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I'-LIMITS OF CONVOLUTION FUNCTIONALS

LUCA LUSSARDI AND ANNIBALE MAGNI

ABsTrACT. We compute the [-limit of a sequence of non-local integral functionals de-
pending on a regularization of the gradient term by means of a convolution kernel. In
particular, as I'-limit, we obtain free discontinuity functionals with linear growth and
with anisotropic surface energy density.
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1. INTRODUCTION

As it is well known, many variational problems which are recently under consideration, arising
for instance from image segmentation, signal reconstruction, fracture mechanics and liquid crystals,
involve a free discontinuity set (according to a terminology introduced in [19]). This means that
the variable function u is required to be smooth outside a surface K, depending on u, and both
and K enter the structure of the functional, which takes the form given by

Flu, K) :/ ¢(|Vu|)dx+/ O(|ut —u™|,v)dH" ™,
O\K KNQ

being Q an open subset of R, K is a (n — 1)-dimensional compact subset of R, |u™ — u~| the
jump of u across K, vi the normal direction to K, while ¢ and 6 given positive functions, whereas
H"~! denotes the n — 1-dimensional Hausdorff measure.
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2 L. LUSSARDI AND A. MAGNI

The classical weak formulation for such problems can be obtained considering K as the set of
the discontinuities of u and thus working in the space of functions with bounded variation. More
precisely, the aforementioned weak form of F takes on BV () the general form

(1.1) F(u) :/Q¢(|Vu|)dx+/s B(Jut — u |, ) AHP Y + co DCu| (),

where Du = Vu L™ + (ut —u~™)H" ! + D is the decomposition of the measure derivative of
u in its absolutely continuous, jump and Cantor part, respectively, and S, denotes the set of
discontinuity points of u.

The main difficulty in the actual minimization of F comes from the surface integral

/ O(ju™ —u™|,vy) dH
Su

which makes it necessary to use suitable approximations guaranteeing the convergence of minimum
points and naturally leads to I'-convergence.

As pointed out in [10], it is not possible to obtain a variational approximation for F by the
typical integral functionals

]—'E(u):/QfE(Vu)dx

defined on some Sobolev spaces. Indeed, when considering the lower semicontinuous envelopes of
these functionals, we would be lead to a convex limit, which conflicts with the non-convexity of
F.

Heuristic arguments suggest that, to get rid of the difficulty, we have to prevent that the
effect of large gradients is concentrated on small regions. Several approximation methods fit this
requirements. For instance in [7], [12], [24] the case where the functionals F. are restricted to
finite elements spaces on regular triangulations of size ¢ is considered. In [1], [2], [23] the implicit
constraint on the gradient through the addition of a higher order penalization is investigated.
Moreover, it is important to mention the AMBROSIO & TORTORELLI approximation (see [4] and
[5]) of the Mumford-Shah functional via elliptic functionals.

The study of non-local models, where the effect of a large gradient is spread onto a set of size
g, was first introduced by BRAIDES & DAL MASO in order to approximate the Mumford-Shah
functional (see [10] and also [11], [13], [14], [15], [16]) by means of the family

(1.2) Fe(u) = i/{)f(s ]g ( )mQ|Vu|2dy>d:c, u e HY(Q),

where, for instance, f(t) =t A1/2 and B.(x) denotes the ball of centre x and radius . A variant
of the method proposed in [10] has been used in [22] to deal with the approximation of a functional
F of the form (1.1), with ¢ having linear growth and 6 independent on the normal v, (see also
[20] and [21]). More precisely, in [22] the I-limit of the family

1
fa(u):f/ f(g][ |Vu|dy>dx, we W),
€ Ja B (z)NQ

for a suitable concave function f, is computed.
In [25] (see also [13]) the case of an anisotropic variant of (1.2) has been considered. In particular
it is proven that the family

1
Fe(u) = E/Qf(s\Vu\p *ps)dx, ue HY(Q), p>1,

T’-converges to an anisotropic version of the Mumford-Shah functional.
In this paper we investigate the I'-convergence of the family

Fe(u) = é/ﬂfg(e\vm * pe)dw, ue€ Whl(Q).

The main difficulty to overcome is the estimate from below for the lower I'-limit in terms of the
surface part, while the contribution arising from the volume and Cantor parts has been treated
along the same line of the argument already exploited in [25]. The estimate from above has
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been achieved by density and relaxation arguments. We prove that the I'-limit, in the strong
L'-topology, is given by

u) = / o(|Vul) de —|—/ O(|ut —u™|,vy) dH™ ! 4 co| D u|(Q),
Q Su
where co = lim;_, 4 o ¢(t)/t and

0(s,v) = inf {hmﬁnf/ f(gj|Vug| % pe;) da = (uj) € W*, g5 — 0+} 7
J]—T0O0
being W2t the space of all sequences on the cylinder @), which converge, shrinking onto the
interface, to the function that jumps from a to b around the origin (see paragraph 3.1 for details).
In section 7 we have been able to show that the method used in [22] to write # in a more explicit
form works only if n = 1. In the case n > 1 such an argument does not work. Let us briefly
discuss the reason. Without loss of generality we can suppose v = e1. Let PC be the orthogonal
projection of C onto {z; = 0}. Denote by X the space of all functions v € Wlf)cl(]R x Pgz) which
are non-decreasing in the first variable and such that there exist £y < & with v(x) =0 if 27 < &
and v(z) = s if 1 > &. Then, exploiting the same argument as in [22], we have 0(s,e;) > infx G,

where
+oo
G(v) = [ f</C( )alv(z)p(z - tel)dz> dt.

The estimate 0(s,e;) > infx G turns out to be optimal if inf x G = infy G, where Y is the space
of all functions v € X such that v depends only on the first variable. This is due to the fact
that proving the inequality 6(s,e;) > infx G we lose control on all the derivatives d;v for any
1 =2,---,n. In the case C = B; and p = w%XBu treated in [22], one is able to prove that
infx G = infy G computing directly infx G by a discretization argument (see Prop.5.7 in [22]).
In general, inf x G = infy G does not hold. Indeed proceeding at first as in the proof of Prop. 5.6
n [22], one is able to show that for any C' C R? open, bounded, convex and symmetrical set
(i.e. C = =C) and for p = ﬁxc, it holds

(1.3) 1nfG / <C| (CN{xn = t}) dt.

Now if C' is the parallelogram C = {(z,y) € R? : -2 <y <2,z — 1<y < x+ 1} applying (1.3),

we get
2
1nfG’—2f< >+2/ f<5r>dr
C] 0 |C

If we compute G on the function w given by

] 0 fy>xz-—1
(to do this we notice that the functional G makes sense also on BVjec(R x (—2,2)) writing Dyv
instead of 0yvdz) we obtain

6w =21 (151 )

C
If f is strictly concave then
2
G(w )<2f( >+2f< ><2f( >+2/ f( )drmfG
] ] C ]

By a density argument we deduce that infx G < infy G.
As a conclusion, it seems that for a generic anisotropic convolution kernel p. the expression for
0 can not be further simplified when n > 1.
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2. NOTATION AND PRELIMINARIES

We will denote by LP(2) and by W*P(Q), for k € N, k > 1, and for 1 < p < 400, respectively
the classical Lebesgue and Sobolev spaces on §2. The Lebesgue measure of a measurable set A C R”
will be denoted by |A|, whereas the Hausdorff measure of A of dimension m < n will be denoted
by H™(A). The ball centered in z with radius r will be denoted by B, (x), while B, stands for
B,.(0); moreover, we will use the notation S"~! for the boundary of By in R”. The volume of the
unit ball in R™ will be denoted by w,,, with the convention wy = 1. Finally A(Q2) denotes the set
of all open subsets of (.

2.1. Functions of bounded variation. For a thorough treatment of BV functions we refer the
reader to [3]. Let © be an open subset of R™. We recall that the space BV () of real functions
of bounded variation is the space of the functions u € L'(2) whose distributional derivative is
representable by a measure in €2, i.e.

/u&p dx:—/godDiu, Yoe CX(),Vi=1,...,n,
o Oz Q

for some R™-valued measure Du = (D1u, ..., Dyu) on Q. We say that u has approximate limit at
x € Q if there exists z € R such that

lim — =0.

Jm f ) sy =0
The set S, where this property fails is called approximate discontinuity set of u. The vector z is
uniquely determined for any point x € 2\ S, and is called the approzimate limit of u at = and
denoted by @(x). We say that x is an approzimate jump point of the function v € BV (Q) if there
exist a,b € R and v € S"~! such that a # b and

(2.1) lim |u(y) —al|dy =0, lim lu(y) — b dy = 0,
r=0% JBf(aw) =0t JB: (x,v)
where B (z,v) ={y € B,(z): (y—a,v) >0} and B, (z,v) = {y € B.(z): (y—x,v) <0}. The
set of approximate jump points of u is denoted by J,,. The triplet (a,b,v), which turns out to be
uniquely determined up to a permutation of a and b and a change of sign of v, is usually denoted
by (uT(x),u™ (x),vy(x)). On Q\ S, we set v = u~ = 4. It turns out that for any u € BV (Q)
the set S, is countably (n — 1)-rectifiable and H"~1(S,, \ J,,) = 0. Moreover,
Dul J, = (u" —u )y, H" ' L J,

and v, () gives the approximate normal direction to S, for H" l-a.e. z € S,,.

For a function v € BV (Q) let Du = D®u + D*u be the Lebesgue decomposition of Du into
absolutely continuous and singular part. We denote by Vu the density of D%u; the measures
Diu:= D3ul_ J, and D := D%ul_ (2\ S,) are called the jump part and the Cantor part of the

derivative, respectively. It holds Du = Vul" + (ut — u™ )y, H" "' L J, + D°u. Let us recall the
following important compactness Theorem in BV (see Th.3.23 and Prop. 3.21 in [3]):

Theorem 2.1. Let Q be a bounded open subset of R™ with Lipschitz boundary. FEvery sequence
(up) in BV (Q) which is bounded in BV () admits a subsequence converging in L*(2) to a function
u € BV ().

We say that a function u € BV (Q) is a special function of bounded variation, and we write
u € SBV(Q), if |Du|(Q) = 0. We say that a function u € L'(2) is a generalized function of
bounded variation, and we write u € GBV(Q), if u” := (=T) Vu AT belongs to BV (Q2) for every
T>0. If ue GBV(Q), the function Vu given by

(2.2) Vu = Vu® a.e. on {|u] < T}

turns out to be well-defined. Moreover, the set function 7' +— 5,7 is monotone increasing; therefore,
if we set Sy = UpsgJur, for H" lae.x € S, we can consider the functions of T given by
(uh)~(z), (WD) (), vur(z). It turns out that

(23) u(x)= TETOO(UT)_(JJ), ut(z) = TETOO(“T)+(”;>’ vu(w) = lim v, (z)
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are well-defined for H" l-a.e.x € S, Finally, for a function u € GBV(Q), let |Du| be the
supremum, in the sense of measures, of |[D°u”| for T > 0. It can be proved that for any Borel
subset B of Q2

(2.4) |Du|(B) = TlirJrrl |Du™|(B).

2.2. Slicing. In order to obtain the estimate from below of the lower I'-limit (see next paragraph)
we need some basic properties of one-dimensional sections of BV -functions. We first introduce
some notation. Let & € S*™1, and let £+ be the vector subspace orthogonal to &. If y € ¢+ and
ECR"weset B, ={te€R: y+t& € E}. Moreover, for any given function u: & — R we define
Ugy: Qey — R by ue () = u(y + t&). For the results collected in the following Theorem see [3],
section 3.11.

Theorem 2.2. Let u € BV (Q). Then uge, € BV (Q¢,) for every & € S™™! and for H" '-a.e.
y € &+, For such values of y we have u'&y(t) = (Vu(y+1§),§) for a.e.t € Qe y and Ju, , = (Ju)ey,
where u’éy denotes the absolutely continuous part of the measure derivative of ue . Moreover, for
every open subset A of  we have

L 1P ucal () 417 ) = D" 914,

2.3. I'-convergence. For the general theory see [9] and [18]. Let (X,d) be a metric space. Let
(F;) be a sequence of functions X — R. We say that (F;) I'-converges, as j — +o00, to F: X — R,
if for all u € X we have:

a) For every sequence (u;) converging to u it holds
F(u) < liminf Fii(uy).
j—+oo
b) There exists a sequence (u;) converging to u such that
F(u) > limsup F;(u;).
j—+o0
The lower and upper I'-limits of (F;) in u € X are defined as
F'(u) = inf{l_imjnffj(uj) suy —ul,  F(u) = inf{limsup F;(u;) : u; — u}
J—To0 j—+oo
respectively. We extend this definition of convergence to families depending on a real parameter.
Given a family (F;).so of functions X — R, we say that it I-converges, as ¢ — 0, to F: X — R

if for every positive infinitesimal sequence (g;) the sequence (F¢;) I'-converges to F. If we define
the lower and upper I'-limits of (F;) as

F'(u) = inf {lim iélf]'—s(ue) Due —ul,  F'(u) = inf{limsup Fo(ue) : ue — u}
e— e—0
respectively, then (F.) I'-converges to F in w if and only if F'(u) = F”(u) = F(u). It turns out

that both F’ and F” are lower semicontinuous on X. In the estimate of ' we shall use the
following immediate consequence of the definition:

F'(u) = inf{ljj@i{}(}ffgj (uj) : g5 — 0%, u; — u}.
It turns out that the infimum is attained.

An important consequence of the definition of I'-convergence is the following result about the
convergence of minimizers (see, e.g., [18], Cor. 7.20):

Theorem 2.3. Let Fj: X — R be a sequence of functions which T'-converges to some F: X — R;
assume that inf,e x F;(v) > —oo for every j. Let (o;) be a positive infinitesimal sequence, and for
every j let u; € X be a oj-minimizer of F;, i.e.

Filuy) < inf Fj(v) +o;.
Assume that u; — u for some uw € X. Then u is a minimum point of F, and
Flu) = lm F;(uy).
j——+oo
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Remark 2.4. The following property is a direct consequence of the definition of I'-convergence:
if Fe L F then Fe+G Lry G whenever G: X — R is continuous.

2.4. Supremum of measures. In order to prove the I'-liminf inequality we recall the following
useful tool, which can be found in [8].

Lemma 2.5. Let Q) be an open subset of R™ and denote by A(Q) the family of its open subsets. Let
A be a positive Borel measure on Q, and p: A(2) — [0,+00) a set fgnctzlm which is superadditive
on open sets with disjoint compact closures, i.e. if A,B CC Q and AN B =), then

p(AU B) = pu(A) + pu(B).

Let (0;)ier be a family of positive Borel functions. Suppose that
u(A) > / i dX  for every A € A(Q) and i€ 1.
A

Then
w(A) > / sup; dA  for every A € A(Q).
A i

2.5. A density result. The right bound for the upper I'-limit from above will be first obtained
for a suitable dense subset of SBV (). More precisely, let W(2) be the space of all functions
w € SBV(Q) such that

(a) H"1(Sw\ Sw) = 0;

(b) S, is the intersection of Q with the union of a finite member of (n — 1)-dimensional
simplexes;

(c) we Whr>(Q\S,) for every k € N.

Theorem 3.1 in [17] gives us the density property of W(2) we need; here

SBV2(Q) = {u € SBV(Q) : |Vu| € L*(Q), H"'(S,) < +00}.
Theorem 2.6. Assume that OS2 is Lipschitz. Let u € SBV?(Q) N L>°(Y). Then there exists a
sequence (wy,) in W() such that wy, — u strongly in L'(Q), Vwy, — Vu strongly in L?(Q,R"),
with limsupy, ., o [|wn|leo < ||¢f|ec and such that

lim sup/ V(Wi wy, v, ) dH™ T < / PuT,u,vy) dH !

h—+o0 J 5, S
for every upper semicontinuous function ¢ such that (a,b,v) = ¢¥(b,a, —v) whenever a,b € R
and v € S"1L.

2.6. A relaxation result. To conclude this section we prove a relaxation result which will be
used in the sequel. Recall that given X be a topological space and F: X — RU {+o0}, the relazed
functional of F, denoted by F, is the largest lower semicontinuous functional which is smaller than
F.

Theorem 2.7. Let ¢: [0,+00) — [0,+00) be a convex, non-decreasing and lower semicontinuous
function with ¢(0) = 0 and with

o)
t_l}gloo — =cE€ (0, +00).

Let 0: [0, +00) x S"™1 — [0, 4+00) be a lower semicontinuous function such that 0(s,v) < c's for
any (s,v) € [0,+00) x S*~1, for some ¢’ > 0. For any A € A(Q) let

/ o(|Vu|) dx +/ O(|lut —u™|,v,)dH™ ! ifu € SBV2(Q)NL>®(Q)
.7-'(u, A) — A S.NA
400 otherwise in L*(£).
Then the relazed functional of F with respect to the strong L'-topology satisfies

F(u) S/Q(;S(|Vu|)dx+/s O(|u™ — u™|,vy) AR + | Du|(Q)
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for any w € BV (Q).

Proof. Combining a standard convolution argument with a well known relaxation result (see, for
instance, Th. 5.47 in [3]) we can say that the relaxed functional of

/ ¢(|Vu|)dz  if u € CHQ)
G(u, A) = A
+00 otherwise in L!(£2)

is given by

/4¢(\Vu\)dm+c\Dsu|(A) if u € BV(Q)

G(u, A) =
+00 otherwise in L!(Q).
Since C1(Q2) C SBV2(2) N L>=(Q) then we get F(u, A) < G(u, A). Hence for any A € A(Q2) and
for any u € BV ()

f(u,A)§A¢(|Vu|)dm+c|DSu\(A).

We can now conclude using the fact that for every u € BV (Q) the set function F(u, -) is the trace
on A(Q) of a regular Borel measure p. This can be proven exactly along the same line of Prop. 3.3
in [6]. Hence

F(u) = p() = p(2\ Su) + u(QNS,)

§/¢(|Vu|)dx+c|Dcu|(Q)+/ O(ut —u™|,v,) dH" !
Q Su

which is what we wanted to prove. O

3. STATEMENT OF THE MAIN RESULTS

Let © C R™ be a bounded open set with Lipschitz boundary. Let ¢: [0,4+00) — [0,400) be a
convex and non-decreasing function with ¢(0) = 0 and

()
(3.1) tl1+moo =€ (0, 400).
For any € > 0 let f.: [0,4+00) — [0,400) be such that:

A1) f. is non-decreasing, continuous, with f.(0) = 0.

A2) Tt holds lim fg(tt) =
(=:)—(0,0) £¢ (1)
A3) f. converges uniformly on the compact subsets of [0, +00) to a concave function f.

Example 3.1. Given f and ¢ as above, a possible choice for f. satisfying A1-A3 is given by

ep (L) if0<t<t.
fs(t) =
flt—t) +eo (k) ift > t.

wheret. — 0, and t. /e — +00. The only non-trivial assumption to verify is A2. Sincee/to(t/e) —
co as (e,t) — (0,0), with t > t., the check amounts to verify that

f(t—t) +e¢ (%)

(,6)—(0,0) t
t>te

This follows immediately from f(t —t.)/(t —tc) — co and e/t.d(te/e) — co as (e,t) — (0,0), and
t>t..
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Let C C R™ be open, bounded, and connected with 0 € C. Let p: C' — (0, +00) be a continuous
and bounded convolution kernel with

pdx =1.
c
For any € > 0 and for any € R™ we will denote by C.(x) the set  + C. For any = € eC let

1 x
pee) = 50 (2).
We consider the family (F.)cs0 of functionals L'(Q) — [0, +-00] defined by

1
g/ fe(e|Vul * pe) da if we WhHi(Q)
_ Q

(3:2) Fe(u)
+00 otherwise in L'(£2)
where, for any x € Q,
(33) Vil spea) = [ [Fullpaly - 2)dy
C.(z)NQ

is a regularization by convolution of |Vu| by means of the kernel p..
Remark 3.2. Notice that with the choice C' = By and p = W%LXBI we get
Valspela) = f|Valdy
B (z)NQ
and thus the family (F:)eso reduces to the case already investigated in [20], [21] and [22].

In order to prove the I'-convergence of F. it is convenient to introduce a localized version of
F.: more precisely, for each A € A(Q) we set

1

7/ f-(e|Vu| * po)dz  if ue WH(Q)
(34) Fo(u, A) =4 ©74
+o0 otherwise in L(2).

Clearly, F. (~7 Q) coincides with the functional F. defined in (3.2). The lower and upper I'-limits
of (F-(, A)) will be denoted by F'(-, A) and F"(-, A), respectively.
3.1. The anisotropy. In this paragraph we define the surface density

6: [0, +00) x S*1 — [0, +00)

which will appear in the expression of the I'-limit of F..
Given v € S"~! and a,b € R let us denote by u%?’ the function R* — R given by

abr | oa if(x,v) <0
v () _{ b if (x,v) > 0.
For any € R™ and any v € S*~! let P;-(z) be the orthogonal projection of x onto the subspace
vt ={x e R": (z,v) = 0}. We define the cylinder

Q,={zeR": |(z,v)] <1, PX(z) € ByNvt}.
Given ' C R™ with @, CC Q' denote by W? the space of all sequences (u;) in Wl‘l)’cl(Q’ ) such
that u; — u2® in L*(Q'), and such that there exist two positive infinitesimal sequences (a;), (b;)
with u;(z) = a if (z,v) < —a; and u; =bif (z,v) > b;. Let

1 1
(3.5) 0(s,v) = " inf {l_iminf —/ F(ej|Vu;| % pe,) da = (uj) € W*, g5 — 0+}.
n—1 @

J—+oo Ej

Notice that 6(s,r) does not depend on the choice of €. Let us collect some easy properties of
which immediately descend from the definition.
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Lemma 3.3. The following properties hold:

(3.6) 0 is continuous.

(3.7) 0(s,v) =0(s,—v), Vs>0, YveS' L
1
inf {l_iminf — / F(ej|Vu;| % pe;) da = (uj) € W*, g5 — 0+}
i=to g5 Jg, |
(3.8) . | ab +
= inf < lim inf — f(e|Vuyl x pe;)da = (uy) € W7 g5 — 0
Jmtee &5 JQ,

whenever |a — b = s.

Moreover, for any xo € R", v € S* ! and s > 0 we have

1
(3.9) 0(s,v) = 1 inf {Liminf —/ f(&j|Vug| # pe,) dz : (uj(- — 20)) € W*, g5 — 0+} .
Wn—1 J=+00 €5 Jzo+Q,

3.2. Main results. We are now in position to state the main result of the paper.

Theorem 3.4. Let F. be as in (3.2), with f. satisfying conditions A1-A3. Then F. I'-converges,
with respect to the strong L'-topology, as e — 0, to F: L*(Q) — [0, +o0] given by

/ o(|Vu|) dx +/ O(Ju™ — u™ |, vy) dH" 1 + ¢o| Dul|(Q) if u e GBV(Q)
]:(u) _ Q Su

+00 otherwise in L1(12).

Remark 3.5. Notice that for any u € GBV(Q) the expression 0(|ut — u™|,vy) turns out to be
well defined H" *-a.e.x € S, since (3.7) holds.

The proof of Theorem 3.4 will descend combining Proposition 5.10 (the I-liminf inequality)
with Proposition 6.3 (the I'-limsup inequality).

As a typical consequence of a I'-convergence result, we are able to prove a result of convergence
of minima by means of the following compactness result for equibounded (in energy) sequences,
which will be proved in §4.

Theorem 3.6. Let (¢;) be a positive infinitesimal sequence, and let (uj) be a sequence in L'(€2)
such that ||uj||cc < M, and such that F.;(uj) < M for some positive constant M independent of
j. Then the sequence (uj) converges, up to a subsequence, in L'() to a function u € BV ().

Theorem 3.7. Let (¢;) be a positive infinitesimal sequence and let g € L™(). For every u €
LY(Q) and j € N let
Z(w) = 7o () + [ Ju=glde, T =Fw + [ fu-gldo,
Q Q

For every j let uj € L*(Q) be such that

Zj(uy) < of Ij+ej.

i
LY(Q)
Then the sequence (uj) converges, up to a subsequence, to a minimizer of I in LY(Q).

Proof. Since g € L*(f) and since F., decreases by truncation, we can assume that (u;) is
equibounded in L*°(Q); for instance ||u;||lcc < ||g]loo- Applying Theorem 3.6 there exists u €

BV () such that (up to a subsequence) u; — u in L'(£2). By Theorem 2.3, since (Z;) I'-converges
to Z (see Th. 3.4 and Remark 2.4), u is a minimum point of Z on L(Q). O
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4. COMPACTNESS

In this section we prove Theorem 3.6. Let us first recall a useful technical Lemma which can be
found in [10], Prop. 4.1. Actually such a Proposition has been proved for |[Vu|?, but, up to simple
modifications, the same proof works for |Vul.

For every A € A(f) and o > 0 we set

A, ={x € A: d(z,0A) > 0o}.
Lemma 4.1. Let g: [0,400) — [0,400) be a non-decreasing continuous function such that

lim 9(*) =

t—0

for some ¢ > 0. Let A € A(Q) with A CC Q, and let u € WHH(Q) N L>®(2). For any § > 0 and
for any € > 0 sufficiently small, there exists a function v € SBV(A) N L>(A) such that

1
(1—6)/ [Vo|dz < /g(a][ |Vu|dy) dz,
A €Ja B.(z)

/
H" (S, N Age) < c—/ g(a ][ |Vu|dy> dz,
€ Ja B.(z)

[l Loe(ay < llullLes(a)

o=l a0 < ¢l [ g(s f |Vu|dy) da,
A B.(x)

where ¢’ is a constant depending only on n,d and g.

Proof of Theorem 3.6. Let A € A(Q2) with A CC Q and 0A smooth. Let r > 0 such that B, C C,
and let m = infp_p > 0. Then for any z € A we have B, (z) C C;,(x) and thus for j sufficiently

large,
m
Vil sp@ = [ Vule,a-na> 5[ gl

i () J JBre; ()

p— ]{3 IV ()] dy

Te

for any € A. Fix 6 > 0. By A2 there exist t5 > 0 and js such that f. () > (1 —d)e;p(t/c;)
for any ¢t € [0,t5] and j > js. Let o, 8 € R, with « > 0 and 8 < 0, be such that ¢(t) > at +
everywhere. Then, since f;; is non-decreasing, we have f. (t) > ggj (t) for any t > 0, being

sy f (= 0attep itic(on)
9\ T (1= 8)ats +¢;8 ift>ts.

Therefore, letting hs(t) = ggj (t) — €3, we have

1
P A) 2 = [ BV 4, do + 614
(4.1) )

1
> — | hs (mr"wnej ][ [Vl dy> dx + BlA].
€iJa Bre; (z
Let n; = re; and g5,m (1) = %g(; (mr™~lw,t). Notice that, by construction,
t
lim gé,m,r( )
t—0 t

exists and is finite. Then inequality (4.1) becomes

1
.7'-5_;‘ (Uja A) - ﬂ‘A| > */ 9s,r.m (nj ][ |Vuj| dy) dz.
nj Ja B

n; (T
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Applying Lemma 4.1 we find a sequence (v;) in SBV(A) and a constant C' independent of A such
that ||vj||pyv(a)y < C and [|vj] e (ay < C. Moreover,

(4.2) lvj = ujllLrcay — 0.

Hence, by Theorem 2.1, the sequence (v;) converges, up to a subsequence not relabeled, to some
u € BV(A), with |lul|gy(a) < C. By (4.2) also u; converges to u in L'(A). The arbitrariness
of A and a diagonal argument allow to find a subsequence (u;, ) which converges in L () to a

function v € BVjoc(€2), and the uniform bound of ||u;|| () implies the convergence is strong in
LY(Q). O

5. THE I'-LIMINF INEQUALITY

In this section we will prove that for any u € L'(£2) the inequality
F(u) < limlnf Fe, (uy)
j—+oo

holds for any u; — w in L'(Q2). First we will investigate two particular situations.

5.1. A preliminary estimate from below in terms of the volume and Cantor parts. In
this paragraph we will take into account a simpler family of functionals. Let o, > 0 and let
g: [0, +00) — [0,+00) given by g(t) = at A B. Let G-: L*(2) x A(R2) — [0, +00] be defined by

1

f/ g(e|Vul * po)dz  if we WH(Q)
gs (u7 A) = £Ja

+00 otherwise in L!(2).

We wish to estimate from below the lower I'-limit G'(-, A) in terms of the volume and the Cantor

parts of Du. To this sake, we apply a slicing procedure, so that at first we will establish a suitable

one-dimensional inequality. The idea of the proof is the same as in [25], where the superlinear

growth case is treated.

Let m € N odd, let A be an open interval in R, and let (g;) be a positive infinitesimal sequence.
Let A; ={xz €¢;Z:x € A}. For any j € N and for any « € A; we define the interval

me; me;
IJ(.Z') = [{L‘— TJ“’L""TJ} .

Lemma 5.1. Let o/, > 0 and let hj: [0,400) — [0,+00) given by h;(t) = o't A f—; Let
u € BV (A) and let uj — u in L*(A) with u; € WH1(A) for any j € N. Then

TEA; I;

Proof. For any j € Nandi=0,...,m—1 let A; = (ie; +me;Z) N A. Obviously A; is the disjoint
union of A for i € {0,...,m —1}. Then

m—1
1
E h; ][ o dy> > — E E mh<][ u; dy).
]( o m N\ T ™!

TEA, i=0 zeAl

_ ) /
Al =qze Al ][ ] da < ?
1 () aEj

and let v; € SBV(A) given by

Now let

uj(@) frel,ar i)
v;(z) =
0 otherwise in A.
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Z. msjhj< ]{‘(m) |u}|dy> > Z mejhj< ]{.( |u’|dy) =a Z/ |u/|dy

ze Al J z€A] ’ TEA]

= o// |vj| dy.
A

Observe that since we can suppose, without loss of generality, that

e > h <][ |u;.|dy> <M

TEA;

for some M > 0, we deduce that

M>e Y hj( ]{m) ) |dy> s (A \ U A%)

’EEA \Um lAl

from which necessarily we have
m—1
sjjj(Aj\ U A;) — 0, asj— +oo.
i=0

This implies that |[u; — v;||f1(4) — 0 as j — +oo. Therefore, v; — u in L'(A). Finally, by the
superadditivity of the lim inf and by the lower semicontinuity of the total variation, we get

1 m
liminfe h; uhdy | > — lim inf E mejh; ][ u)|d )
j——+oo ‘]Z (f()|J| y)_m;jgwkoo 71‘ J J( [(3;)|J‘ Y

z€A; Ij(x 7
>a hmmf/ \vj|dy>a|DU\( )

> o [ ldy+ Deul ()
A
which ends the proof. O

Now, by applying the slicing Theorem 2.2, we will reduce the n-dimensional inequality to the
one-dimensional inequality 5.1. Fix £ € S"~! and 6 € (0,1); consider an orthonormal basis {e;}
with e,, = &. Let

Q5 ={oer el < 5imtom} Qi) =+f

and the lattice Z§ ={z € R": (v,e;) € 0Z,% = 1,...,n}. In what follows we will denote by
g;(t) = 2g(e;t); in particular it holds g;(¢) = at A £ and

Ge,(u, A) = / 9;(|Vu| % ps,) dz, uwe W (Q).
A
Finally fix A € A(Q) and let A5 = {z € Z§ : Qg(x) C A}. The following Lemma is a standard
easy application of the mean value Theorem (see also Lemma 4.2 in [10]).
Lemma 5.2. Let u € W51(Q). Then there exists T € Q5 such that
Ge, (u, A) = Y 6"g;(|Vul  pe, (z + 7).
.’IJEAE
Proof. We have
2 Y [Ty = [ 3 0090l o+ dy

3
z€AS (1: s zeAS
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Applying the mean value Theorem we get
2 91Vl pe, (y+2)) dy = Y g;(|Vul  pe, (7 + 2))
S zeAf TEAS
for some T € Qg, which concludes the proof. O

We are in position to apply the slicing procedure.

Proposition 5.3. Let u € BV () and A € A(Q2). Then
G'(u, A) > oz/ |[Vuldz and G'(u,A) > a|Dul(A).
A

Proof. Fix § € S*~'. For any 1 > 0 let P§ be the union of the squares Q% (y;) C C with y; € Z5 for
i =1,...,m, for some m € N depending on n and £. Let p, be a non-negative constant function
on the squares Qf; (yi) with 0 < p,, < p and such that

cn:/pndzﬂl, asn — 0.
C

Let ¢; = py(y;); then we can rewrite ¢, as ¢, = > .-, ¢;n™. Let Pgej be the union of the squares
anJ (yi) € C¢,, with y; € Z,]E ,fori=1,...,m. Let AE A%E ; applying Lemma 5.2, since we
can suppose, without loss of generality, that u; € Wl’l(Q), there exists 7; € Q%q such that

Ge, (uj, A) = Y (ng)"g;(|Vuy| * pe, ( + 7).
a:EAE

Let B CC A, and, for any j sufficiently large, let v;(y) = u;(y 4+ 7;). Then we get v; € W' (B)
and v; — u in L*(B). Thus

gEj (uj7A) > Z (7753)n9(|vvj| *psj (1‘))

3
a:ij

being Bf- ={z e Zsej : Q%Ej C B}. Now, for each z € Bf-, we estimate the term [V * p., ();
we have, for j large enough,

\wmpgj(x):/c \ij<y+x>|pg<>dy>—/ Vo5 + )pn(J)dy

C;
—Z/ \w]y+x|dy—z ”]{2 alVe )] dy

J i=1 Qns yL

\ V

Si m ein” =1 d si i ve W fi \Y% B5
mce . anda since 1s concave we get, for every x € .
i=1 J ) Iz

m Cﬂ’]n
501500 2 3 gy (e
i=1 1

nej (yt)

Voy(y+ o)l dy ).
Thus, reordering the terms, we deduce that
Ge, (uj, A) > Z (me;)"g; (077 ][ | V] dz>
z€DS Qgsj ()
J

for any D CC B and j sufficiently large, being, as usual, D§ ={z € ZSE : Q%Ej C D}. For
convenience we can suppose Vv; = 0 on

R" \ U QW&J

Q5e,CD



14 L. LUSSARDI AND A. MAGNI

Let () be the one-dimensional space generated by £. Let us denote by ZS;!J. and by Z%gj the
orthogonal projections of Z,%Ej respectively on (¢) and ¢+. Then

Ge,(uj, A) = > (ng;)"g; (Cn ][ |VUj|dZ)
-TEZS,sj '16 (I)
> Y Y )"y <Cn ][E |VUj|dZ)
SH ne; (wLJ"zH)

TJ_EZUE || €Zne

where = x| + 2 turns out to be the unique decomposition of any x € Z,%Ej with x| € ngj and
T, € Z,%j. Moreover, denoting by Qf,l ; and by Q%j the projections of Q%EJ_ respectively on (£)
and on &1, applying Jensen’s inequality we deduce that

Ge, (uj, A Z Z (ne;)" ( ]ifi( : ]if ( )|(ij(zL+zH),£>|dzH dzl>
ne; \(TL ne; (|

‘:EJ_EZUE x| EZéH

Z Z (ne;)" ]{2“( )gj <C’7 f&“ o )vaj(zl +z|),§>|dz|) dzy
ne; (T |

3
‘:EJ_EZT[E x| EZ H

> Z /EL Z nﬁjgj(cn][

[(Vvj(z1 + Z||),f>| d2|> dzy

zJ_Eanj Qnsj( +) Her,g (“)
/ Z nE;g; <c,, ][ |<ij(zl+z|),£>dz”) dz, .
Iuezﬂ e

For any 0 > 0 small let D, = {x € D : d(2,0D) > o} and D+ ={r € D, : v =z, + 2§, 7| €
R}, for x; € &+ For j sufficiently large, vj(z, + ) € WH1(DZ+). Furthermore, v; — u in
LY(D2+) for a.e.z; € &-. Let h;(t) = gj(cyt); then, by the very definition of g, it is easy to see
that h;(t) = acyt A g We are in position to apply Lemma 5.1 with choice &' = ac, and ' = .
Thus

(Vo (21 + 2)), &) dZ|>

lim inf €igil| e
imint Y w0, (e f

| '1! ()

IHGZns'
= lim inf Z ne;h; <]{2( )|<V’Uj(ZJ_+Z“),f>|dZ|>
ne; (|

j—+oo
’E”GZ,,E

> acy [ 1(Tu(es +2).0)d2 + o[ (Dou(zs +.9I(D5).

o

Taking into account Theorem 2.2 and Fatou’s Lemma we conclude that

hmmfgg (uj, A) > cnoz/ [(Vu(z), &) dz + cyal (D u, £)(Dy).

1= D,

Since ¢, —» 1asn —0,let 0 — 0and D / A. Then
(5.2) G'(u, A) > a/ [(Vu(z),€)|dz and  G'(u, A) > a|(Du, &)|(A)
A

for any £ € S*~!. From the first inequality, using the superadditivity of G’ and Lemma 2.5 we
easily deduce that

G'(u, A) > a/ |Vu|dz.
A
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Now if ¢¢ = <j|g723|, §> the second inequality in (5.2) can be rewritten as

G'(u.4) = a [ ueldlDeul.
A
Another application of Lemma 2.5 yields
G'(u, A) > a/ sup || d|DCu| > a/ | sup we| D] = ] Dul(A).
Agesn—1 A gesn
This concludes the proof. O

5.2. A preliminary estimate in terms of the surface part. In this section we will consider
the family of functionals L*(2) x A(2) — [0, +-o0] given by

1/ h(e|Vu| * p.) dz if ue WhH(Q)
Eelu,A) =4 €74

+o0 otherwise in L1(£2)

where h: [0, +00) — [0,400) is a non-decreasing concave function with ~2(0) = 0 and with

lim = h{t) =cd >0.
t—0 t

The aim of this section is to estimate from below the lower I'-limit of £ in terms of a surface
integral; to do this the main idea, as in [22], is to estimate from below the Radon-Nikodym
derivative of the lower I'-limit £ with respect to the Hausdorff measure H"~! by means of a blow-
up argument around a jump point; then the result follows applying Besicovitch’s Differentiation
Theorem in a standard way.

Given 7o € R", v € S"~! and a,b € R, when considering &’ for the blow up u;f’b = u®(-—x0)
(see paragraph 3.1 for the definition of u%") on a unit ball B; as below (or on a cylinder @, as
in the sequel), we will assume as Q any set ' strictly containing B; (or @, ): the lower I'-limit of
E:(+, A) does not change by replacing Q with any ' D> A.

For every A € A(f2) let £ (-, A) be the inner regular envelope of &', i.e.

E (- A) =sup{€'(-.B) : B€ A(Q),B cC A}.
Proposition 5.4. Let u € BV (Q) and let o € J,. Then
£ (u, Bo(@))

gnfl

hl;njgf > g’(ugg(ro)vu+($o)»“7(ﬁo)’ Bi(x0)).

Proof. Let 6 € (0,1). Then &’ (u, By(z0)) > &' (u, Bs,(x0)) for every o > 0. Thus
& (u

, B "(u, By
(5.3) lim inf (7EW > 6" liminf LI(IO)) )
0—0 an r—0 rn—

Let us now estimate the lower limit in the right-hand side. Without loss of generality we can assume

S
xo = 0; moreover, for the sake of simplicity, we will denote by ug the function ug“(o)’u (©)u™(0),

Let (r)) be a decreasing infinitesimal sequence; for every k € N there exists u; € W1(Q2) such
that u; — u in L'(Q) and

ljminf &, (uj, Br,) < &'(u,By,) +
J—T00

Let j = j(k) be such that 5/r; < 1/k and
n—1

6y 05, Bry) < €0, By + T

i

llu; —ullL1() < % and such that

/ |u;(rkx) —u(rpz)|de < %

2
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Let vp = u(y). We can suppose that the sequence j(k) is increasing, and we set o = €(1). Hence,
v — u in LY(Q),

n—1
(54) ga'k (Ukv Brk) S 5/(U, B"‘k) + i
and
(5.5) / |vg (rex) — u(ree)| de < 1 .
Bs k

Inequality (5.4) gives

.. & uB .. &y (v, B
lim inf % > liminf M
k—-4o00 T k——4o00 TZ

while from (5.5) we get
1
/ lvg (rez) — up(rrz)|de < — —|—/ |v(rgz) — uo(rgx)| dz — 0
B2 k B2

as k — +o0. Let wy(t) = vg(rkt). Then wy, — ug in L*(Bs); moreover, for every z € B,, we have,
setting y = rit and observing that |[Vwy(t)| = | Vg (rit)],

1 —x
Vol <pn@) = [ IVutlon -0y = = [ VUAyMp(y)dy
Coy () Ok JCop (x) Ok

n—1

r t x
=T / |Vwk(t)p( ; —) dt.
k JCopyry (®/Tk) Ok/Tk Ok

Therefore, setting x = ryz, we obtain

&y, (v, By 1
k(ffl s) = a1 / h(ok| Vo] * poy, (2)) dz
(X T, Ok By,

1 n—1 t
Z‘Wz‘z/p h(%;l/" |Vwﬁﬂw< —ér)d0<m
Ty Ok JBn, \Og Cop/rp (@/Tk) Ok/Tk Ok

1 r t—
77/ h<““’;/ |Vwk(t)p< Z>dt) dz
or/rk JB, \Tk O} Coprr (2) o)k

1 O
h| —|Vwi| * psy /r (2) | dz.
e [ (e )

Since o /r, — 0, and wy, — ug in L'(Ba), by the arbitrariness of (ry) and the definition of &', we
conclude combining (5.3) with the arbitrariness of § € (0,1). O

Now we estimate from below &'(u%™?, By(xzg)). Without loss of generality, we can assume
2o = 0 and v = e1; we will denote, for the sake of simplicity, by u®® the function ugl’“’b. In order
to estimate from below &’(u®?, By) first we need to consider the problem on a suitable cylinder.

Recall that (see paragraph 3.1) Qe, = {z € R" : |21 < 1, Pi-(z) € By Net}, being Pz (x) the
orthogonal projection of = onto the subspace ei; for simplicity of notation we will use @ instead

of Qe, -

Lemma 5.5. For any A open subset of Q) there exist a positive infinitesimal sequence (g;) and a
sequence uj in WH1(Q) converging to u®® in LY(QY') such that

(5.6) lim &, (uj, A) = &' (u™", A)

j—too
and such that
(5.7) uj(z) =a, ifx1 <—a; and uj(x)=0>b, ifx; >0b;

for some positive infinitesimal sequences (a;) and (b;).
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Proof. We divide the proof in two steps.

Step 1. Fix A € A(Q) with A CC @Q, €,0 > 0 sufficiently small. Let ¢ given by

0 1 < —2—0
p(z) =4¢ affine —2c—0<a; < -2
1 X1 2 —2e.

Obviously we have [V| < L. Let
Ac={z€eR":21 < -2e—kie—o0}, Be={ze€R":x1 > —2c+¢eky}
Ss:{zGR” 126 —ck1—o<x < 7284’8]{}2}
where k1 = sup,co(z,e1) and ko = —infyec(z,e1). Let ur,us € WHH(Q') and v = pui+(1—p)us.
Then
1 1 1
E(v,A) = 7/ h(e|Vuz| * pe) dz + f/ h(e|Vui| % pc) dz + f/ h(e|Vu| % pe) d.
€ JANA. € JANB. € JAan

€

Taking into account the subadditivity of h we get

1 1 1
D[ nevelpyde< S [ hEelVuep)do s D [ b - ) Tual) < pe) do
€ JAns. € JAnS. € JAns.

1
i1 / h(e(Veollur — ual) * pe) da.
€ JAns.

Then

C/

E.(v, A) < Ex(ur, AN (B. US.)) + Ex(up, AN (A USL)) + ;/ lur — ua| % pe da
ANS.
where we have used h(t) < ¢/t for each t > 0.

Step 2. Now let (g;) be a positive infinitesimal sequence and let (v;) be a sequence in W1 (Q')
such that v; — u®® in L1(Q') and

lim EEJ_ (Uj, A) = g/(ua,b7A).

j—+o0
Choosing u; = v; and ug = a we have, since &, (uz, A) =0,

c/

Ee, (pvj + (1 = luz, A) < &, (v5, A) + —/ |vj — ua| * pe, d.
0 J{z,<0}
By standard properties of the convolution,
[ = walpe, do <oy = el garcon — 0
{z1<0}

as j — +oo. Therefore, by a diagonal argument, if o;, — 0 we can find j, — +00 be such that

1
lim — v, — Us| * pe. dx = 0.
h—-+co O, /{x1<0} 030 = 2l * pey,
Thus
limsup &; (pvj, + (1 — @)us, A) < limsup&; (vj,, A) = &' (u?, A).
h——4o00 7 h——4o00
Setting

a 1 < —2¢5, —op,
Ujn, 21 >0

we easily have u;, — u®® in L(Q') and u;, = a for z1 < —a; for a suitable positive infinitesimal
sequence (aj). With the same argument one can prove that uj, = b for 1 > b; for another
suitable positive infinitesimal sequence (b;). Thus (u;, ) is optimal and (5.7) hold. O

Proposition 5.6. We have & (u®®, By) > &' (u®®, Q).
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Proof. Fix § € (0,1). Let (u;) be given by the previous Lemma, applied with A = By. Then
uj(z) = a if 21 < —aj, and u;(x) = b if x1 > b;, where (a;) and (b;) are suitable positive
infinitesimal sequences. Let S; = (—a;,b;) x R" 1. For j sufficiently large, we have 6QNS; CC By,
from which &, (uj7 QN Bl) =&, (uj, (5@). Then

(58) gfj(uj7B1) Z g&‘j(uj)BlméQ) :5€j(ujv6Q)'
Let vj(x) = uj(dx). Then by a simple scaling argument we have & (u;,6Q) = 0" &, /5(vj, Q).
Passing to the limit in (5.8) we get

E'(u™ By) > 6" Mliminf &, /5(v;, Q) = 6" 1E (u?, Q).

j—+oo
We conclude by taking the limit as § — 17 . O

Now, by an application of the Besicovitch’s Differentiation Theorem, we are able to prove the
correct estimate from below for the lower I'-limit of & . In order to apply such a Theorem, let
us consider the set function &£’ (u,-). It is well known that an increasing set function a: A(Q) —
[0, 4+00] which satisfies «(f)) = 0, which is subadditive, superadditive and inner regular, can be
extended to a Borel measure on  (for instance see [18], Th. 14.23). This result can be applied to
&’ (u,-), the subadditivity of £ (u,-) being the only condition which is not easy to prove, but it
can be recovered as in the proof of Prop. 4.3 and Th.4.6 of [13]; these results are established in
the case p > 1, but the same arguments work if p = 1.

Denote by p,, the Borel measure on 2 which extends &’ (u,-).

Lemma 5.7. Let uw € BV (Q2). Then p., is a finite measure.

Proof. Let (up,) be a sequence in L!(Q) converging weakly* converging to u in BV (Q). By defini-
tion

Dy | * o) = / pe(z — y) d|Dus|(y).
Ce(z)NQ

Since Duj, = Du as measures, by Fatou’s Lemma and taking into account that f is non-decreasing

and continuous, we get

(5.9) liminf1 h(e|Dup| * pe) dz > 1/ h(eliminf |Dup| * p. ) dz > 1/ h(e|Du| * p.) dz.
h—+oo € Jq € Ja h—+o0 € Ja

Now let u € BV(2) and let (uy) be a sequence in L(Q) strictly converging to u. In particular,

|Dup| — |Du| weakly* as measures (see, for instance, Prop.3.15 in [3]). Note that that D°u

vanishes on the sets with finite "~ ! measure. Moreover, if S is o-finite with respect to H" 1,

then {x € Q: H* (SN AC.(z)) > 0} is at most countable. Then (see, for instance, Prop. 1.62 in

[3]), we have

hrf |Dup| * p-(x) = |Du| % pc(z), a.e.x €.

— 100

h
Applying the Dominated Convergence Theorem, we obtain
1 1
(5.10) lim 7/ h (e|Dup| * pe) dz = 7/ h (e|Dul * pe) dzx.
h—4o00 € QO € Jo

Combining (5.9) with (5.10) and taking into account that £’ is lower semicontinuous, we have

1
& (u) < limsup g/ h (e|Dul * p.) dz.
Q

e—0

Notice that there exists v > 0 such that |Ce(z) N Q| < ~e™ for any © € Q. Denoting by
M = sup. p and taking into Fubini’s Theorem, we get that for sufficiently small €,

/ h (e|Du| % pe) da < c’/ / pe(y — x)d|Du|(y) dz = c’/ / pe(y — 2)X¢, (z) dz d|Dul(y)
Q aJo(z)ne aJo

- Q)
<eur [ [0 apu) < darrpul(@)
QJQ

and this yields the conclusion. O
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Proposition 5.8. Let uw € BV () and A € A(QY). Then

€'(u, A) > / Bt —u |, ve) AR,

S.NA
where

1 1

Y(s,v) = inf {liminf/ h(gj|Vu;| % pe;) da = (uj) € W*, g5 — 0+} .
Wn—1 J—to &5 g,

Proof. For every k € Nlet S, = {x € S, : |ut(z) —u~(x)| > 1/k}. Clearly we have H"~1(S},) <

+o00; let A, = H™ ! L Sk. Applying the Besicovitch’s Differentiation Theorem we deduce that

the limit
(B
0—0 Ag(Bo())
exists and is finite for A\g-a.e. © € 2, and is Ag-measurable. Moreover, the Radon-Nikodym
decomposition of p,, is given by p, = gA\x+p®, with u® L . By rectifiability for H*~!-a.e. x € Sy,
we get
Ax(B

lim (Be(2)) @(x)l) —1.

0=0 Wp_10"7
Thus, for H" -a.e. zg € S, we have, applying Proposition 5.4, Proposition 5.6 and taking into
account (5.7),

e Hu(Bo(wo)) €L (u, By(xo))
9(wo) = Ty =" oot = liminf ="
. | . ut (z0),u” (o) +
2 {ljlgllgj P /IMQV h(e;|Vu;| * pe;) da : (u;(- — 20)) €W, g5 =07 0

Taking into account (3.8) and (3.9) (which obviously hold for h instead of f) we get
. | ut (z9),u™ (z0) +
inf < lim inf — h(ej |Vuj|* pe,)de : (ui(- —x0)) € W, @) ,ej—0 }
i=t00 €5 Jag+Q, e
= Y(lu’ (z0) — u” (z0)], vu(@0))-
Since p® is non-negative, we deduce that

£ (u, A) Z/Az/J(|u+—u_|,1/u)d)\k:/S Wt — |, ) dH,

kNA

By considering the supremum for &k € N we easily obtain

€ (u,A) > / Pt — u |, v) R

SuNA

and the conclusion follows by definition of £’ . O

5.3. Proof of the I'-liminf inequality. We are ready to prove the I'-liminf inequality for the
family (F)eso. The main step of the proof consists in combining Proposition 5.3 with Proposition
5.8 and then using a supremum of measures argument.

Lemma 5.9. Let p be as in Lemma 2.5. Let A1, A2 be mutually singular Borel measures, and
1,9 positive Borel functions. Assume that

pa) = [ i,
A
for every A € A(Q) and i =1,2. Then it holds
p = [ wians [ v
A A
for every A € A(QY).
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Proof. Let E C Q be such that A;(Q2\ E) = 0 and A2(E) = 0. Then we can suppose that ); =0
on Q\ F and ¢ = 0 on E. Then max{tr, w2} = 11 + 1)2. We conclude by applying the Lemma
2.5 with the choice A = \; + \s. O

Proposition 5.10. Let u € L'(Q2) and A € A(Q). Then

F'(u, A) > / (|Vu|) dz —l—/ O(lut — u™|,v) dH™ ! + co| Dul(A).
A SunA
Proof. First notice that we can suppose v € GBV(Q2). Indeed, if (F¢,(u;)) is bounded and u; — u
in L1(Q) then u € GBV(Q): it suffices to apply Theorem 3.6 to ujT = —TVu; AT, hence we get
uT € BV(Q) which means u € GBV ().
Now the key point of the proof is the construction of a suitable family of functions below f. .

Step 1. Let 6 € (0,1). We claim that there exists t; > 0 and for any h € N and for any
e > 0 there exist ¢) >0, d < 0 and gJ: [ts, +o0) — R such that if we let

At +ed) if t € [0, 4]
) =

Ats +ed) +gh(t) ift>ts
we have:
(5.11) s%p(cit +d3) = (1—-106)¢(t), Vt>D0.
(5.12) fo(t) > f2o(t), vt > 0, Vh € N, for ¢ sufficiently small.

. *° is continuous, non-decreasing and concave for any € > 0 and any h € N.

(5.13) fho i i d ing and for any € > 0 and any h € N
(5.14) 18 _ ed) converges to (1 — &) f uniformly on compact sets of [0, +00) as h — 4oo.

First of all we point out that

(5.15) lim @ = co.

Indeed, by A2 for any o € (0,1) there exist ¢,,&, > 0 such that f.(¢) < (1 + o)ep(t/e) for each
t €]0,t,] and for each € € (0,&,]. Since ¢(s) < cgs for any s > 0, we have f.(t)/t < (1+0)co. By
A3 the previous inequality reduces to f(t)/t < (14 0)cg. On the other hand there exist t/,e/ >0
such that f.(t) > (1 — 0)edp(t/e) for each t € [0,¢,] and for each € € (0,¢]]. Since ¢(s) > cos — g,
for a suitable ¢ > 0, we have f.(t)/t > (1 — 0)(cot — eq). We thus get f(¢)/t > (1 — o)cy. By the
arbitrariness of o > 0 we have (5.15).

Formula (5.15) is useful in order to construct the family (f°) as follows. By A2 there exists
ts > 0 such that f.(t) > (1 — §)ep(t/e) for each t € [0,ts] and for each e sufficiently small. Fix
h € N with h > 0 and let (¢,)nen be a family of affine functions such that supy, €5 (t) = ¢(¢) for
any t > 0 (recall that ¢ is convex); we let £5,(t) = cpt +dp,. Let ¢ = (1 —8)ep, and d§ = (1 — 8)dp,.
Then (5.11) holds and we obtain f.(t) > it + edg for all t € [0,t5]. Now it is easy to conclude
the construction of f% in such a way (5.12), (5.13) and (5.14) hold: for instance connecting the
graphic of the affine piece with a suitable rotation and truncation of the graph of f (see also (5.15)).

Step 2. Let § € (0,1) and let (f;‘J‘S) be the family constructed in step 1. Let 1) = fghj"S —g;dy.
Then we get

1
(5.16) Fe;(u, A) > ;/A@b;i (g1 Vul * pe, (z)) dz + dj)| A
J

for any u € WH1(Q) and A € A(Q). Let A’, A” be open disjoint subsets of A such that |A”| < 6,
S, C A”. Therefore,

1

1
(6.17) Fe,(u,A) > Z/A ¥ (251 Vul * pe, (2)) da:—&-;/ V) (e51Vul * pe, (2)) do+dy |A'|+6dS.
,] ’ J "
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In particular we get
1
FowA) 2 = [ 0f (190l pey (0) o+ a4
JJA

Notice that ¢ is linear in [0,¢5]. Applying Proposition 5.3 with the choice g = ¥% A 99 (ts) we
obtain

F'(u, A) > ci/ V| dz + ¢ | Du|(A) 4 d3|A'] = (1 — 5)/ On(IVul)dz + (1 = 8)cp | DCul(A”).
Y Y

Since F'(u,-) is a superadditive function on open sets of Q with disjoint compact closures, by
applying Lemma 2.5 and (5.11) we get, by the arbitrariness of A" and §,

(5.18) F(u, A) > / (Il )dz + co| Du|(A).
A
Now (5.17) implies also

1
oyl A) 2 = /A U (&5IVul 5 e, (0)) da

J

Applying now Proposition 5.8 with the choice h = wg we deduce that

Flu, A) > /S O ) a
‘U.m 1"

being

Oh(s,v) =

1
inf{liminf/ V2 (5] V] #pe;)da: (u;) € WP, g5 — 0*} .
Qu

Wn—1 J—=+oo £

Using (5.14) and the arbitrariness of 4, it follows that ) — 6 as h — 400 and § — 0. Applying
once more Lemma 2.5, by the arbitrariness of A”, we have

(5.19) ]-"’(u,A)z/ O(ju™ —u™|,v,) dH™ L.
SuNA

Applying Lemma 5.9 choosing Ay = £", Ao = H"" L J,, A3 = |D/| and taking into account
(5.18) and (5.19), we immediately obtain F’'(u) > F(u) for any u € BV ().

Let us now consider the case u € GBV(Q). Let (u;) be a sequence in W11(Q) converging to u
in L'(Q) and such that

lim faj (u]) = f’(u)

j—+o0

Define ujT =(-T)Vu; AT, and u? = (=T) Vu A T. Since ujT — uT in LY(Q), and uT € BV (Q),
we have
F'(u) = ljm_gnffgj (uj) > ljm_gnffgj (u]) = F(u").
J—T o0 J—+o0

Applying (2.2), (2.3) and (2.4) and taking into account the continuity of § we obtain
Jim (/ S(u et [ BT = W) L) A +co|DCuT|(Q)> — Flu)
— 100 [9) S“,T
so we are done. ]

6. THE I'-LIMSUP INEQUALITY

In this section we will prove that F”(u) < F(u) for any u € L'(Q); since, by definition,
F(u) = +oo for any u € L1 () \ GBV(Q), it is sufficient to consider the case u € GBV ().

Lemma 6.1. Let (c;) be a positive infinitesimal sequence, v € S"™' and s > 0. Let (u;) € W*
be such that

. 1
wn-10(s,v) = jEI—&I-loo =
J

/Q £V % pe,) da.
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Then for any r > 0 there exists a positive infinitesimal sequence o; and (v;) € W9 such that for
any o > 0 it holds

1
wn,ﬁ"*l@(sﬂf) :jlifll P f(05|Vv;] * po;) da,

where Q7 ={x € Q, : [(z,v)| < o}.

Proof. Let 0; = re; and vj(z) = u;(rz). Then by the change of variables z = rz and y = rt we
get

1 r’ o
— f(o'j|vvj|*paj)d:r:7 f(j/
Qv C

95 JrQ. ; T SO

n—1
s ey LE I )

Passing to the limit as j — +o00 we get

|V (rz —rt)|ps, /r(t) dt> dz

1
lim — (V0| % o) da = " 10(s, v).
Jim | F@l el e, de =00, 0)

Since the transition set of the optimal sequence (u;) shrinks onto the interface (see (5.7) or the
definition of W2*) we deduce that

1 1
li — V| % po.)de = i — Vs * ps.)d
LN 1ol Vsl po; ) do = lim == o F(oj|Vuj| * po;) da
for any o > 0, hence we conclude. O

Proposition 6.2. For any u € W(Q) it holds F"(u) < F(u).

Proof. By the very definition of W(f2) (see paragraph 2.5) the set S, is contained in the union
of a finite collection Kjy,...,K,, of (n — 1)-dimensional simplexes; it will not be restrictive to
assume m = land K = K; C{z e R": 21 =0}. Fix he N, h > 1. Let Q, = {2z € Q\ K :
d(z,K) > 1/h}. Let S be the relative boundary of K; obviously it holds H"~1(S) = 0. Let
Kp={rx€ K :d(z,S)>1/h}. Let ke N, k> 1, x1,...,2; € K and r > 0 be such that B, (x;)
are pairwise disjoint, By (z;) N {z1 =0} C K}, forany i = 1,...,k and

(6.1) Hr! (Kh \ (0 By(w:) N {21 = 0})> < %

i=1

Let Qn = {2 € rQe, : |z1] < 1/h} and Qn(z) = = + Qp for any & € R™. Moreover, let
QF =QunN{z1 >0} and Q;, = Q; N {z1 < 0}. At this point we divide the proof in two steps.

Step 1. Take a function v € W(Q) with S, C K and such that v is constant in any x; + QZ
and in any x; + @}, . Denote by v;" the value of v in ; + QZ and by v; the value of v in z; + @}, .
We claim that

k
(6.2) F'(v) < / o(|Vu])dz + Z o(|vi — v;|,e1)dH”71 + ¢|Dv|(£2},),
Q i=1 KﬂBT(wi)
for some ¢ > 0, where
k
=0\ (Qhu U(wi—l—Qh)).
i=1

Let (¢;) be a positive infinitesimal sequence and let § € (0,1). Accordingly to Lemma 6.1, let
us define v; € W(Q) be such that we have

(6.3) lim Fo, (vj,z +6Qn) = ((57")"_19(|v;r — vy |,e1),

j——+oo
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where 0; = re;. Otherwise in Q0 we set v; = v. Then, using the same argument as in the proof of
Lemma 5.7, we deduce that

k
1
(T /Q Fo (031905 5 poy ) o < Fo (0, 2) + 3 Fo (01 + 8Q0) + | Dol (),

i=1
being
k
;%,6 =Q\ (Qh U LJ(%‘Z + 5Qh))

i=1
The first term on the right-hand side of (6.4) is given by

1
—/ fo,; (05|Vv| % ps,) da.
95 Jay,

By standard properties of the convolution we have [Vo|xp,, — [Vu| in L'(Q2) and a.e.in Q. From
A2 we deduce that

lim L (ete)

(6.5) lim 25

= ¢(t)

whenever t. — t, for each ¢ > 0. By the Dominated Convergence Theorem we get

1
tim [ (ool g )de = [ o(Vede < [ 6(19e]
Jmree 05 Ja, ' Q Q
Passing to the limsup in (6.4), using (6.3) and using the arbitrariness of § € (0,1) we get (6.2).

Step 2. For any 1 = 1,...,k let
uj = ][ utdH u; = ][ u” dH !
B, (z;)NK B, (z;,)NK

+ ), —
ui(z) = { i if (@)1 =21 >0 x € By(x;).

and

u, lf (Z'i)lfl'l SO ’

K3
For any h € N, h > 1, let up, = u; on Qp(z;) and up = u otherwise in . Applying step 1 with
the choice v = uy, we get

k
F"(up) < / o(|Vul) dz + Z/ O(Juf —w; |, e1) dH™ ™ + c| Du|(),).
(9] i=1 KﬁBr(a:i)

Now |Q}| — 0. Furthermore, taking into account (6.1) we deduce that H"~!(S, N Q}) — 0 as
h,k — +o00. Hence |Du|(Q2},) — 0 as h,k — +oc0. Exploiting the uniform continuity of the traces
of u and the continuity of 6, we also get

k

S aur —urlen @t M [ gt — e are

= JKnB,.(2:) u
and the lower semicontinuity of F” yields the conclusion. O
Proposition 6.3. Let w € GBV(Q). Then it holds F"(u) < F(u).
Proof. First let u € SBV2(Q) N L>(). We can apply Theorem 2.6, choosing

Y(a,b,v) =0(la — b|,v)

(see (3.6) and (3.7)). Then there exists a sequence w; — u in L'(£2), with w; € W({2), such that
Vw; — Vu strongly in L?(£2, R") and

3 + - n—1 + — n—1
(6.6) I;Iililg/s O(lwj” —w; |, v, ) dH S/s O(Ju™ —u™ |, v) dH™ .
w; u
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By the lower semicontinuity of 7" and by Proposition 6.2 we deduce that, applying the Dominated
Convergence Theorem and (6.6),

F"(u) <liminf F"(w;) < / ¢(|Vu|)dx—|—/ O(|ut —u™|,v,) dH™ 1.
Q Su

j—+o0

Using relaxation Theorem 2.7 we get
F"(u /¢|Vu\ da:+/ O(|u™ —u™|,vy) dH™ 1 4 co| D u|(Q)

for each u € BV(€). Finally, let u € GBV(Q) and, for any T > 0, uT = =TV u AT. Then
u? € BV(Q) for each T > 0 and u?" — w in L}(Q) as T — +oo. Taking into account (2.2), (2.3)
and (2.4) we obtain, exploiting again the lower semicontinuity of 7" and the continuity of 6,

T—+o00

F(u) < lim sup (/Q¢<lvuT|>dw 0N = ) ) e 4 CO|DCUT|(Q)>

:/¢(|Vu\)dx+/ O(lut — u™ |, 1) dH™ ™ + ¢o| Du|(Q)
Q

u

which is what we wanted to prove. U

7. COMPUTATION OF # IN THE ONE-DIMENSIONAL CASE

In this section we are able to give an explicit formula for 6 if n = 1 along the same line of the
discretization argument used in [22].
Let n = 1, then we can set Q = (a,b), C = I to be an open interval around 0, p: I — (0, +0c0)
continuous and bounded with
/ pdt =1.
I

For any € > 0 let p.(t) = 1/ep(t/e) and I.(x) =z + I.
Theorem 7.1. It holds
—+oo
o) = [ Flep(t)

— 00

Proof. In the one-dimensional setting the expression for § given by (3.5) reads

9(3):inf{hm1nf/ flejlui] * pey)dt = (uy) € e W, g —>0+}

j—+oo €

being W% the space of all sequences (u;) in Wli’cl(Q’), (—=1,1) € @, such that u; — sX(g yo0) in
L*(€), and such that there exist two positive infinitesimal sequences (a;), (b;) with u;(t) = 0 if
t < —a; and uj = s if t > b;. Let (uj) € W* and

Moreover, let w; = 0V v; A's. Then (w;) € W% and by the change of variables y = ¢;z and
t =eg;r we get

7/ flejluf ] * pe;) dt>—/ (/ t-H/)P(i))dt
Elj 1f(5]/1 wi(t+e;2)p(z )> dt/11//5;f(ej/Iw;(sjr+gjz)p(z)> dr
-/ // 1( [astr+ ) an
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where @;(t) = w;(g;t). Since (w;) € W* then the previous inequality becomes

1 +oo
;/_lf(sjlu}*pej)dw/_w f(/jw;(wz)p(z)dz) dt.

Denoting by X the space of all functions v € T/Vi)cl (R) which are non-decreasing and such that
there exist &y < & with v(t) = 0if t < tg and v = s if t > ¢, we are led to solve the minimization

problem infx G, being
“+oo
Gv) = / f</ v'(z)p(x —t) dx) dt, velX.
—00 I(t)

By a simple regularization argument it is not restrictive to assume f € C?(0,+o00) and f strictly
concave. For each k € N, with k > 1, we now consider a discrete version GG of G defined on the
space of the functions on R which are constant on each interval of the form

1 141
JF =] — i € Z.
i [k k ) "<

We define X, as the set of the functions v: R — [0, s, such that:

a) v is constant on any JF; denote by v the value of v on JF.
b) vt < v'*! for any i € Z.
c) v' =0if i <ig and v® = s if i > iy for some ig < i;.

Let I* = {i € Z: JF C I}. Finally, let Gj: Xz — R be defined by

G = g S A( S ) k= f e

k
i€Z  helk Iy

Obviously G admit minimizers on X;. We claim that each minimizer of G on X} takes only the
values 0 and s.

Let v be a minimizer of G on Xj. Suppose, by contradiction, that there exists i € Z with
v =c € (0,s). We can assume that for a suitable r € N it holds

i0+1 —

coo=glotT , ,UloJrTJrl > c.

vl <o, c=0 =0

Given t € R sufficiently small, we define vy € X, letting UZOH =c+t,if0<I<r,and v; =v
otherwise. It is easy to see that for some o, B # 0 which do not depend on ¢, we have

Grlw) = 3 3 fak +15h)

ieJ
for some finite set J C Z. The function t — Gj(v;) is twice continuously differentiable in ¢t = 0,
due to the smoothness of f and we have

d2

o = Y ) <0

t=0 i€J

Gk (vt)|
by the strict concavity of f. This contradicts the fact that v is a minimizer for Gy on Xy.

Since G, is invariant under translation, we have already shown that
min G = G(0)
where v = sX (0, .o0). Since
. 1 k
G(0) = T Zf(sl’—i)-
1€Z
by the definition of the Riemann integral as the limit of the Riemann sums, we deduce that

+oo
lim inf min G, > / f(sp(t)) dt.

k—+oo X oo
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Given o > 0 let v, € X be such that infx G > G(v,) — 0. Let w,: R — [0, s] given by

wy (t) = w! = ][ vo(r)ydr, teJr.
Jk

i

Notice that w, € Xj. Let k be sufficiently large such that G(v,) > G(w,) — 0. Hence

+oo
> lim1i 1 — 0o > — 0.
G(vn) 2 lmnintuyinGy — o > [ flsplt)) di o

— 0o

By the arbitrariness of o > 0 we obtain

If we let

“+oo
0(s) > inf @ > / F(sp(t)) dt.
0 if S —&j
S .
u;(t) = e—jt +s ifte(—¢;,0)
s ift>0

for ; — 07, we have (u;) € W% and a straightforward computation shows that

1 “+ o0
tim = [ el <o)t = [ oot

j—too g5 o

and this yields the conclusion. O

Remark 7.2. Observe that when I = (—1,1) and p = %X(—m) we get

0(s) = zf(j).

Hence we recover the case investigated in [21].
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