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Summary

Data stream algorithms obtain their input as a stream of data elements that have to be pro-
cessed immediately as they arrive using only a very limited amount of memory. They solve a
new class of algorithmic problems that emerged recently with the growing importance of com-
puter networks and the ever-increasing size of the data sets that are processed algorithmically.
In this thesis data stream algorithms for basic problems under extreme space restrictions are
developed, namely counting and random sampling. Then we apply these algorithms to im-
prove the space complexity of the celebrated data stream algorithm for the computation of
frequency moments by Alon, Matias, and Szegedy for very long data streams.

Lower bounds on the space complexity of data stream algorithms are usually proved
by using communication complexity arguments. Information complexity is a related field
that applies Shannon’s information theory to obtain lower bounds on the communication
complexity of functions. The development of information complexity is closely linked to the
recent interest in data stream algorithms since important parts of this theory have been
developed to prove a lower bound on the space complexity of data stream algorithms for
the frequency moments. In this thesis we prove an optimal lower bound on the multi-party
information complexity of the disjointness function, the underlying communication problem
in the proof of the lower bound on the space complexity of data stream algorithms for the
frequency moments. Additionally, we generalize and simplify known lower bounds on the
one-way communication complexity of the index function by using information complexity
and we present the first attempt to apply information complexity to multi-party one-way
protocols in the number on the forehead model by Chandra, Furst, and Lipton.
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Chapter 1

Introduction and Overview

The two main topics of this thesis are information complexity, an information theoretical proof
method for lower bounds on the communication complexity of functions, and the design of
data stream algorithms for basic problems.

1.1 Data Stream Algorithms

With the growing importance of the Internet – and computer networks in general – a new type
of algorithmic problems emerged. Network devices like routers must process incoming packets
immediately and they do not have enough memory to store a lot of information about each
packet that is processed. Nevertheless, information about these packets is valuable and can
be put to good use, for example to optimize the routing of packets or for an early detection
of denial of service attacks. Generally, an algorithm for this type of problem obtains its
input sequentially as a stream of data elements, for example network packets, that have to
be processed immediately as they arrive. The space complexity of the algorithm should be
significantly smaller than the length of the input stream. Algorithms in this scenario are
usually called data stream algorithms.

The second contribution to the growing interest in data stream algorithms besides network
problems is the ever-increasing size of the data sets that have to be processed algorithmically.
Even if an algorithm can access the input in an arbitrary order in principle, a sequential
access of the input might be preferable or even the only solution that is practically feasible
for efficiency reasons. For example, modern hard disks allow a random access of the stored
data, but a sequential access to the data is faster by orders of magnitude due to the long
access times that are caused by the slow mechanical components of a hard disks. This
problem is multiplied if the data is stored on dozens, hundreds, or even thousands of hard
disks that are accessed via a relatively slow computer network. Hence, in this situation a
data stream algorithm may be a better solution than an algorithm that accesses the input
randomly. Google introduced MapReduce, a practical distributed programming model for
large data sets [33]. This model is closely related to data stream algorithms [37]. Google use
MapReduce to handle the huge data sets that are needed for the operation of their search
engine 1, today’s largest Internet search engine.

A third contributor to the success of data stream algorithms are databases. The updates to
a database can be considered as a data stream. Data stream algorithms are used to compute

1http://www.google.com/
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2 Chapter 1. Introduction and Overview

small “summaries” of a database that fit easily into the main memory of a computer and can
be used for query optimization in relational databases.

The recent increase in theoretical research on data stream algorithms was sparked by the
seminal work of Alon, Matias, and Szegdy [3]. Their Gödel Prize-winning paper describes
space-efficient data stream algorithms for the computation of the frequency moments of data
streams. The algorithmic techniques that were introduced in this paper found numerous
applications to data stream problems beyond frequency moments.

In Chapter 4 we consider data stream algorithms for basic problems under extreme mem-
ory restrictions, namely counting and sampling. Then we will apply these data stream algo-
rithms to the computation of frequency moments of very long data streams.

1.2 Information Complexity

Communication complexity, introduced by Yao [76] in 1979 as a simple model of distributed
computations, measures the amount of communication that is needed for the computation of
a function if the arguments of the function are distributed among several parties. Nowadays,
communication complexity is an elaborate theory that has found applications in many fields
of complexity theory beyond distributed computation. Lower bounds on the space complexity
of data stream algorithms are usually proved using communication complexity. Information
complexity is a related field that uses information theoretical methods to obtain lower bounds
on the communication complexity of functions. Although information complexity was con-
ceived by Chakrabarti, Shi, Wirth, and Yao [26] independently of the developments in the
field of data stream algorithms, today information complexity is closely tied to data stream
algorithms. This is due to the fact that important refinements of this theory were introduced
by Bar-Yossef, Jayram, Kumar, and Sivakumar [13] to prove a lower bound on the space
complexity of data stream algorithms for the computation of frequency moments.

Chapter 3 contains our results on the information complexity of some functions. In a short
introductory section we will use information complexity to simplify a lower bound on the
size of OBDDs that approximate the hidden weighted bit function, a well-known benchmark
function in the branching program literature. The space complexity of data stream algorithms
for the computation of frequency moments is closely related to the information complexity of
the AND function and the so-called disjointness function. Lower bounds on the information
complexity of the AND function and the disjointness function were improved in a series of
papers by different authors. This thesis contains the last result in this series, an asymptotically
optimal lower bound on the information complexity of the AND function and the disjointness
function. Finally, we present the first attempt to extend information complexity to one-way
multi-party protocols in the number on the forehead model. Communication complexity in
the number on the forehead model by Chandra, Furst, and Lipton [27] measures the amount
of communication that is needed for the distributed computation of a function f(x1, . . . , xk)
by k parties where the ith party knows all arguments of f except xi. We prove a lower bound
on the information complexity of a pointer jumping function for a restricted class of one-way
protocols in this model.
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1.3 Information Statistics

Communication complexity and algorithm design are two distinct fields of theoretical com-
puter science that often utilize different mathematical ideas and tools. Nevertheless there is a
common mathematical thread that connects the two topics of this text. This common thread
is best described by the term “information statistics” that was coined by Bar-Yossef, Jayram,
Kumar, and Sivakumar [13] to “loosely describe the interplay between information theory
and distances between probability distributions.” Distances between probability distribu-
tions are measured by so-called statistical divergences. Our lower bounds on the information
complexity of the AND function and the disjointness function in the first part of this thesis
combine information theory with the more general concept of statistical divergences. But
statistical divergences also play a major role in the analysis of the data stream algorithms
that are designed in the second part of the thesis. We think that the potential of information
statistics for the analysis of combinatorial problems has not yet been fully realized and that
this technique will find more applications in the future. Chapter 2 contains a self-contained
introduction to information theory and statistical divergences.

1.4 Publications and Contributions of the Author

The material in this thesis is based on the following publications: Chapter 3 is based on

1. A. Gronemeier. Approximating Boolean functions by OBDDs. Discrete Applied Math-
ematics, 155(2): pp. 194–209, 2007.

2. A. Gronemeier. Asymptotically optimal lower bounds on the NIH-multi-party infor-
mation complexity of the AND-function and disjointness. In Proceedings of the 26th
International Symposium on Theoretical Aspects of Computer Science, pp. 505–516,
2009.

3. A. Gronemeier. NOF-multiparty information complexity bounds for pointer jumping.
In Mathematical Foundations of Computer Science 2006, volume 4162 of LNCS, pp. 459–
470, 2006.

Chapter 4 is based on

4. A. Gronemeier and M. Sauerhoff. Applying approximate counting for computing the
frequency moments of long data streams. Theory of Computing Systems, 44(3): pp. 332–
348, 2009.

Both authors contributed equally to this publication. This thesis contains major improve-
ments on some of the result of this work.
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Chapter 2

Mathematical Tools

This section contains the unavoidable preliminaries that are needed in the following. We
will first define our notation for some basic mathematical concepts, then we will give a self-
contained introduction to information theory and statistical divergences.

2.1 Notation

In this section we will define some basic notation that is used throughout the whole text.
Additional application specific notation will be defined in the sections where it is needed.
Note that the most important notation and symbols are listed in Appendix B.1 for reference.
This list also provides references to the definitions where the symbols are defined.

2.1.1 Sets

The sets of the natural and real numbers are denoted by the symbols N and R, respectively.
The closed interval of real numbers x ∈ R such that a ≤ x ≤ b is denoted by [a, b], the open
interval of real numbers x ∈ R such that a < x < b is denoted by (a, b), and half-open inter-
vals are denoted by (a, b] and [a, b), respectively. In general, we use capital letters for sets.
Often we use calligraphic capital letters to aid the distinction from random variables that
are also denoted by capital letters. Conditions that must be satisfied by the elements of a
set are preceded by a colon, for example S = {n ∈ N : n is odd} is the set of all odd natural
numbers. Several conditions that must hold simultaneously are usually separated by commas,
hence T = {n ∈ N : n is even, n < 42} is the set of all even natural numbers that are smaller
than 42.

2.1.2 Probabilities and Random Variables

Let Ω be a discrete sample space and let µ : Ω −→ [0, 1] be a probability mass function on Ω.
For A,B ⊆ Ω the probability of the event A is denoted by Pr{A} and the conditional prob-
ability of A given B is denoted by Pr{A|B}. If we need to emphasize that probabilities are
with respect to the probability mass function µ then we write Prµ{A} instead of Pr{A}.
Let X : Ω −→ S be a random variable that takes values in the set S. In general, we will use
capital letters for random variables. Then range(X) = S denotes the range of the random
variable X and supp(X) = {x ∈ range(X) : Pr{X=x} > 0} denotes the support set of X.
For random variables X where range(X) ⊆ R we use the notation E[X] and Var[X] for the

5



6 Chapter 2. Mathematical Tools

expectation and variance of X, respectively. Note that we mainly consider finite random
variables in this text, hence in this case the expectation and variance always exist. For two
random variables X and Y the notation X ∼ Y is an abbreviation for the fact that X and Y
have the same distribution. If µ is a probability mass function on the set range(X) then X ∼ µ
means that X is distributed with respect to the probability mass function µ. If E ⊆ Ω is an
event in the underlying probability space of the random variable X then (X|E) denotes the
conditional distribution of X given that the event E happened. For example, if the condi-
tional distribution of the random variables X and Y given the event E happened is identical,
this can be written briefly as (X|E) ∼ (Y |E). For events that involve random variables we
will use rather informal notation to describe the underlying subsets of the sample space, for
example Pr{X odd, X ≥ 0} denotes the probability of the event that the random variable X
is nonnegative and odd. Note that a colon denotes the conjunction of events in this context.

2.1.3 O-Notation

We use the standard O-notation to hide asymptotically irrelevant constants in our upper and
lower bounds on the space complexity of algorithms. A definition of O, o, Ω, ω, and Θ can
be found in many introductory texts on algorithms and complexity, for example [74, 67, 5].
Usually, the O-notation is used to characterize the asymptotic growth of some resource with
respect to a single parameter that is understood from the context, most of the time the size
of the input. For data stream algorithms it has become a frequent practice to use several
parameters in a single application of the O-Notation. For example, the space complexity
of some randomized algorithm may be O(log(n)/ε) where n denotes the size of the input
and ε denotes the adjustable error probability of the algorithm. In this case the asymptotic
bound holds simultaneously for n and ε as n approaches infinity and ε approaches zero. More
formally, there are constants n0, ε0, and c such that for all n ≥ n0 and all ε ≤ ε0 the algorithm
uses at most c log(n)/ε bits of memory. The asymptotic limits of the parameters are usually
evident from the context. In most cases input sizes approach infinity whereas error parameters
approach zero.

2.1.4 Miscellaneous

If the bounds of the index of summation in a sum can be inferred from the context we
will sometimes drop the bounds in our notation and simply write

∑
i xi. For example, the

expectation of the random variable X can be written as
∑

x Pr{X=x} · x since in this case
it is obvious that the sum should be taken over all values x in the range of X.

We call x̃ ∈ R an ε-approximation of the value x ∈ R if |x̃− x| ≤ εx. Note that this is the
case if and only if x̃ ≥ (1− ε)x and x̃ ≤ (1 + ε)x.

Finally, in this text the symbol e denotes the base of the exponential function which is
sometimes called Euler’s number, hence e = exp(1).

2.2 A Self-Contained Introduction to Information Theory

In Section 3.2 we will describe a proof method for lower bounds on the communication com-
plexity of functions that is based on information theoretical arguments. Although information
theory is an established mathematical theory that is covered by some excellent textbooks, for
example the monograph by Cover and Thomas [29], we believe that information theory is not
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so widely known in the computer science community such that an introduction to information
theory could be dispensed with. Therefore this section contains a self-contained introduction
to information theory and the related topic of statistical divergences. Readers with a suffi-
cient background in this area can skim this section to pick up our notation for information
theoretical quantities and statistical divergences.

2.2.1 Introduction

Information theory is a mathematical theory that quantifies “information”, a rather elusive
term, and explores the properties of this concept. This branch of mathematics was essentially
established by a single 1948 publication, namely “A Mathematical Theory of Communication”
by Claude Elwood Shannon [69], that was republished as a book [70] with contributions by
Warren Weaver in 1949. In this publication Shannon solved two important open problems in
communication theory: How can information be encoded efficiently and how much information
can be transmitted over a given communication channel. The solution to these problems was
the cornerstone for a unifying theory of information that has found numerous applications
to communication, mathematics, probability theory, statistics, computer science, physics,
economy, and many more fields of science (see [29] for an overview). One of the key insights
of Shannon was to separate the quantitative aspects of communication from the semantic
aspects (Shannon [70], p. 31):

“The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning; that is they refer to or are correlated according to
some system with certain physical or conceptual entities. These semantic aspect of
communication are irrelevant to the engineering problem. The significant aspect
is that the actual message is one selected from a set of possible messages.”

In Shannon’s information theory the messages are selected at random from a set of possible
messages, hence the main subject-matter of information theory are certain functionals of
probability distributions. In the following sections we give a self-contained introduction to
the mathematical basics of information theory that is sufficient for the aims of this thesis and
we try to build some intuition about information theory. A more comprehensive introduction
to information theory can be found, for instance, in the books by Cover and Thomas [29]
and by Fano [36]. Warren Weaver’s chapter in [70] discusses the implications of Shannon’s
quantitative information theory for the semantics of communication.

2.2.2 Entropy

One of the most important concepts of information theory is the entropy of a random variable
which measures the uncertainty about the value of the random variable. The entropy of a
variable is measured in bit, a contraction of the words binary digit that was coined by John
W. Tukey while he was working at Bell Labs.
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Definition 2.2.1 (Entropy). The entropy H(X) of a finite random variable X ∈ X with the
probability mass function p(x) is defined by

H(X) = −
∑
x∈X

p(x) log p(x)

with the convention that 0 log 0 = 0. We also write H(p) instead of H(X).

This definition can be justified axiomatically as the only measure of information (up to
constant factors) that has certain desirable properties, but it was already pointed out by
Shannon [69] that the real justification for this definition resides in its implications, because
entropy emerges in the answers to many natural communication problems. The convention
that 0 log 0 = 0 is based on a continuity argument since limx→0 x log x = 0. Note that the
definition of entropy does not depend on the domain or the range of the distribution function.
Hence we could also define the entropy of any finite probability space.

Intuition about entropy is best gained by looking at some examples:

Example 2.2.2. The simplest nontrivial random variable is a binary random variable. Let the
random variable X be defined as follows:

X =

{
0 with probability p and
1 with probability 1− p.

In this case the entropy of X is a function h2(p) of the parameter p

H(X) = h2(p) = −p log p− (1− p) log(1− p)

and can be visualized easily by the plot of the function h2(p):

p
0 1

2
1

1
2

1

h2(p)

Note that the function h2(p) matches our intuition about the uncertainty of the value of X.
If p = 0 or p = 1 then X is a constant and the uncertainty about the value of X is 0. The
uncertainty about X is maximal if p = 1/2 because in this case neither X = 0 nor X = 1 is
more likely, and it decreases monotonically if one of the values 0 or 1 becomes more likely
than the other.
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Since binary random variables occur frequently, we will reserve the name h2(p) for the
entropy of binary random variables with the parameter p as seen above:

Definition 2.2.3 (Binary entropy function). The binary entropy function h2 : [0, 1] −→ [0, 1]
is defined by

h2(p) = −p log(p)− (1− p) log(1− p) .

The last example shows that the entropy of a binary random variable lies in the unit interval.
General lower and upper bound on the entropy of random variables are proved in the following
proposition.

Proposition 2.2.4 (Bounds on entropy). Let X ∈ X be a finite random variable. Then

0 ≤ H(X) ≤ log | supp(X)|

with H(X) = 0 if and only if X is a constant and H(X) = log | supp(X)| if and only if X is
uniformly distributed in supp(X).

Proof. The lower bound follows immediately from the fact that log 1/p(x) ≥ 0 for probabil-
ities p(x) with equality if and only if p(x) = 1. The upper bound follows from the strict
concavity of the log function and Jensen’s inequality (see Thm. A.2.1 in Appendix A.2):

H(X) =
∑

x∈supp(X)

p(x) log
1

p(x)
≤ log

∑
x∈supp(X)

p(x)
p(x)

= log | supp(X)| . (2.1)

Here Jensen’s inequality holds with equality if and only if p(x) is a constant that is independent
of x. This implies the claim for the case of equality.

The entropy of a random variable is closely related to the minimal average length of a
binary encoding of the random variable. One of Shannon’s main results in [69] was the source
coding theorem which states that the entropy of a random variable X is a lower bound for the
average length of a prefix-free binary encoding of X. In a prefix-free encoding no codeword
is a prefix of another codeword.

Example 2.2.5. Let X ∈ {1, . . . , n + 1} be a random variable with the probability mass
function p(x) = 2−x for x ∈ {1, . . . , n} and p(n+ 1) = 2−n. Then

H(X) = −
n∑
i=1

2−i log 2−i − 2−n log 2−n =
n∑
i=1

2−ii+ 2−nn = 2− 2−(n−1) .

Now suppose that we want to transmit the value of X using a binary encoding. Clearly, we
can encode the value of X as a dlog ne digit binary number. But if we take the distribution
of X into account then we can do better on average. Consider the following encoding of X.
Note that the encoding of X = n+ 1 is a special case that breaks the pattern of the preceding
cases:
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value of X encoding
1 0
2 10
3 110
...

...
n 1 . . . 1︸ ︷︷ ︸

n−1

0

n+ 1 1 . . . 1︸ ︷︷ ︸
n−1

1

Clearly, the average message length of this encoding is H(X) since for all x ∈ {1, . . . , n} the
length of the message for X = x is exactly x = − log 2−x = − log p(x) and the length of the
message for X = n+ 1 is also − log p(X). Instead of dlog ne bits on average that are used
by the simple encoding as binary numbers with uniform length, the average length of this
encoding is less than two bits. This encoding, a so called Rice-code, is a special case of an
encoding that was introduced by Golomb [42]. By Shannon’s source coding theorem, this
encoding is optimal with respect to the average message length.

The last example explains the choice of the word “bit” as the unit of entropy. The
entropy of a random variable is the average number of binary digits that is needed for a
binary representation of the value of a random variable. We repeat the main argument for the
optimality of the encoding in the example as an explicit observation, since the interpretation
of the entropy as the expectation of a random variable can be useful in other situations. Note
that the expression log p(X) for a random variable X with probability mass function p in the
observation might look a little self-referential at first sight, but it is a well defined random
variable which takes the value log p(x) given that the event X = x occurs.

Observation 2.2.6. Let X ∈ X be a random variable with probability mass function p(x).
Then the entropy of X is the expected value of − log p(X), thus H(X) = −Ep[log p(X)].

The explicit definition of probability mass functions for every random variable in this sec-
tion would become too tedious. Therefore we will use an abbreviated notation for probabilities
concerning random variables in this part of the text.

Definition 2.2.7. We use the notation p(x) as a short form for Pr{X=x}. The relationship
between the value and the random variable is established by the letter that is used, for
example p(x, y) = Pr{X=x, Y =y}. Similarly, p(x|y) is the short form of Pr{X=x|Y =y}.

The definition of entropy can be generalized to tuples of random variables.

Definition 2.2.8 (Joint entropy). The joint entropy H(X1, . . . , Xn) of the finite random
variables (X1, . . . , Xn) ∈ X1 × · · · × Xn is defined by

H(X1, . . . , Xn) = −
∑

(x1,...,xn)∈X1×···×Xn

p(x1, . . . , xn) log p(x1, . . . , xn)

with the convention that 0 log 0 = 0.

Note that this does not add anything new to Definition 2.2.1. A tuple of n random
variables Xi ∈ Xi for i ∈ {1, . . . , n} can always be considered as a single random vari-
able X = (X1, . . . , Xn) with the range X1 × · · · × Xn. The reader should keep in mind
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that, by the same reasoning, all statements about the entropy of a single random variable can
also be applied to the joint entropy of several random variables. From now on we will only
mention joint entropy explicitly, if it is essential for the statement of a claim.

2.2.3 Conditional Entropy

We have seen that the definition of joint entropy does not differ substantially from the defini-
tion of entropy, but the situation of several – possibly dependent – random variables becomes
more interesting, if we consider the relations between these variables. For example, how does
the knowledge of one random variable affect the uncertainty about another related random
variable? To answer this question, we need to define the conditional entropy of a random
variable X given another random variable Y , a measure of the average uncertainty about X
if Y is known.

Definition 2.2.9 (Conditional entropy). Let X ∈ X and Y ∈ Y be random variables and
let E be an event in the underlying probability space. Then H(X|E) denotes the entropy
of X with respect to the conditional distribution of X given that the event E occurred and
the conditional entropy H(X|Y ) of X given Y is defined by

H(X|Y ) =
∑
y∈Y

p(y) H(X|Y =y)

with the convention that p(y) H(X|Y =y) = 0 if p(y) = 0.

Note that we have to distinguish carefully between conditioning on events and conditioning
on variables. The conditional entropy of X given an event E is the entropy of X with respect
to the conditional distribution of X given that the event E occurred, while the conditional
entropy of X given another random variable Y is the weighted average of the conditional
entropy of X with respect to the events Y = y for all y ∈ Y. Since the two different uses
of conditional entropy are not distinguished by notation, the reader has to infer the meaning
from context. If we condition on random variables and events then we will first list the
variables and then the events to aid the reader in distinguishing variables and events.

Example 2.2.10. Let the random variable X ∈ {1, . . . , 6} be the result of rolling a fair six-
sided die and let the random variable Y indicate whether the result is at most 2, say Y = 0
if X is one or two and Y = 1, otherwise. Then H(X) = log 6 and

H(X|Y ) = Pr{Y =0}H(X|Y =0) + Pr{Y =1}H(X|Y =1) =
1
3

log 2 +
2
3

log 4 =
5
3
< log 6 .

Note that, like our intuition suggests, knowing Y reduces our uncertainty about X. If on the
other hand Z ∈ {0, 1} is obtained by throwing a fair coin independently from the result of X
then, by using the independence of X and Z, it is easy to verify that

H(X|Z) = log 6 = H(X) .

This matches our intuition. Knowing the result of the coin does not reduce our uncertainty
about the result of the die because the random experiments are independent.

Our observations from the last example are generalized in the following proposition.
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Proposition 2.2.11 (Bounds on conditional entropy). Let X ∈ X and Y ∈ Y be finite
random variables. Then

0 ≤ H(X|Y ) ≤ H(X)

with H(X|Y ) = 0 if and only if X is a function of Y and H(X|Y ) = H(X) if and only if X
and Y are independent.

Proof. The upper bound follows from the concavity of the log function and Jensen’s inequality:

H(X|Y ) =
∑
y∈Y

p(y) H(X|Y = y) (2.2)

=
∑
y∈Y

p(y)
∑
x∈X
−p(x|y) log p(x|y) (2.3)

=
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y)

p(x) · p(y|x)
(2.4)

≤
∑
x∈X

p(x) log
∑
y∈Y

p(y)
p(x)

(2.5)

= −
∑
x∈X

p(x) log p(x) (2.6)

= H(X) . (2.7)

The log function is strictly concave, thus Jensen’s inequality (2.5) holds with equality if and
only if

log
p(y)

p(x) · p(y|x)
= − log p(x|y) (2.8)

is independent of y for every fixed value of x. This is the case if and only if X and Y
are independent. The lower bound follows immediately from the definition of conditional
entropy (Def. 2.2.9) and the lower bound for entropy (Prop. 2.2.4). Since H(X|Y ) = 0 if and
only if H(X|Y =y) = 0 for every y ∈ supp(Y ), in this case the value of X must be uniquely
determined by the value of Y , hence X must be a function of Y .

The upper bound in this proposition is often paraphrased as “conditioning reduces entropy”.
Note that only conditioning on variables reduces the entropy whereas conditioning on events
can either reduce or increase the entropy. For example, if Y is a random bit and the ran-
dom variable X is the constant 0 given that Y = 0 and the value of X is chosen uniformly
at random from 0 and 1 given that Y = 1, then H(X) = h2(3/4), H(X|Y =0) = 0 < H(X),
and H(X|Y =1) = h2(1/2) > H(X).

The last proposition has an additional interpretation: The entropy H(X) is a functional of
the probability mass function p(x). By the law of total probability, p(x) =

∑
y∈Y p(y)p(x|y),

hence p(x) can be considered as a convex combination of several conditional probability mass
functions. On the other hand, the conditional entropy H(X|Y ) is a convex combination of
the entropy of the conditional probability mass functions p(x|y) for all y ∈ Y. In this light
the last proposition states that H(X) is a concave functional of p(x).

In general, the conditional entropy H(X|Y ) is reduced if we add an additional variable to
the condition, thus we have H(X|Y ) ≥ H(X|Y,Z). Now we will consider two special cases, in
which the entropy is not reduced by an additional variable in the condition. In the first case
the variable Z is a function of the variable Y .
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Proposition 2.2.12 (Functions of conditions). Let X ∈ X and Y ∈ Y be finite random
variables, let S be a set, and let f : Y −→ S be a function. Then

H(X|Y ) = H(X|Y, f(Y )) .

Proof. Observe that Pr{Y =y, f(Y )=s} = 0 if s 6= f(y). Then

H(X|Y, f(Y )) =
∑

y∈Y,s∈S
Pr{Y =y, f(Y )=s}H(X|Y =y, f(Y )=s) (2.9)

=
∑
y∈Y

Pr{Y =y, f(Y )=f(y)}H(X|Y =y, f(Y )=f(y)) (2.10)

=
∑
y∈Y

Pr{Y =y}H(X|Y =y) (2.11)

where the last equation is due to the fact that f(Y ) = f(y) is implied by Y = y.

In the second case we consider random variables that are conditionally independent. A short
introduction to conditional independence can be found in Appendix A.1.

Proposition 2.2.13 (Conditional independence). Let X, Y , and Z be finite random vari-
ables. Then X and Y are conditionally independent given Z if and only if

H(X|Y, Z) = H(X|Z) .

Proof. Note that X and Y are conditionally independent if and only if X and Y are in-
dependent with respect to the conditional distribution of X and Y given that Z = z for
all z ∈ supp(Z). Then it suffices to apply Proposition 2.2.11 to each term of the expansion

H(X|Y,Z) =
∑
z

Pr{Z=z} ·H(X|Y, Z=z) . (2.12)

The next proposition, the chain rule for entropy, describes a property that seems very
natural for a useful measure of uncertainty. We mentioned before that the definition of
entropy can be justified axiomatically. The chain rule is one of the desirable properties of
measures of uncertainty that are postulated in the axiomatic definition of entropy.

Proposition 2.2.14 (Chain rule for entropy). Let X1, . . . , Xn be finite random variables.
Then

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|X1, . . . , Xi−1) .

Proof. By using the fact that p(x1, . . . , xn) =
∏n
i=1 p(xi|x1, . . . , xi−1) in the definition of
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entropy (Def. 2.2.1) we obtain

H(X1, . . . , Xn) = −
∑

x1,...,xn

p(x1, . . . , xn) log p(x1, . . . , xn) (2.13)

= −
∑

x1,...,xn

p(x1, . . . , xn) log
n∏
i=1

p(xi|x1, . . . , xi−1) (2.14)

= −
∑

x1,...,xn

p(x1, . . . , xn)
n∑
i=1

log p(xi|x1, . . . , xi−1) (2.15)

= −
n∑
i=1

∑
x1,...,xn

p(x1, . . . , xn) log p(xi|x1, . . . , xi−1) (2.16)

= −
n∑
i=1

∑
x1,...,xi

p(x1, . . . , xi) log p(xi|x1, . . . , xi−1) (2.17)

=
n∑
i=1

H(Xi|X1, . . . , Xi−1) . (2.18)

The chain rule can be weakened to an inequality if we use that entropy is reduced by condi-
tions.

Proposition 2.2.15 (Subadditivity of entropy). Let X1, . . . , Xn be finite random variables.
Then

H(X1, . . . , Xn) ≤
n∑
i=1

H(Xi)

with equality if and only if X1, . . . , Xn are independent.

Proof. The inequality follows immediately from the chain rule for entropy (Prop. 2.2.14) and
the fact that conditioning reduces entropy (Prop. 2.2.11). The claim for the case of equality
follows by induction if the case for equality in Prop. 2.2.11 is applied to every term in the
chain rule sum.

The chain rule H(X,Y ) = H(Y ) + H(X|Y ) also offers an alternative definition of conditional
entropy in terms of joint entropy.

Remark 2.2.16 (Alternative definition of conditional entropy). Let X and Y be finite random
variables. Then H(X|Y ) = H(X,Y )−H(Y ).

Finally, note that the preceding propositions about entropy also hold for conditional en-
tropy. All claims in the following corollary can be proved by applying the corresponding
propositions for entropy to each term in the expansion of the conditional entropy according
to Def. 2.2.9.
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Corollary 2.2.17 (Properties of conditional entropy). Let X, Y , Z, and X1, . . . , Xn be finite
random variables. All propositions in this section do also apply to conditional entropy:

• Lower and upper bound (Prop. 2.2.4): 0 ≤ H(X|Z) ≤ log | supp(X)|.

• Multiple conditions (Def. 2.2.9): H(X|Y, Z) =
∑

y p(y) H(X|Z, Y =y).

• Conditioning reduces entropy (Prop. 2.2.11): H(X|Y,Z) ≤ H(X|Z).

• Chain rule (Prop. 2.2.14): H(X1, . . . , Xn|Z) =
∑n

i=1 H(Xi|X1, . . . , Xi−1, Z).

• Subadditivity (Prop. 2.2.15): H(X1, . . . , Xn|Z) ≤
∑n

i=1 H(Xi|Z).

If we condition on Z in these propositions, then independence of random variables has to be
replaced by conditional independence given Z in all propositions.

2.2.4 Mutual Information

In the last section we have seen that knowing a random variable Y can reduce the uncertainty
about a related random variable X. Intuitively, in this case Y contains information about
the value of X. The following definition quantifies the concept of information.

Definition 2.2.18 (Mutual information). The mutual information of the finite random vari-
ables X and Y is defined by

I(X : Y ) = H(X)−H(X|Y ) .

Viewed together with our interpretation of H(X) as the uncertainty about X and H(X|Y ) as
the average uncertainty about X if we know Y , this definition matches our intuition about
information and uncertainty. The mutual information of X and Y is the average reduction
of the uncertainty about X if we learn the value of the random variable Y .

Remark 2.2.19. Let X be a finite random variable. Then H(X) = I(X : X). Because of this
equality, the entropy of X is also called the self information of X.

Again, we first look at a simple example to build some intuition about mutual information.

Example 2.2.20. Suppose that X and X ′ are chosen independently, uniformly at random
from the set {0, 1} and that Y = X + X ′. Then Y contains information about X. For
example, if Y = 0 then we are certain that X = 0 and if Y = 2 then certainly X = 1,
thus H(X|Y =0) = H(X|Y =2) = 0. Only if Y = 1, this happens with probability 1/2, we
are uncertain about the value of X. Since Pr{X=1|Y = 1} = 1/2 we have H(X|Y =1) = 1.
Then, by the definition of mutual information (Def. 2.2.18),

I(X : Y ) = H(X)−H(X|Y ) = 1− 1
2

=
1
2

.

Conversely, knowing X also reduces our uncertainty about Y . If X = 0 then we can conclude
that Y = X ′ and therefore Y 6= 2, if on the other hand X = 1 then Y = 1 + X ′ and Y 6= 0.
Hence H(Y |X = 0) = H(Y |X = 1) = H(X ′) = 1. Note that H(Y ) = 3/2. Then Def. 2.2.18
yields

I(Y : X) = H(Y )−H(Y |X) =
3
2
− 1 =

1
2

.
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In the last example the variable X contains as much information about the variable Y , as
the variable Y contains information about the variable X. This is not a coincidence.

Proposition 2.2.21 (Symmetry of mutual information). Let X and Y be finite random
variables. Then

I(X : Y ) = I(Y : X) .

Proof. Apply the chain rule for entropy (Prop. 2.2.14) in different orders to get

H(X) + H(Y |X) = H(X,Y ) = H(Y ) + H(X|Y ) (2.19)

and subtract H(Y |X) + H(X|Y ) from this equation.

Intuitively, the information that can be gained about a random variable X should be non-
negative and bounded from above by H(X). This intuition is confirmed in the following
proposition.

Proposition 2.2.22 (Bounds on mutual information). Let X and Y be finite random vari-
ables such that H(X) ≤ H(Y ). Then

0 ≤ I(X : Y ) ≤ H(X)

with I(X : Y ) = 0 if and only if X and Y are independent and I(X : Y ) = H(X) if and only
if X is a function of Y .

Proof. Follows immediately from the definition of mutual information (Def. 2.2.18) and the
bounds on conditional entropy (Prop. 2.2.11).

Note that in general I(X : Y ) ≤ min{H(X),H(Y )} by the symmetry of mutual information.
Analogously to conditional entropy, one can define conditional mutual information. The

conditional mutual information of X and Y given Z is the average mutual information of X
and Y if the value of Z is known.

Definition 2.2.23 (Conditional mutual information). Let X, Y , and Z be finite random
variables and let E be an event in the underlying probability space. Then I(X : Y |E) denotes
the mutual information of X and Y with respect to the joint conditional distribution of X
and Y given that the event E occurred and the conditional mutual information I(X : Y |Z)
of X and Y given Z is defined by

I(X : Y |Z) =
∑
z

p(z) I(X : Y |Z=z) .

An alternative equivalent definition of conditional mutual information is stated as a proposi-
tion in the following. Note the similarity to Definition 2.2.18.

Proposition 2.2.24. Let X, Y , and Z be finite random variables. Then

I(X : Y |Z) = H(X|Z)−H(X|Y,Z) .

Proof. Follows immediately from the definitions of conditional mutual information
(Def. 2.2.23), mutual information (Def. 2.2.18) and conditional entropy (Def. 2.2.9).

For mutual information there is also a chain rule that resembles the chain rule for entropy.
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Proposition 2.2.25 (Chain rule for mutual information). Let X1, . . . , Xn, and Y be finite
random variables. Then

I(X1, . . . , Xn : Y ) =
n∑
i=1

I(Xi : Y |X1, . . . , Xi−1) .

Proof. Follows immediately from the definition of mutual information (Def. 2.2.18) and the
chain rule for entropy (Prop. 2.2.14):

I(X1, . . . , Xn : Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y ) (2.20)

=
n∑
i=1

(H(Xi|X1, . . . , Xi−1)−H(Xi|X1, . . . , Xi−1, Y )) (2.21)

=
n∑
i=1

I(Xi : Y |X1, . . . , Xi−1) . (2.22)

The following Proposition, a simple consequence of the chain rule, states that additional
variables increase the mutual information.

Proposition 2.2.26. Let X, Y , and Z be finite random variables. Then

I(X,Y : Z) ≥ I(X : Z) .

Proof. By the chain rule and non-negativity of mutual information we have

I(X,Y : Z) = I(X : Z) + I(Y : Z|X) ≥ I(X : Z) .

Just like the chain rule for entropy, the chain rule for mutual information can also be weakened
to an inequality, but note carefully that in this case we need stronger assumptions than for
the chain rule for entropy, namely the independence of the variables.

Proposition 2.2.27 (Superadditivity of mutual information). Let X1, . . . , Xn, and Y be
finite random variables such that the variables X1, . . . , Xn are independent. Then

I(X1, . . . , Xn : Y ) ≥
n∑
i=1

I(Xi : Y )

with equality if and only if X1, . . . , Xn are conditionally independent given Y .

Proof. Follows immediately from the definition of mutual information (Def. 2.2.18) and the
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subadditivity of entropy (Prop. 2.2.15):

I(X1, . . . , Xn : Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y ) (2.23)

=
n∑
i=1

H(Xi)−H(X1, . . . , Xn|Y ) (2.24)

≥
n∑
i=1

H(Xi)−
n∑
i=1

H(Xi|Y ) (2.25)

=
n∑
i=1

I(Xi : Y ) . (2.26)

In line (2.24) the independence of X1, . . . , Xn is used. The inequality (2.25) holds with
equality if and only if X1, . . . , Xn are conditionally independent given Y .

Finally, all propositions about mutual information in this section can also be extended to
conditional mutual information. The results are summarized in the following corollary.

Corollary 2.2.28 (Properties of conditional mutual information). Let X, Y , Z, W ,
and X1, . . . , Xn be finite random variables. All propositions in this section do also apply
to conditional mutual information:

• Symmetry (Prop. 2.2.21): I(X : Y |Z) = I(Y : X|Z).

• Lower and upper bound (Prop. 2.2.22): 0 ≤ I(X : Y |Z) ≤ min{H(X|Z),H(Y |Z)}.

• Multiple conditions (Def. 2.2.23): I(X : Y |W,Z) =
∑

w p(w) I(X : Y |Z,W = w).

• Chain rule (Prop. 2.2.25): I(X1, . . . , Xn : Y |Z) =
∑n

i=1 I(Xi : Y |X1, . . . , Xi−1, Z).

• Additional variables (Prop. 2.2.26): I(X,Y : Z|W ) ≥ I(X : Z|W ).

• Superadditivity (Prop. 2.2.27): If X1, . . . , Xn are conditionally independent given Z,
then I(X1, . . . , Xn : Y |Z) ≥

∑n
i=1 I(Xi : Y |Z) with equality if and only if X1, . . . , Xn

are conditionally independent given Y,Z.

All claims of the corollary can be proved by applying the corresponding proposition for mu-
tual information to each term in the sum expansion of the conditional mutual information
according to Definition 2.2.18.

2.2.5 Fano’s Inequality

So far, we have quantified the concepts of uncertainty and information and we have appealed
to the reader’s intuition about these concepts. To make these concepts more tangible, we next
look at a practical consequence of uncertainty: The larger the uncertainty about a random
variable is, the harder it is to predict the actual value of the random variable. Suppose that
we are interested in the outcome of a random experiment that is described by the random
variable X, but we can only observe a related random variable Y and we need to predict
the value of X based on our observation Y . This setting appears frequently in statistics.
Here we assume that our prediction is a function f(Y ) of Y and that the joint distribution
of X and Y is known. We are interested in the error ε = Pr{f(Y ) 6= X} of the prediction.
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Certainly, this error is related to the mutual information of X and Y . We will first look at
the extreme cases. If X is uniquely determined by Y then we can predict X from Y with
zero error. If, on the other hand, X and Y are independent, then Y does not help us at
all in predicting X. We could create a random variable Y ′ by ourselves such that X,Y ′

and X,Y have the same joint distribution. In the former case H(X|Y ) = 0, in the latter
case H(X|Y ) = H(X). In between these extremes, we would expect lower errors of prediction
for lower values of H(X|Y ). Fano [35] made this precise.

Theorem 2.2.29 (Fano’s inequality). Let X ∈ X and Y ∈ Y be random variables,
let f : Y −→ X be a function, and let ε = Pr{f(Y ) 6= X}. Then

h2(ε) + ε log(|X | − 1) ≥ H(X|Y ) .

Proof. Let E be the following indicator variable:

E =

{
1 if f(Y ) 6= X,
0 if f(Y ) = X

(2.27)

and note that Pr{E=1} = ε and H(E) = h2(ε). Now expand H(X,E|Y ) using the chain
rule (Cor. 2.2.17) in two different ways: First use that

H(X,E|Y ) = H(X|Y ) + H(E|X,Y ) = H(X|Y ) . (2.28)

The last equality follows from the fact that E is completely determined by X and Y , hence E
is a constant for each fixed assignment X = x and Y = y and H(E|X=x, Y =y) = 0 by
Prop. 2.2.4. Next use that

H(X,E|Y ) = H(E|Y ) + H(X|Y,E) . (2.29)

Since conditioning reduces entropy (Prop. 2.2.11), we have H(E|Y ) ≤ H(E) = h2(ε) and, by
the properties of conditional entropy (Cor. 2.2.17), we have

H(X|Y,E) = Pr{E=0} ·H(X|Y,E=0) + Pr{E=1} ·H(X|Y,E=1) (2.30)
= Pr{E=1} ·H(X|Y,E=1) (2.31)
≤ Pr{E=1} ·H(X|E=1) (2.32)
≤ ε log(|X | − 1) . (2.33)

In the second line we used that H(X|Y,E=0) = 0 since X is determined by Y given
that E = 0, for the first inequality we used that conditioning reduces entropy, and
for the second inequality we applied the upper bound from Prop. 2.2.4 using the fact
that X ∈ X − {f(Y )} if E = 1. By plugging this into (2.29) we obtain

H(X,E|Y ) ≤ h2(ε) + ε log(|X | − 1) . (2.34)

The claimed result follows by combining (2.28) and (2.34).
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2.2.6 Statistics and Information Theory

In many fields of statistics there is a common need for measures of the dissimilarity of prob-
ability distributions. These measure are usually called dissimilarity coefficients, separation
measures, or statistical divergences, depending on the subfield of statistics and the prefer-
ences of authors. Introductions to statistical divergences and their statistical applications
can be found, for example, in publications by Csiszár and Shields [31], Liese and Vajda [57],
Sgarro [68], and Le Cam and Yang [23].

We will see in the following sections that information theoretical quantities like entropy
and mutual information can be regarded as special cases of statistical divergences. For our
purposes, it is sufficient to look at a special class of statistical divergences, the so called
f -divergences that were introduced and studied independently by Csiszár [30] and Ali and
Silvey [2]. Moreover, we can restrict our discussion to f -divergences of discrete distributions on
finite sets. We will soon see that many widely used statistical divergences are f -divergences.
The properties of f -divergences that are explored in this section will apply to all of these
special cases.

Definition 2.2.30 (f -divergence). Let p and q be probability mass function on the finite
sample space Ω and let f : R+ −→ R be a convex function such that f(1) = 0. The f -
divergence Df (p, q) of p and q is defined by

Df (p, q) =
∑
ω∈Ω

q(ω)f
(
p(ω)
q(ω)

)
.

We take 0 · f(0/0) = 0, f(0) = limx−→0 f(x), and 0 · f(a/0) = limx−→0 x · f(a/x) for a 6= 0.

The convexity of f in this definition suggests the application of Jensen’s inequality to obtain
a lower bound for Df (p, q).

Proposition 2.2.31 (Jensen’s inequality for f -divergences). Suppose that a1, . . . , an and
b1, . . . , bn are nonnegative numbers and let A =

∑n
i=1 ai and B =

∑n
i=1 bi. Then

n∑
i=1

bif

(
ai
bi

)
≥ Bf

(
A

B

)
.

If f is strictly convex then this inequality holds with equality if and only if there is a constant c
such that ai/bi = c for all i ∈ {1, . . . , n}.

Proof. By the convexity of f and Jensen’s inequality
n∑
i=1

bi
B
f

(
ai
bi

)
≥ f

(
n∑
i=1

ai
B

)
= f

(
A

B

)
. (2.35)

The claim for equality follows immediately from the case of equality in Jensen’s inequality.

Recall that f -divergences are a measure for the dissimilarity of probability distributions, in
this sense they measure the distance of probability distributions and share some proper-
ties of metrics. In fact there are f -divergences that are proper metrics, but there are also
f -divergences that are neither symmetric nor satisfy the triangle inequality. A common prop-
erty of metrics and f -divergences for strictly convex functions f is stated in the following
proposition.
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Proposition 2.2.32. Let p and q be probability mass functions on the finite sample space Ω
and let Df (p, q) be an f -divergence of p and q for a strictly convex function f . Then

Df (p, q) ≥ 0

with equality if and only if p = q.

Proof. By Prop. 2.2.31 and by the property f(1) = 0

Df (p, q) =
∑
ω∈Ω

p(ω)f
(
p(ω)
q(ω)

)
≥

(∑
ω∈Ω

p(ω)

)
f

(∑
ω∈Ω p(ω)∑
ω∈Ω q(ω)

)
= 1 · f

(
1
1

)
= 0 . (2.36)

Clearly, if pi = qi for all i ∈ {1, . . . , n} then Df (p, q) = 0. Conversely, if the inequality in
the equation above holds with equality then, by Prop. 2.2.31, there is a constant c such
that pi/qi = c for all i ∈ {1, . . . , n}. Since p and q are probability mass functions, there
must be indices i and j where i 6= j such that pi ≥ qi and pj ≤ qj . Hence pi/qi = c ≥ 1
and pj/qj = c ≤ 1 and therefore c = 1 and consequently pi = qi for all i ∈ {1, . . . , n}.

In the next sections we will look at three well-known f -divergences of probability distributions.
Since historically these divergences have been introduced before f -divergences were formally
defined, the standard notation for these divergences differs slightly from Def. 2.2.30. Here we
generally try to use standard notation or at least notation that is consistent and similar to
standard notation.

Kullback-Leibler Distance

A well-known statistical divergence is obtained from Def. 2.2.30 by choosing f(x) = x log x.
In this case the corresponding f -divergence, introduced by Kullback and Leibler [55] in 1951,
is called Kullback-Leibler distance, informational divergence, or relative entropy.

Definition 2.2.33 (Kullback-Leibler distance). Let p and q be probability mass functions
on the finite sample space Ω. The Kullback-Leibler distance or relative entropy D(p, q) of p
and q is defined by

D(p, q) =
∑
ω∈Ω

p(ω) log
p(ω)
q(ω)

with the convention that 0 · log(0/q(ω)) = 0, 0 · log(0/0) = 0, and p(ω) · log(p(ω)/0) = ∞
if p(ω) 6= 0. For finite random variables X and Y we briefly write D(X,Y ) for the Kullback-
Leibler distance D(pX , pY ) of the corresponding probability mass functions pX and pY .

Note that the Kullback-Leibler distance of p and q is often denoted by D(p ‖ q) in the litera-
ture. We do not see the need for an additional syntactic element like ‖, hence we separate p
and q by a comma in accordance with Def. 2.2.30 and the standard notation for other f -
divergences.

According to Sgarro [68] it has been frequently pointed out in the literature that the
Kullback-Leibler distance is a rather natural statistical measure of distinguishability between
probability distributions. Unfortunately, the Kullback-Leibler distance can be inconvenient
and difficult to apply in applications. In general it is neither symmetric nor does it satisfy the
triangle inequality [41]. In addition, if there is a single ω ∈ Ω such that q(ω) = 0, but p(ω) 6= 0,
then D(p, q) =∞ independently of the values of p and q on the remaining elements.
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For us it is important that this f -divergence is closely related to the information theoretical
quantities that are defined in the previous sections: The mutual information of the random
variables X and Y is the Kullback-Leibler distance of their joint distribution pXY (x, y) and
the product distribution of their marginal distributions pX(x) and pY (y).

Proposition 2.2.34. Let X ∈ X and Y ∈ Y be finite random variables with the joint proba-
bility mass function pXY (x, y) and the marginal probability mass functions pX(x) and pY (y)
and let pX ⊗ pY denote the product distribution of pX and pY . Then

I(X : Y ) =
∑

(x,y)∈X×Y

pXY (x, y) log
pXY (x, y)
pX(x)pY (y)

= D(pXY , pX ⊗ pY ) .

Proof. Follows immediately from the definition of mutual information (Def. 2.2.18), the defi-
nition of entropy (Def. 2.2.1), and the definition of conditional entropy (Def. 2.2.1):

I(X : Y ) = H(X)−H(X|Y ) (2.37)

= −
∑

(x,y)∈X×Y

pXY (x, y) log pX(x) +
∑

(x,y)∈X×Y

pXY (x, y) log
pXY (x, y)
pY (y)

(2.38)

=
∑

(x,y)∈X×Y

pXY (x, y) log
pXY (x, y)
pX(x)pY (y)

. (2.39)

By Remark 2.2.19, the entropy of a random variable is just the self information of the variable.
Hence, all information theoretical quantities that we have discussed so far can be expressed
in terms of the Kullback-Leibler distance and Shannon’s information theory can be regarded
as a special case of a broader theory of statistical divergences. The last proposition also offers
a new intuitive interpretation of mutual information: The mutual information measures how
far the joint distribution of two random variables is from a product distribution.

Because of the importance of the Kullback-Leibler distance for information theory, we
state Jensen’s inequality for the Kullback-Leibler distance explicitly. In this case Prop. 2.2.31
is usually called the log sum inequality.

Corollary 2.2.35 (Log sum inequality). If a1, . . . , an and b1, . . . , bn are nonnegative numbers,
then

n∑
i=1

ai log
ai
bi
≥

(
n∑
i=1

ai

)
log
∑n

i=1 ai∑n
i=1 bi

with equality if and only if ai/bi = aj/bj for all i, j ∈ {1, . . . , n} where we use the convention
that 0 · log(0/b) = 0 for all b including b = 0 and that a log(a/0) =∞ for all a 6= 0.

Total Variation Distance

The total variation distance is a well-known measure for the dissimilarity of probability dis-
tributions. In fact, it is also an f -divergence, namely the f -divergence for f(x) = 1

2 |x− 1|.
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Definition 2.2.36 (Total variation distance). Let p and q be probability mass functions on
the finite sample space Ω. The total variation distance V(p, q) of p and q is defined by

V(p, q) =
1
2

∑
ω∈Ω

|p(ω)− q(ω)| .

For finite random variables X and Y we briefly write V(X,Y ) for the total variation dis-
tance V(pX , pY ) of the corresponding probability mass functions pX and pY .

Clearly, the total variation distance is closely related to the L1-norm: V(p, q) = 1
2‖p− q‖1.

The importance of the total variation distance stems from the fact that the probability of a
given event for two distributions on the same sample space differs at most by the total variation
distance of the distributions. This facilitates the direct comparison of probabilities for given
events, a very practical measure of dissimilarity that is needed frequently in applications.

Proposition 2.2.37. Let p and q be probability mass functions on the finite set Ω. Then

V(p, q) = max {|p(A)− q(A)| | A ⊆ Ω} .

Proof. Let A∗ = {ω ∈ Ω|p(ω) > q(ω)}. Then p(A∗) − q(A∗) = max {|p(A)− q(A)| | A ⊆ Ω}
since both removing elements from A∗ and adding elements from Ω − A∗ to A∗ de-
creases |p(A∗)− q(A∗)|. On the other hand we have

V(p, q) =
1
2

∑
ω∈Ω

|p(ω)− q(ω)| (2.40)

=
1
2

(∑
ω∈A∗

p(ω)− q(ω) +
∑
ω/∈A∗

q(ω)− p(ω)

)
(2.41)

=
1
2

( p(A∗)− q(A∗) + (1− q(A∗))− (1− p(A∗)) ) (2.42)

= p(A∗)− q(A∗) (2.43)

which completes the proof.

The following proposition shows that the total variation distance is subadditive with respect
to product distributions.

Proposition 2.2.38. For i ∈ {1, . . . , n} let pi and qi be a probability mass func-
tion on the finite sample space Ωi. Furthermore let p(ω1, . . . , ωn) = p1(ω1) · · · · · pn(ωn)
and q(ω1, . . . , ωn) = q1(ω1) · · · · · qn(ωn) denote the probability mass functions of the corre-
sponding product distributions, respectively. Then

V(p, q) ≤
n∑
i=1

V(pi, qi) .

Proof. First we will prove the claim for n = 2. Define δi(ωi) = pi(ωi)− qi(ωi) for all i ∈ {1, 2}
and all ωi ∈ Ωi. Then

V(p1, q1) =
1
2

∑
ω1∈Ω1

|δ1(ω1)| and V(p2, q2) =
1
2

∑
ω2∈Ω2

|δ2(ω2)| . (2.44)
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On the other hand, by the triangle inequality,

V(p, q) =
1
2

∑
ω1∈Ω1,ω2∈Ω2

|(q1(ω1) + δ1(ω1))(q2(ω2) + δ2(ω2))− q1(ω1)q2(ω2)| (2.45)

=
1
2

∑
ω1∈Ω1,ω2∈Ω2

∣∣∣∣δ1(ω1)
(
q2(ω2) +

1
2
δ2(ω2)

)
+ δ2(ω2)

(
q1(ω1) +

1
2
δ1(ω1)

)∣∣∣∣ (2.46)

≤ 1
2

∑
ω1∈Ω1,ω2∈Ω2

∣∣∣∣δ1(ω1)
(
q2(ω2) +

1
2
δ2(ω2)

)∣∣∣∣
+

1
2

∑
ω1∈Ω1,ω2∈Ω2

∣∣∣∣δ2(ω2)
(
q1(ω1) +

1
2
δ1(ω1)

)∣∣∣∣ (2.47)

Let S1 and S2 denote the first and the second sum in (2.47), respectively. Then we have

S1 =
1
2

∑
ω1∈Ω1,ω2∈Ω2

∣∣∣∣δ1(ω1)
(
q2(ω2) +

1
2
δ2(ω2)

)∣∣∣∣ (2.48)

=
1
2

∑
ω1∈Ω1

|δ1(ω1)|
∑
ω2∈Ω2

∣∣∣∣q2(ω2) +
1
2
δ2(ω2)

∣∣∣∣ (2.49)

= V(p1, q1)
∑
ω2∈Ω2

(
1
2
p2(ω2) +

1
2
q2(ω2)

)
(2.50)

= V(p1, q1) . (2.51)

By the same line of arguments we also obtain S2 = V(p2, q2). This completes the proof of the
claim for n = 2. The claim for n > 2 follows from this immediately by induction.

Additionally, the total variation distance is a proper metric, hence it is symmetric and satisfies
the triangle inequality [41]. These strong properties can be very useful in applications.

Hellinger Distance

The Hellinger distance is a well-known statistical divergence that, surprisingly, was not used
by Hellinger according to [23]. The introduction of Hellinger distance and especially Hellinger
affinity is mainly credited to Kakutani [53].

Definition 2.2.39 (Hellinger distance, Hellinger affinity). Let p and q be probability mass
functions on the finite sample space Ω. The Hellinger distance h(p, q) of p and q is defined by

h2(p, q) = 1−
∑
ω∈Ω

√
p(ω)q(ω) .

Note that this equation defines the square of the Hellinger distance. The term 1− h2(p, q) is
called the Hellinger affinity. For finite random variables X and Y we briefly write h(X,Y )
for the Hellinger distance h(pX , pY ) of the corresponding probability mass functions.

The square of the Hellinger distance, as it is defined above, is the f -divergence for the func-
tion f(x) = 1−

√
x. This definition of Hellinger distance is taken from Bar-Yossef et al. [13],

different definitions are used frequently in the literature. Sometimes Hellinger distance is
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defined as the square of h(p, q), for example in [31], sometimes it is defined as
√

2 h(p, q), e.g.
in [41].

Note that the Hellinger distance h(p, q) is a metric whereas the square of the Hellinger
distance h2(p, q) is not a metric [41], but has nevertheless interesting geometric properties that
were explored and used, for instance, by Bar-Yossef et al. [12] and Jayram [51]. Hellinger affin-
ity has the nice property that it is separable for product distributions, that is, the Hellinger
affinity of two product distributions is the product of the Hellinger affinities of the corre-
sponding marginal distributions [41].

Inequalities Between f-Divergences

In the last sections we have seen examples of f -divergences with vastly different properties.
Due to these differences, some f -divergences may be more suitable for a given application
than others. In some applications even a single f -divergence may not be sufficient at all, in
this case it is useful if one can pass from one f -divergence to a different one. This is usually
done via inequalities between f -divergences, or more generally, inequalities between different
measures of dissimilarity.

Since divergences are an important tool in statistics it comes as no surprise that many in-
equalities between different statistical divergences are known. We are mainly interested in the
comparison of the Kullback-Leibler distance and the total variation distance of distributions,
a classical result by Kullback.

Theorem 2.2.40 (Kullback [54]). Let p and q be probability mass functions. Then

2 V2(p, q) ≤ D(p, q) .

For further inequalities between statistical divergences we refer the reader to the statistical
literature. For example, a useful “map” of inequalities between divergences and an overview
of the literature can be found in a survey by Gibbs and Su [41].

2.2.7 Information Statistics and the Probabilistic Method

The probabilistic method, which is mainly attributed to Paul Erdős, is a proof method that
can be used to prove the existence of combinatorial objects. To this end one constructs an
appropriate probability space and shows that a randomly chosen element from this space
is the sought-after combinatorial object with a non-zero probability. Introductions to this
subject can be found in Alon and Spencer [4] or Jukna [52]. Although information theoretical
arguments have been used in the probabilistic method, overall information theory has only
played a marginal role in this field.

Recently information theory has been used in communication complexity as the main tool
to prove results that are essentially combinatorial, for example by Chakrabarti et al. [26, 25,
24], by Bar-Yossef et al. [12, 13], by Jayram [51], and by Gronemeier [43, 45]. The main idea
of these results, that was first used by Chakrabarti, Shi, Wirth, and Yao [26], is similar to
the probabilistic method: Here a lower bound on the size of a set is shown by constructing a
random variable X such that the support set of X is the set of interest. Then, by Prop. 2.2.4,
the size of this set is bounded from below by 2H(X). So far this approach has only been applied
to communication complexity. But we believe that the general idea that is stated above and
the combination of classical information theory and the more general statistical divergences
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in the cited results, a technique for which Bar-Yossef et al. [13] coined the term information
statistics, is a useful and new addition to the probabilistic method.



Chapter 3

Complexity

In this part of the thesis we will first give an introduction to communication complexity and
information complexity. Then we will prove lower bounds on the information complexity of
functions for two important models of communication, namely the index function, the AND
function, and the disjointness function in the number in the hand model and a pointer jumping
function for a restricted variant of the number on the forehead model.

3.1 Communication Complexity

3.1.1 Introduction

Computation can also be regarded as a communication process. In distributed computations
several computers need to communicate via a network to jointly perform a task that cannot
be fulfilled by a single computer, possibly due to the fact that the input of the computation
is distributed among several computers or that a single computer lacks the resources to solve
the problem. But also in other models of computation communication is an essential part of
computation, although it is sometimes less obvious. For example, even in a single computer
the CPU communicates with the memory over the system bus and then again different parts of
the CPU are connected by internal buses of the CPU. Finally, the components of a computer
are binary circuits. In a circuit the gates literally communicate over the wires that connect
the output of a gate to the input of another gate. In 1979 Yao [76] introduced a simple model
that captures the essence of all of these diverse communication processes. In the following we
will describe a generalization of Yao’s model. The initial two-player communication game by
Yao will be treated in Section 3.1.3. A thorough introduction to communication complexity
can be found in the monograph by Kushilevitz and Nisan [56].

Suppose that k players jointly compute a function f(x1, . . . , xk) of k inputs, but each
player only knows a proper subset of the inputs. Clearly, if f depends on all inputs then
the players need to communicate to fulfill this task since no player can compute the value
of f(x1, . . . , xk) on his own. Communication is carried out via a shared blackboard that
is seen by all players, each player can append binary messages to the current inscription on
blackboard. We assume that all players know the function f and that the players can agree on
a communication protocol in advance. A communication protocol governs the communication
of the players, for example it determines whether the protocol continues or terminates, whose
turn it is to append the next message to the blackboard in the former case, and the output
of the protocol in the latter case. The protocol computes the function f if in the end all

27
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players know f(x1, . . . , xk). When the protocol terminates, the value of f(x1, . . . , xk) should
be determined by the contents of the blackboard, the so called transcript of the protocol. The
only resource we care about in this model is communication, the cost of a protocol is the worst-
case length of the transcript. We are not interested in the cost of the individual computations
by the players, we even assume that the players have unlimited computational power. The
communication complexity of a function f is the cost of a cheapest protocol that computes
the function f . Since communication is an essential component of every computation, lower
bounds on the communication complexity of a function can be used to obtain lower bounds
on the resources that are needed for the computation of the function in a variety of different
models of computation. Because of its versatility and the simplicity of the underlying model,
nowadays communication complexity is an ubiquitous tool in complexity theory. Applications
range from the time complexity of Turing machines to the space complexity of data stream
algorithms. Various applications of communication complexity are described in [56].

3.1.2 Communication Protocols

Deterministic Communication Complexity

Historically, different models of communication with regard to the number of players, the
distribution of the inputs among the players, and the rules of communication have been
defined in the literature. Here we will first give a general formal definition that encompasses
the shared properties of the most important models of communication.

Definition 3.1.1 (Deterministic k-party protocol). Let X1, . . . ,Xk, and Y be finite sets,
let f : X1 × · · · × Xk −→ Y be a function, and let x = (x1, . . . , xk) ∈ X1 × · · · × Xk. Further-
more let Ai ⊆ {1, . . . , k} for i ∈ {1, . . . , k} be a family of subsets and let A = (A1, . . . , Ak).
We call A a variable allocation, the variables xj subject to j ∈ Ai are called the variables
seen by the ith player. A deterministic k-party (or k-player) protocol P with respect to the
variable allocation A is a game that is played by k players to jointly compute f(x1, . . . , xk).
During this game the players compute the transcript T (x) ∈ {0, 1}∗ and output P (x) ∈ Y of
the protocol using a binary tree G, the so-called protocol tree, such that

• internal nodes of G have two children,

• each leaf node v of G is labeled by an element tv ∈ Y, and

• each internal node v of G is labeled by a number pv ∈ {1, . . . , k} and a function

Tv :
∏
i∈Apv

Xi −→ {0, 1} .

The transcript T (x) and output P (x) of the protocol are defined inductively by a path in G:
The first node of the path is the root and initially the transcript T (x) is the empty string. Let v
be the last internal node of the path that has been defined so far and let Apv = {i1, . . . , i`}
be the variables that are seen by player pv. Then player pv appends tv = Tv(xi1 , . . . , xi`) to
the transcript of the protocol. If tv = 0 then the left child of v is the next node of the path,
otherwise the right child of v is the next node. The output P (x) ∈ Y is the label of the leaf
that is reached by this path. The protocol P computes the function f if P (x) = f(x) for
all x. The cost of the protocol cost(P ) is the height of the tree G.
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Note that each input xi for i ∈ {1, . . . , k} must be seen by at least one player – otherwise
the players cannot compute f(x1, . . . , xk) if f depends on all inputs – and that nontrivial
protocols are only needed if no player sees all inputs – otherwise a single player can com-
pute f(x1, . . . , xk) and write the result to the blackboard using only one bit of communication.
In general, all variable allocations subject to these constraints are interesting, but only a few
particular variable allocations have been studied in the literature. These variable allocations
are described in Section 3.1.3, Section 3.1.4, and Section 3.1.5.

Once we have chosen a variable allocation A, the communication complexity of a function f
with respect to A can be defined in the canonical way.

Definition 3.1.2 (Deterministic communication complexity). Let f : X1 × · · · × Xk −→ Y
be a function and let A be a variable allocation. Then the deterministic communication
complexity CA(f) of f with respect to A is defined by

CA(f) = min{cost(P ) : deterministic protocol P computes f} .

In general, the communication complexity of a function is trivially bounded from above
by
∑k

i=1dlog2 |Xi|e: The value of f can always be determined by the transcript of a triv-
ial protocol in which each input xi ∈ Xi is written to the blackboard by a player who sees
this input.

Randomized Communication Complexity

The definition of communication protocols can be extended in several ways, for example
the definition of nondeterministic protocols is straightforward (see [56] for more details on
nondeterministic protocols). In the following we will define randomized protocols. Here the
transcript and the output of the protocol may also depend on random inputs in addition to
the inputs of the function f . The requirements on the protocol are weakened with respect to
the correctness of the output. In a randomized ε-error protocol P for the function f we only
require that the output P (x) of the protocol is equal to f(x) with the probability 1− ε over
the choice of the random input. Analogously to the inputs of the function, the random inputs
have to be allocated to the players. We will consider three natural choices for this allocation.

Definition 3.1.3 (Randomized k-party protocol). A randomized k-party protocol P is de-
fined similarly to a deterministic k-party protocol. The function f and the variable allo-
cation A are defined as in Definition 3.1.1. In addition to the inputs x = (x1, . . . , xk)
of f : X1 × · · · × Xk −→ Y a randomized protocol has also random inputs r = (r1, . . . , rk).
The ith player sees the inputs xj for j ∈ Ai and a subset of the random inputs that depends
on the type of randomization. The different types of randomization are described below. Like
deterministic protocols, randomized protocols are defined by a protocol tree G, but for an
inner node v of G the function tv may also depend on the random variables seen by player pv
in addition to the variables that are specified by Apv . The protocol P computes the function f
with error ε if Pr{P (x) 6= f(x)} ≤ ε for all x ∈ X1 × · · · × Xk where the probability is over
the random choice of r. Here we consider the following types of randomization:

• In a private coin protocol the ith player sees ri.

• In a public coin protocol the complete random input r is seen by all players.

• In a canonical coin protocol the ith player sees all rj subject to j ∈ Ai.
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The public coin model and the private coin model are well-known and have been used before.
The canonical coin model is, to the best of our knowledge, new and will be useful in the
number on the forehead model which is described later. Note that private coin protocols and
canonical coin protocols can be simulated by public coin protocols without any modifications
because in a public coin protocol each player sees a superset of the random variables which
he would see in a private coin or canonical coin protocol.

The randomized communication complexity of a function can be defined analogously to
its deterministic communication complexity. Our notation for randomized communication
complexity does not include any indication of the type of randomization (private, public, or
canonical coins). To simplify the notation, we will define a standard type of randomization
for each variable allocation that is defined in the following sections and it will be mentioned
explicitly, if we deviate from this standard.

Definition 3.1.4 (Randomized Communication complexity). Let f : X1 × · · · × Xk −→ Y be
a function and let A be a variable allocation. Then the ε-error randomized communication
complexity RA

ε (f) of f with respect to A is defined by

RA
ε (f) = min{cost(P ) : randomized protocol P computes f with error ε} .

Distributional Communication Complexity

In a different form of randomization the inputs of the function f are chosen at random. Here
the error ε of a protocol for f is defined with respect to the random choice of the inputs of f .
In contrast to randomized protocols, in which the error of the protocol is bounded for every
input, the protocol may always compute the wrong result for some inputs. But this may
happen only for an ε-fraction of the inputs with respect to a given probability distribution
on the inputs. Hence the protocol only computes an approximation of the function f , in
this case the error of approximation ε is usually called distributional error and the ε-error
distributional communication complexity of a function can be defined in the obvious way.

Definition 3.1.5 (Distributional communication complexity). Let f : X1 × · · · × Xk −→ Y
be a function, let µ be a probability distribution on the finite set X1 × · · · × Xk, and let A
be a variable allocation. A deterministic k-party protocol P computes the function f with
distributional error ε if PrX∼µ{P (X) 6= f(X)} ≤ ε. The ε-error distributional communication
complexity DA

µ,ε(f) of f with respect to the distribution µ is defined by

DA
µ,ε(f) = min{cost(P ) : det. protocol P computes f with distributional error ε} .

Randomized and distributional communication complexity are closely related. The follow-
ing proposition is an application of Yao’s minimax principle to randomized communication
protocols. Details about Yao’s minimax principle can be found in [60], for a proof of the
proposition we refer the reader to [56].

Proposition 3.1.6 (Yao’s minimax principle). Let f : X1 × · · · × Xk −→ Y be a function and
let A be a variable allocation. The following holds in the public coin model of randomization:

RA
ε (f) = max{DA

µ,ε(f) : µ is a distribution on X1 × · · · × Xk} .

Lower bounds on RA
ε (f) in the public coin model can be shown by choosing an appropriate

probability distribution µ on the inputs of the function and by bounding the distributional
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communication complexity DA
µ,ε(f) from below. By Yao’s minimax principle this yields a

lower bound on the randomized communication complexity of f . Since public coin protocols
can simulate private coin and canonical coin protocols, lower bounds on the communication
complexity in the public coin model do also apply to the private and canonical coin model.
For some time Yao’s minimax principle was the only known way of proving lower bounds on
the randomized communication complexity of a function. Today randomized communication
complexity can be also bounded by using the information complexity of a function. This will
be described in section 3.2.

Rounds, One-Way Protocols, and Simultaneous Message Protocols

According to Definition 3.1.1, in a k-party protocol the label pv of the current node v deter-
mines whose turn it is to append the next bit to the transcript of the protocol. It is possible
that one player appends a sequence of several bits to the transcript. We will call a maximal
consecutive subsequence of the transcript that was written by a single player a communication
round. In a general protocol the number of alternations between the players is not restricted,
the number of communication rounds is only bounded by the cost of the protocol. Sometimes
we will limit the interaction of protocols by imposing constraints on the number and order of
communication rounds.

Definition 3.1.7 (r-round protocols, one-way protocols). In an r-round protocol P the
transcript T contains at most r − 1 alternations between the k players. A k-party one-way
protocol is a k-round protocol where player i may only write to the blackboard in the ith
round of the protocol (each player may also pass his round without writing to the blackboard).

Naturally, we can also define the r-round communication complexity and the one-way com-
munication complexity of a function. Here we will only define the one-way communication
complexity of a function.

Definition 3.1.8 (One-way communication complexity). Let f : X1 × · · · × Xk −→ Y be a
function and let A be a variable allocation. Then the deterministic one-way communication
complexity CA,one-way(f) of f with respect to A is defined by

CA,one-way(f) = min{cost(P ) : deterministic one-way protocol P computes f} .

The randomized one-way communication complexity RA,one-way
ε (f) and distributional one-way

communication complexity DA,one-way
µ,ε (f) are defined analogously.

Finally, in a simultaneous message protocol the players do not interact at all. Here
each player computes a message that only depends on the inputs seen by him. The players
simultaneously send their messages to a referee who does not see the inputs. The output of
the protocol is computed by the referee as a function of the messages. Formally, simultaneous
message protocols can be defined as a special case of one-way protocols.

Definition 3.1.9 (Simultaneous message protocol). A k-party simultaneous message protocol
is k-party one-way protocol such that the part of the transcript that is written by the ith player
does not depend on the parts that are written by the players 1, . . . , i− 1 for all i ∈ {1, . . . , k}.

Note that, by Definition 3.1.1, the output of a protocol is uniquely determined by the tran-
script of the protocol, hence the referee can compute the output as a function of the transcript.
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Promise Problems

Sometimes it is useful to restrict the inputs of a k-party protocol for a given function f to
a subset of the domain of f , this can be seen as an extension of communication complexity
to partially defined functions. Then the restricted function is called a promise problem and
we only require that the output of the protocol is correct if the input is from the restricted
domain. Hence, it is promised to the protocol that the input x is from the restricted domain.
If this promise holds then the protocol must compute f(x), but if the promise is broken then
the protocol may compute an arbitrary output.

Definition 3.1.10 (Promise problem). Let f : X1 × · · · × Xk −→ Y be a function and
let S ⊆ X1 × · · · × Xk. We call the restriction f |S of f to the domain S a promise problem. A
deterministic k-party protocol P computes the function f |S if P (x1, . . . , xk) = f(x1, . . . , xk)
for all x ∈ S. For inputs x /∈ S the output of P may be arbitrary.

Remark 3.1.11. We will use the notation f |S only if we talk about general promise problems
where the function f and the set S are not specified. For concrete promise problems we will
use a more concise notation that will be defined specifically for each promise problem.

Promise problems for randomized and distributional protocols are defined analogously by
changing the meaning of “the protocol P computes the function f” accordingly. Note that
the altered meaning of “P computes f” in the definition of promise problems affects the
communication complexity of promise problems: A protocol for the function f also computes
the promise problem f |S for every subset S of the range of f . In contrast, a protocol for f |S
does not necessarily compute the function f since potentially P (x1, . . . , xk) 6= f(x1, . . . , xk) for
inputs (x1, . . . , xk) /∈ S. This implies that the communication complexity of f |S is not larger
than the communication complexity of f or, put the opposite way, that the communication
complexity of f |S is a lower bound on the communication complexity of f for every subset S
of the range of f . This can be a useful tool to prove lower bounds on the communication
complexity of f . The subset S can be chosen freely such that the proof of a lower bound on the
communication complexity of f |S is easy. Moreover, if communication complexity is applied
to prove lower bounds on the complexity of functions in different models of computation then
sometimes lower bounds on the communication complexity of promise problems f |S yield
stronger lower bounds. An example of this will be given in section 4.4.3.

3.1.3 Yao’s Two-Player Model

Historically, communication complexity was introduced by Yao [76] in 1979 mainly as a two-
player game. For k = 2 our definition of deterministic k-party protocols (Def. 3.1.1) and
randomized k-party private coin protocols (Def. 3.1.3) coincides with Yao’s model. Note that
for two players, up to symmetry, there is only one nontrivial variable allocation: One player
sees the input x1, the other player sees the input x2. Additionally, for k = 2 the private
coin model and the canonical coin model of randomization are identical. Like Yao, we will
use private coin protocols as the standard model of randomization for k = 2. Because of the
historical relevance of the two-player model, we will slightly deviate from the notation in the
previous definitions of communication complexity and stick to the traditional notation.
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Definition 3.1.12 (Two-player communication protocols and complexity). Deterministic
and randomized 2-party protocols with respect to the variable allocation A = ({1}, {2}) are
called two-player protocols for short. This variable allocation is dropped in the notation for
deterministic and randomized communication complexity, hence C(f), Rε(f), and Dµ,ε(f) de-
note the deterministic, randomized, and distributional communication complexity of a func-
tion f with respect to the variable allocation A, respectively. The corresponding one-way
communication complexity is denoted by CA→B(f), RA→B

ε (f), and DA→B
µ,ε (f), respectively.

Randomized two-player communication complexity is defined with respect to private coins.

The two-player model is both a special case of the number in the hand model and the number
on the forehead model which will be treated in the following sections. Therefore at this point
a detailed discussion of the two-player model is not needed.

3.1.4 The NIH Multi-Party Model

The number in the hand model is a straightforward generalization of Yao’s two-player model.
Here the ith player sees the input xi, figuratively each player hides his input in his hand.
Early studies of this input allocation include, for example, the work of Dolev and Feder [34],
who mainly studied the relation of determinism and nondeterminism in a similar model.

Definition 3.1.13 (NIH communication protocols and complexity). Deterministic and ran-
domized k-party protocols with respect to the variable allocation NIH = ({1}, {2}, . . . , {k})
are called k-party number in the hand protocols or NIH protocols for short. Randomized
k-party NIH communication complexity is defined with respect to private coins.

The NIH model for k = 2 parties is equivalent to Yao’s two-player model. Note that, like in
Yao’s two-player model, for this variable allocation the private coin model and the canonical
coin model are identical. This is not the only similarity of Yao’s 2-player model and the
k-party NIH model. The basic combinatorial properties of the NIH model are very similar
to the properties of two-player protocols. Most proof methods for lower bounds on the
communication complexity of functions in Yao’s model can be adapted easily to the k-party
NIH model. The basic combinatorial properties which underlie this similarity are described
in the following section.

The Combinatorial Structure of NIH Protocols

Clearly, the set of the inputs of a deterministic NIH protocol is partitioned by the transcripts
of the protocol: For each fixed transcript there is a subset of the inputs that generate this
transcript. The fundamental combinatorial properties of these subsets are the foundation of
all proof methods for lower bounds on the NIH communication complexity of functions.

Definition 3.1.14 (k-box, combinatorial rectangle). Let X = X1 × · · · × Xk be a set. A
subset S ⊆ X is called a k-box if there are subsets Si ⊆ Xi for i ∈ {1, . . . , n} such that

S = S1 × · · · × Sk .

If k = 2 then k-boxes are also called combinatorial rectangles or rectangles for short.

The simple combinatorial structure of the subset of inputs that corresponds to a given tran-
script is due to the fact that the ith player does only see the ith coordinate of the input. The
implications of this restriction are explored in the following proposition.
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Proposition 3.1.15. Suppose that P is a deterministic k-party NIH protocol with inputs from
the set X = X1 × · · · × Xk and that G = (V,E) is the corresponding protocol tree according to
Definition 3.1.1. Each input x = (x1, . . . , xk) ∈ X defines a path from the root of G to a leaf
of G. For every v ∈ V let X (v) denote the set of all inputs x such that v lies on the path that
is defined by x. Then X (v) is a k-box, hence for every v ∈ V

X (v) = X1(v)× · · · × Xk(v)

where Xi(v) ⊆ Xi for all i ∈ {1, . . . , k}.

Proof. We prove the proposition by induction on the depth of the node v. The claim of the
proposition is obviously true for the root v of the tree G, in this case X (v) = X1 × · · · × Xk.
We will now prove the following: If the claim is true for an inner node v, then it also
holds for the left child w0 and right child w1 of v. By the induction hypothesis, we
have X (v) = X1(v)× · · · × Xk(v). We assume w.l.o.g. that pv = 1, the other cases can
be shown analogously. Since pv = 1, the function Tv only depends on the input x1 ∈ X1.
Let X1(v, t) = {x1 ∈ X1(v) : tv(x1) = t}. Then, by the definition of NIH protocols, the child
node wt is reached by the inputs in X (wt) = X1(v, t)×X2(v)× · · · × Xk(v) and the claim also
holds for w0 and w1.

The leafs of the tree G for a given protocol correspond to the transcripts of the protocol. If
we apply the previous proposition to the leafs of G then we obtain the following corollary.

Corollary 3.1.16. Let P be a deterministic k-party NIH protocol with inputs from the
set X = X1 × · · · × Xk and let T denote the set of all possible transcripts of P . Then P
partitions X into |T | subsets

X (t) = X1(t)× · · · × Xk(t)

where t ∈ T and Xi(t) ⊆ Xi for all i ∈ {1, . . . , k} such that T (x) = t for all x ∈ X (t).

Remark 3.1.17. Note that, with respect to the transcript of the protocol, a randomized private
coin protocol with the input x = (x1, . . . , xk) and the random input r = (r1, . . . , rk) can also
be seen as a deterministic protocol where the ith player sees the input (xi, ri). Therefore
Proposition 3.1.15 and Corollary 3.1.16 are also applicable to randomized protocols.

3.1.5 The NOF Multi-Party Model

The number in the hand model is probably the most natural generalization of Yao’s two-
player model to k players. Here the power of k-party protocols, in a sense, decreases as the
number of players k increases. The more players are involved, the more communication is
needed. Chandra, Furst, and Lipton [27] took a different route and defined a model where
the power of k-party protocols increases as the number of players grows, the so called number
on the forehead model. Here the ith player sees all inputs except the ith input, figuratively
the input is written on the players foreheads.

Definition 3.1.18 (NOF communication protocols and complexity). Deterministic and ran-
domized k-party protocols with respect to the variable allocation NOF = (A1, . . . , Ak) such
that Ai = {1, . . . , k} − {i} for all i ∈ {1, . . . , k} are called k-party number on the forehead
protocols or NOF protocols for short. Randomized k-party NOF communication complexity
is defined with respect to canonical coins.
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Note that the two-party NOF model is essentially equivalent to the two-party NIH model
since each player exclusively sees one of the two coordinates of the input.

The Combinatorial Structure of NOF Protocols

As it is the case for NIH protocols, the set of the inputs of a deterministic k-party NOF
protocol is also partitioned into subsets by the transcripts of the protocol. But for k > 2 the
combinatorial structure of the subset that corresponds to a fixed transcript is substantially
more complicated than the simple k-box that corresponds to a transcript of a NIH protocol.

Definition 3.1.19 (Cylinder, cylinder intersection). Let X = X1 × · · · × Xk be a set. A
subset S ⊆ X is called a cylinder in the ith dimension if for all (x1, . . . , xk) ∈ X and all x′i ∈ Xi

(x1, . . . , xi−1, xi, xi+1, . . . , xk) ∈ S ⇔ (x1, . . . , xi−1, x
′
i, xi+1, . . . , xk) ∈ S .

A subset S ⊆ X is called a cylinder intersection if there are sets Si for i ∈ {1, . . . , k} such
that Si is a cylinder in the ith dimension and S =

⋂k
i=1 Si.

Given the definition of cylinder intersections, it is surprisingly easy to show that the inputs
of a NOF protocol are partitioned into cylinder intersections by the transcripts of a protocol.

Proposition 3.1.20. Suppose that P is a deterministic k-party NOF protocol with inputs
from the set X = X1 × · · · × Xk and that G = (V,E) is the corresponding protocol tree accord-
ing to Definition 3.1.1. Each input x = (x1, . . . , xk) ∈ X defines a path from the root of G to
a leaf of G. For every v ∈ V let X (v) denote the set of all inputs x such that v lies on the
path that is defined by x. Then X (v) is a cylinder intersection for every v ∈ V .

Proof. The proof follows the same line of arguments as the proof of Proposition 3.1.15. Here
we are using the fact that X is a cylinder intersection for the base case of the induction. For
the inductive step we use that for a node w ∈ V and its parent node v ∈ V in the protocol
tree G we have that X (w) is the intersection of X (v) and a cylinder in the pwth dimension,
and that the intersection of a cylinder intersection and a cylinder in any dimension is once
again a cylinder intersection.

The following corollary follows immediately from the last proposition.

Corollary 3.1.21. Let P be a deterministic k-party NOF protocol with inputs from the
set X = X1 × · · · × Xk and let T denote the set of all possible transcripts of P . Then X
is partitioned into |T | cylinder intersections by P .

Remark 3.1.22. Similarly to NIH protocols, the last results can be generalized to randomized
NOF protocols with canonical coins. This is due to the fact that the random inputs of a
canonical coin protocol can be regarded as ordinary inputs of a deterministic protocol.

3.2 Information Complexity

In the preface of their seminal monograph [56] on communication complexity Kushilevitz and
Nisan contrast Shannon’s classical information theory with communication complexity: The
premise of information theory is that a certain predetermined communication needs to be
carried out. Information theory deals with the details of the transmission of information,
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for example the efficient encoding of the information and reliable communication over faulty
communication channels. On the other hand, in communication complexity the transmission
of information is only a means to solve a problem, namely to compute a function of some
arguments that are distributed among several parties. Then communication complexity is
about the contents of the communication that is needed in order to solve the problem. Up
to the present, the mathematical tools that were mainly used in information theory and
communication complexity were as different as the roles of communication in both disciplines:
While information theory is based on the work of Shannon that is described in Section 2.2,
communication complexity was mainly based on pure combinatorics. This changed recently
with a new concept, the so-called information cost of a protocol that was introduced by
Chakrabarti, Shi, Wirth, and Yao [26], although similar ideas were used implicitly in earlier
publications by Ablayev [1]. The information cost of a protocol is the mutual information
of the input and the transcript of the protocol. If this mutual information is large, then
the support set of the transcripts must also be large and a lower bound on the worst case
length of the transcript can be obtained. Once the information cost of a protocol is defined,
the information complexity of a function can be defined in the canonical way and it can be
used to obtain lower bounds on the communication complexity of a function. The concept
of information cost was further refined to the conditional information cost of a protocol by
Bar-Yossef, Jayram, Kumar, and Sivakumar [13]. Here the conditional mutual information of
the input and the transcript of a protocol is used. The main use of the conditioning variable
is the decomposition of non-product distributions into a mixture of product distributions.
This approach will be exemplified in Section 3.3.3.

3.2.1 Information Complexity in the NIH model

First, we will define the information cost of protocols in the number in the hand model.
The information cost of a protocol and the information complexity of a function depend on a
distribution of the inputs. Our notation for information cost and information complexity tries
to mimic the usual notation from information theory. The inputs of a protocol or function
will be specified as random variables with distributions that have to be fixed in advance. The
following definition applies to deterministic and randomized NIH protocols.

Definition 3.2.1 (NIH information cost). Let P be a k-party NIH protocol with inputs from
the set X = X1 × · · · × Xk and let T (x) denote the transcript of P for an input x∈ X . Suppose
that X and D are random variables such that X ∈ X . Then the information cost icost(P ;X)
of P with respect to X is defined by

icost(P ;X) = I(T (X) : X) .

The conditional information cost icost(P ;X|D) of P with respect to X given D is defined by

icost(P ;X|D) = I(T (X) : X|D) .

Note that the information cost is a special case of the conditional information cost. If
we condition on a variable D that is independent of the computation of P then we
have icost(P ;X) = icost(P ;X|D). Therefore we will not distinguish between information
cost and conditional information cost in the following.

The information cost of randomized protocols depends on the joint distribution of the
input X = (X1, . . . , Xk) and the random input R = (R1, . . . , Rk). The transcript T (X) is
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a function of X and R. Unless otherwise noted, in the following we will assume that R
is independent of X and that the random variables Ri for i ∈ {1, . . . , k} are independent
whenever we consider the information cost of a NIH protocol.

Once the information cost of a given NIH protocol is defined, the NIH information com-
plexity of a function can be defined in the canonical way. The information complexity of a
function depends on the type of protocols that we consider (deterministic, distributional, or
randomized) and the joint distribution of the inputs and the conditioning variable.

Definition 3.2.2 (Conditional NIH information complexity). Let f : X1 × · · · × Xk −→ Y be
a function and let 0 ≤ ε ≤ 1. Suppose that X ∈ X1 × · · · × Xk and D are random variables.
Then the ε-error distributional conditional information complexity DICNIH

ε (f ;X|D) of f with
respect to X given D in the NIH model is defined by

DICNIH
ε (f ;X|D) = min{icost(P ;X|D) : P computes f with distributional error ε}

where the protocols P in the minimum are deterministic NIH protocols. The deterministic
conditional information complexity of a function can be defined as a special case of the
distributional conditional information complexity for the error ε = 0. In this case we drop
the error ε from the notation and simply write DICNIH(f ;X|D). The ε-error randomized
conditional information complexity ICNIH

ε (f ;X|D) of f with respect to X given D in the
NIH model is defined by

ICNIH
ε (f ;X|D) = min{icost(P ;X|D) : randomized protocol P computes f with error ε} .

Sometimes we omit the variable allocation NIH from the notation if it is evident from the
context.

We also consider the information complexity of functions with respect to one-way protocols.

Definition 3.2.3 (One-way information complexity). For the information complexity with
respect to one-way protocols the same notation as for the communication complexity is used,
for example ICNIH,one-way

ε (f ;X|D) and ICA→B
ε (f ;X|D) for two-players.

Remark 3.2.4. The information complexity of a function (without a condition) could be de-
fined analogously to Definition 3.2.2 if we use the information cost instead of the conditional
information cost. But the information complexity of f is only a special case of the conditional
information complexity of f for the case that the conditioning variable D is independent of X
for deterministic protocols and independent of (X,R) for randomized protocols with the ad-
ditional random input R. Hence we abstain from a separate definition and simply omit the
condition from the notation if it is not needed. In this case we briefly write DICNIH

ε (f ;X)
and ICNIH

ε (f ;X) mimicking the notation for entropy and mutual information.

The following theorem shows that the information complexity is a lower bound on the
communication complexity of a function, irrespective of the joint distribution of X and D.
The joint distribution of the inputs and the conditioning variable can be chosen freely to
facilitate simple proofs of strong lower bounds.
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Theorem 3.2.5. Let f : X1 × · · · × Xk −→ Y be a function and let 0 ≤ ε ≤ 1. Suppose
that X ∈ X1 × · · · × Xk and D are random variables such that X ∼ µ. Then

(i) CNIH(f) ≥ DICNIH(f ;X|D),

(ii) DNIH
µ,ε (f) ≥ DICNIH

ε (f ;X|D), and

(iii) RNIH
ε (f) ≥ ICNIH

ε (f ;X|D).

Proof. We will only prove claim (iii) of the theorem. The proofs of the other claims follow
the same line of arguments. Let P be an optimal ε-error randomized NIH protocol for f with
respect to the communication cost of the protocol, hence cost(P ) = RNIH

ε (f), and let T (X)
denote the transcript of P for the input X. Clearly, we have log(| supp(T (X))|) ≤ cost(P )
since at least log(| supp(T (X))|) bits are needed to encode | supp(T (X))| different transcripts.
On the other hand, we have

ICNIH
ε (f ;X|D) ≤ icost(P ;X|D) (3.1)

= I(T (X) : X|D) (3.2)
= H(T (X)|D)−H(T (X)|X,D) (3.3)
≤ H(T (X)|D) (3.4)
≤ H(T (X)) (3.5)
≤ log(| supp(T (X))|) . (3.6)

Here we used the definition of information complexity and information cost, then the non-
negativity of entropy and the fact that conditioning reduces entropy (Prop. 2.2.4), and finally
the upper bound on the entropy (Prop. 2.2.4). By combining this inequality with our first
observation, we obtain claim (iii) of the theorem.

Note that, analogously to Theorem 3.2.5, similar result can be shown for the information
complexity and communication complexity with respect to one-way protocols. We omit a
separate treatment of this case to avoid a tedious repetition of Theorem 3.2.5.
Remark 3.2.6. The information complexity of a function can also be used to obtain lower
bounds on the communication complexity of promise problems f |S . Analogously to Sec-
tion 3.1.2, we just need to redefine the meaning of “the protocol P computes the function f |S”
in Definition 3.2.2 such that it is only required that the output of P agrees with f on the sub-
set S of the inputs. In this case it is required that the input variable X satisfies supp(X) ⊆ S
since f |S(x) is not well-defined for inputs x /∈ S. Also note that proofs of lower bounds on
the information complexity of a function f usually use properties of the function f . For
promise problems f |S we have to ensure that we only use properties of f that remain valid
for the promise problem since the output of a protocol for f |S(x) may differ from f(x) for
inputs x /∈ S.

3.2.2 Information Complexity in the NOF model

In the number on the forehead model several sensible definitions of information cost and
information complexity are conceivable. Some of the problems that have to be considered for
a meaningful definition of information cost in the NOF model will be discussed in Section 3.4.1.
Here we will only define the information cost of deterministic one-way protocols. We will use
the following notation for the inputs and the transcript of a one-way protocol.
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Definition 3.2.7 (Notation). Let X = (X1, . . . , Xk) be a random input for a deterministic
k-party one-way NOF protocol P and let T (X) = (T1, . . . , Tk) be the transcript of P for the
input X where Ti is the part of the transcript that was written by the ith player. Then

• let X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xk) denote the vector of all X` where ` 6= i and

• let T1,i = (T1, . . . , Ti) denote the first i messages.

The information cost of one-way protocols in the NOF model is defined as follows.

Definition 3.2.8 (NOF information cost). Let P be a deterministic k-party one-way NOF
protocol, let X be a random input for P , and let T (X) = (T1, . . . , Tk) be the transcript of P
for the input X where Ti denotes the part of the transcript that is written by the ith player
for i ∈ {1, . . . , k}. Then the information cost icost(P ;X) of P with respect to X is

icost(P ;X) = max{I(Ti : Xi+1|X−(i+1), T1,i−1) : 1 ≤ i < k} .

Given the definition of the NOF information cost for one-way protocols, the information com-
plexity of a function in the one-way NOF model can be defined analogously to Definition 3.2.2.
The following definition summarizes our notation for the one-way information complexity of
a function in the NOF model avoiding a detailed repetition of 3.2.2.

Definition 3.2.9 (NOF one-way information complexity). Let f : X1 × · · · × Xk −→ Y be a
function, let 0 ≤ ε ≤ 1, and let X ∈ X1 × · · · × Xk be a random variable. Then the ε-error
distributional one-way information complexity of f with respect to X in the NOF model is
denoted by DICNOF,one-way

ε (f ;X).

Analogously to the NIH model, the one-way information complexity of a function in the NOF
model is a lower bound on its one-way communication complexity for every distribution on
the inputs of the protocol.

Theorem 3.2.10. Let f : X1 × · · · × Xk −→ Y be a function, let 0 ≤ ε ≤ 1, and
let X ∈ X1 × · · · × Xk be a random variable such that X ∼ µ. Then

DNOF,one-way
µ,ε (f) ≥ DICNOF,one-way

ε (f ;X) .

Proof. The length of the longest message that is written to the blackboard by any player of a
one-way protocol is usually called the maximum communication of the protocol. The length
of the complete transcript is called the total communication of a one-way protocol. By using
the same arguments as in the proof of Theorem 3.2.5 it is easy to see that the information
cost of a one-way NOF protocol is a lower bound on its maximum communication. Since the
maximum communication of a one-way protocol is a lower bound on its total communication,
we obtain the claim of the theorem.

3.3 The NIH Information Complexity of Selected Problems

In this section we will prove lower bounds on the information complexity of some problems
in the NIH model. First, as a simple introduction, we will consider the two-player one-way
information complexity of the index function, a simple model of memory access that has
many applications to OBDD complexity. In the main part of this section, we will describe the
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properties of NIH protocols that are the basis for the proof of lower bounds on the information
complexity of functions in this model. Then a lower bound on the information cost of protocols
for the conjunction of k bits is shown if each player of a k-party NIH protocol sees exactly
one of the input bits. In the final part of this section, we use this result to prove an optimal
lower bound on the k-party NIH information complexity of the disjointness function.

3.3.1 A Warm-Up: One-Way Protocols for the Index Function

As a first introduction to information complexity we will use information theory to prove a
lower bound on the distributional communication complexity of the so called index function
in the two-player one-way model of communication.

Definition 3.3.1 (Index function). The index function INDn for inputs of size n such
that x = (x1, . . . , xn) ∈ {0, 1}n and y ∈ {1, . . . , n} is defined by

INDn(x, y) = xy .

Sometimes this function is also called multiplexer function MUXn or direct storage access
function DSAn. Clearly, the computation of this function in the two-player communication
model is easy if the second player who holds the input y is allowed to communicate before the
first player communicates. In this case the second player can just announce y using dlog ne
bits and then the first player can output xy using one additional bit resulting in an overall
communication of dlog ne+ 1 bits. The situation is different if the first player who holds x
has to send the first message and the second player who holds y has to compute the output
of the protocol by using only the message and y, as it is the case in the two-player one-way
model.

Theorem 3.3.2. Let Xi for i ∈ {1, . . . , n} be chosen independently at random from {0, 1}
subject to Pr{Xi=1} = q, let X = (X1, . . . , Xn), and let Y ∈ {1, . . . , n} be a random variable
that is independent of X.

• If Y is distributed uniformly in {1, . . . , n} then

DICA→B
ε (INDn; (X,Y )) = Ω (n(h2(q)− h2(ε))) .

• If Y − 1 is distributed binomially with the parameters n− 1 and 1/2 then

DICA→B
ε (INDn; (X,Y )) = Ω

(√
n(h2(q)− h2(ε))

)
.

By Theorem 3.2.5, these lower bounds on the distributional information complexity of INDn

immediately imply lower bounds on the distributional communication complexity of INDn

and, by Yao’s minimax principle (Prop. 3.1.6), we also obtain lower bounds on the randomized
communication complexity of INDn.

The index function may look like a toy problem that is complicated artificially by the severe
limitations of the one-way model. But, in fact, the communication complexity of INDn is an
essential tool in the proofs of many lower bounds on the size of Boolean branching programs,
especially OBDDs. Numerous applications of the communication complexity of INDn can be
found in the monograph on branching programs by Wegener [75], one particular application
is discussed briefly in Section 3.3.1.
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Proof of the Lower Bound

The proof of Theorem 3.3.2 extends the arguments in a similar result by Bar-Yossef, Jayram,
Kumar, and Sivakumar [12].

Lemma 3.3.3. Let Xi for i ∈ {1, . . . , n} be chosen independently at random from {0, 1}
subject to Pr{Xi=1} = q and let X = (X1, . . . , Xn). Furthermore let Y ∈ {1, . . . , n} be a
random variable that is independent of X and has the probability mass function p(y) and
let pmax = max{p(y) : y ∈ {1, . . . , n} }. If T (X,Y ) is the transcript of a deterministic two-
player one-way protocol P that computes INDn(X,Y ) with distributional error ε, then

I(T (X,Y ) : X|Y ) ≥ h2(q)− h2(ε)
pmax

.

Proof. Let T (X) and T (Y ) denote the part of the transcript that is written by the first and
the second player, respectively. The main property of one-way protocols that is used in the
proof is the fact that the random variables (X,T (X)) and Y are independent. This is easily
verified: We assumed that the inputs X and Y of INDn are independent. Since T (X) is a
function of X, the only input that is known by the first player, T (X) is also independent of Y .
Hence the random variables (X,T (X)) and Y are independent. By using this, we obtain

I(T (X) : INDn(X,Y )|Y ) =
∑
y

Pr{Y = y} I(T (X) : INDn(X,Y )|Y = y) (3.7)

=
∑
y

Pr{Y = y} I(T (X) : Xy|Y = y) (3.8)

=
∑
y

Pr{Y = y} I(T (X) : Xy|Y ) (3.9)

≤ pmax

∑
y

I(T (X) : Xy|Y ) (3.10)

≤ pmax I(T (X) : X|Y ) . (3.11)

In the third line we used the fact that the joint distribution of Xy and T (X) is the same irre-
spective of the value of Y . This fact follows immediately from the independence of (X,T (X))
and Y . In the last line we used the superadditivity of conditional mutual information for
conditionally independent random variables.

On the other hand, by the independence of the variables Xi and Y for all i,

H(INDn(X,Y )|Y ) =
∑
y

Pr{Y = y}H(Xy|Y = y) (3.12)

=
∑
y

Pr {Y = y}H(Xy) (3.13)

=
∑
y

Pr {Y = y}h2(q) (3.14)

= h2(q) . (3.15)

The second player of P computes the output P (X,Y ) of the protocol as a function of his
input Y and the message T (X) of the first player. Since P is an ε-error protocol, the output
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is a correct prediction of INDn(X,Y ) with the probability ε with respect to the random choice
of X and Y . Then, by Fano’s inequality (Thm. 2.2.29), we obtain

H(INDn(X,Y )|Y, T (X)) ≤ h2(ε) (3.16)

and the definition of conditional mutual information yields

I(T (X) : INDn(X,Y )|Y ) = H(INDn(X,Y )|Y )−H(INDn(X,Y )|T (X), Y ) (3.17)
≥ h2(q)− h2(ε) . (3.18)

Finally, by combining the upper and lower bound on I(T (X) : INDn(X,Y )|Y ), we obtain

pmax I(T (X) : X|Y ) ≥ h2(q)− h2(ε) (3.19)

and the claimed results follows from the fact that mutual information is increased by addi-
tional variables (Cor. 2.2.28):

I(T (X,Y ) : X|Y ) = I(T (X), T (Y ) : X|Y ) ≥ I(T (X) : X|Y ) . (3.20)

Theorem 3.3.2 follows from Lemma 3.3.3 since icost(P ;X,Y ) ≥ I(T (X,Y ) : X|Y ). If p(y) is
the uniform distribution then pmax = 1/n. If p(y) is the binomial distribution on {1, . . . , n}
for the parameter 1/2 then pmax = p(n/2). Asymptotic approximations of this probability
are well known [67]. For example, if n = 2N then

p(n/2) = p(N) = 2−2N

(
2N
N

)
= (πN)−

1
2

(
1 +O

(
1
N

))
.

Lemma 3.3.3 does not yield large lower bounds if pmax is relatively large. For example, if pmax

is a constant that does not decrease in n then the lower bound that is obtained by Lemma 3.3.3
is only a constant. But even in this case the information complexity of INDn can grow linearly
in n if ε is sufficiently small and Y is distributed appropriately. If this happens, it can be
useful to exclude values of Y that have large probabilities explicitly by applying the lemma
to a conditional distribution of Y : Let Yα = {y ∈ {1, . . . , n} : p(y) ≤ α}. Then Lemma 3.3.3
can be applied to the conditional distribution of Y given that Y ∈ Yα under the assumption
that the error of the protocol is 0 given that Y /∈ Yα. This approach can succeed if α/p(Yα)
is sufficiently small.

Applications of the Lower Bound to OBDDs

Bryant [20, 21] introduced the use of ordered binary decision diagrams or OBDDs for short,
a special class of binary branching programs, as a data structure for the representation of
Boolean functions. He has shown that ordered binary decision diagrams can be minimized
efficiently and that minimized OBDDs are a canonical form for the representation of Boolean
functions. Additionally, he devised efficient algorithms for the most important operations
on Boolean functions that are represented by OBDDs. OBDDs have found numerous prac-
tical applications in the design, synthesis, and verification of integrated circuits. Bryant’s
hidden weighted bit function [22], or HWB function for short, is a benchmark function
that is often used to examine the computational power of restricted branching programs
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like OBDDs (see [75]). For the input x = (x1, . . . , xn) ∈ {0, 1}n let |x| denote the hamming
weight of x. Then the hidden weighted bit function is defined by HWBn(x) = x|x| with x0 = 0.
Note that the hidden weighted bit function is very similar to the index function (Def. 3.3.1),
except for the fact that the index y is the hamming weight of the input vector x instead of a
separate parameter. If the input bits xi are chosen independently such that Pr{xi=1} = 1/2
then the index y = |x| is distributed binomially with the parameters n and 1/2. Bollig et
al. [18] used the similarity of HWBn and INDn to prove a lower bound on the size of OBDDs
that approximate the HWBn function with a constant error. Their proof is based on the
distributional communication complexity of the index function for a binomially distributed
index y. Gronemeier [44] improved the lower bound and proved a matching upper bound.
In the proof of the lower bound the distributional communication complexity of INDn is
analyzed by combinatorial means, the improvement in [44] is partially due to an improved
combinatorial analysis of the index function. The lower bound for the binomial distribution
in Theorem 3.3.2 matches the combinatorial lower bound by Gronemeier, but compared to
the lengthy and opaque combinatorial proofs in [18] and [44] our information theoretical proof
is simpler and more intuitive. Moreover, Lemma 3.3.3 is more general than the result in [44]
since it can be easily applied to different distributions of the index.

3.3.2 The Statistical Structure of NIH Protocols

In the proof of the lower bound for two-party one-way protocols in the previous section we
used the fact that the first player’s part of the transcript is independent of the second player’s
input in one-way protocols. Clearly, this property does not hold for unrestricted two-player
protocols. Here, in general, the communication of the first player depends on his input and
the previous messages which may depend on the second players input. Hence, for unrestricted
two-player protocols, and more generally for unrestricted k-party NIH protocols, we can at
most hope for a weaker property that can be used to prove lower bounds on the information
complexity of functions: It turns out that the inputs of the players in NIH protocols are
conditionally independent given the transcript of the protocol. This property is stated in
the following proposition, which is essentially a restatement of Corollary 3.1.16 in statistical
terms.

Proposition 3.3.4. Let X = (X1, . . . , Xk) be a random variable such that the random vari-
ables Xi for i ∈ {1, . . . , k} are independent. If T (X) is the transcript of a deterministic k-party
NIH protocol P for the random input X, then the random variables Xi for i ∈ {1, . . . , k}
are also conditionally independent given T (X), thus for all x = (x1, . . . , xk) ∈ range(X) and
all t ∈ range(T (X)) the following equalities hold:

(i) Pr{X=x|T (X)= t} =
∏k
i=1 Pr{Xi=xi|T (X)= t}

(ii) Pr{Xi=xi|X−i=x−i, T (X)= t} = Pr{Xi=xi|T (X)= t}

The same equalities also hold for randomized protocols P .

Proof. The condition T (X) = t is equivalent to the condition that the input X is contained
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in a k-box X (t) = X1(t)× · · · × Xk(t) by Corollary 3.1.16. Therefore we have

Pr{X=x|T (X)= t} =
Pr{X1 =x1, . . . , Xk=xk, T (X)= t}

Pr{T (X)= t}
(3.21)

=
Pr{X1 =x1, . . . , Xk=xk, X1 ∈ X1(t), . . . , Xk ∈ Xk(t)}

Pr{X1 ∈ X1(t), . . . , Xk ∈ Xk(t)}
(3.22)

=
k∏
i=1

Pr{Xi=xi, Xi ∈ Xi(t)}
Pr{Xi ∈ Xi(t)}

(3.23)

=
k∏
i=1

Pr{Xi=xi|Xi ∈ Xi(t)} (3.24)

=
k∏
i=1

Pr{Xi=xi|X ∈ X (t)} (3.25)

=
k∏
i=1

Pr{Xi=xi|T (X)= t} . (3.26)

In the third line and in the second to last line we used the independence of the random
variables Xi. Notice that the same argument actually applies to arbitrary subsets of the
variables X1, . . . , Xk, hence the variables are conditionally independent given that T (X) = t.
Then the second claim follows immediately from the first claim by Proposition A.1.3.

By Remark 3.1.17, we can see randomized NIH protocols as deterministic protocols
where the random input of the protocol is considered as an ordinary input of the proto-
col. By this reasoning, for randomized protocols P with the random input r = (r1, . . . , rk) we
could strengthen our claims and replace the events Xi = xi by the events (Xi, Ri) = (xi, ri)
for i ∈ {1, . . . , k}, respectively. Then the actual claims of the lemma for randomized protocols
follow from the strengthened claims if we sum the equations of the strengthened claims over
all choices of r.

3.3.3 The ANDk Function

Next, we will investigate the k-party information complexity of one of the simplest nontrivial
functions: The AND function of k bits. We will show a lower bound on the information
complexity of a promise variant that will turn out to be useful later on.

Definition 3.3.5 (ANDk and ANDunique
k function). Let xi ∈ {0, 1} for i ∈ {1, . . . , k}. Then

the k-player AND function ANDk is defined by

ANDk(x1, . . . , xk) =
k∧
i=1

xi .

In the promise problem ANDunique
k the domain of ANDk is restricted to inputs x ∈ {0, 1}k

such that either x = (1, . . . , 1) or that at most one bit in x has the value 1.

Note that the deterministic NIH k-party communication complexity of ANDk is obviously k
since ANDk depends on all inputs and therefore each player has to send at least one bit.
The deterministic communication complexity of the promise problem ANDunique

k is 2 since
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the value of ANDunique
k is uniquely determined by every projection of the input x to two

coordinates and a single coordinate does not suffice to determine ANDunique
k (x) in general.

Even the information complexity of ANDk and ANDunique
k for uniformly distributed inputs

is not very interesting. For uniformly distributed inputs X the random variable ANDk(X)
is not constant. Since the output ANDk(X) of a protocol is completely determined by the
transcript of the protocol, the transcript must at least reveal some information about the
input. Here, due to reasons that will become clear in Section 3.3.4, we will consider random
inputs Z = (Z1, . . . , Zk) ∈ {0, 1}k for a distribution such that Pr{ANDk(Z)=1} = 0. In this
case it is not at all clear that the transcript has to reveal information about the input since it
is not needed to determine the constant output 0 of the protocol. The fact that the transcript
nevertheless reveals information about the input in this case is due to the statistical properties
of NIH protocols that are described in the previous section.

Our Result

We will prove a lower bound on the conditional information complexity of ANDunique
k for the

following distribution on the inputs:

Definition 3.3.6. Let Z = (Z1, . . . , Zk) ∈ {0, 1}k and D ∈ {1, . . . , k} be random variables
such that their joint distribution has the following properties: The random variable D is uni-
formly distributed in the set {1, . . . , k} and for all i ∈ {1, . . . , k} the conditional distribution
of Z given D satisfies Pr{Zi=0|D 6= i} = 1 and Pr{Zi=0|D= i} = Pr{Zi=1|D= i} = 1

2 .

We will see in Section 3.3.4 that, by a result of Bar-Yossef et al. [13], a lower bound on the
information complexity of ANDunique

k for this input distribution is a useful building block for
information complexity lower bounds of functions that are more complicated. Now we will
prove the following result:

Theorem 3.3.7 (The information complexity of ANDunique
k ). Suppose that ε is a constant

such that 0 ≤ ε < 3
10

(
1−

√
1
2 log 4

3

)
≈ 0.163. Then there is a constant c(ε) > 0 that only

depends on ε such that

ICNIH
ε (ANDunique

k ;Z|D) ≥ c(ε)
k

.

Theorem 3.3.7 is asymptotically optimal with respect to k. To see this, consider the following
trivial one-way protocol P for ANDk: For the input x = (x1, . . . , xk) the players, in turn,
write their input xi to the blackboard until the first input bit with the value zero is written to
the blackboard. If a bit with the value zero is written to the blackboard then all players know
that ANDk(x) = 0. If the protocol terminates with k ones on the blackboard then all players
know that ANDk(x) = 1. Let T (Z) denote the transcript of P for the input Z. If D 6= 1
then Z1 = 0 and P stops after Z1 has been written to the blackboard. Since Z1 is constant
given D 6= 1, we get

I(T (Z) : Z|D 6= 1) = I(T (Z) : Z1|D 6= 1) = H(Z1|D 6= 1) = 0 . (3.27)

If D = 1 then Z1 ∈ {0, 1} is written to the blackboard and the protocol stops at the latest
after Z2 = 0 has been written to the blackboard. Since Z2 is constant and Z1 is an unbiased
random bit given that D = 1 we have

I(T (Z) : Z|D=1) = I(T (Z) : Z1, Z2|D=1) = H(Z1|D=1) = 1 . (3.28)



46 Chapter 3. Complexity

By combining the previous observations we get

icost(P ;Z|D) = I(T (Z) : Z|D) (3.29)

=
1
k

I(T (Z) : Z|D=1) +
k − 1
k

I(T (Z) : Z|D 6= 1) (3.30)

=
1
k

. (3.31)

Clearly, a protocol for ANDk also solves the promise problem ANDunique
k . Thus our lower

bound on the randomized information complexity of ANDunique
k differs only by a constant

factor from a trivial upper bound on the deterministic information complexity of ANDunique
k .

Related Work

The investigation of the conditional information complexity of ANDunique
k with respect to

the distribution that is described in Definition 3.3.6 started with the work of Bar-Yossef,
Jayram, Kumar, and Sivakumar [13]. Their work introduced the combination of information
theoretical methods and the use of statistical divergences to prove lower bounds on the com-
munication complexity of functions. The term “information statistics” was also coined in this
paper. By combining the idea of information complexity from [26] with a novel application
of the Hellinger distance, they proved a Ω(1/k2) lower bound on the conditional information
complexity of ANDunique

k . The lower bound was improved to Ω(1/(k log k)) by Chakrabarti,
Khot and Sun [25]. Noting that Bar-Yossef et al. [13] attribute the weakness of their lower
bound to the limitations of the properties of the statistical divergences that were used in the
proof, they used a direct analytical approach that relies on the analytical properties of the
information cost. Chakrabarti et al. also proved an optimal Ω(1/k) lower bound for one-way
protocols and thereby raised the question whether the Ω(1/(k log k)) bound is tight for un-
restricted protocols. Finally, an optimal Ω(1/k) lower bound (Thm. 3.3.7) for unrestricted
protocols was proved by Gronemeier [45]. The proof is based on the information statistics
approach using the Kullback-Leibler distance. In the meantime Jayram also found a proof of
the Ω(1/k) lower bound that, like the first result of Bar-Yossef et al., is based on the Hellinger
distance [51]. His paper is aptly titled “Hellinger strikes back”.

Some Definitions and Basic Observations

Our lower bound on the conditional information complexity of ANDunique
k will be based on

the simple observation that the distribution of the transcript of a randomized k-party NIH
protocol that computes ANDunique

k with small error must be sufficiently dissimilar for the all-
zero input and the all-one input. This observation is evident from the fact that the value of
the function ANDunique

k differs on these inputs and that the output of the protocol is uniquely
determined by the transcript. Unfortunately, the all-one input is not contained in the support
set of our input Z according to Definition 3.3.6, hence it is not clear how we can apply this
observation to the input Z. Therefore we define an auxiliary input variable X such that the
two inputs of interest are contained in the support set of X.
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Definition 3.3.8. Let P be a randomized k-party NIH protocol for the promise prob-
lem ANDunique

k such that the error of P is bounded from above by the constant ε.
Let X = (X1, . . . , Xk) ∈ {0, 1}k be a random variable that is uniformly distributed in the
set {0, 1}k and recall the definition of Z and D from Definition 3.3.6. Then

• let the transcript of P for input X be denoted by T and

• let the transcript of P for input Z be denoted by T ′.

Note that even under the condition X = x and Z = z for constants x and z the random
variables T and T ′ are not constant since the transcript also depends on the random inputs
of the randomized protocol P . For the transition from the input X to the input Z we need
to relate the distribution of the transcript T for the input X to that of the transcript T ′ for
the input Z. To this end, we need to define some additional notation.

Definition 3.3.9. For any vector v = (v1, . . . , vk) ∈ {0, 1}k let v−i denote the projection of v
on the k − 1 coordinates {1, . . . , k} − {i}, hence v−i = (v1, . . . , vi−1, vi+1, . . . , vk) ∈ {0, 1}k−1.
Furthermore let ~0 and ~1 denote the all-zero and all-one vector, respectively. The size of ~0
and ~1 is not specified explicitly, it must be inferred from the context.

Now observe that the conditional distribution of Z given D = i and the conditional distri-
bution of X given X−i = ~0 are identical. If we apply this observation to the conditional
information cost of the protocol P then we obtain the following proposition.

Proposition 3.3.10. Let i ∈ {1, . . . , k}. Then I(T ′ : Z|D= i) = I(T : Xi|X−i=~0).

Proof. Let R denote the random inputs of the randomized protocol P . We observed that the
conditional distribution of Z given D = i and the conditional distribution of X given X−i = ~0
are identical, hence the conditional joint distribution of (X,R) given X−i = ~0 is identical to
the conditional joint distribution of (Z,R) given that D = i since the random inputs R are
independent of X and Z by our assumptions in Section 3.2.1. The transcript of P is a function
of the inputs and the random inputs of P , therefore the joint conditional distribution of (X,T )
given X−i = ~0 and the joint conditional distribution of (Z, T ′) given that D = i are identical
and the claim of the proposition is true.

Overview of the Proof

Our main objective is to use the dissimilarity of the conditional distribution of T given X = ~0
and X = ~1 to show that, on average over the choice of the index i, the mutual information
of T and Xi must be large under the condition that X−i = ~0. By Proposition 3.3.10, this
yields a lower bound on the conditional information cost of the protocol P for ANDunique

k with
respect to Z given D. The dissimilarity of the conditional distributions of T given X = ~0
and X = ~1 is quantified using the Kullback-Leibler distance of (T |X=~0) and (T |X=~1). Our
first intermediate goal will be a lower bound on the Kullback-Leibler distance in terms of the
error ε of the randomized protocol P for ANDunique

k . Then we need to link this result to the
conditional distribution of Xi and T given that X−i = ~0 for i ∈ {1, . . . , n}. To this end, Propo-
sition 3.3.4 is used to decompose the Kullback-Leibler distance of (T |X=~0) and (T |X=~1)
into functionals of the conditional distributions (Xi|T = t,X−i=~0). Note that, by the con-
ditional independence of the variables Xi given T , the conditional distributions (Xi|T = t)
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and (Xi|T = t,X−i=~0) are the same. We will rewrite the Kullback-Leibler distance as a sum
of the form ∑

t∈S
p(t) · g(Pr{Xi=0|T = t}) (3.32)

for a subset S of the transcripts of P and functions p and g that are chosen appropriately. In
the next main step of the proof we will lower bound the information cost of P for the input Z
by a sum of the form ∑

t∈S
p(t) · f(Pr{Xi=0|T = t}) (3.33)

for an appropriately chosen function f . Then, to obtain a lower bound on the information
cost of P , it remains to lower bound the functions f in terms of g. This will only work under
certain conditions. Finally, we will show that a lower bound on the information cost of P is
obtained easily by different means, if these conditions do not hold.

The Error of the Protocol P and g(x)

Starting from our initial observation that the distribution of the transcript T for the in-
puts X = ~0 and X = ~1 must be dissimilar, we will quantify this dissimilarity by a measure of
dissimilarity that is closely related to the Kullback-Leibler distance of the distributions.

Definition 3.3.11. Let V1 and V2 be a random variables such that range(V1) = range(V2)
and let S ⊆ range(V1) be a set. Then

DS(V1, V2) =
∑
v∈S

Pr{V1 =v} log
Pr{V1 =v}
Pr{V2 =v}

with the convention that 0 · log(0/x) = 0, 0 · log(0/0) = 0, and x · log(x/0) =∞ if x 6= 0.

Note that if S = range(V1) then DS(V1, V2) is the Kullback-Leibler distance of V1 and V2

according to Definition 2.2.33. The restriction to a subset of the transcripts will turn out
to be useful later on. In our proof we will estimate the Kullback-Leibler distance of the
conditional distribution of T given that T ∈ S and X = ~0 and the conditional distribution
of T given that T ∈ S and X = ~1. The relation of this distance to the quantity DS is expressed
in the following proposition.

Proposition 3.3.12. Let S be subset of the transcripts of P and let q = Pr{T∈S|X=~1}
Pr{T∈S|X=~0} . Then

DS((T |X=~0), (T |X=~1))
Pr{T ∈ S|X=~0}

= D((T |T ∈ S,X=~0), (T |T ∈ S,X=~1))− log q .

Proof. It is easy to verify that

DS((T |X=~0), (T |X=~1))
Pr{T ∈ S|X=~0}

=
∑
t∈S

Pr{T = t|X=~0}
Pr{T ∈ S|X=~0}

log

Pr{T=t|X=~0}
Pr{T∈S|X=~0}
Pr{T=t|X=~1}
Pr{T∈S|X=~1}

− log q . (3.34)

Since we are only summing over t ∈ S we can replace Pr{T = t|X=~0} and Pr{T = t|X=~1}
by Pr{T = t, t ∈ S|X=~0} and Pr{T = t, t ∈ S|X=~1}, respectively, without changing the value
of the sum. Then the claim follows immediately from the definition of conditional probabilities
and the definition of the Kullback-Leibler distance (Def. 2.2.33).
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Now we are ready to lower bound DS((T |X=~0), (T |X=~1)) in terms of the error ε of P . This
is possible if ε is sufficiently small and if T is contained in S with a high probability given
that X = ~0. If these conditions, especially the second condition, do not hold then we will have
to resort to a proof method that is different from the ideas that are sketched in this section.
Note that the following lemma is the only place in the proof of Theorem 3.3.7 where the
properties of the function ANDunique

k are used. Here we have to verify carefully that we only
use properties of the ANDk function that remain valid for the promise problem ANDunique

k .

Lemma 3.3.13. Let S be subset of all possible transcripts of the protocol P . If the error of
P satisfies ε ≤ 3

10 and Pr{T ∈ S|X=~0} ≥ 3
4 then

DS((T |X=~0), (T |X=~1))
Pr{T ∈ S|X=~0}

≥ min

{
log

3
2
, 2
(

1− 10
3
ε

)2

− log
4
3

}
.

Proof. Let L denote the left hand side of the inequality in the lemma. In the proof of the
lemma we will distinguish two cases. For the first case assume that Pr{T ∈ S|X=~1} < 1

2 .
Then, by the log sum inequality (Cor. 2.2.35), we get

L =
∑
t∈S

Pr{T = t|X=~0}
Pr{T ∈ S|X=~0}

log
Pr{T = t|X=~0}
Pr{T = t|X=~1}

(3.35)

≥

(∑
t∈S

Pr{T = t|X=~0}
Pr{T ∈ S|X=~0}

)
log
∑

t∈S Pr{T = t|X=~0}∑
t∈S Pr{T = t|X=~1}

(3.36)

= log
Pr{T ∈ S|X=~0}
Pr{T ∈ S|X=~1}

(3.37)

≥ log
3/4
1/2

= log
3
2

. (3.38)

For the second case assume that Pr{T ∈ S|X=~1} ≥ 1
2 . In this case we first apply Propo-

sition 3.3.12 and then Theorem 2.2.40. Note that q = Pr{T∈S|X=~1}
Pr{T∈S|X=~0} ≤

4
3 by our assumption

that Pr{T ∈ S|X=~0} ≥ 3
4 . Then we obtain

L ≥ D((T |T ∈ S,X=~0), (T |T ∈ S,X=~1))− log
4
3

(3.39)

≥ 2 · V2((T |T ∈ S,X=~0), (T |T ∈ S,X=~1))− log
4
3

. (3.40)

The protocol P is a randomized ε-error protocol for ANDunique
k , the error bound holds for

every input that fulfills the promise of Definition 3.3.5. The input x = ~1 is a valid input
for the promise problem, therefore the assumption Pr{T ∈ S|X = ~1} ≥ 1

2 implies that
the conditional error probability given that T ∈ S and X=~1 is bounded by 2ε. Otherwise
the error for the input X=~1 would be too large. Similarly, x = ~0 is a valid input for the
promise problem and the conditional error given that T ∈ S and X=~0 is bounded by 4

3ε

since Pr{T ∈ S|X=~0} ≥ 3
4 by the assumptions of the lemma. Let S0 be the set of all tran-

scripts t ∈ S of P such that the output of P is 0 for the transcript t. Then, by our conditional
error bounds, we have Pr{T ∈ S0|T ∈ S,X=~1} ≤ 2ε and Pr{T ∈ S0|T ∈ S,X=~0} ≥ 1− 4

3ε.
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Note also that Pr{T ∈ S0|T ∈ S,X=~0} − Pr{T ∈ S0|T ∈ S,X=~1} ≥ 0 by our assumption
that ε ≤ 3

10 . The total variation distance of two distributions on the same set is bounded
from below by the absolute difference of the probabilities of any event with respect to the
given distributions (Prop. 2.2.37), hence

L ≥ 2 · V2((T |T ∈ S,X=~0), (T |T ∈ S,X=~1))− log
4
3

(3.41)

≥ 2
∣∣∣Pr{T ∈ S0|T ∈ S,X=~0} − Pr{T ∈ S0|T ∈ S,X=~1}

∣∣∣2 − log
4
3

(3.42)

≥ 2
(

1− 4
3
ε− 2ε

)2

− log
4
3

(3.43)

= 2
(

1− 10
3
ε

)2

− log
4
3

. (3.44)

The claim of the lemma follows by taking the minimum of the lower bounds for the two cases
in our case distinction. Note that the lower bound on L is positive if ε is sufficiently small.

Ultimately, we will use this lower bound to prove a lower bound on the conditional
information cost I(T ′ : Z|D) of the protocol P . For the comparison of I(T ′ : Z|D)
and DS((T |X=~0), (T |X=~1)) we will now rewrite the latter expression in terms of a function g
as it was laid out in the overview of the proof. The function g is defined as follows.

Definition 3.3.14. The function g : [0, 1]→ R is defined by g(x) = x log x
1−x .

But before we proceed, we will state a simple technical observation that will be used repeatedly
in the following as a proposition.

Proposition 3.3.15. For all x ∈ {0, 1} and t ∈ supp(T ) we have

(i) Pr{T = t,Xi=x|X−i=~0} = Pr{T = t|X−i=~0} · Pr{Xi=x|T = t} and

(ii) Pr{T=t,Xi=x|X−i=~0}
Pr{T=t|X−i=~0}·Pr{Xi=x|X−i=~0}

= 2 Pr{Xi=x|T = t}.

Proof. This proposition is an immediate consequence of the independence of the random
variables Xi and Proposition 3.3.4. For the proof of claim (i) observe that

Pr{T = t,Xi=x|X−i=~0} = Pr{T = t|X−i=~0} · Pr{Xi=x|T = t,X−i=~0} (3.45)

= Pr{T = t|X−i=~0} · Pr{Xi=x|T = t} . (3.46)

In the last line we used claim (ii) of Proposition 3.3.4. The proof of claim (ii) follows imme-
diately from claim (i) and the observation that Pr{Xi=x|X−i=~0} = Pr{Xi=x}.

So far, we observed that the distributions (T |X = ~0) and (T |X = ~1) must be sufficiently
dissimilar if ε is small. The fact that a protocol for ANDunique

k must reveal information about
some input Xi even if X−i = ~0 is due to the observation that the coordinates Xi of the input X
are conditionally independent given the transcript T (see Sect. 3.3.2). The first observation is
a statement about the conditional distribution of the transcripts given the inputs, the second
observation is about the conditional distribution of the inputs given the transcript. We need a
“passage” between these conditional distributions to combine our observations. This passage
is provided by the following simple observation:
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Observation 3.3.16. Note that Pr{X = x} = Pr{X = x′} for all x, x′ ∈ {0, 1}k. Then, by the
definition of conditional probabilities, we have

Pr{T = t|X=x}
Pr{T = t|X=x′}

=
Pr{T = t,X=x} · Pr{X=x′}
Pr{T = t,X=x′} · Pr{X=x}

(3.47)

=
Pr{T = t,X=x}
Pr{T = t,X=x′}

(3.48)

=
Pr{T = t,X=x} · Pr{T = t}
Pr{T = t,X=x′} · Pr{T = t}

(3.49)

=
Pr{X=x|T = t}
Pr{X=x′|T = t}

. (3.50)

The application of this observation in the following lemma is our main motivation for the
use of the Kullback-Leibler distance in the proof of a lower bound on ICNIH

ε (ANDunique
k ;Z|D).

Lemma 3.3.17. Let S be a subset of all transcripts of the protocol P . Then

DS((T |X=~0), (T |X=~1)) = 2
k∑
i=1

∑
t∈S

Pr{T = t|X−i=~0} · g(Pr{Xi=0|T = t}) .

Proof. For brevity let D = DS((T |X=~0), (T |X=~1)). Then, by Observation 3.3.16,

D =
∑
t∈S

Pr{T = t|X=~0} · log
Pr{T = t|X=~0}
Pr{T = t|X=~1}

(3.51)

=
∑
t∈S

Pr{T = t|X=~0} · log
Pr{X=~0|T = t}
Pr{X=~1|T = t}

. (3.52)

By using the conditional independence of the variables Xi given T (Prop. 3.3.4), we get

D =
∑
t∈S

Pr{T = t|X=~0} · log
∏
i

Pr{Xi=0|T = t}
Pr{Xi=1|T = t}

(3.53)

=
∑
i

∑
t∈S

Pr{T = t|X=~0} · log
Pr{Xi=0|T = t}
Pr{Xi=1|T = t}

(3.54)

=
∑
i

∑
t∈S

Pr{T = t,Xi=0|X−i=~0}
Pr{Xi=0|X−i=~0}

· log
Pr{Xi=0|T = t}
Pr{Xi=1|T = t}

(3.55)

= 2
∑
i

∑
t∈S

Pr{T = t,Xi=0|X−i=~0} · log
Pr{Xi=0|T = t}
Pr{Xi=1|T = t}

. (3.56)

Now claim (i) of Proposition 3.3.15 can be applied to the first factor of each term to obtain

D = 2
∑
i

∑
t∈S

Pr{T = t|X−i=~0} · Pr{Xi=0|T = t} · log
Pr{Xi=0|T = t}
Pr{Xi=1|T = t}

(3.57)

= 2
∑
i

∑
t∈S

Pr{T = t|X−i=~0} · Pr{Xi=0|T = t} · log
Pr{Xi=0|T = t}

1− Pr{Xi=0|T = t}
(3.58)

= 2
∑
i

∑
t∈S

Pr{T = t|X−i=~0} · g(Pr{Xi=0|T = t}) . (3.59)
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The Information Cost of the Protocol P and f(x)

Next, we will work on the “information cost end” of the proof. We will rewrite the information
cost of P in terms of a function f . The definition of f may look somewhat opaque at this
point, but the rationale behind the following definition will be explained in the next section.

Definition 3.3.18. The function f : [0, 1]→ R is defined by f(x) = x log 2x+ 1−x
2 log 2(1−x).

Like in the last section, we will also restrict our analysis to subsets of the transcripts of P ,
but here we need to consider subsets that have certain useful properties.

Definition 3.3.19. Let S(α) denote the set of all transcripts t of the protocol P such
that Pr{Xi=0|T = t} < α for all i ∈ {1, . . . , k}.

Now we are ready for the main result of this section, a lower bound on the information cost
of P that is expressed in terms of the function f .

Lemma 3.3.20. Let α ≥ 1
2 be a constant. Then

I(T ′ : Z|D) ≥ 1
k

k∑
i=1

∑
t∈S(α)

Pr{T = t|X−i=~0} · f(Pr{Xi=0|T = t}) .

Proof. Define the functions f1(x) = x log 2x+ (1− x) log 2(1− x) and f2(x) = x log 2x. Then
we have f(x) = 1

2(f1(x) + f2(x)) and Lemma 3.3.20 follows immediately from these claims:

Claim 3.3.21. Let α ≥ 1
2 be a constant. Then

I(T ′ : Z|D) ≥ 1
k

∑
i

∑
t∈S(α)

Pr{T = t|X−i=~0} · f1(Pr{Xi=0|T = t}) . (3.60)

Claim 3.3.22. Let α ≥ 1
2 be a constant. Then

I(T ′ : Z|D) ≥ 1
k

∑
i

∑
t∈S(α)

Pr{T = t|X−i=~0} · f2(Pr{Xi=0|T = t}) . (3.61)

It remains to prove that the claims are true. Let L denote the left hand side of the
inequality in the lemma. By using Proposition 3.3.10 and by the definition of the mutual
information in terms of the Kullback-Leibler distance (Prop. 2.2.34) we obtain

L = I(T ′ : Z|D) =
1
k

∑
i

I(T ′ : Zi|D= i) =
1
k

∑
i

I(T : Xi|X−i=~0) (3.62)

=
1
k

∑
i

∑
t,x

Pr{T = t,Xi=x|X−i=~0} · log
Pr{T = t,Xi=x|X−i=~0}

Pr{T = t|X−i=~0}Pr{Xi=x|X−i=~0}
. (3.63)
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Then, by applying both claims of Proposition 3.3.15 and by using the fact
that Pr{Xi=1|T = t} = 1− Pr{Xi=0|T = t} in the last line, we obtain

L =
1
k

∑
i

∑
t,x

Pr{T = t,Xi=x|X−i=~0} · log
Pr{T = t,Xi=x|X−i=~0}

Pr{T = t|X−i=~0}Pr{Xi=x|X−i=~0}
(3.64)

=
1
k

∑
i

∑
t

Pr{T = t|X−i=~0}
∑
x

Pr{Xi=x|T = t} · log (2 Pr{Xi=x|T = t}) (3.65)

=
1
k

∑
i

∑
t

Pr{T = t|X−i=~0} · f1 (Pr{Xi=0|T = t}) . (3.66)

Now, for the proof of the Claim 3.3.21, it is sufficient to observe that f1(x) = 1− h2(x) ≥ 0.
Hence, each term of the last sum is nonnegative and restricting the range of summation to
the subset S(α) can only decrease the sum.

For the proof of Claim 3.3.22 we first observe that f1(x) = f2(x) + f2(1− x). Then we
observe that f2(x) ≥ 0 for all x ∈ [1

2 , 1] and that Pr{Xi=0|T = t} ≥ α > 1
2 for all t /∈ S(α),

hence f2(Pr{Xi=0|T = t}) ≥ 0 for all t /∈ S(α). By using theses observations, we obtain

L =
1
k

∑
i

∑
t

Pr{T = t|X−i=~0} · f1 (Pr{Xi=0|T = t}) (3.67)

=
1
k

∑
i

∑
t

Pr{T = t|X−i=~0} · (f2 (Pr{Xi=0|T = t}) + f2 (Pr{Xi=1|T = t})) (3.68)

≥ 1
k

∑
i

∑
t∈S(α)

Pr{T = t|X−i=~0} · f2 (Pr{Xi=0|T = t})

+
1
k

∑
i

∑
t

Pr{T = t|X−i=~0} · f2 (Pr{Xi=1|T = t}) .
(3.69)

Now it suffices to show that Ri =
∑

t Pr{T = t|X−i=~0} · f2 (Pr{Xi=1|T = t}) is nonnegative
for all i ∈ {1, . . . , k}. To this end we apply Proposition 3.3.15 to obtain

Ri =
∑
t

Pr{T = t|X−i=~0} · Pr{Xi=1|T = t} · log (2 Pr{Xi=1|T = t}) (3.70)

=
∑
t

Pr{T = t,Xi=1|X−i=~0} · log
Pr{Xi=1|T = t,X−i=~0}

Pr{Xi=1|X−i=~0}
(3.71)

=
∑
t

Pr{T = t,Xi=1|X−i=~0} · log
Pr{T = t,Xi=1|X−i=~0}

Pr{T = t|X−i=~0} · Pr{Xi=1|X−i=~0}
. (3.72)

Now we can apply the log sum inequality (Cor. 2.2.35) to this result. Note that∑
t

Pr{T = t,Xi=1|X−i=~0} = Pr{Xi=1|X−i=~0} (3.73)

and that ∑
t

Pr{T = t|X−i=~0} · Pr{Xi=1|X−i=~0} = Pr{Xi=1|X−i=~0} . (3.74)
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Hence the log sum inequality yields

Ri ≥ Pr{Xi=1|X−i=~0} · log
Pr{Xi=1|X−i=~0}
Pr{Xi=1|X−i=~0}

= 0 (3.75)

and Claim 3.3.22 follows immediately.

Comparing f(x) and g(x)

First, we summarize our progress so far: Let α ≥ 1
2 be a constant. Then

I(T ′ : Z|D) ≥ 1
k

k∑
i=1

∑
t∈S(α)

Pr{T = t|X−i=~0} · f(Pr{Xi=0|T = t}) (3.76)

by Lemma 3.3.20 and

1
2k

DS(α)((T |X=~0), (T |X=~1)) =
1
k

k∑
i=1

∑
t∈S(α)

Pr{T = t|X−i=~0} · g(Pr{Xi=0|T = t}) (3.77)

by Lemma 3.3.17. Note that the sums on the right hand sides are almost identical, ex-
cept for the fact that the first sum uses the function f whereas the second sum uses the
function g. Additionally, we can lower bound DS(α)((T |X=~0), (T |X=~1)) in terms of the
error ε of the protocol P if Pr{T ∈ S(α)|X = ~0} ≥ 3

4 by Lemma 3.3.13. Hence, proving
a lower bound on the information cost of P essentially boils down to a simple comparison
of the functions f and g. Unfortunately, this simple idea seems to be doomed to fail: On
the unit interval the function f(x) is bounded from above whereas the function g(x) is not,
therefore bounding f(x) from below in terms of g(x) should be a futile attempt. But this
is only true if we compare f and g on the whole unit interval, the ratio of f(x) and g(x) is
bounded for every interval [0, α] such that α < 1. If we can find a constant 1

2 ≤ α < 1 and a
strictly positive constant cα such that f(x) ≥ cα · g(x) for all x ∈ [0, α] then our initial plan
of comparing f and g does work. We can use the set S(α) (see Def. 3.3.19) in the two sums
to restrict the index of summation to transcripts t such that Pr{Xi=0|T = t} < α. In this
case we have f(Pr{Xi=0|T = t}) ≥ cα · f(Pr{Xi=0|T = t}) for each t ∈ S(α). The require-
ment α ≥ 1

2 is due to Lemma 3.3.20. For reasons that will become clear later we actually
need that α > 1

2 . The following proposition shows that appropriate constants α and cα exist.

Proposition 3.3.23. There is a constant β > 1
2 such that 4f(x) ≥ g(x) for all x ∈ [0, β].

Proof. First observe that

4 · f(x) = 4x log 2x+ 2(1− x) log 2(1− x) (3.78)

= x log
x

1− x
+ 3x log 2x+ (2− x) log 2(1− x) (3.79)

= g(x) + 3x log 2x+ (2− x) log 2(1− x) . (3.80)

Thus it is sufficient to show that there is a constant β > 1
2 such that

r(x) = 3x log 2x+ (2− x) log 2(1− x) ≥ 0 (3.81)
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Figure 3.1: Comparison of the functions g(x), f(x), f1(x), and f2(x)

for all x ∈ [0, β]. The first derivative of r is

r′(x) = 3 log 2x− log(2− 2x) +
1− 2x

(1− x) ln 2
(3.82)

and the second derivative of r is

r′′(x) =
2x2 − 6x+ 3
x(1− x)2 ln 2

. (3.83)

It is easy to verify that the roots of r′′(x) are 3
2 −

1
2

√
3 and 3

2 + 1
2

√
3, that r′′(1

2) = 4
ln 2 > 0,

and that 3
2 −

1
2

√
3 ≈ 0.634 > 1

2 . Hence r′′(x) ≥ 0 for all x ∈ [0, 3
2 −

1
2

√
3] and r is convex in

this interval. Since r(1
2) = r′(1

2) = 0, this implies that r(x) ≥ 0 in this interval and the claim
of the lemma holds for β = 3

2 −
1
2

√
3.

We still have to solve the problem that the approach outlined above only works under the
condition that Pr{T ∈ S(β)|X =~0} ≥ 3

4 where β is the constant from the last Proposition.
This is due to the requirements of Lemma 3.3.13. Before we approach this problem in the
next section, we will give some rationale for our definition of the function f .

Our choice of the function f is closely tied to the comparison of f and g. Recall that we
bounded the information cost of P from below in terms of the functions f1(x) and f2(x) in the
proof of Lemma 3.3.20. As we observed in Claim 3.3.21 and Claim 3.3.22 of this proof, these
functions are closely related to the mutual information of the transcript T and the input Xi

for i ∈ {1, . . . , k}, hence they are natural candidates for the choice of the function f in the
proof strategy that was outlined in the overview of the proof. However, for the choice f(x) =
f1(x) or f(x) = f2(x) this proof strategy would break down at the comparison of f(x) and g(x)
that was carried out for the actual choice of f(x) according to Definition 3.3.18 in this chapter.
The problems that are caused by the choice f(x) = f1(x) or f(x) = f2(x) can be easily
observed in the left plot of Figure 3.1:

For x ∈ [0, 1
2 ] we have f1(x) ≥ c · g(x) for every positive constant c, but unfortunately for

every α < 1 we have f1(x) < g(x) for x ∈ (1
2 , α]. Additionally, there is no constant c such
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that f1(x) ≥ c · g(x) for all x ∈ (1
2 , α] since limx→0 f1(1

2 + x)/g(1
2 + x) =∞. Thus for the

choice f(x) = f1(x) the comparison of f(x) and g(x) would always fail on the interval (1
2 , 1].

The situation is slightly different for the choice f(x) = f2(x). Here we can find constants α
and c such that f2(x) ≥ c · g(x) for all x ∈ [1

2 , α], but whenever f2(1
2 + x) ≥ c · g(1

2 + x) for
some positive x, then there exists also some positive x′ such that f(1

2 − x
′) < c · g(1

2 − x
′).

This can be verified mathematically by inspecting the slope of the functions g(x) and f2(x)
near x = 1

2 . Intuitively, close to x = 1
2 these functions locally behave like linear functions

that intersect in the point (1
2 , 0). Consequently, the comparison of f2(x) and g(x) works in

the interval (1
2 , α] at the expense of a failure in the interval [0, 1

2 ].

In summary, for the choice f(x) = f1(x) the comparison of f(x) and g(x) would fail on the
interval (1

2 , α] and for the choice f(x) = f2(x) it would fail on the interval [0, 1
2 ]. Our actual

choice of f(x) is the average of f1(x) and f2(x). It turns out that the particular deficiencies
of the functions f1 and f2 are compensated by the other function of the average, respectively.
The fact that f(x)/g(x) is bounded in the interval (1

2 , α] is due to the contribution of f2(x), the
contribution of f1(x) ensures that f(x) does not get smaller than c · g(x) in the interval [0, 1

2 ]
if we multiply g(x) by an appropriate constant c such that f(x) ≥ c · g(x) for all x ∈ (1

2 , α].
The right plot in Figure 3.1 illustrates this property of the function f(x).

Combining the Partial Results

We have seen in the last sections that our proof strategy of comparing the functions f(x)
and g(x) works under the condition that Pr{T ∈ S(β)|X = ~0} ≥ 3

4 where β is the con-
stant from Proposition 3.3.23. We cannot guarantee that this condition always holds. For
example, we will see in the proof of Corollary 3.3.26 below that Pr{T ∈ S(1)|X=~0} = 0
if P is a zero-error protocol. Therefore we need a different proof strategy for the
case that Pr{T ∈ S(β)|X=~0} < 3

4 . Fortunately, proving a lower bound on the informa-
tion cost of P under this condition is easy. If t /∈ S(β) then Pr{Xi=0|T = t} ≥ β > 1

2
and H(Xi|T = t) < 1 for at least one i ∈ {1, . . . , k}. In this case the entropy of Xi is re-
duced significantly by the knowledge of the fact that T = t. If this happens with a sufficiently
large probability with respect to the distribution of T , then the mutual information of T
and X must be large. This idea is quantified in the following lemma.

Lemma 3.3.24. Let α be a constant subject to 1
2 < α ≤ 1. Then

I(T ′ : Z|D) ≥ 1− h2(α)
2k

Pr{T /∈ S(α)|X=~0} .

Proof. By using Proposition 3.3.10, the conditional independence of the random variables Xi
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given T (Prop. 3.3.4), and the fact that 1−H(Xi|T = t) ≥ 0, we obtain

I(T ′ : Z|D) =
1
k

∑
i

I(T ′ : Zi|D= i) (3.84)

=
1
k

∑
i

I(T : Xi|X−i=~0) (3.85)

=
1
k

∑
i

(
H(Xi|X−i=~0)−H(Xi|T,X−i=~0)

)
(3.86)

=
1
k

∑
i

∑
t

Pr{T = t|X−i=~0}
(

1−H(Xi|T = t,X−i=~0)
)

(3.87)

=
1
k

∑
i

∑
t

Pr{T = t|X−i=~0} (1−H(Xi|T = t)) (3.88)

≥ 1
k

∑
i

∑
t/∈S(α)

Pr{T = t|X−i=~0} (1−H(Xi|T = t)) . (3.89)

By the fact that Pr{Xi = 0|X−i=~0} = 1
2 , we have

Pr{T = t|X−i=~0} ≥ Pr{T = t,Xi = 0|X−i=~0} =
1
2

Pr{T = t|X=~0} (3.90)

and by the definition of S(α), for every t /∈ S(α) there is an i such that Pr{Xi=0|T = t} ≥ α,
hence H(Xi|T = t) ≤ h2(α). Then our claim follows from these observations

I(T ′ : Z|D) ≥ 1
k

∑
i

∑
t/∈S(α)

Pr{T = t|X−i=~0} (1−H(Xi|T = t)) (3.91)

≥ 1
2k

∑
t/∈S(α)

Pr{T = t|X=~0}
∑
i

(1−H(Xi|T = t)) (3.92)

≥ 1
2k

∑
t/∈S(α)

Pr{T = t|X=~0}(1− h2(α)) . (3.93)

So far we have shown partial results that yield lower bounds on the information complex-
ity of ANDunique

k under certain conditions that do not necessarily hold. For a full proof of
Theorem 3.3.7 we will finally combine our previous partial results into a lower bound on the
information cost of P that holds unconditionally.

Theorem 3.3.25. Suppose that the randomized k-party protocol P computes ANDunique
k with

an error that is bounded from above by the constant ε. If ε < 3
10

(
1−

√
1
2 log 4

3

)
then there is

a constant c(ε) > 0 that only depends on the constant ε such that

I(T ′ : Z|D) ≥ c(ε)
k

.
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Proof. Let β be the constant from Proposition 3.3.23. For the proof of the lemma we will
consider two cases. For the first case, assume that Pr{T ∈ S(β)|X=~0} < 3

4 . In this case we
apply Lemma 3.3.24 for α = β and we get

I(T ′ : Z|D) ≥ 1
2k

Pr{T /∈ S(β)|X=~0}(1− h2(β)) ≥ 1
8k

(1− h2(β)) . (3.94)

Note that, since β > 1/2, there is a constant c1 > 0 such that the right hand side of the last
inequality is bounded from below by c1/k.

For the second case, assume that Pr{T ∈ S(β)|X=~0} ≥ 3
4 . In this case we first apply

Lemma 3.3.20 for α = β to obtain

I(T ′ : Z|D) ≥ 1
k

∑
i

∑
t∈S(β)

Pr{T = t|X−i=~0} · f(Pr{Xi=0|T = t}) . (3.95)

Note that Pr{Xi=0|T = t} < β for all i ∈ {1, . . . , k} if t ∈ S(β). Hence for all t ∈ S(β) and
all i ∈ {1, . . . , k} we have 4f(Pr{Xi=0|T = t}) ≥ g(Pr{Xi=0|T = t}) by Proposition 3.3.23
and therefore

I(T ′ : Z|D) ≥ 1
4k

∑
i

∑
t∈S(β)

Pr{T = t| ~X−i=~0} · g(Pr{Xi=0|T = t}) . (3.96)

Now we can apply Lemma 3.3.17 to obtain

I(T ′ : Z|D) ≥ 1
8k

DS(β)( (T |X=~0) , (T |X=~1) ) . (3.97)

Finally, we apply Lemma 3.3.13 to get

I(T ′ : Z|D) ≥ 1
8k
· Pr{T ∈ S(β)|X=~0} ·min

{
log

3
2
, 2
(

1− 10
3
ε

)2

− log
4
3

}
(3.98)

≥ 3
32k
·min

{
log

3
2
, 2
(

1− 10
3
ε

)2

− log
4
3

}
. (3.99)

For ε < 3
10

(
1−

√
1
2 log 4

3

)
the minimum in the last inequality is a positive constant that

only depends on the constant ε. Hence, there is a constant c2(ε) > 0 that only depends on
the constant ε such that the right hand side is bounded from below by c2(ε)

k . The claim of the
lemma follows from the two cases if we choose c(ε) = min{c1, c2(ε)}.

This completes the proof of Theorem 3.3.7 since it follows immediately from the last theorem.

A Simple Lower Bound for Zero-Error Protocols

For zero-error protocols the lower bound on the information complexity of ANDunique
k can be

strengthened while the proof is simplified significantly. The following corollary shows that a
lower bound for zero-error protocols can be obtained using only Lemma 3.3.24.

Corollary 3.3.26. The zero-error randomized information complexity of ANDunique
k satisfies

ICNIH
0 (ANDunique

k ;Z|D) ≥ 1
2k

.
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Proof. Let P be a randomized k-party zero-error protocol for ANDunique
k and let T ′ denote

the transcript of P for the input Z. For a proof of the corollary it is sufficient to show
that I(T ′ : Z|D) ≥ 1

2k . Recall that T is the transcript of P for the input X. Then the
corollary follows immediately from Lemma 3.3.24 for α = 1: By Definition 3.1.3, the out-
put of the protocol is uniquely determined by the transcript. Let P (t) denote the out-
put of the protocol P for transcript t. Suppose that Pr{T = t} > 0 and P (t) = 0. Then
Pr{Xi=0|T = t} = 1 for at least one i ∈ {1, . . . , k} since if this was not the case then, by
Proposition 3.3.4, we would have Pr{X=~1|T = t} > 0. This is not possible for a zero error
protocol because then the event that X=~1 and T = t would have a nonzero probability and
consequently the output of the protocol would be wrong with a nonzero probability by our
assumption that P (t) = 0. This implies that Pr{T /∈ S(1)|P (T )=0} = 1. Under the con-
dition X=~0 the output of P is 0 with probability 1, again by the zero-error property and
the fact that the input X=~0 is valid for the promise problem ANDunique

k , therefore the last
observation implies that Pr{T /∈ S(1)|X=~0} = 1 and obviously 1− h2(1) = 1. Plugging this
into Lemma 3.3.24 yields the claimed result.

3.3.4 The Information Complexity of Direct Sum Problems

In a direct sum problem we wish to evaluate a given function h(x1, . . . , xk) on n independent
inputs ai = (ai,1, . . . , ai,k) for i ∈ {1, . . . , n} using a k-party NIH-protocol. As usual, the ith
player sees the ith coordinate of each input, hence player i sees the inputs (a1,i, . . . , an,i).
An obvious solution of this problem is to compute the value of h(ai) separately for each i
using an optimal protocol for h. Clearly, for deterministic protocols this solution has the
cost n ·DNIH(h), for randomized protocols it has the cost n · RNIH

ε (h) if we require that for each
input the output is correct with a probability of at least 1− ε, and so on. However, it is not
at all clear whether this solution is optimal. This question addresses a fundamental property
of computation and has been investigated for different models of communication complexity
as well as other models of computation. It is known that the obvious solution described above
is optimal for nondeterministic two-player protocols, whereas the optimality of this solution
for mostly all other models of communication complexity is an open problem [56]. A related
problem is the computation of simple functions of the n independent copies of h, for example
the computation of

∨n
i=1 h(ai) where we assume that the range of h is {0, 1}. This type of

problem is usually also called a direct sum problem. Note that, even if direct sum lower
bounds do not hold in general for a given model of computation, direct sum lower bounds
may nevertheless be obtained for proof methods that only yield strong lower bounds for a
subset of problems (e.g. [65, 14]) or, at least, direct sum lower bounds may be obtained for
individual problems (e.g. [39]).

Remark 3.3.27. In this section we will consider direct sums of n copies of a given func-
tion f : {0, 1}k −→ {0, 1}. This results in functions of the form f :

(
{0, 1}k

)n
−→ {0, 1}. The

ith player of a NIH protocol sees the ith coordinate of each input, hence each player sees an in-
put from the set {0, 1}n. In the corresponding communication problem we therefore formally
have to consider functions of the form f : ({0, 1}n)k −→ {0, 1}. To avoid needlessly cluttered
notation for the transition from direct sums to communication problems, in this section we
will not distinguish between functions f :

(
{0, 1}k

)n
−→ {0, 1} and f : ({0, 1}n)k −→ {0, 1}.

In the following we will describe a direct sum result for the conditional information com-
plexity of functions due to Bar-Yossef, Jayram, Kumar, and Sivakumar [13]. Together with
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our lower bound on the conditional information complexity of ANDunique
k this result will im-

ply an optimal lower bound on the conditional information complexity for a useful promise
variant of the well-known disjointness function (see Sect. 3.3.5). Bar-Yossef et al. consider
the computation of a function g of the n independent copies of the function h.

Definition 3.3.28 (g-h-direct sum). Let f :
(
{0, 1}k

)n
−→ {0, 1} be a function. If there are

functions g : {0, 1}n −→ {0, 1} and h : {0, 1}k −→ {0, 1} such that

f(x1, . . . , xn) = g(h(x1), . . . , h(xn) )

for all x = (x1, . . . , xn) where xi ∈ {0, 1}k then f is called a g-h-direct sum.

The definition of g-h-direct sums is very general, we have not put any restrictions on the
choice of the functions g and h. To obtain a direct sum result in this very general setting, we
will have to restrict the inputs of g-h-direct sums to certain subsets.

Definition 3.3.29 (collapsing sets). Let g : {0, 1}n −→ {0, 1} and h : {0, 1}k −→ {0, 1} be
functions. The set S ⊆ {0, 1}k is called collapsing for g and h, if the following holds for
all i ∈ {1, . . . , n} and all a ∈ {0, 1}k: If xj ∈ S for all j ∈ {1, . . . , n} then

g(h(x1), h(x2), . . . , h(xi−1), h(a), h(xi+1), h(xi+2), . . . , h(xn) ) = h(a) .

Using the notion of collapsing sets, Bar-Yossef et al. have shown the following direct sum
lower bound for the conditional information complexity of g-h-direct sums.

Theorem 3.3.30 (Bar-Yossef et al. [13]). Suppose that f :
(
{0, 1}k

)n
−→ {0, 1} is a

g-h-direct sum and that D is a finite set. Let X = (Xi, . . . , Xk) ∈ {0, 1}k and D ∈ D be ran-
dom variables such that the random variables Xi for i ∈ {1, . . . , k} are conditionally indepen-
dent given D and supp(X) is collapsing for g and h. If Y = (Y1, . . . , Yn) and E = (E1, . . . , En)
are random variables such that (Yi, Ei) is an independent copy of (X,D) for i = 1, . . . , n then

ICNIH
ε (f ;Y |E) ≥ n · ICNIH

ε (h;X|D) .

Proof. Let P be a randomized ε-error protocol for f and let T (Y ) denote the transcript
of P for the input Y . The assumptions of the theorem imply that the random variables Yi
for i ∈ {1, . . . , n} are conditionally independent given E. Hence, by the superadditivity of
conditional mutual information for conditionally independent random variables (Cor. 2.2.28),
we obtain

icost(P ;Y |E) = I(T (Y ) : Y |E) (3.100)

≥
n∑
i=1

I(T (Y ) : Yi|E) (3.101)

=
n∑
i=1

∑
e

Pr{E−i=e} I(T (Y ) : Yi|Ei, E−i=e) . (3.102)

For the proof of the theorem it is sufficient to show that for every i and every e there is a
randomized ε-error protocol Pi,e for the function h such that

I(T (Y ) : Yi|Ei, E−i=e) = icost(Pi,e;X|D) (3.103)
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since this would immediately imply the claim of the theorem:

icost(P ;Y |E) ≥
n∑
i=1

∑
e

Pr{E−i=e} icost(Pi,e;X|D) (3.104)

≥
n∑
i=1

∑
e

Pr{E−i=e} ICε(h;X|D) (3.105)

= n · ICε(h;X|D) . (3.106)

The protocol Pi,e uses the random inputs of P and an additional random input R such
that R ∼ (Y−i|E−i=e). Notice that under the condition E−i=e for each j 6= i all but one
coordinate of Yj is fixed to the constant 0, hence the random input of each player may
also contain constant bits. The pth player sees the coordinates of R that correspond to
the coordinates of Y−i seen by him. For an input a ∈ {0, 1}k the protocol Pi,e simu-

lates P on the input y ∈
(
{0, 1}k

)n
such that yi = a and y−i = R. Here it is important

to observe that the random choice of y−i = R can be carried out without any additional
communication: For each j 6= i the coordinates of Yj are conditionally independent given
that E−i = e, therefore yj,p can be chosen by the pth player independently of the other play-
ers. Now, since supp(Yj) = supp(X) is collapsing for g and h and R ∼ (Y−i|E−i=e), we
have Pr{Pi,e(a) 6= h(a)} ≤ ε by the error bound of P , thus Pi,e is an ε-error protocol for
the function h. Let Ti,e(a) denote the transcript of Pi,e for the input a. Clearly, by the
construction of Pi,e, we have

(Ti,e(X), X,D) ∼ (T (Y ), Yi, Ei|E−i=e) (3.107)

and therefore

icost(Pi,e;X|D) = I(Ti,e(X) : X|D) = I(T (Y ) : Yi|Ei, E−i=e) (3.108)

which completes the proof of the theorem.

Next we consider the application of Theorem 3.3.30 to promise problems. Although the theo-
rem has only been applied to promise problems in the literature [13, 25, 45, 51], surprisingly,
the conditions under which this result is applicable to promise problems have not been stated
explicitly in these publications.

Corollary 3.3.31. Suppose that f :
(
{0, 1}k

)n
−→ {0, 1} is a g-h-direct sum and that D is

a finite set. Let X = (Xi, . . . , Xk) ∈ {0, 1}k and D ∈ D be random variables such that the
random variables Xi for i ∈ {1, . . . , k} are conditionally independent given D and supp(X) is
collapsing for g and h. Let S ⊆ {0, 1}k be a set such that supp(X) ⊆ S and define

T =
n⋃
i=1

{
(x1, . . . , xn) ∈

(
{0, 1}k

)n
: xi ∈ S , xj ∈ supp(X) if j 6= i

}
.

If Y = (Y1, . . . , Yn) and E = (E1, . . . , En) are random variables such that (Yi, Ei) is an inde-
pendent copy of (X,D) for i ∈ {1, . . . , n}, then

ICNIH
ε (f |T ;Y |E) ≥ n · ICNIH

ε (h|S ;X|D) .
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Proof. The proof uses the same line of arguments as the proof of Theorem 3.3.30. Here
we just need to observe that the protocols Pi,e (compare with the proof of Theorem 3.3.30)
are randomized ε-error protocols for the promise problem h|S . To this end recall that the
protocol Pi,e on the input a simulates the protocol P for f |T on the input y ∈

(
{0, 1}k

)n
such

that yi = a and yj ∈ supp(X) if j 6= i. Then, by the definition of T and the fact that supp(X)
is collapsing for g and h, the protocol Pi,e computes the function h(a) for all a ∈ S. The output
of Pi,e for inputs a /∈ S is undefined. The condition supp(X) ⊆ S ensures that h|S is well-
defined on the set supp(X) and that f |T is well defined on supp(Y ), hence the information cost
of Pi,e with respect to X and the information cost of P with respect to Y is well-defined.

3.3.5 The Disjointness Function

In this section we will apply the direct sum approach of Bar-Yossef et al. from the last section
and our lower bound on the conditional information complexity of ANDk from Section 3.3.3 to
a well known problem in communication complexity theory, the so-called disjointness function.

Definition 3.3.32 (k-party disjointness function). Let xi ∈ {0, 1}n for i ∈ {1, . . . , k}. Then
the k-party disjointness function DISJk,n is defined by

DISJk,n(x1, . . . , xk) =
n∨
j=1

k∧
i=1

xi,j .

Note that often (for example in [56]) the disjointness function is defined as the complement
of the function DISJk,n, but the definition according to Def. 3.3.32 seems to be more popular
in the context of direct sum problems (see [51, 45, 25, 13]). Clearly, the k-party disjointness
function is an ORn-ANDk-direct sum where ORn denotes the disjunction of n bits. Therefore
we can obtain a lower bound on the conditional information complexity of DISJk,n by using
Theorem 3.3.30. More precisely, we will use Corollary 3.3.31 to prove a lower bound on
the information complexity of a promise variant of DISJk,n that is related to the promise
problem ANDunique

k , the so-called disjointness function with the unique intersection promise
which will turn out to be useful in applications (see Sect. 4.4.3).

Definition 3.3.33 (Unique intersection promise). For the DISJk,n function with the unique
intersection promise, DISJunique

k,n for short, it is promised that either

(i) for all j ∈ {1, . . . , n} there is at most one i ∈ {1, . . . , k} such that xi,j = 1, or

(ii) there is exactly one j∗ ∈ {1, . . . , n} such that xi,j∗ = 1 for all i ∈ {1, . . . , k} and for
all j ∈ {1, . . . , n} − {j∗} there is at most one i ∈ {1, . . . , k} such that xi,j = 1.

In our lower bound on the information complexity of DISJunique
k,n we will use the following joint

distribution of the input Y and the variable E on which we condition.

Definition 3.3.34. Suppose that Z = (Z1, . . . , Zk) ∈ {0, 1}k and D ∈ {1, . . . , k} are
random variables such that their joint distribution has the following properties:
The random variable D is uniformly distributed in the set {1, . . . , k} and for
all i ∈ {1, . . . , k} the conditional distribution of Z given D satisfies Pr{Zi=0|D 6= i} = 1
and Pr{Zi=0|D= i} = Pr{Zi=1|D= i} = 1

2 . Then define random variables Y = (Y1, . . . , Yn)
and E = (E1, . . . , En) such that (Yi, Ei) is an independent copy of (X,D) for all i ∈ {1, . . . , n}.
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The joint distribution of Z and D in the definition above is identical to the distribution that
is used in the lower bound on the conditional information complexity of ANDunique

k . The
random variables Zi for i ∈ {1, . . . , k} are conditionally independent given D and supp(Z) is
collapsing for ORn and ANDk. Every element from supp(Z) satisfies the promise of ANDunique

k

(Def. 3.3.5) and if for any i ∈ {1, . . . , n} the coordinate Yi of Y = (Y1, . . . , Yn) is replaced by an
input that honors the promise of ANDunique

k then the resulting input also honors the promise
of DISJunique

k,n . Therefore a lower bound on the information complexity of DISJunique
k,n with

respect to Y and E follows immediately from Corollary 3.3.31 and the lower bound on the
information complexity of ANDunique

k in Theorem 3.3.7.

Corollary 3.3.35. Suppose that the random variables (Y,E) are distributed according to

Definition 3.3.34 and let 0 ≤ ε < 3
10

(
1−

√
1
2 log 4

3

)
≈ 0.163 be a constant. Then there is a

constant c(ε) > 0 that only depends on ε such that

ICNIH
ε (DISJunique

k,n ;Y |E) ≥ c(ε)n
k

.

Note that lower bounds on the communication complexity of DISJunique
k,n by Theorem 3.2.5

for errors that are larger than 0.163 are easily obtained from this result by using probability
amplification.

Related Work

The communication complexity of the two-player disjointness function has been studied ex-
tensively in communication complexity theory. We refer the reader to the book by Kushilevitz
and Nisan [56] and the references therein for details. Here we only focus on recent results
on the k-party communication complexity of the disjointness function with the unique in-
tersection promise in the NIH model, and especially on lower bounds that use information
complexity arguments. Alon, Matias, and Szegedy [3] introduced the unique intersection
promise for the disjointness function to prove lower bounds on the space complexity of algo-
rithms for the frequency moments of data streams (see Section 4.4). They proved an Ω(n/k4)
lower bound on the randomized communication complexity of DISJunique

k,n for randomized pro-
tocols with a constant error. Bar-Yossef, Jayram, Kumar, and Sivakumar [13] introduced the
direct sum paradigm for the conditional information complexity of the disjointness function
that is described in Section 3.3.4 and improved the lower bound to Ω(n/k2). Building on the
direct sum paradigm of Bar-Yossef et al., the lower bound was improved to Ω(n/(k log k))
by Chakrabarti, Khot, and Sun [25]. Their improvement is due to an improved analysis of
the conditional information complexity of the ANDk function (see Sect. 3.3.3). They also
described a one-way protocol with the communication cost O(n/k + log n) for the k-party
disjointness function with the unique intersection promise and proved an optimal Ω(n/k)
lower bound for one-way protocols. We already mentioned that the conditions under which
Theorem 3.3.30 is applicable to promise problems are not stated explicitly in [13]. Con-
sequently, in the application to the promise problem DISJunique

k,n it is not stated explicitly
that a lower bound for a promise variant of ANDk is needed. We therefore note that all re-
sults [13, 25, 45, 51] which prove lower bounds on the information complexity of DISJunique

k,n by
using Theorem 3.3.30 actually use lower bounds on the information complexity of the promise
problem ANDunique

k although they only claim to show lower bounds on the information com-
plexity of ANDk. Chakrabarti et al. [25] mention that the only property that is needed in
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their proof (and the other results) is the fact that ANDk(~0) 6= ANDk(~1). This property is
shared by ANDk and the promise problem ANDunique

k .

3.4 The NOF Information Complexity of Pointer Jumping

In this section we will apply information complexity to prove lower bounds on the communi-
cation complexity of functions in the number on the forehead model (see Sect. 3.1.5). In this
model we are less successful than in the NIH model. We will only obtain lower bounds for
one-way protocols that have additional artificial restrictions. First, we will discuss the new
difficulties that arise in the NOF model.

3.4.1 What is so Difficult About the NOF Model?

The main difficulty in the proof of lower bounds on the communication complexity of functions
in the NOF model lies in the large amount of information that is shared by the players. In a
k-party NOF protocol each player sees almost all inputs. Since the fraction of the inputs that
is seen by each player increases in k, NOF protocols get more powerful as the number of players
increases. The strongest lower bounds that are currently known in the NOF model only work
for o(log n) players where n denotes the length of the input. Proving a superpolylogarithmic
lower bound on the communication complexity of a function for a polylogarithmic number of
players in the NOF model would be a major breakthrough that could solve some long-standing
open problems in circuit complexity (see [56, 5]).

The immediate consequences of the large amount of shared information for the information
complexity approach are the strong dependencies between the messages of the players that are
caused by shared information. Even for simultaneous message protocols, where the players do
not interact at all, in the NOF model the messages of the players are not independent since
for each pair of players there are input variables that are seen by both players. In contrast,
the messages of a simultaneous message protocol in the NIH model are independent if the
inputs of the protocol are independent since here the message of the ith player only depends
on the ith input.

For NIH protocols our lower bounds used the fact that the inputs of the players are
conditionally independent given the transcript of the protocol. Our observations on the
combinatorial structure of NOF protocols in Section 3.1.5 reveal that we do not have similar
properties in the NOF model. In fact, here we may introduce strong dependencies between
the inputs of the players if we condition on the transcript of the protocol. Independence and
conditional independence are our strongest tools for the proof of lower bounds in the NIH
model. Apparently, in the NOF model these tools are not immediately applicable.

The following example illustrates the problems that are caused by shared information:
Consider the following randomized k-party NOF protocol for the function f(X1, . . . , Xk)
where X1, . . . , Xk are random variables and the random variable R = (R1, . . . , Rk) is the
random input of the randomized protocol: The random input R3 is seen by the first and
second player and the input X2 is seen by the first player. The first player encrypts X2

using R3 as a one-time-pad (see [66]) and writes the result to the blackboard. Then the second
player decrypts the transcript using the shared one-time-pad R3 to obtain the input X2, the
only input that is not seen by him, and computes the output f(X1, . . . , Xk). Clearly, this
protocol computes f(X1, . . . , Xk), but the mutual information of the transcript and the inputs
is zero. This problem can be solved by conditioning on R, but treating the random inputs
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of a randomized protocol different than the inputs for the computed function introduces new
problems. It complicates the use of direct sum arguments like Theorem 3.3.30 that depend on
the fact that the inputs and the random inputs of a randomized protocol are “interchangeable”
such that inputs of the function can be interpreted as random inputs of a subfunction.

3.4.2 The Pointer Jumping Function PJk,n

In the following we will consider the one-way NOF information complexity of a pointer jump-
ing function that is defined as follows:

Definition 3.4.1 (Pointer jumping function). Let f1, . . . , fk be functions with the domain
and range {1, . . . , n}. Then the k-party pointer jumping function PJk,n is defined as follows:

PJk,n(f1, . . . , fk) = (fk ◦ fk−1 ◦ · · · ◦ f1)(1) .

Note that the value of PJk,n(f1, . . . , fk) does not depend on f1(2), . . . , f1(n). This part of the
input is redundant, it is only present for the sake of a more uniform notation. In addition
to the notation from Definition 3.2.7, the following definition will be used throughout this
section.

Definition 3.4.2 (Notation). Let f = (f1, . . . , fk) be an input for PJk,n. Then

• let f̃i = fi ◦ fi−1 ◦ · · · ◦ f1 denote the composition of first i functions from f , and

• let f−(i,j) = (f1, . . . , fi−1, fj+1, . . . , fk) denote the vector of all f` where ` < i or ` > j.

An alternative definition of the function PJk,n as a graph problem explains the name “pointer
jumping”: We have a layered digraph with k + 1 layers and n nodes in each layer. All nodes in
the first k layers have exactly one outgoing edge, the nodes in the last layer have no outgoing
edges. Let vi,j denote the jth node in the ith layer. The graph contains the edges from vi,j
to vi+1,fi(j) for all i ∈ {1, . . . , k} and j ∈ {1, . . . , n}. Then fi corresponds to the edges from
layer i to layer i+ 1 and the value of the function PJk,n is the number of the unique node
that is reached by chasing the edges from node v1,1 to the last layer.

Several variants of pointer jumping functions have been defined in the literature. Sec-
tion 3.4.4 gives references to some results about pointer jumping functions in various com-
munication models. A common variation is, for example, a binary variant of PJk,n where the
range of the last function fk is replaced by {0, 1}. In this case the resulting function for k = 2
players is the index function INDn that was introduced in Section 3.3.1 and the binary variant
for k ≥ 3 can be seen as a multi-party version of the index function.

3.4.3 Conservative, Myopic, and Collapsing One-Way Protocols for PJk,n

Because of the difficulties that are described in Section 3.4.1, we will only be able to prove
a lower bound on the information cost of a restricted subset of deterministic one-way NOF
protocols for PJk,n: We will consider protocols where each player “can see only one layer
ahead”, hence the message of the ith player only depends on the messages of the preceding
players and the inputs f1, f2, . . . , fi−1 and fi+1. We call protocols that respect our restriction
myopic protocols. First, we will restate the restriction in information theoretical terms.
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Definition 3.4.3 (Myopic protocol). Let the random variables X = (X1, . . . , Xk) be the
input of a deterministic k-party one-way NOF protocol P and let T (X) = (T1, . . . , Tk) be the
transcript of P for the input X where Ti denotes the part of the transcript that was written
by the ith player. Then P is called myopic, if for all i ∈ {1, . . . , k}

I(T1,i−2 : Xi|X−i) = 0 .

Consider the function PJk,n for random inputs F = (F1, . . . , Fk). If the mutual information
of T (F ) and F is small then T (F ) can only convey limited information about each function Fi.
The definition of myopic protocols is motivated by the intuition that the ith player can put
the limited information in his message Ti to the best use if he can compute a good prediction
of F̃i(1) using the information at his disposal, namely the inputs F−i and the messages T1,i−1.
Clearly, if he can compute F̃i(1) exactly then he can immediately compute the output F̃k(1)
as a function of F̃i(1) and F−i. But even less than perfect information about F̃i(1) is useful
because it helps to avoid “wasting information” on random variables that do not have an effect
on the value of PJk,n(F ). For example, if the ith player knows that F̃i(1) 6= j then he should
not waste the limited information in his message Ti on the useless random variable Fi+1(j).
Therefore it seems to be useful to give as much information as possible to the next player in a
one-way protocol since this helps the next player to put the limited information in his message
to the best use and, intuitively, the amount of wasted information should be minimized by
this strategy. Unfortunately, today it is known that this intuition is flawed. New results by
Chakrabarti [24] and Brody and Chakrabarti [19] show that myopic protocols are suboptimal
(see also the discussion of related work in Sect. 3.4.4).

Before we prove some basic properties of myopic protocols, we will describe classes of
restricted one-way NOF protocols that have been considered by other researchers and we will
discuss the significance of lower bounds on the communication complexity of functions for
restricted classes of protocols: Damm, Jukna, and Sgall [32] investigated the communication
cost of conservative one-way NOF protocols. In a conservative protocol the message of the ith
player may only depend on the messages T1,i−1 of the preceding players, the inputs fi+1, . . . , fk
and the value of f̃i−1(1). Hence the ith player knows the node that is reached by the first i− 1
pointers, but he does not know the exact path by which the node is reached. The access to the
pointers “ahead” of the ith player is not restricted. The situation is inverted for collapsing
one-way NOF protocols which were introduced by Brody and Chakrabarti [19]. Here the
message of the ith player may, in addition to the messages T1,i−1 of the preceding players,
depend on the inputs f1, . . . , fi−1 and on the function fk ◦ fk−1 ◦ · · · ◦ fi+1. Here the ith
player’s access to the preceding pointers is not restricted. But for the pointers that lie ahead
he only knows which node in the final layer is reached from each node of layer i+ 1, but not
the exact path by which the node in the final layer is reached.

Restricted classes of one-way NOF protocols can be considerably weaker than unre-
stricted one-way NOF protocols. The recent results by Chakrabarti [24] and by Brody and
Chakrabarti [19] show that conservative, myopic, and collapsing protocols for PJk,n are sub-
optimal. Nevertheless lower bounds in these models are useful. The lower bounds can guide
the design of efficient protocols for PJk,n since they rule out the efficiency of certain classes
of protocols. For example, in an optimal protocol for PJk,n the message of the ith player
must depend on the inputs fi+1, . . . , fk for at least one i ∈ {1, . . . , k − 1}. But lower bounds
for restricted classes of protocols can also contribute to our understanding of the information
complexity for unrestricted protocols: They rule out the applicability of some proof strate-
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gies, for example the wrong intuition about myopic protocols that is described above, and
thereby guide our search for properties of the function PJk,n that can be used for the proof
of lower bounds for unrestricted protocols. The exploration of restricted models has proved
useful before, for example for branching programs (see [75] for details).

Now we will prove some properties of myopic protocols that will be useful in the following.

Proposition 3.4.4. Let P be a deterministic k-party one-way NOF protocol for PJk,n and
let T (F ) = (T1, . . . , Tk) denote the transcript of P for uniformly distributed random in-
puts F = (F1, . . . , Fk). If P is myopic then

(i) Fi+1(1), . . . , Fi+1(n) are conditionally independent given (F−(i,i+1), T1,i−1),

(ii) Fi and Fi+1 are conditionally independent given (F−(i,i+1), T1,i−1), and

(iii) H(F̃i+1(1)|F−(i+1), T1,i−1) = log(n).

Proof. First observe that Fi+1 is independent of (F−(i+1), T1,i−1) for all i ∈ {1, . . . , k − 1}
since, by the definition of myopic protocols and the fact that Fi+1 and F−(i+1) are independent

0 = I(T1,i−1 : Fi+1|F−(i+1)) (3.109)

= H(Fi+1|F−(i+1))−H(Fi+1|T1,i−1, F−(i+1)) (3.110)

= H(Fi+1)−H(Fi+1|T1,i−1, F−(i+1)) . (3.111)

This implies that H(Fi+1) = H(Fi+1|T1,i−1, F−(i+1)) and Fi+1 and (F−(i+1), T1,i−1) are in-
dependent by Proposition 2.2.11. Then claim (i) of the proposition follows immediately
from the independence of Fi+1 and (F−(i+1), T1,i−1) since the independent random vari-
ables Fi+1(1), . . . , Fi+1(n) remain independent if we condition on a random variable that
is independent of these variables. For the proof of claim (ii), by Proposition 2.2.13, it suffices
to show that H(Fi+1|T1,i−1, F−(i,i+1)) = H(Fi+1|T1,i−1, F−(i+1)). This also follows immediately
from the independence of Fi+1 and (F−(i+1), T1,i−1) since it implies the independence of Fi+1

and (F−(i,i+1), T1,i−1) and we have

H(Fi+1|T1,i−1, F−(i+1)) = H(Fi+1) = H(Fi+1|T1,i−1, F−(i,i+1)) . (3.112)

Claim (iii) follows from the independence of Fi+1 and (F−(i+1), T1,i−1) and the fact that F̃i is
a function of F−(i+1): By the definition of F̃i+1 and by Proposition 2.2.12, we have

H(F̃i+1(1)|F−(i+1), T1,i−1) = H(Fi+1(F̃i(1))|F−(i+1), T1,i−1, F̃i(1)) (3.113)

=
n∑
p=1

Pr{F̃i(1)=p} ·H(Fi+1(p)|F−(i+1), T1,i−1, F̃i(1)=p) (3.114)

=
n∑
p=1

Pr{F̃i(1)=p} ·H(Fi+1(p)) (3.115)

= log(n) . (3.116)

In the second to the last line we used that Fi+1(p) is independent of (F−(i+1), T1,i−1, F̃i(1)) and
in the last line we used that H(Fi+1(p)) = log(n) for all i ∈ {1, . . . , k} and all p ∈ {1, . . . , n}.
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3.4.4 The Information Cost of Myopic Protocols for PJk,n

Bar-Yossef, Jayram, Kumar, and Sivakumar [12] were the first to apply the information com-
plexity approach of Chakrabarti, Shi, Wirth, and Yao [26] to the NOF model. They translated
a combinatorial proof method of Babai, Gál, Kimmel, and Lokam [6] for simultaneous mes-
sage protocols into the domain of information theory. In the simultaneous message model
the message of each player depends only on the inputs seen by the player, but not on the
messages of the other players, hence the players do not interact directly. A natural next step
are protocols where the interaction of the players is limited, for example one-way protocols.
In the following we will prove a lower bound on the information cost of myopic one-way NOF
protocols for PJk,n, a first step into this direction.

Theorem 3.4.5. Let P be a deterministic myopic k-party one-way NOF protocol that com-
putes PJk,n with distributional error ε for uniformly distributed inputs F = (F1, . . . , Fk) such
that cost(P ) < n/2 and let T (F ) = (T1, . . . , Tk) denote the transcript of P for the input F .
Then

icost(P ;F ) ≥ log(n) ·
(

2−(1+1/k)n(1−ε)/k − 1
)

.

Theorem 3.4.5 was the first attempt to extend the information complexity approach to the
one-way NOF model, albeit only for protocols with additional artificial information theoretical
restrictions. Note that the lower bound for myopic protocols has been improved significantly
by Chakrabarti [24] since the publication [43] of Theorem 3.4.5. More details on this can be
found in the following section on related work.

Related Work

Several variants of pointer jumping problems have been defined in the literature, common to
all of these variants is the basic problem of “chasing” edges in a given graph. The variants
of the problem differ with respect to the topology of the underlying graph, the allocation
of the edges to the players in communication protocols, and the result of the function. We
refer the reader to the papers that are cited below for details. All pointer jumping problems
are designed to capture the hardness of inherently sequential communication problems for
protocols that obtain the inputs in the wrong order. The index function INDn (see Sect. 3.3.1)
belongs to this class of problems. In the following results the value n roughly measures the
size of the input. The exact meaning of n depends on the concrete variant of pointer jumping.

The communication complexity of pointer jumping problems in Yao’s two-player model
of communication has bees studied thoroughly, for example by Nisan and Wigderson [62] and
Ponzio, Radhakrishnan, and Venkatesh [63].

The proof method of Babai et al. [6] yields an Ω(n1/k) lower bound on the communication
complexity of certain pointer jumping problems for simultaneous message protocols in the
k-party NOF model [64].

The first result on the communication complexity of pointer jumping problems in the
one-way multi-party NOF model is an unpublished result due to Wigderson who proved
an Ω(n1/2) lower bound (the result was described by Babai, Hayes, and Kimmel [7]). For k > 3
players progress on the one-way communication complexity of pointer jumping in the NOF
model has been slow, therefore restricted one-way models that allow simpler proofs of strong
lower bounds have been considered by several researchers. Damm, Jukna, and Sgall proved
an Ω(n/k2) lower bound for up to O(n1/3−ε) players in the conservative model (see Sect. 3.4.3).
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Gronemeier [43] proved an Ω(n(1−ε)/k) lower bound for ε-error protocols in the myopic
model (Theorem 3.4.5). Chakrabarti [24] significantly improved the bound for myopic pro-
tocols to Ω(n/k) and extended the result to protocols that mix conservative and myopic
behavior of the players. An n−O(log n) lower bound for collapsing protocols was obtained
by Brody and Chakrabarti [19]. An optimal Ω(n1/(k−1)) lower bound on the communication
complexity of pointer jumping on n-ary trees of depth k for unrestricted one-way protocols
in the k-party NOF model was proved recently by Viola and Wigderson [71].

The best currently known upper bound on the communication complexity of pointer jump-
ing in the one-way NOF model is due to Brody and Chakrabarti [19]. They describe a pro-
tocol that has communication cost O

(
n((k log logn)/ log(n))(k−2)/(k−1)

)
. For k = 3 players

this yields an upper bound of O
(
n
√

log logn/ log n
)

ruling out the possibility of a linear
lower bound for a constant number of players. Surprisingly, all players except for the first
player in their protocol are collapsing. Taken together with the lower bound for collapsing
protocols, this shows that the communication complexity of PJk,n for restricted protocols is
very sensitive to minimal changes of the restriction.

Outline of the Proof

We will show that the message Ti of the ith player can not reveal much information
about F̃i+1(1) if the conditional entropy of F̃i(1) given (F−i, T1,i−1) is large and the con-
ditional mutual information of Ti and Fi+1 given (F−(i+1), T1,i−1) is small. This property is
mainly due to the fact that for myopic protocols the variables Fi+1(1), . . . , Fi+1(n) are still
independent after the first i − 1 players have written their part of the transcript. Then,
intuitively, the ith player needs to partition the mutual information of Ti and Fi+1 among
the variables Fi+1(1), . . . , Fi+1(n) whereas only one of the variables, namely Fi+1(F̃i(1)), con-
tains information about F̃i+1(1). Since the ith player cannot predict F̃i(1) reliably, he needs
to “waste a lot of information” to reveal at least a little information about Fi+1(F̃i(1)). The
technical details of this argument are contained in Lemma 3.4.6. This property is used in
Lemma 3.4.7 to prove a lower bound on the conditional entropy of F̃k(1) given (F−k, T1,k−1)
by induction. Finally, Theorem 3.4.5 is proved by applying Fano’s inequality to our lower
bound on the conditional entropy of F̃k(1) given (F−k, T1,k−1).

Proof of the Lower Bound

The following lemma can be seen as a variant of Lemma 3.3.3 for the index function with
weakened premises. Here we only use a lower bound on the entropy of the index Y instead of
an upper bound on the value of pmax from Lemma 3.3.3. An upper bound on pmax is equivalent
to a lower bound on the so-called min-entropy of the index Y . The min-entropy H∞(Y ) of a
random variable Y is defined by H∞(Y ) = min{− log(Pr{Y =y}) : y ∈ supp(Y )}. The min-
entropy H∞(Y ) is a lower bound on the Shannon entropy H(Y ) according to Definition 2.2.1,
but a random variable with a large Shannon entropy can have a small min-entropy. Hence,
provided the entropy of the index Y is sufficiently large, the following lemma can still prove
strong bounds in cases where Lemma 3.3.3 fails due to a small min-entropy of Y . Additionally,
replacing the lower bound on the min-entropy of the index Y in Lemma 3.3.3 by the entropy
will enable us to apply the lemma inductively for pointer jumping, the multi-party variant of
the index function. Note that, contrary to the discussion above and the usage in Lemma 3.3.3,
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in the following lemma the index is a function P (Y ) of the random variable Y . The reason
for this slight change will become clear later on.

Lemma 3.4.6. Let X = (X1, . . . , Xn) be a random variable such that the random vari-
ables X1, . . . , Xn are independent and H(Xp) ≤ log n for all p ∈ {1, . . . , n}. Additionally,
let Y and T be random variables such that X and T are jointly independent of Y and
let P : range(Y ) −→ {1, . . . , n} be a function. If dI(T : X|Y )/ log ne ≤ C < n/2 then

I(T : XP (Y )|Y ) ≤ log(n− C) + 1−H(P (Y ))
log(n− C)− log(C)

log n .

Proof. Clearly, I(T : X|Y ) = I(T : X) since X and T are jointly independent of Y . Then, by
the superadditivity of mutual information for independent random variables (Prop. 2.2.27),

I(T : X1, . . . , Xn|Y ) = I(T : X1, . . . , Xn) ≥
n∑
p=1

I(T : Xp) . (3.117)

Furthermore I(T : XP (Y )|Y ) = I(T : XP (Y )|Y, P (Y )) by Proposition 2.2.12 since P (Y ) is a
function of Y and I(T : XP (Y )|Y, P (Y ) = p) = I(T : Xp) sinceX and T are jointly independent
of Y . Therefore

I(T : XP (Y )|Y ) = I(T : XP (Y )|Y, P (Y )) (3.118)

=
n∑
p=1

Pr{P (Y )=p} · I(T : XP (Y )|Y, P (Y ) = p) (3.119)

=
n∑
p=1

Pr{P (Y )=p} · I(T : Xp) . (3.120)

Now assume w.l.o.g. that Pr{P (Y )=1} ≥ Pr{P (Y )=2} ≥ · · · ≥ Pr{P (Y )=n}. Then
the sum (3.120) is maximized if I(T : Xp) is as large as possible for small values of p.
Since I(T : Xp) ≤ H(Xp) ≤ log n and

∑n
p=1 I(T : Xp) ≤ I(T : X1, . . . , Xn) ≤ C log n, we ob-

tain an upper bound on the value the sum (3.120) by assuming that I(T : Xp) = logn if p ≤ C
and I(T : Xp) = 0 if p > C. Let Z be a random variable such that Z = 1 if P (Y ) ≤ C
and Z = 0 if P (Y ) > C. Then, by using again that X and T are jointly independent of Y and
that Z is a function of Y , the upper bound on the sum (3.120) can be expressed as follows:

I(T : XP (Y )|Y ) = I(T : XP (Y )|Y, Z) (3.121)

= Pr{Z=1} I(T : XP (Y )|Y, Z=1) + Pr{Z=0} I(T : XP (Y )|Y, Z=0) (3.122)

≤ Pr{Z=1} · log n . (3.123)

We have H(P (Y )) = H(P (Y ), Z) = H(Z) + H(P (Y )|Z) since Z is also a function of P (Y )
and, by using that H(Z) ≤ 1, we obtain

H(P (Y )|Z) = H(P (Y ))−H(Z) ≥ H(P (Y ))− 1 . (3.124)

On the other hand, by Proposition 2.2.4 and the fact that P (Y ) ∈ {1, . . . , C} given that Z = 1
whereas P (Y ) ∈ {C + 1, . . . , n} under the condition that Z = 0, we obtain

H(P (Y )|Z) = Pr{Z=1} ·H(P (Y )|Z=1) + (1− Pr{Z=1}) ·H(P (Y )|Z=0) (3.125)
≤ Pr{Z=1} · log(C) + (1− Pr{Z=1}) · log(n− C) . (3.126)
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By combining the two inequalities for H(P (Y )|Z) we get

Pr{Z = 1} (log(n− C)− log(C)) ≤ log(n− C) + 1−H(P (Y )) (3.127)

and since the premise C < n/2 implies that log(n− C)− log(C) > 0 we finally obtain

Pr{Z = 1} ≤ log(n− C) + 1−H(P (Y ))
log(n− C)− log(C)

. (3.128)

By substituting this into our estimate of I(T : XP (Y )|Y ), we obtain the claim of the lemma:

I(T : XP (Y )|Y ) ≤ Pr{Z = 1} · log n (3.129)

≤ log(n− C) + 1−H(P (Y ))
log(n− C)− log(C)

log n . (3.130)

Consider the situation of the ith player in a myopic protocol for PJk,n: The ith player would
like to provide as much information as possible about Fi+1(F̃i(1)) to player i+ 1. But if the
entropy of F̃i(1) is large and the amount of information that can be provided by the ith player
is limited then, by Lemma 3.4.6, the entropy of F̃i+1(1) will also be large and player i+ 1
will be in a similar position as player i. This argument can be extended inductively to several
players. The following lemma contains the technical details.

Lemma 3.4.7. Let P be a deterministic k-party one-way NOF protocol for PJk,n and
let T (F ) = (T1, . . . , Tk) denote the transcript of P for uniformly distributed random in-
puts F = (F1, . . . , Fk). Suppose that P is myopic, that dcost(P )/ log ne < n/2, and
that I(Ti : Fi+1|F−(i+1), T1,i−1)/ log(n) ≤ U for all i < k. Then for all i ≤ k we have

H(F̃i(1)|F−i, T1,i−1) ≥ log n− i− i log(U + 1) .

Proof. For brevity, let Ai = H(F̃i(1)|F−i, T1,i−1). We will first show a recurrence relation
for Ai: Clearly, we have A1 = log n since the empty transcript at the beginning of the protocol
does not contain any information about F1. By the definition of mutual information, we have

I(Ti : F̃i+1(1)|F−(i+1), T1,i−1) = H(F̃i+1(1)|F−(i+1), T1,i−1)−H(F̃i+1(1)|F−(i+1), T1,i) (3.131)

= H(F̃i+1(1)|F−(i+1), T1,i−1)−Ai+1 . (3.132)

By claim (iii) of Proposition 3.4.4, we have H(F̃i+1(1)|F−(i+1), T1,i−1) = log(n), therefore we
obtain

Ai+1 = H(F̃i+1(1)|F−(i+1), T1,i−1)− I(Ti : F̃i+1(1)|F−(i+1), T1,i−1) (3.133)

= log(n)− I(Ti : F̃i+1(1)|F−(i+1), T1,i−1) . (3.134)

Let Ei(f, t) denote the event that F−(i,i+1) = f and T1,i−1 = t, let

Bi(f, t) = I(Ti : F̃i+1(1)|F−(i+1), T1,i−1, Ei(f, t)) (3.135)

and let
Ci(f, t) = dI(Ti : Fi+1|F−(i+1), T1,i−1, Ei(f, t))/ log(n)e . (3.136)
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Then, by our previous observations, we have

Ai+1 = log(n)−
∑
f,t

Pr{Ei(f, t)} ·Bi(f, t) . (3.137)

Assume that the event Ei(f, t) happened. Then the random variables T1,i−1 and F−(i,i+1)

are fixed to constants. Hence F̃i(1) only depends on Fi and the message Ti of player i only
depends on Fi+1 since player i does not see Fi. By claim (ii) of Proposition 3.4.4, Fi and Fi+1

are conditionally independent given Ei(f, t), therefore Fi+1 and Ti are jointly independent
of Fi and F̃i(1) under this condition. Finally, we have F̃i+1(1) = Fi+1(F̃i(1)) and, by claim (i)
of Proposition 3.4.4, the random variables Fi+1(1), . . . , Fi+1(n) are independent given Ei(f, t).
Therefore we can apply Lemma 3.4.6 for the parameters Xp = Fi+1(p), Y = Fi, P (Y ) = F̃i(1),
T = Ti, and C = Ci(f, t) to obtain an upper bound on Bi(f, t). Note that H(Fi+1(p)) ≤ log(n)
for all p ∈ {1, . . . , n} and that dCi(f,m)e ≤ cost(P )/ log(n) < n/2 if n is sufficiently large.
This is due to the fact that even under the condition Ei(f, t) the entropy of the transcript is
a lower bound on the communication cost of P by the same argument as in Theorem 3.2.10.
Hence all requirements for the application of Lemma 3.4.6 are met and we obtain

Bi(f, t) ≤
log(n− Ci(f, t)) + 1−H(F̃i(1)|Ei(f, t))

log(n− Ci(f, t))− log(Ci(f, t))
log n (3.138)

and therefore

log(n)−Bi(f, t) ≥

(
1− log(n− Ci(f, t)) + 1−H(F̃i(1)|Ei(f, t))

log(n− Ci(f, t))− log(Ci(f, t))

)
log(n) (3.139)

=
H(F̃i(1)|Ei(f, t))− log(Ci(f, t))− 1

log(n− Ci(f, t))− log(Ci(f, t))
log(n) (3.140)

≥ H(F̃i(1)|Ei(f, t))− log(Ci(f, t))− 1 . (3.141)

For the last line we used that 0 < log(n− Ci(f, t))− log(Ci(f, t)) ≤ log(n). Then, by plugging
this result into (3.137), we obtain

Ai+1 =
∑
f,t

Pr{Ei(f, t)} · (log(n)−Bi(f, t)) (3.142)

≥
∑
f,t

Pr{Ei(f, t)} ·
(

H(F̃i(1)|Ei(f, t))− log(Ci(f, t))− 1
)

(3.143)

= H(F̃i(1)|F−(i,i+1), T1,i−1)− 1−
∑
f,t

Pr{Ei(f, t)} · log(Ci(f, t)) . (3.144)

Since conditioning reduces entropy (Prop. 2.2.11), we have

H(F̃i(1)|F−(i,i+1), T1,i−1) ≥ H(F̃i(1)|F−i, T1,i−1) = Ai (3.145)

and, by Jensen’s inequality (Theorem A.2.1), we have

∑
f,t

Pr{Ei(f, t)} · log(Ci(f, t)) ≤ log

∑
f,t

Pr{Ei(f, t)} · Ci(f, t)

 (3.146)

≤ log
(
I(Ti : Fi+1|F−(i+1), T1,i−1)/ log(n) + 1

)
(3.147)

≤ log (U + 1) . (3.148)
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We used the fact that Ci(f, t) ≤ I(Ti : Fi+1|F−(i+1), T1,i−1, Ei(f, t))/ log(n) + 1 in the second
inequality. Finally, we obtain the recurrence relation

Ai+1 ≥ Ai − 1− log (U + 1) (3.149)

and the claim of the lemma follows immediately from this recurrence relation and the base
case A1 = log(n) which was mentioned earlier in the proof.

Using the technical preparations in the preceding Lemmas, we can prove Theorem 3.4.5.

Proof of Theorem 3.4.5. The kth player of the protocol P uses F−k and T1,k−1 to predict F̃k(1)
with an error probability of at most ε. Then, by Fano’s inequality (Thm. 2.2.29), we have

H(F̃k(1)|F−k, T1,k−1) ≤ h2(ε) + ε log(n− 1) ≤ 1 + ε log(n) . (3.150)

Let U = icost(P ;F )/ log(n) = max{I(Ti : Fi+1|F−(i+1), T1,i−1)/ log(n) : 1 ≤ i < k}. Then for
all i such that 1 ≤ i < k we have I(Ti : Fi+1|F−(i+1), T1,i−1)/ log(n) ≤ U and, by Lemma 3.4.7,
we obtain

H(F̃k(1)|F−k, T1,k−1) ≥ log(n)− k − k log(U + 1) . (3.151)

Combining (3.150) and (3.151) and solving for U yields

U ≥ 2−(1+1/k)n(1−ε)/k − 1 . (3.152)

The claim of the theorem follows immediately from this, concluding the proof.
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Chapter 4

Algorithms

In this section we will describe data stream algorithms for basic problems under extreme
space restrictions. First we will consider the problem of counting events approximately using
only O(log log n) bits of memory for n events. Unlike the previously known algorithms for
this problem, our algorithm provides good approximations of the actual number of events
after every event with an adjustable error probability, even for an infinite number of events.
Counting the number of data stream elements is a basic operation of many data stream
algorithms, hence this algorithm is a useful building block for data stream algorithms. Then
we will use this building block to design an algorithm that samples an element approximately
uniformly at random from a data stream using only O(log log n) bits of memory in addition to
the sample. Sampling uniformly at random from a data stream is also a basic operation that
is needed in many randomized data stream algorithms. Finally, we will apply our algorithms
for the basic problems of counting and sampling to the computation of frequency moments
for very long data streams. But before we proceed to the algorithms, we will give a detailed
introduction to data stream algorithms.

4.1 Data Stream Algorithms

Data stream algorithms address a recent new trend in data processing and algorithm design:
The rate at which we produce data is growing at an accelerating rate. Networks process data
packets at a rate of several gigabits per second, therefore it is hardly possible to store all
packets or even some small information about each packet. Nevertheless such data contains
valuable information that can be used for network management. Large webservers produce
huge amounts of log data that contains valuable information, e.g. for marketing purposes.
But this information can only be obtained by processing the data which becomes more difficult
and costly as the amount of data grows. Large online services like facebook1, flickr2, or gmail3

have to manage petabytes of userdata. The recent research in sensor networks foreshadows
an even larger growth of the steady stream of information about our world that is constantly
available to us. But all of this information is useless if we are not able to process this huge
amount of data at the same rate at which it is produced.

1http://www.facebook.com/
2http://www.flickr.com/
3http://www.gmail.com/
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A proposed solution to these challenges are data stream algorithms. A data stream al-
gorithm reads its input as a sequence of data elements that are processed one-by-one in an
order that is given by an adversary in a single pass over the input or a small constant number
of such passes. Data stream algorithms are considered to be efficient if each data element can
be processed efficiently and if the space complexity of the algorithm is sublinear, preferably
polylogarithmic, in the length of the input. Given these restrictions, a data stream algorithm
cannot simply read the entire input and access the input randomly during the computation
of the output. It must rather process each data element online as it arrives and cannot store
every data element for later reference.

Provably, many important problems cannot be solved exactly by deterministic algorithms
within the sublinear space constraints of data stream algorithms, therefore we often have to
resort to randomized algorithms that approximate the solution of a problem. The following
notion of approximation has turned out to be adequate for data stream algorithms.

Definition 4.1.1 ((ε, δ)-approximation). Let U = {u1, . . . , um} be a set and let f : U∗ −→ R
be a function. A randomized data stream algorithm A computes an (ε, δ)-approximation of f
if the output A(x) of A satisfies

Pr{|A(x)− f(x)| ≤ εf(x)} ≥ 1− δ

for every data stream x = (x1, . . . , xn) ∈ U∗ where the probability is taken with respect to
the random decisions of the randomized algorithm.

This definition can be generalized to functions f : U∗ −→ R for arbitrary sets R by introducing
a function that measures the quality of an approximate solution for a given data stream.

Clearly, the model of data stream algorithms matches the scenario in which a steady
stream of data elements has to be processed at a rate such that a permanent storage of the
data is impossible, for example network devices and to same extent log files. But this model
also applies to general computations on large data sets. Even if we are able to store a large data
set then a random access of many items in the data set can be too costly. Modern hard drives
can access data sequentially at high rates, but random access is slow since the positioning
of the read head (seek) is a mechanical process which cannot be sped up significantly. The
gap between sequential and random access is even increasing as the capacity of hard drives
grows since the speed of sequential reading grows with the storage density whereas the time
for random access is dominated by the seek time which essentially remained constant in the
recent past. This precludes the application of conventional algorithms for large data sets on
external storage devices. Hence, even if a random access to the input is possible in principle,
a data stream algorithm may be the only feasible solution in practice.

A comprehensive introduction to data stream algorithms can be found, for example, in
the surveys by Muthukrishnan [61] and by Babcock, Babu, Datar, Motwani, and Widom [9].

4.2 Approximate Counting

The first data stream algorithm that we consider is for a very basic problem: Counting
the number of elements in a data stream. Clearly, this problem can be solved exactly us-
ing O(log n) bits of memory for data streams of length n. It is also easy to show that every
algorithm that computes the length of a data stream exactly must use Ω(log n) bits of memory.
Since data stream algorithms with polylogarithmic space complexity are usually considered
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efficient, one might wonder how data stream algorithms for counting the number of stream
elements can be improved. Nevertheless, in 1978 when memory was scarce and expensive,
Robert Morris faced the problem that he had to maintain many counters for a large number
of events that had to be stored in small registers, 8-bit registers in his case. To solve his
problem, he devised an algorithm that computes (ε, δ)-approximations of the counters using
space O(log log n) for n events [59]. This algorithm is a very early example of a data stream
algorithm and already demonstrates basic ideas that are commonly used in the design of
data stream algorithms. The random process that is implemented by this algorithm is inter-
esting on its own, it was analyzed in detail by Flajolet [38] and by Hofri and Kechris [49].
But Morris’ algorithm has one shortcoming: It computes a single (ε, δ)-approximation of the
number of events after all events happened. It was not designed to provide a good approxi-
mation of the number of events after each event while the events are counted. This severely
limits the utility of Morris’ algorithm as a building block for other algorithms, since many
algorithms that use counters access these counters frequently. An example of this is given in
Section 4.3. In this section we will presents an algorithm that counts events approximately
using space O(log log n) after n events such that with a high probability the approximate
count is always a good approximation of the number of events that were counted so far.

4.2.1 Morris’ Algorithm

We will briefly sketch Morris’ algorithm [59] for approximately counting n events using
only O(log log n) space. Morris’ algorithm approximately maintains the logarithm of the
number of events that have happened so far with respect to a fixed base b > 1. For n events
this can be done using O(log log n) bits of memory. To this end the algorithm stores a num-
ber r, the register value, that is initialized with r = 0. The register value r represents the
approximate count v(r) = br−1

b−1 . Clearly, there does not exist a register value r for every n ∈ N
such that v(r) = n. Therefore, in general, it is impossible to increment v(r) by one to count
a single event. The main idea of Morris’ algorithm is to increment the register with the prob-
ability p(r) = (v(r + 1)− v(r))−1 = b−r. Then p(r)v(r + 1) + (1− p(r))v(r) = v(r) + 1 and
the expected value of v(r) after this randomized increment is v(r)+1. By the fact that v(0) = 0
and by the linearity of expectation, the expected approximate count after n randomized in-
crements is n. The probability that the actual approximate count deviates too far from the
average can be bounded easily by Chebyshev’s inequality. For details of this analysis we refer
the reader to [59] and [38, 46].

4.2.2 Counting an Infinite Number of Events Approximately

We will improve Morris’ approximate counting algorithm in two ways. The first modification
ensures that we can realize a Bernoulli trial with a success probability of approximately 1/Ct
for the approximate count Ct after t events within the space bounds of the algorithm us-
ing only independent unbiased random bits. This idea was introduced by Gronemeier and
Sauerhoff in [46]. The second modification ensures that the improved algorithm gives a good
approximation of the actual count of events after every event with a sufficiently large proba-
bility. This even holds for an infinite number of events. Morris algorithm, in contrast, only
guarantees a good approximation with a sufficiently high probability for a single query of the
approximate number of events. This problem was also addressed in [46], but it was not solved
entirely: Gronemeier and Sauerhoff proposed an algorithm that yields a good approximation
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of the number of events after every event with a large probability for up to n events using
only space O(log log n). Unfortunately, the parameters of the algorithm depend on n, hence
the upper bound n on the number of events has to be fixed in advance and the approximation
guarantees of their algorithm only hold for up to n events. The properties of the improved
approximate counting algorithm are summarized in the following theorem.

Theorem 4.2.1. Let 0 < ε, δ < 1. Then the following is guaranteed to hold for the improved
approximate counting algorithm with a probability of at least 1− δ: Let Ct denote the approx-
imate count after t events. Then for every t ∈ N after the tth event

(i) the approximate count Ct satisfies |Ct − t| ≤ εt,

(ii) the algorithm uses O
(
log 1

ε + log 1
δ + log log t

)
bits of memory,

(iii) a Bernoulli trial with the success probability 1
C′t

such that |C ′t − t| < 2εt can be realized
within the space bounds of the algorithm using independent unbiased random bits.

Our improved algorithm has two parameters c, d ∈ N that depend on the error parameters ε
and δ of Theorem 4.2.1. The choice of these parameters is described later on. The algorithm
maintains a register value r that represents the actual approximate count of events. We
interpret the register value r like Gronemeier and Sauerhoff [46]: The algorithm has two
phases. In the first phase 2d − 1 events are counted exactly using the register r. In the second
phase the register value r approximately represents the logarithm of the number of events
with respect to the base b = 1 + β where β = (2d − 1)−1. The register value r represents the
value v(r) = (1 + β)r/β. Note that the count after 2d − 1 events at the start of the second
phase is correct since v(0) = 1/β = 2d − 1. We will see in the following section that our
slightly modified representation of the approximate count compared to Morris’ algorithm will
enable us to realize a Bernoulli trial with a success probability of approximately 1/Ct within
the space bounds of the algorithm using only independent unbiased random bits. In addition
to the register value, the algorithm stores the phase of the algorithm using a single bit of
memory and it maintains a counter s that is described below. Algorithm 1 summarizes the
initialization of all variables:

Algorithm 1 Initialization of the improved approximate counting algorithm
Require: r, i, phase are global variables.
1: procedure Init
2: phase ← 1 . Start with Phase 1
3: r ← 0 . Register
4: s← 0 . Counter
5: end procedure

The approximate count can be queried at any time. Since the binary representation of
the number that is represented by r does not respect the space bounds of Theorem 4.2.1,
we use the function representation(phase, r) to obtain a succinct representation of v(r). For
our purposes it is sufficient to represent v(r) by phase and the register value r, therefore we
simply assume that representation(phase, r) = (phase, r) and query the approximate count as
it is shown in Algorithm 2.

The second improvement on Morris’ algorithm is due to changes in the randomized in-
crement of the approximate counter. It is easy to see that r has to be incremented with
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Algorithm 2 Get approximate count
Require: r, phase are global variables.
1: function GetCount
2: return representation(phase, r)
3: end function

the probability p(r) = (1 + β)−r in the second phase of the algorithm to obtain an expected
increment of 1 of the approximate count v(r). We omit the simple analysis from [46] since
our analysis of the improved algorithm does not use this fact immediately. For our analysis
a slightly different interpretation of Morris’ algorithm will be useful: For each value r of the
register a random experiment Er is performed and the register value is incremented if the
experiment terminates. In this random experiment for each event that is counted by the
algorithm a Bernoulli trial with the success probability (1 + β)−r is performed and the exper-
iment terminates if the Bernoulli trial is successful. Clearly, this is just a different description
of Morris’ algorithm. For the purpose of probability amplification we will perform several
independent copies of the experiment Er in parallel and increment the register value if at
least a (1− e−1)-fraction of the experiments terminated.

Definition 4.2.2. For each event that is counted by Morris’ algorithm, conceptually, a single
step of the experiment Er is simulated. In a single step of the experiment Er a Bernoulli trial
with the success probability (1 + β)−r is performed. The experiment Er is said to terminate
after s steps if the first successful Bernoulli trial happens after s steps. Consider c(r + 2)
independent copies of the experiment Er and let Er,j denote the jth copy of the experiment Er.

Note that a single copy Er,j of the experiment Er does not have any state except for the
fact that it has terminated or that it is still running: Every Bernoulli trial in a running
experiment is independent of the previous random decisions in the experiment and, given two
independent copies Er,j and Er,j′ that have not terminated, both copies terminate with the
same probability after the next event. Since the running experiments are indistinguishable, for
the simulation of c(r + 2) independent copies of the experiment Er it is sufficient to store the
total number of experiments and the number of experiments that are still running, therefore
we can simulate c(r + 2) copies of Er using space O(log c(r + 2)). We will prove below that the
success probability of the improved approximate counting algorithm is increased significantly
by this change. Algorithm 3 explains the implementation of this idea in detail. Note that
at this point it is not obvious that Algorithm 3 can be implemented within the constraints
of Theorem 4.2.1 since we have not yet described how the Bernoulli trials can be realized
using unbiased random bits. This problem will be addressed in the analysis of the algorithm.
Additionally, we have to deal with the fact that Euler’s number e is irrational. To this end, we
remark that our analysis in the following sections remains valid if we approximate e−1c(r + 2)
up to a small constant absolute error and that this approximation can be computed within
the space bounds of the algorithm using the exponential series for e−1.

The Bernoulli trial with a success probability of approximately 1/Ct for the approximate
count Ct according to claim (iii) of Theorem 4.2.1 is detailed in Algorithm 4. It is realized
using a Bernoulli trial with the parameter (1 + β)−r and Bernoulli trials with the constant
parameters β′ and p1, . . . , p2d−2 that are described in the analysis of the algorithm. We will
explain in the analysis how this algorithm can be implemented using only unbiased random
bits.
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Algorithm 3 Increment approximate count
Require: r, s, phase are global variables, c, d are fixed parameters, β = (2d − 1)−1.
1: function Increment
2: if phase = 1 then
3: r ← r + 1
4: if r = 2d − 1 then
5: phase ← 2
6: r ← 0
7: s← c(r + 2)
8: end if
9: else

10: Simulate s Bernoulli trials with success probability (1 + β)−r and
11: subtract the number of successes from s.
12: if s ≤ e−1c(r + 2) then
13: r ← r + 1
14: s← c(r + 2)
15: end if
16: end if
17: end function

Algorithm 4 Realize Bernoulli trial with success probability 1/C ′t (see Thm. 4.2.1)
Require: r, s, phase are global variables, c, d are fixed parameters, β = (2d − 1)−1

Require: The constants β′ and p1, . . . , p2d−2 are described in the analysis.
1: function BernoulliTrial
2: if phase = 1 then
3: if r = 0 then
4: Error!
5: else
6: Simulate Bernoulli trial with parameter pr and
7: return the result.
8: end if
9: else

10: Simulate Bernoulli trials with the parameters (1 + β)−r and β′.
11: Return success if both trials were successful and failure otherwise.
12: end if
13: end function
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Realizing the Random Decisions with Random Bits

Our choice of the base b = 1 + β with β = (2d − 1)−1 enables us to realize the Bernoulli trials
for an increment of the counter (Alg. 3) within the space bounds of the algorithm using d · r
independent unbiased random bits. We need to realize a Bernoulli trial with the success
probability p(r) = (1 + β)−r. Note that

p(r) = (1 + β)−r =
(

1 +
1

2d − 1

)−r
=
(

1− 2−d
)r

. (4.1)

Clearly, Bernoulli trials with the success probability 1− 2−d can be realized using d random
bits. A Bernoulli trial with the parameter p(r) can be realized as the simultaneous success of r
independent Bernoulli trials with the success probability 1− 2−d. Note that we need log r
bits to count the number of trials. Algorithm 3 sequentially performs c(r + 2) Bernoulli
trials. The number of performed and successful trials can be counted using O(log c+ log r)
bits of memory. Overall, the random decisions of Algorithm 3 can be realized with unbiased
independent random bits using space

O(log c+ log r) . (4.2)

The Bernoulli trials of Algorithm 4 in the second phase of the algorithm are realized
as follows: We already know how to realize a Bernoulli trial with the parameter (1 + β)−r.
According to Theorem 4.2.1, after t events we need to realize a Bernoulli trial with a success
probability of 1/C ′t such that |C ′t − t| ≤ 2εt. First recall that Ct denotes the approximate
count after t events and note that

1
Ct

= (1 + β)−rβ , (4.3)

hence, if we choose the parameter β′ = β in Algorithm 4 then we implement a Bernoulli
trial with the success probability 1/Ct. With unbiased random bits we can only realize
Bernoulli trials with a success probability β′ such that β′ is an approximation of β. Hence,
the success probability of the Bernoulli trial that is realized by Algorithm 4 will only be
an approximation 1/C ′t of 1/Ct and we need to analyze the error that is introduced by this
approximation. Let ε′ = ε

1+ε . We will use an approximation β′ of β such that the register
value r and the approximate count Ct after t events satisfy

1
(1 + ε′)Ct

≤ β′(1 + β)−r ≤ 1
(1− ε′)Ct

. (4.4)

Then, since (1 + ε′)(1 + ε) = 1 + 2ε, (1− ε′)(1− ε) ≥ 1− 2ε, and |Ct − t| ≤ εt, we obtain
a Bernoulli trial with the parameter 1/C ′t such that |C ′t − t| ≤ 2εt. To this end we
choose β′ = d2`βe

2`
for a suitably chosen value ` ∈ N. Clearly, a Bernoulli trial with parame-

ter β′ can be realized using O(`) random bits and O(`) space. By plugging Ct = (1+β)r

β into
inequality (4.4), we obtain the requirement

β

1 + ε′
≤ β′ ≤ β

1− ε′
= β +

ε′β

1− ε′
(4.5)

for β′ and, by the definition of β′, we have

β

1 + ε′
≤ β ≤ β′ ≤ 2`β + 1

2`
= β + 2−` . (4.6)
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Therefore it is sufficient to choose ` such that 2−` ≤ ε′β
1−ε′ and a Bernoulli trial with the

parameter β′ can be realized with independent unbiased random bits using space

O(`) = O( log((1− ε′)/(ε′β)) ) = O(log(1/ε) + log(1/β)) . (4.7)

The Bernoulli trials with success probabilities p1, . . . , p2d−2 in the first phase of Algorithm 4
are realized analogously such that

1
(1 + 2ε)i

≤ pi ≤
1

(1− 2ε)i
(4.8)

for all i ∈ {1, . . . , 2d − 2}. This can also be done using space O(log(1/ε) + log(1/β)). Overall,
Algorithm 4 can be realized with unbiased independent random bits using space

O( log c+ log r + log(1/ε) + log(1/β) ) . (4.9)

Bounding the Probability of a Large Relative Error

Obviously, the error of our improved approximate counting algorithm is zero in the first phase
of the algorithm. To prove claim (i) of Theorem 4.2.1 for the second phase of the algorithm we
will analyze the number of events that happen while r = i in the second phase of Algorithm 3.

Definition 4.2.3. Events that lead to an increment of the register value in the second phase
of Algorithm 3 are called increment events in the following. Let the random variable Ni

denote the number of events that happen in the second phase of Algorithm 3 while r = i
including the increment event that leads to the increment of the register value to i+ 1.
Then N<i = 2d − 1 +

∑i−1
j=0Nj denotes the number of events that happened up to the ith

increment event including the increment event.

Note that N<i includes the 2d − 1 = β−1 events that are counted exactly in the first phase
of the algorithm. We will first bound the probability that the approximate Ct is not a good
approximation of t for values of t that correspond to increment events. Immediately after an
increment event exactly N<r events happened. Assume for the moment that Ni = (1+β)i for
all i ∈ {1, . . . , r − 1}. Then the output of Algorithm 2 immediately after an increment event
is the exact number of events that happened so far:

N<r =
1
β

+
r−1∑
i=0

Ni =
1
β

+
r−1∑
i=0

(1 + β)i =
1
β

+
(1 + β)r − 1

β
=

(1 + β)r

β
. (4.10)

This is equal to the approximate count v(r) for the register value r. We will show in the
following that Ni does not deviate too far from (1 + β)i for all i ∈ N with a large probability
if the parameters of the algorithm are chosen appropriately. Then, by the same argument
as above, the output of Algorithm 2 after an increment event is an ε-approximation of N<r

if |Ni − (1 + β)i| ≤ εNi for all i < r. This condition is implied by |Ni − (1 + β)i| ≤ ε
1+ε(1 + β)i

since in this case

Ni ≤
(

1 +
ε

1 + ε

)
(1 + β)i ≤

(
1 +

ε

1− ε

)
(1 + β)i =

1
1− ε

(1 + β)i (4.11)

and

Ni ≥
(

1− ε

1 + ε

)
(1 + β)i =

1
1 + ε

(1 + β)i (4.12)
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and therefore (1 + β)i ≥ (1− ε)Ni and (1 + β)i ≤ (1 + ε)Ni. Consequently, we can prove
claim (i) of Theorem 4.2.1 for values of t that correspond to increment events by showing
that the probability for the existence of an i ∈ N such that |Ni − (1 + β)i| ≥ ε

1+ε(1 + β)i is
bounded from above by δ. Before we proceed with this plan, we need some necessary technical
preparations. First we will need the following estimates.

Proposition 4.2.4. Let x ∈ [0, 1]. Then

(i) 1− e−x ≥ x
2 and

(ii) e−1 − e−(1+x) ≥ x
5 .

Proof. Let `(x) = 1− e−x and r(x) = x
2 denote the left hand and right hand side of the

inequality in claim (i), respectively. For the proof of claim (i) it is sufficient to verify
that `(0) = r(0), that `(1) ≥ r(1), and that `(x) is concave. This implies that the concave
function `(x) is larger than the linear function r(x) on the unit interval. Claim (ii) can be
verified using the same arguments.

The next lemma bounds the probability that many independent copies of a geometric random
variable simultaneously deviate from their expectation by a large amount.

Lemma 4.2.5. Let 0 < ε < 1 and assume that the random variables X1, . . . , Xn are inde-
pendent copies of a geometric random variable X with parameter p and define random vari-
ables L(t) = |{i : Xi > t}| for t ∈ {1, . . . , n}.

(i) If t ≤ (1− ε)(E[X]− 1) then Pr{L(t) ≤ e−1n} ≤ exp
(
− ε

50n
)
.

(ii) If t ≥ (1 + ε) E[X] then Pr{L(t) ≥ e−1n} ≤ exp
(
− ε

50n
)
.

Proof. We will first prove claim (i). Assume that t ≤ (1− ε)(E[X]− 1). Each variable Xi is
a geometric random variable with parameter p. Hence

Pr{Xi > t} = 1−
t∑

k=1

p(1− p)k−1 (4.13)

= (1− p)t (4.14)

≥ (1− p)(1−ε)(E[X]−1) (4.15)

= (1− p)(1−ε)(1/p−1) (4.16)

≥ e−(1−ε) (4.17)

for every i ∈ {1, . . . , n}. In the last line we used the well-known fact that (1− x)1/x−1 ≥ e−1

for all x ∈ (0, 1]. The events Xi > t for i ∈ {1, . . . , n} are independent because the random
variables Xi are independent, hence L(t) is distributed binomially with the parameters n
and q ≥ e−(1−ε) and E[L(t)] = qn ≥ e−(1−ε)n. Let c1 = 1− e−ε. Then c1 > 0 and

(1− c1) E[L(t)] ≥ e−1n . (4.18)

By Chernoff bounds (see Thm. A.2.2),

Pr
{
L(t) ≤ e−1n

}
≤ Pr {L(t) ≤ (1− c1) E[L(t)]} (4.19)

≤ exp
(
−c

2
1

2
E[L(t)]

)
. (4.20)
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Using claim (i) of Proposition 4.2.4 we have

c2
1

2
E[L(t)] ≥ (1− e−ε)2

2
e−(1−ε)n ≥ ε2

8
e−1n ≥ ε2

50
n . (4.21)

By plugging this into the last result we obtain claim (i) of the lemma.
For the proof of claim (ii) assume that t ≥ (1 + ε) E[X]. Let S(t) = |{i|Xi ≤ t}|,

then S(t) + L(t) = n. By the fact that each Xi is a geometric random variable with pa-
rameter t we get the following for every i ∈ {1, . . . , n}:

Pr{Xi ≤ t} =
t∑

k=1

p(1− p)k−1 (4.22)

= 1− (1− p)t (4.23)

≥ 1− (1− p)(1+ε) E[X] (4.24)

= 1− (1− p)(1+ε)/p (4.25)

≥ 1− e−(1+ε) . (4.26)

In the last line we used the well-known fact that (1− x)1/x ≤ e−1 for all x ∈ (0, 1].
Clearly, S(t) is distributed binomially with the parameters n and q ≥ 1− e−(1+ε)

and E[S(t)] = qn ≥ (1− e−(1+ε))n. By the fact that S(t) + L(t) = n, we have

Pr{L(t) ≥ e−1n} = Pr{S(t) ≤ (1− e−1)n} . (4.27)

Let c2 = 1− 1−e−1

1−e−(1+ε) . Then c2 > 0 and

(1− c2) E[S(t)] ≥ (1− e−1)n (4.28)

By Chernoff bounds, we have

Pr
{
L(t) ≥ e−1n

}
= Pr

{
S(t) ≤ (1− e−1)n

}
(4.29)

≤ Pr{S(t) ≤ (1− c2) E[S(t)]} (4.30)

≤ exp
(
−c

2
2

2
E[S(t)]

)
. (4.31)

By claim (ii) of Proposition 4.2.4 we obtain

c2
2

2
E[S(t)] ≥ 1

2

(
1− 1− e−1

1− e−(1+ε)

)2 (
1− e−(1+ε)

)
n =

(
e−1 − e−(1+ε)

)2
2
(
1− e−(1+ε)

) n ≥ ε2

50
n . (4.32)

Then claim (ii) of the lemma follows from the last to result.

Now, with our technical preparations in place, we can prove that Ni does not deviate too far
from (1 + β)i with a large probability if the parameter c of Algorithm 3 is chosen appropriately.

Lemma 4.2.6. Let 0 < ε′ < 1 and 0 < δ′ ≤ 1
2 . If the parameter c of Algorithm 3 satis-

fies c ≥ 50 ln(1/δ′)
ε′ then Pr{|Ni − (1 + β)i| > ε′(1 + β)i} ≤ (δ′)i+1 for all i ∈ N.
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Proof. Recall from our introductory discussion of Algorithm 3 that for every register value r,
conceptually, c(r + 2) independent copies Er,j of the random experiment Er are simulated
and that the register value is incremented if at least a (1− e−1)-fraction of these experiments
terminated (see Def. 4.2.2). Let the random variable Xr,j denotes the number of events
after which the experiment Er,j terminates and let E[Xr] denote the expected number of
events until a single copy of Er terminates. Clearly, we have E[Xr,j ] = E[Xr] = (1 + β)r

for all j ∈ {1, . . . , c(r + 2)} since Xr,j is an independent geometric random variable with
the parameter (1 + β)−r. Now suppose that Nr < (1− ε′)(1 + β)r = (1− ε′) E[Xr]. Then at
most (1− ε′) E[Xr]− 1 events happened until the register value was incremented to r+1 and at
least (1− e−1)c(r + 2) copies of the experiment Er terminated after at most (1− ε′) E[Xr]− 1
events. Clearly, if Er,j is one of the terminated experiments then Xr,j ≤ (1− ε′) E[Xr]− 1.
Hence, there are at most e−1c(r + 2) variables Xr,j such that Xr,j > (1− ε′) E[Xr]− 1 and
we can apply claim (i) of Lemma 4.2.5 for the parameters n = c(r+2), t = (1− ε′) E[Xr]− 1,
and ε = ε′ to obtain

Pr{Nr < (1− ε′)(1 + β)r} ≤ exp
(
− ε
′

50
c(r + 2)

)
. (4.33)

Next, suppose that Nr > (1 + ε′)(1 + β)r = (1 + ε′) E[Xr]. Then at least (1 + ε′) E[Xr] events
happened before the register value was incremented to r + 1 and less than (1− e−1)c(r + 2)
copies of the experiment Er terminated after (1 + ε′) E[Xr] events. Hence, at least e−1c(r + 2)
copies of Er did not terminate after (1 + ε′) E[Xr] events and we can apply claim (ii) of
Lemma 4.2.5 for the parameters n = c(r + 2), t = (1 + ε′) E[Xr], and ε = ε′ to obtain

Pr{Nr > (1 + ε′)(1 + β)r} ≤ exp
(
− ε
′

50
c(r + 2)

)
. (4.34)

By the assumption that c ≥ 50 ln(1/δ′)
ε′ , we have

exp
(
− ε
′

50
c

)
≤ δ′ . (4.35)

Since |Nr − (1 + β)r| > ε′(1 + β)r if and only ifNr < (1− ε′)(1 + β)r orNr > (1 + ε′)(1 + β)r,
our last results and the union bound imply that

Pr{|Nr − (1 + β)r| > ε′(1 + β)r} ≤ 2 exp
(
− ε
′

50
c(r + 2)

)
(4.36)

≤ 2(δ′)r+2 (4.37)

≤ (δ′)r+1 . (4.38)

In the last line we used that δ′ ≤ 1
2 . This completes the proof.

By using the last lemma we can now prove claim (i) of Theorem 4.2.1 for values of t that
correspond to increment events.

Lemma 4.2.7. Let 0 < ε′, δ < 1. Suppose that the parameter c of Algorithm 3 satis-
fies c ≥ 50 ln((δ+1)/δ)

ε′ . Then, with a probability of at least δ, the approximate count Ct that
is maintained by the algorithm satisfies |Ct − t| ≤ ε′t for all t ∈ N that correspond to incre-
ment events.
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Proof. Assume that the tth event is an increment event and that r is the register value after
the tth event. We have already observed that |Ct − t| ≤ ε′t if |Ni − (1 + β)i| < ε′

1+ε′ (1 + β)i

for all i ≤ r and that conversely |Ct − t| > ε′t implies the existence of an i ∈ {0, . . . , r} such
that |Ni − (1 + β)i| > ε′

1+ε′ (1 + β)i. By Lemma 4.2.6, for every constant 0 < δ′ ≤ 1
2

Pr
{
|Ni − (1 + β)i| > ε′

1 + ε′
(1 + β)i

}
≤ (δ′)i+1 (4.39)

if we choose the parameter c of Algorithm 3 such that c ≥ 50 ln(1/δ′)
ε′ . Then, by the union

bound, the probability that |Ct − t| > ε′t for any t ∈ N is bounded by

∞∑
i=0

Pr
{
|Ni − (1 + β)i| > ε′

1 + ε′
(1 + β)i

}
≤
∞∑
i=0

(δ′)i+1 =
1

1− δ′
− 1 . (4.40)

To complete the proof it suffices to choose δ′ = δ
δ+1 , then 1

1−δ′ − 1 = δ and δ′ ≤ 1
2 as it is

required for the application of Lemma 4.2.6.

Now we will extend our proof of claim (i) in Theorem 4.2.1 to values of t that do not correspond
to increment events. Suppose that the error of the approximate count after ` events and after u
events, where ` < u, is small. Then, since the approximate count of Algorithm 3 does not
decrease, the error between event ` and u is also small if u/` is not too large. This observation
is quantified in the following proposition.

Proposition 4.2.8. For a constant ε with 0 < ε < 1 let `, u ∈ N such that 1 ≤ u/` ≤ 1 + ε/4,
let t ∈ [`, u], and let ˜̀ and ũ be (ε/4)-approximations of ` and u, respectively. If t̃ satis-
fies ˜̀≤ t̃ ≤ ũ then t̃ is an ε-approximation of t, thus |t̃− t| ≤ εt.

Proof. Since ˜̀ and ũ are (ε/4)-approximations of ` and u, by the bounds on t̃, we have

(1− ε/4)` ≤ t̃ ≤ (1 + ε/4)u . (4.41)

Thus t, t̃ ∈ [(1− ε/4)`, (1 + ε/4)u] and therefore

|t− t̃| ≤
(

1 +
ε

4

)
u−

(
1− ε

4

)
` (4.42)

= `
((

1 +
ε

4

) u
`
−
(

1− ε

4

))
(4.43)

≤ `
((

1 +
ε

4

)2
−
(

1− ε

4

))
(4.44)

= `

(
ε

2
+
ε

4
+
ε2

16

)
(4.45)

≤ ε` . (4.46)

By using that ` ≤ t we finally obtain the claim of the proposition.

|t̃− t|
t
≤ |t̃− t|

`
≤ ε`

`
= ε . (4.47)
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Finally, we can complete the proof of Theorem 4.2.1 (i): Recall that the parameters ε
and δ specify the approximation error and the error probability of the improved ap-
proximate counting algorithm, respectively, and that the algorithm has the parameters c
and d. We choose the Parameter d of the improved approximate counting algorithm
such that ε/32 ≤ β = 1

2d−1
≤ ε/16. Furthermore, we define the constant ε′ = ε

32+ε . Note
that 1+ε′

1−ε′ = 1 + ε/16. Then we choose the parameter c as follows:

c =
50 ln((δ + 1)/δ)

ε′
=

50 ln((δ + 1)/δ)(32 + ε)
ε

. (4.48)

Assume that the register value was incremented to the value i for the tith event.
Then |Cti − ti| < ε′ti < (ε/4)ti for all i ∈ N with a probability of at least δ by Lemma 4.2.7.
Now assume that this event happened. Then Cti ≥ (1− ε′)ti and Cti ≤ (1 + ε′)ti for all i and
therefore,

ti+1

ti
≤

(1 + ε′)Cti+1

(1− ε′)Cti
=

(1 + ε′)(1 + β)i+1

(1− ε′)(1 + β)i
≤ (1 + ε/16)2 ≤ 1 + ε/4 . (4.49)

By Proposition 4.2.8, we get |Ct − t| < εt for all i and all t ∈ N such that ti ≤ t ≤ ti+1. This
completes the proof of Theorem 4.2.1, claim (i).

Space Complexity of the Algorithm

We have already observed that the random decisions of the algorithms can be realized using

O(log c+ log r + log(1/ε) + log(1/β)) = O(log c+ log r + log(1/ε)) (4.50)

bits of memory. Obviously, a single bit of storage suffices to store phase. The algorithm
uses O(log r) bits of memory to store r and O(log(c(r + 2))) = O(log c+ log r) bits to store s.
By our choice of c in the last section and the fact that ln(1 + 1/δ) ≤ 1/δ we have

log c = log
50 ln((δ + 1)/δ)(32 + ε)

ε
≤ log

50(32 + ε)
δε

= O

(
log

1
δ

+ log
1
ε

)
. (4.51)

If |Ct − t| ≤ εt then r = O(log(1+β) t). By using that log(1 + x) ≥ x and that β ≥ ε
32 we get

O(log r) = O

(
log t

log(1 + β)

)
= O(log log t− log log(1 + β)) = O(log log t+ log(1/ε)) . (4.52)

Overall, the space complexity of the algorithm under the condition that it does not fail is

O( log log t+ log(1/ε) + log(1/δ) ) . (4.53)

This proves claim (ii) of Theorem 4.2.1 and completes our proof of Theorem 4.2.1.

4.3 Approximate Reservoir Sampling

In the following section we will apply our improved approximate counting algorithm in an
algorithm that accesses the counter frequently: Vitter’s algorithm for sampling uniformly
at random from a data stream. Sampling a stream element uniformly at random is a basic
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operation that is used by many data stream algorithms. Here the challenge lies in the fact
that the length n of the data stream is not known in advance, hence we cannot simply
choose a random number i ∈ {1, . . . , n} and store the ith stream element when we read it.
Vitter [72] proposed an algorithm that chooses a stream element uniformly at random in a
single pass over the data stream without knowing the length of the data stream in advance. His
algorithm counts the number of data stream elements that have been read so far and uses this
number in each step of the algorithm. We will replace this counter by approximate counting.
While Morris’ algorithm was not designed for this setting, our improved approximate counting
algorithm is applicable in this situation. If we use approximate counting in Vitter’s algorithm,
then the resulting sample is no longer distributed uniformly. In this section we will analyze the
effect of the approximation error of approximate counting on the distribution of the sample.

4.3.1 Vitter’s Algorithm

We briefly describe Vitter’s [72] algorithm for uniformly sampling a random element from a
data stream if the length n of the data stream is unknown in advance. Vitter’s algorithm
counts the number of data stream elements that have been read so far and inductively main-
tains a current sample that is drawn uniformly at random from these data stream elements.
Clearly, if only one stream element has been read then this element has to be the current
sample which is stored by the algorithm. If the next stream element is the tth element, then
the current sample is replaced by this element with a probability of 1

t . It is easy to verify that
this choice maintains the invariant that the current sample is drawn uniformly at random
from the stream elements that have been processed so far. The memory requirements of this
algorithm are obvious: Besides the storage space for the current sample the algorithm has to
count the number of elements, to this end after t steps O(log t) bits of memory are needed.

4.3.2 Reservoir Sampling and Approximate Counting

The contribution of the length n of a data stream to the space complexity of Vitter’s algorithm
becomes relevant if the sample that is maintained by the algorithm can be stored using o(log n)
space. In this case the space complexity is asymptotically dominated by the size of the counter
for the data stream length. A brief claim by Alon, Matias, and Szegedy in [3] implies that the
contribution of the data stream length n to the space complexity of Vitter’s algorithm can
be lowered to O(log log n) if Morris’ approximate counting algorithm is used, but this claim
is not substantiated by a rigorous analysis. Here we will prove that the claimed improvement
is possible if the improved approximate counting algorithm is used and we will analyze the
impact of this change on the distribution of the sample. We doubt that the same result
can be achieved using the original approximate counting algorithm by Morris since it does
only guarantee a good approximation for a single query of the counter whereas the counter
is queried for every stream element in Vitter’s algorithm.

Definition 4.3.1 (Approximate reservoir sampling). Let 0 < ε, δ < 1. We modify Vitter’s
reservoir sampling algorithm such that the counter for the number of stream elements that
have been processed so far is replaced by an approximate counter according to Theorem 4.2.1
with the parameters ε/2 and δ. The current sample is replaced by the tth stream element if
a Bernoulli trial with a success probability of 1/C ′t according to claim (iii) of Theorem 4.2.1
is successful. The resulting algorithm is called (ε, δ)-approximate reservoir sampling.
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Note that the value of C ′t in the parameter 1/C ′t of the Bernoulli trial is an ε-approximation
of t for every t ∈ N. This property is guaranteed by the improved approximate counting
algorithm, but not by Morris’ original algorithm. With this stronger guarantee we can prove
the claim of Alon, Matias, and Szegedy and quantify the impact on the resulting distribution
of the sample.

Theorem 4.3.2. Let 0 < ε, δ < 1 and let Xt denote the index of the current sample that
has been chosen by the (ε, δ)-approximate reservoir sampling algorithm after t data stream
elements have been read. Then, with a probability of at least 1 − δ, for all t ∈ N the (ε, δ)-
approximate reservoir sampling algorithm uses O(log 1

ε + log 1
δ + log log t) space after t steps

in addition to the space for the sample and the total variation distance of the distribution
of Xt and the uniform distribution on {1, . . . , t} is bounded from above by ε.

Proof. In the following we will work under the assumption that for all t ∈ N the improved
approximate counting algorithm uses O(log 1

ε + log log 1
δ + log log t) space after t steps and

that |C ′t − t| ≤ εt for all t ∈ N. By Theorem 4.2.1, this holds with a probability of at least 1−
δ. Then the claim about the space requirements of (ε, δ)-approximate reservoir sampling
is obvious. We will prove the claim about the total variation distance by induction on t.
Let Vt denote the total variation distance of the uniform distribution on {1, . . . , t} and the
distribution of Xt. Clearly, the claim of the theorem is true for t = 1 since Pr{X1 =1} = 1.
Now, for the induction, assume that Vt−1 ≤ ε. First observe that the current sample is
replaced in the tth step with the probability pt = 1

(1+εt)t
where |εt| ≤ ε < 1. This random

decision is independent of the previous random decisions, hence

Pr{Xt = t} =
1

(1 + εt)t
. (4.54)

For i 6= t we have Xt = i if and only if Xt−1 = i and if the current sample is not replaced in
the tth step of the approximate reservoir sampling algorithm. Thus for i ∈ {1, . . . , t− 1}

Pr{Xt = i} =
(

1− 1
(1 + εt)t

)
Pr{Xt−1 = i} . (4.55)

By using this and the triangle inequality we obtain

Vi =
1
2

t∑
i=1

∣∣∣∣Pr{Xt= i} − 1
t

∣∣∣∣ (4.56)

=
1
2

t−1∑
i=1

∣∣∣∣(1− 1
(1 + εt)t

)
Pr{Xt−1 = i} − 1

t

∣∣∣∣+
1
2

∣∣∣∣Pr{Xt= t} − 1
t

∣∣∣∣ (4.57)

≤ 1
2

(
1− 1

(1 + εt)t

) t−1∑
i=1

∣∣∣∣Pr{Xt−1 = i} − 1
t− 1

∣∣∣∣
+

1
2

t−1∑
i=1

∣∣∣∣(1− 1
(1 + εt)t

)
1

t− 1
− 1
t

∣∣∣∣ +
1
2

∣∣∣∣Pr{Xt= t} − 1
t

∣∣∣∣
(4.58)

=
(

1− 1
(1 + εt)t

)
Vt−1

+
1
2

t−1∑
i=1

∣∣∣∣ 1
t− 1

(
1− 1

(1 + εt)t

)
− 1
t

∣∣∣∣ +
1
2

∣∣∣∣Pr{Xt= t} − 1
t

∣∣∣∣ .
(4.59)
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Now we will examine the second and third term in the last equality separately: Note that,
since |εt| ≤ ε < 1, we have that |1 + εt| = 1 + εt. Then, for the second term, we obtain

1
2

t−1∑
i=1

∣∣∣∣ 1
t− 1

(
1− 1

(1 + εt)t

)
− 1
t

∣∣∣∣ =
t− 1

2

∣∣∣∣ εt
(1 + εt)(t− 1)t

∣∣∣∣ =
1

2(1 + εt)t
|εt| . (4.60)

For the third term we also get

1
2

∣∣∣∣Pr{Xt= t} − 1
t

∣∣∣∣ =
1
2

∣∣∣∣ 1
(1 + εt)t

− 1
t

∣∣∣∣ =
1
2

∣∣∣∣ −εt
(1 + εt)t

∣∣∣∣ =
1

2(1 + εt)t
|εt| . (4.61)

If we plug this into our first result then the induction hypothesis and the assumption
that |εt| ≤ ε yield the claimed result for t ≥ 2:

Vt ≤
(

1− 1
(1 + εt)t

)
Vt−1 +

1
(1 + εt)t

|εt| (4.62)

≤
(

1− 1
(1 + εt)t

)
ε+

1
(1 + εt)t

· ε (4.63)

= ε . (4.64)

Note that the L∞-distance of the distribution of Xt and the uniform distribution on {1, . . . , t}
has been examined before by Gronemeier and Sauerhoff [46], but this result is too weak to
bound the total variation distance by a constant.

4.4 Frequency Moments

The computation of frequency moments of a data stream is an important and already thor-
oughly studied class of problems. The kth frequency moment of a data stream is defined as
follows.

Definition 4.4.1 (histogram, frequency moments). Let U = {u1, . . . , um} be a set,
let a = (a1, . . . , an) be a data stream such that ai ∈ U for all i ∈ {1, . . . , n}, and let k ∈ R be
a constant subject to k ≥ 0. Then

• fi(a) = |{j ∈ {1, . . . , n} : aj = ui}| is the absolute frequency of the element ui in a,

• f(a) = (f1(a), . . . , fm(a)) is called the histogram of a, and

• Fk(a) =
∑m

i=1 fi(a)k is called the kth frequency moment of the data stream a.

The frequency moments of a data stream are a statistical measure for the degree of skew in
the distribution of the stream elements. An important application of frequency moments is
query optimization in relational databases since the size of the join of two relations is closely
related to the second frequency moment [47]. The connection to data stream algorithms is as
follows: In database applications the sequence of database operations can be considered as a
data stream. For query optimization we need a small data structure that can be kept in the
main memory which “summarizes” the database operations and supports the estimation of
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frequency moments. This data structure must be updated efficiently for every database oper-
ation in order to reflect the actual contents of the database. From the preceding description,
we see that the computation of this data structure is in fact a data stream algorithm.

In their seminal paper [3] Alon, Matias, and Szegedy described efficient data
stream algorithms that compute (ε, δ)-approximations of F2 and Fk for k ≥ 1 using
space O((1/ε2) log(1/δ)(logm+ log n)) and O((1/ε2) log(1/δ)km1−1/k(logm+ log n)), re-
spectively. The results of Alon, Matias, and Szegedy were to some extent a catalyst for
the recent interest in data stream algorithms and triggered the publication of various new
data stream algorithms, including improved algorithms for (ε, δ)-approximations of frequency
moments by Coppersmith and Kumar [28], Ganguly [40], and Indyk and Woodruff [50]. The
last publication presents an algorithm that achieves an essentially optimal space complexity
of Õ(m1−2/k) and time complexity of Õ(1) per update where the Õ-notation suppresses a
factor of the order poly((1/ε), log(1/δ), logm, log n). The quite complicated algorithm by
Indyk and Woodruff was finally simplified by Bhuvanagiri, Ganguly, Kesh, and Saha [17].

In this section we consider the computation of frequency moments for very long data
streams. The contribution of the data stream length n to the space complexity of the known
data stream algorithms becomes relevant if the length n of the data stream is not polynomially
bounded in the size m of the universe. In [3] Alon, Matias and Szegedy have briefly remarked
that the space complexity of their algorithms can be decreased for large n by replacing exact
counting with approximate counting using Morris’ algorithm, but they did not support this
claim by a detailed analysis. While their claim is easily verified for their algorithm that
approximates F2, it turns out that additional ideas are required for the general algorithm
that approximates Fk for k ≥ 1. We described these ideas in the preceding sections on
approximate counting and reservoir sampling. In the following we will apply approximate
counting and approximate reservoir sampling to the computation of frequency moments and
show that the claim in [3] holds if our improved variants of approximate counting and reservoir
sampling are used. We doubt that the same result can be obtained by using Morris’ original
approximate counting algorithm.

4.4.1 The Algorithm of Alon, Matias, and Szegedy

In [3] Alon, Matias, and Szegedy present an algorithm for computing Fk(a) for k ∈ R such
that k ≥ 1. Their algorithm, the AMS algorithm for short, is easily generalized to functions
of the histogram and the length of the data stream that are of the following form:

Definition 4.4.2 (Function Fg of the histogram). Let a = (a1, . . . , an) be a data stream
with elements from the universe U = {u1, . . . , um}. Let g : R× R −→ R be a continuous
function that is nondecreasing in the first coordinate and partially differentiable with re-
spect to the first coordinate on R such that for every n ∈ N we have that g(0, n) = 0 and
that g′(x, n) = d

dxg(x, n) is nondecreasing in x. Then define

Fg(a) =
m∑
i=1

g(fi(a), n) .

Clearly, frequency moments are a special case of this definition. Note however that the
space complexity of the generalized AMS algorithm will depend heavily on the choice of the
function g and that the algorithm is not necessarily an efficient algorithm for functions g
that do not correspond to frequency moments. Here we will briefly describe and analyze the
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generalized AMS algorithm and apply this analysis to the computation of frequency moments
because our improvement for very long data streams and its analysis will use these results.

The AMS algorithm is based on the following unbiased estimator for Fg(a):

Definition 4.4.3 (Basic estimator Y for Fg(a)). Let a = (a1, . . . , an) be a data stream with
elements from U = {u1, . . . , um} and let ri = |{j : i ≤ j ≤ n, aj = ai}| denote the number of
elements after ai that are identical to ai including the element ai itself. Let X be chosen
uniformly at random from {1, . . . , n} and define the estimator Y for Fg(a) as follows:

Y = n(g(rX , n)− g(rX − 1, n)) .

First observe that rX can be computed by a data stream algorithm using a slight variation
of Vitter’s reservoir sampling algorithm: While the data stream elements are processed se-
quentially in Vitter’s algorithm, the elements that are identical to the current sample are
counted. Whenever the current sample is replaced by a new stream element, the counter
is reset to the value 1. Then, in the end, the value of the counter is rX . The value of Y
is easily computed by a data stream algorithm that counts the number of stream elements,
uses Vitter’s algorithm to obtain rX , and computes Y after the whole stream has been read.
Clearly, this algorithm uses O(log n+ logm) bits of memory. Let c be a constant that will be
defined later on. The AMS algorithm uses c independent copies Y1, . . . , Yc of the estimator Y
and computes Z = 1

c

∑c
i=1 Yi as the output of the algorithm. It remains to verify that Z

is an unbiased estimator for Fg(a) and to estimate the error probability of this estimator.
Clearly, E[Z] = E[Y ] and Var[Z] = Var[Y ]

c ≤ E[Y 2]
c . The error probability will be analyzed

using Chebyshev’s inequality, therefore we need to estimate E[Y 2]. The following theorem
shows that Y is an unbiased estimator for Fg(a) and provides an upper bound on E[Y 2].
Surprisingly, this upper bound is expressed in terms of Fh(a) for a function h that is closely
related to the function g.

Lemma 4.4.4 (Based on [3]). Let h(x, n) = n · g(x, n) · g′(x, n) where g′(x, n) = d
dxg(x, n).

The estimator Y from Definition 4.4.3 satisfies E[Y ] = Fg(a) and E[Y 2] ≤ Fh(a).

Proof. In the following we will abbreviate fi(a) as fi. First observe that Pr{aX = ui} = fi
n and

that Pr{rX = j|aX = ui} = 1
fi

for all j ∈ {1, . . . , fi}. Then, by the law of total probability,

E[Y ] =
m∑
i=1

Pr{aX = ui}
fi∑
j=1

Pr{rX = j|aX = ui} · n(g(j, n)− g(j − 1, n)) (4.65)

=
m∑
i=1

fi
n

fi∑
j=1

1
fi
n(g(j, n)− g(j − 1, n)) (4.66)

=
m∑
i=1

fi∑
j=1

(g(j, n)− g(j − 1, n)) (4.67)

=
m∑
i=1

fi∑
j=1

g(fi, n) (4.68)

= Fg(a) . (4.69)
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For the second to the last equation observe that the inner sum is a telescope sum and
that g(0, n) = 0.

For an estimate of E[Y 2], in addition to the telescope sum property, we will use
that g(x, n)− g(x− 1, n) = g′(c, n) for some c ∈ [x− 1, x] by the mean value theorem. Then,
by the fact that g′(x, n) is nondecreasing in x, we have g(x, n)− g(x− 1, n) ≤ g′(x, n). Ad-
ditionally, we have g(x, n)− g(x− 1, n) ≥ 0 since g is nondecreasing, therefore we obtain

E[Y 2] =
m∑
i=1

fi
n

fi∑
j=1

1
fi
· n2(g(j, n)− g(j − 1, n))2 (4.70)

≤
m∑
i=1

fi∑
j=1

n · (g(j, n)− g(j − 1, n)) · g′(fi, n) (4.71)

=
m∑
i=1

n · g(fi, n) · g′(fi, n) (4.72)

= Fh(a) . (4.73)

By using the preceding lemma it is easy to analyze the space complexity of the AMS algorithm
for the computation of an (ε, δ)-approximation of Fg(a). The result is summarized in the
following theorem.

Theorem 4.4.5 (Based on [3]). Let a = (a1, . . . , an) be a data stream with elements from the
universe U = {u1, . . . , um}. Furthermore, let h(x, n) = n · g(x) · g′(x) and let

D = sup
{
Fh(a′)
Fg(a′)2

: n′ ∈ N, a′ is a data stream of length n′
}

. (4.74)

Let 0 < ε, δ′ < 1 be constants. The AMS algorithm with c = D
δ′ε2 independent copies of the

basic estimator Y computes an (ε, δ′)-approximation of Fg(a) using space

O

(
D · (log n+ logm)

δ′ε2

)
. (4.75)

Proof. Recall that the AMS algorithm computes the estimator Z which is the average of c
independent copies of the basic estimator Y according to Definition 4.4.3. By Chebyshev’s
inequality, we have

Pr{|Z − E[Z]| ≥ εE[Z]} ≤ Var[Z]
ε2 E[Z]2

≤ E[Y 2]
c ε2 E[Y ]2

. (4.76)

The output of the AMS algorithm is an (ε, δ′)-approximation of E[Z] = Fg(a) if the right
hand side of this inequality is bounded from above by δ′. Note that E[Y ] and E[Y 2] depend
on the input a of the AMS algorithm. By Lemma 4.4.4, we have

E[Y 2]
c ε2 E[Y ]2

≤ Fh(a)
c ε2Fg(a)2

. (4.77)
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To obtain an (ε, δ′)-approximation of Fg(a) for every input a we have to choose c such that
for all n ∈ N and all data streams of a length n

Fh(a)
cε2Fg(a)2

≤ δ′ . (4.78)

By the definition of D, this is the case if we choose c = D
δ′ε2 . The computation of each of

the c independent copies of the basic estimator Y requires O(log n+ logm) bits of memory.
In total the space complexity is

O(c(log n+ logm)) = O

(
D · (log n+ logm)

δ′ε2

)
. (4.79)

Now we will apply the analysis of the generalized AMS algorithm to the computation of
the kth frequency moment Fk for k ≥ 1.

Corollary 4.4.6 (Based on [3]). Let a = (a1, . . . , an) be a data stream with elements from
the universe U = {u1, . . . , um}. The AMS algorithm computes (ε, δ)-approximations of Fk(a)
using space O((1/ε2) log(1/δ)km1−1/k(log n+ logm)).

Proof. It is easy to verify that
nk

mk−1
≤ Fk(a) ≤ nk . (4.80)

It is also a well-known fact that the Lp-norm satisfies ‖x‖i ≥ ‖x‖j for 1 ≤ i ≤ j and, by
the definition of the histogram of a data stream (Def. 4.4.1), we have ‖f(a)‖kk = Fk(a) for
all k ≥ 1. Using these observations we obtain

F2k−1(a) ≤ Fk(a)(2k−1)/k = Fk(a)2−1/k ≤ Fk(a)2

(
nk

mk−1

)−1/k

= Fk(a)2m
1−1/k

n
. (4.81)

Let g(x, n) = xk and h(x, n) = n · g(x) · g′(x) = n · k · x2k−1. Then we have Fg(a) = Fk(a)
and Fh(a) = n · k · F2k−1(a) and, by our initial observations, we obtain

Fh(a)
Fg(a)2

=
knF2k−1(a)
Fk(a)2

≤ km1−1/k . (4.82)

Since the right hand side is independent of n, this is an upper bound on the value of D
in Theorem 4.4.5. Note that it is sufficient to apply Theorem 4.4.5 for a constant error
probability δ′ < 1

2 . Then the error probability can be reduced to any constant δ > 0 by
taking the median of O(log(1/δ)) independent copies of the algorithm.

4.4.2 Frequency Moments of Very Long Data Streams

In this section we use the approximate reservoir sampling algorithm from Theorem 4.3.2 and
the approximate counting algorithm from Theorem 4.2.1 to modify the AMS algorithm for
the computation of the frequency moment Fk such that the contribution of the data stream
length n to the space complexity of the algorithm is reduced to O(log log n). We will state
separate bounds on the space complexity of our modified algorithm for the more important
online phase in which the data stream is read and the offline phase in which the output is
computed. This following theorem will be proved in this section.
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Theorem 4.4.7. Let a = (a1, . . . , an) be a data stream with elements from the uni-
verse U = {u1, . . . , um}. The modified AMS algorithm computes (ε, δ)-approximations
of Fk(a) using space

O
((

1/ε2
)

log(1/δ)km1−1/k (log(1/ε) + log k + logm+ log log n)
)

(4.83)

in the online phase and space

O (poly(log(1/ε), log log(1/δ), log k, logm, log log n))

in the offline phase of the algorithm.

Let a = (a1, . . . , an) be a data stream. Recall that the AMS algorithm uses independent
copies of the basic estimator Y (see Sect. 4.4.1). The estimator Y is computed by sampling a
data stream element aX uniformly at random from a using reservoir sampling and by count-
ing the number rX of the following stream elements that are identical to aX . Additionally,
the length n of the data stream is counted. The basic estimator Y = n((rX)k − (rX − 1)k)
is computed as a function of rX and n. We modify the data stream algorithm for the
computation of the basic estimator Y as follows: We use approximate reservoir sampling
to sample approximately uniformly at random a stream element a eX and use approximate
counting to obtain an approximation R̃ eX of r eX . Additionally, the approximate length Ñ of
the data stream is obtained by approximate counting. The basic estimator of the mod-
ified algorithm is Ỹ = Ñ((R̃ eX)k − (R̃ eX − 1)k). The output of the complete algorithm is
the average Z̃ = 1

c

∑c
i=1 Ỹi of c copies of the basic estimator Ỹ that use independent sam-

ples X̃1, . . . , X̃c and independent approximate counters for R̃ eX1
, . . . , R̃ eXc , but share the same

approximation Ñ of the data stream length n, hence Ỹi = Ñ((R̃ eXi)k − (R̃ eXi − 1)k). The
choice of c and the approximation parameters is described in the analysis of the algorithm.
Note that the computation of the estimators Ỹi and Z̃ from Ñ and R̃ eXi for i ∈ {1, . . . , c} poses
a problem since the numbers that are represented by the approximate counts are log(n)-bit
numbers. Therefore, using only O(log log n) bits of memory, we cannot convert Ñ and R̃ eXi
to their binary representations to compute Ỹi and finally Z̃ from the approximate counts.
We postpone this problem and first analyze the space complexity of the algorithm while the
stream elements are processed.

Analysis of the Online Phase

In the analysis we will compare the modified AMS algorithm that uses approximate reservoir
sampling and approximate counting to the original algorithm by Alon, Matias and Szegedy
with the same parameters for a fixed input. The following definition summarizes the variables
that will be used in this comparison.
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Definition 4.4.8. Let 0 < ε1 < 1 and 0 < δ1 < 1 be fixed parameters for the AMS algorithm
and let c = 1

δ1ε21
km1−1/k be the number of basic estimators that is used for these parameters

in the AMS algorithm. The modified algorithm also uses c copies of its basic estimator. In
the modified algorithm the length of the data stream is counted approximately using the
parameters ε1 and δ1. Each basic estimator uses (ε2, δ2)-approximate reservoir sampling and
approximate counting with the parameters ε3 and δ3 to obtain R̃ eXi . Let a = (a1, . . . , an) be a
fixed data stream with elements from the universe U = {u1, . . . , um} and assume that we run
the original and the modified AMS algorithm for the input a. Then let Fk be an abbreviation
for Fk(a) and for i ∈ {1, . . . , c} let

• Ñ denote the approximation of the data stream length n in the modified algorithm,

• X̃i and Xi denote the index of the data stream element that is sampled in the ith
copy of the basic estimator for the modified and original algorithm, respectively, and
let X̃ = (X̃1, . . . , X̃c) and X = (X1, . . . , Xc).

• R̃ eXi denote the approximate value of r eXi in the modified algorithm,

• Ỹi = Ñ((R̃ eXi)k − (R̃ eXi − 1)k) and Yi = n(rXi)
k − (rXi − 1)k) denote the basic estima-

tors in the modified and original algorithm, respectively, and

• let Z̃ = 1
c

∑c
i=1 Ỹi and Z = 1

c

∑c
i=1 Yi denote the estimates of Fk for the modified and

original algorithm, respectively.

By Corollary 4.4.6, we have
Pr{|Z − Fk| ≥ ε1Fk} ≤ δ1 . (4.84)

Now define

Y ′i = n
(
rkeXi − (r eXi − 1)k

)
and Z ′ =

1
c

v∑
i=1

Y ′i . (4.85)

In the modified algorithm we will use approximate reservoir sampling with the param-
eters ε2 = δ1/c and δ2 = δ1/c. Hence, for each i ∈ {1, . . . , c} with a probability of at
least (1 − δ2) the total variation distance of the distributions of X̃i and Xi is bounded
by ε2. Then, by the union bound and by Proposition 2.2.38, with a probability of at
least 1− cδ2 = 1− δ1 the total variation distance V(X, X̃) of X and X̃ is bounded by cε2 = δ1.
If this event happens then, by Proposition 2.2.37, we have

Pr{|Z ′ − Fk| ≥ ε1Fk} ≤ δ1 + V(X, X̃) ≤ 2δ1 . (4.86)

In the following we work under the assumption that (4.86) holds. We call this assumption
assumption 1. Note that assumption 1 fails to hold with a probability of at most δ1 with
respect to the random decisions of the reservoir sampling algorithm and that the random
decisions of the approximate counters for Ñ and R̃ eXi are independent of this assumption.

Next, we fix a random choice X̃ = x of the samples in the modified algorithm
where x = (x1, . . . , xc) ∈ {1, . . . , n}c. By our last assumption, with a probability of at
least 1− 2δ we choose a random sample x such that under the condition that X̃ = x

|Z ′ − Fk| ≤ ε1Fk . (4.87)
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In the following we assume that (4.87) holds for the random choice X̃ = x (assumption 2)
and continue our analysis under the condition that X̃ = x. Note that assumption 2 fails with
a probability of at most 2δ1 and that the random decisions of the approximate counters for Ñ
and R̃ eXi = R̃xi for i ∈ {1, . . . , c} are independent of assumption 2 since each instance of the
approximate counting algorithm uses independent random bits for its random decision.

The modified algorithm uses an (ε1, δ1)-approximation Ñ of n in its basic estimators Ỹi,
therefore Pr{|Ñ − n| ≥ ε1n} ≤ δ1. Let

Y ′′i = Ñ
(
rkeXi − (r eXi − 1)k

)
and Z ′′ =

1
c

v∑
i=1

Y ′′i . (4.88)

Then, with a probability of at least 1− δ1, we have

|Z ′′ − Z ′| < ε1Z
′ . (4.89)

In the following we work under the assumption (assumption 3) that (4.89) holds. This as-
sumption fails to hold with a probability of at most δ1 and the random decisions in the
computation of R̃ eXi for i ∈ {1, . . . , c} remain independent of our current assumptions.

Before we proceed with the analysis of the online phase, we will prove a technical propo-
sition that is useful for this analysis.

Proposition 4.4.9. Let ε ∈ [0, 1] and k, x ∈ N such that 2kε ≤ 1 and (1− ε)x ≥ 1 and
let f(x) = xk − (x− 1)k. Then f((1− ε)x) ≥ (1− 2kε)f(x) and f((1 + ε)x) ≤ (1 + 2kε)f(x).

Proof. By using that (1− ε)x ≥ 1, we have

f((1− ε)x) = (1− ε)kxk − ((1− ε)x− 1)k (4.90)

≥ (1− ε)kxk − ((1− ε)x− (1− ε))k (4.91)

= (1− ε)k(xk − (x− 1)k) (4.92)

= (1− ε)kf(x) . (4.93)

Now, for the proof of the first inequality, it suffices to show that (1− ε)k ≥ 1− 2kε.
To this end let `(x) = (1− x)k and r(x) = 1− kx. The derivatives of these functions
are `′(x) = −k(1− x)k−1 and r′(x) = −k, respectively. Now observe that `(0) = r(0) = 1,
that `(x) is convex on the unit interval since k ≥ 1, and that `′(0) = r′(0) = −k. Hence,
the linear function r(x) is the asymptote of the convex function `(x) for x = 0. This implies
that `(x) > r(x) for all x ∈ [0, 1] and therefore (1− ε)k ≥ 1− kx ≥ 1− 2kε.

The second inequality of the lemma is shown similarly. Here we use that (1 + ε)k ≤ 1 + 2kε
for x ∈ [0, 1] which is implied by the well known fact that ε/2 ≤ ln(1 + ε) ≤ ε:

ln
(

(1 + ε)k
)

= k ln ((1 + ε)) ≤ kε ≤ ln(1 + 2kε) . (4.94)

The inequality (1 + ε)k ≤ 1 + 2kε follows by taking the exponential function of both sides.

Recall that we work under the assumption that X̃ = (x1, . . . , xc). The modified AMS
algorithm uses approximations R̃xi of rxi that are obtained by approximate counting
with the parameters ε3 and δ3. Thus Pr{|R̃xi − rxi | ≥ ε3rxi} ≤ δ3 for i ∈ {1, . . . , c}. We
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choose ε3 = ε1/(2k) and δ3 = δ1/c. Then, by the union bound, |R̃xi − rxi | < ε3rxi holds si-
multaneously for all i ∈ {1, . . . , c} with a probability of at least 1− δ1. In this case, by Propo-
sition 4.4.9, we have |Y ′′i − Yi| ≤ 2kε3Yi = ε1Yi for all i ∈ {1, . . . , c} and therefore

|Z̃ − Z ′′| ≤ ε1Z ′′ . (4.95)

In the following we assume that (4.95) holds (assumption 4). This assumption fails with a
probability of at most δ1.

If our four assumptions hold then, by the triangle inequality, the inequalities (4.87), (4.89),
and (4.95), and the fact that ε1 ≤ 1, we get the following upper bound on the approximation
error of the modified AMS algorithm:

|Z̃ − Fk| ≤ |Z̃ − Z ′′|+ |Z ′′ − Z ′|+ |Z ′ − Fk| (4.96)
≤ ε1Z ′′ + ε1Z

′ + ε1Fk (4.97)
≤ ε1(1 + ε1)Z ′ + ε1(1 + ε1)Fk + ε1Fk (4.98)

≤ ε1(1 + ε1)2Fk + ε1(1 + ε1)Fk + ε1Fk (4.99)

= (ε31 + 3ε21 + 3ε1)Fk (4.100)
≤ 7ε1Fk . (4.101)

By choosing ε1 = ε/7 we obtain an ε-approximation of Fk under the condition that our four
assumptions hold. By the union bound, the probability that at least one of our assumptions
fails is bounded by 5δ1. If we choose δ1 = 1/20 then the probability that the algorithm fails
is bounded by 1

4 and the failure probability can be reduced to any constant δ > 0 by taking
the median of O(log(1/δ)) independent copies of the algorithm.

The claim about the space complexity of the online phase in Theorem 4.4.7 is under the
condition that the algorithm does not fail. This is only guaranteed if our four assumptions
hold. In this case all instances of the approximate reservoir sampling algorithm respect the
space bound of Theorem 4.3.2 and all instances of the approximate counting algorithm respect
the space bound of Theorem 4.2.1. The improved AMS algorithm uses

c =
1
δ1ε21

km1−1/k =
490
ε2
km1−1/k (4.102)

instances of the approximate reservoir sampling algorithm and the approximate counting algo-
rithm. The approximate reservoir sampling algorithm has the parameters ε2 = δ1/c = 1/(10c)
and δ2 = δ1/c = 1/(10c). Then, by Theorem 4.3.2, each instance uses

O

(
log

1
ε2

+ log
1
δ2

+ log log n
)

= O (log c+ log log n) (4.103)

= O

(
log

1
ε

+ log k + logm+ log log n
)

(4.104)

bits of memory. The parameters of approximate counting are ε3 = ε1/(2k) = ε/(14k)
and δ3 = δ1/c = 1/(10c). By Theorem 4.2.1, each instance uses

O

(
log

1
ε3

+ log
1
δ3

+ log log n
)

= O

(
log

1
ε

+ log k + log c+ log log n
)

(4.105)

= O

(
log

1
ε

+ log k + logm+ log log n
)

(4.106)
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bits of memory. For the purpose of probability amplification we use the median of log(1/δ)
independent copies of the algorithm. Overall, in the online phase of the algorithm

O
((

1/ε2
)

log(1/δ)km1−1/k (log(1/ε) + log k + logm+ log log n)
)

(4.107)

bits of memory are used under the condition that the algorithm does not fail. This proves
the claim of Theorem 4.4.7 about the space complexity of the modified AMS algorithm in the
online phase.

Analysis of the Offline Phase

In the offline phase we cannot simply convert R̃ eXi and Ñ to binary numbers and com-

pute Ỹi = Ñ((R̃ eXi)k − (R̃ eXi − 1)k) since this would increase the contribution of the data
stream length n to the space complexity of the algorithm to Ω(log n). We solve this problem
by using a space efficient simulation of a uniform circuit that computes the output from R̃ eXi
and Ñ . An introduction to circuit complexity can be found, for example, in [11]. Here we
will only need a few facts from circuit theory: A binary circuit over the standard base ∨,∧,
and ¬ with fan-in at most two can be encoded as a set of tuples of the form (g, b, g`, gr)
such that g is the number of the gate that is described by the tuple, b ∈ {∨,∧,¬, input} is
the type of the gate, and g` and gr are the numbers of the gates that are the left and right
input of gate g, respectively. For a circuit with n inputs and m outputs the gates with the
numbers 1, . . . , n are of the type input . These gates represent the inputs of the circuit. The
output of the circuit is computed by the gates {n + 1, . . . , n + m}. This representation of
circuits is usually called the standard encoding of circuits. Uniform circuits are circuits whose
standard encoding can be computed by deterministic Turing machines that use little space.

Definition 4.4.10. Let S = {Sn : n ∈ N} be a sequence of circuits with n inputs and one
output. The sequence S is called UBC-uniform, or briefly uniform, if there is a deterministic
Turing machine that, given the input 1n, computes the standard encoding of the circuit Sn
using space O(log n). Furthermore, let UBC-SIZE,DEPTH(c(n), d(n)) denote the set of all
languages L ⊆ {0, 1}∗ which can be decided by a UBC-uniform family S = {Sn : n ∈ N} of
circuits of size c(n) and depth d(n).

The following theorem is a basic result in circuit complexity. A proof of this theorem can be
found, for instance, in [10].

Theorem 4.4.11. For d(n) ≥ log n we have that

UBC-SIZE,DEPTH
(

2d(n), d(n)
)
⊆ DSPACE(d(n)) .

This result can be easily extended to uniform families of circuits that compute families
of functions fn : {0, 1}n −→ {0, 1}m(n) with m(n) > 1 outputs. Here each bit of the out-
put is simply computed by a separate UBC-uniform circuit with one output. Hence, the
upper bound on the space complexity in the offline phase of the improved AMS algo-
rithm in Theorem 4.4.7 can be proved by showing that the median of O(log(1/δ)) in-
dependent copies of the estimator Z̃ for Fk can be computed by a uniform circuit of
depth O (poly(log(1/ε), log log(1/δ), log k, logm, log log n)) from the register values of the as-
sociated approximate counters.
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We first note that the basic operations that are needed for the computation of Z̃ can
be computed by uniform circuits of logarithmic depth: Addition, multiplication and integer
division of two n-bit numbers can be computed by uniform circuits of depth O(log n). A
uniform circuit of depth O(poly(log k) · log n) for computing the median of k numbers with n
bits can be obtained by combining a uniform sorting network of depth O(poly(log k)) with
uniform circuits for the comparison of two n-bit integers of depth O(log n). Details on circuits
for basic functions can be found in the monographs [73, 74] by Wegener.

Then we observe that the values of Ñ and R̃ eXi for i ∈ {1, . . . , c} have binary represen-
tations of length O(log n) if the algorithm does not fail since in this case all approximate
counts have a bounded relative error. Let r and ri denote the register values that corresponds
to the approximate counts Ñ and R̃ eXi , respectively. We will first describe a circuit that

computes R̃ eXi from ri. Recall that the improved approximate counting algorithm uses the
parameter d and the value β = (2d − 1)−1 such that

R̃ eXi = (1 + β)ri/β =
2dri

(2d − 1)ri−1
. (4.108)

By the approximation error of R̃ eXi we have that ri = O(log n), and d = O(1/ε) by the choice
of d. Hence, the values 2dri and (2d − 1)ri can be computed by using a binary tree of mul-
tiplications (iterated squaring) of depth O(log ri) = O(log(1/ε) + log log n). Further on, 2dri
and (2d − 1)ri−1 have binary representations of length O((1/ε) log n) and all intermediate val-
ues in the tree of multipliers can be multiplied by circuits of depth O(log(1/ε) + log log n).
Then the resulting circuit has the depth O((log(1/ε) + log log n)2). Note that this circuit
is uniform if we use uniform multipliers since the tree-structure is very simple and can be
computed using space O(log(1/ε) + log log n). A uniform circuit for the computation of R̃ eXi
is obtained from the circuits for 2dri and (2d − 1)ri by using an integer division. Note that
an integer division is sufficient at this point since an absolute error of at most 1 increases the
relative error of R̃ eXi by a vanishingly small amount if R̃ eXi grows to infinity. This increase
of the approximation error can be compensated by adjusting the parameters of the AMS
algorithm in Corollary 4.4.6 accordingly. A uniform circuit for the computation of Ñ from
the register value r is constructed analogously. The value of Ỹi can be computed from R̃ eXi by
a uniform circuit of depth O(log(1/ε) + log k + log log n) that is constructed using the same
ideas. The value Ỹi and all intermediate values in its computation have binary representations
of length O(poly(logn) + log k). The estimator Z̃ is the average of the c independent basic
estimators Ỹi for i ∈ {1, . . . , c} where

c =
490
ε2
km1−1/k (4.109)

is the number of basic estimators that was chosen in the analysis of the online phase. The
sum

∑c
i=1 Ỹi can be computed using a binary tree of additions of depth

log(c) = O(logm+ log k + log(1/ε)) . (4.110)

Each intermediate result in this tree has a binary representation of length

O(log(1/ε) + log k + logm+ poly(log n)) . (4.111)
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The depth of a circuit for a single addition in the tree is logarithmic in this length, hence
the depth of the whole circuit for the sum, including the contribution of the circuits for each
addition, is bounded by

O(poly(log(1/ε), log k, logm, log logn)) . (4.112)

The division by c in the computation of Z̃ = 1
c

∑c
i=1 Ỹi can be realized by a simple truncation

if we round the parameter c up to the nearest power of two. Like before, the vanishingly
small relative error that is introduced by the truncation can be compensated by adjusting the
parameters of the AMS algorithm accordingly.

The output of the improved AMS algorithm is the median of log(1/δ) in-
dependent copies of the estimator Z̃. By using a uniform sorting network of
depth O(poly(log log(1/δ))) to sort the estimators which have binary representations of
length O(log(1/ε) + log k + logm+ poly(log n)) we finally obtain a uniform circuit of depth

O (poly(log(1/ε), log log(1/δ), log k, logm, log log n)) (4.113)

that computes the output of the algorithm. The uniformity of the circuit follows from the fact
that it combines uniform subcircuits in a very simple way: The uniform subcircuits replace
nodes in very simple graphs, mostly trees, that can be computed using logarithmic space.
The upper bound on the space requirements of the improved AMS algorithm in the offline
phase follows from the space-efficient simulation of this circuit according to Theorem 4.4.11.

4.4.3 The Space Complexity of Data Stream Algorithms for Fk

Now we will use communication complexity to prove a lower bound on the space complexity
of any randomized data stream algorithm that computes (ε, δ)-approximations of the kth
frequency moment in a constant number of passes over the input. The following reduction
was introduced by Alon, Matias, and Szegedy [3].

Theorem 4.4.12. Let U = {u1, . . . , um} be a set, let k, r ∈ N, 0 < ε < 1, and 0 < δ < 1
2

be constants, and let t = ((1 + 3ε/(1− ε))m)1/k. Every data stream algorithm that computes
(ε, δ)-approximations of Fk(a) for data streams a with elements from U while making at most r
passes over the data stream uses space Ω

(
1
rt RNIH

δ

(
DISJunique

t,m

))
.

Proof. Suppose that the r-pass data stream algorithm A, given the data stream a with
elements from U as the input, computes an (ε, δ)-approximation F̃k(a) of Fk(a) using s
bits of memory. We will use A to construct a randomized ε-error t-party NIH protocol P
for DISJunique

t,m such that cost(P ) ≤ rts. Then the claim of the theorem follows immediately

from the existence of this protocol since rts ≥ cost(P ) ≥ RNIH
δ

(
DISJunique

t,m

)
.

Let (x1, . . . , xt) ∈ ({0, 1}m)t be an input for DISJunique
t,m . Every player uses his input xi to

compute a partial data stream ai that contains all elements uj ∈ U subject to xi,j = 1. Each
element from U is contained at most once in ai, the order of the elements in ai is irrelevant.
Then the players simulate the data stream algorithm A on the input a = (a1, . . . , at) as
follows: The first player simulates A on the input a1. Then he appends the contents of the
memory that is used by algorithm A to the transcript and the second player continues the
simulation on a2 using the memory contents from the transcript, and so on. If r > 1 then
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the last player appends the contents of the memory to the transcript and the first player
continues to simulate the next pass over the input in the same manner until all r passes have
been simulated. In the end the last player computes the output F̃k(a) of A. The output of
the protocol P is 1 if F̃k(a) > (1 + ε)m and 0 otherwise. The last player appends the output
to the transcript such that all players know the output at the end of the protocol.

We will first analyze the cost of P , then we will show that P is a δ-error protocol
for DISJunique

t,m : For each round, except for the last round in which the last player writes
a single bit, each player appends the contents of the memory that is used by algorithm A
to the transcript. Hence less than rts bits are written to the blackboard. Now we show
that P computes the function DISJunique

t,m if we assume that |F̃k(a)− Fk(a)| ≤ εFk(a). By the
properties of A, this assumption fails to holds with a probability of δ, thus P has the desired
error probability. First suppose that DISJunique

t,m (x1, . . . , xt) = 0. Then, by the unique inter-
section promise, for each j ∈ {1, . . . ,m} there is at most one i ∈ {1, . . . , t} such that xi,j = 1.
Thus each element from U appears at most once in a and therefore we have Fk(a) ≤ m.
Then, by our assumption, we get F̃k(a) ≤ (1 + ε)m and the output of P is 0. Now sup-
pose that DISJunique

t,m (x1, . . . , xt) = 1. In this case there is at least one j ∈ {1, . . . ,m} such
that xi,j = 1 for all i ∈ {1, . . . , t}. Thus at least one element from U appears t times in a and
therefore Fk(a) ≥ tk. Then, by our assumption, we have F̃k(a) ≥ (1− ε)tk and, by using the
definition of t, we obtain

F̃k(a) ≥ (1− ε)tk = (1− ε)(1 + 3ε/(1− ε))m = (1 + 2ε)m > (1 + ε)m . (4.114)

Hence the output of P is 1, concluding the proof.

By using the reduction of Alon, Matias, and Szegedy in conjunction with our lower bound on
the information complexity of the disjointness function with the unique intersection promise
we obtain the following result.

Corollary 4.4.13. Let U = {u1, . . . , um} be a set and let 0 < ε < 1 and 0 < δ < 1
2 be con-

stants. Every data stream algorithm that computes (ε, δ)-approximations of Fk(a) for data
streams a with elements from U while making a constant number of passes over the data
stream uses space Ω

(
m1−2/t

)
.

Proof. Suppose that A is a r-pass data stream algorithm that computes (ε, δ)-approximations
of Fk(a). Let s be a function such that, given the data stream a = (a1, . . . , an) as the in-
put, A uses s(m,n) bits of memory. By using standard probability amplification techniques,
we obtain a randomized data stream algorithm A′ that computes (ε, δ′)-approximations
of Fk(a) for a constant δ′ such that δ′ < (3/10)

(
1−

√
(1/2) log(4/3)

)
using space O(s(m,n)).

Let t = ((1 + 3ε/(1− ε))m)1/k. By the fact that information complexity is a lower bound on
communication complexity (Thm. 3.2.5) and our lower bound on the information complexity
of DISJunique

t,m (Cor. 3.3.35) we have

RNIH
δ′

(
DISJunique

t,m

)
= Ω(m/t) . (4.115)

By applying Theorem 4.4.12 to A′ we then obtain

s(m,n) = Ω
( m
rt2

)
= Ω

(
m1−2/k

)
. (4.116)

This concludes the proof.
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The last Corollary is only a marginal improvement on the previously known Ω
(
m1−2/k/ logm

)
lower bound for a constant number of passes by Chakrabarti, Khot, and Sun [25]. Actually,
upper bounds on the space complexity of algorithms that compute (ε, δ)-approximations of Fk
are usually stated using the Õ-Notation that suppresses factors of the order poly(logm) (see
Sect. 4.4). Nevertheless, our lower bound shows that not even small asymptotic improvements
over the previously known Ω

(
m1−2/k

)
lower bound for single pass data stream algorithms

can be gained by using any constant number of passes over the data stream. This possibility
was not excluded by the lower bound for a constant number of passes by Chakrabarti, Khot,
and Sun.
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Chapter 5

Conclusions and Outlook

In the first part of this thesis we have obtained an optimal lower bound on the number in the
hand multi-party information complexity of the AND function and the disjointness function
with the unique intersection promise. Previous results on the information complexity of the
AND function mainly used the Hellinger distance of probability distributions as the main tool
of the proof. Our proof adds the Kullback-Leibler distance to the mathematical toolbox of
information complexity. The close connection of the Kullback-Leibler distance and mutual
information and the interesting analytical properties of the Kullback-Leibler distance enabled
us to improve on the known lower bounds for the AND function and the disjointness function.
We have also observed that known results in communication complexity can be generalized
and simplified if the combinatorial proof is replaced by an information theoretical proof.
In summary, information complexity offers a powerful and intuitively accessible approach
to communication complexity in the number in the hand model. The application of this
technique to new problems offers plentiful opportunities for future research.

In the number on the forehead model we were less successful. We only obtained lower
bounds on the information cost of an artificially restricted subset of one-way protocols. Ex-
tending the information complexity approach to the number on the forehead model seems to
be a worthwhile research goal. The information complexity of pointer jumping functions for
unrestricted one-way protocols looks like a good candidate for this plan. In general, proving
strong lower bounds on the communication complexity of functions in the number on the
forehead model is a major open problem of communication complexity. Apparently, in many
applications of communication complexity the limits of the number in the hand model have
been reached. For example, the currently best time-space tradeoff results for binary branch-
ing programs by Beame, Saks, Sun, and Vee [15] are based on sophisticated refinements of
two-player communication complexity. Despite these successes, strong lower bounds on the
size of unrestricted binary branching programs with n input variables of depth Ω(n log n)
still seem to be out of reach for today’s proof methods. First applications of number on
the forehead multi-party communication complexity to branching programs by Babai, Nisan,
and Szegedy [8] and Beame and Vee [16] indicate that stronger results may be obtained by
using multi-party communication complexity. Additionally, new results in multi-party com-
munication complexity could potentially solve some long-standing open problems in circuit
complexity. Currently, progress for these problems is mainly hindered by the embarrassing
lack of strong proof methods for lower bounds on the multi-party communication complexity
of functions in the number on the forehead model.
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An additional research perspective is the application of information statistics to com-
binatorial problems outside of communication complexity. We briefly sketched a general
information statistics approach for the proof of lower bounds on the size of sets. We strongly
believe that the application of information statistics to combinatorial problems has not yet
been fully explored.

In the second part of this thesis we designed data stream algorithms for approximate
counting and random sampling that have a doubly logarithmic space complexity. These
algorithms show that nontrivial and interesting data stream algorithms can be designed even
under extreme space restrictions that do not even allow to store the length of the data stream
as a binary number. Our improvements on known algorithms for these problems significantly
improve the utility of the algorithms as a building block for larger algorithms. The utility
of our algorithms as a building block for other algorithms shows in the application to the
computation of frequency moments for very long data streams, although our improvements
for this problem are most likely more of theoretical interest than of practical use.

Algorithm design is driven by the needs of applications. With the seemingly infinite stream
of new applications that emerge steadily, pointing out research opportunities in the field of
algorithm design is almost redundant. Our results on approximate counting demonstrate that
even “ancient results” like Morris’ approximate counting algorithm [59] from 1978 are often
not fully understood and that they offer a potential for improvements and new applications.
Therefore we point out that it can be a worthwhile effort to revisit old results once in a while
and to reconsider known algorithms in the light of current algorithmic topics.
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[48] T. Hagerup and C. Rüb. A guided tour of chernoff bounds. Inf. Process. Lett., 33(6):305–
308, 1990.

[49] M. Hofri and N. Kechris. Probabilistic counting of a large number of events. Technical
Report TR #UH-CS-92-23, University of Houston, 1992.



110 Bibliography

[50] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments. In Proc.
of 37th STOC, pages 202–208, 2005.

[51] T. S. Jayram. Hellinger strikes back: A note on the multi-party information complexity
of AND. In Proc. of 12th APPROX and 13th RANDOM, volume 5687 of LNCS, pages
562–573, 2009.

[52] S. Jukna. Extremal Combinatorics. Springer, 2001.

[53] S. Kakutani. On the equivalence of infinite product measures. Ann. Math., 49:214–224,
1948.

[54] S. Kullback. A lower bound for discrimination information in terms of variation. IEEE
Trans. Inform. Theory, 4:126–127, 1967.

[55] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Stat., 22:79–
86, 1951.

[56] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[57] F. Liese and I. Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, 52(10):4394–4412, 2006.

[58] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press,
2005.

[59] R. Morris. Counting large numbers of events in small registers. CACM, 21(10):840–842,
1978.

[60] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[61] S. Muthukrishnan. Data Streams: Algorithms and Applications. now Publishers Inc.,
2005.

[62] N. Nisan and A. Wigderson. Rounds in communication complexity revisited. SIAM J.
Comput., 22(1):211–219, 1993.

[63] S. Ponzio, J. Radhakrishnan, and S. Venkatesh. The communication complexity of
pointer chasing. J. Comput. Syst. Sci., 62(2):323–355, 2001.
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Appendix A

Some Mathematical Facts

A.1 Conditional Independence

We will frequently use the concept of conditional independence. The events A1, . . . , An are
conditionally independent given an event B if the events A1, . . . , An are independent with
respect to the conditional distribution given that the event B happened.

Definition A.1.1 (Conditionally independent events). Let A1, . . . , An ∈ Ω and B ∈ Ω be
events in a probability space with the sample space Ω. The events A1, . . . , An are conditionally
independent given B if for all subsets S ⊆ {1, . . . , n}

Pr

{⋂
i∈S

Ai

∣∣∣∣∣B
}

=
∏
i∈S

Pr{Ai|B} .

Conditional independence can be generalized to random variables quite naturally.

Definition A.1.2 (Conditionally independent random variables). Let Xi ∈ Xi
for i ∈ {1, . . . , n} and Y ∈ Y be finite random variables. The random variables X1, . . . , Xn

are conditionally independent given Y if for all S ⊆ {1, . . . , n}, xi ∈ Xi, and y ∈ Y

Pr

{∧
i∈S

Xi = xi

∣∣∣∣∣Y = y

}
=
∏
i∈S

Pr{Xi = xi|Y = y} .

The following proposition follows immediately from the definition of conditional independence.

Proposition A.1.3. Let X1 ∈ X1, . . . , Xn ∈ Xn and Y ∈ Y be finite random variables
such that the variables X1, . . . , Xn are conditionally independent given Y . Furthermore,
let x1 ∈ X1, . . . , xn ∈ Xn and y ∈ Y be constants and let X−i and x−i denote the vec-
tors (X1, . . . , Xi−1, Xi+1, . . . , Xn) and (x1, . . . , xi−1, xi+1, . . . , xn), respectively. Then

Pr{Xi = xi|X−i = x−i ∧ Y = y} = Pr{Xi = xi|Y = y} .

Proof. By the fact that
∑

xi∈Xi Pr{Xi = xi|Y = y} = 1 and by the definition of conditional
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independence, we have

Pr{X−i = x−i|Y = y} =
∑
xi∈Xi

Pr{Xi = xi ∧X−i = x−i|Y = y} (A.1)

=
∑
xi∈Xi

n∏
j=1

Pr{Xj = xj |Y = y} (A.2)

=
∏

j∈{1,...,n}−{i}

Pr{Xj = xj |Y = y} . (A.3)

Then, by plugging this into the definition of conditional probabilities, we immediately obtain
the claim of the proposition:

Pr{Xi = xi|X−i = x−i ∧ Y = y} =
Pr{Xi = xi ∧X−i = x−i|Y = y}

Pr{X−i = x−i|Y = y}
(A.4)

=

∏n
j=1 Pr{Xj = xj |Y = y}∏

j∈{1,...,n}−{i} Pr{Xj = xj |Y = y}
(A.5)

= Pr{Xi = xi|Y = y} . (A.6)

A.2 Useful Inequalities

Theorem A.2.1 (Jensen’s inequality). Suppose that f is a convex function and that X is a
random variable. Then

E[f(X)] ≤ f(E[X]) .

If f is strictly convex, then E[f(X)] = f(E[X]) implies that X = E[X] with probability 1.

A proof of Jensen’s inequality can be found, for instance, in [29].

Theorem A.2.2 (Chernoff bound). Let X1, . . . , Xn be independent Poisson trials such
that Pr{Xi=1} = pi for i ∈ {1, . . . , n} and let X =

∑n
i=1Xi. Then, for all 0 < δ < 1

Pr{X ≤ (1− δ) E[X]} ≤ exp
(
−δ

2

2
E[X]

)
.

There are many flavors of Chernoff bounds. An overview of Chernoff bounds is given, for
example, in [58], [60], and [48]. A proof of this specific Chernoff bound can be found in [58].
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Reference

B.1 List of Important Symbols and Notation

Symbol Explanation Reference Page
|S| Size of the set S Sect. 2.1.1 p. 5
|x| Absolute value of number x Sect. 2.1.4 p. 6
[a, b] Closed interval Sect. 2.1.1 p. 5
(a, b) Open interval Sect. 2.1.1 p. 5
(a, b] Half-open interval Sect. 2.1.1 p. 5
[a, b) Half-open interval Sect. 2.1.1 p. 5
X ∼ Y Identically distributed random variables Sect. 2.1.2 p. 5
X ∼ µ X distributed w.r.t. probability mass function µ Sect. 2.1.2 p. 5
(X|E) Conditional distribution of X given event E Sect. 2.1.2 p. 5
ANDk k-party AND-function Def. 3.3.5 p. 44
ANDunique

k k-party AND-function with uniqueness promise Def. 3.3.5 p. 44
CA(f) Deterministic communication complexity Def. 3.1.2 p. 29
CA,one-way(f) Det. one-way communication complexity Def. 3.1.8 p. 31
CA→B(f) Det. two-player one-way communication complexity Def. 3.1.8 p. 33
cost(P ) Cost of communication protocol P Def. 3.1.1 p. 28
DA
µ,ε(f) Distributional communication complexity Def. 3.1.5 p. 30

DA,one-way
µ,ε (f) Dist. one-way communication complexity Def. 3.1.8 p. 31

DA→B
µ,ε (f) Dist. one-way communication complexity Def. 3.1.8 p. 33

Df (p, q) f -divergence of probability mass function p and q Def. 2.2.30 p. 20
D(p, q) Kullback-Leibler distance of p and q Def. 2.2.33 p. 21
DICA

ε (f ;X|D) Deterministic information complexity Def. 3.2.2 p. 37
DISJk,n k-party disjointness function Def. 3.3.32 p. 62
DISJunique

k,n disjointness function with unique intersection promise Def. 3.3.33 p. 62

Continued on next page. . .
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Symbol Explanation Reference Page
E[X] Expectation of the random variable X Sect. 2.1.2 p. 5
Fk(a) kth frequency moment of data stream a Def. 4.4.1 p. 90
fi(a) absolute frequency of ith element in data stream a Def. 4.4.1 p. 90
H(X) Entropy of random variable X Def. 2.2.1 p. 8
H(X,Y ) Joint entropy of random variables X and Y Def. 2.2.8 p. 10
H(X|Y ) Conditional entropy of X given Y Def. 2.2.9 p. 11
h(p, q) Hellinger distance of p and q Def. 2.2.39 p. 24
h2(p) Binary entropy function Def. 2.2.3 p. 9
I(X : Y ) Mutual information of X and Y Def. 2.2.18 p. 15
I(X : Y |Z) Conditional mutual information of X and Y given Z Def. 2.2.23 p. 16
ICA

ε (f ;X|D) Randomized information complexity Def. 3.2.2 p. 37
ICA→B

ε (f ;X|D) Randomized two-player one-way information complexity Def. 3.2.3 p. 37
icost(P ;X) Information cost of protocol P w.r.t. X Def. 3.2.1 p. 36
PJk,n k-party pointer jumping function Def. 3.4.1 p. 65
Pr{A} Probability of event A Sect. 2.1.2 p. 5
Pr{A|B} Conditional probability of A given B Sect. 2.1.2 p. 5
RA
ε (f) Randomized communication complexity Def. 3.1.4 p. 30

RA,one-way
ε (f) Rand. one-way communication complexity Def. 3.1.8 p. 31

RA→B
ε (f) Rand. two-player one-way communication complexity Def. 3.1.8 p. 33

range(X) Range of the random variable X Sect. 2.1.2 p. 5
supp(X) Support set of the random variable X Sect. 2.1.2 p. 5
V(p, q) Total variation distance of p and q Def. 2.2.36 p. 23
Var[X] Variance of the random variable X Sect. 2.1.2 p. 5


