

Γ-limits of convolution functionals

Luca Lussardi and Annibale Magni

Preprint 2010-11 November 2010

Fakultät für Mathematik Technische Universität Dortmund Vogelpothsweg 87 44227 Dortmund tu-dortmund.de/MathPreprints

Γ-LIMITS OF CONVOLUTION FUNCTIONALS

LUCA LUSSARDI AND ANNIBALE MAGNI

Abstract. We compute the Γ-limit of a sequence of non-local integral functionals depending on a regularization of the gradient term by means of a convolution kernel. In particular, as Γ-limit, we obtain free discontinuity functionals with linear growth and with anisotropic surface energy density.

Keywords: Free discontinuities, Γ-convergence, anisotropy. 2010 Mathematics Subject Classification: 49Q20, 49J45, 49M30.

CONTENTS

1. INTRODUCTION

As it is well known, many variational problems which are recently under consideration, arising for instance from image segmentation, signal reconstruction, fracture mechanics and liquid crystals, involve a free discontinuity set (according to a terminology introduced in [19]). This means that the variable function u is required to be smooth outside a surface K , depending on u, and both u and K enter the structure of the functional, which takes the form given by

$$
\mathcal{F}(u,K) = \int_{\Omega \setminus K} \phi(|\nabla u|) dx + \int_{K \cap \Omega} \theta(|u^+ - u^-|, \nu_K) d\mathcal{H}^{n-1},
$$

being Ω an open subset of \mathbb{R}^n , K is a $(n-1)$ -dimensional compact subset of \mathbb{R}^n , $|u^+ - u^-|$ the jump of u across K, ν_K the normal direction to K, while ϕ and θ given positive functions, whereas \mathcal{H}^{n-1} denotes the n – 1-dimensional Hausdorff measure.

2 L. LUSSARDI AND A. MAGNI

The classical weak formulation for such problems can be obtained considering K as the set of the discontinuities of u and thus working in the space of functions with bounded variation. More precisely, the aforementioned weak form of $\mathcal F$ takes on $BV(\Omega)$ the general form

(1.1)
$$
\mathcal{F}(u) = \int_{\Omega} \phi(|\nabla u|) dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} + c_0 |D^c u|(\Omega),
$$

where $Du = \nabla u \mathcal{L}^n + (u^+ - u^-)\mathcal{H}^{n-1} + D^c u$ is the decomposition of the measure derivative of u in its absolutely continuous, jump and Cantor part, respectively, and S_u denotes the set of discontinuity points of u.

The main difficulty in the actual minimization of $\mathcal F$ comes from the surface integral

$$
\int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1},
$$

which makes it necessary to use suitable approximations guaranteeing the convergence of minimum points and naturally leads to Γ-convergence.

As pointed out in [10], it is not possible to obtain a variational approximation for $\mathcal F$ by the typical integral functionals

$$
\mathcal{F}_{\varepsilon}(u) = \int_{\Omega} f_{\varepsilon}(\nabla u) \, \mathrm{d}x
$$

defined on some Sobolev spaces. Indeed, when considering the lower semicontinuous envelopes of these functionals, we would be lead to a convex limit, which conflicts with the non-convexity of $\mathcal{F}.$

Heuristic arguments suggest that, to get rid of the difficulty, we have to prevent that the effect of *large* gradients is concentrated on *small* regions. Several approximation methods fit this requirements. For instance in [7], [12], [24] the case where the functionals $\mathcal{F}_{\varepsilon}$ are restricted to finite elements spaces on regular triangulations of size ε is considered. In [1], [2], [23] the implicit constraint on the gradient through the addition of a higher order penalization is investigated. Moreover, it is important to mention the AMBROSIO $&$ TORTORELLI approximation (see [4] and [5]) of the Mumford-Shah functional via elliptic functionals.

The study of non-local models, where the effect of a large gradient is spread onto a set of size ε , was first introduced by BRAIDES & DAL MASO in order to approximate the Mumford-Shah functional (see [10] and also [11], [13], [14], [15], [16]) by means of the family

(1.2)
$$
\mathcal{F}_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f\left(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u|^2 \, dy\right) dx, \quad u \in H^1(\Omega),
$$

where, for instance, $f(t) = t \wedge 1/2$ and $B_{\varepsilon}(x)$ denotes the ball of centre x and radius ε . A variant of the method proposed in [10] has been used in [22] to deal with the approximation of a functional F of the form (1.1), with ϕ having linear growth and θ independent on the normal ν_u (see also [20] and [21]). More precisely, in [22] the Γ-limit of the family

$$
\mathcal{F}_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f\bigg(\varepsilon \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, \mathrm{d}y\bigg) \mathrm{d}x, \quad u \in W^{1,1}(\Omega),
$$

for a suitable concave function f , is computed.

In [25] (see also [13]) the case of an anisotropic variant of (1.2) has been considered. In particular it is proven that the family

$$
\mathcal{F}_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f(\varepsilon |\nabla u|^p * \rho_{\varepsilon}) dx, \quad u \in H^1(\Omega), \quad p > 1,
$$

Γ-converges to an anisotropic version of the Mumford-Shah functional.

In this paper we investigate the Γ-convergence of the family

$$
\mathcal{F}_{\varepsilon}(u) = \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon}(\varepsilon |\nabla u| * \rho_{\varepsilon}) dx, \quad u \in W^{1,1}(\Omega).
$$

The main difficulty to overcome is the estimate from below for the lower Γ-limit in terms of the surface part, while the contribution arising from the volume and Cantor parts has been treated along the same line of the argument already exploited in [25]. The estimate from above has been achieved by density and relaxation arguments. We prove that the Γ-limit, in the strong L^1 -topology, is given by

$$
\mathcal{F}(u) = \int_{\Omega} \phi(|\nabla u|) dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} + c_0 |D^c u|(\Omega),
$$

where $c_0 = \lim_{t \to +\infty} \phi(t)/t$ and

$$
\theta(s,\nu) = \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j) \in W_{\nu}^{0,s}, \varepsilon_j \to 0^+ \right\},\,
$$

being $W_{\nu}^{a,b}$ the space of all sequences on the cylinder Q_{ν} which converge, shrinking onto the interface, to the function that jumps from a to b around the origin (see paragraph 3.1 for details). In section 7 we have been able to show that the method used in [22] to write θ in a more explicit form works only if $n = 1$. In the case $n > 1$ such an argument does not work. Let us briefly discuss the reason. Without loss of generality we can suppose $\nu = e_1$. Let P_C^{\perp} be the orthogonal projection of C onto $\{x_1 = 0\}$. Denote by X the space of all functions $v \in W^{1,1}_{loc}(\mathbb{R} \times P_C^{\perp})$ which are non-decreasing in the first variable and such that there exist $\xi_0 < \xi_1$ with $v(x) = 0$ if $x_1 < \xi_0$ and $v(x) = s$ if $x_1 > \xi_1$. Then, exploiting the same argument as in [22], we have $\theta(s, \mathbf{e}_1) \ge \inf_X G$, where

$$
G(v) = \int_{-\infty}^{+\infty} f\bigg(\int_{C(s\mathbf{e}_1)} \partial_1 v(z) \rho(z - t\mathbf{e}_1) dz\bigg) dt.
$$

The estimate $\theta(s, \mathbf{e}_1) \ge \inf_X G$ turns out to be optimal if $\inf_X G = \inf_Y G$, where Y is the space of all functions $v \in X$ such that v depends only on the first variable. This is due to the fact that proving the inequality $\theta(s, \mathbf{e}_1) \ge \inf_X G$ we lose control on all the derivatives $\partial_i v$ for any $i = 2, \dots, n$. In the case $C = B_1$ and $\rho = \frac{1}{\omega_n} \chi_{B_1}$, treated in [22], one is able to prove that $\inf_{X} G = \inf_{Y} G$ computing directly $\inf_{X} G$ by a discretization argument (see Prop. 5.7 in [22]). In general, $\inf_{X} G = \inf_{Y} G$ does not hold. Indeed proceeding at first as in the proof of Prop. 5.6 in [22], one is able to show that for any $C \subset \mathbb{R}^2$ open, bounded, convex and symmetrical set (i.e. $C = -C$) and for $\rho = \frac{1}{|C|} \chi_C$, it holds

(1.3)
$$
\inf_{Y} G = \int_{-h_1}^{h_1} f\left(\frac{s}{|C|} \mathcal{H}^1(C \cap \{z_1 = t\}\right) dt.
$$

Now if C is the parallelogram $C = \{(x, y) \in \mathbb{R}^2 : -2 \le y \le 2, x - 1 \le y \le x + 1\}$ applying (1.3), we get

$$
\inf_{Y} G' = 2f\left(\frac{2s}{|C|}\right) + 2\int_0^2 f\left(\frac{sr}{|C|}\right) dr.
$$

If we compute G on the function w given by

$$
w(x,y) = \begin{cases} 0 & \text{if } y > x - 1 \\ s & \text{if } y \leq x - 1 \end{cases}
$$

(to do this we notice that the functional G makes sense also on $BV_{\text{loc}}(\mathbb{R} \times (-2,2))$ writing D_1v instead of $\partial_1 v \, dz$ we obtain

$$
G(w) = 2f\bigg(\frac{4s}{|C|}\bigg).
$$

If f is strictly concave then

$$
G(w) < 2f\left(\frac{2s}{|C|}\right) + 2f\left(\frac{2s}{|C|}\right) < 2f\left(\frac{2s}{|C|}\right) + 2\int_0^2 f\left(\frac{sr}{|C|}\right) dr = \inf_Y G.
$$

By a density argument we deduce that $\inf_X G < \inf_Y G$.

As a conclusion, it seems that for a generic anisotropic convolution kernel ρ_{ε} the expression for θ can not be further simplified when $n > 1$.

4 L. LUSSARDI AND A. MAGNI

2. Notation and preliminaries

We will denote by $L^p(\Omega)$ and by $W^{k,p}(\Omega)$, for $k \in \mathbb{N}$, $k \geq 1$, and for $1 \leq p \leq +\infty$, respectively the classical Lebesgue and Sobolev spaces on Ω . The Lebesgue measure of a measurable set $A \subset \mathbb{R}^n$ will be denoted by $|A|$, whereas the Hausdorff measure of A of dimension $m < n$ will be denoted by $\mathcal{H}^m(A)$. The ball centered in x with radius r will be denoted by $B_r(x)$, while B_r stands for $B_r(0)$; moreover, we will use the notation \mathbb{S}^{n-1} for the boundary of B_1 in \mathbb{R}^n . The volume of the unit ball in \mathbb{R}^n will be denoted by ω_n , with the convention $\omega_0 = 1$. Finally $\mathcal{A}(\Omega)$ denotes the set of all open subsets of Ω .

2.1. Functions of bounded variation. For a thorough treatment of BV functions we refer the reader to [3]. Let Ω be an open subset of \mathbb{R}^n . We recall that the space $BV(\Omega)$ of real functions of bounded variation is the space of the functions $u \in L^1(\Omega)$ whose distributional derivative is representable by a measure in Ω , i.e.

$$
\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = - \int_{\Omega} \varphi dD_i u, \quad \forall \varphi \in C_c^{\infty}(\Omega), \forall i = 1, ..., n,
$$

for some \mathbb{R}^n -valued measure $Du = (D_1u, \ldots, D_nu)$ on Ω . We say that u has approximate limit at $x \in \Omega$ if there exists $z \in \mathbb{R}$ such that

$$
\lim_{r \to 0^+} \int_{B_r(x)} |u(y) - z| \, dy = 0.
$$

The set S_u where this property fails is called *approximate discontinuity set* of u. The vector z is uniquely determined for any point $x \in \Omega \setminus S_u$ and is called the *approximate limit* of u at x and denoted by $\tilde{u}(x)$. We say that x is an approximate jump point of the function $u \in BV(\Omega)$ if there exist $a, b \in \mathbb{R}$ and $\nu \in \mathbb{S}^{n-1}$ such that $a \neq b$ and

(2.1)
$$
\lim_{r \to 0^+} \int_{B_r^+(x,\nu)} |u(y) - a| \, dy = 0, \quad \lim_{r \to 0^+} \int_{B_r^-(x,\nu)} |u(y) - b| \, dy = 0,
$$

where $B_r^+(x,\nu) = \{y \in B_r(x) : \langle y-x,\nu \rangle > 0\}$ and $B_r^-(x,\nu) = \{y \in B_r(x) : \langle y-x,\nu \rangle < 0\}$. The set of approximate jump points of u is denoted by J_u . The triplet (a, b, ν) , which turns out to be uniquely determined up to a permutation of a and b and a change of sign of ν , is usually denoted by $(u^+(x), u^-(x), \nu_u(x))$. On $\Omega \setminus S_u$ we set $u^+ = u^- = \tilde{u}$. It turns out that for any $u \in BV(\Omega)$ the set S_u is countably $(n-1)$ -rectifiable and $\mathcal{H}^{n-1}(S_u \setminus J_u) = 0$. Moreover,

$$
Du \mathrel{\sqcup} J_u = (u^+ - u^-)\nu_u \mathcal{H}^{n-1} \mathrel{\sqcup} J_u
$$

and $\nu_u(x)$ gives the approximate normal direction to S_u for \mathcal{H}^{n-1} -a.e. $x \in S_u$.

For a function $u \in BV(\Omega)$ let $Du = D^a u + D^s u$ be the Lebesgue decomposition of Du into absolutely continuous and singular part. We denote by ∇u the density of $D^a u$; the measures $D^j u := D^s u \sqcup J_u$ and $D^c u := D^s u \sqcup (\Omega \setminus S_u)$ are called the *jump part* and the *Cantor part* of the derivative, respectively. It holds $Du = \nabla u \mathcal{L}^n + (u^+ - u^-)\nu_u \mathcal{H}^{n-1} \sqcup J_u + D^c u$. Let us recall the following important compactness Theorem in BV (see Th. 3.23 and Prop. 3.21 in [3]):

Theorem 2.1. Let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz boundary. Every sequence (u_h) in $BV(\Omega)$ which is bounded in $BV(\Omega)$ admits a subsequence converging in $L^1(\Omega)$ to a function $u \in BV(\Omega)$.

We say that a function $u \in BV(\Omega)$ is a special function of bounded variation, and we write $u \in SBV(\Omega)$, if $|D^c u|(\Omega) = 0$. We say that a function $u \in L^1(\Omega)$ is a generalized function of bounded variation, and we write $u \in GBV(\Omega)$, if $u^T := (-T) \vee u \wedge T$ belongs to $BV(\Omega)$ for every $T \geq 0$. If $u \in GBV(\Omega)$, the function ∇u given by

(2.2)
$$
\nabla u = \nabla u^T \quad \text{a.e. on } \{|u| \le T\}
$$

turns out to be well-defined. Moreover, the set function $T \mapsto S_{u}$ is monotone increasing; therefore, if we set $S_u = \bigcup_{T>0} J_{u^T}$, for \mathcal{H}^{n-1} -a.e. $x \in S_u$ we can consider the functions of T given by $(u^T)^{-}(x), (u^T)^{+}(x), \nu_{u^T}(x)$. It turns out that

(2.3)
$$
u^{-}(x) = \lim_{T \to +\infty} (u^{T})^{-}(x), \quad u^{+}(x) = \lim_{T \to +\infty} (u^{T})^{+}(x), \quad \nu_{u}(x) = \lim_{T \to +\infty} \nu_{u^{T}}(x)
$$

are well-defined for \mathcal{H}^{n-1} -a.e. $x \in S_u$ Finally, for a function $u \in GBV(\Omega)$, let $|D^c u|$ be the supremum, in the sense of measures, of $|D^c u^T|$ for $T > 0$. It can be proved that for any Borel subset B of Ω

(2.4)
$$
|D^{c}u|(B) = \lim_{T \to +\infty} |D^{c}u^{T}|(B).
$$

2.2. Slicing. In order to obtain the estimate from below of the lower Γ-limit (see next paragraph) we need some basic properties of one-dimensional sections of BV -functions. We first introduce some notation. Let $\xi \in \mathbb{S}^{n-1}$, and let ξ^{\perp} be the vector subspace orthogonal to ξ . If $y \in \xi^{\perp}$ and $E \subseteq \mathbb{R}^n$ we set $E_{\xi,y} = \{t \in \mathbb{R} : y + t\xi \in E\}$. Moreover, for any given function $u: \Omega \to \mathbb{R}$ we define $u_{\xi,y}$: $\Omega_{\xi,y} \to \mathbb{R}$ by $u_{\xi,y}(t) = u(y+t\xi)$. For the results collected in the following Theorem see [3], section 3.11.

Theorem 2.2. Let $u \in BV(\Omega)$. Then $u_{\xi,y} \in BV(\Omega_{\xi,y})$ for every $\xi \in \mathbb{S}^{n-1}$ and for \mathcal{H}^{n-1} -a.e. $y \in \xi^{\perp}$. For such values of y we have $u'_{\xi,y}(t) = \langle \nabla u(y+t\xi), \xi \rangle$ for a.e. $t \in \Omega_{\xi,y}$ and $J_{u_{\xi,y}} = (J_u)_{\xi,y}$, where $u'_{\xi,y}$ denotes the absolutely continuous part of the measure derivative of $u_{\xi,y}$. Moreover, for every open subset A of Ω we have

$$
\int_{\xi^{\perp}} |D^c u_{\xi,y}| (A_{\xi,y}) \, d\mathcal{H}^{n-1}(y) = |\langle D^c u, \xi \rangle| (A).
$$

2.3. Γ-convergence. For the general theory see [9] and [18]. Let (X, d) be a metric space. Let (\mathcal{F}_j) be a sequence of functions $X \to \overline{\mathbb{R}}$. We say that (\mathcal{F}_j) Γ -converges, as $j \to +\infty$, to $\mathcal{F} \colon X \to \overline{\mathbb{R}}$, if for all $u \in X$ we have:

a) For every sequence (u_i) converging to u it holds

$$
\mathcal{F}(u) \le \liminf_{j \to +\infty} \mathcal{F}_j(u_j).
$$

b) There exists a sequence (u_i) converging to u such that

$$
\mathcal{F}(u) \ge \limsup_{j \to +\infty} \mathcal{F}_j(u_j).
$$

The lower and upper Γ-limits of (\mathcal{F}_i) in $u \in X$ are defined as

$$
\mathcal{F}'(u) = \inf \{ \liminf_{j \to +\infty} \mathcal{F}_j(u_j) : u_j \to u \}, \quad \mathcal{F}''(u) = \inf \{ \limsup_{j \to +\infty} \mathcal{F}_j(u_j) : u_j \to u \}
$$

respectively. We extend this definition of convergence to families depending on a real parameter. Given a family $(\mathcal{F}_{\varepsilon})_{\varepsilon>0}$ of functions $X \to \overline{\mathbb{R}}$, we say that it Γ-converges, as $\varepsilon \to 0$, to $\mathcal{F} \colon X \to \overline{\mathbb{R}}$ if for every positive infinitesimal sequence (ε_j) the sequence $(\mathcal{F}_{\varepsilon_j})$ Γ-converges to F. If we define the lower and upper Γ-limits of $(\mathcal{F}_{\varepsilon})$ as

$$
\mathcal{F}'(u) = \inf \{ \liminf_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(u_{\varepsilon}) : u_{\varepsilon} \to u \}, \quad \mathcal{F}''(u) = \inf \{ \limsup_{\varepsilon \to 0} \mathcal{F}_{\varepsilon}(u_{\varepsilon}) : u_{\varepsilon} \to u \}
$$

respectively, then $(\mathcal{F}_{\varepsilon})$ Γ-converges to F in u if and only if $\mathcal{F}'(u) = \mathcal{F}''(u) = \mathcal{F}(u)$. It turns out that both \mathcal{F}' and \mathcal{F}'' are lower semicontinuous on X. In the estimate of \mathcal{F}' we shall use the following immediate consequence of the definition:

$$
\mathcal{F}'(u) = \inf \{ \liminf_{j \to +\infty} \mathcal{F}_{\varepsilon_j}(u_j) : \ \varepsilon_j \to 0^+, \ u_j \to u \}.
$$

It turns out that the infimum is attained.

An important consequence of the definition of Γ-convergence is the following result about the convergence of minimizers (see, e.g., [18], Cor. 7.20):

Theorem 2.3. Let $\mathcal{F}_j: X \to \overline{\mathbb{R}}$ be a sequence of functions which Γ -converges to some $\mathcal{F}: X \to \overline{\mathbb{R}}$; assume that $\inf_{v \in X} \mathcal{F}_j(v) > -\infty$ for every j. Let (σ_j) be a positive infinitesimal sequence, and for every j let $u_j \in X$ be a σ_j -minimizer of \mathcal{F}_j , i.e.

$$
\mathcal{F}_j(u_j) \leq \inf_{v \in X} \mathcal{F}_j(v) + \sigma_j.
$$

Assume that $u_j \to u$ for some $u \in X$. Then u is a minimum point of F, and

$$
\mathcal{F}(u) = \lim_{j \to +\infty} \mathcal{F}_j(u_j).
$$

Remark 2.4. The following property is a direct consequence of the definition of Γ-convergence: if $\mathcal{F}_{\varepsilon} \stackrel{\Gamma}{\to} \mathcal{F}$ then $\mathcal{F}_{\varepsilon} + \mathcal{G} \stackrel{\Gamma}{\to} \mathcal{F} + \mathcal{G}$ whenever $\mathcal{G} \colon X \to \overline{\mathbb{R}}$ is continuous.

2.4. Supremum of measures. In order to prove the Γ-liminf inequality we recall the following useful tool, which can be found in [8].

Lemma 2.5. Let Ω be an open subset of \mathbb{R}^n and denote by $\mathcal{A}(\Omega)$ the family of its open subsets. Let λ be a positive Borel measure on Ω , and $\mu: \mathcal{A}(\Omega) \to [0, +\infty)$ a set function which is superadditive on open sets with disjoint compact closures, i.e. if $A, B \subset\subset \Omega$ and $\overline{A} \cap \overline{B} = \emptyset$, then

$$
\mu(A \cup B) \ge \mu(A) + \mu(B).
$$

Let $(\psi_i)_{i\in I}$ be a family of positive Borel functions. Suppose that

$$
\mu(A) \ge \int_A \psi_i \, d\lambda \quad \text{for every } A \in \mathcal{A}(\Omega) \text{ and } i \in I.
$$

Then

$$
\mu(A) \ge \int_A \sup_i \psi_i \, d\lambda \quad \text{for every } A \in \mathcal{A}(\Omega).
$$

2.5. A density result. The right bound for the upper Γ-limit from above will be first obtained for a suitable dense subset of $SBV(\Omega)$. More precisely, let $W(\Omega)$ be the space of all functions $w \in SBV(\Omega)$ such that

- (a) $\mathcal{H}^{n-1}(\overline{S}_w \setminus S_w) = 0;$
- (b) \overline{S}_w is the intersection of Ω with the union of a finite member of $(n-1)$ -dimensional simplexes;
- (c) $w \in W^{k,\infty}(\Omega \setminus \overline{S}_w)$ for every $k \in \mathbb{N}$.

Theorem 3.1 in [17] gives us the density property of $W(\Omega)$ we need; here

$$
SBV^{2}(\Omega) = \{ u \in SBV(\Omega) : |\nabla u| \in L^{2}(\Omega), \, \mathcal{H}^{n-1}(S_{u}) < +\infty \}.
$$

Theorem 2.6. Assume that $\partial\Omega$ is Lipschitz. Let $u \in SBV^2(\Omega) \cap L^{\infty}(\Omega)$. Then there exists a sequence (w_h) in $\mathcal{W}(\Omega)$ such that $w_h \to u$ strongly in $L^1(\Omega)$, $\nabla w_h \to \nabla u$ strongly in $L^2(\Omega, \mathbb{R}^n)$, with $\limsup_{h\to+\infty}||w_h||_{\infty} \leq ||u||_{\infty}$ and such that

$$
\limsup_{h\to +\infty}\int_{S_{w_h}}\psi(w_h^+,w_h^-,\nu_{w_h})\,\mathrm{d}\mathcal{H}^{n-1}\leq \int_{S_u}\psi(u^+,u^-,\nu_u)\,\mathrm{d}\mathcal{H}^{n-1}
$$

for every upper semicontinuous function ψ such that $\psi(a, b, \nu) = \psi(b, a, -\nu)$ whenever $a, b \in \mathbb{R}$ and $\nu \in \mathbb{S}^{n-1}$.

2.6. A relaxation result. To conclude this section we prove a relaxation result which will be used in the sequel. Recall that given X be a topological space and $\mathcal{F} : X \to \mathbb{R} \cup \{\pm \infty\}$, the relaxed functional of F, denoted by $\overline{\mathcal{F}}$, is the largest lower semicontinuous functional which is smaller than F.

Theorem 2.7. Let $\phi: [0, +\infty) \to [0, +\infty)$ be a convex, non-decreasing and lower semicontinuous function with $\phi(0) = 0$ and with

$$
\lim_{t \to +\infty} \frac{\phi(t)}{t} = c \in (0, +\infty).
$$

Let $\theta \colon [0, +\infty) \times \mathbb{S}^{n-1} \to [0, +\infty)$ be a lower semicontinuous function such that $\theta(s, \nu) \leq c's$ for any $(s, \nu) \in [0, +\infty) \times \mathbb{S}^{n-1}$, for some $c' > 0$. For any $A \in \mathcal{A}(\Omega)$ let

$$
\mathcal{F}(u, A) = \begin{cases} \int_A \phi(|\nabla u|) dx + \int_{S_u \cap A} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} & \text{if } u \in SBV^2(\Omega) \cap L^{\infty}(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega). \end{cases}
$$

Then the relaxed functional of $\mathcal F$ with respect to the strong L^1 -topology satisfies

$$
\overline{\mathcal{F}}(u) \le \int_{\Omega} \phi(|\nabla u|) \, \mathrm{d}x + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) \, \mathrm{d}\mathcal{H}^{n-1} + c|D^c u|(\Omega)
$$

for any $u \in BV(\Omega)$.

Proof. Combining a standard convolution argument with a well known relaxation result (see, for instance, Th. 5.47 in [3]) we can say that the relaxed functional of

$$
\mathcal{G}(u, A) = \begin{cases} \int_A \phi(|\nabla u|) dx & \text{if } u \in C^1(\overline{\Omega}) \\ +\infty & \text{otherwise in } L^1(\Omega) \end{cases}
$$

is given by

$$
\overline{\mathcal{G}}(u, A) = \begin{cases} \int_A \phi(|\nabla u|) dx + c|D^s u|(A) & \text{if } u \in BV(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega). \end{cases}
$$

Since $C^1(\overline{\Omega}) \subseteq SBV^2(\Omega) \cap L^{\infty}(\Omega)$ then we get $\mathcal{F}(u, A) \leq \mathcal{G}(u, A)$. Hence for any $A \in \mathcal{A}(\Omega)$ and for any $u \in BV(\Omega)$

$$
\overline{\mathcal{F}}(u, A) \le \int_A \phi(|\nabla u|) \,dx + c|D^s u|(A).
$$

We can now conclude using the fact that for every $u \in BV(\Omega)$ the set function $\overline{\mathcal{F}}(u, \cdot)$ is the trace on $\mathcal{A}(\Omega)$ of a regular Borel measure μ . This can be proven exactly along the same line of Prop. 3.3 in [6]. Hence

$$
\overline{\mathcal{F}}(u) = \mu(\Omega) = \mu(\Omega \setminus S_u) + \mu(\Omega \cap S_u)
$$

\n
$$
\leq \int_{\Omega} \phi(|\nabla u|) dx + c|D^c u|(\Omega) + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1}
$$

which is what we wanted to prove. \Box

3. STATEMENT OF THE MAIN RESULTS

Let $\Omega \subset \mathbb{R}^n$ be a bounded open set with Lipschitz boundary. Let $\phi: [0, +\infty) \to [0, +\infty)$ be a convex and non-decreasing function with $\phi(0) = 0$ and

(3.1)
$$
\lim_{t \to +\infty} \frac{\phi(t)}{t} = c_0 \in (0, +\infty).
$$

For any $\varepsilon > 0$ let $f_{\varepsilon} : [0, +\infty) \to [0, +\infty)$ be such that:

- A1) f_{ε} is non-decreasing, continuous, with $f_{\varepsilon}(0) = 0$.
- A2) It holds $\lim_{(\varepsilon,t)\to(0,0)}$ $f_\varepsilon(t)$ $\frac{\int \mathcal{E}(0)}{\varepsilon \phi\left(\frac{t}{\varepsilon}\right)} = 1.$

A3) f_{ε} converges uniformly on the compact subsets of $[0, +\infty)$ to a concave function f.

Example 3.1. Given f and ϕ as above, a possible choice for f_{ε} satisfying A1-A3 is given by

$$
f_{\varepsilon}(t) = \begin{cases} \varepsilon \phi\left(\frac{t}{\varepsilon}\right) & \text{if } 0 \le t \le t_{\varepsilon} \\ f(t - t_{\varepsilon}) + \varepsilon \phi\left(\frac{t_{\varepsilon}}{\varepsilon}\right) & \text{if } t > t_{\varepsilon} \end{cases}
$$

where $t_{\varepsilon} \to 0$, and $t_{\varepsilon}/\varepsilon \to +\infty$. The only non-trivial assumption to verify is A2. Since $\varepsilon/t\phi(t/\varepsilon) \to$ c_0 as $(\varepsilon, t) \to (0, 0)$, with $t \geq t_{\varepsilon}$, the check amounts to verify that

$$
\lim_{\substack{(\varepsilon,t)\to(0,0)\\t\geq t_{\varepsilon}}} \frac{f(t-t_{\varepsilon})+\varepsilon\phi\left(\frac{t_{\varepsilon}}{\varepsilon}\right)}{t}=c_0.
$$

This follows immediately from $f(t-t_{\varepsilon})/(t-t_{\varepsilon}) \to c_0$ and $\varepsilon/t_{\varepsilon} \phi(t_{\varepsilon}/\varepsilon) \to c_0$ as $(\varepsilon, t) \to (0, 0)$, and $t \geq t_{\varepsilon}$.

Let $C \subset \mathbb{R}^n$ be open, bounded, and connected with $0 \in C$. Let $\rho: C \to (0, +\infty)$ be a continuous and bounded convolution kernel with

$$
\int_C \rho \, \mathrm{d}x = 1.
$$

For any $\varepsilon > 0$ and for any $x \in \mathbb{R}^n$ we will denote by $C_{\varepsilon}(x)$ the set $x + \varepsilon C$. For any $x \in \varepsilon C$ let

$$
\rho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \rho\left(\frac{x}{\varepsilon}\right)
$$

.

We consider the family $(\mathcal{F}_{\varepsilon})_{\varepsilon>0}$ of functionals $L^1(\Omega) \to [0, +\infty]$ defined by

(3.2)
$$
\mathcal{F}_{\varepsilon}(u) = \begin{cases} \frac{1}{\varepsilon} \int_{\Omega} f_{\varepsilon}(\varepsilon |\nabla u| * \rho_{\varepsilon}) dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^{1}(\Omega) \end{cases}
$$

where, for any $x \in \Omega$,

(3.3)
$$
|\nabla u| * \rho_{\varepsilon}(x) = \int_{C_{\varepsilon}(x) \cap \Omega} |\nabla u(y)| \rho_{\varepsilon}(y - x) dy
$$

is a regularization by convolution of $|\nabla u|$ by means of the kernel ρ_{ε} .

Remark 3.2. Notice that with the choice $C = B_1$ and $\rho = \frac{1}{\omega_n} \chi_{B_1}$ we get

$$
|\nabla u| * \rho_{\varepsilon}(x) = \int_{B_{\varepsilon}(x) \cap \Omega} |\nabla u| \, \mathrm{d}y
$$

and thus the family $(\mathcal{F}_{\varepsilon})_{\varepsilon>0}$ reduces to the case already investigated in [20], [21] and [22].

In order to prove the Γ-convergence of $\mathcal{F}_{\varepsilon}$ it is convenient to introduce a localized version of $\mathcal{F}_{\varepsilon}$: more precisely, for each $A \in \mathcal{A}(\Omega)$ we set

(3.4)
$$
\mathcal{F}_{\varepsilon}(u, A) = \begin{cases} \frac{1}{\varepsilon} \int_{A} f_{\varepsilon}(\varepsilon |\nabla u| * \rho_{\varepsilon}) dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^{1}(\Omega). \end{cases}
$$

Clearly, $\mathcal{F}_{\varepsilon}(\cdot, \Omega)$ coincides with the functional $\mathcal{F}_{\varepsilon}$ defined in (3.2). The lower and upper Γ-limits of $(\mathcal{F}_{\varepsilon}(\cdot, A))$ will be denoted by $\mathcal{F}'(\cdot, A)$ and $\mathcal{F}''(\cdot, A)$, respectively.

3.1. The anisotropy. In this paragraph we define the surface density

$$
\theta \colon [0, +\infty) \times \mathbb{S}^{n-1} \to [0, +\infty)
$$

which will appear in the expression of the Γ-limit of $\mathcal{F}_{\varepsilon}$.

Given $\nu \in \mathbb{S}^{n-1}$ and $a, b \in \mathbb{R}$ let us denote by $u_{\nu}^{a,b}$ the function $\mathbb{R}^n \to \mathbb{R}$ given by

$$
u_{\nu}^{a,b}(x) = \begin{cases} a & \text{if } \langle x, \nu \rangle < 0 \\ b & \text{if } \langle x, \nu \rangle \ge 0. \end{cases}
$$

For any $x \in \mathbb{R}^n$ and any $\nu \in \mathbb{S}^{n-1}$ let $P_{\nu}^{\perp}(x)$ be the orthogonal projection of x onto the subspace $\nu^{\perp} = \{x \in \mathbb{R}^n : \langle x, \nu \rangle = 0\}.$ We define the cylinder

$$
Q_{\nu} = \{ x \in \mathbb{R}^n : |\langle x, \nu \rangle| \le 1, P_{\nu}^{\perp}(x) \in B_1 \cap \nu^{\perp} \}.
$$

Given $\Omega' \subset \mathbb{R}^n$ with $Q_{\nu} \subset \subset \Omega'$ denote by $W_{\nu}^{a,b}$ the space of all sequences (u_j) in $W_{\text{loc}}^{1,1}(\Omega')$ such that $u_j \to u_\nu^{a,b}$ in $L^1(\Omega')$, and such that there exist two positive infinitesimal sequences $(a_j), (b_j)$ with $u_i(x) = a$ if $\langle x, \nu \rangle < -a_i$ and $u_i = b$ if $\langle x, \nu \rangle > b_i$. Let

(3.5)
$$
\theta(s,\nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j) \in W_{\nu}^{0,s}, \varepsilon_j \to 0^+ \right\}.
$$

Notice that $\theta(s, \nu)$ does not depend on the choice of Ω' . Let us collect some easy properties of θ which immediately descend from the definition.

Lemma 3.3. The following properties hold:

$$
\theta \text{ is continuous.}
$$

(3.7)
$$
\theta(s,\nu) = \theta(s,-\nu), \quad \forall s \ge 0, \quad \forall \nu \in \mathbb{S}^{n-1}.
$$

(3.8)
\n
$$
\inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j) \in W_{\nu}^{0,s}, \varepsilon_j \to 0^+ \right\}
$$
\n
$$
= \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j) \in W_{\nu}^{a,b}, \varepsilon_j \to 0^+ \right\}
$$
\n*whenever* $|a - b| = s$.

Moreover, for any $x_0 \in \mathbb{R}^n$, $\nu \in \mathbb{S}^{n-1}$ and $s \geq 0$ we have

$$
(3.9) \ \ \theta(s,\nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{x_0 + Q_{\nu}} f(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) \, dx : (u_j(\cdot - x_0)) \in W^{0,s}_{\nu}, \, \varepsilon_j \to 0^+ \right\}.
$$

3.2. Main results. We are now in position to state the main result of the paper.

Theorem 3.4. Let $\mathcal{F}_{\varepsilon}$ be as in (3.2), with f_{ε} satisfying conditions A1-A3. Then $\mathcal{F}_{\varepsilon}$ Γ -converges, with respect to the strong L^1 -topology, as $\varepsilon \to 0$, to $\mathcal{F} : L^1(\Omega) \to [0, +\infty]$ given by

$$
\mathcal{F}(u) = \begin{cases} \int_{\Omega} \phi(|\nabla u|) dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} + c_0 |D^c u|(\Omega) & \text{if } u \in GBV(\Omega) \\ +\infty & \text{otherwise in } L^1(\Omega). \end{cases}
$$

Remark 3.5. Notice that for any $u \in GBV(\Omega)$ the expression $\theta(|u^+ - u^-|, \nu_u)$ turns out to be well defined \mathcal{H}^{n-1} -a.e. $x \in S_u$, since (3.7) holds.

The proof of Theorem 3.4 will descend combining Proposition 5.10 (the Γ-liminf inequality) with Proposition 6.3 (the Γ-limsup inequality).

As a typical consequence of a Γ-convergence result, we are able to prove a result of convergence of minima by means of the following compactness result for equibounded (in energy) sequences, which will be proved in §4.

Theorem 3.6. Let (ε_j) be a positive infinitesimal sequence, and let (u_j) be a sequence in $L^1(\Omega)$ such that $||u_j||_{\infty} \leq M$, and such that $\mathcal{F}_{\varepsilon_j}(u_j) \leq M$ for some positive constant M independent of j. Then the sequence (u_j) converges, up to a subsequence, in $L^1(\Omega)$ to a function $u \in BV(\Omega)$.

Theorem 3.7. Let (ε_i) be a positive infinitesimal sequence and let $g \in L^{\infty}(\Omega)$. For every $u \in$ $L^1(\Omega)$ and $j \in \mathbb{N}$ let

$$
\mathcal{I}_j(u) = \mathcal{F}_{\varepsilon_j}(u) + \int_{\Omega} |u - g| \,dx, \quad \mathcal{I}(u) = \mathcal{F}(u) + \int_{\Omega} |u - g| \,dx.
$$

For every j let $u_j \in L^1(\Omega)$ be such that

$$
\mathcal{I}_j(u_j) \leq \inf_{L^1(\Omega)} \mathcal{I}_j + \varepsilon_j.
$$

Then the sequence (u_j) converges, up to a subsequence, to a minimizer of $\mathcal I$ in $L^1(\Omega)$.

Proof. Since $g \in L^{\infty}(\Omega)$ and since $\mathcal{F}_{\varepsilon_j}$ decreases by truncation, we can assume that (u_j) is equibounded in $L^{\infty}(\Omega)$; for instance $||u_j||_{\infty} \leq ||g||_{\infty}$. Applying Theorem 3.6 there exists $u \in$ BV(Ω) such that (up to a subsequence) $u_j \to u$ in $L^1(\Omega)$. By Theorem 2.3, since (\mathcal{I}_j) Γ-converges to $\mathcal I$ (see Th. 3.4 and Remark 2.4), u is a minimum point of $\mathcal I$ on $L^1(\Omega)$.

4. Compactness

In this section we prove Theorem 3.6. Let us first recall a useful technical Lemma which can be found in [10], Prop. 4.1. Actually such a Proposition has been proved for $|\nabla u|^2$, but, up to simple modifications, the same proof works for $|\nabla u|$.

For every $A \in \mathcal{A}(\Omega)$ and $\sigma > 0$ we set

$$
A_{\sigma} = \{ x \in A : d(x, \partial A) > \sigma \}.
$$

Lemma 4.1. Let $g: [0, +\infty) \to [0, +\infty)$ be a non-decreasing continuous function such that

$$
\lim_{t \to 0} \frac{g(t)}{t} = c
$$

for some $c > 0$. Let $A \in \mathcal{A}(\Omega)$ with $A \subset\subset \Omega$, and let $u \in W^{1,1}(\Omega) \cap L^{\infty}(\Omega)$. For any $\delta > 0$ and for any $\varepsilon > 0$ sufficiently small, there exists a function $v \in SBV(A) \cap L^{\infty}(A)$ such that

$$
(1 - \delta) \int_A |\nabla v| \, dx \le \frac{1}{\varepsilon} \int_A g \left(\varepsilon \int_{B_\varepsilon(x)} |\nabla u| \, dy \right) dx,
$$

$$
\mathcal{H}^{n-1}(S_v \cap A_{6\varepsilon}) \le \frac{c'}{\varepsilon} \int_A g \left(\varepsilon \int_{B_\varepsilon(x)} |\nabla u| \, dy \right) dx,
$$

$$
\|v\|_{L^\infty(A)} \le \|u\|_{L^\infty(A)}
$$

$$
\|v - u\|_{L^1(A_{6\varepsilon})} \le c' \|u\|_{L^\infty(A)} \int_A g \left(\varepsilon \int_{B_\varepsilon(x)} |\nabla u| \, dy \right) dx,
$$

where c' is a constant depending only on n, δ and g .

Proof of Theorem 3.6. Let $A \in \mathcal{A}(\Omega)$ with $A \subset\subset \Omega$ and ∂A smooth. Let $r > 0$ such that $B_r \subset C$, and let $m = \inf_{B_r} \rho > 0$. Then for any $x \in A$ we have $B_{r \epsilon_j}(x) \subset C_{\epsilon_j}(x)$ and thus for j sufficiently large,

$$
|\nabla u_j| * \rho_{\varepsilon_j}(x) = \int_{C_{\varepsilon_j}(x)} |\nabla u_j(y)| \rho_{\varepsilon_j}(y-x) dy \ge \frac{m}{\varepsilon_j^n} \int_{B_{r\varepsilon_j}(x)} |\nabla u_j(y)| dy
$$

$$
= mr^n \omega_n \int_{B_{r\varepsilon_j}(x)} |\nabla u_j(y)| dy
$$

for any $x \in A$. Fix $\delta > 0$. By A2 there exist $t_{\delta} > 0$ and j_{δ} such that $f_{\epsilon_j}(t) \geq (1 - \delta)\varepsilon_j \phi(t/\varepsilon_j)$ for any $t \in [0, t_\delta]$ and $j > j_\delta$. Let $\alpha, \beta \in \mathbb{R}$, with $\alpha > 0$ and $\beta < 0$, be such that $\phi(t) \geq \alpha t + \beta$ everywhere. Then, since f_{ε_j} is non-decreasing, we have $f_{\varepsilon_j}(t) \ge g_{\varepsilon_j}^{\delta}(t)$ for any $t \ge 0$, being

$$
g_{\varepsilon_j}^{\delta}(t) = \begin{cases} (1-\delta)\alpha t + \varepsilon_j \beta & \text{if } t \in [0, t_{\delta}] \\ (1-\delta)\alpha t_{\delta} + \varepsilon_j \beta & \text{if } t > t_{\delta}. \end{cases}
$$

Therefore, letting $h_{\delta}(t) = g^{\delta}_{\varepsilon_j}(t) - \varepsilon_j \beta$, we have

(4.1)
$$
\mathcal{F}_{\varepsilon_j}(u_j, A) \geq \frac{1}{\varepsilon_j} \int_A h_\delta(|\nabla u_j| * \rho_{\varepsilon_j}) dx + \beta |A|
$$

$$
\geq \frac{1}{\varepsilon_j} \int_A h_\delta \left(m r^n \omega_n \varepsilon_j \int_{B_{r\varepsilon_j}(x)} |\nabla u_j| dy \right) dx + \beta |A|.
$$

Let $\eta_j = r\varepsilon_j$ and $g_{\delta,m,r}(t) = \frac{1}{r}g_{\delta}(mr^{n-1}\omega_n t)$. Notice that, by construction,

$$
\lim_{t \to 0} \frac{g_{\delta, m, r}(t)}{t}
$$

exists and is finite. Then inequality (4.1) becomes

$$
\mathcal{F}_{\varepsilon_j}(u_j, A) - \beta |A| \geq \frac{1}{\eta_j} \int_{\Omega} g_{\delta, r, m} \left(\eta_j \int_{B_{\eta_j}(x)} |\nabla u_j| \, \mathrm{d}y \right) \mathrm{d}x.
$$

Applying Lemma 4.1 we find a sequence (v_j) in $SBV(A)$ and a constant C independent of A such that $||v_j||_{BV(A)} \leq C$ and $||v_j||_{L^\infty(A)} \leq C$. Moreover,

(4.2)
$$
||v_j - u_j||_{L^1(A)} \to 0.
$$

Hence, by Theorem 2.1, the sequence (v_i) converges, up to a subsequence not relabeled, to some $u \in BV(A)$, with $||u||_{BV(A)} \leq C$. By (4.2) also u_j converges to u in $L^1(A)$. The arbitrariness of A and a diagonal argument allow to find a subsequence (u_{j_k}) which converges in $L^1_{loc}(\Omega)$ to a function $u \in BV_{\text{loc}}(\Omega)$, and the uniform bound of $||u_j||_{L^{\infty}(\Omega)}$ implies the convergence is strong in L^1 (Ω) .

5. THE Γ -LIMINF INEQUALITY

In this section we will prove that for any $u \in L^1(\Omega)$ the inequality

$$
\mathcal{F}(u) \le \liminf_{j \to +\infty} \mathcal{F}_{\varepsilon_j}(u_j)
$$

holds for any $u_j \to u$ in $L^1(\Omega)$. First we will investigate two particular situations.

5.1. A preliminary estimate from below in terms of the volume and Cantor parts. In this paragraph we will take into account a simpler family of functionals. Let $\alpha, \beta > 0$ and let $g: [0, +\infty) \to [0, +\infty)$ given by $g(t) = \alpha t \wedge \beta$. Let $\mathcal{G}_{\varepsilon}: L^1(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty]$ be defined by

$$
\mathcal{G}_{\varepsilon}(u, A) = \begin{cases} \frac{1}{\varepsilon} \int_{A} g(\varepsilon |\nabla u| * \rho_{\varepsilon}) dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^{1}(\Omega). \end{cases}
$$

We wish to estimate from below the lower Γ-limit $\mathcal{G}'(\cdot, A)$ in terms of the volume and the Cantor parts of Du . To this sake, we apply a slicing procedure, so that at first we will establish a suitable one-dimensional inequality. The idea of the proof is the same as in [25], where the superlinear growth case is treated.

Let $m \in \mathbb{N}$ odd, let A be an open interval in \mathbb{R} , and let (ε_j) be a positive infinitesimal sequence. Let $A_j = \{x \in \varepsilon_j \mathbb{Z} : x \in A\}$. For any $j \in \mathbb{N}$ and for any $x \in A_j$ we define the interval

$$
I_j(x) = \left[x - \frac{m\varepsilon_j}{2}, x + \frac{m\varepsilon_j}{2}\right].
$$

Lemma 5.1. Let $\alpha', \beta' > 0$ and let $h_j : [0, +\infty) \rightarrow [0, +\infty)$ given by $h_j(t) = \alpha' t \wedge \frac{\beta'}{\epsilon}$ $rac{\beta}{\varepsilon_j}$. Let $u \in BV(A)$ and let $u_j \to u$ in $L^1(A)$ with $u_j \in W^{1,1}(A)$ for any $j \in \mathbb{N}$. Then

(5.1)
$$
\liminf_{j \to +\infty} \varepsilon_j \sum_{x \in A_j} h_j \left(\int_{I_j(x)} |u'_j| \, \mathrm{d}y \right) \geq \alpha' \int_A |u'| \, \mathrm{d}y + \alpha' |D^c u|(A).
$$

Proof. For any $j \in \mathbb{N}$ and $i = 0, \ldots, m-1$ let $A_j^i = (i\varepsilon_j + m\varepsilon_j \mathbb{Z}) \cap A$. Obviously A_j is the disjoint union of A_j^i for $i \in \{0, \ldots, m-1\}$. Then

$$
\sum_{x \in A_j} h_j \left(\int_{I_j(x)} |u'_j| \, \mathrm{d}y \right) \geq \frac{1}{m} \sum_{i=0}^{m-1} \sum_{x \in A_j^i} m h_j \left(\int_{I_j(x)} |u'_j| \, \mathrm{d}y \right).
$$

Now let

$$
\overline{A_j^i} = \left\{ x \in A_j^i : \int_{I_j(x)} |u'_j| \, dx \le \frac{\beta'}{\alpha' \varepsilon_j} \right\}
$$

and let $v_j \in SBV(A)$ given by

$$
v_j(x) = \begin{cases} u_j(x) & \text{if } x \in \bigcup_{y \in \overline{A_j^i}} I_j(y) \\ 0 & \text{otherwise in } A. \end{cases}
$$

Hence

$$
\begin{split} \sum_{x\in A_j^\bar{i}} m\varepsilon_j h_j \bigg(\iint_{I_j(x)} |u_j'|\,\mathrm{d} y\bigg) &\geq \sum_{x\in \overline{A_j^\bar{i}}} m\varepsilon_j h_j \bigg(\iint_{I_j(x)} |u_j'|\,\mathrm{d} y\bigg) = \alpha' \sum_{x\in \overline{A_j^\bar{i}}} \int_{I_j(x)} |u_j'|\,\mathrm{d} y\\ &= \alpha' \int_A |v_j'|\,\mathrm{d} y. \end{split}
$$

Observe that since we can suppose, without loss of generality, that

$$
\varepsilon_j \sum_{x \in A_j} h_j \bigg(\int_{I_j(x)} |u'_j| \, \mathrm{d}y \bigg) \le M
$$

for some $M \geq 0$, we deduce that

$$
M \geq \varepsilon_j \sum_{x \in A_j \setminus \bigcup_{i=0}^{m-1} A_j^i} h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) = \varepsilon_j \frac{\beta'}{\varepsilon_j} \sharp \left(A_j \setminus \bigcup_{i=0}^{m-1} \overline{A_j^i} \right)
$$

from which necessarily we have

$$
\varepsilon_j \sharp \left(A_j \setminus \bigcup_{i=0}^{m-1} \overline{A_j^i} \right) \to 0, \text{ as } j \to +\infty.
$$

This implies that $||u_j - v_j||_{L^1(A)} \to 0$ as $j \to +\infty$. Therefore, $v_j \to u$ in $L^1(A)$. Finally, by the superadditivity of the lim inf and by the lower semicontinuity of the total variation, we get

$$
\liminf_{j \to +\infty} \varepsilon_j \sum_{x \in A_j} h_j \left(\int_{I_j(x)} |u'_j| \, dy \right) \ge \frac{1}{m} \sum_{i=0}^{m-1} \liminf_{j \to +\infty} \sum_{x \in \overline{A_j^i}} m\varepsilon_j h_j \left(\int_{I_j(x)} |u'_j| \, dy \right)
$$
\n
$$
\ge \alpha' \liminf_{j \to +\infty} \int_A |v'_j| \, dy \ge \alpha' |Du|(A)
$$
\n
$$
\ge \alpha' \int_A |u'| \, dy + \alpha' |D^c u|(A)
$$
\nwhich ends the proof.

Now, by applying the slicing Theorem 2.2, we will reduce the *n*-dimensional inequality to the one-dimensional inequality 5.1. Fix $\xi \in \mathbb{S}^{n-1}$ and $\delta \in (0,1)$; consider an orthonormal basis $\{e_i\}$ with $\mathbf{e}_n = \xi$. Let

$$
Q_{\delta}^{\xi} = \left\{ x \in \mathbb{R}^n : |\langle x, \mathbf{e}_i \rangle| \leq \frac{\delta}{2}, i = 1, \dots, n \right\}, \quad Q_{\delta}^{\xi}(x) = x + Q_{\delta}^{\xi}
$$

and the lattice $Z_{\delta}^{\xi} = \{x \in \mathbb{R}^n : \langle x, \mathbf{e}_i \rangle \in \delta \mathbb{Z}, i = 1, \ldots, n\}$. In what follows we will denote by $g_j(t) = \frac{1}{\varepsilon_j} g(\varepsilon_j t)$; in particular it holds $g_j(t) = \alpha t \wedge \frac{\beta}{\varepsilon_j}$ and

$$
\mathcal{G}_{\varepsilon_j}(u, A) = \int_A g_j(|\nabla u| * \rho_{\varepsilon_j}) \,dx, \quad u \in W^{1,1}(\Omega).
$$

Finally fix $A \in \mathcal{A}(\Omega)$ and let $A_{\delta}^{\xi} = \{x \in Z_{\delta}^{\xi} : Q_{\delta}^{\xi}(x) \subset A\}$. The following Lemma is a standard easy application of the mean value Theorem (see also Lemma 4.2 in [10]).

Lemma 5.2. Let $u \in W^{1,1}(\Omega)$. Then there exists $\tau \in Q_{\delta}^{\xi}$ such that

$$
\mathcal{G}_{\varepsilon_j}(u, A) \geq \sum_{x \in A_\delta^\xi} \delta^n g_j(|\nabla u| * \rho_{\varepsilon_j}(x + \tau)).
$$

Proof. We have

$$
\mathcal{G}_{\varepsilon_j}(u, A) \geq \sum_{x \in A_{\delta}^{\xi}} \int_{Q_{\delta}^{\xi}(x)} g_j(|\nabla u| * \rho_{\varepsilon_j}(y)) dy = \int_{Q_{\delta}^{\xi}} \sum_{x \in A_{\delta}^{\xi}} g_j(|\nabla u| * \rho_{\varepsilon_j}(y + x)) dy.
$$

Applying the mean value Theorem we get

$$
\int_{Q_{\delta}^{\xi}} \sum_{x \in A_{\delta}^{\xi}} g_j(|\nabla u| * \rho_{\varepsilon_j}(y+x)) dy = \sum_{x \in A_{\delta}^{\xi}} g_j(|\nabla u| * \rho_{\varepsilon_j}(\tau+x))
$$

for some $\tau \in Q_{\delta}^{\xi}$, which concludes the proof.

We are in position to apply the slicing procedure.

Proposition 5.3. Let $u \in BV(\Omega)$ and $A \in \mathcal{A}(\Omega)$. Then

$$
\mathcal{G}'(u, A) \ge \alpha \int_A |\nabla u| \,dx \quad and \quad \mathcal{G}'(u, A) \ge \alpha |D^c u|(A).
$$

Proof. Fix $\xi \in \mathbb{S}^{n-1}$. For any $\eta > 0$ let P_{η}^{ξ} be the union of the squares $Q_{\eta}^{\xi}(y_i) \subset C$ with $y_i \in Z_{\eta}^{\xi}$ for $i = 1, \ldots, m$, for some $m \in \mathbb{N}$ depending on η and ξ . Let ρ_{η} be a non-negative constant function on the squares $Q_{\eta}^{\xi}(y_i)$ with $0 < \rho_{\eta} \leq \rho$ and such that

$$
c_{\eta} = \int_C \rho_{\eta} dx \to 1, \text{ as } \eta \to 0.
$$

Let $c_i = \rho_{\eta}(y_i)$; then we can rewrite c_{η} as $c_{\eta} = \sum_{i=1}^{m} c_i \eta^n$. Let $P_{\eta \varepsilon_i}^{\xi}$ be the union of the squares $Q_{\eta \varepsilon_j}^{\xi}(y_i) \subseteq C_{\varepsilon_j}$, with $y_i \in Z_{\eta \varepsilon_j}^{\xi}$, for $i = 1, \ldots, m$. Let $A_j^{\xi} = A_{\eta \varepsilon_j}^{\xi}$; applying Lemma 5.2, since we can suppose, without loss of generality, that $u_j \in W^{1,1}(\Omega)$, there exists $\tau_j \in Q_{\eta \varepsilon_j}^{\xi}$ such that

$$
\mathcal{G}_{\varepsilon_j}(u_j, A) \geq \sum_{x \in A_j^{\xi}} (\eta \varepsilon_j)^n g_j(|\nabla u_j| * \rho_{\varepsilon_j}(x + \tau_j)).
$$

Let $B \subset\subset A$, and, for any j sufficiently large, let $v_j(y) = u_j(y + \tau_j)$. Then we get $v_j \in W^{1,1}(B)$ and $v_j \to u$ in $L^1(B)$. Thus

$$
\mathcal{G}_{\varepsilon_j}(u_j, A) \geq \sum_{x \in B_j^{\xi}} (\eta \varepsilon_j)^n g(|\nabla v_j| * \rho_{\varepsilon_j}(x))
$$

being $B_j^{\xi} = \{x \in Z_{\eta \varepsilon_j}^{\xi} : Q_{\eta \varepsilon_j}^{\xi} \subseteq B\}$. Now, for each $x \in B_j^{\xi}$, we estimate the term $|\nabla v_j| * \rho_{\varepsilon_j}(x)$; we have, for j large enough,

$$
\begin{split} |\nabla v_j|*\rho_{\varepsilon_j}(x)&=\int_{C_{\varepsilon_j}} |\nabla v_j(y+x)|\rho_{\varepsilon_j}(y) \, \mathrm{d}y \geq \frac{1}{\varepsilon_j^n} \int_{P_{\eta_{\varepsilon_j}}^{\xi}} |\nabla v_j(y+x)|\rho_{\eta}\left(\frac{y}{\varepsilon_j}\right) \mathrm{d}y\\ &\geq \frac{1}{\varepsilon_j^n} \sum_{i=1}^m c_i \int_{Q_{\eta_{\varepsilon_j}}^{\xi}(y_i)} |\nabla v_j(y+x)| \, \mathrm{d}y = \sum_{i=1}^m \frac{c_i \eta^n}{c_\eta} \int_{Q_{\eta_{\varepsilon_j}}^{\xi}(y_i)} c_\eta |\nabla v_j(y+x)| \, \mathrm{d}y. \end{split}
$$

Since $\sum_{i=1}^m \frac{c_i \eta^n}{c_n}$ $\frac{i\eta^n}{c_\eta} = 1$ and since g_j is concave we get, for every $x \in B_j^{\xi}$,

$$
g_j(|\nabla v_j| * \rho_{\varepsilon_j}(x)) \geq \sum_{i=1}^m \frac{c_i \eta^n}{c_\eta} g_j\bigg(c_\eta \int_{Q_{\eta_{\varepsilon_j}}^{\xi}(y_i)} |\nabla v_j(y+x)| dy\bigg).
$$

Thus, reordering the terms, we deduce that

$$
\mathcal{G}_{\varepsilon_j}(u_j, A) \geq \sum_{x \in D_j^{\xi}} (\eta \varepsilon_j)^n g_j \left(c_\eta \int_{Q_{\eta \varepsilon_j}^{\xi}(x)} |\nabla v_j| \,dz \right)
$$

for any $D \subset\subset B$ and j sufficiently large, being, as usual, $D_j^{\xi} = \{x \in Z_{\eta \varepsilon_j}^{\xi} : Q_{\eta \varepsilon_j}^{\xi} \subseteq D\}$. For convenience we can suppose $\nabla v_j = 0$ on

$$
\mathbb{R}^n \setminus \bigcup_{Q_{\eta\varepsilon_j}^{\xi} \subseteq D} Q_{\eta\varepsilon_j}^{\xi}.
$$

Let $\langle \xi \rangle$ be the one-dimensional space generated by ξ . Let us denote by $Z_{\eta \varepsilon_j}^{\xi_{\parallel}}$ and by $Z_{\eta \varepsilon_j}^{\xi_{\perp}}$ the orthogonal projections of $Z_{\eta\varepsilon_j}^{\xi}$ respectively on $\langle \xi \rangle$ and ξ^{\perp} . Then

$$
G_{\varepsilon_j}(u_j, A) \geq \sum_{x \in Z_{\eta \varepsilon_j}^{\xi}} (\eta \varepsilon_j)^n g_j\left(c_{\eta} \int_{Q_{\eta \varepsilon_j}^{\xi}(x)} |\nabla v_j| \,dz\right)
$$

$$
\geq \sum_{x_{\perp} \in Z_{\eta \varepsilon_j}^{\xi_{\perp}}} \sum_{x_{\parallel} \in Z_{\eta \varepsilon_j}^{\xi_{\parallel}}} (\eta \varepsilon_j)^n g_j\left(c_{\eta} \int_{Q_{\eta \varepsilon_j}^{\xi}(x_{\perp} + x_{\parallel})} |\nabla v_j| \,dz\right)
$$

where $x = x_{\parallel} + x_{\perp}$ turns out to be the unique decomposition of any $x \in Z_{\eta \varepsilon_j}^{\xi}$ with $x_{\parallel} \in Z_{\eta \varepsilon_j}^{\xi_{\parallel}}$ and $x_{\perp} \in Z_{\eta \varepsilon_j}^{\xi_{\perp}}$. Moreover, denoting by $Q_{\eta \varepsilon_j}^{\xi_{\parallel}}$ and by $Q_{\eta \varepsilon_j}^{\xi_{\perp}}$ the projections of $Q_{\eta \varepsilon_j}^{\xi_{\parallel}}$ respectively on $\langle \xi \rangle$ and on ξ^{\perp} , applying Jensen's inequality we deduce that

$$
\begin{split} \mathcal{G}_{\varepsilon_{j}}(u_{j},A)&\geq\sum_{x_{\perp}\in Z_{\eta\varepsilon_{j}}^{\xi_{\perp}}}\sum_{x_{\parallel}\in Z_{\eta\varepsilon_{j}}^{\xi_{\parallel}}}\left(\eta\varepsilon_{j}\right)^{n}g_{j}\left(c_{\eta}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\perp}}(x_{\perp})}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\parallel}}(x_{\parallel})}\left|\langle\nabla v_{j}(z_{\perp}+z_{\parallel}),\xi\rangle\right|\mathrm{d}z_{\parallel}\,\mathrm{d}z_{\perp}\right)\\ &\geq\sum_{x_{\perp}\in Z_{\eta\varepsilon_{j}}^{\xi_{\perp}}}\sum_{x_{\parallel}\in Z_{\eta\varepsilon_{j}}^{\xi_{\parallel}}}\left(\eta\varepsilon_{j}\right)^{n}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\perp}}(x_{\perp})}g_{j}\left(c_{\eta}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\parallel}}(x_{\parallel})}\left|\langle\nabla v_{j}(z_{\perp}+z_{\parallel}),\xi\rangle\right|\mathrm{d}z_{\parallel}\right)\mathrm{d}z_{\perp}\\ &\geq\sum_{x_{\perp}\in Z_{\eta\varepsilon_{j}}^{\xi_{\perp}}}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\perp}}(x_{\perp})}\sum_{x_{\parallel}\in Z_{\eta\varepsilon_{j}}^{\xi_{\parallel}}}\eta\varepsilon_{j}g_{j}\left(c_{\eta}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\parallel}}(x_{\parallel})}\left|\langle\nabla v_{j}(z_{\perp}+z_{\parallel}),\xi\rangle\right|\mathrm{d}z_{\parallel}\right)\mathrm{d}z_{\perp}\\ &\geq\int_{\xi^{\perp}}\sum_{x_{\parallel}\in Z_{\eta\varepsilon_{j}}^{\xi_{\parallel}}}\eta\varepsilon_{j}g_{j}\left(c_{\eta}\int_{Q_{\eta\varepsilon_{j}}^{\xi_{\parallel}}(x_{\parallel})}\left|\langle\nabla v_{j}(z_{\perp}+z_{\parallel}),\xi\rangle\right|\mathrm{d}z_{\parallel}\right)\mathrm{d}z_{\perp}.\end{split}
$$

For any $\sigma > 0$ small let $D_{\sigma} = \{x \in D : d(x, \partial D) > \sigma\}$ and $D_{\sigma}^{x_{\perp}} = \{x \in D_{\sigma} : x = x_{\perp} + x_{\parallel}\xi, x_{\parallel} \in D\}$ R}, for x_\perp ∈ ξ^\perp . For j sufficiently large, $v_j(x_\perp + \cdot) \in W^{1,1}(D_{\sigma}^{x_\perp})$. Furthermore, $v_j \to u$ in $L^1(D_{\sigma}^{x_{\perp}})$ for a.e. $x_{\perp} \in \xi^{\perp}$. Let $h_j(t) = g_j(c_{\eta}t)$; then, by the very definition of g, it is easy to see that $h_j(t) = \alpha c_\eta t \wedge \frac{\beta}{\varepsilon_j}$. We are in position to apply Lemma 5.1 with choice $\alpha' = \alpha c_\eta$ and $\beta' = \beta$. Thus

$$
\liminf_{j \to +\infty} \sum_{x_{\parallel} \in Z_{\eta \varepsilon_{j}}^{\varepsilon_{\parallel}}} \eta \varepsilon_{j} g_{j} \left(c_{\eta} \int_{Q_{\eta \varepsilon_{j}}^{\varepsilon_{\parallel}}} |\langle \nabla v_{j}(z_{\perp} + z_{\parallel}), \xi \rangle| \, \mathrm{d}z_{\parallel} \right)
$$
\n
$$
= \liminf_{j \to +\infty} \sum_{x_{\parallel} \in Z_{\eta \varepsilon_{j}}^{\varepsilon_{\parallel}}} \eta \varepsilon_{j} h_{j} \left(\int_{Q_{\eta \varepsilon_{j}}^{\varepsilon_{\parallel}}} |\langle \nabla v_{j}(z_{\perp} + z_{\parallel}), \xi \rangle| \, \mathrm{d}z_{\parallel} \right)
$$
\n
$$
\geq \alpha c_{\eta} \int_{D_{\sigma}^{z_{\perp}}} |\langle \nabla u(z_{\perp} + z_{\parallel}), \xi \rangle| \, \mathrm{d}z_{\parallel} + \alpha c_{\eta} |\langle D^{c} u(z_{\perp} + \cdot), \xi \rangle| (D_{\sigma}^{z_{\perp}}).
$$

Taking into account Theorem 2.2 and Fatou's Lemma we conclude that

$$
\liminf_{j \to +\infty} \mathcal{G}_{\varepsilon_j}(u_j, A) \ge c_\eta \alpha \int_{D_\sigma} |\langle \nabla u(z), \xi \rangle| \, \mathrm{d}z + c_\eta \alpha |\langle D^c u, \xi \rangle(D_\sigma).
$$

Since $c_{\eta} \to 1$ as $\eta \to 0$, let $\sigma \to 0$ and $D \nearrow A$. Then

(5.2)
$$
\mathcal{G}'(u, A) \ge \alpha \int_A |\langle \nabla u(z), \xi \rangle| dz \text{ and } \mathcal{G}'(u, A) \ge \alpha |\langle D^c u, \xi \rangle| (A)
$$

for any $\xi \in \mathbb{S}^{n-1}$. From the first inequality, using the superadditivity of \mathcal{G}' and Lemma 2.5 we easily deduce that

$$
\mathcal{G}'(u, A) \ge \alpha \int_A |\nabla u| \,\mathrm{d} z.
$$

Now if $\psi_{\xi} = \left\langle \frac{dD^c u}{d|D^c u|}, \xi \right\rangle$ the second inequality in (5.2) can be rewritten as

$$
\mathcal{G}'(u, A) \ge \alpha \int_A |\psi_{\xi}| d|D^c u|.
$$

Another application of Lemma 2.5 yields

$$
\mathcal{G}'(u, A) \ge \alpha \int_A \sup_{\xi \in \mathbb{S}^{n-1}} |\psi_{\xi}| d|D^c u \ge \alpha \int_A |\sup_{\xi \in \mathbb{S}^{n-1}} \psi_{\xi}| d|D^c u| = \alpha |D^c u|(A).
$$

This concludes the proof.

5.2. A preliminary estimate in terms of the surface part. In this section we will consider the family of functionals $L^1(\Omega) \times \mathcal{A}(\Omega) \to [0, +\infty]$ given by

$$
\mathcal{E}_{\varepsilon}(u, A) = \begin{cases} \frac{1}{\varepsilon} \int_{A} h(\varepsilon |\nabla u| * \rho_{\varepsilon}) dx & \text{if } u \in W^{1,1}(\Omega) \\ +\infty & \text{otherwise in } L^{1}(\Omega) \end{cases}
$$

where $h: [0, +\infty) \to [0, +\infty)$ is a non-decreasing concave function with $h(0) = 0$ and with

$$
\lim_{t \to 0} = \frac{h(t)}{t} = c' > 0.
$$

The aim of this section is to estimate from below the lower Γ-limit of $\mathcal{E}_{\varepsilon}$ in terms of a surface integral; to do this the main idea, as in [22], is to estimate from below the Radon-Nikodym derivative of the lower Γ-limit \mathcal{E}' with respect to the Hausdorff measure \mathcal{H}^{n-1} by means of a blowup argument around a jump point; then the result follows applying Besicovitch's Differentiation Theorem in a standard way.

Given $x_0 \in \mathbb{R}^n$, $\nu \in \mathbb{S}^{n-1}$ and $a, b \in \mathbb{R}$, when considering \mathcal{E}' for the blow up $u_{x_0}^{\nu, a, b} = u_{\nu}^{a, b}(\cdot - x_0)$ (see paragraph 3.1 for the definition of $u_{\nu}^{a,b}$) on a unit ball B_1 as below (or on a cylinder Q_{ν} as in the sequel), we will assume as Ω any set Ω' strictly containing B_1 (or Q_ν): the lower Γ-limit of $\mathcal{E}_{\varepsilon}(\cdot, A)$ does not change by replacing Ω with any $\Omega' \supset \supset A$.

For every $A \in \mathcal{A}(\Omega)$ let $\mathcal{E}'_-(\cdot,A)$ be the inner regular envelope of \mathcal{E}' , i.e.

$$
\mathcal{E}'_{-}(\cdot,A)=\sup\{\mathcal{E}'(\cdot,B):B\in\mathcal{A}(\Omega),B\subset\subset A\}.
$$

Proposition 5.4. Let $u \in BV(\Omega)$ and let $x_0 \in J_u$. Then

$$
\liminf_{\varrho \to 0} \frac{\mathcal{E}'_-(u, B_\varrho(x))}{\varrho^{n-1}} \ge \mathcal{E}'(u_{x_0}^{\nu_u(x_0), u^+(x_0), u^-(x_0)}, B_1(x_0)).
$$

Proof. Let $\delta \in (0,1)$. Then $\mathcal{E}'_-(u, B_\varrho(x_0)) \geq \mathcal{E}'(u, B_{\delta_\varrho}(x_0))$ for every $\varrho > 0$. Thus

(5.3)
$$
\liminf_{\varrho \to 0} \frac{\mathcal{E}'_-(u, B_\varrho(x_0))}{\varrho^{n-1}} \ge \delta^{n-1} \liminf_{r \to 0} \frac{\mathcal{E}'(u, B_r(x_0))}{r^{n-1}}
$$

Let us now estimate the lower limit in the right-hand side. Without loss of generality we can assume $x_0 = 0$; moreover, for the sake of simplicity, we will denote by u_0 the function $u_0^{\nu_u(0), u^+(0), u^-(0)}$.

.

Let (r_k) be a decreasing infinitesimal sequence; for every $k \in \mathbb{N}$ there exists $u_j \in W^{1,1}(\Omega)$ such that $u_j \to u$ in $L^1(\Omega)$ and

$$
\liminf_{j \to +\infty} \mathcal{E}_{\varepsilon_j}(u_j, B_{r_k}) \leq \mathcal{E}'(u, B_{r_k}) + \frac{r_k^{n-1}}{2k}.
$$

Let $\bar{j} = j(k)$ be such that $\varepsilon_{\bar{j}}/r_k \leq 1/k$ and

$$
\mathcal{E}_{\varepsilon_{\overline{j}}}(u_{\overline{j}},B_{r_k}) \leq \mathcal{E}'(u,B_{r_k}) + \frac{r_k^{n-1}}{k},
$$

 $||u_{\overline{j}} - u||_{L^1(\Omega)} \leq \frac{1}{k}$ and such that

$$
\int_{B_2} |u_{\bar{j}}(r_k x) - u(r_k x)| \, \mathrm{d}x \le \frac{1}{k}.
$$

Let $v_k = u_{j(k)}$. We can suppose that the sequence $j(k)$ is increasing, and we set $\sigma_k = \varepsilon_{j(k)}$. Hence, $v_k \to u$ in $L^1(\Omega)$,

(5.4)
$$
\mathcal{E}_{\sigma_k}(v_k, B_{r_k}) \leq \mathcal{E}'(u, B_{r_k}) + \frac{r_k^{n-1}}{k}
$$

and

(5.5)
$$
\int_{B_2} |v_k(r_k x) - u(r_k x)| \, dx \leq \frac{1}{k}.
$$

Inequality (5.4) gives

$$
\liminf_{k \to +\infty} \frac{\mathcal{E}'(u, B_{r_k})}{r_k^{n-1}} \ge \liminf_{k \to +\infty} \frac{\mathcal{E}_{\sigma_k}(v_k, B_{r_k})}{r_k^{n-1}}
$$

while from (5.5) we get

$$
\int_{B_2} |v_k(r_k x) - u_0(r_k x)| \,dx \le \frac{1}{k} + \int_{B_2} |v(r_k x) - u_0(r_k x)| \,dx \to 0
$$

as $k \to +\infty$. Let $w_k(t) = v_k(r_k t)$. Then $w_k \to u_0$ in $L^1(B_2)$; moreover, for every $x \in B_{r_k}$ we have, setting $y = r_k t$ and observing that $|\nabla w_k(t)| = r_k |\nabla v_k(r_k t)|$,

$$
|\nabla v_k| * \rho_{\sigma_k}(x) = \int_{C_{\sigma_k}(x)} |\nabla v_k(y)| \rho_{\sigma_k}(y - x) dy = \frac{1}{\sigma_k^n} \int_{C_{\sigma_k}(x)} |\nabla v_k(y)| \rho \left(\frac{y - x}{\sigma_k}\right) dy
$$

$$
= \frac{r_k^{n-1}}{\sigma_k^n} \int_{C_{\sigma_k/r_k}(x/r_k)} |\nabla w_k(t)| \rho \left(\frac{t}{\sigma_k/r_k} - \frac{x}{\sigma_k}\right) dt.
$$

Therefore, setting $x = r_k z$, we obtain

$$
\frac{\mathcal{E}_{\sigma_k}(v_k, B_{r_k})}{r_k^{n-1}} = \frac{1}{r_k^{n-1}\sigma_k} \int_{B_{r_k}} h(\sigma_k |\nabla v_k| * \rho_{\sigma_k}(x)) dx
$$

\n
$$
= \frac{1}{r_k^{n-1}\sigma_k^n} \int_{B_{r_k}} h\left(\frac{r_k^{n-1}}{\sigma_k^{n-1}} \int_{C_{\sigma_k/r_k}(x/r_k)} |\nabla w_k(t)| \rho \left(\frac{t}{\sigma_k/r_k} - \frac{x}{\sigma_k}\right) dt\right) dx
$$

\n
$$
= \frac{1}{\sigma_k/r_k} \int_{B_1} h\left(\frac{\sigma_k}{r_k} \frac{r_k^n}{\sigma_k^n} \int_{C_{\sigma_k/r_k}(z)} |\nabla w_k(t)| \rho \left(\frac{t-z}{\sigma_k/r_k}\right) dt\right) dz
$$

\n
$$
= \frac{1}{\sigma_k/r_k} \int_{B_1} h\left(\frac{\sigma_k}{r_k} |\nabla w_k| * \rho_{\sigma_k/r_k}(z)\right) dz.
$$

Since $\sigma_k/r_k \to 0$, and $w_k \to u_0$ in $L^1(B_2)$, by the arbitrariness of (r_k) and the definition of \mathcal{E}' , we conclude combining (5.3) with the arbitrariness of $\delta \in (0,1)$.

Now we estimate from below $\mathcal{E}'(u_{x_0}^{\nu,a,b},B_1(x_0))$. Without loss of generality, we can assume $x_0 = 0$ and $\nu = e_1$; we will denote, for the sake of simplicity, by $u^{a,b}$ the function $u_0^{e_1,a,b}$. In order to estimate from below $\mathcal{E}'(u^{a,b}, B_1)$ first we need to consider the problem on a suitable cylinder.

Recall that (see paragraph 3.1) $Q_{\mathbf{e}_1} = \{x \in \mathbb{R}^n : |x_1| < 1, P_{\mathbf{e}_1}^{\perp}(x) \in B_1 \cap \mathbf{e}_1^{\perp} \}$, being $P_{\mathbf{e}_1}^{\perp}(x)$ the orthogonal projection of x onto the subspace \mathbf{e}_1^{\perp} ; for simplicity of notation we will use Q instead of $Q_{\mathbf{e}_1}$.

Lemma 5.5. For any A open subset of Q there exist a positive infinitesimal sequence (ε_i) and a sequence u_j in $W^{1,1}(\Omega')$ converging to $u^{a,b}$ in $L^1(\Omega')$ such that

(5.6)
$$
\lim_{j \to +\infty} \mathcal{E}_{\varepsilon_j}(u_j, A) = \mathcal{E}'(u^{a,b}, A)
$$

and such that

(5.7)
$$
u_j(x) = a, \quad \text{if } x_1 \le -a_j \quad \text{and} \quad u_j(x) = b, \quad \text{if } x_1 \ge b_j
$$

for some positive infinitesimal sequences (a_i) and (b_i) .

Proof. We divide the proof in two steps.

Step 1. Fix $A \in \mathcal{A}(Q)$ with $A \subset\subset Q$, $\varepsilon, \sigma > 0$ sufficiently small. Let φ given by

$$
\varphi(x) = \begin{cases} 0 & x_1 \le -2\varepsilon - \sigma \\ \text{affine} & -2\varepsilon - \sigma < x_1 < -2\varepsilon \\ 1 & x_1 \ge -2\varepsilon. \end{cases}
$$

Obviously we have $|\nabla \varphi| \leq \frac{1}{\sigma}$. Let

$$
A_{\varepsilon} = \{ x \in \mathbb{R}^n : x_1 < -2\varepsilon - k_1\varepsilon - \sigma \}, \quad B_{\varepsilon} = \{ x \in \mathbb{R}^n : x_1 > -2\varepsilon + \varepsilon k_2 \}
$$

$$
S_{\varepsilon} = \{ x \in \mathbb{R}^n : -2\varepsilon - \varepsilon k_1 - \sigma < x_1 < -2\varepsilon + \varepsilon k_2 \}
$$

where $k_1 = \sup_{x \in C} \langle x, \mathbf{e}_1 \rangle$ and $k_2 = -\inf_{x \in C} \langle x, \mathbf{e}_1 \rangle$. Let $u_1, u_2 \in W^{1,1}(\Omega')$ and $v = \varphi u_1 + (1-\varphi)u_2$. Then

$$
\mathcal{E}_{\varepsilon}(v, A) = \frac{1}{\varepsilon} \int_{A \cap A_{\varepsilon}} h(\varepsilon |\nabla u_2| * \rho_{\varepsilon}) dx + \frac{1}{\varepsilon} \int_{A \cap B_{\varepsilon}} h(\varepsilon |\nabla u_1| * \rho_{\varepsilon}) dx + \frac{1}{\varepsilon} \int_{A \cap S_{\varepsilon}} h(\varepsilon |\nabla v| * \rho_{\varepsilon}) dx.
$$

Taking into account the subadditivity of h we get

$$
\frac{1}{\varepsilon} \int_{A \cap S_{\varepsilon}} h(\varepsilon |\nabla v| * \rho_{\varepsilon}) dx \leq \frac{1}{\varepsilon} \int_{A \cap S_{\varepsilon}} h(\varepsilon (\varphi |\nabla u_1|) * \rho_{\varepsilon}) dx + \frac{1}{\varepsilon} \int_{A \cap S_{\varepsilon}} h(\varepsilon ((1 - \varphi)|\nabla u_2|) * \rho_{\varepsilon}) dx \n+ \frac{1}{\varepsilon} \int_{A \cap S_{\varepsilon}} h(\varepsilon (|\nabla \varphi| |u_1 - u_2|) * \rho_{\varepsilon}) dx.
$$

Then

$$
\mathcal{E}_{\varepsilon}(v, A) \leq \mathcal{E}_{\varepsilon}(u_1, A \cap (B_{\varepsilon} \cup S_{\varepsilon})) + \mathcal{E}_{\varepsilon}(u_2, A \cap (A_{\varepsilon} \cup S_{\varepsilon})) + \frac{c'}{\sigma} \int_{A \cap S_{\varepsilon}} |u_1 - u_2| \ast \rho_{\varepsilon} \, dx
$$

where we have used $h(t) \leq c' t$ for each $t \geq 0$.

Step 2. Now let (ε_j) be a positive infinitesimal sequence and let (v_j) be a sequence in $W^{1,1}(\Omega')$ such that $v_j \to u^{a,b}$ in $L^1(\Omega')$ and

$$
\lim_{j \to +\infty} \mathcal{E}_{\varepsilon_j}(v_j, A) = \mathcal{E}'(u^{a,b}, A).
$$

Choosing $u_1 = v_j$ and $u_2 = a$ we have, since $\mathcal{E}_{\varepsilon_j}(u_2, A) = 0$,

$$
\mathcal{E}_{\varepsilon_j}(\varphi v_j + (1 - \varphi)u_2, A) \leq \mathcal{E}_{\varepsilon_j}(v_j, A) + \frac{c'}{\sigma} \int_{\{x_1 < 0\}} |v_j - u_2| \cdot \rho_{\varepsilon_j} \, dx.
$$

By standard properties of the convolution,

$$
\int_{\{x_1 < 0\}} |v_j - u_2| * \rho_{\varepsilon_j} \, dx \le ||v_j - u_2||_{L^1(\{x_1 < 0\})} \to 0
$$

as $j \to +\infty$. Therefore, by a diagonal argument, if $\sigma_h \to 0$ we can find $j_h \to +\infty$ be such that

$$
\lim_{h \to +\infty} \frac{1}{\sigma_h} \int_{\{x_1 < 0\}} |v_{j_h} - u_2| \cdot \rho_{\varepsilon_{j_h}} \, \mathrm{d}x = 0.
$$

Thus

$$
\limsup_{h \to +\infty} \mathcal{E}_{\varepsilon_{j_j}}(\varphi v_{j_h} + (1 - \varphi)u_2, A) \le \limsup_{h \to +\infty} \mathcal{E}_{\varepsilon_{j_h}}(v_{j_h}, A) = \mathcal{E}'(u^{a,b}, A).
$$

Setting

$$
u_{j_h} = \begin{cases} a & x_1 \leq -2\varepsilon_{j_h} - \sigma_h \\ v_{j_h} & x_1 \geq 0 \end{cases}
$$

we easily have $u_{j_h} \to u^{a,b}$ in $L^1(\Omega')$ and $u_{j_h} = a$ for $x_1 \leq -a_j$ for a suitable positive infinitesimal sequence (a_j) . With the same argument one can prove that $u_{j_h} = b$ for $x_1 \geq b_j$ for another suitable positive infinitesimal sequence (b_j) . Thus (u_{j_h}) is optimal and (5.7) hold.

Proposition 5.6. We have $\mathcal{E}'(u^{a,b}, B_1) \geq \mathcal{E}'(u^{a,b}, Q)$.

Proof. Fix $\delta \in (0,1)$. Let (u_j) be given by the previous Lemma, applied with $A = B_1$. Then $u_j(x) = a$ if $x_1 \leq -a_j$, and $u_j(x) = b$ if $x_1 \geq b_j$, where (a_j) and (b_j) are suitable positive infinitesimal sequences. Let $S_j = (-a_j, b_j) \times \mathbb{R}^{n-1}$. For j sufficiently large, we have $\delta Q \cap S_j \subset\subset B_1$, from which $\mathcal{E}_{\varepsilon_j}(u_j, \delta Q \cap B_1) = \mathcal{E}_{\varepsilon_j}(u_j, \delta Q)$. Then

(5.8)
$$
\mathcal{E}_{\varepsilon_j}(u_j, B_1) \geq \mathcal{E}_{\varepsilon_j}(u_j, B_1 \cap \delta Q) = \mathcal{E}_{\varepsilon_j}(u_j, \delta Q).
$$

Let $v_j(x) = u_j(\delta x)$. Then by a simple scaling argument we have $\mathcal{E}_{\varepsilon_j}(u_j, \delta Q) = \delta^{n-1} \mathcal{E}_{\varepsilon_j/\delta}(v_j, Q)$. Passing to the limit in (5.8) we get

$$
\mathcal{E}'(u^{a,b}, B_1) \geq \delta^{n-1} \liminf_{j \to +\infty} \mathcal{E}_{\varepsilon_j/\delta}(v_j, Q) \geq \delta^{n-1} \mathcal{E}'(u^{a,b}, Q).
$$

We conclude by taking the limit as $\delta \rightarrow 1^-$. [−] .

Now, by an application of the Besicovitch's Differentiation Theorem, we are able to prove the correct estimate from below for the lower Γ-limit of $\mathcal{E}_{\varepsilon_j}$. In order to apply such a Theorem, let us consider the set function $\mathcal{E}'_-(u, \cdot)$. It is well known that an increasing set function $\alpha: \mathcal{A}(\Omega) \to$ $[0, +\infty]$ which satisfies $\alpha(\emptyset) = 0$, which is subadditive, superadditive and inner regular, can be extended to a Borel measure on Ω (for instance see [18], Th. 14.23). This result can be applied to $\mathcal{E}'_-(u, \cdot)$, the subadditivity of $\mathcal{E}'_-(u, \cdot)$ being the only condition which is not easy to prove, but it can be recovered as in the proof of Prop. 4.3 and Th. 4.6 of [13]; these results are established in the case $p > 1$, but the same arguments work if $p = 1$.

Denote by μ_u the Borel measure on Ω which extends $\mathcal{E}'_-(u, \cdot)$.

Lemma 5.7. Let $u \in BV(\Omega)$. Then μ_u is a finite measure.

Proof. Let (u_h) be a sequence in $L^1(\Omega)$ converging weakly^{*} converging to u in $BV(\Omega)$. By definition

$$
|Du_h| * \rho_{\varepsilon}(x) = \int_{C_{\varepsilon}(x) \cap \Omega} \rho_{\varepsilon}(x - y) \,d|Du_h|(y).
$$

Since $Du_h \overset{*}{\rightharpoonup} Du$ as measures, by Fatou's Lemma and taking into account that f is non-decreasing and continuous, we get

$$
(5.9) \quad \liminf_{h \to +\infty} \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon |Du_h| * \rho_{\varepsilon}) \, \mathrm{d}x \geq \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon \liminf_{h \to +\infty} |Du_h| * \rho_{\varepsilon}) \, \mathrm{d}x \geq \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon |Du| * \rho_{\varepsilon}) \, \mathrm{d}x.
$$

Now let $u \in BV(\Omega)$ and let (u_h) be a sequence in $L^1(\Omega)$ strictly converging to u. In particular, $|Du_h| \to |Du|$ weakly^{*} as measures (see, for instance, Prop. 3.15 in [3]). Note that that D^cu vanishes on the sets with finite \mathcal{H}^{n-1} measure. Moreover, if S is σ -finite with respect to \mathcal{H}^{n-1} , then $\{x \in \Omega : \mathcal{H}^{n-1}(S \cap \partial C_{\varepsilon}(x)) > 0\}$ is at most countable. Then (see, for instance, Prop. 1.62 in [3]), we have

$$
\lim_{h \to +\infty} |Du_h| * \rho_{\varepsilon}(x) = |Du| * \rho_{\varepsilon}(x), \quad \text{a.e. } x \in \Omega.
$$

Applying the Dominated Convergence Theorem, we obtain

(5.10)
$$
\lim_{h \to +\infty} \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon |Du_h| * \rho_{\varepsilon}) dx = \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon |Du| * \rho_{\varepsilon}) dx.
$$

Combining (5.9) with (5.10) and taking into account that \mathcal{E}'_- is lower semicontinuous, we have

$$
\mathcal{E}'_{-}(u) \le \limsup_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{\Omega} h(\varepsilon |Du| * \rho_{\varepsilon}) \, \mathrm{d}x.
$$

Notice that there exists $\gamma > 0$ such that $|C_\varepsilon(x) \cap \Omega| \leq \gamma \varepsilon^n$ for any $x \in \Omega$. Denoting by $M = \sup_{C} \rho$ and taking into Fubini's Theorem, we get that for sufficiently small ε ,

$$
\int_{\Omega} h(\varepsilon|Du| * \rho_{\varepsilon}) dx \le c' \int_{\Omega} \int_{C_{\varepsilon}(x) \cap \Omega} \rho_{\varepsilon}(y-x) d|Du|(y) dx = c' \int_{\Omega} \int_{\Omega} \rho_{\varepsilon}(y-x) \chi_{C_{\varepsilon}(x)} dx d|Du|(y) \n\le c' M \int_{\Omega} \int_{\Omega} \frac{|C_{\varepsilon}(x) \cap \Omega|}{\varepsilon^{n}} d|Du|(y) \le c' M \gamma |Du|(\Omega)
$$

and this yields the conclusion. \Box

Proposition 5.8. Let $u \in BV(\Omega)$ and $A \in \mathcal{A}(\Omega)$. Then

$$
\mathcal{E}'(u, A) \ge \int_{S_u \cap A} \psi(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1},
$$

where

$$
\psi(s,\nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} h(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j) \in W^{0,s}_{\nu}, \, \varepsilon_j \to 0^+ \right\}.
$$

Proof. For every $k \in \mathbb{N}$ let $S_k = \{x \in S_u : |u^+(x) - u^-(x)| > 1/k\}$. Clearly we have $\mathcal{H}^{n-1}(S_k) <$ +∞; let $\lambda_k = \mathcal{H}^{n-1} \sqcup S_k$. Applying the Besicovitch's Differentiation Theorem we deduce that the limit

$$
g(x) = \lim_{\varrho \to 0} \frac{\mu_u(B_{\varrho}(x))}{\lambda_k(B_{\varrho}(x))}
$$

exists and is finite for λ_k -a.e. $x \in \Omega$, and is λ_k -measurable. Moreover, the Radon-Nikodym decomposition of μ_u is given by $\mu_u = g\lambda_k + \mu^s$, with $\mu^s \perp \lambda_k$. By rectifiability for \mathcal{H}^{n-1} -a.e. $x \in S_k$ we get

$$
\lim_{\varrho \to 0} \frac{\lambda_k(B_{\varrho}(x))}{\omega_{n-1}\varrho^{n-1}} = 1.
$$

Thus, for \mathcal{H}^{n-1} -a.e. $x_0 \in S_k$ we have, applying Proposition 5.4, Proposition 5.6 and taking into account (5.7),

$$
g(x_0) = \lim_{\varrho \to 0} \frac{\mu_u(B_{\varrho}(x_0))}{\omega_{n-1}\varrho^{n-1}} = \liminf_{\varrho \to 0} \frac{\mathcal{E}'_-(u, B_{\varrho}(x_0))}{\omega_{n-1}\varrho^{n-1}}
$$

$$
\geq \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{x_0 + Q_{\nu}} h(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j(\cdot - x_0)) \in W_{\nu_u(x_0)}^{u^+(x_0), u^-(x_0)}, \varepsilon_j \to 0^+ \right\}.
$$

Taking into account (3.8) and (3.9) (which obviously hold for h instead of f) we get

$$
\inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{x_0 + Q_\nu} h(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j(\cdot - x_0)) \in W_{\nu_u(x_0)}^{u^+(x_0), u^-(x_0)}, \varepsilon_j \to 0^+ \right\}
$$

$$
= \psi(|u^+(x_0) - u^-(x_0)|, \nu_u(x_0)).
$$

Since μ^s is non-negative, we deduce that

$$
\mathcal{E}'_{-}(u, A) \ge \int_{A} \psi(|u^{+} - u^{-}|, \nu_{u}) d\lambda_{k} = \int_{S_{k} \cap A} \psi(|u^{+} - u^{-}|, \nu_{u}) d\mathcal{H}^{n-1}.
$$

By considering the supremum for $k \in \mathbb{N}$ we easily obtain

$$
\mathcal{E}'_{-}(u, A) \ge \int_{S_u \cap A} \psi(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1}
$$

and the conclusion follows by definition of \mathcal{E}' $\frac{1}{2}$.

5.3. Proof of the Γ-liminf inequality. We are ready to prove the Γ-liminf inequality for the family $(\mathcal{F}_{\varepsilon})_{\varepsilon>0}$. The main step of the proof consists in combining Proposition 5.3 with Proposition 5.8 and then using a supremum of measures argument.

Lemma 5.9. Let μ be as in Lemma 2.5. Let λ_1, λ_2 be mutually singular Borel measures, and ψ_1, ψ_2 positive Borel functions. Assume that

$$
\mu(A) \ge \int_A \psi_i \,\mathrm{d}\lambda_i
$$

for every $A \in \mathcal{A}(\Omega)$ and $i = 1, 2$. Then it holds

$$
\mu(A) \ge \int_A \psi_1 \, \mathrm{d}\lambda_1 + \int_A \psi_2 \, \mathrm{d}\lambda_2
$$

for every $A \in \mathcal{A}(\Omega)$.

Proof. Let $E \subseteq \Omega$ be such that $\lambda_1(\Omega \setminus E) = 0$ and $\lambda_2(E) = 0$. Then we can suppose that $\psi_1 = 0$ on $\Omega \setminus E$ and $\psi_2 = 0$ on E. Then max $\{\psi_1, \psi_2\} = \psi_1 + \psi_2$. We conclude by applying the Lemma 2.5 with the choice $\lambda = \lambda_1 + \lambda_2$.

Proposition 5.10. Let $u \in L^1(\Omega)$ and $A \in \mathcal{A}(\Omega)$. Then

$$
\mathcal{F}'(u, A) \ge \int_A \phi(|\nabla u|) dx + \int_{S_u \cap A} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} + c_0 |D^c u|(A).
$$

Proof. First notice that we can suppose $u \in GBV(\Omega)$. Indeed, if $(\mathcal{F}_{\varepsilon_j}(u_j))$ is bounded and $u_j \to u$ in $L^1(\Omega)$ then $u \in GBV(\Omega)$: it suffices to apply Theorem 3.6 to $u_j^T = -T \vee u_j \wedge T$, hence we get $u^T \in BV(\Omega)$ which means $u \in GBV(\Omega)$.

Now the key point of the proof is the construction of a suitable family of functions below f_{ε_j} .

Step 1. Let $\delta \in (0,1)$. We claim that there exists $t_{\delta} > 0$ and for any $h \in \mathbb{N}$ and for any $\varepsilon > 0$ there exist $c_h^{\delta} > 0$, $d_h^{\delta} < 0$ and g_h^{δ} : $[t_{\delta}, +\infty) \to \mathbb{R}$ such that if we let

$$
f_{\varepsilon}^{h,\delta}(t) = \begin{cases} c_h^{\delta} t + \varepsilon d_h^{\delta} & \text{if } t \in [0, t_{\delta}] \\ c_h^{\delta} t_{\delta} + \varepsilon d_h^{\delta} + g_h^{\delta}(t) & \text{if } t > t_{\delta} \end{cases}
$$

we have:

(5.11)
$$
\sup_h(c_h^{\delta}t + d_h^{\delta}) = (1 - \delta)\phi(t), \quad \forall t \ge 0.
$$

(5.12)
$$
f_{\varepsilon}(t) \ge f_{\varepsilon}^{h,\delta}(t), \forall t \ge 0, \forall h \in \mathbb{N}, \text{ for } \varepsilon \text{ sufficiently small.}
$$

 (5.13) $e^{ih,\delta}$ is continuous, non-decreasing and concave for any $\varepsilon > 0$ and any $h \in \mathbb{N}$.

 (5.14) $e^{ih,\delta} - \varepsilon d_h^{\delta}$ converges to $(1 - \delta)f$ uniformly on compact sets of $[0, +\infty)$ as $h \to +\infty$. First of all we point out that

(5.15)
$$
\lim_{t \to 0} \frac{f(t)}{t} = c_0.
$$

Indeed, by A2 for any $\sigma \in (0,1)$ there exist $t_{\sigma}, \varepsilon_{\sigma} > 0$ such that $f_{\varepsilon}(t) \leq (1+\sigma)\varepsilon \phi(t/\varepsilon)$ for each $t \in [0, t_{\sigma}]$ and for each $\varepsilon \in (0, \varepsilon_{\sigma}]$. Since $\phi(s) \leq c_0 s$ for any $s \geq 0$, we have $f_{\varepsilon}(t)/t \leq (1+\sigma)c_0$. By A3 the previous inequality reduces to $f(t)/t \leq (1+\sigma)c_0$. On the other hand there exist $t'_{\sigma}, \varepsilon'_{\sigma} > 0$ such that $f_{\varepsilon}(t) \geq (1 - \sigma) \varepsilon \phi(t/\varepsilon)$ for each $t \in [0, t'_{\sigma}]$ and for each $\varepsilon \in (0, \varepsilon'_{\sigma}]$. Since $\phi(s) \geq c_0 s - q$, for a suitable $q > 0$, we have $f_{\varepsilon}(t)/t \geq (1 - \sigma)(c_0t - \varepsilon q)$. We thus get $f(t)/t \geq (1 - \sigma)c_0$. By the arbitrariness of $\sigma > 0$ we have (5.15).

Formula (5.15) is useful in order to construct the family $(f_{\varepsilon}^{h,\delta})$ as follows. By A2 there exists $t_\delta > 0$ such that $f_\varepsilon(t) \geq (1-\delta)\varepsilon \phi(t/\varepsilon)$ for each $t \in [0, t_\delta]$ and for each ε sufficiently small. Fix $h \in \mathbb{N}$ with $h > 0$ and let $(\ell_h)_{h \in \mathbb{N}}$ be a family of affine functions such that $\sup_h \ell_h(t) = \phi(t)$ for any $t \ge 0$ (recall that ϕ is convex); we let $\ell_h(t) = c_h t + d_h$. Let $c_h^{\delta} = (1 - \delta)c_h$ and $d_h^{\delta} = (1 - \delta)d_h$. Then (5.11) holds and we obtain $f_{\varepsilon}(t) \geq c_h^{\delta} t + \varepsilon d_h^{\delta}$ for all $t \in [0, t_{\delta}]$. Now it is easy to conclude the construction of $f_{\varepsilon}^{h,\delta}$ in such a way (5.12), (5.13) and (5.14) hold: for instance connecting the graphic of the affine piece with a suitable rotation and truncation of the graph of f (see also (5.15)).

Step 2. Let $\delta \in (0,1)$ and let $(f_{\varepsilon_j}^{h,\delta})$ be the family constructed in step 1. Let $\psi_h^{\delta} = f_{\varepsilon_j}^{h,\delta} - \varepsilon_j d_h^{\delta}$. Then we get

(5.16)
$$
\mathcal{F}_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_A \psi_h^{\delta} (\varepsilon_j |\nabla u| * \rho_{\varepsilon_j}(x)) dx + d_h^{\delta} |A|
$$

for any $u \in W^{1,1}(\Omega)$ and $A \in \mathcal{A}(\Omega)$. Let A', A'' be open disjoint subsets of A such that $|A''| < \delta$, $S_u \subset A''$. Therefore,

$$
(5.17) \ \mathcal{F}_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_{A'} \psi_h^{\delta} \left(\varepsilon_j |\nabla u| * \rho_{\varepsilon_j}(x) \right) dx + \frac{1}{\varepsilon_j} \int_{A''} \psi_h^{\delta} \left(\varepsilon_j |\nabla u| * \rho_{\varepsilon_j}(x) \right) dx + d_h^{\delta} |A'| + \delta d_h^{\delta}.
$$

In particular we get

$$
\mathcal{F}_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_{A'} \psi_h^{\delta} (\varepsilon_j |\nabla u| * \rho_{\varepsilon_j}(x)) dx + d_h^{\delta} |A'|
$$

Notice that ψ_h^{δ} is linear in [0, t_δ]. Applying Proposition 5.3 with the choice $g = \psi_h^{\delta} \wedge \psi_h^{\delta}(t_{\delta})$ we obtain

$$
\mathcal{F}'(u, A) \ge c_h^{\delta} \int_{A'} |\nabla u| \, \mathrm{d}x + c_h^{\delta} |D^c u|(A) + d_h^{\delta} |A'| = (1 - \delta) \int_{A'} \ell_h(|\nabla u|) \, \mathrm{d}x + (1 - \delta) c_h |D^c u|(A').
$$

Since $\mathcal{F}'(u, \cdot)$ is a superadditive function on open sets of Ω with disjoint compact closures, by applying Lemma 2.5 and (5.11) we get, by the arbitrariness of A' and δ ,

(5.18)
$$
\mathcal{F}'(u, A) \ge \int_A \phi(|\nabla u|) dx + c_0 |D^c u|(A).
$$

Now (5.17) implies also

$$
\mathcal{F}_{\varepsilon_j}(u, A) \geq \frac{1}{\varepsilon_j} \int_{A''} \psi_h^{\delta} (\varepsilon_j |\nabla u| * \rho_{\varepsilon_j}(x)) \, dx.
$$

Applying now Proposition 5.8 with the choice $h = \psi_h^{\delta}$ we deduce that

$$
\mathcal{F}'(u, A) \ge \int_{S_u \cap A''} \theta_h^{\delta}(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1},
$$

being

$$
\theta_h^{\delta}(s,\nu) = \frac{1}{\omega_{n-1}} \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{Q_{\nu}} \psi_h^{\delta}(\varepsilon_j |\nabla u_j| * \rho_{\varepsilon_j}) dx : (u_j) \in W_{\nu}^{0,s}, \, \varepsilon_j \to 0^+ \right\}.
$$

Using (5.14) and the arbitrariness of δ , it follows that $\theta_h^{\delta} \to \theta$ as $h \to +\infty$ and $\delta \to 0$. Applying once more Lemma 2.5, by the arbitrariness of A'' , we have

(5.19)
$$
\mathcal{F}'(u, A) \geq \int_{S_u \cap A} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1}.
$$

Applying Lemma 5.9 choosing $\lambda_1 = \mathcal{L}^n$, $\lambda_2 = \mathcal{H}^{n-1} \sqcup J_u$, $\lambda_3 = |D^c u|$ and taking into account (5.18) and (5.19), we immediately obtain $\mathcal{F}'(u) \geq \mathcal{F}(u)$ for any $u \in BV(\Omega)$.

Let us now consider the case $u \in GBV(\Omega)$. Let (u_j) be a sequence in $W^{1,1}(\Omega)$ converging to u in $L^1(\Omega)$ and such that

$$
\lim_{j \to +\infty} \mathcal{F}_{\varepsilon_j}(u_j) = \mathcal{F}'(u).
$$

Define $u_j^T = (-T) \vee u_j \wedge T$, and $u^T = (-T) \vee u \wedge T$. Since $u_j^T \to u^T$ in $L^1(\Omega)$, and $u^T \in BV(\Omega)$, we have

$$
\mathcal{F}'(u) = \liminf_{j \to +\infty} \mathcal{F}_{\varepsilon_j}(u_j) \ge \liminf_{j \to +\infty} \mathcal{F}_{\varepsilon_j}(u_j^T) \ge \mathcal{F}(u^T).
$$

Applying (2.2), (2.3) and (2.4) and taking into account the continuity of θ we obtain

$$
\lim_{T \to +\infty} \left(\int_{\Omega} \phi(|\nabla u^T|) \, dx + \int_{S_{u^T}} \theta(|(u^T)^+ - (u^T)^-|, \nu_u \tau) \, d\mathcal{H}^{n-1} + c_0 |D^c u^T|(\Omega) \right) = \mathcal{F}(u)
$$
\nso we are done.

6. The Γ-limsup inequality

In this section we will prove that $\mathcal{F}''(u) \leq \mathcal{F}(u)$ for any $u \in L^1(\Omega)$; since, by definition, $\mathcal{F}(u) = +\infty$ for any $u \in L^1(\Omega) \setminus GBV(\Omega)$, it is sufficient to consider the case $u \in GBV(\Omega)$.

Lemma 6.1. Let (ε_j) be a positive infinitesimal sequence, $\nu \in \mathbb{S}^{n-1}$ and $s \geq 0$. Let $(u_j) \in W^{0,s}_{\nu}$ be such that

$$
\omega_{n-1}\theta(s,\nu)=\lim_{j\to+\infty}\frac{1}{\varepsilon_j}\int_{Q_{\nu}}f(\varepsilon_j|\nabla u_j|*\rho_{\varepsilon_j})\,\mathrm{d} x.
$$

Then for any $r > 0$ there exists a positive infinitesimal sequence σ_j and $(v_j) \in W^{0,s}_\nu$ such that for any $\sigma > 0$ it holds

$$
\omega_{n-1}r^{n-1}\theta(s,\nu)=\lim_{j\to+\infty}\frac{1}{\sigma_j}\int_{rQ_{\nu}^{\sigma}}f(\sigma_j|\nabla v_j|*\rho_{\sigma_j})\,\mathrm{d}x,
$$

where $Q_{\nu}^{\sigma} = \{x \in Q_{\nu} : |\langle x, \nu \rangle| < \sigma\}.$

Proof. Let $\sigma_i = r\varepsilon_j$ and $v_i(x) = u_i(rx)$. Then by the change of variables $x = rz$ and $y = rt$ we get

$$
\frac{1}{\sigma_j} \int_{rQ_{\nu}} f(\sigma_j |\nabla v_j| * \rho_{\sigma_j}) \, dx = \frac{r^n}{\sigma_j} \int_{Q_{\nu}} f\left(\frac{\sigma_j}{r} \int_{C_{\sigma_j/r}} |\nabla v_j(rz - rt)| \rho_{\sigma_j/r}(t) \, dt\right) dz
$$
\n
$$
= \frac{r^{n-1}}{\varepsilon_j} \int_{Q_{\nu}} f\left(\varepsilon_j \int_{C_{\varepsilon_j}} |\nabla u_j(z - t)| \rho_{\varepsilon_j}(t) \, dt\right) dz.
$$

Passing to the limit as $j \rightarrow +\infty$ we get

$$
\lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{rQ_{\nu}} f(\sigma_j |\nabla v_j| * \rho_{\sigma_j}) dx = r^{n-1} \theta(s, \nu).
$$

Since the transition set of the optimal sequence (u_i) shrinks onto the interface (see (5.7) or the definition of $W_{\nu}^{0,s}$) we deduce that

$$
\lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{rQ_{\nu}} f(\sigma_j |\nabla v_j| * \rho_{\sigma_j}) \, dx = \lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{rQ_{\nu}^{\sigma}} f(\sigma_j |\nabla v_j| * \rho_{\sigma_j}) \, dx
$$

for any $\sigma > 0$, hence we conclude.

Proposition 6.2. For any $u \in \mathcal{W}(\Omega)$ it holds $\mathcal{F}''(u) \leq \mathcal{F}(u)$.

Proof. By the very definition of $W(\Omega)$ (see paragraph 2.5) the set S_u is contained in the union of a finite collection K_1, \ldots, K_m of $(n-1)$ -dimensional simplexes; it will not be restrictive to assume $m = 1$ and $K = K_1 \subseteq \{x \in \mathbb{R}^n : x_1 = 0\}$. Fix $h \in \mathbb{N}, h \ge 1$. Let $\Omega_h = \{x \in \Omega \setminus K : x_1 = 0\}$. $d(x,K) > 1/h$. Let S be the relative boundary of K; obviously it holds $\mathcal{H}^{n-1}(S) = 0$. Let $K_h = \{x \in K : d(x, S) > 1/h\}$. Let $k \in \mathbb{N}, k \ge 1, x_1, \ldots, x_k \in K_h$ and $r \ge 0$ be such that $B_r(x_i)$ are pairwise disjoint, $B_r(x_i) \cap \{x_1 = 0\} \subseteq K_h$ for any $i = 1, ..., k$ and

(6.1)
$$
\mathcal{H}^{n-1}\left(K_h \setminus \left(\bigcup_{i=1}^k B_r(x_i) \cap \{x_1 = 0\}\right)\right) < \frac{1}{h}
$$

Let $Q_h = \{x \in rQ_{\mathbf{e}_1} : |x_1| < 1/h\}$ and $Q_h(x) = x + Q_h$ for any $x \in \mathbb{R}^n$. Moreover, let $Q_h^+ = Q_h \cap \{x_1 > 0\}$ and $Q_h^- = Q_h \cap \{x_1 < 0\}$. At this point we divide the proof in two steps.

.

Step 1. Take a function $v \in \mathcal{W}(\Omega)$ with $S_v \subseteq K$ and such that v is constant in any $x_i + Q_h^+$ and in any $x_i + Q_h^-$. Denote by v_i^+ the value of v in $x_i + Q_h^+$ and by v_i^- the value of v in $x_i + Q_h^-$. We claim that

(6.2)
$$
\mathcal{F}''(v) \leq \int_{\Omega} \phi(|\nabla v|) dx + \sum_{i=1}^{k} \int_{K \cap B_r(x_i)} \theta(|v_i^+ - v_i^-|, \mathbf{e}_1) d\mathcal{H}^{n-1} + c|Dv|(\Omega_h'),
$$

for some $c > 0$, where

$$
\Omega_h' = \Omega \setminus \left(\Omega_h \cup \bigcup_{i=1}^k (x_i + Q_h) \right).
$$

Let (ε_i) be a positive infinitesimal sequence and let $\delta \in (0,1)$. Accordingly to Lemma 6.1, let us define $v_j \in \mathcal{W}(\Omega)$ be such that we have

(6.3)
$$
\lim_{j \to +\infty} \mathcal{F}_{\sigma_j}(v_j, x_i + \delta Q_h) = (\delta r)^{n-1} \theta(|v_i^+ - v_i^-|, \mathbf{e}_1),
$$

where $\sigma_j = r\varepsilon_j$. Otherwise in Ω we set $v_j = v$. Then, using the same argument as in the proof of Lemma 5.7, we deduce that

(6.4)
$$
\frac{1}{\sigma_j} \int_{\Omega} f_{\sigma_j}(\sigma_j |\nabla v_j| * \rho_{\sigma_j}) dx \leq \mathcal{F}_{\sigma_j}(v, \Omega_h) + \sum_{i=1}^k \mathcal{F}_{\sigma_j}(v_j, x_i + \delta Q_h) + c|Dv|(\Omega_{h,\delta}'),
$$

being

$$
\Omega'_{h,\delta} = \Omega \setminus \left(\Omega_h \cup \bigcup_{i=1}^k (x_i + \delta Q_h) \right).
$$

The first term on the right-hand side of (6.4) is given by

$$
\frac{1}{\sigma_j} \int_{\Omega_h} f_{\sigma_j}(\sigma_j |\nabla v| * \rho_{\sigma_j}) \,dx.
$$

By standard properties of the convolution we have $|\nabla v| * \rho_{\sigma_j} \to |\nabla v|$ in $L^1(\Omega)$ and a.e. in Ω . From A2 we deduce that

(6.5)
$$
\lim_{\varepsilon \to 0} \frac{f_{\varepsilon}(\varepsilon t_{\varepsilon})}{\varepsilon} = \phi(t)
$$

whenever $t_{\varepsilon} \to t$, for each $t \geq 0$. By the Dominated Convergence Theorem we get

$$
\lim_{j \to +\infty} \frac{1}{\sigma_j} \int_{\Omega_h} f_{\sigma_j}(\sigma_j |\nabla v| * \rho_{\sigma_j}) \, dx = \int_{\Omega_h} \phi(|\nabla v|) \, dx \le \int_{\Omega} \phi(|\nabla v|) \, dx.
$$

Passing to the limsup in (6.4), using (6.3) and using the arbitrariness of $\delta \in (0,1)$ we get (6.2).

Step 2. For any $i = 1, \ldots, k$ let

$$
u_i^+ = \int_{B_r(x_i)\cap K} u^+ d\mathcal{H}^{n-1}, \quad u_i^- = \int_{B_r(x_i)\cap K} u^- d\mathcal{H}^{n-1}
$$

and

$$
u_i(x) = \begin{cases} u_i^+ & \text{if } (x_i)_1 - x_1 > 0 \\ u_i^- & \text{if } (x_i)_1 - x_1 \le 0 \end{cases}, \quad x \in B_r(x_i).
$$

For any $h \in \mathbb{N}$, $h \geq 1$, let $u_h = u_i$ on $Q_h(x_i)$ and $u_h = u$ otherwise in Ω . Applying step 1 with the choice $v = u_h$ we get

$$
\mathcal{F}''(u_h) \leq \int_{\Omega} \phi(|\nabla u|) dx + \sum_{i=1}^k \int_{K \cap B_r(x_i)} \theta(|u_i^+ - u_i^-|, \mathbf{e}_1) d\mathcal{H}^{n-1} + c|Du|(\Omega_h').
$$

Now $|\Omega'_h| \to 0$. Furthermore, taking into account (6.1) we deduce that $\mathcal{H}^{n-1}(S_u \cap \Omega'_h) \to 0$ as $h, k \to +\infty$. Hence $|Du|(\Omega_h') \to 0$ as $h, k \to +\infty$. Exploiting the uniform continuity of the traces of u and the continuity of θ , we also get

$$
\sum_{i=1}^k \int_{K \cap B_r(x_i)} \theta(|u_i^+ - u_i^-|, \mathbf{e}_1) d\mathcal{H}^{n-1} \stackrel{h,k \to +\infty}{\longrightarrow} \int_{S_u} \theta(|u^+ - u^-|, \mathbf{e}_1) d\mathcal{H}^{n-1}
$$

and the lower semicontinuity of \mathcal{F}'' yields the conclusion.

Proposition 6.3. Let $u \in GBV(\Omega)$. Then it holds $\mathcal{F}''(u) \leq \mathcal{F}(u)$.

Proof. First let $u \in SBV^2(\Omega) \cap L^{\infty}(\Omega)$. We can apply Theorem 2.6, choosing

$$
\psi(a,b,\nu) = \theta(|a-b|, \nu)
$$

(see (3.6) and (3.7)). Then there exists a sequence $w_j \to u$ in $L^1(\Omega)$, with $w_j \in \mathcal{W}(\Omega)$, such that $\nabla w_j \to \nabla u$ strongly in $L^2(\Omega, \mathbb{R}^n)$ and

(6.6)
$$
\limsup_{j \to +\infty} \int_{S_{w_j}} \theta(|w_j^+ - w_j^-|, \nu_{w_j}) d\mathcal{H}^{n-1} \leq \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1}.
$$

By the lower semicontinuity of \mathcal{F}'' and by Proposition 6.2 we deduce that, applying the Dominated Convergence Theorem and (6.6),

$$
\mathcal{F}''(u) \leq \liminf_{j \to +\infty} \mathcal{F}''(w_j) \leq \int_{\Omega} \phi(|\nabla u|) dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1}.
$$

Using relaxation Theorem 2.7 we get

$$
\mathcal{F}''(u) \leq \int_{\Omega} \phi(|\nabla u|) dx + \int_{J_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} + c_0 |D^c u|(\Omega)
$$

for each $u \in BV(\Omega)$. Finally, let $u \in GBV(\Omega)$ and, for any $T > 0$, $u^T = -T \vee u \wedge T$. Then $u^T \in BV(\Omega)$ for each $T > 0$ and $u^T \to u$ in $L^1(\Omega)$ as $T \to +\infty$. Taking into account (2.2), (2.3) and (2.4) we obtain, exploiting again the lower semicontinuity of \mathcal{F}'' and the continuity of θ ,

$$
\mathcal{F}''(u) \leq \limsup_{T \to +\infty} \left(\int_{\Omega} \phi(|\nabla u^T|) dx + \int_{S_{u^T}} \theta(|(u^T)^+ - (u^T)^-|, \nu_{u^T}) d\mathcal{H}^{n-1} + c_0 |D^c u^T|(\Omega) \right)
$$

$$
= \int_{\Omega} \phi(|\nabla u|) dx + \int_{S_u} \theta(|u^+ - u^-|, \nu_u) d\mathcal{H}^{n-1} + c_0 |D^c u|(\Omega)
$$

which is what we wanted to prove. \Box

7. COMPUTATION OF θ in the ONE-DIMENSIONAL CASE

In this section we are able to give an explicit formula for θ if $n = 1$ along the same line of the discretization argument used in [22].

Let $n = 1$, then we can set $\Omega = (a, b)$, $C = I$ to be an open interval around $0, \rho: I \to (0, +\infty)$ continuous and bounded with

$$
\int_I \rho \, \mathrm{d}t = 1.
$$

For any $\varepsilon > 0$ let $\rho_{\varepsilon}(t) = 1/\varepsilon \rho(t/\varepsilon)$ and $I_{\varepsilon}(x) = x + \varepsilon I$.

Theorem 7.1. It holds

$$
\theta(s) = \int_{-\infty}^{+\infty} f(s\rho(t)) dt.
$$

Proof. In the one-dimensional setting the expression for θ given by (3.5) reads

$$
\theta(s) = \inf \left\{ \liminf_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{-1}^1 f(\varepsilon_j |u'_j| * \rho_{\varepsilon_j}) dt : (u_j) \in W^{0,s}, \, \varepsilon_j \to 0^+ \right\},\,
$$

being $W^{0,s}$ the space of all sequences (u_j) in $W^{1,1}_{loc}(\Omega')$, $(-1,1) \subset \Omega'$, such that $u_j \to s\chi_{(0,+\infty)}$ in $L^1(\Omega')$, and such that there exist two positive infinitesimal sequences $(a_j), (b_j)$ with $u_j(t) = 0$ if $t < -a_j$ and $u_j = s$ if $t > b_j$. Let $(u_j) \in W^{0,s}$ and

$$
v_j(t) = \int_{-1}^t (u'_j(r))^+ dr.
$$

Moreover, let $w_j = 0 \vee v_j \wedge s$. Then $(w_j) \in W^{0,s}$ and by the change of variables $y = \varepsilon_j z$ and $t = \varepsilon_i r$ we get

$$
\frac{1}{\varepsilon_j} \int_{-1}^1 f(\varepsilon_j |u'_j| * \rho_{\varepsilon_j}) dt \ge \frac{1}{\varepsilon_j} \int_{-1}^1 f\left(\int_{I_{\varepsilon_j}} w'_j(t+y)\rho\left(\frac{y}{\varepsilon_j}\right)\right) dt
$$

\n
$$
= \frac{1}{\varepsilon_j} \int_{-1}^1 f\left(\varepsilon_j \int_I w'_j(t+\varepsilon_j z)\rho(z)\right) dt = \int_{-1/\varepsilon_j}^{1/\varepsilon_j} f\left(\varepsilon_j \int_I w'_j(\varepsilon_j r + \varepsilon_j z)\rho(z)\right) dr
$$

\n
$$
= \int_{-1/\varepsilon_j}^{1/\varepsilon_j} f\left(\int_I \tilde{w}'_j(r+z)\rho(z)\right) dr,
$$

where $\tilde{w}_j(t) = w_j(\varepsilon_j t)$. Since $(w_j) \in W^{0,s}$ then the previous inequality becomes

$$
\frac{1}{\varepsilon_j} \int_{-1}^1 f(\varepsilon_j |u'_j| * \rho_{\varepsilon_j}) dt \ge \int_{-\infty}^{+\infty} f\left(\int_I \tilde{w}'_j(t+z) \rho(z) dz\right) dt.
$$

Denoting by X the space of all functions $v \in W^{1,1}_{loc}(\mathbb{R})$ which are non-decreasing and such that there exist $\xi_0 < \xi_1$ with $v(t) = 0$ if $t < t_0$ and $v = s$ if $t > t_1$, we are led to solve the minimization problem $\inf_X G$, being

$$
G(v) = \int_{-\infty}^{+\infty} f\bigg(\int_{I(t)} v'(x)\rho(x-t) \,dx\bigg) dt, \quad v \in X.
$$

By a simple regularization argument it is not restrictive to assume $f \in C^2(0, +\infty)$ and f strictly concave. For each $k \in \mathbb{N}$, with $k \geq 1$, we now consider a discrete version G_k of G defined on the space of the functions on $\mathbb R$ which are constant on each interval of the form

$$
J_i^k = \left[\frac{i}{k}, \frac{i+1}{k}\right), \quad i \in \mathbb{Z}.
$$

We define X_k as the set of the functions $v \colon \mathbb{R} \to [0, s]$, such that:

- a) v is constant on any J_i^k ; denote by v^i the value of v on J_i^k .
- b) $v^i \leq v^{i+1}$ for any $i \in \mathbb{Z}$.
- c) $v^i = 0$ if $i < i_0$ and $v^i = s$ if $i > i_1$ for some $i_0 < i_1$.

Let $I^k = \{i \in \mathbb{Z} : J_i^k \subset I\}$. Finally, let $G_k \colon X_k \to \mathbb{R}$ be defined by

$$
G_k(v) = \frac{1}{k} \sum_{i \in \mathbb{Z}} f\left(\sum_{h \in I^k} (v^{i+h+1} - v^{i+h}) \rho_h^k\right), \quad \rho_h^k = \int_{J_h^k} \rho(z) \, dz.
$$

Obviously G_k admit minimizers on X_k . We claim that each minimizer of G_k on X_k takes only the values 0 and s.

Let v be a minimizer of G_k on X_k . Suppose, by contradiction, that there exists $i_0 \in \mathbb{Z}$ with $v^{i_0} = c \in (0, s)$. We can assume that for a suitable $r \in \mathbb{N}$ it holds

$$
v^{i_0-1} < c
$$
, $c = v^{i_0} = v^{i_0+1} = \cdots = v^{i_0+r}$, $v^{i_0+r+1} > c$.

Given $t \in \mathbb{R}$ sufficiently small, we define $v_t \in X_k$ letting $v_t^{i_0+1} = c + t$, if $0 \le l \le r$, and $v_t = v$ otherwise. It is easy to see that for some $\alpha_i^k, \beta_i^k \neq 0$ which do not depend on t, we have

$$
G_k(v_t) = \frac{1}{k} \sum_{i \in J} f(\alpha_i^k + t\beta_i^k)
$$

for some finite set $J \subset \mathbb{Z}$. The function $t \mapsto G_k(v_t)$ is twice continuously differentiable in $t = 0$, due to the smoothness of f and we have

$$
\frac{d^2}{dt^2} G_k(v_t) \Big|_{t=0} = \frac{1}{k} \sum_{i \in J} f''(\alpha_i^k) (\beta_i^k)^2 < 0
$$

by the strict concavity of f. This contradicts the fact that v is a minimizer for G_k on X_k .

Since G_k is invariant under translation, we have already shown that

$$
\min_{X_k} G_k = G_k(\hat{v})
$$

where $v = s\chi_{(0,+\infty)}$. Since

$$
G_k(\hat{v}) = \frac{1}{k} \sum_{i \in \mathbb{Z}} f(s \rho_{-i}^k).
$$

by the definition of the Riemann integral as the limit of the Riemann sums, we deduce that

$$
\liminf_{k \to +\infty} \min_{X_k} G_k \ge \int_{-\infty}^{+\infty} f(s\rho(t)) dt.
$$

 $-+\infty$

Given $\sigma > 0$ let $v_{\sigma} \in X$ be such that $\inf_{X} G \geq G(v_{\sigma}) - \sigma$. Let $w_{\sigma} : \mathbb{R} \to [0, s]$ given by

$$
w_{\sigma}(t) = w_{\sigma}^{i} = \int_{J_i^k} v_{\sigma}(r) dr, \quad t \in J_i^k.
$$

Notice that $w_{\sigma} \in X_k$. Let k be sufficiently large such that $G(v_{\sigma}) \geq G_k(w_{\sigma}) - \sigma$. Hence

$$
G(v_{\sigma}) \geq \liminf_{k \to +\infty} \min_{X_k} G_k - \sigma \geq \int_{-\infty}^{+\infty} f(s\rho(t)) dt - \sigma.
$$

By the arbitrariness of $\sigma > 0$ we obtain

$$
\theta(s) \ge \inf_{X} G \ge \int_{-\infty}^{+\infty} f(s\rho(t)) dt.
$$

If we let

$$
u_j(t) = \begin{cases} 0 & \text{if } \leq -\varepsilon_j \\ \frac{s}{\varepsilon_j}t + s & \text{if } t \in (-\varepsilon_j, 0) \\ s & \text{if } t \geq 0 \end{cases}
$$

for $\varepsilon_j \to 0^+$, we have $(u_j) \in W^{0,s}$ and a straightforward computation shows that

$$
\lim_{j \to +\infty} \frac{1}{\varepsilon_j} \int_{-1}^1 f(\varepsilon_j |u'_j| * \rho_{\varepsilon_j}) dt = \int_{-\infty}^{+\infty} f(s\rho(t)) dt
$$

and this yields the conclusion. \Box

Remark 7.2. Observe that when $I = (-1, 1)$ and $\rho = \frac{1}{2}\chi_{(-1,1)}$ we get

$$
\theta(s) = 2f\bigg(\frac{s}{2}\bigg).
$$

Hence we recover the case investigated in [21].

REFERENCES

- [1] R. Alicandro, A. Braides, and M. S. Gelli: Free-discontinuity problems generated by singular perturbation. Proc. Roy. Soc. Edinburgh Sect. A, 6 (1998), 1115-1129.
- [2] R. Alicandro and M. S. Gelli: Free discontinuity problems generated by singular perturbation: the n-dimensional case. Proc. Roy. Soc. Edinburgh Sect. A, 130(3) (2000), 449-469.
- [3] L. Ambrosio, N. Fusco and D. Pallara: "Functions of Bounded Variation and Free Discontinuity Problems". Oxford University Press, 2000.
- [4] L. Ambrosio and V.M. Tortorelli: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math., XLIII (1990), 999-1036.
- [5] L. Ambrosio and V.M. Tortorelli: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7), VI(1) (1992), 105-123.
- [6] G. Bouchitté, A. Braides and G. Buttazzo: Relaxation results for some free discontinuity problems. J. Reine Angew. Math., 458 (1995) 1-18.
- [7] B. Bourdin and A. Chambolle: Implementation of an adaptive finite-element approximation of the Mumford-Shah functional. Numer. Math., 85(4) (2000), 609-646.
- [8] A. Braides: Approximation of free-discontinuity problems. Volume 1694 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1998.
- [9] A. Braides: "Γ-convergence for beginners". Oxford University Press, 2002.
- [10] A. Braides and G. Dal Maso: Non-local approximation of the Mumford-Shah functional. Calc. Var., 5(4) (1997) 293-322.
- [11] A. Braides and A. Garroni: On the non-local approximation of free-discontinuity problems. Comm. Partial Differential Equations, 23(5-6) (1998), 817-829..
- [12] A. Chambolle and G. Dal Maso: Discrete approximation of the Mumford-Shah functional in dimension two. ESAIM Math. Model. Numer. Anal., 33(4) (1999), 651-672.
- [13] G. Cortesani: Sequence of non-local functionals which approximate free-discontinuity problems. Arch. Rational Mech. Anal., 144 (1998), 357-402.
- [14] G. Cortesani: A finite element approximation of an image segmentation problem. Math. Models Methods Appl. Sci., 9(2) (1999), 243-259.
- [15] G. Cortesani and R. Toader: Finite element approximation of non-isotropic free-discontinuity problems. Numer. Funct. Anal. Optim., 18(9-10) (1997), 921-940.

- [16] G. Cortesani and R. Toader: Nonlocal approximation of nonisotropic free-discontinuity problems. SIAM J. Appl. Math., 59(4) (1999), 1507-1519.
- [17] G. Cortesani and R. Toader: A density result in SBV with respect to non-isotropic energies. Nonlinear Anal., 38(5) (1999) 585-604.
- [18] G. Dal Maso: "An Introduction to Γ-Convergence". Birkhäuser, Boston, 1993.
- [19] E. De Giorgi: Free discontinuity problems in calculus of variations. In Robert Dautray, editor, Frontiers in pure and applied mathematics. A collection of papers dedicated to Jacques-Louis Lions on the occasion of his sixtieth birthday. June 6–10, Paris 1988, pages 55–62, Amsterdam, 1991. North-Holland Publishing Co.
- [20] L. Lussardi: An approximation result for free discontinuity functionals by means of non-local energies. Math. Meth. Appl. Sci., 31(3) (2008) 2133-2146.
- [21] L. Lussardi and E. Vitali: Non local approximation of free-discontinuity functionals with linear growth: the one dimensional case. Ann. Mat. Pura Appl., 186(4) (2007) 722-744.
- [22] L. Lussardi and E. Vitali: Non local approximation of free-discontinuity problems with linear growth. ESAIM Contr. Optim. Calc. Var., 13(1) (2007) 135-162.
- [23] M. Morini: Sequences of singularly perturbed functionals generating free-discontinuity problems. SIAM J. Math. Anal., 35(3) (2003), 759-805.
- [24] M. Negri: The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional. Numer. Funct. Anal. Optim., 20(9-10) (1999), 957-982.
- [25] M. Negri: A non-local approximation of free discontinuity problems in SBV and SBD. Calc. Var., 25(1) (2006) 33-62.

(Luca Lussardi) Technische Universitat Dortmund, Vogelpothsweg 87, 44227 Dortmund (Germany). ¨ E-mail address: luca.lussardi@math.tu-dortmund.de

(Annibale Magni) Technische Universitat Dortmund, Vogelpothsweg 87, 44227 Dortmund (Germany). ¨ E-mail address: annibale.magni@math.tu-dortmund.de

Preprints ab 2008/20

