν,p(y) =
Γ( ν+p

2 )

(νπ)
p
2 Γ( ν2 )

(1 −
y
ν

)−
ν+p

2 .

Here the first subscript ν denotes the degrees of freedom. The tν,p(µ, S ) distribution converges to
Np(µ, S ) as ν → ∞ and is, for small ν, a popular example of a heavy-tailed distribution. Its moments
are finite only up to order (ν − 1). For ν ≥ 3 its covariance is Σ(tν,p(µ, S )) = ν

ν−2 S .
We now turn to our statistical problem of interest: to estimate P in the elliptical model. Let X1, ..., Xn

be i.i.d. random variables with elliptical distribution F ∈ Ep(µ, S ) and covariance matrix Σ. Let
furthermore Xn = (XT

1 , ..., X
T
n )T be the n × p data matrix containing the data points as rows and

Ŝ n = Ŝ n(Xn) a scatter estimator. Here we use the term scatter estimator in a very informal way for
any symmetric matrix-valued estimator that gives some form of information about the spread of the
data. In a narrower sense scatter estimators aim at estimating the covariance matrix. Hence it is a
desirable property of such estimators to transform in the same way as the covariance matrix under
affine linear transformations, that is, they satisfy Ŝ n(XnAT + 1bT ) = AŜ n(Xn)AT for any full rank
matrix A ∈ Rp×p and vector b ∈ Rp. This property of a scatter estimator is called affine equivariance.
However, there are estimators that do not satisfy affine equivariance, but a slightly weaker condition
which we want to call affine pseudo-equivariance or proportional affine equivariance.

Condition C5.4.1 Ŝ n(XnAT + 1bT ) = h(A)AŜ n(Xn)AT for b ∈ Rp, A ∈ Rp×p with full rank, and
h : Rp×p → R satisfying h(H) = 1 for any orthogonal matrix H.
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Estimators satisfying C5.4.1 shall also be called shape estimators: they give information about the
shape (orientation and relative length of the axes of the contour-ellipses of F), but not the overall
scale. Since the overall scale is irrelevant for (partial) correlations, i.e.

P = V
− 1

2
D VV

− 1
2

D , where V = S −1, (5.13)

for any shape matrix S of F, shape estimators are useful for estimating partial correlations, and we
will turn our attention to this class of estimators in the following. A variety of shape estimators have
been proposed and extensively studied, primarily in the robustness literature, see e.g. Zuo (2006) for a
review, but also the MLE of the covariance matrix at an elliptical distribution possesses this property.
Affine (pseudo-)equivariance is indeed a very handy property, and such estimators are particularly
suited for the elliptical model. Their variance (which then appears as asymptotic variance if the
estimator is asymptotically normal) can be shown to have a rather simple general form under elliptical
population distributions, which is given below in condition C5.4.2, and is basically due to Tyler Tyler
(1982). We need to introduce some matrix notation.
For matrices A, B ∈ Rp×p, the Kronecker product A ⊗ B is the p2 × p2 matrix with entry ai, jbk,l at
position (i(p − 1) + k, j(p − 1) + l). Let e1, ..., ep be the unit vectors in Rp and define the following
matrices: Jp =

∑p
i=1 eieT

i ⊗ eieT
i , Kp =

∑p
i=1

∑p
j=1 eieT

j ⊗ e jeT
i (the commutation matrix), Ip2 the

p2 × p2 identity matrix and Np = 1
2 (Ip2 + Kp). Finally vec(A) is the p2 vector obtained by stacking

the columns of A ∈ Rp×p from left to right underneath each other. Many shape estimators have been
shown to satisfy the following condition in the elliptical model (possibly under additional assumptions
on the population distribution F).

Condition C5.4.2 There exist constants η ≥ 0, σ1 ≥ 0 and σ2 ≥ −2σ1/p such that

Ŝ n
p
−→ ηS and

√
n vec(Ŝ n − ηS )

L
−→ Np2(0,W),

where

W = 2σ1η
2Np(S ⊗ S ) + σ2η

2 vec(S )
(

vec(S )
)T ,

and the constants σ1 and σ2 do not depend on S .

By means of the CMT and the multivariate delta method one can derive the general form of the
asymptotic variance of any partial correlation estimator derived from a scatter estimator satisfying
C5.4.2.

Proposition 5.4.3 If Ŝ n fulfils C5.4.2, the corresponding partial correlation estimator

P̂n = (Ŝ −1
n )
− 1

2
D Ŝ −1

n (Ŝ −1
n )
− 1

2
D

satisfies

P̂n
p
−→ P and

√
n vec(P̂n − P)

L
−→ Np2(0, 2σ1ΓNp(V ⊗ V)ΓT ) (5.14)

with P and V as in (5.13) and Γ = (V
− 1

2
D ⊗ V

− 1
2

D ) − Np(P ⊗ V−1
D )Jp.

Remark. In the expression for the asymptotic variance of P̂n the constant η obviously has to cancel
out. But also the constant σ2 does not appear. Thus the comparison of the asymptotic efficiencies of
partial correlation matrix estimators based on affine (pseudo-) equivariant scatter estimators reduces
to the comparison of the respective values of the scalar σ1. This is generally true for “scale-free”
functions of Ŝ n and has already been noted by Tyler (1983).
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5.4.3 Example: Tyler’s M-estimator of scatter

Strictly speaking, two examples are given: Tyler’s estimator mentioned in the title and, for com-
parison, the empirical covariance matrix Σ̂n = 1

n
∑n

i=1(Xi − Xn)(Xi − Xn)T , which is the maximum
likelihood estimator for Σ at the multivariate normal distribution. Σ̂n fulfils condition C5.4.1 with
h ≡ 1, and we have the following asymptotic result.

Proposition 5.4.4 If X1, ..., Xn are i.i.d. with distribution F ∈ Ep(µ, αΣ), α > 0, and
E||X − µ||4 < ∞, then Σ̂n fulfils C5.4.2 with η = α−1, σ1 = 1 + κ/3 and σ2 = κ/3, where κ is the
kurtosis excess of the first (or any other) component of X1.

The Tyler scatter estimator T̂n = T̂n(Xn) is defined as the solution of

p
n

n∑
i=1

(Xi − Xn)(Xi − Xn)T

(Xi − Xn)T T̂−1
n (Xi − Xn)

= T̂n (5.15)

which satisfies tr(T̂n) = p. It is regarded as the most robust M-estimator. Existence, uniqueness and
asymptotic properties are treated in Tyler (1987a). Apparently T̂n satisfies

T̂n(XnAT + 1bT ) =
p

tr(AT̂n(Xn)AT )
AT̂n(Xn)AT

for b ∈ Rp and any full rank A ∈ Rp×p, but not condition C5.4.1. As a consequence the asymptotic
variance of T̂n has a slightly different form than W in condition C5.4.2. Nonetheless the correspon-

ding partial correlation estimator P̂(T )
n = (T̂−1

n )
− 1

2
D T̂−1

n (T̂−1
n )
− 1

2
D satisfies (5.14). This is simply because,

by choosing a suitable alternative normalization instead of setting the trace to p, one can obtain an
estimator satisfying C5.4.1, which leads to the same partial correlation estimator P̂(T )

n . Precisely, we
have the following result.

Proposition 5.4.5 If X1, ..., Xn are i.i.d. with distribution F ∈ Ep(µ, αΣ), α > 0, and
E||X − µ||2 < ∞ and E||X − µ||−

3
2 < ∞, then P̂(T )

n fulfils (5.14) with σ1 = 1 + 2
p .

Thus the scalar σ1 is constant for the Tyler matrix, irrespective of the function g, i.e. the Tyler matrix
(and hence the resulting partial correlation estimator) is distribution-free within the elliptical model.
Moreover, it is more efficient than Σ̂n at distributions with large (positive) kurtosis, i.e. heavy-tailed
distributions. For instance, this holds true for the tν,p-distribution if ν < p + 4.
Final remark. Both moment conditions in Proposition 5.4.5 are only due to the location estimation in
(5.15). Location estimators other than the mean are also possible and, in view of robustness, might be
more appropriate, most notably the Hettmansperger-Randles median, cf. Hettmansperger and Randles
(2002). However, the inverse moment condition E||X − µ||−

3
2 < ∞ can generally not be avoided by

choosing a different location estimator, cf. Tyler (1987a). But this is a fairly mild condition: for p ≥ 2
it is fulfiled if g has no singularity at 0, thus including normal and tν,p-distributions.
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5.5 Elliptical graphical modelling in higher dimensions

Abstract. Simpson’s famous paradox vividly exemplifies the importance of considering conditional,
rather than marginal, associations for assessing the dependence structure of several variables. The
study of conditional dependencies is the subject matter of graphical models. The statistical methods
applied in graphical models for continuous variables rely on the assumption of normality, which leads
to the term Gaussian graphical models. We consider elliptical graphical models, that is, we allow the
population distribution to be elliptical instead of normal. We examine the class of affine equivariant
scatter estimators and propose an adjusted version of the deviance tests, valid under ellipticity. A
detailed derivation can be found in Chapters 3 and 4. In this section we report the results of a simula-
tion study, demonstrating the feasibility of our approach also in higher dimensions. Graphical models
based on classical, non-robust estimators have been used, e.g., to explore successfully the partial cor-
relation structure within high-dimensional physiological time series (Gather et al., 2002) and within
high-dimensional time series describing neural oscillators (Schelter et al., 2006).

5.5.1 Graphical models

We first introduce the basic terms and notions. Let p ≥ 3 and X = (X1, X2,Y) with Y = (X3, ..., Xp)
be a p-dimensional random vector following some distribution F with non-singular covariance matrix
Σ. Let X̂i(Y), i = 1, 2, be the projection of Xi onto the space of all affine linear functions of Y. Then
the partial correlation p1,2 of X1 and X2 given X3, ..., Xp is defined as the correlation between the
residuals X1 − X̂1(Y) and X2 − X̂2(Y). The partial correlation p1,2 can be interpreted as a measure of
the linear association between X1 and X2 after the common linear effects of all other variables have
been removed. It is a moment-based characteristic of the distribution F and can be computed from
the covariance matrix Σ. It holds

p1,2 = −
k1,2√

k1,1k2,2
,

where ki, j, i, j = 1, ..., k, are the elements of K = Σ−1, see e.g. Whittaker (1990). The matrix K is
called the concentration matrix (or precision matrix) of X.
The partial correlation structure of the random variable X can be coded in a graph, which originates
the term graphical model. An undirected graph G = (V, E), where V is the vertex set and E the
edge set, is constructed the following way: the variables X1, ..., Xp are the vertices, and an (undirec-
ted) edge is drawn between Xi and X j, i , j, if and only if pi, j , 0. The thus obtained graph G is
called the partial correlation graph (PCG) of X. Formally we set V = {1, ..., p} and write the ele-
ments of E as unordered pairs {i, j}, 1 ≤ i < j ≤ p. The partial correlation graph is a useful data
analytical tool. It concisely displays the important aspects of the interrelations of several variables.
It allows furthermore to draw conclusions about the dependence between groups of variables (note
that the graph is constructed from pairwise relations between individual variables) and facilitates the
understanding of the underlying physiological process. We will not dwell further on the purpose and
the properties of the PCG. For more information see Section 2.2.2 or any of the classical textbooks
Whittaker (1990); Cox and Wermuth (1996); Lauritzen (1996); Edwards (2000). Our concern here is
the statistical modelling.

5.5.2 Gaussian graphical models

Suppose we have a data set Xn = (x1, ..., xn)T of n i.i.d. realizations of the p-dimensional random
vector X. In order to sensibly “estimate” the PCG of X from the data, we have to make some dis-
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tributional assumption about X. This assumption is usually multivariate normality, i.e. X ∼ Np(µ,Σ)
for some µ ∈ Rp and positive definite matrix Σ ∈ Rp×p. Then the Gaussian graphical model M (G)
induced by the undirected graph G = (V, E) is the set of all p-dimensional Gaussian distributions
satisfying the zero partial correlation restrictions specified by G. Precisely, if we denote the set of all
positive definite p × p matrices by S +

p and let

S +
p (G) =

{
K ∈ S +

p

∣∣∣ ki, j = 0∀ i , j with {i, j} < E
}
,

then

M (G) =
{
Np(µ,Σ)

∣∣∣ µ ∈ Rp, K = Σ−1 ∈ S +
p (G)

}
.

An integral part of almost any model selection scheme is the possibility to test if a model under
consideration fits the data or not. In the context of Gaussian graphical models the classical tool for
this purpose is the deviance test, which is described in the following. For any graph G = (V, E) define
the function hG : S +

p → S +
p : A 7→ AG by [AG]i, j = ai, j, {i, j} ∈ E or i = j,

[A−1
G ]i, j = 0, {i, j} < E and i , j.

(5.16)

It is not trivial and a deeper result of the theory of Gaussian graphical models that a unique and positive
definite solution AG of (5.16) exists for any positive definite A. The solution can be found by the
iterative proportional scaling algorithm, for which convergence has been shown, cf. Lauritzen (1996),
Chap. 5. If we let further Σ̂n denote the sample covariance matrix, then Σ̂G = hG(Σ̂n) is a sensible
estimator for Σ subject to the assumption Σ−1 ∈ S +

p (G). It is indeed the maximum likelihood estimator
in the Gaussian graphical model M (G). Now suppose we have two nested models M (G0) (M (G1),
i.e. the edge set E0 of G0 is a strict subset of the edge set E1 of G1. Let q be the number of edges that
are in E1 but not E0. Then, under M (G0),

D̂n(Σ̂n) = n
(
ln det hG0(Σ̂n) − ln det hG1(Σ̂n)

)
(5.17)

converges to a χ2 distribution with q degrees of freedom. This the likelihood ratio test for testing
M (G0) against the larger model M (G1). The statistic D̂n(Σ̂n) is also referred to as deviance. Many
model selection procedures (backward elimination, forward selection, Edwards-Havránek,...) consist
of an iterative application of this test. For details see, e.g., Edwards (2000).

5.5.3 Elliptical graphical models

A problem of the Gaussian graphical modelling described in the previous section is its lack of ro-
bustness, which is mainly due to the poor robustness of the estimator Σ̂n. Hence a promising way
of robustifying the procedure is to replace Σ̂n by a more robust scatter estimator. Over the last four
decades many proposals of robust multivariate dispersion estimators have been made, for a review
see, e.g., Zuo (2006). Indeed, it can be shown that the convergence of (5.17) remains true, if Σ̂n is
replaced by any scatter estimator Ŝ n that fulfils the following regularity conditions.

(I) Ŝ n is (at least proportionally) affine equivariant, i.e. Ŝ n(XnAT +b) ∝ AŜ n(Xn)AT for any b ∈ Rp

and full rank matrix A ∈ Rp×p, and

(II) Ŝ n is
√

n-convergent, i.e.
√

n(Ŝ n−S ) converges in distribution, where S is some multiple of Σ.
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These two conditions are natural for multivariate scatter estimators, see also Sections 2.4.1, 3.3.1 and
3.4.1. Then, under M (G0),

1
σ1

D̂n(Ŝ n) = n
σ1

(
ln det hG0(Ŝ n) − ln det hG1(Ŝ n)

)
(5.18)

converges to a χ2 distribution with q degrees of freedom, where σ1 > 0 is a suitable scalar-valued
constant, which is a function of the estimator Ŝ n, but does neither depend on G0, G1 nor the true
covariance Σ. We call D̂n(Ŝ n) pseudo-deviance, and the corresponding test adjusted deviance test,
since we have to divide the test statistic by the consistency factor σ1.
Furthermore, 1

σ1
D̂n(Ŝ n) also converges to a χ2

q limit, if the data x1, ..., xn are sampled from an ellip-
tical distribution. Then σ1 has to be chosen accordingly, examples are given in the next section. A
continuous distribution F in Rp is said to be elliptical if it has a density f of the form

f (x) = det(S )−
1
2 g

(
(x − µ)T S −1(x − µ)

)
.

for some µ ∈ Rp and positive definite p × p matrix S . We call µ the symmetry center and S the
shape matrix of F. If the second-order moments of X ∼ F exist, then E(X) = µ, and Var(X) = Σ(F)
is proportional to S . The class of all continuous, elliptical distributions constitutes a generalization
of the multivariate normal model, that allows arbitrarily heavy tails and is therefore well suited to
model outlying observations. The normal distribution is obtained by gNp(y) = (2π)−

p
2 exp

(
− 1

2 y
)
. A

prominent example of a heavy-tailed distribution is the tν,p-distribution, specified by

gtν,p(y) =
Γ( ν+p

2 )

(νπ)
p
2 Γ( ν2 )

(
1 −

y
ν

)− ν+p
2
,

where the index ν is referred to as the degrees of freedom. The moments of tν,p are finite only up
to order ν − 1. For ν ≥ 3 its covariance is Σ = ν

ν−2 S , and for ν ≥ 5 the excess kurtosis (of each
component) is 6/(ν − 4). Elliptical distributions do generally not possess finite moments, i.e. Σ does
not necessarily exist. Provided Ŝ n is

√
n-convergent, we may nevertheless use the adjusted deviance

test to test (more generally) for a certain zero pattern in the inverse of the shape matrix S .

5.5.4 Examples of robust scatter estimators

If the fourth-order moments of X ∼ F are finite, then Σ̂n fulfils conditions (I) and (II). The corres-
ponding value of σ1 is 1 + κ

3 , where κ is the excess kurtosis of the first (or any other component) of
X. Thus, if we assume an elliptical population distribution F (with finite fourth-order moments), we
may apply the adjusted deviance test, but have to divide D̂n(Σ̂n) by a consistent estimate of σ1. Under
a heavy-tailed distribution, i.e., if κ is large, the estimator Σ̂n is relatively inefficient, resulting in a
test with poor power. An alternative, which keeps its efficiency under heavy tails, is Tyler’s scatter
estimator. It is defined as the solution T̂n = T̂n(Xn) of

p
n

n∑
i=1

(xi − µ̂n)(xi − µ̂n)T

(xi − µ̂n)T T̂−1
n (xi − µ̂n)

= T̂n (5.19)

which satisfies det T̂n = 1. Here µ̂n is an appropriate location estimator, which may be the mean,
or, in light of robustness, the Hettmansperger-Randles median (Hettmansperger and Randles, 2002).
Existence and uniqueness of a solution of (5.19) and the asymptotic properties of the estimator T̂n

are treated in the original publication Tyler (1987a). The estimator evidently satisfies condition (I)
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Figure 5.7: Example graph

and under some mild regularity conditions on the population distribution also condition (II). The cor-
responding value of σ1 is 1 + 2

p , irrespective of the specific elliptical distribution. This remarkable
fact may be phrased as to say the test statistic D̂n(T̂n) is asymptotically distribution-free within the
elliptical model, a property which it inherits from the estimator T̂n. This has the nice practical impli-
cation that, when carrying out the adjusted deviance test, σ1 needs not to be estimated. Furthermore,
for large p, T̂n is almost as efficient as the MLE Σ̂n at the normal distribution and outperforms Σ̂n at
distributions with slightly heavier than normal tails, e.g., at the tν,p distribution, if ν < p + 4.
The third example we want to mention is the RMCD, the reweighted version of Rousseeuw’s minimum
covariance determinant estimator (Rousseeuw, 1985), see also Rousseeuw and Leroy (1987), Chap. 7,
which has become a very popular highly robust scatter estimator. Very roughly, a subsample of size
h = btnc, where 1

2 ≤ t < 1 is some fixed fraction, of the data points is chosen such that the determinant
of the sample covariance matrix computed from this subsample is minimal. Afterwards a reweighting
step is applied, which increases the efficiency, but maintains the high breakdown point of the initial
estimator. The RMCD fulfils conditions (I) and (II). The asymptotics are treated in Butler et al.
(1993) and Croux and Haesbroeck (1999). Values for σ1 can be found in the latter. The RMCD is an
appropriate estimator if the outlying observations are assumed to be contaminations, but the bulk of
the data is well described by a Gaussian distribution. Similar to Tyler’s estimator, the efficiency of the
RMCD, relative to sample covariance matrix, increases with p.

5.5.5 Simulation study

We want to compare the estimators mentioned in the previous section in a simulation study, to give
an impression of their applicability in elliptical graphical modelling. In Section 3.4.2 we report the
results obtained from a small toy model consisting of five nodes and five edges. The following is
aimed at complementing these numerical investigations by considering a high-dimensional example,
where e.g. also run-time plays a role. Our set-up is as follows. We sample 200 i.i.d. observations
of a 50-dimensional random vector that follows an elliptical distribution. For each of the elliptical
distributions we consider, cf. Table 5.1, we take 1000 samples, and from each sample compute several
estimates. Based on each estimate, we select a model and compare it to the true model. In all runs
we use the same model (Figure 5.7) and the same shape matrix with identical diagonal elements. The
partial correlation matrix is visualized in Figure 5.8: the absolute values of the matrix entries are
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Figure 5.8: Partial correlation matrix (absolute values)

coded by different shades of gray, ranging from 0 (white) to 1 (black). Despite the many intersecting
edges in Figure 5.7 this is a sparse graph. Of 1225 possible edges only 94 are present, and only two
nodes (11 and 18) have more than six neighbours.
We perform a very simple model selection: we carry out an edge-exclusion test for every possible
edge, i.e. we test, for each pair {i, j}, the model with all edges but {i, j} against the saturated model
and exclude the edge {i, j}, if the test accepts the smaller model. More sophisticated model search
procedures generally show better results, but lead to similar conclusions as far as the comparison of
the estimators is concerned. Our simple one-step model selection allows to better study the properties
of the adjusted deviance tests and the effects of the choice of the scatter estimator. We perform each
test at the significance level α = 0.01, which is an ad hoc choice. It is chosen rather small due to the
sparsity of the graph. Since the vast majority of possible edges is absent, identifying these non-edges
correctly is of greater importance for the overall performance in this example. If we view the model
selection as a multiple-testing problem, i.e. we want to restrict the probability that the fitted graph is
too large, an individual significance level of α = 0.01 is already high.
Besides getting an impression of the general performance we want to examine the finite-sample beha-
viour of the estimators, i.e. check if the asymptotic χ2-approximation of the test statistics are useful in
practice. A sample size of 200 seems large enough to expect some “validity” of the asymptotics. We
therefore consider two criteria. The main criterion by which we measure the goodness of the model
selection is the relative mean edge difference (RMED), i.e. the average number of edges (averaged
over all 1000 runs) that are wrongly specified in the selected model—may it be that an existing edge
was rejected or an absent edge was wrongly included—divided by the total number of possible edges
(1225). An RMED below 0.5 indicates that the model selection procedure is superior to random gues-
sing. In a less complex situation it might be also of interest to know, how often the true model is
found, but with 1225 test decisions in each trial we can not expect a positive number in only 1000
trials. Any model selection procedure that is based on testing for zero parameters aims at controlling
the probability of correctly specifying the non-edges. Our second criterion is therefore the percentage
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Figure 5.9: Asymptotic approximation of the test statistic for n = 200 at the normal distribution

of wrongly specified non-edges, which is the same as the rejection probability of the test under the
null and should turn out to be about 1%.
The findings of our experiment are summarized in Table 5.1. The benchmark is traditional graphical
modelling, i.e. the performance of Σ̂n at the normal distribution, cf. first row of Table 5.1. We observe
two things: First, the test is anti-conservative. The actual rejection probability under the null hypo-
thesis is about 2.7%. The simulated cdf of the test statistic (for n = 200) and its limit for n → ∞
are plotted in Figure 5.9. Second, the test goes wrong, if we move away from normality. We assume
only ellipticity but no further knowledge about the distribution and want methods that are valid over
the whole class of elliptical distributions. A possible remedy is to adjust the Σ̂n-based test statistic
by an estimate of σ1, for which we need to estimate the kurtosis κ. Since elliptical distributions have
the same kurtosis in each direction, we simply take the average of the sample kurtosis of all margins.
The results of this adjusted deviance test are reported in the second row of Table 5.1. This adjustment

Table 5.1: One-step model selection based on different estimators
RMED / wrongly specified non-edges (%)

distribution normal t20 t5 t3

Σ̂ 4.9 / 2.6 5.5 / 3.2 8.1 / 6.0 11.4 / 9.5
Σ̂∗ 5.0 / 2.7 5.0 / 2.5 5.3 / 1.1 6.1 / 0.3
T̂ 5.1 / 2.6 5.0 / 2.6 5.0 / 2.6 5.1 / 2.6

RMCD 0.5∗∗ 6.4 / 1.0 6.1 / 0.8 6.2 / 0.9 6.3 / 1.0
RMCD 0.75∗∗ 4.2 / 1.0 4.5 / 1.3 6.0 / 2.9 8.1 / 5.2

∗ test statistic adjusted by estimated kurtosis
∗∗ with finite-sample correction
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repairs the test, and does so surprisingly well—even in the case of the t3-distribution, where the popu-
lation kurtosis is not defined. In this case we do not have an “asymptotic justification” of the test, but
we find it to be conservative. This effect, which we did not observe at the low-dimensional example,
certainly deserves some further investigation.
For Tyler’s estimator, there are mainly two things to note. We recognize its asymptotic efficiency
properties: it almost equals the performance of Σ̂n at the normal model, but shows no loss under larger
tails. On the other hand, the test statistic shows a very similar behaviour as the Σ̂n-based deviance
under normality, cf. Figure 5.9. It has in particular the same bias w.r.t. the asymptotic χ2

1-distribution.
This gives rise to the hope that finite-sample correction techniques developed for Σ̂n-based analyses,
cf. e.g. Lauritzen (1996), p. 143, can be applied to T̂n as well and be brought to benefit also under
ellipticity.
Finally, Table 5.1 also reports results for the RMCD, with subsample fractions t = 0.5 and t = 0.75,
which both exhibit generally good efficiencies, which is in contrast to the low-dimensional example.
But it must be pointed out that we did not carry out an asymptotic test in this situation. It is a known
problem of the RMCD that it converges very slowly to its asymptotic distribution. The “asymptotic”
σ1-value is of no use here. The problem is usually taken care of by multiplying by a correction
factor which has to be determined numerically. We have chosen σ1 such that the test delivers the
desired rejection probability of 0.01 under the null at the normal model. This makes the RMCD look
unjustifiably good in comparison to the other estimators.
All calculations were done in R 2.9.1, employing routines from the packages mvtnorm (random sam-
pling), ggm (constrained estimation, i.e. the function hG), ICSNP (Tyler matrix) and rrcov (RMCD).
The simulations were run on a 2.83 GHz Intel Core2 CPU. The computation of Tyler’s estimator las-
ted less then a second, the RMCD less than 3 seconds, all 1225 edge-exclusion tests took about 37
seconds. Figure 5.7 was created using Graphviz.
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5.6 On the hypothesis of conditional independence in the IC model

Abstract. This note identifies the subset of the parameter space that is associated with hypothesis of
conditional independence in the (semi-parametric) independent-components-model, and puts it into
relation with other, similar hypotheses that might be of interest. In Section 5.6.4 some thoughts on a
possible likelihood-ratio test procedure (assuming the marginal densities to be known) are gathered,
and in Section 5.6.5 a simulated example is presented.

5.6.1 The independent-components-model (ICM)

We consider the symmetric independent components model (SICM) as described in Oja et al. (2010).
Consider a p-dimensional (p ≥ 3) random vector X that we assume to be generated by

X = ΛZ + µ, (5.20)

where

a) Z = (Z1, ...,Zp) is a random vector in Rp with independent components,

b) each component Zi, i = 1, ..., p, has a (univariate) Lebesgue-density gi,

c) is symmetric around 0, i.e. Zi ∼ −Zi, and

d) satisfies med |Zi| = 1.

e) The mixing matrix Λ = (λi j)i, j=1,...,p ∈ R
p×p has full rank, and µ = (µ1, ..., µp) is a p-dimensional

vector.

We use furthermore the following notation. Let

f) Γ = (γi j)i, j=1,...,p be the inverse of Λ,

g) g the density of Z, g(z1, ..., zp) =

p∏
i=1

gi(zi), and

h) f the density of X,

f (x1, ..., xp) = | det(Γ)|g
(
Γ(x − µ)

)
= | det(Γ)|

p∏
i=1

gi
( p∑

j=1

γi j(x j − µ j)
)
,

where x = (x1, ..., xp).

Assumption d) is an unusual standardization condition, which does not require the existence of mo-
ments. If, however, second moments of Z exist, X has covariance matrix

Σ = ΛDΛT =
( p∑

k=1

var(Zk)λikλ jk
)
i, j=1,...,p

,

where D = diag(d11, ..., dpp) = diag(var(Z1), ..., var(Zp)).

Lemma 5.6.1 The mixing matrix Λ is unique up to permutation and sign change of the columns if
and only if g fulfils condition C5.6.2.
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Condition C5.6.2 At most one of g1, ..., gp is Gaussian.

Proof of Lemma 5.6.1. This is a well known result in the ICA literature, see e.g. Comon (1994),
Hyvärinen et al. (2001) or also Theis (2004). �

The remaining paragraph of this section is spent on formalizing what is meant by “unique up to
permutation and sign change of the columns”. Call P ∈ Rp×p a permutation and sign change matrix
(PSM) if it has in each line and in each column exactly one non-zero element, and that is 1 or −1. Any
PSM P has the following properties.

• P is orthogonal, P−1 is PSM, the product of two PSM’s is also PSM.

• For any matrix M ∈ Rp×p, applying P from the right permutes and changes the signs of the
columns of M.

• Applying P from the left permutes and changes the signs of the rows of M.

Now let Z,Λ,µ satisfy assumptions a)—e) and P be PSM. If X = ΛZ + µ, i.e. Z = Γ(X − µ), then,
with Z̃ = PZ, Γ̃ = PΓ, and Λ̃ = ΛP−1, we also have X = Λ̃Z̃ + µ, i.e. Z̃ = Γ̃(X − µ), and Z̃, Λ̃,µ
satisfy assumptions a)—e) as well. Lemma 5.6.1 tells that, if C5.6.2 holds, this is only true if P is
PSM.

5.6.2 Conditional independence

We use µ and Γ (rather than Λ) as parametrization, which is motivated by Lemma 5.6.4. Thus define
ϑ = (µ, vec Γ) and write Θ for the set of all possible parameters. The latter is a strict subset of Rp+p2

,
since we require Γ to be non-singular. Now let X = (X1, X2, X3) where X1, X2 and X3 are subvectors
of sizes p1, p2 and p3, respectively, with pi ≥ 1, i = 1, 2, 3, and p1 + p2 + p3 = p. We want to test the
hypothesis

H0 : X1⊥⊥ X2|X3,

that is, X1 and X2 are conditionally independent given X3. This can be expressed as a condition on Γ.

Condition C5.6.3

min
{ p1∑

j=1

|γi j|,

p2∑
j=p1+1

|γi j|
}

= 0 for all i = 1, ..., p,

that is in words, in each row of Γ, either all elements in the first block column (of width p1) or all
elements in the second block column (of width p2) are zero.

Call Θ0 the set of all ϑ ∈ Θ satisfying C5.6.3.

Lemma 5.6.4 X1⊥⊥ X2|X3 for all choices of g if and only if Γ fulfils C5.6.3.

Proof. Use the density characterization of conditional independence,

X⊥⊥ Y |Z ⇔ f(X,Y,Z)(x, y, z) = h1(x, z)h2(y, z) (5.21)

for some functions h1, h2 (cp. Lauritzen (1996), p. 29), and recall the density f of X,

f (x1, ..., xp) = | det(Γ)|
p∏

i=1

gi
( p∑

j=1

γi j(x j − µ j)
)
.
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Then, if C5.6.3 is true, f factorizes according to (5.21). On the other hand, if C5.6.3 is not true, one
can find densities g1, ..., gp such that f does not factorize according to (5.21). �

Remark. It has not been claimed or proven that, for any specific g that fulfils C5.6.2, X1⊥⊥ X2|X3 ⇒

C5.6.3, but it seems plausible.

So we identify our original hypothesis H0 : X1⊥⊥ X2|X3 with the equivalent hypothesis

H′0 : ϑ ∈ Θ0.

This is not a “nice” condition, in particular Θ0 is not a linear space, and it is not clear how to test
this hypothesis. Any estimate Γ̂ may deliver the rows in a totally different order than the true Γ, from
which we may assume our data to be generated. In order to overcome this issue one could impose an
ordering on the lines of Γ, according to how far the entries in the first block column and in the second
block column are away from zero. Then one faces a variety of technical questions, such as, by which
metric to measure the distance to zero and how to deal with the multiple sort criteria (first and second
block column). Maybe the following approach is more promising. We write Θ0 as a union of several
linear hypotheses Θq. Let

Q′ = {q = (i1, ..., ik) | 1 ≤ i1 < ... < ik ≤ p, 0 ≤ k ≤ p}

be the set of all possible ordered tuples out of {1, ..., p}, and define Θq for any q = (i1, ..., ik) ∈ Q, as
follows. We say ϑ ∈ Θq if ϑ ∈ Θ0 and

γi j = 0 for all (i, j) ∈
(
{i1, ..., ik} × {1, ..., p1}

)
∪

(
({1, ..., p} \ {i1, ..., ik}) × {p1 + 1, ..., p2}

)
.

In words, Θq consists of those ϑ ∈ Θ0 for which Γ has zero-entries in the first block column in all lines
i1, ..., ik in q and zero-entries in the second block column in all other lines. The tuple q then contains
those rows of Γ which are zero in the first block column. Apparently⋃

q∈Q′
Θq = Θ0.

Some of the 2p sets Θq, q ∈ Q′, can be right away identified as empty. If k < p2 or k > p2 + p3,
then ϑ ∈ Θq (k being the length of q) implies that Γ can not have full rank. For instance, take k < p2.
If ϑ ∈ Θq, then only k rows of Γ may have non-zero entries in the second block column, i.e. the p2
column vectors in the second block column only span at most a k-dimensional subspace ofRp, while a
p2-dimensional subspace would be needed in order to have all columns of Γ span all ofRp. Therefore
define Q as follows,

Q = Q(p1, p2, p3) = {q = (i1, ..., ik)| 1 ≤ i1 < ... < ik ≤ p, p2 ≤ k ≤ p2 + p3 },

and we have⋃
q∈Q

Θq = Θ0.

Q has N = N(p1, p2, p3) =
∑p2+p3

k=p2

(
p
k

)
elements.
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5.6.3 Related hypotheses

In the previous section we translated our hypothesis H0 : X1⊥⊥ X2|X3 into the (somewhat unsatisfac-
tory) condition C5.6.3 on the inverse Γ of the mixing matrix Λ. It is an open problem to translate H0
into a workable equivalent condition on the mixing matrix Λ itself. In this section I will review two
related hypotheses.
Assume in the following that the covariance matrix of Z exists. Partition Λ (and Γ as well) according
to the partitioning of X, i.e. let

Λ =

Λ11 Λ12 Λ13
Λ21 Λ22 Λ23
Λ31 Λ32 Λ33

 ,
where Λi j ∈ R

pi×p j , i, j = 1, 2, 3. Let furthermore K = Σ−1 = ΓT D−1Γ, the inverse of the covariance
matrix of X, be partitioned likewise

K =

K11 K12 K13
K21 K22 K23
K31 K32 K33

 .
We call K the concentration matrix of X. Consider the following two hypotheses.

I0: Λ12 = ΛT
21 = 0, Λ31 = 0, Λ32 = 0, thus Λ looks like this:

Λ =

Λ11 0 Λ13
0 Λ22 Λ23
0 0 Λ33

 .
Using some imagination we find the non-zero blocks to form an (admittedly tilted) “V”, and also say
“Λ has a V-shape.”

J0: K12 = KT
21 = 0, i.e.

K =

K11 0 K13
0 K22 K23

K31 K32 K33

 .
This means X1 and X2 are partially uncorrelated given X3. In the multivariate normal model (i.e.
g1, ..., gp are all normal) this is equivalent to X1⊥⊥ X2|X3.
In the remainder of this section we prove

Proposition 5.6.5 I0
⇒

: H0
⇒

: J0,
where we understand H0 as X1⊥⊥ X2|X3 for all possible g.

For the proof we need the following two lemmas.

Lemma 5.6.6 Λ has V-shape if and only if its inverse Γ is V-shaped as well.
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Proof. By applying the following result about partitioned matrices twice(
A B
C D

)−1

=

(
A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

)
with E = D−CA−1B, cp. e.g. Magnus and Neudecker (1999), p. 11 or Harville (1997), p. 99, we find
that the inverse ofΛ11 0 Λ13

0 Λ22 Λ23
0 0 Λ33

 is

Λ
−1
11 0 Λ−1

11 Λ13Λ−1
33

0 Λ−1
22 Λ−1

22 Λ23Λ−1
33

0 0 Λ−1
33

 .
The proof is complete. �

Lemma 4 tells that the basic difference between I0 and C5.6.3 is that, after appropriate ordering of the
rows, we impose here on Γ the same partitioning (p1, p2, p3) along the rows as along the columns. I0
is apparently a stronger condition than C5.6.3 and hence than H0.

Lemma 5.6.7 J0 holds if and only if

γ•iD
−1γ• j = 0 for all i = 1, ..., p1 and j = p1 + 1, ..., p2, (5.22)

where γ•i denotes the i-th column of Γ, i = 1, ..., p. We might put (5.22) in words as: Each column in
the first block column is orthogonal w.r.t. D to every column in the second block column.

Proof. The proof is done by writing K = ΓT D−1Γ componentwise:

ki j = γ•iD
−1γ• j =

p∑
k=1

γkiγk j

var(Zk)
, i, j = 1, ..., p.

�

Proof of Proposition 5.6.5. By Lemmas 5.6.6 and 5.6.7 we expressed I0 and J0, respectively, as
conditions on Γ. Then it is easy to see that H0 ⇒ J0, H0 : J0, I0 ⇒ H0 and I0 : H0. As for the
last result, it should be noted that any matrix Γ satisfying H0 can not be necessarily be turned into a
V-shape matrix by a PSM transformation (that is, basically, by re-ordering the rows), simply because
a PSM does not change the number of zero entries. I0 is a stricter condition than H0 even if we allow
for this PSM-ambiguity. �

5.6.4 Likelihood-ratio-test

In the following assume that the marginal densities g1, ..., gp are known and satisfy C5.6.2. Then we
can test

H′0 : ϑ ∈ Θ0 vs. H′1 : ϑ < Θ0

using the likelihood-ratio approach. Let X = (X(1), ..., X(n)) be an i.i.d. random sample from (5.20).
Then by h) the likelihood of ϑ = (µ, vec Γ) at X in the SICM is

L(ϑ,X) = | det(Γ)|n
n∏
ν=1

p∏
i=1

gi
( p∑

j=1

γi j(X
(ν)
j − µ j)

)
, (5.23)
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and the negative log-likelihood is

l(ϑ,X) = − log L(ϑ,X) = −n log
(
| det(Γ)|

)
+

n∑
ν=1

p∑
i=1

− log
(
gi
( p∑

j=1

γi j(X
(ν)
j − µ j)

))
.

The likelihood-ratio for H′0 vs. H′1 then is

LR(X) =
maxϑ∈Θ0 L(ϑ,X)
maxϑ∈Θ L(ϑ,X)

,

where 0 ≤ LR(X) ≤ 1, and large values of LR(X) suggest that H′0 is true. To solve the constrained
optimization problem (OP) in the numerator, we may use⋃

q∈Q

Θq = Θ0,

thus

max
ϑ∈Θ0

L(ϑ,X) = max
q∈Q

max
ϑ∈Θq

L(ϑ,X).

Each of the (technically constrained) OP’s maxϑ∈Θq L(ϑ,X) can then be solved as an unconstrained
OP in a lower dimensional space by simply putting the respective entries of Γ to zero in (5.23). This
can be done using standard non-linear, multivariate optimization techniques such as quasi-Newton
methods. Thus LR(X) can be determined solving (at most) N + 1 unconstrained (up to (p2 + p)-
dimensional) OP’s. It is equivalent to consider the negative log-likelihood-ratios

λq(X) = − log
(maxϑ∈Θq L(ϑ,X)

maxϑ∈Θ L(ϑ,X)

)
= min

Θq
l(ϑ,X) −min

Θ
l(ϑ,X)

and

λ(X) = − log LR(X) = min
q∈Q

λq(X) = min
q∈Q

(
min
Θq

l(ϑ,X)
)
−min

Θ
l(ϑ,X). (5.24)

It should be noted, that, by fixing the marginal densities g1, ..., gp, the rows of Γ and also the rows
of any ML-estimate Γ̂ are fixed, with one restriction though: only if g1, ..., gp are all different. If
two of them are identical, the corresponding rows of Γ and Γ̂ can be switched without changing the
distribution of X, respectively the likelihood. Hence equal marginal densities reduce the number of
OP’s that need to be solved in (5.24). For instance, if all g1, ..., gp are equal, then due to the symmetry
of the likelihood-function, λq1(X) = λq2(X) for any two tuples q1 and q2 with |q1| = |q2|, and the
corresponding ML-estimates are equal up to permutation of the rows. Hence only p3 + 2, instead of
N + 1 OP’s need to be solved.

The rest of this section (and this little note) contains not-very-far-pursued ideas that have to be regar-
ded more or less as speculation at this point. One would expect, according to general LR-theory, a
result of the following type to hold. For all ϑ ∈ Θq,

2λq(X)
L
−→ χ2

d(q),

where d(q) is the number of zero-entries in Γ associated with Θq, i.e. d(q) = |q|p1 + (p − |q|)p2. We
can use this to device a Bonferoni-type multiple-testing procedure, i.e. we would reject H′0 at the
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significance level α if we can reject ϑ ∈ Θq for each q ∈ Q at the significance level α
N . But of course in

this approach the rejection region may be unnecessarily small (having far less than probability α under
the null hypothesis). We are actually interested in the asymptotic distribution of λ(X) = minq∈Q λq(X).
Maybe one can show a result of the type

2λ(X)
L
−→ χ2

d(ϑ),

for (at least some) ϑ ∈ Θ0, but where d(ϑ) may depend on the actual choice of the true parameter ϑ.
The case that ϑ lies in more than one Θq certainly deserves a separate treatment. From there one may
derive an upper bound on the asymptotic distribution of λ(X) for all ϑ ∈ Θ0, something in the form of

2λ(X)
L
−→ Yϑ � Y

for all ϑ ∈ Θ0 and some variables Yϑ and Y , of which it suffices to identify the distribution of Y . Here
� shall denote stochastically smaller, i.e. the cdf of the left-hand side variable dominates the cdf of
the right-hand side variable. This would allow to construct an asymptotic level-α-test by rejecting H′0
if 2λ(X) is larger than the (1 − α)-quantile of Y .

The main drawback of the LR-approach is the (unrealistic) assumption of known marginal densities
g1, ..., gp and the dependence of the results on their choice. Distribution-free methods are desirable.
However, one can extend this approach by assuming g1, ..., gp to belong to some parametric family
and thus fit g1, ..., gp along with µ and Γ using ML. Parametric families for the marginal densities have
already been considered in ICA, e.g. the Pearson system in Karvanen and Koivunen (2002) (although
the estimation there is moment-based, rather than ML). Or, if we think of the data as “basically normal,
but with heavier tails”, we may use Student’s t-family. In the univariate location-scale estimation
problem the MLE of the t-distribution can be regarded as a robustified normal MLE, giving less
weight to outlying observations.

5.6.5 A Monte-Carlo simulation

In order to investigate the practical feasibility of this LR-approach we carried out Monte-Carlo simu-
lations of a few very simple situations. The results of two of them (Situation 1 and 2, see below) are
reported in detail. We may take marginal densities from these popular examples of symmetric density
families:

• Student’s t-family (cp. e.g. Bilodeau and Brenner (1999), p. 208),

gtν(y) = cν
(
1 +

y2

ν

)− ν+1
2 with cν =

Γ( ν+1
2 )

√
νπΓ( ν2 )

(5.25)

The parameter ν is integer-valued. tν realizes heavy-tailed distributions, where t1 is the Cauchy-
distribution and tν

L
−→ N(0, 1) as ν→ ∞.

• the power exponential family (cp. e.g. Bilodeau and Brenner (1999), pp. 209,239),

gα(y) = cα exp
(
−

1
2
|y|2α

)
with cα =

(
2(1+ 1

2α ) Γ
(
1 +

1
2α

))−1
(5.26)

The parameter α is non-negative and gα has lighter than normal tails if α > 1, respectively
heavier tails if α < 1.
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Of course, we can not directly take the densities above, because they do not satisfy the standardi-
zation condition d). But for any symmetric (around 0) g, the density h = ηg(η ·) does fulfil d), if
η = med |X|, X ∼ g, which implies

∫ η

−∞
h(x)dx = 0.75.

Situation 1

The model parameters are as follows:

• p = 3, which is the smallest non-trivial number for the problem we investigate,

• µ = 0,

• Λ = Λ1 =
1

10

 5 1 2
0 4 −2
0 2 4

, which corresponds to Γ = Γ1 =

 2 0 −1
0 2 1
0 −1 2

, i.e. ϑ ∈ Θq is

true only for q = (2, 3).

• The marginal densities are all equal and taken from the power exponential family (5.26) with
α = 1.5, correctly adjusted as described above. The identical densities only necessitate the
computation of three optimization problems.

• We looked at two different sample sizes, n = 30 and n = 60.

We generated data from this model for each sample size 4000 times and calculated in each run the test
statistic λ(Xn) as described in the previous section. This was done using the R function optim() from
the package statswith the following options (as far as they differ from the default) method="BFGS",
maxit=100 and the starting values µ0 = (0.5, 0.5, 0.5) and

Γ0 =

 3 1 2
2 1 3
1 2 2

 .
Of course, for the ML optimization under the hypotheses different initial values were used, since
some entries of Γ0 are restricted to zero, but in all cases all (non-restricted) parameters were initially
set to one of 1, 2 or 3. Each of the altogether 3 × 4000 optimizations took on the average less than
one second, resulting in a total runtime of the simulation of less than three hours (on an Intel Core2
processor with 2.66 GHz). To generate data from the power exponential distribution we used the
function rpowerexp() from the package rmutil by J. K. Lindsey, which can be downloaded e.g.
from http://popgen.unimaas.nl/˜jlindsey/rcode/rmutil.zip.

Situation 2

The set-up is exactly the same as in Situation 1 (including parameters and starting values of the
optimization routine), except that we take as mixing matrix

Λ = Λ2 =
1
4

 2 0 1
0 2 −1
0 0 2

 , which corresponds to Γ = Γ2 =

 2 0 −1
0 2 1
0 0 2

 ,
i.e. now ϑ ∈ Θq is true for q = (2, 3) and q = (2).
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Figure 5.10: Simulated cdf of 2λ for different true Γ’s and sample sizes

The results of the experiments in Situations 1 and 2 are depicted in Figure 5.10. The empirical dis-
tribution functions of 2λ(Xn) (generated each time by 4000 runs) are shown along with the cdf of the
conjectured asymptotic distribution χ2

3. The reddish colors both correspond to Situation 1, the bluish
colors to Situation 2. The lighter shade in each case represents the sample size n = 30, the darker tone
the larger sample size n = 60.
Although these results look quite promising, it must also be mentioned that the ad-hoc optimization
approach we used does not always deliver reliable results. It is sensitive to the choice of the initial
value. Moreover, in similar situations where we sampled also from the power exponential distribution,
but with different α-values 0.5, 1 and 1.5, the algorithm did not always converge and gave clearly
wrong results (negative test statistic), although convergence was reported. Both occurred in up to
15% of the trials.
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Appendix A

Matrix differential calculus

A.1 On how to differentiate matrix-valued functions w.r.t. matrices

This section is on what its title says, it deals with Jacobi-matrices, i.e. collections of partial derivatives,
and how to compute them. It does not deal with theoretical background of differentiability and ques-
tion like how and under what conditions the Jacobi-matrix is related to the best linear approximation
of a function in the vicinity of a point. For such matters as well as for further reading we refer to the
book Magnus and Neudecker (1999), abbreviated MN below. To sum it up, we are on the safe side, if
all partial derivatives are continuous, the function is then called continuously differentiable. We will
henceforth make this assumption and use the terms derivative and Jacobi-matrix synonymously. The
Jacobian is the determinant of this matrix. Recall the important formula concerning the Kronecker
product, cf. MN, p. 30,

vec
(
ABC) = (CT ⊗ A) vec B, (A.1)

for matrices A, B and C of sizes such that the product ABC is defined, which implies for A ∈ Rn×p

and B ∈ Rp×q

vec
(
AB) = (BT ⊗ In) vec A = (BT ⊗ A) vec Ip = (Iq ⊗ A) vec B. (A.2)

The functions we wish to study of are of the type

F : S ⊂ Rp×p → Rp×p. (A.3)

As an example take matrix inversion, i.e. F(X) = X−1. Then S is the set of all non-singular p × p
matrices. Of course, what is said in the following also applies to functions of the more general form
F : S ⊂ Rn×p → Rm×q, thus including vectors and scalars as special cases. By abstaining from
maximum generality in notation we avoid the hassle of too many indices.
Let DF(X) denote the derivative of F at the point X. Before we come to computing DF(X) we have
to know what DF is. Clearly, DF(X) is the collection of all p4 partial derivatives

∂ fi, j(X)
∂xk,l

, i, j, k, l = 1, ..., p.

The only question is how they are arranged. For example, if we agree that DF(X) is a p2 × p2 matrix,
what do we put in the upper left p × p block? All partials of f1,1 with respect to X or all partials of
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F with respect to x1,1? Magnus and Neudecker (1999, pp. 95,171–174) advise to do neither, instead
identify X and F with vec X and vec F, respectively, and thus define DF(X) as the Jacobi-matrix of
vec F with respect to vec X. This fixes the order of the partials within DF(X) to

[DF(X)](i−1)p+ j,(k−1)p+l =
∂ fi, j(X)
∂xk,l

.

There are very good reasons for this ordering, as will become apparent shortly. Behind it is the basic
idea that a mapping from matrices to matrices is essentially a mapping from vector to vector. Thus,
consequently using the canonical matrix-vector mapping vec matrix differential calculus in principle
boils down to ordinary multivariate differential calculus. For the problem at hand matrices are most of
all notational representations of vectors that allow very nice and concise formulations of complicated
functional dependencies, like e.g. matrix inversion.
Now obviously we can computeDF(X) by determining p4 partial derivatives. It is just as obvious that
we want to avoid that. We do not even want to bother how e.g. matrix inversion is written element-
wise in dimensions higher than two. In order to motivate the basic rules of matrix differential calculus
we take a brief look at the univariate case. There are two fundamental rules for computing derivatives,
the chain rule,

(g ◦ h)′(x) = g′(h(x))h′(x), x ∈ R, (A.4)

and the multiplication formula

(gh)(x) = g′(x)h(x) + g(x)h′(x), x ∈ R. (A.5)

These two rules are indeed very powerful. Together with the basics (derivatives of linear and constants
functions) and results about Taylor expansions they suffice to compute the derivative of basically any
differentiable function f : R→ R. For example, differentiating both sides of

1 = x
1
x

by making use of (A.5) yields the derivative of f : x 7→ 1
x ,

f ′(x) = −
1
x2 .

Fortunately there exist multivariate analogues to (A.4) and (A.5), which we present in the following.
The chain rule is straightforward, cp. MN, pp. 91, 96,

D(G ◦ H)(X) = DG(H(X))DH(X) (A.6)

Note that the definition of DF(X) as the derivative of vec F w.r.t. vec X ensures that this formula also
applies to matrix valued functions.
The core of the matrix calculus is the matrix product, for which there is indeed a differentiation
rule similar to (A.5). However, its formulation can apparently not be a generalization of (A.5) as
straightforward as (A.6) generalizes (A.4): Simply replacing scalar-valued functions by vector-valued
functions and derivatives by Jacobi-matrices in (A.5) cannot lead to a sensible formula, since the
dimensions of left- and right-hand side of the equation do not fit. In order to state a multivariate
multiplication rule we have to resort to another term, the differential, cf. MN, p. 81. The differential
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of the function F : S ⊂ Rp×p → Rp×p at the point X ∈ Rp×p with increment C ∈ Rp×p is denoted by
dF(X; C) and defined as

dF(X; C) = mat
p×p

(
DF(X) vec C

)
. (A.7)

Thus F(X0)+dF(X; X−X0) is the affine linear approximation of F(X) by means of F and its derivative
DF at the point X0. This means for “well behaved” functions F,

F(X) − F(X0) − dF(X; X − X0) = o
(
||X − X0||

)
as X → X0.

Note that dF is of the same shape as F, that is a p × p matrix here.

Remark. Usually one writes dX for the increment C, which is and stays formally an arbitrary point
in Rp×p even though in light of the approximation we think of it as small in some sense. Furthermore
one neglects the dependence of the differential dF on the increment dX, i.e. one writes dF(X) instead
of dF(X; dX). Then (mis-)using X as a variable name and as a function name (i.e. depending on the
context dX may denote a point in Rp×p or the differential of the function X) is in concordance with
the chain rule and leads to a (maybe mathematically slightly unsound but) very handy notation for
practical purposes. Let F be a function of X, then by (A.7):

vec dF(X) = DF(X) vec dX. (A.8)

If now X is in turn a function of, say, Y , i.e.

vec dX(Y) = DX(Y) vec dY, (A.9)

then we have for the composite function F ◦ X via the chain rule

vec d(F ◦ X)(Y)
(A.7)
= D(F ◦ X) vec dY

(A.6)
= DF(X(Y))DX(Y) vec dY

(A.9)
= DF(X(Y)) vec dX(Y)

If we drop the Y on both sides of the equation and write F(X) for F ◦ X, then the last equation reads
as

vec dF(X) = DF(X) vec dX, (A.10)

which is exactly the same as (A.8). Thus (A.8), which is essentially the definition of differential, is,
when X is interpreted as a function, a very concise way of writing down the chain rule.

Here is the multivariate multiplication formula stated in terms of differentials

d(GH)(X; C) = dG(X; C)H(X) + G(X)dH(X; C) (A.11)

or in short notation

d(GH) = (dG)H + GdH, (A.12)

cp. MN, p. 148. By vectorizing (A.11) using (A.2) we obtain

D(GH)(X) =
(
G(X)T ⊗ Ip

)
DH(X) + (Ip ⊗ H(X)

)
DG(X). (A.13)

Thus we have established the chain rule (A.6) and the multiplication rule (A.13) for differentiating
matrices. For practical computational matters and for memorizing the formulations in terms of diffe-
rentials, (A.8) and (A.12), respectively, are much more convenient.
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A.2 Differentiating w.r.t. symmetric matrices

We use the notation of Section 4.2, in particular recall m = p(p + 1)/2, the function θ : Rm → Sp :
a 7→ matp×p Dpa and Sp, the set of all real, symmetric p × p matrices. Let

f : Rp×p → Rq

be continuously differentiable, and define

g : Sp → Rq : A 7→ f (A).

Is g differentiable? Apparently not, the set {vec S | S ∈ Sp} contains no inner point in Rp2
. However,

this thesis is concerned with shape estimators, i.e. random variables with realizations in Sp, and
differentiable functions thereof. Computing derivatives of such functions is a vital part of many proofs
in the thesis. We have to clarify in what sense g is differentiable, and what the derivative of g is.
Any S ∈ Sp can perceived as a representation of v(S ) ∈ Rm, and consequently g as a representation
of the function

ḡ : Rm → Rq : a 7→ f (θ(a)) = f (matp×p Dpa),

which is very well continuously differentiable. Then the derivative of g at a point S ∈ Sp, denoted by
Dg(S ), is a representation of the derivative Dḡ(v(S )) ∈ Rq×m. This representation is a q × p2 matrix,
which should satisfy

Dg(Dps)Dpc = Dḡ(s)c (A.14)

for all s, c ∈ Rm, meaning that the corresponding differentials, cf. (A.7), of g and ḡ are identical.
Noting that Dḡ(s) = D f (θ(s))Dp by the chain rule, (A.14) is equivalent to

Dg(S )Dpc = D f (S )Dpc,

for all s, c ∈ Rm, where S = θ(s), which is again equivalent to

Dg(S )Dp = D f (S )Dp for all S ∈ Sp (A.15)

This relation does not uniquely specify Dg(S ) as a function of D f (S ). If we let [B]k denote the kth
column of a matrix B, then (A.15) fixes all columns

[Dg(S )](i−1)p+i, 1 ≤ i ≤ p.

Furthermore, for any pair 1 ≤ i < j ≤ p,

[Dg(S )](i−1)p+ j + [Dg(S )]( j−1)p+i

is also fixed. Adding one more requirement, that columns (i − 1)p + j and ( j − 1)p + i shall be equal,
because they contain partial derivatives with respect to the same variable, fully fixes Dg(S ) to

Dg(S ) = D f (S )Mp for all S ∈ Sp.

Final remark. This derivative for symmetric matrices is the same as defined in Srivastava and Khatri
(1979) and Bilodeau and Brenner (1999).
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Vieweg Studium: Grundkurs Mathematik. Wiesbaden: Vieweg. (1982)

Fried, R., Didelez, V.: Decomposability and selection of graphical models for multivariate time series.
Biometrika 90(2), 251–267 (2003)

Gather, U., Imhoff, M., Fried, R.: Graphical Models for Multivariate Time Series form Intensive Care
Monitoring. Statistics in Medicine 21, 2685–2701 (2002)

Gervini, D.: The influence function of the Stahel–Donoho estimator of multivariate location and
scatter. Stat. Probab. Lett. 60(4), 425–435 (2002)

Gervini, D.: A robust and efficient adaptive reweighted estimator of multivariate location and scatter.
J. Multivariate Anal. 84(1), 116–144 (2003)

Gervini, D.: Robust functional estimation using the median and spherical principal components. Bio-
metrika 95, 587–600 (2008)

Gnanadesikan, R., Kettenring, J.R.: Robust estimates, residuals, and outlier detection with multires-
ponse data. Biometrics 28(1), 81–124 (1972)

Gottard, A., Pacillo, S.: On the impact of contaminations in graphical Gaussian models. Stat. Methods
Appl. 15(3), 343–354 (2007)

Gottard, A., Pacillo, S.: Robust concentration graph model selection. Comput. Statist. Data Anal.
54(12), 3070–3079 (2010)

Haldane, J.B.S.: Note on the median of a multivariate distribution. Biometrika 35, 414–415 (1948)

Hallin, M., Oja, H., Paindaveine, D.: Semiparametrically efficient rank-based inference for shape. II:
Optimal R-estimation of shape. Ann. Stat. 34(6), 2757–2789 (2006)

Hampel, F.R.: A general qualitative definition of robustness. Ann. Math. Stat. 42, 1887–1896 (1971)

Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust statistics. The approach based
on influence functions. Wiley Series in Probability and Mathematical Statistics. New York etc.:
Wiley (1986)

Harville, D.A.: Matrix algebra from a statistician’s perspective. New York, NY: Springer. (1997)

Hettmansperger, T., Randles, R.: A practical affine equivariant multivariate median. Biometrika 89,
851–860 (2002)

Hettmansperger, T.P., McKean, J.W.: Robust nonparametric statistical methods. Kendall’s Library of
Statistics. 5. London: Arnold. New York, NY: Wiley. (1998)

Huber, P.J., Ronchetti, E.M.: Robust statistics. 2nd edn. Wiley Series in Probability and Statistics.
Hoboken, NJ: Wiley (2009)

Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley (2001)

Karvanen, J., Koivunen, V.: Blind separation methods based on Pearson system and its extensions.
Signal Process. 82(4), 663–673 (2002)

108



Kemperman, J.H.B.: The median of a finite measure on a Banach space. In: Dodge, Y. (ed.) Statistical
Data Analysis Based on the L1-Norm and Related Methods, pp. 217–230. Amsterdam: North-
Holland (1987)

Kent, J.T., Tyler, D.E.: Constrained M-estimation for multivariate location and scatter. Ann. Stat.
24(3), 1346–1370 (1996)

Koltchinskii, V., Dudley, R.: On spatial quantiles. In: Korolyuk, V. et al. (ed.) Skorokhod’s ideas
in probability theory., pp. 195–210. Kiev: Institute of Mathematics of NAS of Ukraine. Proc. Inst.
Math. Natl. Acad. Sci. Ukr., Math. Appl. 32 (2000)

Kuhnt, S., Becker, C.: Sensitivity of graphical modeling against contamination. In: Schader, Martin et
al. (ed.) Between data science and applied data analysis (Proceedings of the 26th annual conference
of the Gesellschaft für Klassifikation e. V., Mannheim, Germany, July 22–24, 2002), pp. 279–287.
Berlin: Springer (2003)

Lauritzen, S.L.: Graphical models. Oxford Statistical Science Series. 17. Oxford: Oxford Univ. Press
(1996)

Locantore, N., Marron, J., Simpson, D., Tripoli, N., Zhang, J., Cohen, K.: Robust principal component
analysis for functional data. (With comments). Test 8(1), 1–73 (1999)
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