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Abstract

The planarization method is the most successful practical approach for minimiz-
ing the number of crossings in a drawing of a graph and, when used as the first
step of the topology-shape-metrics approach, one of the best methods to draw
sparse graphs in general. In this thesis, we apply BC- and SPQR-trees, that is,
data structures for decomposing a graph with respect to its bi- and triconnected
components, for improving the planarization method in several aspects.

First of all, we present a corrected version of a linear-time algorithm for find-
ing the triconnected components of a graph and apply it to SPQR-trees, thus
giving the first correct linear-time implementation for constructing SPQR-trees.
Then, we apply BC- and SPQR-trees for solving the one-edge insertion problem
(OEIP) in linear time. The OEIP can be stated as follows: Given a planar graph
G and two vertices v, w in G, find an embedding of G in which we can draw the
edge (v, w) with a minimum number of crossings. Our algorithm thus solves a
long-standing open problem in graph drawing. Applying the OEIP within the pla-
narization approach already improves this crossing minimization method sub-
stantially. Additionally, we introduce further pre- and postprocessing methods
and experimentally analyze their performance with a well-known benchmark set
of graphs, as well as a new one containing graphs with known crossing numbers.
Our study shows that the crossing minimization heuristic comes very close to the
optimal results in most cases, or even finds the optimum.

Apart from being a tool for crossing minimization, the planarization method
also provides a planar embedding which is used as input for a planar graph draw-
ing algorithm. However, the choice of the planar embedding is essential for the
quality of the resulting drawing, for example, with respect to number of bends
or total edge length. We propose properties of good planar embeddings, namely
a minimal block-nesting depth and an external face of maximum degree, and
present linear-time algorithms for computing such planar embeddings. Experi-
mental evaluations suggest that using such embeddings can improve the quality
of the resulting layouts.

Finally, we extend the planarization method by incorporating embedding con-
straints, that is, constraints imposed on the order of incident edges around a ver-
tex. Such constraints typically occur in practical applications; for example, we
can compute planar embeddings respecting side constraints (each incident edge
is assigned to one of the four sides of the vertex) or port constraints. We give
linear-time algorithms for both planarity testing and edge insertion with embed-
ding constraints, thus yielding the same asymptotic running times as in the un-
constrained case.

vii



Zusammenfassung

Die Planarisierungsmethode ist in der Praxis der erfolgreichste Ansatz zur Mini-
mierung von Kreuzungen in Zeichnungen von Graphen. Sie wird insbesondere
auch als erster Schritt im so genannten Topology-Shapes-Metrics-Verfahren ver-
wendet, was damit eines der besten Verfahren zum Zeichnen von diinnen Gra-
phen darstellt. In dieser Doktorarbeit benutzen wir BC- und SPQR-Bdume — Da-
tenstrukturen zur Zerlegung eines Graphen in seine Zwei- und Dreizusammen-
hangskomponenten — zur Verbesserung der Planarisierungsmethode in meh-
rerlei Hinsicht.

Als Erstes prdsentieren wir eine korrigierte Version eines Linearzeitalgorith-
mus, der die Dreizusammenhangskomponenten eines Graphen finden kann, und
wenden diesen auf die Konstruktion von SPQR-Bdumen an. Die daraus resul-
tierende Implementierung ist damit die erste korrekte Linearzeitimplementie-
rung zur Konstruktion von SPQR-Bdumen. Danach benutzen wir BC- und SPQR-
Bidume, um das Eine-Kante-Einfiigeproblem in Linearzeit zu l6sen. Dieses Pro-
blem ldsst sich wie folgt formulieren: Gegeben sei ein planarer Graph G und
zwei Knoten v und w aus G, finde eine Einbettung von G, in die wir die Kan-
te (v, w) mit der kleinstméglichen Anzahl an Kreuzungen einzeichnen kénnen.
Der hier vorgestellte Algorithmus 16st damit ein seit langem bestehendes offenes
Problem im Graphenzeichnen. Durch Anwendung dieses Algorithmus in der Pla-
narisierungsmethode kann die Kreuzungsminimierung bereits erheblich verbes-
sert werden. Zusdtzlich stellen wir weitere Vor- und Nachbearbeitungsmethoden
vor und analysieren diese experimentell mit Hilfe bekannter Benchmarkgraphen
und einer neuen Benchmark-Bibliothek von Graphen mit bekannten Kreuzungs-
zahlen. Unsere Studie zeigt, dass die daraus resultierenden Heuristiken zur Kreu-
zungsminimierung sehr nahe an das Optimum herankommen und es in vielen
Féllen auch erreichen.

Neben der Minimierung von Kreuzungen an sich liefert die Planarisierungs-
methode als Ergebnis auch eine planare Einbettung, die als Eingabe fiir planare
Zeichenalgorithmen dient. Allerdings ist die richtige Wahl der planaren Einbet-
tung entscheidend fiir die Qualitdt der resultierenden Zeichnung, zum Beispiel
im Hinblick auf Anzahl der Knicke oder Kantenldngen. Daher schlagen wir zwei
einfache Kriterien fiir planare Einbettungen vor, die zu guten Zeichnungen fiih-
ren konnen: Eine minimale Verschachtelungstiefe der Blocke des Graphen und
eine Aullenfliche maximalen Grades. Wir stellen fiir beide Kriterien optimale
Linearzeitalgorithmen vor. Experimentelle Studien zeigen, dass diese planaren
Einbettungen tatsdchlich zu besseren Zeichnungen fiihren kénnen.

Abschliellend erweitern wir die Planarisierungsmethode um Einbettungsein-
schriankungen, welche die mogliche Reihenfolge der Kanten um einen Knoten
beschrédnken. Solche Einschrankungen findet man héufig in praktischen Anwen-
dungen, wie etwa bei der Modellierung von Side Constraintsund Port Constraints.
Wir prédsentieren Linearzeitalgorithmen fiir das Testen auf Planaritdt und opti-
male Einfiigen einer Kante unter Beachtung der Einbettungsbeschrankungen.
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Chapter 1
Introduction

Two things are infinite: the universe and human stupid-
ity; and I'm not sure about the universe.

ALBERT EINSTEIN (1879 — 1955)

Reinhard Diestel starts the chapter on Planar Graphsin his famous book on Graph
Theory [Diestel, 2005] with the following statement:

“When we draw a graph on a piece of paper, we naturally try to do this
as transparently as possible. One obvious way to limit the mess created
by all the lines is to avoid intersections. For example, we may ask if we
can draw the graph in such a way that no two edges meet in a point
other than a common end.”

Of course, not all graphs can be drawn without any such line intersections. We
call the graphs that can be drawn in this way planar graphs. On the other hand,
graphs in practice are often not planar, but—as stated above by Diestel—we can
limit the mess in the drawing by reducing the number of line intersections. Hence,
it is not surprising that one of the most important aesthetic criteria in graph
drawing is to minimize the number of edge crossings in a drawing. Further im-
portant aesthetics include to avoid that vertices are drawn too close to each other
and angles between edges are too small. The latter is automatically fulfilled by
orthogonal drawings, that is, drawings in which edges are represented by lines
consisting of only vertical and horizontal line segments. In such drawings, it is
preferred to have a small number of bends. Moreover, edges should be short,
that is the sum of the edge lengths or the maximal length of an edge should be
minimized. Similarly, a small drawing area is desirable, thus leading to compact
drawings.

Figure shows two examples. On the left hand side, we see a straight-
line drawing of the graph 4elt drawn with a multilevel force-directed algorithm
[Gronemann, 2009]. This graph has 15,606 vertices and 45,878 edges and is part
of a benchmark set for graph partitioning'} which is also frequently used for eval-
uating drawing algorithms for large graphs. It is a little bit surprising that this

1See: http://staffweb.cms.gre.ac.uk/ “wc06/partition/
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(a) FMME layout (b) orthogonal layout

Figure 1.1: (a) shows the graph 4elt drawn with the multilevel force-direct algo-
rithm FMME; (b) shows interconnections in the electricity industry.

graph is actually planar. In Figure [I.I{b), we see a real-world graph displaying
the interconnections between companies in the electricity industry. It originally
appeared in a German newspaper and was drawn in such a confusing way that it
was included in a book on the most confusing diagrams in the world [Henschel,
2003]. However, applying sophisticated layout algorithms reveals that the inter-
connections can be presented in a clear and concise way. On the other hand,
we are not sure, whether the author of the newspaper article intentionally used
a confusing diagram to support his point of view. A similar example is a diagram
showing the financial integration of banks, funds, and companies; see Figure
It appeared in an online article on wordpress. conf] The original version was
drawn in an orthogonal layout style with a huge amount of edge crossings. The
drawing shown here is the output of an orthogonal layout algorithm (we omitted
isolated vertices), presenting the information in a much clearer way that allows
to follow edges quite easily.

The drawings in Figure[1.1|(b) and[I.2]are obtained by applying the topology-
shape-metrics approach. This general approach for orthogonal graph layout was
proposed by and Tamassia; see [Tamassia, 1987, Tamassia et al., 1988]. It consists
of three steps:

e Topology: This step determines a planar embedding of the graph. If the
input graph is not planar, it is planarized, that is, additional vertices with
degree four are inserted that represent edge crossings in the final drawing.
Hence, this step fixes the number of crossings in the drawing.

e Shape: This step—also called orthogonalization phase— determines the
angles and the bends in the drawing, in particular, it fixes the number of
bends in the drawing.

Zhttp://blogpoliteia.wordpress.com/2009/07/; a PDF of this diagram can be found
at: http://blogpoliteia.files.wordpress.com/2009/03/world-gov3.pdf


wordpress.com
http://blogpoliteia.wordpress.com/2009/07/
http://blogpoliteia.files.wordpress.com/2009/03/world-gov3.pdf

Figure 1.2: A graph showing the financial integration of banks, funds, and compa-
nies; source: http://blogpoliteia.wordpress.com/2009/07/

e Metrics: This step computes the final coordinates of the vertices and bend
points. Since its main objective is to yield short edges and a small drawing
area, it is also called compaction phase.

The distinct steps of this modular framework are each devoted to specific aes-
thetic criteria: The first step minimizes the number of edge crossings, the second
step minimizes the number of bends, and finally the last step minimizes the edge
lengths. The criteria are considered in decreasing level of importance, since an
optimized criterium is never worsened by subsequent steps.

In this thesis, we focus on the first step of the topology-shape-metrics ap-
proach, realized by the planarization method. This method was introduced by
Batini et al.|[1984] and is the most successful method for minimizing the number
of crossings in practice. We give a comprehensive introduction to this method
in Section[2.4, We apply BC- and SPQR-trees, the decomposition of a graph into
its bi- and triconnected components, for improving the planarization method
in various respects: significantly improve the quality of the crossing reduction
step, find planar embeddings that lead to better solutions in the topology-shape-
metrics approach, and extend the applicability of the method in practice by sup-
porting embedding constraints which impose certain restrictions on the incident
edges around a vertex.


http://blogpoliteia.wordpress.com/2009/07/
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1.1 Organization of this Thesis

This thesis is organized as follows. After giving some basic definitions and results
from graph theory and graph drawing in Chapter[2} Chapter[3|deals with decom-
posing a graph into its bi- and triconnected components. The focus lies on the
triconnected components and their representation in form of SPQR-trees, which
are essential for all new algorithms introduced in this thesis. At the end of this
chapter, we give a linear time algorithm to compute the triconnected compo-
nents of a graph and to construct the corresponding SPQR-tree. This algorithms
builds upon Hopcroft and Tarjan’s algorithm [Hopcroft and Tarjan, |1973a] and
corrects some serious errors in this algorithm.

The next chapter presents state-of-the-art algorithms for heuristic crossing
minimization. We solve the long-standing open problem of optimally inserting
one edge into a planar graph by giving a linear time algorithm in Section[4.1jand
describe several variations of the planarization approach for crossing minimiza-
tion in Section[4.2] The chapter closes with an extensive experimental analysis of
these crossing minimization heuristics, considering both practical benchmark
instances as well as a new benchmark set of special graph classes with known
crossing number.

Chapter [5] revisits the planar embedding step required in all graph drawing
algorithms based on planarity. After minimizing the number of crossings, we ob-
tain a planar graph representing the actual graph we want to draw in such a way
that edge crossings are represented as vertices with degree four. Traditionally,
just any graph embedding algorithm is applied to compute a planar embedding
of this graph, which is then used to generate, for example, an orthogonal drawing.
However, a planar graph might have an exponential number of possible embed-
dings, but the choice of the embedding can have a big influence on the quality of
the resulting drawing. We propose a different approach of graph embedding by
presenting efficient, linear time algorithms that optimize important properties of
the embedding like the degree of the external face (Section[5.1) and the nesting
depth of blocks (Section5.2).

Chapter [f] extends the planarization approach by including embedding con-
straints, which impose additional restrictions on the order of edges around a
vertex. We present a linear-time algorithm that tests if a given graph with a set
of embedding constraints C has a planar embedding observing the constraints
C; in the positive case, this algorithm also computes such a planar embedding.
Moreover, we generalize the edge insertion problem accordingly and give an op-
timal linear-time algorithm for inserting one edge, thus yielding a planarization
method for graphs with embedding constraints.

Finally, Chapter[7]concludes by recapitulating the achievements presented in
this thesis and their impact on current research, as well as with an outlook on
future work.
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1.2 Corresponding Publications

The results presented in this thesis have partially been published in conference
proceedings and journals. This section lists these publications with references to
the corresponding chapters or sections in this thesis.

e The algorithm for constructing SPQR-trees in linear time (see Section
appeared in the conference proceedings of Graph Drawing 2000; see [Gut-
wenger and Mutzel, [2001].

e The optimal edge insertion algorithm (see Section [4.1) was first published
in the conference proceedings of SODA 2001 |[Gutwenger, Mutzel, and Weis-
kircher, 2001] and appeared then in the Algorithmica journal; see |Gut-
wenger, Mutzel, and Weiskircher, 2005].

o A first version of the experimental study of crossing minimization heuris-
tics appeared in the conference proceedings of Graph Drawing 2003; see
[Gutwenger and Mutzel, 2003a]. However, all the experiments of the study
as presented in Section [4.3| have been redone: The set of crossing min-
imization heuristics has been extended, an additional benchmark set of
graphs with known crossing numbers is introduced, and new findings have
been obtained.

e The algorithms for computing planar embeddings with maximum external
face and minimum block-nesting depth (see Chapter [5) appeared also in
the conference proceedings of Graph Drawing 2003; see |[Gutwenger and
Mutzel, 2003Db].

e The preprocessing method for crossing minimization, the non-planar core
reduction (see Section [4.2.1), was first published in the conference pro-
ceedings of Graph Drawing 2005 [Chimani and Gutwenger, 2005] and ap-
peared later in the Special Issue on Graph Drawing 2005 in the journal Dis-
crete Mathematics [Chimani and Gutwenger, 2009]. These articles also ap-
ply the preprocessing method to the skewness, thickness, and coarseness
of a graph; in this thesis, only the essential results concerning crossing min-
imization are presented, since this preprocessing strategy is used in the ex-
perimental study on crossing minimization heuristics.

e The results on graph embedding and edge insertion with embedding con-
straints (see Chapter[6) was first published in the conference proceedings
of Graph Drawing 2006 [Gutwenger, Klein, and Mutzel, 2006] and an ex-
tended version appeared then in the Journal of Graph Algorithms and Ap-
plications (Special Issue on Selected Papers from GD 2006); see [Gutwenger,
Klein, and Mutzel, 2008].
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1.3 Related Work

Two further results, which are related to crossing minimization, are not described
in detail here, but are used in the sections on crossing minimization heuristics

(see Section[4.2]and [4.3).

e In [Buchheim, Chimani, Ebner, Gutwenger, Jiinger, Klau, Mutzel, and Weis-
kircher, 2008] we present a branch-and-cut based approach for exact cross-
ing minimization, which was published in the journal Discrete Optimiza-
tion. An experimental study examining the performance and usefulness of
the column generation scheme applied in this algorithm was presented at
WEA 2006 [Chimani, Gutwenger, and Mutzel, 2006] and was published in
the ACM Journal of Experimental Algorithmics [Chimani, Gutwenger, and
Mutzel, 2009a]. We will use the exact crossing numbers of some benchmark
graphs to evaluate the quality of heuristic solutions.

e The second result relates to the minimum cut of planarizations and is used
in the application of the non-planar core reduction to the crossing number
(Section[4.2.1). It was presented at the 6th Czech-Slovak International Sym-
posium on Combinatorics, Graph Theory, Algorithms and Applications in
2006 and appeared in Electronic Notes in Discrete Mathematics [Chimani,
Gutwenger, and Mutzel, 2007].



Chapter 2
Preliminaries

You have to learn the rules of the game. And then you have
to play better than anyone else.

ALBERT EINSTEIN (1879 — 1955)

This chapter introduces the required mathematical and graph theoretic back-
ground and provides notational conventions used throughout this thesis. The
first two sections deal with basic definitions concerning graphs and trees and the
third section discusses fundamental terms and results from graph drawing fo-
cusing on graph planarity and embeddings. Finally, the last section is devoted to
special classes of graphs which are applied in the study of graphs with known
crossing numbers. We use such graphs in computational studies on crossing
minimization (see Section . The mathematical notation is mainly derived
from the text books by Diestel [2005] and Jiinger and Mutzel [2004]. We denote
with R the set of real numbers and with N={0, 1, 2,...} the set of natural numbers
including 0.

2.1 Undirected Graphs

A graph G = (V, E) consists of a finite set V of vertices and a finite multi-set E of
edges. Each edge e € E is an unordered pair (u, v) with u, v € V. The vertices u
and v are the endvertices of e, and e is incident to u and v. Two vertices u,v € V
are adjacent, or neighbors, if (u,v) € E. The degree of a vertex v € V is the number
of edges incident to v and is denoted with deg(v). If all the vertices of G are
pairwise adjacent, then G is complete. An edge (v,v) is called a self-loop. If an
edge (u,v) € E occurs more than once in E, it is called a parallel or multiple
edge. G is called simple, if it contains neither self-loops nor multiple edges.

We refer with V(G) to the set of vertices of a graph G and with E(G) to the set
of its edges. For ease of notation, we shall not always distinguish strictly between
a graph and its set of vertices and edges, that is, we shall also write v € G or e € G,
rather than v € V(G) or e € E(G), respectively.

The complete graph with n vertices is denoted as K,, and the graph (0,0) is
called the empty graph. A graph G’ =(V’, E’) is a subgraph of G =(V,E) (and G a

7



8 Chapter 2. Preliminaries

supergraph of G’) if V. C V and E’ C E. In this case, we write G’ C G and say that
G contains G’. We call G’ a spanning subgraph of G if G’ contains all vertices of
G, thatis, V= V. For any set F C E of edges, V(F) denotes the set of all vertices
incident to at least one edge in F.

If U is a set of vertices of G = (V, E), we write G — U for the graph G’ = (V'\
U, E’), where E’ contains exactly the edges in E with both endvertices in V'\ U.
In other words, G — U results from G by deleting all the vertices in U and their
incident edges. If U = {v} is a singleton, we simply write G —v rather than G —{v}.
For a subset F C V x V, we write G — F for the graph (V, E \ F) and G + F for the
graph (V, ENF); as for vertex sets, we use the abbreviations G —e and G +e if F is
a singleton {e}. For two graphs G =(V, E) and G’ =(V’, E’), we use the notations
GUG  =(VUV,EUE)andGNG' :=(VNnV,ENE’).

2.1.1 Paths and Cycles

A path p : v = win G is an alternating sequence of vertices and edges v =
Vo, €1, V1,..., €k, Vi = w with k > 0 such that v,_; and v; are incident to e; for
i=1,...,k. The vertices vy,...,, Vx_; are called inner vertices of p. A path is sim-
ple if all its vertices are distinct. The length of a path is the number of edges on
the path. Two ore more paths are independent if none of them contains an in-
ner vertex of another. A graph H is a subdivision of G if H is obtained from G by
replacing some of the edges of G with independent paths between their endver-
tices so that none of these paths has an inner vertexin G.

Ifp:v =S wisa simple path, then p plus the edge (w, v) is called a cycle and
its length is the number of edges (equivalent: vertices) on the cycle. In particular,
a self-loop forms a path of length one and two multiple edges a path of length
two. For ease of notation, we omit the edges in the description of a path if they
are evident by context. A graph that does not contain any cycle is called a forest.

2.1.2 Connectivity

A non-empty graph G = (V, E) is connected if every pair of vertices in G is con-
nected by a path, otherwise it is called disconnected. A maximal connected sub-
graph of G is called a component of G. If there exist three distinct vertices v, w, a

of G such that a lies on every path v = w, then a is called a cut vertex or ar-
ticulation point. Similarly, an edge e = (v, w) is called a bridge if e lies on every

path v = w. For an integer k > 0, G = (V, E) is called k-connected if |V| > k
and G — X is connected for every X C V with |X| < k. Every non-empty graph is
0-connected, and the 1-connected graphs are exactly the connected graphs with
at least two vertices. It is also common to write biconnected and triconnected in-
stead of 2-connected and 3-connected, respectively. A connected forest is called
a tree.

The following theorem is one of the cornerstones of graph theory.
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Theorem 2.1 (Menger’s theorem [Menger, 1927, (Whitney, |1932b)} Diestel, 2005]).
A graph is k -connected if and only if it contains k independent paths between any
two vertices.

2.1.3 Minimum Cuts

A cut in G is a partition (S, S) of the vertices of G. The capacity c(S,S) of the cut
is the cardinality of the set E(S,S) of all the edges connecting vertices in S with
vertices in S. For two vertices s,t € V, we call (S,S) an st-cut if s and ¢ are in
different sets of the cut. A minimum st-cut is an st-cut of minimum capacity.
We denote the capacity of a minimum s#-cut in G with mincut; ((G).

2.2 Directed Graphs

Directed graphs are defined similarly to graphs with the exception that the edges
are ordered pairs of vertices. To avoid confusion, we refer to the vertices of a
directed graph as nodes and to its edges as arcs. More formally, a directed graph
(digraph) G = (V,A) consists of a finite set V of nodes and a finite multi-set A of
arcswith A C V x V[ If a = (v, w) is an arc, v is called the source node and w the
target node of a. Furthermore, a is an incoming arc of w and an outgoing arc of
v. The number of incoming arcs of a node v is called the in-degree of v (denoted
with indeg(v)) and the number of outgoing arcs the out-degree of v (denoted with
outdeg(v)).

The underlying undirected graph of a digraph G is simply the graph that re-
sults from G by considering each arc in G as an unordered pair of vertices. Thus,
concepts like path, cycle, subgraph, or connected component naturally carry
over to digraphs. In addition, for a directed path or cycle we demand that the
nodes in the path or cycle correspond to the direction of the arcs, for example,
if we have a directed path vy, e}, v4,..., ek, Uk, then e; = (v;_,v;) fori =1,..., k.
An acyclic digraph is a digraph with no directed cycle. A source is a node with no
incoming arcs and a sink is a node with no outgoing arcs.

2.2.1 Rooted Trees

A rooted tree T is a digraph with a single source whose underlying undirected
graph is a tree. The unique source r of T is called its root and all sinks are called
leaves. An arc in T from v to w is denoted with v — w. If there is a directed path
from v to w, we write v — w. If v — w, v is the parent of w and w a child of
v. Ifv > w, then v is an ancestor of w and w a descendant of v. Every node is
an ancestor and a descendant of itself. The depth of a node v is the length of the
(unique) path r % v and the depth of the tree is the length of the longest path
from r to a leaf.

Here, we consider V x V as a multi-set of ordered pairs (v, w) with v, w € V.
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Input: undirected graph G =(V, E), start vertex s
Output: edges of G are marked as T- or B-arc

1: nextNum:=0

2: foreach v €V do
3: number[v]:=0
4: end for

5: DFS-Visit(s, nil)

6: function DFS-Visit(vertex v, edgee),)

7: nextNum := nextNum+1
8: number|[v] := nextNum
9: for all edges e = (v, w) incident to v do
10: if number{w] =0 then
11: mark e as T-arc v —» w
12: DFS-Visit(w, e)
13: else if e # e, and number{w] < number{v] then
14: mark e as B-arc v — w
15: end if
16: end for

17: end function

Listing 2.1: Depth-first search (DFS).

2.2.2 Depth-First Search and DFS-Trees

Let G be a connected undirected graph without self-loops. A depth-first search
(DFS) traversal of G assigns each edge a direction and partitions the edges of G
into two classes. We obtain T-arcs (tree-arcs, denoted with v — w) and B-arcs
(backward-arcs, denoted with v — w). The T-arcs form a rooted tree (DEFS-tree)
that spans G, and for each B-arc v — w, there exists a (directed) path w S vofT-
arcs leading from w back to v. Listing[2.1]shows an O(|V|+]|E|) time algorithm for
a DFS traversal of a graph G =(V, E) starting at vertex s. The recursive procedure
DFES-VisiT also assigns a number to each vertex indicating the order in which
vertices are visited by DFS. Figure 2.1|gives an example for a graph processed by
DEFS. The following table summarizes the variables used in Listing[2.1]

variable purpose

s Root vertex of DFS-tree.

nextNum The next DFS number.

number[v] | DFS number of vertex v.
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(a) graph G (b) DFS-tree of G

Figure 2.1: A graph processed by DFS: (a) shows the graph with vertices labeled by
their DFS number, (b) shows the resulting DFS-tree (B-arcs are drawn as dashed
lines).

2.3 Planar Graphs and Drawings

In a drawing of a graph G =(V, E), each vertex v € V is mapped to a distinct point
p, in the plane and each edge (¢, v) € E is mapped to a closed simple curve that
connects the points p, and p, and does not pass through the image of any other
vertex. If two curves share an interior point p, we say that they cross at p. We call
a drawing of G without any edge crossing a planar drawing and a graph that can
be drawn without edge crossings a planar graph. In the following, we assume
that G is connected.

2.3.1 Graph Embeddings

A planar drawing of a graph divides the plane into topologically connected re-
gions called faces that are bounded by the curves corresponding to the edges.
Exactly one of the faces is unbounded and is called the external face. A face is
uniquely described by the sequence of its boundary edges. The degree deg( f) of
a face f is defined as the number of its boundary edges, where each edge with
both sides on the boundary of f is counted twice. The set of vertices on f is
denoted with V(f). Two faces are adjacent if their boundaries share a common
edge.

We say that planar drawings with the same set of faces realize the same com-
binatorial embedding. A combinatorial embedding I essentially fixes the topol-
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Figure 2.2: The dual graph is constructed by placing a dual vertex within every face
and connecting the dual vertices of adjacent faces. Dual vertices are drawn as
squares and dual edges as dashed lines.

ogy of the graph and is defined as a cyclic, clockwise ordered list for each vertex
v € V that contains the edges incident to v. This cyclic ordering uniquely defines
the set of faces in any drawing that realizes I'. When, in addition to the combi-
natorial embedding I', the external face fj is fixed, then (T, f) is called a planar
embedding of G.

A famous result by Euler for polytopes relates the number of vertices, edges,
and faces in any combinatorial embedding of a connected planar graph:

Theorem 2.2 (Euler's formula 1758). Let I be a combinatorial embedding of a
connected planar graph G = (V, E) and let F be the set of faces inT'. Then |V|—
|E|+|F|=2.

This equation implies a well-known upper bound for the number of edges
in a simple planar graph with at least 3 vertices. A nice proof of the following
corollary can be found in [Diestel, 2005, Corollary 4.2.10].

Corollary 2.1. Let G = (V, E) be a simple planar graph with at least 3 vertices.
Then |E| <3|V|—6.

Given a planar graph, a combinatorial embedding can be computed in linear
time [Chiba et al., |1985, Mehlhorn and Mutzel, 1996, Boyer and Myrvold, 2004]
and any face can be chosen to be the external face. However, a planar graph can
have an exponential number of combinatorial embeddings in general. Through-
out this thesis, we will frequently use the name embedding for planar or combi-
natorial embedding.

2.3.2 The Dual Graph

The dual graph expresses the adjacency relationships between the faces in an
embedding. Given an embedding I of a planar graph G = (V, E) with face set F,
the dual graph T'* = (V*, E*) is constructed as follows: V* = F and E* contains an
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edge (f1, f>) for each e € E such that e is on the boundary of both f; and f,. If e
is only on the boundary of a single face f (which means that e is a bridge), the
dual graph contains a self-loop (f, f). G and I'* are dual in the following sense:
The order of the edges on the face boundaries of I implies a natural embedding
IT of I'™*. With respect to II, G is in turn the dual graph of I'**. An example for the
construction of the dual graph is shown in Figure It illustrates that the dual
graph may contain multiple edges as well as self-loops.

2.3.3 Non-planarity Measures

If a graph G is not planar, the following question arises naturally: How far away
is G from planarity? For that reason, various measures for non-planarity have
been proposed; see also|Liebers|[2001] for a survey. The most prominent measure
is the crossing number cr(G) which is the minimal number of crossings in any
drawing of G. The crossing number problem is the problem of finding the crossing
number for a given graph G.

The skewness of G is the minimum number of edges that have to be removed
from G for obtaining a planar graph. This is computationally equivalent to the
maximum planar subgraph problem that asks for a planar subgraph of G with
the maximum number of edges. The thickness of G is the minimum number of
planar subgraphs of G whose union is G. On the other hand, the coarsenessis the
maximum number of edge-disjoint non-planar subgraphs of G.

2.4 The Planarization Method

The most prominent and practically successful method used for minimizing the
number of crossings in a drawing is the planarization method. This approach
was introduced by [Batini et al.|[1984] and can be viewed as a general framework
which addresses the crossing minimization problem with a two step strategy.
Each step aims at solving a particular optimization problem for which various
solution methods are possible. Let G = (V, E) be the graph for which we want to
find a crossing minimal drawing. Then, the two steps to be executed are:

1. Compute a planar subgraph of G that contains as many edges as possible.

2. Reinsert the edges not contained in the planar subgraph with as few cross-
ings as possible. Each crossing that occurs when inserting an edge is re-
placed by a new vertex of degree four called a crossing vertex.

The insertion of crossing vertices during the edge reinsertion step ensures that
the (modified) graph remains planar. Finally, we end up with a planar graph
G, consisting of representatives of the vertices of G plus some crossing vertices.
Each edge e of G is mapped to a path in G, that connects the two representatives
of the end vertices of e via zero or more crossing vertices; vice versa, each edge
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(a) Two edges cross. (b) Two edges just touch.

Figure 2.3: The two possible configurations for a crossing vertex v in an embedding
of the planarized representation.

of G, corresponds to a unique edge of G. Hence, we call G, a planarized repre-
sentation of G and the number of crossing vertices in G, the number of crossings
in G,.

Since G, is a planar graph, we can create a planar drawing %,, of G, and inter-
pret it as a drawing 2 of G. For each crossing vertex v of G,, two configurations
are possible; see Figure Either the two corresponding edges in G, say e and
e’, cross each other in 9, then v in fact represents a crossing between e and e’
in 7; or e and e’ just touch and there is no crossing required in 2.

Figure illustrates the different stages of the planarization approach with
an example. In this case, the planar subgraph contains all but one edge (edge
(2,5) is missing) and the final drawing of G has only a single crossing.

The two optimization problems we have to solve in the planarization ap-
proach are the maximum planar subgraph (MPSP) and the edge insertion prob-
lem (EIP). Both problems are NP-hard and are usually solved with heuristic ap-
proaches. We will see later that even an optimal solution of MPSP in the first
step and of EIP in the second step does not yield a crossing minimal solution in
general; in fact the solution may be arbitrarily bad. In Section we give an
example of a family of graphs G/ , for which a maximum planar subgraph con-
tains all but one edge and an optimal solution of EIP results in m crossings. On
the other hand, a crossing minimal drawing of G/, has only two crossings. How-
ever, this is merely a pathological example and experimental analysis shows that
the planarization approaches typically performs excellent; see Section[4.3

2.4.1 Planar Subgraphs

In many practical applications, we expect that a graph can be made planar by
removing only a few edges. Therefore, it is reasonable to use a planar subgraph
with as many edges as possible as a starting point for crossing minimization. The
corresponding optimization problem is stated as follows:
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® :
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(¢) planarized representation G, of G (d) final drawing of G

Figure 2.4: A sample application of the planarization method.

MaxiIMUM PLANAR SUBGRAPH PrROBLEM (MPSP)

Instance: | agraph G=(V,E)

Solution: | asubset E’ C E such that G’ =(V, E’) is planar

Maximize: | the size of the E’

Garey and Johnson|[1979] have shown that MPSP is NP-hard. In [Jiinger and
Mutzel, 1996], Jiinger and Mutzel presented a branch-and-cut algorithm for solv-
ing MPSP to optimality. Computational results show that the algorithm is able
to provide a provably optimal solution pretty fast if the number of edges to be
deleted is small. However, the method is quite complicated to understand and to
implement. Moreover, if the number of deleted edges exceeds 10, the algorithm
usually needs far too long to be acceptable for practical computation.

Since finding a maximum planar subgraph is hard, the problem of finding
just a maximal planar subgraph has received much attention. A maximal planar
subgraph of G = (V, E) is a planar subgraph P =(V, E \ F) of G such that adding
any edge of F to P destroys the planarity, i.e., PUe is not planar for every e € F. A
widely used standard heuristic for finding a maximal planar subgraph is to start
with a spanning tree of G, and to iteratively try to add the remaining edges one
by one; see Listing[2.2] In every step, a planarity testing algorithm is called for
the obtained graph. If the addition of an edge would lead to a non-planar graph,
then the edge is disregarded; otherwise, the edge is added permanently to the
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1: procedure MAXIMALPLANARSUBGRAPH(Graph G =(V, E))
2 let P=(V, Ep) be a spanning tree of G
3 F:=E\Ep

4 forall e Fdo

5: if PU e is planar then
6 P:=PuUe
7 end if
8 end for
9: end procedure

Listing 2.2: A simple algorithm for computing a maximal planar subgraph P.

planar graph obtained so far. After | F| planarity tests, we obtain a maximal planar
subgraph P of G. Since planarity can be tested in linear time [Hopcroft and Tarjan,
1974, Booth and Lueker, |1976, Boyer and Myrvold, 2004], the running time of the
procedure is O((1 +|F|)(|V|+|E])).

This incremental approach can be made more efficient by using incremental
planarity testing algorithms. |Di Battista and Tamassia/ [1996a] presented an algo-
rithm that tests in O(log|V]) time if an edge can be added while preserving pla-
narity, and that performs the required updates of the data structure when adding
an edge in O(log|V|) amortized time. The running time for incremental planarity
testing has been improved by La Poutré| [1994] to O(a(|E|,|V|)) amortized time
per query and update operation. This yields an almost linear time algorithm for
the maximal planar subgraph problem that runs in O(|V|+ |E| - a(| E|,|V])) time.
Here, a(x,y) denotes the inverse Ackermann function, which means that a(x, y)
is a function that grows extremely slowly. A linear time algorithm for finding a
maximal planar subgraph is given by Djidjev| [1995]. This algorithm uses the de-
composition of the graph into BC- and SPQR-trees and applies a fast data struc-
ture for on-line planarity testing in triconnected graphs. BC- and SPQR-trees are
discussed in detail in Chapter[3]

Jayakumar et al.[ [1989] [see also Jiinger et al.,{1998] proposed a method for
computing a planar subgraph that is based on PQ-trees. The PQ-tree data struc-
ture has been developed by Booth and Lueker [1976] for solving the problem of
finding permissible permutations of a set U. The permissible permutations are
those in which certain subsets S € U occur as consecutive subsequences. Draw-
backs of this planar subgraph algorithm are that it cannot guarantee to find a
maximal planar subgraph, and that the theoretical worst case running time is
O(IV|?). However, in practice it is usually very fast and the quality of the results
can be improved by introducing random events and calling the algorithm several
times. The algorithm starts by computing an sf-numbering of G which deter-
mines the order in which the vertices are processed. A simple but useful random-
ization is to choose a random edge (s, ¢) for each run. We will use this algorithm
in the experimental study presented in Section[4.3]

The trivial approach for finding a planar subgraph consists of computing a
spanning tree. If G is a graph with n vertices and ¢ components, then this ap-
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n—c

proach has an approximation factor of Sviee > % for MPSP since a spanning tree
of G contains | V| — ¢ edges and a planar graph with ¢ components has at most
3|V| — 6¢ edges by Euler’s formula. Surprisingly, we cannot guarantee a better
approximation factor than that of the spanning tree approach if we also demand
that the computed subgraph must be maximal planar; see [Dyer et al.,|1985]. The
currently best approximation factor of 4/9 is achieved by the algorithm by |Cali-
nescu et al.[[1998] which runs in O(| E|3/2|V|log® | V) time.

2.4.2 Edge Insertion

The planar subgraph P computed in the first step of the planarization approach
is a good starting point for finding a planarized representation G, of G with few
crossings. In practice, we expect that only a small number of edges has to be
inserted into P in order to obtain G,. However, the edge insertion step fixes the
crossings in the final drawing, and the choice of the edge insertion technique
may have a significant impact on the quality of the final solution. Formally, the
edge insertion problem is defined as follows:

EDGE INSERTION PROBLEM (EIP)

Instance: | agraphG=(V,E)andasetE‘'CVxV

Solution: | a planarized representation G, of G’ = (V,EU E’) in
which no two edges of E cross

Minimize: | the number of crossings in G,

Mutzel and Ziegler [1999] [see also [Ziegler, 2000] have shown that even a re-
stricted variant of the edge insertion problem is NP-hard: The constrained cross-
ing minimization problem (CCMP) asks for the minimum number of crossings
required for inserting a set of edges into a fixed embedding of a planar graph.
In contrast to CCMP, the general edge insertion problem leaves the freedom to
chose a suitable embedding of the planar subgraph. Ziegler and Mutzel also gave
a branch-and-cut algorithm to solve CCMP. However, experiments showed that
it can only solve instances to provable optimality if there are less than 10 edges
to be inserted.

The standard method for heuristically solving EIP fixes an embedding of the
planar subgraph and processes the edges to be inserted one by one; compare

Listing

Fixed Embedding. Suppose, we want to insert edge e = (v, w) into the planar
graph G,. LetII be a fixed embedding of G,. We construct the extended dual
graph G* of I1 with respect to e as follows. The vertices of G* are the faces of Il
plus two new vertices v* and w* representing v and w. For each edge e’ in G,
we have an edge in G* connecting the two faces separated by e’ (if e’ is a bridge,
we have a self-loop in G,). Additionally, we have an edge (v*, f,) for each face f,
adjacent to v, and (w*, f,,) for each face f,, adjacent to w.
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1: procedure FIXEDEMBEDDINGINSERTER(Graph P=(V,E), E'CV x V)
2 G,:=P

3 let IT be an arbitrary embedding of G,

4 for each (u,v)€ E' do

5: Compute extended dual G* of I with respect to (u, v)

6 lete,,ef,..., e/, e, be ashortest path in G* from u* to v*

7

8

9:

Insert edge (u, v) into G, and Il such that it crosses ey, ..., ¢
end for

end procedure

Listing 2.3: Standard procedure for inserting a set of edges E’ into a fixed embedding
of a planar graph P; the result is a planarized representation G.

pmmmmm———
pmmmmmm——

Figure 2.5: Edge insertion with fixed embedding by finding a shortest path in the
extended dual graph.

We observe that inserting e into II corresponds to finding an (undirected)
path from v* to w* in G*. If such a path has length ¢, then we can insert e with
¢ — 2 crossings, since the first and the last edge on this path do not produce a
crossing. Therefore, in order to insert e into II with the minimum number of
crossings, we have to find a shortest path from v* to w* in G*. This is possible in
linear time using a simple breadth-first search traversal starting at v*. Figure
shows a non-trivial example. Here, we want to connect the vertices 1 and 2. The
dashed vertices and edges belong to the extended dual graph. The optimal solu-
tion highlighted in bold crosses four edges.
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(a) fixed embedding I'x (b) optimal embedding

Figure 2.6: A family of graphs G and embeddings I'y for which the insertion of an
edge e requires k crossings more than the optimal solution.

A
B
A C
B SR ° D
b
E c d E
(a) graph G; (b) graph G, (c) product graph G; x G,

Figure 2.7: The construction of the Cartesian product of two graphs: (c) shows the
Cartesian product G; x G, of the graphs G; and G, shown in (a) and (b).

Though we can easily find a crossing minimal solution if the embedding of
G, is fixed, the drawback of this method is that fixing an unfavorable embedding
may result in an arbitrarily bad solution. Figure[2.6((a) gives an example of such a
family of graphs G, with embeddings I';. The blue fat lines in this figure denote
bundles of k+1 parallel edges, and the green fat line a bundle of k parallel edges.
Hence, inserting edge e into the given embedding requires at least k+1 crossings.
On the other hand, it is possible to insert e with only one crossing by changing
the embedding; see Figure [2.6(b). It is easy to see that this example can also be
adapted to the case of simple graphs by splitting all the edges in each bundle.

2.5 Artificial Graphs

The product of graphs is a useful tool for constructing artificial graphs and it is
intensively used in the field of known crossing numbers for special graph fami-
lies. Let G; = (W, E;) and G, = (14, E;) be two graphs. The (Cartesian) product of
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(a) Petersen graph (b) P(8,3)

Figure 2.8: Examples for generalized Petersen graphs: (a) shows a drawing of the
original Petersen graph and (b) a drawing of P(8, 3).

G; and G, is the graph G; x G, =(}{ x 14, E), where

E = {((u,v),(u,v))|ueW,(v,v)eE}U
{((u,v),(u",v)) |veV,(u,u’)e E}.

Figure[2.7|illustrates the definition of the product graph with an example. The
vertices of G; X G, are arranged as a 5 X 4 matrix (corresponding to the 5 vertices
of G; and the 4 vertices of G,) such that each row represents G; and each column
Gs.

The Petersen graph (see Figure[2.8) occupies an important position in the de-
velopment of several areas of modern graph theory, because it often appears as a
counter-example to important conjectures. There is even a book by Holton and
Sheehan|[1993] completely devoted to this topic.

The Petersen graph has been generalized to a whole family of graphs which
is referred to as generalized Petersen graphs. Let ¢ be a positive integer. The
generalized Petersen graph P(m,{) is obtained as follows. Start with an m-cycle
C=(vy,...,Vn_1)and m additional vertices wy,...w,,_; notin C. Then insert the
edges (v;, w;) and (w;, w;1¢) for each i =0,..., m, where indices are read modulo
m. Figure (b) shows a drawing of the graph P(8, 3). Using this notation, P(5,2)
yields the original Petersen graph shown in Figure [2.8](a).
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Graph Decomposition

Everything should be made as simple as possible, but not
one bit simpler

ALBERT EINSTEIN (1879 — 1955)

The connectivity structure of a graph has been well studied in graph theory. One
of the key questions was how to decompose a graph into non-decomposable
constituents according to its connectivity. Many fundamental results have al-
ready been contributed in the 1930s by Kuratowski and Whyburn! [1930], Whit-
ney [1932a)b], and [MacLaine [1937]. Though the theory is applicable to general
graphs, these results show in particular that the connectivity structure of a graph
has important consequences for planar graphs. In fact, it is the key for enumerat-
ing all possible embeddings of a planar graph. The algorithmic complexity for the
2- and 3-connected case has been explored in the early 70s, when Hopcroft and
Tarjan published optimal algorithms for finding the biconnected [Tarjan, (1972]
and triconnected components [Hopcroft and Tarjan, 1973a] of a graph.

In Sections through we introduce the graph decomposition theory
for general graphs. However, our main focus is on planar graphs and their em-
beddings. In particular, we present data structures that efficiently represent all
embeddings of a planar graph, namely the BC-tree and the SPQR-tree, and give
algorithms with optimal time and space complexity for their construction. These
data structures will play a key role in the algorithms presented in Chapter 4| and

Gl

Our main contributions are a thorough introduction into the theory of tricon-
nected components showing the relationships between the different approaches
by MacLaine| [1937] / Tutte [1966] and the SPQR-tree data structure introduced
by |Di Battista and Tamassial [1989] (see Section [3.2] through [3.3), as well as non-
trivial corrections for the linear-time triconnectivity decomposition algorithm by
Hopcroft and Tarjan! [1973a] (see Section[3.4).

21
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B]b,

(a) graph (b) block graph (c) BC-tree

Figure 3.1: A graph, its block graph, and the BC-tree that results from rooting the
block graph at block b,.

3.1 Blocks and BC-Trees

Let G = (V,E) be a graph. A block of G is a maximal connected subgraph that
does not contain a cut vertex. That means, every block of G is either a maximal
biconnected subgraph, a bridge, or an isolated vertex. Vice versa, every such
subgraph is a block of G. Different blocks may share at most a single vertex,
which is then a cut vertex of G, and the blocks of G partition the edge set E.

The blocks describe a coarse structure of G, which consists not only of the
blocks themselves but also their intersection at cut vertices. Let C denote the set
of cut vertices of G and B the set of its blocks. Then, we have a natural bipartite
graph on CU B formed by the edges (¢, b) with ¢ is contained in block b. We call
this graph the block graph of G. Obviously, the block graph is a forest and unique.

Assume now that G is connected. In this case, the block graph of G is a tree.
We root this tree at an arbitrary block b € B and call the resulting rooted tree a
BC-tree of G. We distinguish between two kinds of nodes: B-nodes representing
blocks of G and C-nodes representing cut vertices of G. Figure (3.1 shows an ex-
ample of a connected graph and its BC-tree. BC-trees will play and important
role in the algorithms presented in the following chapters.

An important result by Whitney relates the block structure of a graph with the
property of being planar.

Theorem 3.1 (Whitney|1932a). A graph G is planar if and only if each block of G
is planar.

3.1.1 Finding Blocks

Hopcroft and Tarjan! [1973b], Tarjan/[1972] presented a linear time and space al-
gorithm for finding the blocks of a graph, where they exploit some properties of
the DFS-tree of a graph. Consider the DFS-tree of a connected graph G and let
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Figure 3.2: DFS-tree of the graph shown in Figurewith annotated lowpt-values;
the two cut vertices and four blocks are highlighted.

number[v] denote the DFS-number of a vertex v € G. For a vertex v of G, we
define the value lowptv) to be the lowest DFS-number of a vertex reachable by
traversing zero or more T-arcs followed by one B-arc, or the DFS-number of v if
no such vertex exists:

lowp(v) = min ({number[v]} U{number{w] | v S w})

The following lemma gives us an easy to test condition for cut vertices in G
using the lowpt values of vertices.

Lemma 3.1 (Lemma 5 in Tarjan!|1972). Let c,v, w be distinct vertices of G such
that c — v and w is not a descendant of v. If lowpt{v] > number(c], then c is a cut
vertex of G and removing ¢ disconnects v and w. Conversely, if ¢ is a cut vertex of
G, then there exist vertices v and w satisfying the properties above.

We can find the blocks of G by a bottom-up traversal of the DFS-tree. Suppose
that ¢ and v are vertices as defined in Lemma|3.1] and that there is no cut vertex
¢’ with ¢ — ¢’. Then, the block containing edge (c, v) is induced by the vertices
fctufu | v 5 u}. Moreover, the vertices © with v % u will not appear in any
further block. If we cut the tree at ¢ — v, we can climb up the tree until the root
and iteratively use this condition to identify the blocks.

As an example, consider Figure The vertices are labeled with their DFS-
numbers and annotated with their lowpt-values. First, we find the block contain-
ing 5 — 6, which is induced by the vertices 5, 6, 7, and 8. Then we cut the tree at
5 — 6 and find the block containing 2 — 3 (induced by 2, 3, 4, and 5), and so on. In
the following, we describe an algorithm that implements this idea using a stack
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of vertices, so that the vertices in the next block are always the topmost vertices
on the stack.

The algorithm in Listing[3.1] computes the blocks of a (not necessarily con-
nected) graph G without self-loops. It efficiently computes the lowpt-values us-
ing the following formula:

lowptlv] := min ({number[v]} U{lowpdw]|v— w}
U{number{w] | v — w})

The implementation performs this computation at line [8| (initialization), line
(T-arc), and line (B-arc). The condition of Lemma |3.1|is tested in line At
this stage, we need the set of vertices that induce the corresponding block. For
this purpose, we maintain a stack of vertices calledVertices, on which we put the
vertices in the order they are processed by DFS. Hence, the topmost vertices on
this stack are the vertices we have to consider. This is done in the repeat-loop
starting at line Then, these vertices are removed from the stack which corre-
sponds to pruning the subtree.
The following table summarizes the variables used in Algorithm[3.1]

variable purpose

BJi] Output of the algorithm. Stores the set of edges in the i-th
block.

nextNum The next DFS number.

nextComp The next block number.

number|{v] DFS number of vertex v.

lowpt{v] The lowptvalue of vertex v as defined above.

calledVertices | A stack containing vertices of G by decreasing DFS num-
ber (top element has highest number).

3.2 Triconnected Components

MacLaine|[1937] was the first to publish a paper on the triconnectivity structure
of a graph. His goal was to decompose a biconnected graph into certain maxi-
mal triplyfT|connected subgraphs called atoms as an analog to the decomposition
of a 1-connected graph into its blocks. Apart from his main goal—the identifi-
cation of the intrinsic triply connected subgraphs—his theory also revealed two
additional types of structures making up a biconnected graph: parallel and se-
rial structures’}] MacLane also applied his theory to planar biconnected graphs

IMacLane’s definition of triply connected is not equivalent to triconnectivity as defined in
Chapter He calls a graph triply connected if it is a subdivision of a triconnected graph.

2Parallel structures are called branch graphs in his theory, whereas serial structures occur only
in form of paths in branch graphs and atoms.
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Input: Graph G =(V, E) without self-loops
Output: edges of blocks of G in B[0],..., B[nextComp—1]

® N

9:

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

var Stack calledVertices
nextNum := nextComp :=0
for each v € V do number{v] :=0
foreach v € V do
if number{v] = 0 then DFS-BC(v, nil)
end for
procedure DFS-BC(vertex v, vertex parent)

number(v] := lowpt[v] := nextNum := nextNum+1
calledVertices.push(v)

for all edges e = (v, w) incident to v do
if number{w] =0 then
DFS-BC(w, v)
lowpt{v] := min(lowpt{v], lowpt{w])
else if number{w] < number{v] then
lowpt{v] :== min(lowpt{v], number{w])
end if
end for

if parent+# nil and lowpt{v] > number|parent] then
repeat
w := calledVertices.pop()
for all edges e =(w, u) incident to w do
if number{w] > number{u] then
add e to block B[nextComp|
end if
end for
until v = w
nextComp := nextComp+1
end if

29: end procedure

Listing 3.1: Finding the blocks of a graph.
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Figure 3.3: The split classes E, E», E3 of a split pair {u, v}.

and studied the relationship between the triconnectivity structure and combina-
torial embeddings. In fact, he was the first to give a formula for the number of
combinatorial embeddings that a biconnected graph admits.

MacLane’s theory of triconnected components was refined by Tutte [1966].
Tutte introduced a further level of abstraction: the concept of virtual edges. A
virtual edge is a placeholder for a subgraph that is only attached to the rest of
the graph at the two endpoints of the virtual edge. In MacLane’s theory, a vir-
tual edge is represented by a path in the respective subgraph that connects the
two endpoints of the virtual edge. This additional mean of abstraction gives two
important benefits: On the one hand the resulting triconnected components are
significantly more compact, which turns out to be favorable for data structures
and efficient algorithms, and on the other hand the representation is unique,
whereas MacLane’s theory allows to chose an arbitrary path in the subgraph rep-
resented by a virtual edge.

The theory of triconnected components presented in this section is based
on Tutte’s theory. Let G = (V, E) be a not necessarily simple graph without cut
vertices and self-loops. A separation pair of G is a pair of vertices {u,v} € V
whose removal disconnects G, that is, G — {u, v} is not connected. We call {u, v}
a split pair if {u, v} is a separation pair or a pair of adjacent vertices.

Consider a split pair {u,v}. We can partition the edges of G into Ej,..., E
such that two edges belong to the same set E; if and only if they lie on a path not
containing any vertex of {u, v} except as an endpoint. We call the sets Ej, ..., Ej
the split classes of the split pair {u, v} and the graphs induced by the split classes
the split class graphs. Each split class graph G; is either

e agraph consisting of the vertices {u, v} joined by a single edge, or

¢ a maximal connected subgraph G’ € G such that neither (u, v) is an edge
of G/, nor {u, v} is a separation pair of G’.

Moreover, all these graphs have exactly u and v in common, that is, G;NG; =
({u,v},0) for i # j. Figure[3.3]shows an example for the split classes of a split pair
fu,v}.
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Gl G2

Figure 3.4: A Tutte split applied to the graph shown in Figure where the edges
are partitioned into C := E3 and C := E; U E,.

It is a natural idea to break up the graph at split pairs, until the remaining
pieces are of a basic, unbreakable structure. For this decomposition process, we
define the following split operation that breaks up a graph into two graphs.

Definition 3.1. Let {u, v} be a split pair with split classes Ej,..., E;, and let C =
EiU...UE; and C = E\ C be such that |C| > 2 and |C| > 2. A split operation
s(u,v,?) applied to G replaces G by two new graphs G, :=(V(C),CUe) and G, :=
(V(C),Cue), where e :=(u, v,{) is a new edge with label £. We call e a virtual edge
and the two created graphs G; and G, split graphs. If, in addition, C is a single
split class, say E,, and the subgraph induced by C or C contains no cut vertex,
then we call the split operation a Tutte split.

The label ¢ assigned to the virtual edges is important. Its purpose is to identify
the particular split operation and to distinguish e from edges in G. Suppose now
we start with graph G = (V, E) and perform a number of split operations. It is
evident that we can only perform a finite number of split operations, since a split
operation results in two split graphs each having less edges than the graph that
has been split. The resulting split graphs contain virtual edges as well as edges of
G.

Observation 3.1. Each edge of G is contained in exactly one, and each virtual edge
in exactly two split graphs.

Proof. We prove the lemma by induction on the number of split operations k. If
k =0, there is only G and the assumption holds obviously.
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Let the assumption be true for kK —1 > 0, and let Gy, ..., Gi be the split graphs
after k — 1 split operations. Suppose G; is split next into split graphs G’ and G”.
Then, each edge of G that is also contained in G; is contained either in G’ or in
G”, and in no other graph G; with j # i. Each virtual edge contained in G; is
contained in either G’ or G”, and in exactly one more graph G; # G;. The newly
created virtual edge is contained in both G’ and G” and in no other graph. Fi-
nally, the virtual and non-virtual edges in all graphs G; with j # i are untouched.
Hence, the assumption holds for k, too. O

Observation 3.2. Each split graph contains no cut vertex and at least three edges.

Proof. Let {u, v} be the split pair and C and C := E\ C the respective edge sets.
Since |C|,|C| > 2 and each split graph contains an additional edge (u, v), each
split graph clearly contains at least three edges.

We denote with G’ any of the two split graphs and show that it contains no
cut vertex. Let p, g be two arbitrary vertices of G’. Since G contains no cut vertex
and at least four edges, p and g lie on a cycle in G (this follows from Menger’s
theorem, Theorem[2.1). If we replace every part of the cycle that is not in G’ with
the virtual edge (u, v), we get a cycle in G’. Hence, G’ contains no cut vertex. [

Lemma 3.2 (see also [Hopcroft and Tarjan,|1973al). The total number of edges in
all split graphs is bounded by 3|E| — 6.

Proof. We use induction on the number of edges in G. If G has m = 3 edges, then
G cannot be split, and therefore the total number of edges in all split graphs is
3<3m-—6.

Suppose G has m > 3 edges and the lemma is true for graphs with at most
m—1 edges. If G cannot be split, then the lemma follows immediately. Otherwise,
suppose that G is split into G’ with k 4+ 1 edges and G” with m — k + 1 edges for
some k with 2 < k < m — 2. By induction, the total number of edges in all split
graphs of G’ is at most 3(k+1)—6=3k —3,and in G” at most 3(m —k+1)—6=
3m — 3k — 3. Therefore, the total number of edges in all split graphs of G is at
most

(B3k—3)+ (3m—-3k—-3) =3m—6. O

We are now ready to define the triconnected components of a graph.

Definition 3.2. Let G be a biconnected graph without self-loops. The tricon-
nected components of G are the split graphs obtained by successively applying a
Tutte split until no more Tutte split is possible.

Figure[3.5/shows a biconnected graph and Figure3.6|its triconnected compo-
nents. We can classify the resulting split graphs by their structure.

Theorem 3.2. Every triconnected component is of one of the following three fun-
damental types:

(a) asimple, triconnected graph;
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Figure 3.5: A biconnected graph that serves as running example; vertices are labeled
a,...,p.

Figure 3.6: The triconnected components of the example graph shown in Figure
virtual edges are labeled A,. .. K.
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(b) a cycle with at least three edges (also called a polygon); or
(¢) a pair of two vertices with at least three parallel edges (also called abond).
Moreover, every such graph does not admit a Tutte split.

Proof. We first show that, if G =(V, E) is such a graph, no Tutte split is applicable.
If G is a bond, then every split class (with respect to the two only vertices in G)
consists of a single edge. If G is a cycle, then every split class with more than one
edge is a path with two or more edges, and hence the induced graph contains a
cut vertex. Let finally G be simple and triconnected. Then, G contains no sep-
aration pair, and therefore the split classes of any pair of vertices u, v are either
a single edge or the set E’ containing all edges of G except edges between u and
v. Since G is also simple, there is only one split class {(u, v)}, and hence no Tutte
split can be applied because E \ E’ contains only one edge.

Suppose now G is of none of the types above. We have to show that a Tutte
split is applicable. According to Observation[3.2} G contains no cut vertex and at
least three edges. First, we assume that G contains a multiple edge (u, v). Since
G is not a bond, there must be a split class C of (u, v) with |C| > 2. We denote
with C := E \ C the remaining edges. Obviously, (u, v) € C and |C| > 2. Moreover,
the graph induced by C contains no cut vertex since (u,v) € C. Hence, we can
apply a Tutte split at (u«, v).

Second, we consider the case where G is simple. Since G is not triconnected,
G must contain separation pairs. Again, we distinguish two cases.

Case 1: Suppose G has the following structure:

Let cy,...,crx-1 be k > 3 vertices, and let Gy,..., G- be k subgraphs of G
such that, for 0 < i < k — 1, G; contains no cut vertex, G; N G;; = ({c;},0)
and G;NG; =0for j & {i—1,i,i+1}, where indices are read modulo k. Since
G is not a polygon, there must be an i, such that G;, contains at least two
edges, and hence a Tutte split at (c;,, ¢;,+1) is possible.

Case 2: G is not of that structure. Let {u, v} be a separation pair and let E; be a
split class with |E;| > 2. If both the graph induced by E; and the graph in-
duced by E\ E; would contain a cut vertex, then G would be of the structure
in case 1. Hence, we have a Tutte split at {u, v} with split class E;.

O]
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In general, we have many choices how to carry out Tutte splits on a graph.
However, MacLane’s and Tutte’s theories show that the resulting triconnected
components we obtain are always the same. We give the following result with-
out a proof:

Theorem 3.3 (MacLaine|1937, Tutte|1966). The triconnected components of G are
unique.

Lemma [3.2| directly implies an upper bound for the size of the triconnected
components:

Corollary 3.1. Let G = (V, E) be a biconnected graph. The total number of edges
in all triconnected components of G is at most 3| E| — 6.

In particular, this property allows to develop a data structure for the repre-
sentation of the triconnected components of a graph G whose size is only linear
in the size of G. We present such a data structure in the following section.

The virtual edges establish a relationship between the triconnected compo-
nents just as the cut vertices do for the blocks. By Observation 3.1} we know that
avirtual edge is contained in exactly two triconnected components. This defines
a graph T(G) as follows. The vertices of T(G) are the triconnected components of
G, and there is an edge between two triconnected components C and C’ if there
is a virtual edge e = (u, v,¢) contained in C and C’.

Theorem 3.4 (Tutte|1966). T(G) is a tree.

Proof. We use induction on the number of triconnected components k. For k =
1, there is only a single triconnected component and 7(G) consists of a single
vertex.

Suppose now, that G has k triconnected components, and that T(G’) is a tree
if G’ has at most kK —1 > 1 triconnected components. Since k > 2, we can per-
form a Tutte split s(u,v,¢) on G yielding two graphs G; and G,, and the tricon-
nected components of G are the union of the disjoint triconnected components
Ciy,...,CpofGrand Cy, ..., C;, of G,. Obviously, both G; and G, have at most k—1
triconnected components, so T(G;) and T(G;) are trees by assumption. The vir-
tual edge (u, v,{) corresponding to the Tutte split is contained in C; and C;. for
some i and j, so T(G) results from T(G;) and T(G;) by joining the two trees with
edge (C;, C}), which results again in a tree. O

Figure [3.7|shows the tree T(G) of our running example. Tree vertices are la-
beled Cj,...,C;; and tree edges are labeled A,..., K just as their corresponding
virtual edges in Figure

3.3 SPQR-Trees

The SPQR-tree data structure has been introduced by Di Battista and Tamas-
sia [1989]. In [Di Battista and Tamassia, |1989, 1996a], the authors use SPQR-
trees for the representation of the set of all embeddings of a planar biconnected
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Figure 3.7: The tree T(G) of our running example resulting from the triconnected
components depicted in Figure

graph, and they equip the data structure with efficient dynamic update opera-
tions. Since then, SPQR-trees evolved to an important data structure in the field
of graph algorithms—not only for using their dynamic update capabilities but
also for solely representing all embeddings of a graph. Many linear time algo-
rithms that work for triconnected graphs only can be extended to work for bi-
connected graphs using SPQR-trees [for example, Bertolazzi et al., 1998, Kant,
1996]. Often it is essential to represent the set of all embeddings of a planar
graph, for example, in order to optimize a specific criteria over all planar em-
beddings [Gutwenger et al.,|2005, Mutzel and Weiskircher, 1999, Bertolazzi et al.,
2000, Bienstock and Monma, 1990], or for testing cluster planarity |[Lengauer,
1989, Dahlhaus; ({1998, |(Gutwenger et al.,|2003, 2002]. The dynamic (or incremen-
tal) update features of SPQR-trees are exploited in a variety of on-line graph algo-
rithms dealing with triconnectivity, transitive closure, minimum spanning tree,
and planarity testing [Di Battista and Tamassia, [1990]. In this thesis, we restrict
us to the static case. The algorithms presented in Chapter[4]and[5|will intensively
utilize the static SPQR-tree data structure.

SPQR-trees are closely related to the triconnected components of a graph.
We will see that they are merely an enriched version of the triconnected compo-
nents, and that it is easy to construct the SPQR-tree data structure once we have
computed the triconnected components. SPQR-trees were originally defined in
[Di Battista and Tamassia, 1989] for planar graphs only, but have been gener-
alized in [Di Battista and Tamassia, [1996b| to general graphs. Our definition is
equivalent to the general definition.

Let G be a connected graph without cut vertices and self-loops, and let {s, ¢}
be a split pair of G. The pertinent graph of a split pair {u, v} with respect to an
edge e € E is the union of the split class graphs of {u, v} but the one containing
e. We say a split pair {u, v} is dominated by another split pair {x, y} with respect
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Figure 3.8: The different cases in the definition of SPQR-trees.

to an edge e if the pertinent graph of {u, v} with respect to e is a proper subgraph
of the pertinent graph of {x, y} with respect to e.

Observation 3.3. The dominance relation between split pairs with respect to an
edge e is irreflexive, antisymmetric, and transitive.

Proof. The observation follows directly from the fact that the proper subgraph
relation is irreflexive, antisymmetric, and transitive. O

This property of the dominance relation allows us to define maximal split
pairs. A maximal split pair {u,v} of G with respect to {s, t} is a split pair of G
that is not dominated by any other split pair of G with respect to (s, t).

In order to define the SPQR-tree data structure, we first define an auxiliary
construction called pre-SPQR-tree which allows an easy recursive definition.

Definition 3.3 (Pre-SPQR-tree). Let e = (s, t) be an edge of G, called the reference
edge. The pre-SPQR-tree 7 of G with respect to e is a rooted ordered tree whose
nodes are of four types: S, B, Q, and R. Each node u of 7 has an associated graph
called the skeleton of u. We denote with G’ := G — e the graph resulting from
removing edge e in G. Tree 7 is recursively defined as follows (compare also

Figure[3.8):
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Trivial Case: 1f G consists of exactly two parallel edges between s and ¢, then 7
consists of a single Q-node whose skeleton is G itself.

Parallel Case: If {s, t} is a split pair in G’ with k > 2 split class graphs Gy, ..., Gy,
the root of 7 is a P-node u, whose skeleton consists of k + 1 parallel edges
eande,,...,e, between s and ¢.

Series Case: Otherwise, the split pair {s, £} has exactly two split class graphs, one
of them is e, and the other one is G’. Suppose that G’ contains cut ver-
tices. Since G’U(s, t) contains no cut vertex, the block graph of G’ is a chain
Gy,¢1,Gy,...,Ci-1,Gr with s € Gy, t € G, and k > 2. In this case, the root
of 7 is an S-node u, whose skeleton is the cycle ey, ey, ..., ex, where ey = e,
co=Ss,cr=t,ande; =(c;_1,c;)fori=1,..., k.

Rigid Case: 1f none of the above cases applies, let {s;, 11},..., {sk, tx} be the maxi-
mal split pairs of G with respect to {s,t} (k > 1), and, fori =1,...,k, let G;
be the union of all the split class graphs of {s;, ;} but the one containing e.
The root of 7 is an R-node, whose skeleton is obtained from G by replacing
each subgraph G; with the edge e; =(s;, ;).

Except for the trivial case, u has children u;, ..., u, such that y; is the root of
the pre-SPQR-tree of G; U e; with reference edge e; (i =1,..., k). The endpoints
of edge e; are called the poles of node u;. We call node u the pertinent node of e;
in skeleton of u;, and u; the pertinent node of e; in skeleton of u.

The skeleton graphs of a pre-SPQR-tree of G contain two types of edges: edges
of the graph G and newly created edges. We call the edges that are newly created
during the construction virtual edges and the edges originating from G real edges.
Using the auxiliary definition of pre-SPQR-tree, it is easy to define the SPQR-tree.

Definition 3.4 (SPQR-tree). The SPQR-tree 7 of G with respect to edge (s, t) is
obtained from the pre-SPQR-tree 7’ of G as follows. The root of 7 is a new Q-
node whose skeleton consists of the real edge (s, t) and a virtual edge between s
and ¢ and whose single child is the root of 7.

Let e be an edge in skeleton of u and v the pertinent node of e. Deleting edge
(u,v) in 7 splits 7 into two connected components. Let 7, be the connected
component containing v. The expansion graph of e (denoted with expansion(e))
is the graph induced by the edges that are represented by the Q-nodes in 7,. We
further introduce the notation expansion™(e) for the graph expansion(e)+ e.

Replacing a skeleton edge e by its expansion graph is called expanding e. The
pertinent graph of a tree node u results from expanding all edges in skeleton(u)
except for the reference edge of u and is denoted with pertinent(u). Hence, if e is
a skeleton edge and v its pertinent node, then expansion®(e) equals pertinent(v).

Let v be a vertex of G. The allocation nodes of v are the nodes of 7 whose
skeleton contains v. The least common ancestor u of the allocation nodes of v is
itself an allocation node of v and is called the proper allocation node of v.
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Observation 3.4. Two S-nodes cannot be adjacent in 7. Two P-nodes cannot be
adjacentin 7 .

Proof. Let ube aP-node with poles s, t and let G,..., G, be the split components
of the split pair {s, £} according to the definition of pre-SPQR-tree (parallel case).
If u has a child which is also a P-node, then there is a split component G; which is
not a single edge and for which {s, ¢} is a split pair. This contradicts the definition
of split component.

Let u be an S-node with poles {s, t} and let Gy, ..., G be the blocks of G’ ac-
cording to the definition of pre-SPQR-tree (series case). Since foreach 1 <i <k,
the graph G; without the edge e = (s, t) is already biconnected, no child of u can
be an S-node. O

The following theorem establishes the elementary relationship between SPQR-
trees and triconnected components. It shows in particular, how to build up the
SPQR-tree data structure from the triconnected components.

Theorem 3.5. Let G be a biconnected graph and 7 an SPQR-tree of G. Then, the
following statements are true.

(@) The Q-nodes of 7 are in one-to-one correspondence to the edges of G.

(b) The skeleton graphs of the S-, P-, and R-nodes of J are the triconnected
components of G. P-nodes correspond to bonds, S-nodes to polygons, and
R-nodes to triconnected simple graphs.

(c) Thegraph obtained from 7 by removing the Q-nodes is the tree T(G) formed
by the triconnected components (as defined in Section[3.2).

Proof. Let e, be the reference edge of 7.

(a) We consider the construction of the pre-SPQR-tree 7’ with respect to e;.
Each non-trivial case of the decomposition, say for decomposing graph G,
with reference edge e,, creates a skeleton that contains only e, plus k > 2
virtual edges, but not any real edge. The definition is recursively applied to
graphs Gj, ..., Gy that partition the real edges # e, in G,. It follows for the
decomposition of G, that each real edge # e, is contained in the skeleton
of a Q-node. On the other hand, each Q-node contains exactly one virtual
edge (its reference edge) and one real edge. Hence, we have a one-to-one
correspondence between real edges # e, and Q-nodes in 7’. The Q-node
thatis added to 7’ for obtaining 7 is the counterpart for the reference edge
e, of 7 which completes the proof.

(b) We consider the SPQR-tree without Q-nodes, that is, we omit splitting off
single edges in the construction of the pre-SPQR-tree and leave these edges
in the skeleton graph instead. We have to show, that the resulting skeleton
graphs are the triconnected components of G.



36

Chapter 3. Graph Decomposition

In the parallel, series, and rigid case in the definition of the pre-SPQR-tree,
subgraphs Gy, ...,Gy are considered. Assume w.l.0.g. that G,,...,G, each
contain more than one edge, and that G4, ..., Gx each contain exactly one
edge. In each of the three cases, the recursive decomposition step can be
realized by performing ¢ split operations, each splitting offone G;, 1 <i </,
and introducing a new virtual edge e; in the skeleton of node u and the
skeleton of a child u; of u. We have to show that these split operations are
Tutte splits.

We denote with E; the edges in G; and consider a split operation for some
E; with 1 <i < /. Let E’ be the remaining edges not in E; (these are the
edges in E; with j # i or a virtual edge that resulted from splitting of E;),
and let H be the graph induced by E;UE’. By construction, we have |E;| > 2,
|E’| > 2, and we split off a single split class. It remains to show that the graph
G; induced by E; or the graph G’ induced by E’ contains no cut vertex.

In the parallel case, E’ consists of at least two split classes, and hence G’
contains no cut vertex. In the series case, each graph G; contains no cut
vertex by definition. In the rigid case, G; and G’ cannot both contain a cut
vertex, since then the series case would apply.

It follows that the skeletons of S-, P-, and R-nodes are obtained by a se-
quence of Tutte splits. By construction, the S-nodes are cycles with at least
three edges and the P-Nodes are bonds with at least three parallel edges.
So consider the skeleton S of an R-node that is created by splitting a graph
H with reference edge (s, t). It is easy to see that S has at least four vertices,
otherwise a different case would apply. We first observe that S contains no
multiple edges, since such edges are either replaced by a single edge or not
both of their endpoints are contained in S. Hence, it is sufficient to show
that S contains no separation pair. Assume that {x, y} is a separation pair in
S. By construction, {x, y} is also a separation pair in H. If {x, y} is maximal
with respect to (s, t), then its pertinent graph would be replaced by a single
edge (x,y) and {x, y} is not a separation pair in S. If {x, y} is not maximal,
then there must be maximal split pair {u, v} with respect to (s, t) in H such
that its pertinent graph contains the pertinent graph of {x, y}. But this im-
plies that not both x and y can be contained in S. It follows that S contains
no separation pair.

(c) According to the definition of T(G), its vertices are the triconnected com-

ponents of G and two triconnected components are connected by an edge
in T(G) if both contain a virtual edge created by the same Tutte split. On
the other hand, the edges of 7 correspond to the parent-child relationship
in the tree.

We have already shown in (b) that each step of the recursive definition of 7
corresponds to several Tutte splits. It is easy to see that the created parent-
child relationships correspond to the edges of T(G). O
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as in Figure[3.6} the skeleton graphs of S-, P-,
., C12 shown in Figure
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Figure 3.9 shows the SPQR-tree 7 of our example graph (Figure with ref-
erence edge (a,d). The relationship to the triconnected components shown in
Figure(3.6|are illustrated by annotating the non-Q-nodes with the corresponding
triconnected components and highlighting the arcs corresponding to the edges
of T(G).

Corollary 3.2. Let 7 be the SPQR-tree of G with respect to e,. For any edge e
of G, we obtain the SPQR-tree of G with respect to e by rooting 7 at the Q-node
correspondingto e.

Proof. This follows directly from Theorem [3.5/and the uniqueness of the tricon-
nected components. O

Lemma3.3. Let 7 be an SPQR-tree of G = (V, E). Denote with ns, ng, np, and nq
the number of S-, R-, P-, and Q-nodes. Then, the following statements are true:

(a) nqg=|E|

(b) ns+ng<|V]

(c) np<|E|-2

(d) np <|V|ifG is simple.

(e) The total number of skeleton edges in 7 is3nq+2(ns+ ng+ np)— 2.

Proof. (a) follows directly from the one-to-one correspondence between Q-nodes
and edges (Theorem [3.5(a)). Since, for each S- and R-node y, there is a vertex
v € G with proper allocation node uy and a vertex has a unique proper allocation
node, we have ns+ ng <|V| and (b) holds.

In order to proof (c), we show for each proper subtree . of 7 that we can
assign a Q-node of . to each P-node in ., so that no Q-node is assigned to
several P-nodes and at least one Q-node is unassigned. We use induction on the
height of .. Let u be the root of ..

o If yisa Q-node, then y itself is the unassigned node of ..

e If 4 is an S- or R-node, then we chose an unassigned node of a subtree
rooted at a child of u to be the unassigned node of ..

o If u is a P-node, then u has at least two children and there are two unas-
signed nodes v; and v, in the respective subtrees. Assign v; to u and let v,
be the unassigned node of ..

It follows that there are at most ng — 2 P-nodes in 7 (one Q-node is unassigned
and one is the root of 7) and, with nqg =|E|, (c) holdsE]

3Di Battista and Tamassial[1996b] claimed that np <|V|+1 in general (Proof of Lemma 1 in [Di
Battista and Tamassia, 1996b]). Their argument was that the parent of a P-node is either an S- or
an R-node, and hence there are at most ng+ ng + 1 P-nodes. This argument is wrong since two
P-nodes may share a common parent. It is also easy to construct a graph with more than |V|+1
P-nodes if multiple edges are allowed.
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Now assume that G is simple and consider a P-node u. We know that u has
two or more children and none of them is a P-node by Observation[3.4] Since G
is simple, at most one child of u is a Q-node. Hence, u has a child that is an S- or
an R-node. Since no two nodes have a common child, it follows that there are at
most |V| P-nodes and (d) holds.

By construction,  has two skeleton edges for every tree edge plus |E| addi-
tional edges (the real edges in the Q-nodes). Since a tree with n nodes has n — 1
arcs, we have

|E|+2(nq+ns+ng+np—1)=3nqg+2(ns+ng+np)—2
skeleton edges in total, which completes the proof. O

Corollary 3.3. Let 7 be an SPQR-tree of G = (V, E). The total number of edges
in all skeleton graphs of 7 is bounded by 5|E| — 6. If G is simple, then the total
number of skeleton edges is also bounded by 3|E|+4|V|— 2.

Proof. We first consider the general case. By Lemma3.3((a), we have |E| Q-nodes
and each Q-node skeleton has two edges. By Theorem 3.5(b) and Corollary[3.1}
the number of edges in the skeletons of all S-, P-, and R-nodes is at most 3|E| —6.
Summing up yields a bound of

2|E| + 3|E|—6 = 5|E|—6.

Now assume that G is simple. By Lemma 3.3} the number of skeleton edges
in this case is

s ” <|vi

3.4 Linear-Time Construction of SPQR-Trees

In the theoretical papers on SPQR-trees [for example, |Di Battista and Tamassia,
1989, 1996bjja], the authors always suggest to construct the data structure in lin-
ear time “using a variation of the algorithm of [Hopcroft and Tarjan, 1973a] for
finding the triconnected components of a graph...”[Di Battista and Tamassia,
1996a]. However, apart from the implementation reported in [Hopcroft and Tar-
jan,|1973al, no linear time implementation of the Hopcroft/Tarjan algorithm was
known at that time, let alone a linear time implementation of SPQR-trees. To our
knowledge, the only correct implementation of SPQR-trees was part of GDToolkit
[see also GDToolkit], where SPQR-trees are used in connection with a branch-
and-bound algorithm to compute an orthogonal drawing of a biconnected pla-
nar graph with the minimum number of bends, but this implementation does
not run in linear time [Didimo, 1999|. The reason for the lack of a linear time im-
plementation of the Hopcroft/Tarjan algorithm is twofold: On the one hand the
algorithm is quite complicated and hard to understand, on the other hand the
presentation contains several non-trivial errors.
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In this section, we present a linear time implementation of the data structure
SPQR-tree based on the algorithm byHopcroft and Tarjan [1973a] for decompos-
ing a graph into its triconnected components. We identify the incorrect parts
and develop a correct algorithm for triconnectivity decomposition by correct-
ing and replacing the faulty parts in [Hopcroft and Tarjan, [1973a]. Section [3.4.6]
summarizes the necessary corrections. Finally, we apply it to the computation
of SPQR-trees. The implementation presented here is publicly available in the
OGDF (Open Graph Drawing Framework) library [Chimani et al., 2010].

We remark that also further algorithms for triconnectivity decomposition ex-
ist. Miller and Ramachandran [1992] give a linear time algorithm based on open
ear decomposition which can be parallelized. The processor-time product of a
parallel implementation on a CRCW PRAM is O((|V] + |E|)log?|V]) for a graph
G =(V, E). Fussell et al. [1993] present an improved, almost work-efficient paral-
lel algorithm with a processor-time product of O((|V|+|E|) log log|V|). However,
we are not aware of any public implementation of these algorithms.

3.4.1 Split Components

The triconnected components are obtained by successively applying Tutte splits
until no more Tutte split is possible. From an algorithmic point of view, a Tutte
split has the drawback that we need to check the additional preconditions (see
also Definition|3.1)

e C is asingle split class; and
e not both C and C may contain a cut vertex.

It would be favorable if we just could perform any split operation. In this case,
it is basically sufficient to identify separation pairs and parallel edges. It turns
out, that it is easy to recreate the triconnected components from the split graphs
obtained from successively applying any split operation until no more such oper-
ation is possible. The algorithm presented in this section follows this approach.

Definition 3.5. The split components of abiconnected graph G are the split graphs
obtained from G by successively applying a split operation until no more split
operations are possible.

Each split component is either

¢ aset of three multiple edges (triple bond);
¢ acycle of length three (triangle); or
e atriconnected simple graph.

It is easy to see that the split components are not necessarily unique. Imagine a
cycle ¢ := vy, v,, v3, 4 Of length four. We can either split ¢ at the separation pair
{v1, v3} or {v,, 14}, giving us two different variations of the split components.

In order to reconstruct the triconnected components from some split com-
ponents, we use the merge operation, which is the inverse of a split operation.
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Definition 3.6. Let G, = (}{, E;) and G, = (14, E,) be two split graphs both con-
taining a virtual edge e = (u, v,f) with the same label {. A merge operation re-
places the two graphs G; and G, with the graph G’ :== (U \4,(E; U E;) \ {e}). We
also say that we merge G, and G,.

The triconnected components of G are obtained from its split components by
merging the triple bonds into maximal sets of multiple edges (bonds) and the
triangles into maximal simple cycles (polygons){|

Theorem 3.6. Let G be a biconnected graph, and let G,,...,Gy be the graphs ob-
tained from the split components of G by successively merging two bonds or two
polygons until no more such merge operation is possible. Then, G,...,Gy are the
triconnected components of G.

Proof. Analogously to the tree T(G) defined in Section 3.2} which represents the
relationships between the triconnected components via corresponding virtual
edges, we can define a tree T’(G) for the split components. Each edge in this tree
corresponds to a split operation. We further observe that the order of these split
operations is not important for the final decomposition we obtain.

A merge operation is simply the inverse of a split operation, that is, a merge
simply contracts an edge in the tree 7/(G) and merges the split components that
are endpoints of this tree edge. First, consider a merge operation that merges two
bonds and denote with C and C the partitioning of edges in the corresponding
split operation. Then, neither C nor C consists of a single split class and thus this
split operation violates the first condition of a Tutte split.

Second, we consider a merge operation that merges two polygons. Let again
C and C be the partitioning of edges in the corresponding split operation. Then,
both G[C] as well as G[C] contain a cut vertex, and thus this split operation vio-
lates the second condition of a Tutte split.

Therefore, we only undo split operations that are not Tutte splits. Let 77(G)
be the resulting tree after merging all polygons and all bonds. We show that all
edges in T”(G) correspond to Tutte splits. Notice that the split graphs now are
either bonds, polygons, or simple triconnected graphs. Consider again an edge
connecting two split graphs G; and G, corresponding to a split operation with
edge partitioning C and C. The first condition of a Tutte split demands that not
both C and C consist of more than one split class. This is only possible if both
G; and G; are bonds; however, this cannot be the case, since we have already
merged all bonds adjacent in the tree. The second condition demands that not
both G[C] and G[C] contain a cut vertex. This is only possible if both G, and G,
are polygons; however, again, we would have merged G, and G,.

Hence, the tree T”(G) represents a decomposition only obtained from apply-
ing Tutte splits and none of the split graphs allows to apply further Tutte splits.
Since the triconnected components are unique by Theorem T(G) = T"(G)
and the theorem follows. O

4In [Hopcroft and Tarjan}|1973a], this statement is actually used for defining the triconnected
components of a graph. The authors claim that this definition is equivalent to Tutte’s defini-
tion [Tutte} |1966]. However, no proof for that claim is given in the paper.
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The merging of bonds and polygons simply undoes previously applied split
operations that were not Tutte splits. Hence, we just need as many merge opera-
tions as unnecessary split operations were performed.

3.4.2 Primal Idea

The hard part of the algorithm is to find all separation pairs of G in order to com-
pute the split components of G. In this subsection, we describe the idea behind
the respective procedure in the algorithm; the algorithm itself is then presented
in detail in the remaining part of this section.

Hopcroft and Tarjan adapted an idea by |Auslander and Parter| [1961], \Gold-
stein [1963], which gives rise to alinear time planarity testing algorithm [Hopcroft
and Tarjan,|1974]. Suppose c is a cycle in G. A subgraph S C G is called a segment
relative to c if either S consists of a single edge e = (u,v) with e ¢ c and u, v € c,
or S is a connected component Cs of G \ ¢ plus all edges connecting Cs with c.
The following lemma gives us a sufficient condition for developing an efficient
algorithm that finds all separation pairs in G.

Lemma 3.4 (Lemma 4 in [Hopcroft and Tarjan, 1973a]). LetS;,...,S, be the seg-
ments relative to the cycle c. Let {a, b} be a separation pair of G such that(a,b) is
not a multiple edge. Then the following three statements hold:

(@) a and b both lie on ¢, or a and b lie in the same segment}]

(b) Suppose a and b both lie on c. Let p, and p, be the two paths comprising ¢
which join a and b. Then

Type-1 case: some segment S; with at least two edges has only a and b in
common with c, and some vertex v does not lie in S; (compare Fig-

ure[3.10); or

Type-2 case: no segment contains a vertex v # a,b in p, and a vertex w #
a,b in p,, and p, and p, each contain a vertex besides a and b (com-

pare Figure[3.11).

(c) Conversely, every pair {a, b} satisfying one of the two cases above is a sepa-
ration pair.

Proof. (a) The segments Sy,...,S, and the cycle ¢ partition the edges of G into
n+1 sets. We have to show that deleting two vertices a, b thatlie in different
segments and do not both lie on ¢ does not disconnect G. Let a € S; and
b €S; with i # j, and suppose w.l.o.g. that b does not lie on c.

For each segment Sy, we can find a subpath p; of ¢, such that S; U py. is
biconnected and a ¢ py if a ¢ Si. Therefore, for each vertex v € S; \ (¢ U

5This statement is written as “Either ... or” in [Hopcroft and Tarjan,{1973a], but it is easy to see
that a and b can belong to both the cycle ¢ and a segment S;; in fact this holds for every type-1
separation pair.
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Figure 3.10: Type-1 separation pair {a, b} relative to the cycle c. Removing a and b

(b)

(©

separates the segment S;.

{a, b}) there is a path p, connecting v with c that uses only edges in Sy and
contains neither a nor b. Such a path exists because S; U py. is biconnected
and not both a and b lie in S;. U py.

If we delete a and b, the cycle c is not disconnected, and each remaining
vertex not on c is still connected to the remaining vertices on c.

Suppose {a, b} is neither a type-1 nor a type-2 separation pair. We show
that there is only one separation class with respect to {a, b} that contains
more than one edge.

Since {a, b} is not a type-1 pair, there are at most two separation classes,
say E; and E,, with respect to {a, b} which contain more than one edge.
E; contains p; and all segments connected to a vertex on p; different from
a and b, and E, contains p, and all segments connected to a vertex on p,
different from a and b.

If both E; and E; contain more than one edge, then neither p; nor p, con-
sists of a single edge. But in this case, there is a segment connected to a
vertex v # a, b on p; and a vertex w # a, b on p,, since {a, b} is not a type-2
pair. Then, it follows that E; = E,.

follows immediately. O

Figure shows a type-1 separation pair in the example graph from Fig-
ure Removing a and b splits off segment S;. On the other hand, Figure 3.11]
shows an example for a type-2 pair. Removing a and b separates the upper from
the lower part of the dotted line through a and b. It is also possible, that {a, b} is
both a type-1 and a type-2 pair, for example, {h, j} in our example graph is a type-1
as well as a type-2 separation pair with respect to the cycle shown in Figure[3.10]
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Figure 3.11: Type-2 separation pair {a, b} relative to the cycle c. Removing a and b
disconnects the graph at the shown cut line.

The algorithm will find a cycle c, test each segment for separation pairs by
a recursive call, and test c itself for separation pairs by checking the criteria in
Lemma[3.4] The finding of cycles is realized using a depth first search traversal
on G satisfying certain conditions, which we discuss later. This traversal gives us
a DFS-tree of G. Each cycle ¢ consists of a sequence of T-arcs followed by one
B-arc. The segments relative to c are either a single B-arc, or a T-arc v — w with
v € c and w ¢ c plus the subtree T,, rooted at w plus all B-arcs leaving T,,.

Figure[3.12]illustrates the situation. It shows the graph G from Figure[3.5/and
its DFS-tree. The cycle ¢ we consider is formed by T-arcs leading from the root h
to vertex e plus the B-arc e — h. There are six segments S, ..., S relative to c. For
example, S, consists only of a single B-arc j — h, and S consists of the T-arce — ¢
plus the subtree rooted at c plus all B-arcs leaving this subtree.

3.4.3 Computing SPQR-Trees

Let G = (V, E) be a biconnected graph without self-loops and e, an edge of G.
The SPQR-tree 7 of G with reference edge e, is computed as follows:

1. Replace each bundle of multiple edges by a virtual edge thus creating the
split graphs Gy, ..., G,. Call the resulting simple graph G'.

2. Compute the split components G4, ..., Gy of G’.

3. Starting with the split graphs Gy, ..., Gk, successively merge two bonds or
two polygons sharing an edge with the same label until no more such merge
operation is possible. This results in the triconnected components of G.

4. Construct the undirected SPQR-tree 7 (without Q-nodes) whose skeleton
graphs are the triconnected components computed in the previous step.
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(b) DFS-tree of G.

(a) original graph G.

.,Sg relative to c¢. (a)

shows G as drawn in Figure 3.5 where the cycle ¢ is highlighted; (b) shows the

A cycle c in the graph G and the segments Sj, ..
computed DFS-tree of G.

Figure 3.12
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1: Sort the edges of G such that all multiple edges come after each other.
2: for each maximal bundle of multiple edges ey, ..., e; with t > 2 do

3: lete,..., e, be edges incident to v and w

4: Replace ey, ..., e, by anew edge e’ = (v, w,f), where ¢ is a new label.
5: Create a new component C = {ey,..., e;, e’}

6: end for

Listing 3.2: Split off multiple edges.

5. For each edge of G, add a Q-node to 7 and root 7 at the Q-node repre-
senting the reference edge e, .

In the first step, bundles of multiple edges are replaced by a new virtual edge as
shown in Listing This creates a set of bonds Ci, ..., C, and results in a simple
graph G’. The required sorting of the edges in line [I|can be done in O(|E|) time
with two applications of bucket sort. We first sort the edges according to the end-
point with lower index and thereafter, we perform a stable sort according to the
endpoint with higher index. Here, we assume that vertices have unique indices
in the range 1,...,|V|. The for-loop iterates over all edges, thus the algorithm in
Listing[3.2]has running time O(|E|).

The second step finds the split components C,4,4,..., Cy of G’. The procedure
is discussed in detail in the next subsections. The third step creates the tricon-
nected components of G by partially reassembling the graphs C;, ..., Ci. Aslong
as two bonds or two polygons C; and C; containing a virtual edge with the same
label exist, C; and C; are merged. This is shown in Listing The function
type(C) returns the type (bond, polygon, or triconnected simple graph) of a com-
ponent C. Removed components are marked as empty. The for all-loop steps
over all edges in C;, that is, including those added to C; during the loop. The test
in line 4 can be done in constant time by precomputing for each virtual edge e
the two components to which e belongs. We represent the edges in a component
C; by a list of edges, which allows to implement the set operations in line [5H6|in
constant time. According to Lemma [3.2} the total number of edges in all com-
ponents is O(|E|), so the algorithm in Listing[3.3|can also be implemented with a
running time of O(|E|).

The preceding steps give enough information to build the SPQR-tree 7 of G.
Applying Theorem it is easy to construct the unrooted version of 7. Since
we omit Q-nodes in our representation, we root 7 at the node whose skeleton
contains the reference edge e,. During the construction, we also create cross
links between each tree edge u — v in 7 and the two corresponding virtual edges
in the skeleton of u and the skeleton of v.

3.4.4 Finding Separation Pairs

Suppose we have a DFS-tree T for the simple, biconnected graph G’ = (V, E’),
and the vertices of G’ are numbered 1,...,| V| with their DFS-numbers. For ease of
notation, we identify the vertices with their numbers. We introduce the following
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1: fori:=1to k do

2 if C; #0 and C; is abond or a polygon then

3 foralle=(u,v,{)eC; do

4: ifex. j #i with e € C; and type(C;) = type(C;) then

5: C; Z:(C,'UC]')\{Q}

6: Cj =0

7 end if

8 end for

9: end if
10: end for

Listing 3.3: Reassembling the triconnected components.
notation:
lowptl(v) = min ({v} Ufw | v > w})

lowpt2(v) = min ({v}u ({w | v S w}\{lowptl(v)}))

That is, lowptl(v) is the lowest numbered vertex reachable by traversing zero
or more T-arcs followed by one B-arc of P (or v if no such vertex exists), and
lowpr2(v) is the second lowest numbered vertex reachable this way (or v if no
such vertex exists). Hence, the lowpt1-value is the lowpt-value introduced in Sec-
tion [3.1.1] Similar to the lowpz-values, both the lowptl- and lowpt2-values can
be computed simultaneously with a single DFS-traversal as shown in Listing(3.4]
The following table summarizes the important variables.

variable purpose

S The start vertex of the DFS-traversal; will be the root of
the DFS-tree.

nextNum The next DFS number.

number[v] | The DFS number of vertex v.

lowptl[v] | The lowptl value of vertex v.

lowpr2[v] | The lowpt2 value of vertex v.

nd[v] The number of vertices in the subtree rooted at v.

We denote with Adj(v) the ordered (non-cyclic) adjacency list of a vertex v,
and with D(v) := {w | v = w} the set of descendants of v in the DFS-tree. We
seek for a numbering of the vertices and ordering of the edges in the adjacency
lists satisfying the following three properties:

(P1) Theroot of T is numbered with 1.

(P2) If v € V and wy,...,w, are the children of v in T according to the ordering
in Adj(v), then w; = w +|D(w;4+1)U...UD(w,)|+1.
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Input: biconnected simple Graph G’ =(V, E’), start vertex s € V'

1: nextNum:=0
2: DFS1(s, nil)

3: procedure DFS1 (vertex v, vertex parent)

4 number|[v] := nextNum = nextNum-+ 1
5: lowptl[v] := lowpr2[v] := number|v]

6: ndlv]:=1

7 for all edges e =(v,w) € E' do

8 if e is already marked then continue
9

: if number{w] =0 then
10: Mark e as T-arc v — w

11: DFS1(w, v)

12: if lowptl[w] < lowptl[v] then

13: lowp2[v] := min{lowptl[v], lowp2[w]}
14: lowptl[v] := lowptl [w]

15: else if lowpt1[w] = lowptl[v] then

16: lowpt2[v] := min{lowp2[v], lowp2[w]}
17: else

18: lowpt2[v] := min{lowp2[v], lowptl [w]}
19: end if

20: nd[v] := nd[v] + nd[w]

21: else

22: Mark e as B-arc v — w

23: if number{w] < lowptl[v] then

24: lowpr2[v] := lowptl [v]

25: lowptl[v] := number{w]

26: else if number{w] > lowptl[v] then

27: lowp2[v] := min{lowpr2[v], number{w]}
28: end if

29: end if

30: end for

31: end procedure

Listing 3.4: Computing the lowpt1- and lowpt2-values.
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(P3) The edges in Adj(v) are in ascending order according to lowptl(w) if the
corresponding edge is v — w, or w ifitis v — w.

Let w;, ..., w; be the children of v with the same lowptl-value u in the or-
der given by Adj(v). Then there exists an i’ such that lowp2(w;) < v for
i <k<i, and lowpR(wy)>vfori’<j<j.Ifv—ueckE, thenv—u
comes in Adj(v) between v — wy and v — w;4;.

Notice that the lowptl- and lowpt2-values refer to the same vertex for any
numbering of the vertices that satisfies v < w for each T-arc v — w. Since the
lowpt1- and lowpt2-values of the children wy,..., w; of v only refer to vertices
on the tree path from the root to v plus the respective child, the required sorting
in (P3) is independent of the numbering of the vertices, as long as the number-
ing satisfies the condition above. Therefore, we can compute the sorting of the
adjacency lists with the original DFS-numbering. For each edge e € E’, we define
avalue ¢(e):

3lowptl(w) ife=v— w and lowp2(w)<v
P(e):= 3w+1 ife=v—w
3lowptl(w)+2 ife=v— w and lowpR2(w)>v

The required sorting can then be obtained by sorting the edges with bucket sort
in ascending order according to their ¢-values. It is then easy to compute the
new numbering. We will compute it later in Listing|3.5|together with additional
information.

Remark 3.1. Unlike [Hopcroft and Tarjan,|1973a], we demand that a B-arc v — w,
if contained in E’, must come between v — w; and v — w;.4; in Adj(v). Using
only the function ¢ as defined in [Hopcroft and Tarjan, 1973a] and the procedure
PATHSEARCH as suggested in [Hopcroft and Tarjan, 1973a] will not recognize all
multiple edges and thus not correctly compute the split components of G’.

Figure[3.13]illustrates property (P3). Let w;, ..., w, be the children of v in the
DFS-tree T with lowpfl(w;) = u for each 1 <i < n in the order required by (P3).
Suppose we remove vertices u and v. Then, each vertex in D(w;) with 1 <i < i,
(ip defined as in (P3)) is still connected with a vertex on the tree path from u to v,
since u < lowp2(w;) < v. On the other hand, each vertexin D(w;)withip <j <n
is no longer connected to the rest of the graph, since lowpi2(w;) > v. In this case,
{u, v} is a separation pair (more exactly a type-1 separation pair) that splits off
the vertices in D(w;).

Suppose we perform a depth-first-search on G’ using the ordering of the edges
in the adjacency lists. This divides G’ into a set of paths consisting of zero or more
T-arcs followed by one B-arc. The first path starts at vertex 1 and a path ends,
when the first B-arc on the path is reached (see Figure[3.14). Each path ends at
the lowest possible vertex and has only its initial and terminal vertex in common

%
with previously traversed paths. From each such path p : v = w, we can form a
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Figure 3.13: The order of the children w;, ..., w; of v with the same lowptl-value u.

cycle by adding the tree path w Svto p (compare [Hopcroft and Tarjan, 1973a,
1974]). These are the cycles described in subsection[3.4.2]

Figure shows a DFS-tree with a numbering that satisfies (P1)-(P3). The
edges are labeled according to the generated paths. The adjacency lists are or-
dered as follows (blue numbers refer to T-arcs and red numbers to B-arcs):

1. 2 9: 10
2: 3 10: 1,11,6
3: 16,4 11: 12
4: 1,6,5 12: 14,13
5 1 13: 10,11
6: 9,7 14. 15,10, 11
7: 8,4 15: 1
8: 4,6 16: 1,2
The generated paths are:
A: 1-2-3—-16—1 H: 12—13<10
B: 162 [ 1311
C: 3041 J: 104
D: 4-6—-9—-10—1 Ki 6-27—8<—4
E: 10-11-12—-14—-15<1 L: 8—6
F: 1410 M: 74
G 1411 N: 451

For example, the cycle considered in Figure is composed from the paths A,

C,and D.

Procedure DFS2 in Listing[3.5|shows how to compute a numbering satisfying
(P1)-(P3). It assumes that the adjacency lists are already in the correct order. It



51

3.4. Linear-Time Construction of SPQR-Trees

.,L. The
vertices are also annotated with their lowptl-values (top) and lowpt2-values

Figure 3.14: DFS-tree with numbered vertices and generated paths A, ..
(bottom).
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also adjusts the values of the lowpt1- and lowpt2-values to the new numbering.
The following table gives a description of the important variables.

variable purpose

S The root of the DFS-tree.

A(v) The ordered adjacency list of vertex v.

number{v] The DFS-number of vertex v.

nd[v] The number of vertices in the subtree rooted at v.
lowptl [v] The lowptl value of vertex v.

lowpr2[v] The lowp12 value of vertex v.

newnum(v] | The new number of vertex v satisfying (P1)—(P3).

startsPath[e] | Set to true iff e starts a path.

highpt{v] The list of B-arcs v; — v ending at v in the order they are
visited during the path search.

old2new(i] Translates DFS-number to new number.

The following Lemma shows a general property of DFS-trees for biconnected
graphs:

Lemma 3.5 (Hopcroft and Tarjan|{1973a, [Tarjan |1972). Let G be a biconnected
graph and T an arbitrary DFS-tree of G. Then, vertex 1 has only one child, and
foreach T-arcv — w in T holds

<v ifv#l

lowptl(w){ _1 ifr=1

Proof. 1f vertex 1 would have more than one child, then 1 would obviously be a
cut vertex, what contradicts the biconnectivity of G.

Let v # 1 and suppose that lowptl(w) > v. If we remove v, then the vertices
in D(w) are no longer connected to the rest of the graph, which contains at least
vertex 1, since v # 1. But that would mean, that v is a cut vertex, and we have
again a contradiction.

Let now v = 1 and suppose that lowpfl(w) > 1. Then, removing w would
separate the vertices in D(w)\{w} from v. There is a vertex # w in D(w), because
G contains at least three vertices and w is the only child of vertex v = 1. Thus, w
would be a cut vertex. O

Definition 3.7. Let u, and u,, be two vertices. We say that u,, is a first descendant
of ugif ug—---— u, and foreach 0 <i < n, the tree arc u; — u;4, is the first edge
in Adj(u;).

In the sequel, we consider a DFS-tree T satisfying the conditions (P1)-(P3).
The following Lemma derives some important properties of descendants in T,
which we will use below in the proof of Lemma(3.7
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Input: biconnected, simple Graph G’ =(V, E’), start vertex s € V,

1:
2
3:
4

<

10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

ordered adjacency lists A(v) foreach v e V

procedure DFS2(vertex s)
numCount:=|V|
newPath := true
for each e € E’ do startsPath|e] := false

PATHFINDER(S)

forall v e Vdo
old2new|number([v]] := newnum|v]
end for
forallve Vdo
lowptl[v] := old2new[lowptl [v]]
lowpr2[v] := old2new[lowpr2[v]]
end for
end procedure

procedure PATHFINDER (vertex v)
newNum|v] := numCount— nd[v]+ 1
letA(v)=ey,..., e
fori:=1to k do

lete; =(v,w)

if newPath then
newPath :=false; startsPath[e] := true

end if

if e is a T-arc then
PATHFINDER(w)
numCount := numCount—1

else
highpt{w].pusHBack(newNum[v])
newPath := true

end if

end for
end procedure

Listing 3.5: Computing the new numbering and generated paths.
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Lemma 3.6 (Lemma 11 and 12 in [Hopcroft and Tarjan,|1973al). Let G be a bicon-
nected graph and T a DFS-tree of G satisfying the properties (P1)-(P3).

(@) Letv beavertexinG. Then D(v)=1{x|v <x <v+|D)|}. Ifw is a first

descendant of v, then D(v)\ D(w)={x|v <x <w}.

(b) Let{a,b} be a separation pairin G witha <b. Then a 5 b in T holds.

Proof.

(a)

(b)

We use induction on the number of descendants of v. If |D(v)| = 1, then
Dv)={vi={x|lv<x<v+1}

Let now |[D(v)| > 1 and let w;,..., w, be the children of v. We have

Dw) = {wiul JD(w;)
i=1

ind. hyp. "
=P ol Jix lws < x < w +1D(w))l}

i=1

def. of w; "
eh2tw o Jix v +ID(wi)U...UDw,) +1<x <

i=1
v+|D(w;)U...uD(w,)|+ 1}
= friuix|v+1<x<v+|D(w,)U...UD(w,)|+ 1}

= {x|v<x<v+|D)}

what establishes the induction step.

Let w;,...,w, be the children of v in the order given by Adj(v). For the
descendants of the first child w; of v we can show

D(w;) = {x|w <x <w;+|D(w))l}

def. of
2 x| wy < x<v+|Dw))U...uD(w,)|+1+|D(wy)}

= {fx|w, <x<v+|D()}

Inductively follows for a first descendant w of v, that D(w)={x |w <x <
v +|D(v)|}. Therefore, we have

Dw)\D(w) = {x|v=x<v+|D)}\{x|w<x<v+|D()}
= {x|lv<x<w}

[Hopcroft and Tarjan, |1973a] Suppose that b is not a descendant of a and
let Ey,..., Ex be the separation classes with respect to {a, b}. Since a < b,
a cannot be a descendant of b and thus D(a) and D(b) are disjoint. Let
S=V\(D(a)uD(b)). E(S) must be contained in some separation class, say
E,, since the vertices in S define a subtree containing neither a nor b. Con-
sider any child ¢ of a. E(D(c)) must be contained in some separation class.
But since G is biconnected and a # 1 (otherwise b would be a descendant
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of a), lowptl(c) < a by Lemma(3.5} and hence E(D(c)) € E;. A similar ar-
gumentation shows that E(D(c¢’)) C E, for any descendant ¢’ of b. But this
means that there is only one separation class # {(a, b)} and {a, b} is not a
separation pair. O

We can now reformulate Lemma [3.4] using a DFS-tree T satisfying (P1)-(P3),
such that it gives us three easy-to-check conditions for separation pairs.

Lemma 3.7 (Lemma 13 in [Hopcroft and Tarjan, |1973a]). Let G =(V, E) be a bi-
connected graph and a, b be two vertices in G with a < b. Then {a, b} is a separa-
tion pair if and only if one of the following conditions holds.

Type-1 Case: There are distinct vertices r # a,b and s # a,b such thatb — r,
lowptl(r) = a, lowpr2(r) > b, and s is not a descendant of r; compare Fig-

ure[3.15(a).

Type-2 Case: Thereisavertexr #b suchthata —r Sb,bisa first descendant of
r,a#1, everyB-arcx —y withr <x <b hasa <y, and every B-arcx — y
witha <y <bandb — w 5 x has lowptl(w) > a; compare Figure(b).

Multiple Edge Case: (a,b) is a multiple edge of G and G contains at least four
edges.

Proof. (If) Suppose {a, b} satisfies one of the three cases. If it satisfies the multi-
ple edge case, {a, b} is certainly a separation pair. Suppose {a, b} satisfies the
type-1 case (see also Figure [3.16a)). Denote with D(r) the descendants of r.
Each B-arc starting at a vertex in D(r) ends at a vertex in D(r)U {a, b}, because
lowptl(r)=a and lowp2(r) > b. Therefore, removing a and b separates the ver-
tices in D(r) from the rest of the graph, which contains at least vertex s.

Suppose now that {a, b} satisfies the type-2 case (see also Figure [3.16(b)).
Let S = D(r)\ D(b). Since b is a first descendant of r, S = {x | r < x < b} by
Lemma (i). Let by,...,b, be the children of b in the order given by Adj(b).
Since, by property (P3), the children in Adj(b) are ordered according to ascend-
ing lowptl-values, there exists an iy, such that lowpfl(b;) < a for i < i,, and
lowptl(b;)> a for i > i,. Let §* = SUUiZiO D(b;). Consider a B-arc x — y with x €
S*. If x €S, then r <x < b and thus a <y < b by assumption, thatis, y e SU{a}.
Otherwise, x € D(b;) for some i > iy, and therefore y € D(b;)USU {a, b}, since
lowptl(b;) > a. This proves that a B-arc starting in S* ends in S*U{a, b}. Consider
now a B-arc x < y with y € §*. If y €| J..; D(b;), then obviously x € J,.;, D(b).

Otherwise, a <y < b holds. If x ¢ SU{b}, then b — w Sxand w = b; for some
i > iy by assumption, that is, x € D(b;). This proves that a B-arc ending in S*
must start in $*U {b}. Therefore, removing a and b separates the component S*,
which contains at least vertex r, from the rest of the graph, which contains at
least vertex 1.

(Only-If) Let {a, b} be a separation pair with a < b. If {a, b} is a multiple edge
in G, then {a, b} must satisfy the multiple edge case. Thus suppose that {a, b} is

i>i i>i
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(b) type-2 case

-1 case

(a) type

tree.

1 and type-2 separation pairs within the DFS-

Examples for type-

.15:

3

Figure

11

3.

1 pair from Figure|[3.10; (b) the type-2 pair from Figure

(a) the type
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0
a %(-~.\50th1(7°) lowpt1(b,)..---»
P @s §~\{‘0wpt1(bn)
b ‘-.
lowpt2(r).--¥ : .:
D(r)
(a) type-1 case (b) type-2 case

Figure 3.16: Proof of Lemma (a) shows the type-1 case with subtree D(r); (b)
illustrates the type-2 case with the sets S and S*.

not a multiple edge. By Lemma (ii), a - b holds (compare Figure (a)). Let
E,..., Ei be the separation classes with respect to {a, b}, and let v be the child of
a,such thata —» v -5 b, S= D(v)\D(b),and X=V\ D(a). Wehave S=0ifv=b,
and X =0if a = 1. E(S) and E(X) are each contained in a separation class, say
E(S)C E, and E(X) C E,.

If a has a child a; different from v, then we have a # 1 and lowptl(a;) < a by
Lemma Therefore E(D(a;)) C E,. If we denote with Y the set X UUTE D(ay),

then E(Y) € E,. Let by,...,b, be the children of b in the order they occur in
Adj(b). We have that each separation class must be a union of the sets E(S), E(Y),
{(a,b)}, E(D(b1)), ..., E(D(by)).

We consider now the case, that there exist some i and j, such that E; =
E(D(b;)). We claim that, in this case, {a, b} satisfies the type-1 case with r = b;.
We have lowptl(b;) = a and lowpi2(b;) > b, because E(D(b;)) and E(S)U E(Y)
are disjoint and G is biconnected. Since {a, b} is a separation pair, there must be
a separation class other than E; and {(a, b)}, what means that there is a vertex
s¢i{a,btuD(b;).

Otherwise, no E(D(b;)) is a separation class on its own, and therefore each
E(D(b;)) must be contained either in E; or E,. The ordering of the children of b
implies that there is an iy, such that lowptl(b;) < a for i < iy and lowptl(b;) > a
for i > iy. Thus, since G is biconnected, the separation classes with respect to
fa,b} are Ey = E(S)U|J;,, E(D(by)), E» = E(Y)UlJ;_,, E(D(b;)), and additionally
E; = {(a,b)} if (a,b) € E (compare Figure [3.17(b)). Since {a, b} is a separation
pair, neither E; nor E, are empty. We claim that {a, b} satisfies the type-2 case
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(a) sets Sand X (b) separation classes E; and E,

Figure 3.17: Proof of Lemma lustration of (a) the sets S and X and (b) the
separation classes E; and Es.

with r = v. We have v # b since otherwise, each E(D(b;)) with i > iy would be a
separation class on its own, or E; would be empty if i, > n. Moreover, a # 1, since
otherwise Y and thus E, would be empty. Let x — y be a B-arc with v <x < b.
Then x € S, (x,y) € E;, and therefore a < y. Let now x — y be a B-arc with
a<y<bandb— b; s x. Then, y €8S, (x,y) € E;, and therefore i > i,, what
implies that lowptl(b;) > a. Finally, we have to show that b is a first descendant
of v. We have lowptl(v) < a by Lemma|3.5} since a # 1. This implies that there is
a B-arc x — y € E, with x € D(v) and y < a, such that x is a first descendant of
v, because the children in the adjacency lists are ordered according to ascending
lowptl-values. Since E; # E,, it follows that x € {b} U Um.0 D(b;), and thus b is a
first descendant of v. O

Consider the DFS-tree from Figure We have the following separation
pairs:

type-1 pairs:  (1,4),(1,5),(4,5),(1,8),(1,3)
type-2 pairs:  (4,8),(8,12)

3.4.5 Finding Split Components

During the algorithm, we maintain a graph G. and a DFS-tree P, of G.. We denote
with deg(v) the degree of v in G, with v — w a T-arc in P, with v < w a B-arc in
P, and with parent(v) the parent of v in P.. The (already computed) value nd[v]
is the number of descendants of v in P.. Each time we identify a split component
C we split it off, and the graph G, along with its DFS-tree P, is updated. We use
the following update functions:
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C := NEwWCOMPONENT(ey,...,e): creates a new component C = {ey,..., e/} and
removes ey, ..., e, from G..

C:=CU{ey,...,e/}: theedgesey,...,e, are added to C and removed from G.

e’ := NEwWVIRTUALEDGE(v, w, C): creates a new virtual edge e’ = (v, w) and adds it
to component C and G..

MAKETREEEDGE(e, v — w): makes edge e = (v, w) a new tree edge in P..

Moreover, we define the access functions

firstChild(v) = first child of v in P. according to Adj(v).

hightw) = { 0 if highpt{w] is empty

highpt{w].FroNT() otherwise
and we use two stacks for which the usual operations pusH, pop, and TOP are
defined:

EStack contains already visited edges that are not yet assigned to a split compo-
nent.

TStack contains triples (h, a, b) (or a special end-of-stack marker eos), such that
{a, b} is a potential type-2 separation pair, and # is the highest numbered
vertex in the component that would be split off.

The algorithm starts by calling the recursive procedure PATHSEARCH for vertex 1
which is the root vertex of P.. When returning from the call, the edges belonging
to the last split component are on EStack.

: TStack.pusH(eos)

: PATHSEARCH(1)

: letey,..., e, be the edges on EStack
: C:= NEwCOMPONENT(ey,..., &)

=W N -

Listing 3.6: Finding the split components.

The procedure PATHSEARCH is shown in Listing and The testing for
separation pairs applies Lemma 3.7 and is depicted separately in Listing 3.9] for
type-2 and in Listing[3.10|for type-1 separation pairsf} In order to achieve linear
running time, we set up the following data structures:

e The DFS-tree P, is represented by the arrays parent{v], treeArc[v] (the T-arc
entering v), and fype[e] (which is T-arc or B-arc).

e The values of lowptl[v], lowpr2[v], nd[v], and startsPath[e] are precom-
puted (see Listing[3.4/und[3.5). It is not necessary to update them.

6The algorithm will not find all separation pairs, but only the separation pairs needed for
dividing the graph into its split components
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1: procedure PATHSEARCH (vertex v)
2 outv:=|Adj(v)|
3 for all e € Adj(v) do
4 ife=v — w then > e is a T-arc
5: if startsPath[e] then
6 Pop all (h, a, b) with a > lowptl[w] from TStack.
7 if no triples deleted then
8 TStack.pusH(w + nd[w] — 1, lowptl [w], v)
9: else
10: y :=max{h | (h,a,b) deleted from TStack }
11: let(h,a,b) be last triple deleted.
12: TStack.pusH(y, lowptl[w], b)
13: end if
14: TStack.pusH(eos)
15: end if
16: PATHSEARCH (w)
17: EStack.pusH(v — w)
18: Check for type-2 pairs.
19: Check for a type-1 pair.
20: if startsPath[e] then
21: Remove all triples on TStack down to and including eos.
22: end if
23: while (%, a, b) on TStack has b # v and high(v) > h do
24: TStack.pop()
25: end while

26: else
> continued on next page. . .

Listing 3.7: Procedure PATHSEARCH (part 1).
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27: lete=v—w > e is a B-arc
28: if startsPath[e] then

29: Pop all (h, a, b) with a > w from TStack.

30: if no triples deleted then

31: TStack.pusH (v, w, v)

32: else

33: y =max{h|(h,a,b) deleted from TStack }
34: let (K, a,b) be last triple deleted.

35: TStack.pusH(y, w, b)

36: end if

37: end if

38: EStack.pusH(e)

39: end if

40: outv:=outv—1

41: end for

42: end procedure

Listing 3.8: Procedure PATHSEARCH (part 2).

e The array degree[v] contains the degree of a vertex v € G.. It is updated
each time an edge is added to or removed from G..

¢ In order to compute firstChild(v), we update the adjacency lists each time
an edge is added to or removed from G.

¢ In order to compute high(v), we precompute the list of the source nodes of
the B-arcs v; — w ending at w in the order they are visited. When a B-arc
is removed from or added to G, the respective list is updated.

3.4.6 Corrections on the Hopcroft and Tarjan Algorithm

Procedure SPLIT in [Hopcroft and Tarjan, 1973a] does not correctly split a graph
into its split components. We summarize the important changes we have made
in our algorithm:

e The sorting function ¢ had to be modified as described in subsection3.4.4]
in order to identify all multiple edges.

e The creation of the last split component (see line[d)in Listing[3.6) was miss-
ing.

e The condition in line[23]in Listing[3.7jwas changed. The original condition
could remove triples from TStack corresponding to real type-2 separation
pairs. Such a separation pair could not be recognized by the original SPLIT
procedure.
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—

while v # 1 and (((h,a,b) on TStack has a = v) or (degw) = 2 and
firstChild(w) > w)) do

2: if a = v and parent(b) = a then
3: TStack.pop()
4: else
5: eqp .= nil
6: if deg(w) =2 and firstChild(w) > w then
7: C := NEWCOMPONENT()
8: Remove top edges (v, w) and (w, x) from EStack and add to C.
9: e’ == NEwWVIRTUALEDGE(v, x, C)
10: if EStack.tor()=(x,v) then
11: eqp .= EStack.rop()
12: DEeLHIGH(egp)
13: end if
14: else
15: (h,a,b) .= TStack.por()
16: C := NEWCOMPONENT()
17: while (x,y) on EStackhasa <x<handa <y <hdo
18: if (x,y)=(a,b) then
19: e, .= EStack.rop()
20: DEeLHIGH(e,yp)
21: else
22: eyy = EStack.pop()
23: DeLHIGH(eyy )
24: C:=CU{ey}
25: end if
26: end while
27: e’ := NEwWVIRTUALEDGE(a, b, C)
28: end if
29: if e, # nilthen
30: C := NEWCOMPONENT(e,p, €’)
31: e’ := NEwWVIRTUALEDGE(v, b, C)
32: end if
33: EStack.pusH(e’)
34: MAKETREEEDGE(e’, v — b)
35: w:=>b
36: end if

37: end while

Listing 3.9: Check for type-2 pairs.
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1: if lowp2[w] > v and lowptl [w] < v and (parent(v) # 1 or outv > 2) then
2 C := NEWCOMPONENT()
3 while (x,y) on EStackhas w < x < w+ nd[w] or w <y < w + nd[w] do
4: exy = EStack.pop()
5: DeLHIGH(ey, )
6 C:=CU{ey}
7 end while
8 e’ := NEWVIRTUALEDGE(v, lowptl[w], C)
9: if EStack.top() = (v, lowptl[w]) then
10: C := NEWCOMPONENT(EStack.por(),e’)
11: e’ := NEWVIRTUALEDGE(v, lowptl[w], C)
12: end if
13: if lowptl[w] # parent(v) then
14: EStack.pusH(e’)
15: else
16: C := NEWCOMPONENT(e’, lowptl [w] — v)
17: e’ := NEWVIRTUALEDGE (lowptl[w], v, C)
18: MAKETREEEDGE(e’, lowptl[w] — v)
19: end if
20: end if

Listing 3.10: Check for a type-1 pair.

e The condition in line[1)in Listing was changed. The original condition
could incorrectly identify separation pairs after the graph had been modi-
fied.

e The updates for firstChild(v) (which is A1(v)in [Hopcroft and Tarjan,|1973a])
and DEGREE(v) were not sufficient.

e high(w) (which is HIGHPT(w) in [Hopcroft and Tarjan,|1973a]) was not up-
dated, which is not correct. It is necessary to update HHGHPT dynamically,
when G, is modified. We replaced HIGHPT(w) by a list of B-arcs ending at
w, which is updated as G, changes.

3.4.7 Computational Experiments

The implementation of the triconnectivity decomposition algorithm and the data
structures for the representation of SPQR-trees build upon the Open Graph Draw-
ing Framework (OGDF) [Chimani et al., 2010] and are thereby publicly available.
Graphs are represented by the OGDF data type Graph. There are two main classes
for the representation of a static SPQR-tree:

e The class StaticSPQRTree implements SPQR-trees for general (not nec-
essarily planar) biconnected graphs. The skeleton of a tree node is repre-
sented by an instance of the class Skeleton, which allows to access the
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skeleton graph as a usual OGDF graph. There is also a method for com-
puting the pertinent graph of a tree node, which is then represented by the
class PertinentGraph.

e Aspecialized class StaticPlanarSPQRTree is derived from StaticSPQR-
Tree and supports modifying and updating the combinatorial embedding
of a planar graph. The graph is embedded immediately after construction,
and the following basic update operations allow to modify the embedding:

- Mirror the embedding of the skeleton of an R-node.

- Permute the parallel edges in the skeleton of a P-node.

Using these methods, it is also possible to compute a random embedding
of the graph.

Furthermore, OGDF implements dynamic SPQR-trees [Di Battista and Tamassia,
1996alb]. These are represented by the classes DynamicSPQRTree and Dynamic-
PlanarSPQRTree; their implementation has been contributed by Jan Papenful3.
In our tests, we always give the runtime for the creation of a StaticSPQRTree,
even for planar graphs.

TestSuite. We tested our implementation with generated planar and non-planar
biconnected graphs, as well as the benchmark graphs from the Rome library,
graphs collected by Stefan Hachul, and road networks:

¢ Randomly generated graphs: We generated planar and non-planar bicon-
nected graphs with up to 100,000 edges; each graph had a density (number
of nodes divided by number of edges) of 2.

— A planar biconnected graph with n vertices and m edges is gener-
ated by starting with a triangle and performing n — 3 randomly cho-
sen split-edge and m — n split face operations. We used OGDF’s graph
generator planarBiconnectedGraph().

— A general biconnected graph with n vertices and m edges is gener-
ated by starting with a triangle and performing n — 3 randomly cho-
sen split-edge and m —n add edge operations. We used OGDF’s graph
generator randomBiconnectedGraph().

¢ Rome graphs: The Rome graphs are a collection of 11,528 planar and non-
planar graphg’|ranging from 10 to 100 vertices. The graphs are quite sparse,
with an average density of 1.35. Figure shows the distribution of the
graphs in the library, as well as the average densities for each group of
graphs with the same number of vertices. The Rome graphs have been in-
troduced in an experimental study by Di Battista et al.|[1997] for comparing
graph drawing algorithms with respect to several aesthetic criteria. Since

“originally, it were 11,582 graphs, but some of the files are corrupted
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Figure 3.18: Distribution of graphs and average densities for the Rome graphs.

these graphs are not necessarily biconnected, we constructed the SPQR-
tree for the largest block in each graph.

¢ Hachullibrary: Stefan Hachul collected several graphs that have been used

for evaluating the performance of force-directed graph drawing algorithms
[see|Hachul and Jiinger, 2007]. Therefore, this benchmark set contains also
very large graphs with up to 3.3 million edges. The graphs originate from
various application fields and include some artificially constructed graphs
as well. For the graphs in this library that are not biconnected we used
again their largest blocks in our experiments. We selected 24 triconnected
and 36 not-triconnected graphs, each having alargest block of at least 1,000
edges.

e DIMACS library: The graphs in this library represent road networks of the

50 U.S. states and Washington D.C. They have been made publicly avail-
able during the 9th DIMACS Implementation Challenge on shortest paths
[Demetrescu et al., [2009]. All these graphs are planar and unconnected,
therefore we also used the largest block of each graph in our experiments.

System Configuration. We performed the tests on a Windows PC with the fol-
lowing specifications:
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Operating system | Windows 7 Professional (64-bit)
Compiler Microsoft Visual C++ 9.0
Chipset Intel P55
CPU Intel Core i7 860 processor
2.8 GHz, 8 MB L3-Cache, 4*256 KB L2-Cache
Memory 8 GB RAM, 1333 MHz DDR3

Though this system provides 4 processor cores (8 hardware-threads through Hy-
per Threading), all our test programs utilize only a single processor core. We used
Windows’ high-resolution performance counter (Windows API function Query-
PerformanceCounter()) to measure time. This counter has a resolution of
2,742,919 counts per second on our test system, which corresponds to a tick in-
terval of 365 nanoseconds.

Test Results. The computed SPQR-trees are automatically checked with several
consistency and plausibility tests when running in debug mode. The runtimes
reported here are obtained by running the test programs in release mode, that is,
extra checks are omitted and the code is optimized by the compiler.

The average running times for the randomly generated graphs are shown in
Figure[3.19|(a). The x-axis shows the number of edges and the y-axis the running
time in milliseconds. Each data point corresponds to the average running time
over 10 graphs. We observe that the running times for planar and non-planar
graphs are very similar. Even instances with 100,000 edges can be solved in less
than half a second.

As a historical side note, we remark thatHopcroft and Tarjan/[1973a] reported
that their implementation was able to solve graphs with 1000 edges in less than
10 seconds on an IBM 360/65 mainframe in the early 70s. For comparison, our
implementation requires an average runtime of 0.57 milliseconds on a standard
PC for computing the triconnected components of graphs with 500 vertices and
1000 edges, which is a speed-up of about 17,500 over Hopcroft and Tarjan’s re-
sults. Clearly, this is mainly a result of much faster computer systems. On the
other hand, it is even unlikely that the Hopcroft/Tarjan implementation was cor-
rect.

The results for the Rome graphs are depicted in Figure [3.19|(b). The x-axis
shows the number of edges and the y-axis the running time in milliseconds. Each
data point is the average running time over all blocks with the same number of
edges. For the largest blocks, the average running time was about 120-140 mi-
croseconds. The longest running time was 245 microseconds required by a block
with 82 vertices and 121 edges.

For the graphs from the Hachul and DIMACS library, we present the results
in Figure and Tables[3.1|through[3.4] Since these graphs have quite different
structures, we show the data point for each instance in the diagrams and display
further statistical information (number of vertices and edges; number of differ-
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Figure 3.19: Average running times for the construction of SPQR-trees.
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graph | Vsl |Ep| | time [ms]
144 144,649 1,074,393 1,998
3elt 4,720 13,722 23
4elt 15,606 45,878 86
598a 110,971 741,934 1,670
auto 448,695 3,314,611 7,148
bcsstk29 13,830 302,424 568
bcsstk30 28,924 1,007,284 1,741
bcsstk32 44,607 985,044 1,897
bcsstk33 8,738 291,583 547
brack2 62,631 366,559 903
crack 10,240 30,380 84
cti 16,840 48,232 143
data 2,851 15,093 47
fe_4elt2 11,143 32,818 96
fe_rotor 99,617 662,431 1,786
fe_sphere 16,386 49,152 151
fe_tooth 78,136 452,591 1,261
m1l4b 214,765 1,679,018 4,630
spider_C 2,000 14,000 52
spider_D 20,000 140,000 412
vibrobox 12,328 165,250 459
wave 156,317 1,059,331 3,004
whitaker3 9,800 28,989 98
wing nodal | 10,937 75,488 240

Table 3.1: Runtimes for SPQR-tree construction: largest block B = (V3, Ep) of each
graph from the Hachul-library (triconnected blocks).

ent types of nodes in the constructed SPQR-tree) in the corresponding tables.
Our implementation runs stable even for the largest graphs in these benchmark
sets, which are auto in the Hachul library (a triconnected graph with 448,695
vertices and 3,314,611 edges; 7.148 seconds runtime) and the state of Texas TX
(1,394,230 vertices and 1,876,613 edges; 9.042 seconds; 370,812 nodes in the con-

structed SPQR-tree).
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graph [ Va| |Eg| | time ns np ng | total
add20 2,018 7,076 21 | 1210 1143 1 2354
add32 985 2,144 15 754 724 52 1530
all 1,174 4,432 17 399 645 2 1046
besstk31 35,539 572,866 | 1,126 5 12 17 34
bcsstk31 _connected 35,539 572,866 | 1,158 5 12 17 34
cs4 22,499 43,858 149 1 0 1 2
cylinder_rnd_032_032 984 1,865 23 14 0 1 15
cylinder_rnd_100_100 9,493 17,937 63 130 0 1 131
cylinder_rnd_320_320 97,307 184,769 574 | 1376 5 1 1382
dg 274 935 4,958 32 51 1386 2 1439
dg 3578 2,112 6,223 34 528 96 6 630
dg 3691 572 2,025 24 143 30 8 181
dg 4765 3,040 10,427 44 736 282 16 1034
dg 4891 6,902 22,021 77 | 1164 2479 1 3644
dg 4941 659 2,126 25 165 41 1 207
fe_body 30,555 113,398 313 99 125 28 252
fe_ocean 143,398 409,554 | 1,205 451 13 1 465
fe_pwt 36,409 144,740 401 64 0 1 65
finan512 74,752 261,120 819 | 4608 3072 1 7681
flower_001 210 3,057 25 6 12 7 25
flower_005 930 13,521 44 6 36 31 73
flower_050 9,030 131,241 310 6 306 301 613
flower_500 90,030 1,308,441 | 2,775 6 3006 3001 6013
grid_rnd_032 984 1,833 24 19 0 1 20
grid_rnd_100 9,492 17,844 65 154 1 1 156
grid_rnd_320 97,302 184,475 631 | 1450 8 1 1459
memplus 17,575 53,973 217 |1 9799 6619 22 | 16440
rand_uncon_D_comp_100 959 1,277 24 298 0 1 299
sierpinski_06 1,095 2,187 25 4 3 15 22
sierpinski_08 9,843 19,683 72 4 3 21 28
sierpinski_10 88,575 177,147 587 4 3 27 34
spider_B 200 1,400 25 0 600 1 601
t60k 60,005 89,440 352 936 0 1 937
ug 380 1,078 3,205 27 50 0 1 51
uk 4,508 6,448 40 396 41 7 444
wing 62,032 121,544 517 82 4 1 87

Table 3.2: Runtimes for SPQR-tree construction: largest block B = (V3, Ep) of each
graph from the Hachul-library (non-triconnected blocks). The table shows the
runtime in milliseconds, the number of S-, P-, and R-nodes (ns, np, ng, respec-
tively), and the total number of nodes ns+ np + ng.
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graph | V3| |[Eg| | time ng np nr total

AK 11,214 13,848 21 421 130 2,499 3,050
AL 351,260 439,262 | 1,115 | 11,972 1,743 84,051 | 97,766
AR 303,952 378,088 | 1,212 | 10,265 1,390 70,439 | 82,094
AZ 351,079 463,104 | 1,551 | 11,644 2,549 89,122 | 103,315
CA 1,063,817 1,419,949 | 4,311 | 32,451 6,063 259,421 | 297,935
CcO 279,447 365,471 | 1,383 | 11,722 1,709 66,865 | 80,296
CT 104,747 136,851 470 | 3,553 576 26,946 | 31,075
DC 8,544 13,818 31 92 13 1,088 1,193
DE 30,149 39,898 126 | 1,014 245 7,256 8,515
FL 667,932 918,646 | 3,412 | 25,237 5,784 146,969 | 177,990
GA 455,616 576,167 | 2,390 | 15,721 2,048 113,405 | 131,174

HI 11,664 15,527 50 497 145 2,750 3,392
IA 317,299 426,927 | 1,783 | 11,784 617 89,262 | 101,663
ID 169,035 213,677 917 | 5,648 917 42,512 | 49,077
IL 596,024 807,116 | 3,249 | 20,562 2,094 147,012 | 169,668

IN 361,278 487,161 | 2,210 | 13,891 1,355 94,200 | 109,446
KS 380,078 509,945 | 2,434 | 15,527 840 107,873 | 124,240
KY 256,284 309,454 | 1,552 | 8,198 1,170 57,260 | 66,628
LA 260,707 341,334 | 1,654 | 8,024 1,339 59,798 | 69,161
MA 202,517 272,283 | 1,364 | 6,416 1,255 49,468 | 57,139
MD 126,760 166,844 820 | 4,610 865 29,930 | 35,405
ME 98,156 115,705 567 | 2,975 507 20,211 | 23,693
MI 420,949 572,354 | 2,911 | 17,633 2,132 104,651 | 124,416
MN 391,073 511,203 | 2,672 | 14,919 1,168 102,809 | 118,896
MO 455,411 579,700 | 3,139 | 14,880 1,571 108,404 | 124,855
MS 273,144 339,252 | 1,877 | 9,691 1,101 68,028 | 78,820
MT 182,245 224,335 | 1,224 | 6,031 985 41,868 | 48,884
NC 483,487 593,978 | 3,249 | 15,603 2,402 113,622 | 131,627
ND 157,338 207,521 | 1,128 | 6,245 310 44,462 | 51,017
NE 245,622 327,843 | 1,781 | 9,794 473 66,840 | 77,107
NH 67,870 82,132 450 | 2,284 405 15,661 18,350
NJ 241,233 340,757 | 1,755 | 7,670 1,526 53,192 | 62,388
NM 304,021 398,842 | 2,212 | 10,989 1,854 74,124 | 86,967
NV 170,833 217,723 | 1,221 | 5,374 1,202 43,161 | 49,737

Table 3.3: Runtimes for SPQR-tree construction: largest block B = (V3, Ep) of each
graph from the DIMACS-library. The table shows the runtime in milliseconds,
the number of S-, P-, and R-nodes (ns, np, ng, respectively), and the total num-
ber of nodes ng+ np + ng.
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graph | V| |Eg| | time ng np ng total

NY 510,863 678,781 | 3,691 | 14,197 2,309 113,983 | 130,489
OH 493,985 653,793 | 3,478 | 15,109 1,729 123,673 | 140,511
OK 367,860 484,188 | 2,744 | 13,520 1,299 92,295 | 107,114
OR 325,223 412,113 | 2,350 | 10,194 1,771 77,875 | 89,840
PA 631,782 837,329 | 4,685 | 17,043 2,844 150,402 | 170,289

RI 35,325 49,524 224 966 230 7,669 8,865
SC 294,444 376,170 | 2,174 | 10,970 1,701 75,944 | 88,615
SD 154,111 200,658 | 1,137 | 6,589 402 41,511 | 48,502

TN 356,708 441,995 | 2,470 | 11,752 1,672 86,253 | 99,677
X 1,394,230 1,876,613 | 9,042 | 42,956 8,166 319,690 | 370,812
uT 156,652 200,714 997 | 4,721 961 40,471 | 46,153
VA 325,666 400,954 | 2,273 | 12,585 1,882 69,454 | 83,921
VT 55,639 64,405 369 | 1,549 242 12,018 | 13,809
WA 317,336 408,247 | 2,309 | 9,630 1,692 75,702 | 87,024
WI 361,410 472,431 | 2,595 | 12,703 1,218 91,057 | 104,978
WV 144,023 169,350 996 | 4,486 842 27,549 | 32,877
WY 173,108 223,310 | 1,282 | 5,376 954 45,771 | 52,101

Table 3.4: Runtimes for SPQR-tree construction: largest block B = (V, Ep) of each
graph from the DIMACS-library (continued). The table shows the runtime in
milliseconds, the number of S-, P-, and R-nodes (ns, np, ng, respectively), and
the total number of nodes ng+ np + ng.



Chapter 4

Crossing Minimization

The wireless telegraph is not difficult to understand. The
ordinary telegraph is like a very long cat. You pull the tail
in New York, and it meows in Los Angeles. The wireless is
the same, only without the cat.

ALBERT EINSTEIN (1879 — 1955)

Minimizing the number of crossings in a drawing of a graph is among the most
challenging problems in graph theory and graph drawing. Although, there is a
vast amount of literature on the problem (see [Vrt'o| [2009] for a comprehensive
overview), so far practically efficient exact algorithms for crossing minimization
are only known for graphs with relatively small crossing numbers. The currently
best such algorithms, which are based on branch-and-cut with column genera-
tion, have been presented by |[Buchheim et al./ [2008] and |Chimani et al. [2008];
see also [Chimani, 2008] for a detailed description.

The crossing number problem is the problem of finding the crossing number
for a given graph G (see Section [2.3|for basic definitions). Since we are not only
interested in the required number of crossings, but also in a suitable represen-
tation of these crossings in a drawing of G, we want to construct a planarized
representation G, of G, which contains a vertex of degree four for each crossing
(see also Section[2.4). We refer to the corresponding optimization problem as the
crossing minimization problem:

CROSSING MINIMIZATION PROBLEM (CMP)

Instance: | agraph G

Solution: | aplanarized representation G, of G

Minimize: | the number of crossings in G,

The crossing number problem is even older than the area of automatic graph
drawing itself. It goes back to Paul Turdn, who proposed the problem in his
“Notes of Welcome” in the first issue of the Journal of Graph Theory [Turan,(1977].
While working in a labor camp during the Second World War, he noticed that

73
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crossings of the rails between kilns and storage yards caused the trucks to jump
the rails, thus making the work even harder. Minimizing these crossings corre-
sponds to the crossing minimization problem for a complete bipartite graph.

It is well known that the general crossing minimization problem is NP-hard
[Garey and Johnson, 1983]. More precisely, it was shown that the following prob-
lem is NP-complete:

“Given a graph G and a non-negative integer K, decide whether there
is a drawing of G with at most K edge crossings.”

However, for a fixed K, we can obtain a polynomial time algorithm by examin-
ing all possible configurations with up to K crossings. Clearly, this algorithm is
not appropriate in practical applications for larger values of K. Recently, Grohe
[2004] could show that this problem can be solved in time O(|V|?). Even though
the exponent is independent of K, the constant factor of his algorithm grows
doubly exponentially in K. Therefore, this method is also of no relevance in prac-
tice.

The search for approximation algorithms did not lead to significant results
either. While there is no known polynomial time approximation algorithm with
any type of quality guarantee for the general problem, Bhatt and Leighton could
derive an algorithm for graphs with bounded degree that approximates the num-
ber of crossings plus the number of nodesin polynomial time [Bhatt and Leighton,
1984]. Due to the complexity of the crossing minimization problem, many re-
stricted versions have been considered in the literature. However, in most cases,
for example, for bipartite, linear, and circular drawings, the problem remains NP-
hard [Eades and Wormald, 1994, Masuda et al.}|1990,/1987].

4.1 The One-Edge Insertion Problem

Currently, the best known approach for solving CMP heuristically is the planariza-
tion method as described in Section[2.4] One point of criticism on the planariza-
tion method was that when choosing a “bad” embedding in the edge re-insertion
phase, the number of crossings may get much higher than necessary [Holton and
Sheehan, 1993]. Hence, the question arose if there is a polynomial time algorithm
for inserting an edge into the planar subgraph P so that the number of crossings
is minimized. In this case, the task is to optimize over the set of all possible com-
binatorial embeddings of P.

While it is possible to compute an arbitrary combinatorial embedding for a
planar graph in linear time [Mehlhorn and Mutzel, 1996, Chiba et al.,|1985], it is
often hard to optimize over the set of all possible combinatorial embeddings. For
example, the problem of bend minimization can be solved in polynomial time for
a fixed combinatorial embedding [Tamassia, (1987], while it is NP-hard over the
set of all combinatorial embeddings [Garg and Tamassia, 2002]. When a linear
function of polynomial size is defined on the cycles of a graph, it is NP-hard to
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find the embedding that maximizes the value of the cycles that are face cycles in
the embedding [Mutzel and Weiskircher, 2000, |1999].

Figure [4.1|shows a simple case in which the choice of the combinatorial em-
bedding of the planar subgraph has an impact on the number of crossings pro-
duced when inserting the dashed edge. If we choose the embedding in Fig-
ure [4.1](a) for the planar subgraph (without the dashed edge), we get two cross-
ings, whereas the minimal number of crossings over the set of all combinatorial
embeddings is one; see Figure[4.1|(b).

(a) two crossings (b) one crossing, optimal

Figure 4.1: The number of crossings required when inserting an edge depends on
the chosen embedding.

Formally, we define the one-edge insertion problem as follows: Given a planar
graph G = (V, E) and a pair of vertices (v, v,) in G, find an embedding IT of G
such that we can insert the edge e = (v;, v,) into I with the minimum possible
number of crossings among all embeddings of G.

ONE-EDGE INSERTION PROBLEM (OEIP)

Instance: | a planar graph G = (V, E) and two vertices v;,v, € V
with 141 # Uy

Solution: | an embeddingIT of G

Minimize: | the number of crossings required to insert edge (v;, V)
into I1

This section shows that the OEIP can be solved in polynomial time, thus solving
a long standing open problem in graph drawing. We present a conceptually sim-
ple linear time algorithm based on SPQR-trees which is able to solve the OEIP to
optimality. Note that an optimal solution of the OEIP does not necessarily lead to
a drawing of the graph G’ = (V, E U {e}) with the minimum number of crossings.
This is due to the fact that there may not always be a drawing of G’ with a mini-
mum number of crossings that induces a crossing-free drawing of G =(V, E).
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The rest of this section is organized as follows. After introducing the con-
cept of traversing costs, we first present an algorithm for solving the OEIP for
biconnected graphs. Then, we generalize this algorithm to arbitrary graphs. Fi-
nally, we address the difference and the connection between finding a drawing
with the minimum number of crossings and the OEIP discussed in this section,
in particular, the approximation of the crossing numbers of near-planar graphs
with bounded degree.

4.1.1 Traversing Costs

Traversing costs of skeleton edges are a fundamental concept used in the one-
edge insertion algorithm. First, we give a formal definition of the term edge in-
sertion path. Let G =(V, E) be a graph with embedding I1. Recall that we denote
with IT* the dual graph of G with respect to II. In the following, we also use the
notations e* for the dual edge of an edge e € E and f* for the dual vertex of a
face f €1II. An edge insertion path is basically associated with a path in the dual
graph and determines the edges that are crossed when inserting an edge into a
given embedding.

Definition 4.1 (Edge insertion path). Let G =(V, E) be a connected planar graph
and IT an embedding of G. Let v; and v, be two non-adjacent vertices in G. Then
el,..., e is an edge insertion path for v, and v, in G with respect to I1 if either k =
0 and v; and v, are contained in a common face in IT or the following conditions
are all satisfied:

(@ ey,...,ex€E.

(b) There is a face in IT with e; and v; on its boundary.
(c) There is a face in IT with e, and v, on its boundary.
(d) ej,...,eisapathinII*

If p=e,..., e, is an edge insertion path for v; and v, with respect to II, then
it is possible to insert the edge (vy, v») into II with k crossings, where the i-th
crossing involves edge (v;, v,) and edge e; for 1 <i < k. The length of p, denoted
by |p|, is k. We call p an optimal edge insertion path for v, and v, in G, if there is
no shorter edge insertion path for v; and v, in G with respect to any embedding
of G.

Figure[d.2]shows three different edge insertion paths for v; and v, with respect
to the embedding realized by the drawing. The three paths are the empty path,
the path ey, e,, e3, and the path e, e, es. In this case, the empty path is obviously
the optimal edge insertion path for v; and v;.

Consider now a biconnected graph G and its SPQR-tree 7. The traversing
costs c(e) of a skeleton edge e in 7 are defined as follows. Consider an arbitrary
embedding IT of the graph expansion®(e) and its dual graph IT*. Let f; and f, be
the two faces in Il that are separated by e, and let f; and f; be the corresponding
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v2

Figure 4.2: Three different edge insertion paths for v; and v,

vertices in the dual graph. We denote with P(IT*, e) the shortest path in IT* that
connects f7 and f,; and does not use edge e*. Lemmabelow shows that the
length of this path is independent of the embedding IT chosen for expansion*(e).
Thus we define the traversing costs c(e) simply as

c(e) =length of the path P(IT*, e) for any embedding IT of expansion™(e).
We also call the corresponding list of primal edges a traversing path for e.

Lemmad4.1. Letu beanodeinJ and e be an edge in skeleton(u). Then, the length
of the path P(IT*, e) is independent of the embeddingIl of expansion™(e).

Proof. The expansion graph of e is defined using a subtree of the SPQR-tree 7.
Let v be the pertinent node of e. We denote with 7, the subtree of &7 which is
the connected component containing v of the graph 7 —(u,v). The root of 7, is
the node v, which is not necessarily a Q-node. We prove the lemma by induction
over the height of 7,.

If the height of 7, is 1, then v is a Q-node and expansion™(e) is a circle of two
edges. Thus, expansion™(e) has only a single embedding IT and the length of the
path P(IT*, e) is simply 1.

Assume now that the height of 7, is k > 1 and that the lemma holds for all
skeleton edges é for which the height of 7; is less than k. Since k > 1, the
root v of 7, is either an S-, P-, or R-node. We denote with e’ the virtual edge
of u in skeleton(v). An embedding IT of expansion™(e) induces an embedding II,
of skeleton(v) and an embedding II;, of expansion®(h) for each edge h # e’ in
skeleton(v). Since the height of 7}, is less than k, ¢, = P(IT}, h) is independent of
IT,. We consider the three possible types of node v:

S-node: The skeleton of v is a circle e/, ey, ..., e, with £ > 2. The length of the path

P(IT* e) is minle P, e;)= minﬁz1 c.; which is independent of I1.

P-node: The skeleton of v consists of £ + 1 parallel edges e’, ey,...,e, with £ > 2
and the length of the path P(IT*, e) is Zle P(IT; , e;) = Z§=1 c.; which is also
independent of I1.
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R-node: The skeleton of v is a triconnected planar graph S = (15, Es). The length
of the path P(II* e) is the length of a shortest path in II! connecting the
two faces separated by e’ without using the dual edge of e’, where each
edge h € Es\ {e’} has cost cj,. Since a triconnected planar graph has only
two embeddings, which are mirror-images of each other, the length of this
path is independent of the embedding I1, and thus independent of 1.

O]

According to Lemmal4.]} the traversing costs of a skeleton edge e can be com-
puted by finding a shortest path in the dual graph of an arbitrary embedding of
expansion*(e). This can be done in time O(|expansion*(e)|) using a breadth first
search approach.

4.1.2 Biconnected Graphs

In this section, we present an algorithm for optimally inserting an edge into a
biconnected planar graph. We use the notion of the extended dual graph as de-
fined in Section[2.4.2] We further say a skeleton edge e represents a vertex v of G
if v is contained in expansion(e) and v is not an endpoint of e, and we introduce
the following notation for list concatenation. If L, = a;,...,a; and L, = b;,..., by
are two lists, we denote with L; + L, the list a,,...,a,b;,...,b,. The algorithm
OpTIMALBLOCKINSERTER for computing an optimal edge insertion path for a bi-
connected planar graph G and two non-adjacent vertices v; and v, of G is shown
in Listing[4.1] We remark that it is not necessary to actually construct the graph
G; (defined in line[21) if u; is not an R-node. It is included in the presentation of
the algorithm, since we refer to G; in the correctness proofs (proofs of Lemma}{4.2
and[4.3).

In order to prove the correctness of Algorithm OpTIMALBLOCKINSERTER, we
first show that the path computed by the algorithm is indeed an edge insertion
path with respect to some embedding.

Lemma 4.2. Let p; + -+ pi be the path computed by OPTIMALBLOCKINSERTER.
Then, there exists an embedding1l1 of G such that p, +---+ py is an edge insertion
path for v, and v, in G with respect toI1.

Proof. Consider the path A = u,,..., ur computed by the algorithm. By construc-
tion of A, the skeleton of u; contains v, the skeleton of u; contains v, (note that
k =1is possible), and for each j =2,..., k —1, the skeleton of u; contains neither
v; nor v,. Moreover, A does not contain a Q-node.

First, we prove the lemma for the case that A consists of a single node u;. In
this case, the skeleton of u; contains both v; and v,. There are three possible
cases for the type of u;:

(a) w;isanS-node: Then v, and v, form a separation pair of G, see Figure[4.3|(a).
Let IT; be any embedding of G. Since {v;, v,} is a separation pair, v; and v,
lie in a common face of I1;. Thus, the empty path returned by the algorithm
is an edge insertion path for v; and v, in G with respect to I1;.
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1:
2
3:
4

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:
30:
31:

32:

function OpTIMALBLOCKINSERTER(graph G, vertex vy, vertex v;)
Compute the SPQR-tree 7 of G.
Find the shortest path A =u;,...,u; in 7 between an allocation node u;,
of v; and uy of v,.

fori=1,...,kdo

S; := skeleton(u;)
if v, isin S; then
xj=uw
else
Split the edge representing v; in S; by inserting a new vertex y;'.

Mark the two edges produced by the split.

1.1
X =Y
end if
if v, isin S; then
2.
Xy =
else

Split the edge representing v, in S; by inserting a new vertex y?.
Mark the two edges produced by the split.
x;=y;
end if
let G; be the graph obtained from S; by replacing each unmarked edge
with its expansion graph.

if u; is not an R-node then
set p; to the empty path.

else
Compute an arbitrary embedding I1; of G;.
let A; be the extended dual graph of I1; with respect to (x;, x?).
Compute the shortest path ¢ef,..., e}, in A; between x}" and x?".
pi:=ei,..., e, where e; is the primal edge of e}.

end if

end for
return p; +---+ pi

33: end function

Listing 4.1: Computes an optimal edge insertion path for a pair of non-adjacent

vertices vy, v, in a biconnected planar graph G.
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(a) u is an S-node. (b) u; is a P-node.

Figure 4.3: Path A consists of a single node u;.

(b) w, is a P-node: Again, {v;, v,} is a separation pair of G and similar arguing
as for the first case holds, see Figure[4.3b]

(c) u;is an R-node: In this case, the graph G; constructed by the algorithm is
the original graph G, since all skeleton edges are expanded, and II;, com-
puted by the algorithm is an embedding of G. Thus, the algorithm com-
putes an edge insertion path in G for v, and v, with respect to embedding
H1 of G.

Assume now that k > 1. We define graphs H,, ..., H; as follows. H; is obtained
from skeleton(u;) by replacing all skeleton edges not representing vertex v, by
their expansion graphs, and, if i < k, splitting the skeleton edge that represents
vertex v, and thereby introducing a new vertex r;. The skeleton of u; contains
vertex v, itself and we denote with ry this vertex in skeleton(u;). We show by
induction over i that there is an embedding I'; of H; such that p; +---+ p; is
an edge insertion path for v; and r; in H; with respect to I';. The embeddings
I'y,..., T’k are iteratively constructed during the proof.

i =1: Consider the different types for node u;:

(@) u, is a P-node: This case does not apply, since u, is not an allocation
node of v;.

(b) u; is an S-node: In this case, {v;, n} is a separation pair in H; and v,
and r lie in a common face in any embedding of H;; see Figure (a).
Thus, I'; is set to an arbitrary embedding of H; and the empty path p,
computed by the algorithm is an edge insertion path for v; and r; in
H, with respect to I';.

(c) p; is an R-node: The graph G; constructed by the algorithm is the
graph H, if r, is identified with vertex y? in the algorithm; compare
Figure (b). Hence, I1; is also an embedding of H; and we define
I'y :=1I,. Since p; is an edge insertion path for v, and y? in G, with
respect to II; by construction, p; is also an edge insertion path for v,
and r; in H, with respecttoI’.



4.1. The One-Edge Insertion Problem 81

(a) u; is an S-node. (b) u; is an R-node.

Figure 4.4: The different node types for the case i = 1.

i >1: Assume now thatI'y,...,I";_; are already constructed and p; +:--+ p;_; is
an edge insertion path for v; and r;,_; in H;_;, with respectto I';_;.

The graph G; constructed in the algorithm contains a vertex x; adjacent to
exactly two vertices, say a and b, and H;_; contains vertex r;_; adjacent to
exactly two vertices, say a’ and b’. By construction, both a and a’, as well as
b and b’ represent the same vertex of G and the graph H; is obtained from
G; and H;_, by identifying a and a’, b and b’, and removing the vertices x;
and r;_; (including their incident edges).

An embedding of H; can be determined in the following way. Chose one
of the two faces containing r;_; as external face of I';_;. This leads to an
embedding in which either the last edge of p; +:--+ p;_; and r;_; liein a
common face, or p; +:--+ p;_; is empty and v; and r;_; lie in a common
face. Then, determine an embedding of G;, insert I';_; into the embedding
of G;, and remove the vertices r;_; and x}. It is also possible to mirror the
embeddingI';_, before inserting, since p;+:--+p;_; is still an edge insertion
path in H;_, with respect to the mirror embedding of I';_;.

We distinguish the possible cases for the type of node u;:

(@) u;is anS-node: There is just one embedding of G; and inserting H;_,
into this embedding as described above leads to an embedding I'; of
H; such that p; +---4+p;_; = p1 +---+ p; is an edge insertion path in
H; with respect to I';; compare Figure (a).

(b) u;is a P-node: Let II; be an embedding of G; such that x; and x? lie
in a common face. Obtain I'; by inserting I';_; into II; in such a way
that r;_; and xl? lie in a common face; compare Figure (b). This
can be achieved by mirroring I';_; if necessary. Then, p; +---+p;_1 =
p1+---+p; is an edge insertion path in H; with respectto I';.

(c) u;isanR-node: LetII; be the embedding computed by the algorithm.
Thelist p; = e;,..., e, is an edge insertion path for xi1 and xl? in G; with
respect to II;. We obtain the embedding I'; by inserting I';_; into II;
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(c) u; is an R-node.

Figure 4.5: The different types for node u;. H denotes the graph H; 1 —r;_1 and &
denotes the last edge in p; +---+ p;-1.

in such a way that r;_; and e, (or r;—; and r; if p; is empty) lie in a
common face; compare Figure [4.5(c). This is possible by mirroring
I'; if necessary, since x; and e; (or x; and x? if p; is empty) lie in a
common face in II;.

Since ri = v, and Hy = G, it follows that p; +---+ p is an edge insertion path for
v; and v, in G with respect to I1:=T'; and the lemma holds. O

Algorithm OpTIMALBLOCKINSERTER computes only an edge insertion path p =
el,..., e for the vertices v; and v, in G, but not the corresponding embedding of
G. However, there is a simple way for finding an embedding IT such that p is an
edge insertion path for v, and v, in G with respect to II: First, construct a graph
G’ by splitting each edge e; in p introducing a new vertex w; and insert new edges
forming a path vy, w;,..., wy, v,. Since p is an edge insertion path, the graph G’
is planar and an embedding II" for G’ can be computed in linear time [see, for
example, Hopcroft and Tarjan, 1974, Mehlhorn and Mutzel, (1996]. Replacing all
split edges in II” by original edges (thus removing the vertices wy, ..., w,; and their
adjacent edges again) results in an embedding II for G such that p is an edge
insertion path for v; and v, in G with respect to II.

In order to prove the optimality of the edge insertion path p for v, and v,
computed by the algorithm, we show that any edge insertion path for v; and v, is
at least as long as p. Clearly, it is sufficient to consider a shortest edge insertion
path for an arbitrary, fixed embedding.
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Lemma 4.3. Let ' be an arbitrary embedding of G and let p’ be a shortest edge
insertion path for v, and v, in G with respect to11'. Then, |p’| > |p| holds.

Proof. 1f the path A = u;,..., ur computed by the algorithm contains no R-node,
p is empty and |p’| > |p| = 0 obviously holds. Assume now that A contains at least
one R-node.

Let u; be an R-node in A. Denote with S; the modified skeleton of u; con-
structed in the algorithm that contains the vertices x; and x? as representatives
of v; and v,, respectively. Let G; =(V;, E;UM;) be the graph constructed in the al-
gorithm such that E; is the set of edges that results from expanding the unmarked
edges and M; denotes the set of marked edges in S;. Since p’ is a shortest edge
insertion path for the embedding IT’, the edges in p’ that are also contained in E;
form a subsequence p; = e7,...¢; of p’, and p; is an edge insertion path for x;
and x? in G; with respect to the embedding of G; induced by II". We will show
that |p?| > |p;|, where p; is the subsequence of p computed by the algorithm.

For each unmarked edge e in S;, set the costs of e to the traversing costs c(e)
of e and define the length of an edge insertion path to be the sum of the costs of
the edges in the path. All marked edges are incident to either x; or x? and will
not appear in an edge insertion path we consider. Each edge insertion path for
x; and x7 in G; induces an edge insertion path for x} and x? in S; which contains
all the skeleton edges whose expansion graphs are crossed in G;.

Let p; be the edge insertion path in S; induced by p;, and let p; be the edge
insertion path in S; induced by p;. Then

P/ =1p)1=) cle),

e€p;

since crossing an expansion graph yields at least c(e) crossings; see Lemma 4.1}
Since p; is a shortest edge insertion path for xi1 and x? in G; with respect to I1;,
p; is a shortest edge insertion path for x; and x? in S;, which implies that |p}| >
|pil=pil and thus |p;| = |p;|.

Let I ={i | u; is an R-node}. Since all E;, i € I, are pairwise disjoint, it follows

that
P12 1p1=D Ipil=1pl.

iel iel

O

Lemmalf4.2Jand Lemma[4.3|show that Algorithm OPTIMALBLOCKINSERTER cOm-
putes an optimal edge insertion path for v; and v, in G = (V, E). It remains to
prove that its running time is linear in the size of G.

The SPQR-tree  of G can be computed in time O(|V|+ |E|); see Section 3.4
A path between two arbitrary allocation nodes of v; and v, can be found by in-
specting each skeleton graph and using depth first search in the tree 7. The
shortest path A = u; ..., ux is obtained from this path by removing nodes from
the start and the end of the path until it contains exactly one allocation node of
v, and one allocation node of v,. Hence, finding path A takes time O(|V|+ |E|),
since the size of 7 including all skeleton graphs is linear in the size of G.
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The construction of the modified skeleton S;, which results from splitting at
most two edges in skeleton(u;), takes time linear in the size of skeleton(u;). Since
the total size of all skeleton graphs in 7 is linear in the size of G, the total time
for constructing Sy, ..., Sk is O(|V|+|E)).

Finally, consider graph G; = (V,, E; UM;) for 1 <i < k, where E; is the set of
edges that results from expanding the unmarked edges in S; and M, is the set of
marked edges in S;. Since |M;| <4 (and |V;| < |E;|), an arbitrary embedding of G;
is computed in time O(| E;|) (see, for example, [Mehlhorn and Mutzel,|1996]), and
the size of the extended dual graph A; is O(|E;|). Hence, a shortest path between
x} and x7 in A; can be found in time O(|E;|) using breadth first search. Since all
the sets E; are pairwise disjoint, the total time for constructing G, ..., G and for
finding py,..., px is Zle O(|E;|)= O(|E|). Thus, the following theorem holds:

Theorem 4.1. Let G = (V, E) be a biconnected planar graph and let v, and v, be
two non-adjacent vertices in V. Then, Algorithm OPTIMALBLOCKINSERTER comi-
putes an optimal edge insertion path for v, and v, in G in time O(|V|+ |E|).

4.1.3 General Graphs

Let G be a connected, planar graph and 23 its BC-tree. We say the representative
of avertex v € G in a block B is either v itself if v € B, or the first cut-vertex ¢ on
a path in 2 from B to a block B’ containing v.

The Algorithm OpTIMALINSERTER for computing an optimal edge insertion path
for a connected planar graph G and two non-adjacent vertices v; and v, is given
in Listing[4.2] The algorithm constructs the BC-tree 8 of G and considers only
the blocks on the shortest path in 98 connecting a representative B; of v; with
a representative By of v,. For each block B;, an optimal edge insertion path p;
for the representatives of v; and v, in B; is computed using Algorithm OpTIMAL-
BLOCKINSERTER (see Listing[4.1), and these paths are then concatenated. The fol-
lowing lemma shows that the resulting path p;+-:--+py is indeed an optimal edge
insertion path for v; and v, in G.

1: function OpTIMALINSERTER(graph G, vertex v;, vertex v,)
2 Compute the BC-tree 2 of G.
3: Find the shortest path By, cy,..., Bx-1, Ck-1, Bx in 9 between a represen-
4 tative B; of v, and By, of v,.
fori=1,...,kdo
let x; and y; be the representatives of v, and v, in B;.
pi = OPTIMALBLOCKINSERTER(B;, X;, ¥;)
end for

9: return p; +---+ pg
10: end function

Listing 4.2: Computes an optimal edge insertion path for a pair of non-adjacent
vertices vy, U, in a connected graph G.
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Lemma4.4. Let p,+:--+pi be the path computed by Algorithm OPTIMALINSERTER.
Then, there exists an embeddingIl of G such that p, +---+ py is an optimal edge
insertion path for v, and v, in G with respect toI1.

Proof. Let H; be the union of the blocks B; to B;. We show by induction that
there is an embedding I'; of H; such that A; := p; +---+ p; is an optimal edge
insertion path in H; for v; and y;.

i =1: In this case, H; equals B; and by Theorem there is an embedding I';
such that A; = p; is an optimal edge insertion path for x; = v; and y; in H;
with respect to I';.

i >1: Assume now that I'y,...,I';_; are already constructed such that A;_; is an
optimal edge insertion path for v; and y;_; in H;_; with respect to I';_;.

By Theorem there exists an embedding I1; of B; such that p; as con-
structed in the algorithm is an optimal edge insertion path for x; and y; in
B; with respect to II;. Since y;_; and x; denote the same vertex in G, the
embedding I'; of H; can be constructed as follows. Since A;_; is an edge
insertion path for v, and y;_;, there is face f € I';_; that contains y;_; and
either v, if A;_, is empty, or the last edge in A;_,. Analogously, there is a face
f’ €11, that contains x; and either y; if p; is empty, or the first edge in p;.
The embedding I'; is constructed by choosing f as external face of I';_; and
placing this planar embedding of H;_, into face f’ of II;. This is possible,
since B;U---U B;_; and B; have only the vertex y;_; = x; in common. Thus,
A; =pi1+---+p; is an edge insertion path for v; and y; in H; with respect to
Ti.

It remains to show the optimality of A;. Let p be an arbitrary edge insertion
path for v; and y; in H;_; with respect to some embedding I". Obviously,
p can be partitioned into two subpaths p, and pp such that pp contains
only the edges in B;. Then, pj is an edge insertion path for x; and y; in
B, with respect to the embedding of B; induced by I', and p, is an edge
insertion path for v; and y;_; in H;_; with respect to the embedding of H;_,
induced by T. Since |p;| < |ps| by Theoremand |Ai—1| <|pal by induction
hypothesis, it follows |A;| < |p]|.

Since a block shares only a single vertex with the rest of the graph, it is easy
to see that Ay is still an edge insertion path for v; and y; = v, in G with respect to
an embedding II that results from inserting the remaining blocks not contained
in By,..., By arbitrarily into I';.

The optimality of A; in G can be shown using a similar argument as in the
induction step. Let p be an arbitrary edge insertion path for v; and v, in G. The
subpath pp of p containing only the edges in Hj is an edge insertion path for v,
and y; in Hy. Thus, |p| > |pg| > |Akl. O

The BC-tree of G =(V, E) can be computed in time O(|V|+ | E|) by finding the
blocks of G; see[3.1.1} Since all blocks are pairwise edge-disjoint, the size of 2 is
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21 z8

Y
Figure 4.6: A wall with width 8.

O(|V|+|E|) and the path from B; to B, in 4 can be found in time O(|V|+|E|) us-
ing, for example, depth first search. Algorithm OpTiMALBLOCKINSERTER is called
for each block B; = (V}, E;) which takes time O(|V/| + |E;|) according to Theo-
rem|4.1] Since all blocks are pairwise edge-disjoint, Algorithm OPTIMALINSERTER
takes time O(| V| + | E|).

The algorithm presented in this section can easily be generalized to arbitrary
planar graphs. If v; and v, belong to the same connected component, simply
apply Algorithm OpTiMALINSERTER. Otherwise, the graph GU{(vy, v,)} is obviously
planar and the empty path is the optimal edge insertion path. Hence, we get the
following result.

Theorem 4.2. Let G = (V, E) be a planar graph and let v, and v, be two non-
adjacent vertices in V. Then, there exists an algorithm that computes an optimal
edge insertion path for v, and v, in G in time O(|V|+|E|).

4.1.4 Near-Planar Graphs

A non-planar graph G that can be made planar by removing a single edge, that
is, there is an edge e = (v1,1,) € G such that G — e is planar, is called a near-
planar graph. Considering such a near-planar graph G, the one-edge insertion
problem can also be stated as follows: Given a near-planar graph G and an edge
e = (v, 1») € G with G’ := G — e is planar, find a drawing of G that has the min-
imum number of crossings among all drawings of G in which every crossing in-
volves the edge e.

We show in this section, that such a drawing of G is not necessarily crossing
minimal. In particular, we give a class of graphs G/ such that a solution of the
OEIP for G/, and (v, v») results in a drawing with m crossings, whereas a crossing
minimal drawing of G,, = G/, +(v1, v2) has only two crossings.

First, we define a wall graph as follows. A wall with width k consists of the
vertices x,¥,z21,..., 2k, the edges (z;,z;4+1) for 1 <i < k, and the edges (x, z;) and
(v,z:) for 1 <i < k; see Figure[4.6| The vertices x and y are called the poles of the
wall. A wall with width > 3 is a triconnected planar graph.

For an even number m > 2, the graph G/, is constructed in the following way;
compare Figure We start with a ring of walls W,..., Wi with width m + 1,
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Figure 4.7: The graph G/ ; each shaded region represents a wall with width m + 1.
The dashed edge (u!, u/) is the edge to be inserted.

Figure 4.8: A drawing of the graph G,, with only two crossings.

where the poles of adjacent walls in the ring are identified. We denote the pole
vertices with wy,..., wg such that the poles of W] are w; and w,, and so forth. For
each wall W}, the other two vertices on the boundary are denoted with u! and u;i,
where u]’ is inside the ring and u; is on the external face; see Figure More-
over, the edges e, = (uf, ws), 2 = (ug, ws), es = (u}, ul), e, = (ul,ul) are added,
m /2 vertices are inserted by splitting edge (u., w,), m/2 vertices are inserted by
splitting edge (w4, u j), and every created split vertex is connected with vertex w,
by an edge h;, 1 < j < m. The two vertices to be connected are v, := u; and
v = uf, thatis, G, =G/ U{(uj, ud}.

By construction, G/ is triconnected and planar. In particular, G/ has only
two embeddings which are mirror-images of each other. It is easy to see that an
optimal edge insertion path for v; and v, has length m (by crossing the edges
hi,..., hy), since passing through a wall would require at least m + 1 crossings.
On the other hand, there is a drawing of G,,, with only 2 crossings as shown in Fig-
ure Here, only the two crossings e; with e; and e, with e, occur, independent
of the choice of m.
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In spite of this negative result, [Hlinény and Salazar| [2006] have shown that
an optimal solution to the one-edge insertion problem approximates the cross-
ing number of a near-planar graph G = G’ 4 (v;, v») by a factor of its maximum
degree A(G), that is, the number of crossings in an optimal solution of OEIP for
G’ and (v, v,) is at most A(G)-cr(G). This yields a constant factor approximation
for near-planar graphs with bounded degree. The approximation factor could
recently be improved to A(G)/2 by|Cabello and Mohar|[2009ab]. Hence, we con-
clude this section with the following theorem:

Theorem 4.3. Let G = G’ 4 (v1, v2) be a near-planar graph with bounded degree
A. Then the optimal one-edge insertion algorithm computes a %-approximation
of the crossing number of G in linear time.

More precisely, if oei(G’,v1,v,) is the number of crossings in the solution of
OEIP for G’ and (v,, v,), then

A
0ei(G’, vy, 1,) < 5 cr(G).

This approximation result appears to be even stronger in the light of a very
recent result by|Cabello and Mohar [2010], where they could show that the cross-
ing number problem for near-planar graphs is already NP-hard. Previously, NP-
hardness of crossing number for near-planar graphs was only known for weighted
graphs [Cabello and Mohar, 2009b].

4.2 Crossing Minimization Heuristics

[Di Battista et al., 1997] have conducted an extensive experimental study, com-
paring four general-purpose graph drawing algorithms for producing orthogonal
grid drawings with respect to aesthetic criteria like number of crossings, num-
ber of bends, edge lengths, and drawing area. Two of these algorithms were
based on the topology-shape-metrics approach applying graph planarization for
minimizing crossings, and the others were incremental algorithms focusing on
a small area and a small number of bends. They also introduced a new bench-
mark set of graphs which is now widely used in graph drawing and is commonly
referred to as the Rome graphs. The study showed that the approaches based
on the topology-shape-metrics approach were the clear winners; especially with
respect to number of crossings, they outperformed the other algorithms by far.
For example, the other two algorithms required 8 and 4 times more crossings,
respectively, for the largest graphs.

In this section, we introduce crossing minimization heuristics based on the
planarization method. Besides the standard heuristic used in the study by [Di
Battista et al.,[1997] (edge re-insertion with fixed embedding; see Section[4.2.3),
we present very effective pre- and postprocessing methods, apply the optimal
algorithm for the OEIP, and use a randomized permutation scheme for edge
re-insertion. In the next section, we show the results of a comprehensive ex-
perimental evaluation of these heuristics, where we also use the Rome graphs
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as benchmark set, as well as a new benchmark set of constructed graphs with
known crossing numbers.

4.2.1 Preprocessing

It is well known that the crossing number of a graph is equal to the sum of the
crossing numbers of its blocks, that is, we can process the blocks separately and
thus perform the actual crossing minimization step for biconnected graphs only.
If By,..., By are the blocks of G, then

k
cr(G)= Z cr(B;) .
i=1

The idea of our preprocessing is to reduce these biconnected graphs further
to a smaller core graph with the same crossing number. We introduced such a
method, called the non-planar core reduction, in Chimani and Gutwenger| [2009].
This reduction method is not only applicable to the crossing number problem,
but also to the skewness, thickness, and coarseness of a graph. The main mo-
tivation for such a preprocessing comes from exact algorithms for solving the
crossing number problem, for example using branch-and-cut. In this case, re-
ducing the number of edges in the graph allows to reduce the number of (po-
tential) variables significantly, giving hope to be able to solve larger instances. In
our experimental study, we will evaluate if such a preprocessing is worthwhile for
crossing minimization heuristics as well.

A basic observation motivating the non-planar-core reduction is the relation-
ship between a traversing path (as defined in Section and minimum s¢-
cuts. It is easy to see that a traversing path for an edge (s, t) defines an st-cut in
the following sense:

Lemma 4.5. Let G + (s, t) be a biconnected and planar graph, and let I" be an
embedding of G. If e, ..., ex is a traversing path of T" with respect to (s,t), then
there exists an st -cut (S,S) in G with E(S,S)= {ey,..., er}.

Proof. By the definition of a traversing path, we can draw a Jordan curve in a
drawing realizing I that crosses exactly the edges ey, ..., e, and divides the plane
into two regions: one region R, containing s and one region R, containing ¢. Let
S be the set of vertices in R, and S be the set of vertices in R,. Then, every edge
in E'={ey, ..., e;} connects a vertex in S with a vertex in S and there is no edge in
E\ E’ that connects a vertex in S with a vertex in S. Hence, E’ = E(S,S) and (S,S)
is an st-cut. O]

The following theorem shows that this s¢-cut is even a minimum s ¢ -cut.

Theorem 4.4. Let G =(V, E) be a graph with s,t € V such that G + (s, t) is bicon-
nected and planar. Then, the traversing costs of G with respect to (s, t) are equal to
mincut; ;(G).
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(a) Minimum sz -cut (S, S). (b) Selecting the edges h, hy, ..., hy.

Figure 4.9: Proof of Theorem

Proof. Let A be the capacity of a minimum s¢-cut in G and « the traversing costs
of G with respect to (s,¢). By Lemma[4.5, we have A < k. We have to show that
k < A. Let I be an arbitrary embedding of G’ = G + (s, ) and let I'** be the cor-
responding dual graph. Furthermore, let (S,S) be a minimum cut with s € S and
r €8S. Since G is connected and the cut (S, S) is also minimal, removing the edges
E(S,S) splits G into two connected graphs G, = (S, E;) and G, = (S, E;); see Fig-
ure (a). We can write the edges in E(S,S) as e; = (s1,11),..., e, = (s3, ;) such
that s; €S and t; € S for 1 < i < A. Moreover, there is a path from s to s; in G, and
from ¢; to t in G, forevery 1 <i < A.

We show in the following that the dual edges of (possibly a subset of) e, ..., e;,
and (s, t) form a cycle R, fi1, h,..., by, f, in I'*, where h} denotes the dual of the
edge h;. Obviously, (s, ) is one of the edges h;. This implies that removing the
edges hy,..., h; splits G into two parts which must be G and G;. Then, it follows
that k </ —1 < A and the theorem holds.

We start our construction with i; = (sy, t1). Let f, be the face right of h; and
f1 the face left of h,; compare Figure (b). Since G’ is biconnected, h, is not a
bridge and hence f, # fi. Since f; is also a cycle in G’ and the cut separates s;
and 1, there must be another edge h, = (s,, I;) in E(S,S) that is on f1. Let f> be
the face right of h,. We distinguish two cases. If f, is one of the faces f;, and f;,
then we have found a cycle in I and we are done. Otherwise, there must be an
edge h; € E(S, S) with hs # h, and hs is on f>, since f>1is a cycle. We can continue
this construction until we end up with an edge h, such that the left face of hy is
one of the faces fy,..., fr—1. The construction will terminate, since E(S,S) is an
st-cut. ]



4.2. Crossing Minimization Heuristics 91

Definition of the Non-planar Core

We consider now a biconnected and non-planar graph G = (V, E). We define a
planar 2-component in G as follows:

Definition 4.2. Let s, € V be two distinct vertices. We call an edge induced
subgraph C = G[E¢] a planar 2-component of G with contact points s and ¢ if
C+(s,t) is planar and V(C)N V'’ = {s, t}, where V' = V(G[E \ Ec]) denotes the
vertex set of the graph induced by the edges not contained in C. For brevity, we
also call C a planar st -component. Moreover, a single edge e = (s, t) is a trivial
planar st-component.

A planar st-component C is basically a subgraph that is only connected at its
contact points with the rest of the graph. The biconnectivity of G implies that
C + (s, t) is biconnected. For the definition of the non-planar core, we are only
interested in maximal planar 2-components:

Definition 4.3. Let C be a non-trivial planar 2-component of G. We call C a max-
imal planar 2-component of G, if and only if there is no planar 2-component C*
of G with C c C*.

An important property of maximal planar 2-components is that they do not
overlap each other (except for their contact points):

Lemma 4.6. All maximal planar 2-components of G are pairwise vertex and edge
disjoint, except for their contact points.

Proof. Consider two distinct maximal planar 2-components C; and C, with con-
tact points sy, t; and s, £, respectively. Let

V: (V(Cl)n V(CZ))\{SI’ I, S2, tZ}

be the common vertices between the two components, disregarding their con-
tact points, and assume that V # 0.

Since C; and C, are maximal, E; = E(C))\E(C,) and E, = E(C,)\E(C;) are
non-empty sets, that is, C, contains edges not in C; and vice versa. Since C, is a
planar 2-component, only its contact points are incident to the rest of the graph.
Hence E; cannot contain edges incident to V. Analogously, E, cannot contain
edges incident to V.

Hence, the edges in C; and C, incident to s, t; and sy, t,, respectively, are in
E(C,)NE(C,). Thus C; contains the contact points of C, and vice versa. Since they
are both planar 2-components, they are only connected to the rest of the graph
via two contact points, hence the pairs of their respective contact points have to
be identical. But then, the union C; U C, would also be a planar 2-component,
which contradicts the maximality of C; and C,.

If C; and C, are vertex disjoint, except for their contact points, they are also
edge disjoint, except for edges (s;, #;) with s; = s, and t; = £,. Then, C; UC, would
be a planar 2-component, which again contradicts the maximality of C; and C,.

O
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(a) original graph G (b) non-planar core 6

Figure 4.10: Example for the non-planar core reduction of a graph.

The main idea of the non-planar core reduction is to replace each maximal
planar st-component by a single edge (s, £). Obviously, routing an edge through
a planar 2-component in a drawing may produce more crossings than just cross-
ing a single edge. Therefore, we assign edge weights to the edges representing
a maximal planar 2-component, reflecting the number of crossings that will oc-
cur when crossings through this 2-component. Accordingly, we define the non-
planar core as follows:

Definition 4.4 (Non-planar core). The non-planar core (¢, w) of G is a graph
6 with a weight function w : E — N such that ¥ is a copy of G in which each
maximal planar s¢-component C of G is substituted by a virtual edge ec = (s, t)
with weight w(ec) = mincut; ,(C), and each non-virtual edge e has weight w(e) =
1.

Figure shows an example of a graph G and its non-planar core 6. By
Lemma4.6/above we have that the non-planar core is well-defined and unique.

Construction of the Non-planar Core

It turns out that the non-planar core of a graph G can easily be constructed using
its SPQR-tree 7. Clearly, only skeletons of R-nodes can be non-planar. If we
determine which R-nodes have a non-planar skeleton, it is easy to find planar
st-components of maximal size. Let  be a copy of 7 and denote with Q[.¥] the
tree obtained from . by removing all the Q-nodes.

Assume Q[.¥] contains a leaf @ with planar skeleton. Let u be its adjacent
tree node in Q[.] and let e, = (s, t) be the edge in skeleton of u whose pertinent
node is a. Then, we replace a (and all adjacent Q-nodes) by a single Q-node
representing a virtual edge (s, t), thereby making this Q-node the new pertinent
node of e,.
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We perform these replacements as long as Q[.¥] contains a leaf a with pla-
nar skeleton. The resulting tree . contains Q-nodes representing virtual edges
which will be the virtual edges in the non-planar core. However, we need two
further adjustments for fulfilling the maximality condition of replaced planar 2-
components: First, we inspect P-nodes in the resulting tree. If such a node is
adjacent to more than one Q-node in ., then we can merge all these edges to
a single edge, and all corresponding Q-nodes to a single Q-node. Moreover, we
have to consider S-nodes. If the skeleton of an S-node contains a path p such that
the pertinent nodes of the edges in p are all Q-nodes, we can also replace p by
a single edge (and thus replace the corresponding Q-nodes by a single Q-node).
Hence, we do this replacement for all maximal paths in skeletons of S-nodes.

Finally, we obtain the non-planar core of G from . by merging the skeleton
graphs of its tree nodes. Since we created Q-nodes in . that represent virtual
edges, the core graph contains virtual edges as well. For these edges, we still
have to compute their weights (all other edges have simply weight one), which
are simply their traversing costs and thus can be computed efficiently. Hence,
we can compute the non-planar core in linear time:

Theorem 4.5. Let G =(V, E) be a biconnected graph. Then, the non-planar core of
G and the corresponding edge weights can be computed in O(|V|+|E|) time.

Proof. See [Chimani and Gutwenger, 2009] for further details. O

Figure illustrates this reduction strategy for the original graph shown
in Figure The SPQR-tree 7 of G has two R-nodes R, and Rz with a non-
planar skeleton. The resulting reduced tree . consists of these two R-nodes,
an S-node, 5+9 Q-nodes representing real edges, and 6+1 Q-nodes representing
virtual edges (displayed in blue).

Application to the Crossing Number

Since the non-planar core is a weighted graph, we need to generalize the crossing
number problem to weighted graphs. Therefore, we count a crossing between
two edges with weights w;, and w, as w, - w, many crossings. This is equivalent
to replacing an edge with weight w by a bundle of w parallel edges. Accordingly,
we define the crossing weight of a drawing as the sum of these weighted crossings.

To prove the equivalence between the crossing number of a graph and its
non-planar core, we first need the following lemma. It allows us to restrict the
crossings in which the edges of a planar 2-component may be involved so that
we can still obtain a crossing minimal drawing of G. A similar result has been
reported by Siran| [1984]. However, as pointed out in [Chimani et al., 2007], the
proof given by Siran is not correct.

Lemma4.7. Let C =(V¢, Ec) be a planar st -component of G =(V, E). Then, there
exists a crossing minimal drawing 2* of G such that the induced drawing 9;. of
C has the following properties:
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5@ 9@
6
(a) SPQR-tree 7 (b) reduced tree .«

(f)Rs (8 R4 (h) Rs

Figure 4.11: SPQR-tree & of example graph (a) and resulting reduced tree .#; R-
nodes with non-planar skeletons are displayed in orange and Q-nodes in .
that represent virtual edges in blue; multiple Q-nodes adjacent to a common
tree node are drawn as one Q-node with given multiplicity. The skeleton graphs
of the R-nodes in 7 are shown in (c) through (h).
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Figure 4.12: Final drawing 2* of G; here, p = f1, f2, f3, fa, f5 is the shortest path in
;.

(@) 9. contains no crossings;
(b) s and t liein a common face f;, of 7.;
(c) allverticesin V' \ Vi are drawn in the region of 9* defined by f;; and

(d) thereis a set E; C Ec with |Es| = mincut; ,(C) such that any edge e € E \ Ec
may only cross through all edges of E;, or through none of E.

Proof. Let G’ = G[E \ E¢] be the graph that results from cutting C out of G. Let
% be an arbitrary, crossing minimal drawing of G, and let 9 (respectively %)
be the induced drawing of C (respectively G’). We denote with P the planarized
representation of G’ induced by %/, that is, the planar graph obtained from %’
by replacing edge crossings with dummy vertices. Let I'p be the corresponding
embedding of P and I';, the dual graph of I'p.

Let p = fi,..., fr+1 be a shortest path in I}, that connects an adjacent face of
s with an adjacent face of t. There are A = mincut; ,(C) edge disjoint paths from
s to ¢ in C. Each of these A paths crosses at least k edges of G’ in the drawing &.
Hence, there are at least A - k crossings between edges in C and edges in G’. We
denote with E, the set of primal edges of the edges on the path p. Let 2 be a
planar drawing of C in which s and ¢ lie in the same face f;;, and let E; be the
edges in a traversing path in % with respect to s and ¢. By Theorem 4.4} there is
a minimum s¢-cut (S, S) with E(S,S) = E,, and thus |E;| = A. We can combine %’
and Z;. by placing the drawing of C[S] in face f; and the drawing of C[S] in fi1,
such that all the edges in E,, cross all the edges in E;; see Figure[4.12] It is easy to
verify that the conditions (a)-(d) hold for the resulting drawing %*. O

The following theorem finally shows that it is sufficient to compute the cross-
ing number of the non-planar core.
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Theorem 4.6. Let G be a biconnected graph and let (6, w) be its non-planar core.
Then,
cr(G)=cr(€6,w).

Proof. “<” Let Y4 be a drawing of ¢ with minimum crossing weight. For each
virtual edge e = (s, t) € 6, we replace e by a planar drawing %, of the corre-
sponding planar s¢-component so that all edges crossing e in Y cross the
edges in a traversing path in 2, with respect to (s, ¢). Since w(e) is equal
to the traversing costs of 7, with respect to (s, t) by definition, replacing all
virtual edges in this way leads to a drawing of G with cr(¢, w) crossings,
and hence cr(G) < cr(€¢, w).

“>” On the other hand, let Z be a crossing minimal drawing of G. For each vir-
tual edge e = (s, t) € ¢, we modify ¥ in the following way. Let C be the pla-
nar st-component corresponding to e and let G’ be the rest of the graph.
By Lemmal4.7} we obtain another crossing minimal drawing of G if we re-
place the drawing of C with a planar drawing % of C such that all edges
of G’ that cross edges in C will cross the edges in E(S,S), where (S,S) is a
minimum s¢-cut in C. If we replace % with an edge e = (s, t) with weight
w(e)=|E(S,S)| = mincut; ,(C), we obtain a drawing with the same crossing
weight.

By replacing all virtual edges in that way, we obtain a drawing of 6 whose
crossing weight is the crossing number of G. It follows that cr(G) > cr(6, w),
and hence the theorem holds.

]

4.2.2 Planar Subgraphs

For the first step of the planarization method, we need to find a feasible solution
to the maximum planar subgraph problem, which has been shown to be NP-
hard [Liu and Geldmacher, 1979]. If the number of edges to be deleted is small,
the exact branch-and-cut algorithm suggested in [Jiinger and Mutzel, 1996] is
able to provide a provably optimal solution quite fast. However, the method is
quite complicated to understand and to implement. Moreover, if the number of
deleted edges exceeds 10, the algorithm usually needs far too long to be accept-
able for practical computation. Since we are interested in approaches for prac-
titioners, we did not include this exact method in our studies. Interested read-
ers are referred to the study by Ziegler| [2000] concerning the number of deleted
edges in the Rome library benchmark set.

A widely used standard heuristic for finding a maximal planar subgraph is to
start with the empty graph, and to iteratively try to add the edges one by one. In
every step, a planarity testing algorithm is called for the obtained graph. If the ad-
dition of an edge would lead to a non-planar graph, then the edge is disregarded;
otherwise, the edge is added permanently to the planar graph obtained so far. Af-
ter | E| iterations (planarity tests), we have obtained a maximal planar subgraph P
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of G, that s, a subgraph of G which will get non-planar as soon as any of the edges
in G—P will be added. We will denote this method as MaximaL. The standard (and
also our) implementation needs a running time of O(|E| - |V|). Theoretically, this
can be improved to nearly linear running time using incremental planarity test-
ing algorithms [for example, Di Battista and Tamassia, |19964, |La Poutré, 1994,
which apply dynamic updates of SPQR-trees (or a suitable representation of the
triconnected components of the graph).

An alternative to this method is to use the planar subgraph algorithm based
on PQ-trees as suggested in [Jayakumar et al., 1989, Jiinger et al., 1998]. Observe,
that this method cannot guarantee to derive a maximal planar subgraph. The
theoretical worst case running time is O(| V|?), but in practice it is usually much
faster.

The quality of the results can be improved by introducing random events and
calling the algorithm several times. The PQ-tree based algorithm starts by com-
puting an s f-numbering of G. Our random event was simply to choose a random
edge (s,t) € E. We studied the effects of up to 100 calls. We denote these methods
as PQ1, PQ10, PQ25, PQ50, and PQ100 for 1, 10, 25, 50, and 100 iterations.

4.2.3 Edge Re-Insertion

The edge re-insertion step is also an NP-hard optimization problem [Ziegler,
2000]. Listing[4.3| shows the general framework for the edge insertion heuristics
used in this study. The essential components and possible variations are dis-
cussed in the following.

Fixed Embedding. The standard algorithm used in practice re-inserts the edges
e, ey, ..., e iteratively starting with a fixed planar embedding IT of P, see Sec-
tion The theoretical worst case running time of our implementation for
inserting k edges is

k i—1
OO (IVI+ ) e =0k(VI+ICl),

i=1 j=1

where c; is the number of crossings introduced in step j and C = ¢, +---+ ¢y is
the number of crossings in the final drawing. In practice, the implementation
performs usually much better, since the dual graph is updated incrementally, in-
volving only those regions in which changes actually occurred. We denote this
re-insertion method as Fix.

Variable Embedding. When fixing the embedding, the quality of the resulting
drawing highly depends on the chosen embedding for P. The algorithm pre-
sented in the previous section can solve the OEIP to optimality and thus chooses
an optimal embedding for inserting each edge. Our implementation has the



98

Chapter 4. Crossing Minimization

Input: planar subgraph P=(V, Ep) of G =(V, E)
Output: planarized representation G;; of G

1: LetE\Epz{el,...,ek}

2: best: =00

3: > Randomized permutations
4: for i :=1 to nPermutations do

5: Let o be a randomly chosen permutation of {1,..., k}
6 G, =P
7: > Edge re-insertion
8: for j:=1to k do
9: Insert edge e, ;) into G,
10: end for
11: > Postprocessing
12: Determine a set R C E of edges for which postprocessing shall be applied
13: repeat
14: forallec R do
15: Remove edge e from G,
16: Insert edge e into G,
17: end for
18:  until number of crossings in G, has not decreased
19: current:= number of crossings in G,
20: if current < best then
21: G} :=Gy; best:= current
22 end if
23: end for

Listing 4.3: The edge insertion step with postprocessing and permutations.




4.2. Crossing Minimization Heuristics 99

same worst-case running time as the variant Fix. However, we did not imple-
ment an incremental update procedure for the variable embedding setting. We
denote this re-insertion method as Var.

Constrained Crossing Minimization. Obviously, re-insertion of all edges at the
same time will improve the solution. However, no practically efficient algorithm
is known. The constrained crossing minimization problem asks for the minimum
number of crossings required for inserting a set of edges F into a fixed embed-
ding. The problem has been investigated in [Mutzel and Ziegler, |1999, Ziegler,
2000]. Experiments show that it can only be solved to provable optimality if there
are less than 10 edges to be re-inserted—and even then, the running time is rela-
tively high. Therefore, we did not include this method into our experiments.

Postprocessing Strategies. After all edges have been inserted, a simple post-
processing technique tries to improve the current solution. It determines a set
of edges R which have one or more crossings and repeatedly tries to find a bet-
ter insertion path for each of them by removing an edge from G, and inserting
it again. Here, removing an edge refers to removing the edges of the path in the
planarized representation that represents an edge of the original graph and un-
doing the split operations on other (crossed) edges; hence, this remove operation
is simply the reverse operation of edge insertion.

The variant INs involves exactly those edges that have been deleted in the pla-
nar subgraph step, whereas the variants ALL and MosT involve the whole set of
edges E in the original graph G. An iteration processes either the whole set (in
variant INs and ArL) or x% of these edges (variant MosT x%) iteratively one after
the other. The procedure stops only if no improvement has been made within
one iteration. The variant MosT x% considers the edges with the most cross-
ings. After each iteration, we sort the edges in descending order according to the
number of crossings they are involved in. Then, only the first x% edges of this list
are taken for re-insertion. For the sake of completeness, the variant without any
post-processing is called NONE.

An alternative approach combines the edge insertion with the postprocess-
ing. Instead of performing the remove-reinsert strategy after all edges have been
inserted, we can perform this strategy after each edge insertion. The idea behind
this variation is to keep the number of crossings low as early as possible. For this
variant, we always apply the remove-reinsert strategy to all original edges that
are already contained in the graph. This alternative approach is denoted with
Inc. We remark, that this variant is not covered by the framework shown in List-
ing[4.3} in this case the postprocessing is performed within the for-loop for edge
re-insertion, directly after edge e,(;) was inserted.

Permutations. After a whole edge insertion step with chosen strategies for one-
edge insertion and postprocessing, we get a certain number of crossings. Our
permutation variant does nothing else but repeating the whole edge re-insertion
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process in a randomized way and keeping the best result. The random effect
exists in choosing a different ordering of the edges in E \ Ep for the initial re-
insertion step. The notation PErmi gives the number of these repetition rounds.
The parameter nPermutations in the algorithm determines the number of per-
mutation rounds.

4.3 Experimental Analysis

All algorithms have been implemented in the OGDF library [Chimani et al.,2010].
The crossing minimization framework is represented by the class Subgraph-
Planarizer, whichisaCrossingMinimizationModule in OGDE The permu-
tation scheme is integrated into the subgraph planarizer; particular implemen-
tations for the computation of the planar subgraph and for one-edge insertion
can be set as module options, OGDF’s mechanism to dynamically set and ex-
change implementations of modules with a specific functionality. We use the
PQ-based planar subgraph algorithm (PQ1, PQ10, ...) realized by OGDF’s Fast -
PlanarSubgraph and MaximalPlanarSubgraphSimple for the simple imple-
mentation of a maximal planar subgraph (MaximaL). The one-edge insertion al-
gorithms are realized by the classes FixedEmbeddingInserter (Fix) and Vari-
ableEmbeddingInserter (VAR); these classes also implement the postprocess-
ing procedures. The class NonPlanarCore computes and represents the non-
planar core preprocessing method. However, it is not yet fully integrated into the
planarization method, and we simply first decompose the graph into its blocks
before performing the crossing minimization if preprocessing is used.

Test Suite. For our experimental study, we use two benchmark sets of graphs:
The Rome graphs (as introduced in Section have already been used in the
experimental study by |Di Battista et al. [1997] for comparing graph drawing algo-
rithms.

The artificial graphs are a new collection of non-planar graphs, consisting of
special graph classes with known crossing numbers. This allows us to compare
the quality of the heuristic solutions with the actual crossing numbers. It con-
tains 1946 instances with up to 250 nodes, for which the number of edges and
the number of crossings is linearly bounded by the number of vertices

In the following, we denote with C, the cycle with n edges and with P, the
path with n edges. We distinguish four classes of graphs:

CnxXCh. For3<m<7andn=>m,
cr(C,, xCy)=(m—-2)xn [Adamsson and Richter, 2004]

The benchmark set contains 251 of these graphs with nm < 250.

G; xP,,. Various results have been published for the crossing numbers of products
of 5-vertex graphs G; with paths P,. Table[4.1|shows the results we have used. The
benchmark set contains 893 graphs with 3 < n <49.
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i G; cr(G; x P,) i G; cr(G; x P,)

2 >< 2n—1) [Klese,1991] || 13 E n—1  [Klesg, 2001
3 X n—1 @ 2001] || 14 K 2n—1) [Klesd, 2001
4 Z n—1 [l@zom 15 Iﬁ 3n—1 [Klesd 1995
5 IVI n—1 [Klest,2001] || 16 E 3n—1 [KlesE, 1999a
6 X 2n—1) [Kles&,2001] || 17 E o2n  [Klesg, 2001
7 EI n—1 [Klest,2001] || 18 @ 3n—1 [Klesg, 1995
9 X 2(n—1) @@l} 19 @ 3n—1 [I@zom
10 IEI 2n [l@ 1996] || 20 @ 4n [@E
11 K 2(n—1) q@ 2001] || 21 % 6n  [Klesc 1999b']

M

12

2(n—1) [Klesc,|1995

Table 4.1: The crossing numbers of products of 5-vertex graphs with paths used in
our benchmark set.
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G; x C,. Table shows the crossing numbers of some products of 5-vertex
graphs G; with cycles C,,. The benchmark set contains 624 graphs with 3 <n <
50.

P(m, 2),P(m, 3). This class of graphs contains generalized Petersen graphs. Exoo
et al. [1981] have shown that P(2k,?2) is planar and

cr(P(5,2)) = 2
cr(P(2k+1,2)) = 3 fork>3

Richter and Salazar [2002] have shown that

cr(P(9,3)) 2
cr(P(3k,3)) k fork>4
cr(P(3k+1,3)) k+3 fork>3

cr(P(3k+2,3)) = k+2 fork>3

Our benchmark set contains the 61 graphs P(2k 4+ 1,2) with 2 < k < 62 and the
117 graphs P(m,3) with 9 <m < 125.

System Configuration. We performed all test on a Linux SMP server machine
with the following configuration:

Operating system | Debian Linux 2.6.16

Compiler g++3.4.4

CPU 4 AMD Opteron 850 processors
2.4 GHz, 1 MB L2 Cache

Memory 32 GB RAM

Though this server machines has four CPUs, our implementations are single-
threaded, that is, each test run was assigned to a single CPU.

4.3.1 Results for the Rome Graphs

Planar Subgraphs. As a preliminary experiment, we analyzed the effect of the
different choices for the computation of a planar subgraph. We compared the
maximal planar subgraph with the results of the PQ-based algorithm with 1, 10,
25, 50, and 100 iterations.

Figure[4.13|(a) compares the size of the computed planar subgraphs in terms
of number of deleted edges (we do not include the results of PQ50, since they
were very close to PQ-100). We used the Rome graphs, grouped by their num-
ber of vertices, and give the average value for each group. The results of the
PQ-tree based heuristics improve significantly as the number of iterations in-
creases. While the number of deleted edges was about 18 on average for graphs
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i G; cr(G; x C,) i G; cr(G; x Cy,)
2 n=3
4 n=4
2 >< 9 | X 2n
8 n=5>5
2n n=>6
Klesc, (1991 Kleﬁél, 2005
1 n=3
2 n=4 7 n=3
3| A 11 R
4 n=>5 3n n>4
2n n=>6
[Klesc, [2005 [Kles¢ and Koctirovd, 2007
4| A n 12 m 2n
Kleéél, 2005 Kleéél, 2005
7 n=3
5| n 13 E
3n n=>4
4 n=3
6 n=4
6| 14 K 3n
9 n=>5
2n n=>6
Kleéél, 2005 Kleéél, 2005
4 n=3 3n n even
7|51 o[
2n n>4 3n+1 nodd
2005] 1999a]
5 n=3
8 M 10 n=4
3n n=>5

[

Ringeisen and Beineke,

1978

[

Beineke and Ringeisen,

1980

[Kle¢ et al.,[1996]

Table 4.2: The crossing numbers of products of 5-vertex graphs with cycles used in
our benchmark set.
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with 100 vertices for PQ1, it was only about 15.9 for PQ10, and went down to 14.7
for PQ100. We also observe that 10 iterations or more are sufficient to outper-
form the MaximaL algorithm, which yields on average about 16.6 deleted edges
for graphs with 100 vertices.

Obviously, it really pays off to run the PQ-tree based planar subgraph algo-
rithm many times. However, for example, the results for 50 and 100 iterations are
already very close to each other. This effect also comes from the random effect
chosen for our implementation; by choosing other randomization techniques,
this effect may occur at a higher number of iterations.

Figure (b) shows the running times of our implementations. The PQ vari-
ant requires only 0.4 milliseconds on average for graphs with 100 vertices when
using just a single iteration, increasing to about 32 milliseconds for 100 iterations.
In comparison, the MaxXiMAL variant requires about 17 milliseconds. Considering
the quality of the planar subgraphs and the fact, that the running times are quite
low compared to the expected running times for the whole crossing minimiza-
tion step, PQ100 seems to be a good choice for our further experiments.

To verify this assumption, we ran crossing minimization experiments with
the Fix and VAR variant, without any pre- or postprocessing; see Figure To
our surprise, the MaximaL algorithm yields about the same number of crossings
than PQ1. On the other hand, the better planar subgraphs obtained for higher
number of iterations with the PQ-based algorithm also lead to less crossings.
Due to the better one-edge insertion algorithm, the effect is a little bit smaller
for the Var variant. It is interesting to see that the maximality property of the
planar subgraph does not seem to have any positive influence on the crossing
minimization.

Since a better planar subgraph also means that we have to insert a fewer num-
ber of edges, we also analyzed if the better planar subgraph speeds up the edge
insertion phase. We compared the overall runtime of the crossing minimiza-
tion, applying edge insertion with postprocessing but without permutations, for
PQ1 and PQ100. While the Fix strategies were always faster with PQ1 even when
applying the ALL and INC postprocessing variant (this might change when us-
ing many permutations), we achieved a good speedup for the Var strategy. Fig-
ure shows the speedup (runtime with PQ1 divided by runtime with PQ100)
for the postprocessing variants MosT10, MosT25, ALL, and Inc. We get a speedup
greater than one when using postprocessing for 25% of the edges or more (at least
for the larger graphs). For the INc variant, we get a speedup factor of almost two
and for the ALL variant even a factor of up to three.

In the rest of this study, we will mainly use the PQ100 variant for computing
planar subgraphs.

FIX vs. VAR. Figure compares the two one-edge insertion variants Fix and
Var without pre- or postprocessing. In Figure[4.16|(a), we show the average num-
ber of crossings for PQ1 and PQ100 from Figure in a single diagram. We
observe that the influence of the planar subgraph is quite big, yielding better re-
sults for PQ100-Fix than PQ1-Var. However, using the same planar subgraph we
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get significantly better results when using the Var variant. This improvement is
shown Figure[4.16{(b), which gives the relative improvement of Var in percent (av-
erage number of crossings with Fix =100%). VAR improves on average by roughly
9.5% when using PQ100, and even 14% when using the worse planar subgraphs
obtained by PQ1.

For the instances with 100 vertices, we get 57.86 crossings on average with
PQ1-Fix. This is even better than the numbers reported in the study by Di Battista
et al. [Di Battista et al.,|1997]. The difference between their and our implementa-
tion is in the algorithm for computing the planar subgraph. They used a heuristic
based on the Hopcroft and Tarjan planarity test [Nardelli and Talamo, [1984]. In
the sequel, we call PQ1-Fix-NoNEg-PerM1 the standard method and report on the
improvement over this method.

By computing a better planar subgraph the number of crossings reduces from
57.86 for the standard method to 47.28 (about 18.3% improvement). This number
can further be reduced to 43.36 by choosing the best embedding for each inserted
edge (variant PQ100-VAR), resulting in an improvement of about 25% compared
to the standard method.

Postprocessing. Figure shows the effect of the postprocessing variants for
the Fix and VAR strategy compared to the standard method. The relative im-
provement compared to no postprocessing at all (PQ100-Fix-NoNE or PQ100-
VaR-NONE) is shown in Figure[4.18] Since the smaller graphs in the Rome library
contain only very few non-planar graphs, we restrict us to present the results for
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graphs with 40 vertices and more in the diagrams for improving readability and
clarity; especially when showing relative improvements, the plots look otherwise
unnecessarily confusing for the smallest graphs.

We observe that taking the inserted edges as candidates for postprocessing
is already much better than the NONE strategy. However, the results can be im-
proved a lot more by taking the whole set of edges into account. We observe that
already considering 25% of the edges with the most crossings gives similar re-
sults to the variant ALL which considers all edges. ALL and MosT25 improve the
number of crossings up to about 40% (about 22 crossings at 100 vertices) for Fix
compared to the standard method, and about 42% (about 23.75 crossings at 100
vertices) for VArR. Comparing the various strategies with NONE, we see that the
improvement is a bit more for Fix. Moreover, MosT25 even outperforms ALL for
Var. The reason for this could be the implementation of Most25, which sorts
the edges first by descending number of crossings, whereas ALL simply uses the
given order. The clear winner is the INc variant, showing that the higher effort
really pays off and can improve the number of crossings substantially.

Figure[4.19|shows the running times of the postprocessing variants. The pic-
tures look a bit different for Fix and VAr. For Fix, INs and MosT10 have about
the same running time, as well as ALL and MosT25. The INC variant requires—as
could be expected—more effort, but needs still only about double the time as for
the simplest variants. Altogether, all algorithms are fast, with average running
times below 0.07 seconds per graph.

For the VAR strategy, the differences are much higher, especially the Inc vari-
ant is much slower compared to the other postprocessing options. The reason
is that we do not have an incremental update procedure implemented for Var.
Such a procedure would be much more complicated than for the fixed embed-
ding case, requiring incremental updates for BC- and SPQR-trees. In particular,
we would need updates for removing edges, which is, for example, not covered
by the online planarity testing algorithm by Di Battista and Tamassia [Di Battista
and Tamassia, 1996a]. However, even only practically efficient updates could im-
prove the running times significantly. With running times below 0.3 seconds on
average, the MosT10, MosT25 and ALL variants are quite fast, and even INC with
running times below 0.7 seconds is still fast enough for practical applications re-
quiring immediate response.

Preprocessing. The purpose of applying the non-planar core reduction as pre-
processing is to reduces the size of the input graph. We found that the structure
of the Rome graphs is such that a non-planar graph always has only a single non-
planar block. Furthermore, after decomposing this block into its triconnected
components, the non-planar core is simply the skeleton of an R-node of its SPQR-
tree. However, this seems to be merely a special property of the Rome graphs.
Figure shows the number of edges in the non-planar core in percent of
the number of edges in the original graph. We give the average value as well as the
minimum and maximum for each graph group with the same number of vertices.
A minimum of 0% means that the respective graph group contains at least one
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planar graph. On average, the non-planar core contains only half as many edges
as the original graph, at least for the larger graphs.

Using the non-planar core reduction as preprocessing requires some imple-
mentation changes: Firstly, we need to decompose the graph into its blocks and
handle each block separately; secondly, we need to construct the SPQR-tree for
each block in order to obtain the non-planar core. And finally, we need to ad-
just the edge insertion algorithms so that they can handle graphs with positive
integer weights on the edges.

It turns out that these changes increase the running time of the heuristics
with fixed embedding a lot, raising to almost the runtime of the heuristics based
on variable embedding. Though the number of crossings obtained with prepro-
cessing improves by about 4-5% on average, preprocessing is not a useful option
for fixed embedding due to long running times.

On the other hand, preprocessing works very effective for the variable case,
improving the running time by roughly a factor of 1.5. Figure [4.21fa) shows the
speedup with the ALL and INC postprocessing options and 1 and 20 permutations,
respectively. The resulting numbers of crossings get also a slight improvement
(see Figure[4.21|(b)), but by far not as much as in the fixed embedding case.

Permutations. Figure shows the effect of the permutation variants for Fix
and Var. As expected, the results improve with higher permutation numbers.
However, we observe that the postprocessing effects are stronger than the PErM20
effects: the Fix-ALL-PErRM1 heuristic leads to much better results than the Fix-
NoNE-PERM20; the same holds for the VAR variants. Even Fix-MosT10-PerM1 and
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Var-MosT10-PErRM1 perform significantly better than Fix-NoNE-PErRM20 and Var-
NonEe-PErRM20, respectively. Obviously, the running times increase a lot, usually
by the factor of performed permutations. Therefore, it is reasonable to apply
more permutations only in conjunction with postprocessing methods.

An interesting question that comes up is how much improvement we can ex-
pect from permutations at all. The results shown in Figure[4.22|suggest that a few
permutations have a big effect, but higher numbers of permutations show only
small improvements. Therefore, we studied the effect of up to 200 permutations
for the graphs with 40, 60, 80, and 100 vertices; see Figures and show-
ing real crossing numbers this time. We considered the edge insertion variants
fixed and variable with postprocessing (ALL and INC) and optional preprocess-
ing. The picture looks in all cases very similar: the curves for each heuristic run
more or less in parallel, showing that the effect of permutations is very similar
for each heuristic. All curves seem to approach a minimum value, but constantly
decrease until 200 permutations.

In order to study this effect in more detail, we increased the number of per-
mutations to 500 for the graphs with 100 vertices; see Figure The num-
ber of crossings still decreases slightly, for example, for the VAr-INC heuristic, we
have 26.71 crossings at 20 permutations, 25.74 at 200 permutations, and 25.51
at 500 permutations on average. However, we do not know if this number is al-
ready close to the optimum value; we will study this in the following, where we
first compare our results with the results of an exact method and then apply our
crossing minimization heuristics to graphs with known crossing numbers.

Comparison with Exact Results. Obviously, the best way to evaluate the quality
of heuristics is to compare their results with the optimal solutions. Though not all
crossing numbers of the Rome graphs are known, many optimal or near-optimal
solutions have been reported by |Chimani [2008], obtained using exact branch-
and-cut methods. We compare with some selected results for large graphsll| In
particular, we consider the following four sets of graphs:

e Graphs with 60 vertices: All but one of the 131 graphs could be solved to
optimality.

e Graphs with 70 vertices: All but four of the 81 graphs could be solved to
optimality.

e Graphs with 73 vertices: This is the vertex set with the largest graphs that
could completely be solved to optimality; it contains 85 graphs.

e Graphs with 100 vertices: From the 141 largest graphs, 76 (54.29%) could be
solved to optimality.

For graphs that could not be solved to optimality, we used the best upper bound
obtained by the exact method. We compared with the best results we have for

!We thank Markus Chimani for providing the data.
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each graph group, that is, preprocessing with variable embedding and the post-
processing variants ALL and INC, using 200 and 500 permutations.

Figure shows the average number of crossings obtained by the various
methods. We can see that the heuristic solutions are already very close to the
exact results: For 60 vertices, the best INC variant requires 6.992 crossings on
average, only 0.069 (0.99%) crossings more than the exact method. For 70 ver-
tices, the results are almost as good with the INC variant requiring 0.198 (1.76%)
crossings more than the exact method; however, here the exact method could
not solve as many graphs as for 60 vertices. Unlike the graphs with 70 vertices,
the exact method could solve all instances at 73 vertices. Here, the INC variant
yields only 0.106 (1.14%) more crossings than the optimal solution. Hence, for
the graphs where we know (almost) all crossing numbers, the best heuristics are
only 1-2% away from the optimal values.

Since the exact method could only solve about half of the graphs with 100
vertices, two of the heuristics are even better than the results obtained with the
exact method. The INc variant with 500 permutations is 0.593 (2.27%) crossings
better than the exact method. In order to get a better idea of the optimal values,
we combined the best heuristic and exact results, which gives 6.90 crossings for
60 vertices, 11.22 for 70 vertices, and 25.27 for 100 vertices on average.

The numbers above show that the heuristic results are very good on aver-
age, but this does not state that there are not some bad solutions. Therefore,
we grouped the graphs by the difference of the number of crossings for the best
heuristic solution minus the exact solution. Figure[4.27|shows the distribution of
the graphs. The worst value was three crossings more, which occurred for only
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method.

0.71% of the graphs with 100 vertices; all other solutions are at most two crossing
worse than the exact solutions. On the other hand, we observe that some heuris-
tic results are significantly better than the exact results: for two graphs with 100
vertices we achieved even 8 crossings less, and for two other graphs with 100 ver-
tices 6 crossings less; we could even save one crossing for a graph with 70 vertices
and 3 for two graphs with 60 vertices.

As a side note, we discuss shortly the relevance of the heuristic methods for
the exact approach. Though our heuristic is used as primal heuristic in the ex-
act method, some of our results are significantly better; the reason is mainly the
increased number of permutations in our study. Since the primal heuristic is im-
portant for the exact method—the better the primal upper bound the easier it is
for the branch-and-cut approach to prove or achieve optimality—, our new re-
sults could also have a positive impact on the exact method, leading to optimal
solutions for even more graphs.

Summary. We have compiled the best heuristics in our study ranked by their
performance on the Rome graphs with 100 vertices. Table contains the av-
erage number of crossings and average running times. It is sorted by increasing
number of crossings and decreasing running time; heuristics with higher num-
ber of crossings and higher running time have been omitted. We observe a few
clear trends: The INC postprocessing variant is highly important for crossing re-
duction. As expected, the VAR strategy is required for achieving the best results
and the Fix strategy with postprocessing is useful for obtaining good results with
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rank | crossings | time[s] | EI | PRE| POST | PERM
1 25.51 VAR | NpC Inc 500
2 25.74 VAR | NpC Inc 200
3 25,94 VAR Inc 200
4 26.09 Fix | Nec Inc 500
5 26.32 Fix | Npc Inc 200
6 26.65 VAR | NpC ALL 500
7 26.71 9.387 | VAR | NpC Inc 20
8 27.14 4.681 VAR | NpC Inc 10
9 28.49 1.857 VAR | NpC ALL 20
10 28.69 0.727 Fix INC 20
11 30.43 0.490 VAR | NpC Inc 1
12 30.52 0.221 Fix ALL 20
13 32.66 0.105 VAR | NpC ALL 1
14 33.33 0.098 Fix | Nec ALL 1
15 33.96 0.067 Fix Inc 1
16 35.09 0.041 Fix ALL 1
17 35.79 0.040 Fix Most25 1
18 38.38 0.037 Fix MosT10 1
19 41.61 0.036 Fix Ins 1
20 45.47 0.034 Fix NONE 1

Table 4.3: The ranking list of the best heuristics.

short running time.

We discuss the findings of our study in more detail in Section at the end
of this chapter, giving hints for effective usage of crossing minimization heuris-
tics.

4.3.2 Results of the Artificial Graphs

In order to compare the performance of the heuristics with the optimal solu-
tions, we used our new benchmark set of artificial graphs with known crossing
numbers. Since we are mainly interested in the quality of our heuristic solutions,
we focus on the best heuristics and give the results of the standard heuristic Fix-
None-PERM1 for comparison. We used the Fix and VAar strategy with the best
postprocessing variants ALL and INc and up to 30 permutations; we do not use
preprocessing here, since the structure of these artificial graphs is such that pre-
processing is very ineffective.

Figure shows the average number of crossings achieved by the heuris-
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Figure 4.28: Average number of crossings for graphs with known crossing numbers.

tics as well as the optimal solutions, grouped by the different types of graphs
in our benchmark set. The graphs P(m,2) turn out to be easy and are already
solved optimally by the simple heuristic Fix-NoNE-PERM1. Unlike these graphs,
the P(m, 3) graphs are more difficult, showing a drastic improvement using more
advanced heuristics. However, the optimal solutions are only achieved by VAr-
Inc-PERM10 and Var-INc-PErM30. The graphs G; x C, could not completely be
solved by the heuristics, but the best heuristics are close to the optimum; VAr-
Inc-PErRM30 achieved 57.41 crossings on average compared to the optimal value
of 57.06. For the G; x P, graphs, the improvement compared to the simple heuris-
tic is significantly smaller and the gap to the optimum is a bit larger, but still close,
with 58.75 crossings for Var-INc-PErM10 compared to the optimum of 57.74. The
graphs C,, x C, are easier to solve for the heuristics: All advanced heuristics are
very close, and the Var-Inc and Fix-INc variants even achieve the optimum when
applying at least 10 permutations.

Besides the average number of crossings, we are also interested in the ques-
tion, for how many graphs the heuristic solutions are far away from the optimum.
Figure[4.29shows the distribution of graphs according to the difference to the op-
timum for the best heuristic VAr-INc-PERM30, grouped by the different types of
graphs. The P(m,2), P(m,3), and Cy, X C, graphs could all be solved optimally.
From the G; x C, graphs, 92.6% could be solved optimally and the largest differ-
ence that occurred was 12 for a single graph (graph G, x C4s with 150 crossings).
The G; x P, graphs are harder to solve, since only 73.8% could be solved opti-
mally, but 94.1% required at most two crossing more. The largest difference of
28 was achieved by graph G,; x Pyg with 316 crossings. Since the G,; x P, graphs
have a quite large crossing number of 67, this is not surprising and still a good re-
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Figure 4.29: Distribution of graphs grouped by difference between heuristic solution

of Var-Inc-PErM30 and the exact crossing number.

sult. Altogether, we found that there are no big outliers and the heuristic achieves
reliably good results.

4.3.3 Summary

We have conducted an extensive experimental study on the crossing minimiza-
tion problem for two benchmark sets of graphs. Our main conclusions are sum-
marized as follows:

(a)

(b)

(9]

(d)

(e

Postprocessing always helps. It is recommended not to restrict the post-
processing procedure to the inserted edges. Already re-inserting 25% of all
the edges helps a lot.

Permutations and random effects help, but not as much as postprocessing;
a small number of permutations, for example, 5-10, is already sufficient to
give good improvements without increasing the running time too much.

The higher running time of the incremental postprocessing variant is jus-
tified by the improvements achieved.

Itis important to start with a good planar subgraph. A better subgraph does
not only improve the number of crossings achieved by the heuristics, but
also improves the running times.

The edge re-insertion with variable embedding is still worth doing, even if
postprocessing is applied.
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(f) Preprocessing improves the running times if edge insertion with variable
embedding is used; for the fixed embedding case preprocessing is not rec-
ommended, since the running times increase too much.
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Chapter 5

Graph Embedding

Everything that can be counted does not necessarily count;
everything that counts cannot necessarily be counted.

ALBERT EINSTEIN (1879 — 1955)

In the previous chapter, we discussed how to obtain a drawing with a small num-
ber of edge crossings. The outcome of the crossing minimization procedure is a
planarized representation of the graph we want to draw, and thus a planar graph
allowing us to apply planar graph drawing algorithms. Usually, planar orthogo-
nal drawing algorithms are used as proposed by the topology-shape-metrics ap-
proach, rendering each crossing vertex in the planarized representation as a nice
crossing of a horizontal and a vertical edge segment. Such orthogonal drawing
algorithms, in general, need as input a planar embedding of the graph. For ex-
ample, the bend minimization algorithm by Tamassia|[1987] allows to produce a
bend minimal drawing of a four-planar graph (that is, a planar graph with maxi-
mum vertex degree four) for a given planar embedding. On the other hand, min-
imizing the number of bends over the set of all possible planar embeddings is al-
ready an NP-hard optimization problem, showing that the choice of the embed-
ding is essential for the quality of the resulting drawing. Of course, generaliza-
tions of Tamassia’s algorithm to planar graphs of higher degree, for example, the
well known Kandinsky algorithm [FofSmeier and Kaufmann, |1996], suffer from
the same problem. Examples that demonstrate the impact of the choice of the
planar embedding are shown in Figure[5.1]and[5.2} these examples are discussed
in more detail below.

There are two possible solutions to this problem. We could either try to solve
the general bend minimization problem, or we try to find good additional cri-
teria for the computation of the planar embedding that could lead to better or-
thogonal drawings. Though there are exact approaches to the general bend min-
imization problem for four-planar graphs by Bertolazzi et al. [2000] and Mutzel
and Weiskircher| [2002], these approaches are not suited for practical applica-
tions due to the complexity of the problem; for example, all the exact algorithms
only work well for graphs with up to 80 edges. A better and more practical al-
ternative seems to be developing efficient algorithms for computing planar em-

127
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beddings optimizing certain criteria. Several authors have studied the problem
of computing planar embeddings which are optimal with respect to some dis-
tance measures. Bienstock and Monma [1990] have suggested polynomial time
algorithms for computing planar embeddings minimizing various distance mea-
sures:

e Two faces are adjacent if they share a common vertex. Minimize the radius,
that is the maximal distance between a face and the external face.

e Two vertices are adjacent if they are the endpoints of an edge. Minimize the
width (or gauge) of the embedding, that is, the maximal distance between
a vertex and the external face cycle.

e Two vertices are adjacent if they are contained in a common face and the
external face is adjacent to all vertices contained in it. Minimize the outer-
planarity, that is, the maximal distance from a vertex to the external face.

e Two faces are adjacent if they share an edge. Minimize the depth of the
embedding, that is, the maximal distance between a face and the external
face.

In particular, they presented a O(n°logn) algorithm for minimizing the depth.
They also showed that it is NP-complete to test whether a planar graph has an
embedding with dual diameter bounded above by an input number. Recently,
Angelini et al.|[2010b] improved the runtime for minimizing the depth to O(n*).
However, these asymptotic runtime bounds indicate that these approaches are
not useful in practise. In particular, we are interested in algorithms with the same
time complexity as computing a planar embedding, that is, linear running time.
In this chapter, we propose to study two distance measures, namely the block-
nesting depth (formally defined below) and the degree of the external face; both
measures can also be combined (see Section5.3). We give linear time algorithms
based on the SPQR-tree data structure for computing planar embeddings opti-
mizing these distance measures. Experience in the graph drawing community
has already shown that planar embeddings with unnecessarily high nesting of
blocks or small external faces lead to less readable drawings, which can also be
measured in terms of bends, edge lengths, and drawing area [Batini et al., (1986,
1984, |Didimo and Liotta, (1998, [Pizzonia and Tamassial 2000, Weiskircher,[2002].
The first distance measure is the block-nesting depth of a planar embedding
introduced by Pizzonia and Tamassial [2000]] They have suggested a linear-time
algorithm for a restricted version of computing a planar embedding with mini-
mum block-nesting depth in which the embeddings of the blocks are given and
fixed. Unlike their algorithm, our new algorithm finds the planar embedding
with minimum block-nesting depth over the set of all planar embeddings with-
out any restrictions. Since—also in practice—we do not expect that blocks must

Tn their paper, the block-nesting depth is simply called depth; however, we prefer the more
meaningful term block-nesting depth for clarity.
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have a fixed embedding, the freedom of a variable embedding for each block
gives us a much better chance to avoid unfavorable nestings of blocks.

The block-nesting depth of a planar embedding (T', f) is a measure of the topo-
logical nesting of the blocks of G in (I, f). For the formal definition, we need the
notion of the extended dual BC-tree.

Definition 5.1. Let (T, f) be a planar embedding of a graph G and denote with
I'* the dual graph of I' in which all self loops have been split, that is, replaced
by a path of two edges. The extended dual BC-tree of (T, f) is a rooted tree; we
distinguish two cases for its definition:

(a) If f is a cut-vertex in I'*, then the extended dual BC-tree is defined as the
BC-tree 2 of I'* rooted at the C-node of 9 associated with f.

(b) Otherwise, all edges on the external face f belong to the same block B of
G and the extended dual BC-tree is defined as the BC-tree 93 of I'*, rooted
at anew node r (representing f) connected to the B-node of % associated
with the block of I'* containing the dual edges of B.

The splitting of self-loops in the definition above is required for handling
blocks consisting of a single edge correctly; such bridges would not be repre-
sented in the BC-tree of the dual graph since they contain no faces; however,
they are relevant when considering the nesting of blocks.

Now we are ready to introduce the formal definition of the block-nesting
depth. Given a planar embedding (T', f) of a connected and planar graph G, the
block-nesting depth of (', f) is the height of the extended dual BC-tree of (I, f).

Figure|5.1/shows an example with two planar embeddings that have different
block nesting depth; their corresponding extended dual BC-trees are shown be-
low. It has already been provided by Pizzonia and Tamassia [2000] for justifying
their approach for minimizing the block-nesting depth. Each of the two draw-
ings has bends and area optimized for its embedding. The planar embedding
in Figure 5.1|(@) has a block-nesting depth of five, while the one in Figure[5.1{(b)
only has one. Obviously, the drawing in Figure[5.1|(b) is easier to read and to un-
derstand than the one in Figure[5.1j(a), displaying the underlying structure of the
graph much cleaner.

Figure shows two drawings of the same graph realizing different planar
embeddings. Again, both drawings have the minimal number of bends with re-
spect to their planar embeddings. The drawing in Figure[5.2(b) looks much more
compact than the drawing in Figure[5.2|(a). We observe that the graph is bicon-
nected and hence the block-nesting depth of any planar embedding is simply
one. On the other hand, the external face in Figure [5.2|(b) is bordered by nine
edges and is much larger than in Figure[5.2|(a) with only three edges.

Also, it is evident that the two embeddings in Figure differ in the num-
ber of edges contained in the external face: The embedding in Figure5.1(a) has
three edges bordering the external face, while the better drawing shown in Fig-
ure[5.1|(b) has 15. This goes along with our observation that a higher number of
edges on the external face leads to improved layout quality.
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(a) block-nesting depth 5 (b) block-nesting depth 1

(© (d)

Figure 5.1: Two drawings of the same graph as shown in [Pizzonia and Tamassia,
2000] with their extended dual BC-trees shown below; both drawings have been
computed by the GDToolkit system [GDToolkit]. The block-nesting depth of the
planar embedding in (a) is five, whereas the one in (b) is only one.

|

D-O--©

(a) (b)

Figure 5.2: Two bend-minimal orthogonal drawings of a graph with different planar
embeddings.
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Hence, the second distance measure investigated in this chapter is the length
of the external face cycle, that is, the degree of the external face, in the planar em-
bedding. In the next section, we present a linear-time algorithm that computes a
planar embedding with an external face of maximum degree among all possible
planar embeddings.

The third distance measure we consider is a combination of the first two dis-
tance measures: We search for a planar embedding with an external face of max-
imum degree among all planar embeddings with minimum block-nesting depth.
We conjecture that this measure provides, in general, the best planar embeddings
among the considered distance measures in our paper, and in the literature, lead-
ing to improved planar layouts in practice.

5.1 Maximum External Face

Let G =(V, E) be a planar and connected graph without self-loops. We consider
the maximum external face problem defined as follows:

MAXIMUM EXTERNAL FACE (MEF)

Instance: | a planar and connected graph G (without self-loops)

Solution: | a planar embedding (II, fo) of G

Maximize: | the degree of the external face f,

Since every face in an embedding can be chosen as external face, we simply
need to determine a combinatorial embedding with a face of maximum degree,
which can then be set as external face. We first consider biconnected graphs and
present a linear-time algorithm for finding an embedding with maximum exter-
nal face, as well as an efficient algorithm for the restricted problem where the
external face needs to contain a predefined vertex; the latter is an important sub-
problem we need for generalizing the algorithm to connected graphs. For both
algorithms, we also assume that we have given a weight function on the vertices;
these weights are later used for modeling further blocks that are attached at a cut
vertex v. Since we can embed all these blocks into the same face adjacent to v,
we can thereby increase the degree of that face; the weight of a vertex v will tell
us by how many edges we can increase the degree of a face containing v.

In our algorithms, we restrict us to computing only the degree of a maxi-
mum face, without actually producing the planar embedding. This makes our
presentation much clearer and easier to understand. The general idea, how to
obtain the corresponding planar embedding, will be evident from the presenta-
tion; a detailed description can be found in the master thesis of Thorsten Kerkhof
[Kerkhof, |[2007].
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O v

Figure 5.3: An embedding of expansion™(e) with given vertex weights. Assuming
that v and w have weight zero, face f; has weight 9 and f, has weight 10; there-
fore edge e has component weight > 10.

(a) embedding of S (b) expanding edges in fs

Figure 5.4: A face fs in the skeleton S of an R-node (a) and the resulting face fr after
expanding all edges in fs (b).

5.1.1 Biconnected Graphs

Let B =(Vj, Eg) be a block of G with a weight function w : V3 — N, and let 75 be
the SPQR-tree of B. For each node u € 7, we will also compute an edge weight
wy(e) € N for each edge in skeleton(u). The weight of a real edge is always one;
the weights of virtual edges will be defined below. We define the weight of a face
f in an embedding of skeleton(u) to be w,(f) = Zeef wy(e)+ Zvev(f) w(v). We
will use a similar definition for faces in embeddings of B; in this case only the
weights of vertices vary and all edges have weight one. The latter definition is
also applied for embeddings of expansion graphs—again, all edges have weight
one and the vertex weights of the given weight function w are used.

Consider an edge e = (u,v) in a skeleton and let ', be an embedding of
expansion®(e) such that I, has a face f* containing e of maximum weight among
all embeddings of expansion*(e). We call such an embedding an embedding of
expansion™(e) with maximum weight and define the component weight of e to
be w(f*)—1—-w(u)— w(v); compare also Figure
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The general idea of the algorithm is as follows: Let S be a skeleton for which
we have chosen an embedding I's. In order to extend I's to an embedding I of B,
we have to choose embeddings of the graphs expansion™(e) for all edges e € S.
Each face fsinI's corresponds to a face fr-in I in which each skeleton edge e € f
is replaced by a path p, on the external face of its expansion graph,; see Figure[5.4}
We call this operation expanding face fs to face fr. Vice versa, for each face f7 in
I', we can find a face in a skeleton that can be expanded to f}. Face fr is made as
large as possible by embedding each expansion graph of an edge in f5, such that
the weight of the path p., which we define as the number of edges in p. plus the
weights of the interior vertices on p,, is the component weight of e. We get the
following Lemma:

Lemma 5.1. Let B be a planar and biconnected graph with vertex weights w :
V(B) — N and T its SPQR-tree. Then the following statements hold:

(i) Each skeleton face f can be expanded to a face f’ such that the weight of f’
is the sum of the weights of the vertices in f plus the component weights of
alledgesin f.

(ii) There exists an internal node u € 7y and an embedding ', of skeleton(u)
such that there is a face f inT', that can be expanded to a face f* of max-
imum weight. Moreover, all edges in f are expanded to expansion graphs
with maximum weights.

1: function CoMmPUTEEDGEWEIGHTS(block B, w : V(B) — N)
2 let u, be the root of 75 and v its (only) son

3: GETCOMPONENTWEIGHTS(B, w, V)

4 SETREFWEIGHTS(B, w, v, 1)

5 for each R-node, precompute the weights of all skeleton faces

6 for each P-node, precompute the two edges with largest weights
7: for each S-node, precompute the weights of a skeleton face

8: end function

Listing 5.1: Computes the weight of each skeleton edge in 7p; performs some addi-
tional precomputations required in MaximuMFAcEBLOoCk and CONSTRAINTMAX-
FACEBLOCK.

In the following we show how to compute the component weights of all skele-
ton edges efficiently; see Algorithm CoMPUTEEDGEWEIGHTS in Listing[5.1] We can
compute the component weight of all non-reference skeleton edges by a bottom-
up traversal of 75. Let e be an edge in skeleton(u) and v the pertinent node of e.
We denote with e, the reference edge of v and with W the sum of the weights of
the two poles of u. If we assume that the weights of all edges in skeleton(v) ex-
cept for e are set to their component weights, we can compute the component
weight of e by distinguishing four cases according to the type of v:

Q-node: The component weight of e is one.
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S-node: The component weight of e is the weight of an arbitrary face in skeleton(v)
minus W.

P-node: The component weight of e is the weight of the heaviest edge different
from e.s in skeleton(v).

R-node: The component weight of e is the weight of the heaviest face containing
et in skeleton(v) minus W.

This computation is realized by Algorithm GETCOMPONENTWEIGHTS in Listing|5.2]

1: function GETCOMPONENTWEIGHTS(block B, w : V(B) — N, node u)
2: let S be the skeleton of u and e, its reference edge

3: forally —veJzdo

4 wy(esy) = GETCOMPONENTWEIGHTS(B, w, V)

5

end for

6: Wy(ere) =0

7: W :=sum of the weights of the two poles of u

8: switch fype of u

9: case Q-node: return 1
10 case S-node: return weight of an arbitrary face in S minus W
11: case P-node: return weight of the heaviest edge different from e in S
12: case R-node: return weight of the heaviest face containing e;f minus

w

13: end switch

14: end function

Listing 5.2: Sets the weights of all edges in skeleton(u) except for the reference edge;
returns the weight of the skeleton edge representing the pertinent graph of u.

Once we have set the weights of all non-reference skeleton edges to their
component weights, we can compute the component weights of the reference
edges by a top-down traversal of 7. Since 75 is rooted at a Q-node, the compo-
nent weight of the reference edge of its only child is one. Consider now a node
u € 75 and let S be the skeleton of u. We assume that the weight of each edge in S
is set to its component weight. We want to compute the component weight of the
reference edge of each child v of u. We denote with es, the edge in skeleton(u)
whose pertinent node is v and distinguish three cases according to the type of u:

S-node: Let W be the sum of the weights of all vertices and edges in S. The com-
ponent weight of the reference edge of v is then W minus the weight of es,,
minus the weight of the two endpoints of eg,.

P-node: The component weight of the reference edge of v is the weight of the
heaviest edge in S different from eg,, .

R-node: Let f be the heaviest face in S containing es,. The component weight
of the reference edge of v is the weight of f minus the weight of eg, minus
the weights of the two endpoints of eg, .
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This top-down traversal is performed by Algorithm SETREFWEIGHTS shown in
Listing[5.3] The calling procedure ComPUTEEDGEWEIGHTS (see Listing [5.1) per-
forms some additional precomputations, which are used later to implement Al-
gorithm CoNSTRAINTMAXFACEBLOCK(B, ¢) (see Listing[5.5) efficiently. This algo-
rithm determines a face of maximum weight in a block B containing vertex c.

1: procedure SETREFWEIGHTS (block B, w : V(B) — N, node u, int wye)
2 let S be the skeleton of u and ey its reference edge
3 w,u(eref) = Wret
4 switch type of u
5: case S-node:
6 W :=sum of the weights of all vertices and edges in S
7 forally —»veZzdo
8 let es,, =(x,y) be the edge in S whose pertinent node is v
9: SETREFWEIGHTS(B, w, v, W —w,(es,) — w(x)— w(y))
10: end for
11: case P-node:
12: let e; be the heaviest and e, the second heaviest edge in S
13: forally —veJzdo
14: let e, be the edge in S whose pertinent node is v
15: If es, = e; then e =€
16: else e = €3
17: SETREFWEIGHTS(B, w, v, Wy(emax))
18: end for
19: case R-node:
20: Precompute the weight w,(f) of each face f in S
21: forally —veZzdo
22: let es,, =(x,y) be the edge in S whose pertinent node is v
23: let f be the heaviest face in S containing es
24: SETREFWEIGHTS(B, w, v, w,(f)— wy(es,) — w(x)— w(y))
25: end for
26: end case
27: end switch

28: end procedure

Listing 5.3: Assigns wy.r to the weight of the reference edge in skeleton(u) and recur-
sively sets the length of the reference edges in all children of u to their compo-
nent weights.

Lemma 5.2. Algorithm CompUTEEDGEWEIGHTS(B, w) takes time linear in the size
of B.

Proof. GETCOMPONENTWEIGHTS is called for each node in 75 (except for the root
node) exactly once. Each call for a node u takes—excluding the recursive calls—
time linear in the size of skeleton(u). SETREFWEIGHTS is also called for each tree
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node (except for the root) exactly once. In each call for a node u, we perform
some precomputations that require time linear in the size of skeleton(u). In the
iteration over all children of u, each step takes only constant time, excluding the
recursive call. This proves that the calls of GETCOMPONENTWEIGHTS and SETREE-
WEIGHTS in CoMPUTEEDGEWEIGHTS take time linear in the size of all skeletons.
The final precomputations can also be performed in time linear in the size of all
skeletons. Since the size of all skeletons in 75 is linear in the size of B, the lemma
follows. O

According to Lemma we need to find an embedding I';, of the skeleton
of anode py with a face f of maximum weight among all possible embeddings of
skeletons. This can be achieved by inspecting all skeletons S. If S is the skeleton
of an R-node, S has only two embeddings which are mirror images of each other.
The heaviest face we can produce is simply a heaviest face in an arbitrary embed-
ding of S. If S is the skeleton of a P-node, say a bundle of parallel edges ey, ..., e,
we can form any face consisting of two edges e; and e; with i # j. Hence, the
heaviest face we can produce consists of the two heaviest edges in S. If S is the
skeleton of an S-node, S has only a single embedding consisting of two faces with
equal weight.

1: function MaxiMmuMFaceBLock(block B, w : V(B) — N)
2 CoMPUTEEDGEWEIGHTS(B, w)
3 Wax :=0
4 forall u € 73 do
5: let S be the skeleton of u
6 switch fype of u
7 case R-node:
8 let f be the heaviest face in S
9 Wnax '= MaxX(Wmax, Wy(f))
10: case P-node:
11: let e; and e, be the two heaviest edges in S
12: W :=w,[e\] +w,[e,] + weights of the two vertices in S
13: Wmax := Max( Wmax, W)
14: case S-node:
15: let IV be the weight of a skeleton face in S
16: Wmax := Max( Wmax, W)
17: end case
18: end switch
19: end for
20: return Wy,

21: end function

Listing 5.4: Computes the weight of a heaviest face in an embedding of B.

This shows that we can find a tree node u and an embeddingI',, of its skeleton
with a face f that can be expanded to a maximum face of B; see Algorithm Max-
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iMUuMFACEBLOCK in Listing[5.4] According to Lemmal5.1} all edges in f have to be
expanded to expansion graphs with maximum weight, which can be achieved by
recursively traversing the tree nodes involved. We obtain the following theorem:

Theorem 5.1. Let B = (V, E) be a biconnected and planar graph with weights
w : Vg — N. Then, procedure MAXIMUMFACEBLOCK computes the weight of a max-
imum weight face in a planar embedding of B in time O(| V3| + |Epl).

In order to compute the weight of a maximum weight face containing a pre-
scribed vertex v, we have to consider all allocation nodes of v in 7. Procedure
CoMPUTEEDGEWEIGHTS has already precomputed the weights of all skeleton faces
in S- and R-nodes, as well as the weights of the two heaviest edges within a P-
node. Therefore, we can compute the weight of a maximum weight face contain-
ing v very efficiently; see Algorithm ConsTrRAINTMAXFACEBLOCK in Listing[5.5]

1: function CoNSTRAINTMAXFACEBLOCK(block B, w : V(B) — N, vertex v)
2 Wmax :=0
3 for all allocation nodes u of v in 7 do
4 let S be the skeleton of u
5: switch fype of u
6 case P-node:
7 let u be the vertex in S different from v
8 let e; and e, be the two heaviest edges in S
9: Wnax := MaxX(Wmax, w(u)+ wy(e)+w,(ez))
10: case R-node:
11: let f be the heaviest face in S containing v
12: Wnax := MaX(Wmax, Wu(f)—w(v))
13: case S-node:
14: let f be an arbitrary face in S
15: Wnax = MaxX(Wmax, Wu(f)— w(v))
16: end case
17: end switch
18: end for
19: return Wy

20: end function

Listing 5.5: Computes the weight of a heaviest face in B containing v, where we
ignore the weight of v itself; assumes that CoMPUTEEDGEWEIGHTS( B, w) has al-
ready been called.

Lemma 5.3. Let B = (V, Eg) be a biconnected and planar graph with weights
w : V3 — N and assume that procedure COMPUTEEDGEWEIGHTS( B, w) has already
been called. Then, procedure CONSTRAINTMAXFACEBLOCK computes the weight of
a maximum weight face in a planar embedding of B in time O(n, + m,), where
n, denotes the number of allocation nodes of v and m, denotes the total number
of skeleton edges incident to representatives of v.
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Figure 5.5: A fixed embedding I'y of By (thick edges), where the graphs G, 5,, G¢,, B,
and G, g, have been placed into face fj.

Proof. Tt is clear that it is sufficient to consider only skeletons containing v. We
assume that the SPQR-tree data structure stores the allocation nodes of each ver-
tex (if not, these can easily be computed in time linear in the size of B). Each S-
and P-case in CoNSTRAINTMAXFACEBLOCK takes only constant time, since we have
precomputed the two heaviest edges in a P-node and the size of an S-node. For
an R-node, we have precomputed the weights of the faces. We need to consider
as many faces as there are skeleton edges incident to v, altogether at most m,
faces for the complete call. Hence, the running time is O(n, + m,). O

5.1.2 Connected Graphs

Let 28 be the BC-tree of G. Consider a block B and a cut-vertex ¢ in G with c € B.
If we delete the edge connecting ¢ with B in 43, that is, the edge c — Bor B— ¢,
A is split into two connected components, where one component 93 contains
B. We denote the graph induced by the edges in all blocks contained in %85 with
GC,B .

The idea of the algorithm is as follows; compare Figure Suppose we have
fixed an embedding I'y of a block B,. In order to extend I'y to an embedding of
G, we have to find an embedding I'; 5 with ¢ on its external face for each graph
G, with ¢ € B, B # By, and place I'; p into an adjacent face of c in I'y. For a fixed
face f, in I'y, we can obviously enlarge f, as much as possible if we place all T'; 5
with ¢ € f; into f,. We denote with WUg(c) the sum of the weights of the maximum
weight faces containing c of all G, pr with ¢ € B, B’ # B. If ¢ is not a cut-vertex in
G, then Wp(c) is 0. We will use the value Wg(c) as the vertex weight of ¢ in B, and
apply the procedures developed in the previous section. The following lemma
states the crucial results on which the correctness of our algorithm is based.

Lemma5.4. (i) Let B beablock of G and define the weight of a vertex v in B as
Ug(v). If f is a face in an arbitrary embedding s of B, then there exists an
embeddingl of G with a face f, such that the degree of | equals the weight
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of f. Face f results from embedding each G, p with c € B, B’ # B, with a
maximum weight external face containing c and placing it into fp.

(i) Let f be a face in an embeddingl of G. Then, there exists a block B of G, a
weight w, for each vertex v € B with w, < Vg(v), and an embedding 'y of
B with a face f such that the degree of f equals the weight of f5.

Proof. (i) follows directly from the definition of Ws(c) and the fact that we can
place each subgraph G, p into an arbitrary face adjacent to ¢ in I'p.

Consider now (ii). Let B be an arbitrary block of G containing an edge in f.
We denote with E the set of edges contained in both B and f, and with I'p the
embedding of B induced by I'. Then, the edges in Ez must form a face f5 in
I's. The edges on f5 appear in the same cyclic order as on f, but not necessarily
consecutively. For each cut vertex c, a (possibly empty) sequence of edges from
subgraphs G, g with B’ # B appears on f; we denote the number of edges in this
sequence with w, and set w, = 0 for all other vertices in B. Obviously, w, < ¥g(v)
for all v € B and the weight of f5 (with respect to the vertex weights w,) equals
the degree of f. Hence, (ii) follows as well. O

Theorem 5.2. For each block B of G, let Wg(v) be the weight of a vertex v € B. Let
Bnax be the block having the embedding ' with a heaviest maximum weight
face fiax among all blocks. Then, we can extend 1", to a planar embedding of
G with maximum external face f. Face f results from embedding each G, g with
€ € Bhax and B’ # Bnax With a maximum weight external face containing ¢ and
placing it into fiax-

Proof. According to Lemmal5.4{i), we will find face f with the required degree in
an embedding I of G. Lemmal5.4f(ii) shows that a maximum face in G cannot be
larger than f, hence I' is an embedding of G with a face f of maximum degree.

O

Algorithm MaxiMuMFAck in Listing [5.6] shows how to compute the degree of
the external face in a planar embedding of G with a maximum external face. We
store in wp(v) the weight of vertex v in block B and set cstrLength(B, c) to the
weight of a maximum weight face of G, 5 containing ¢. Function CONSTRAINT-
MaxFacg(B, ¢) computes the weight of a maximum face in G, 3 containing ¢ and
is called for each edge ¢ — B € %, thereby computing cstrLength(B, c) for each
edge ¢ — B € . Then, function MaxiMUMFACEREC recursively traverses 98 from
top to bottom. When MaximuMFaceREC is called for a block B, the weight of
each vertex v € B is already set to Wz(v) and we can call MaximuMFAceBLOCK to
compute the weight of a maximum face in an embedding of B. For recursively
traversing 9 further, we first have to compute cstrLength( B, c) for the edge c — B
and set the weight of ¢ in each block B’ with ¢ — B’ € 4. Since Ug/(c) is the sum
of all W3(c) with B # B/, we can efficiently compute the weights by precomputing
the sum W of all U3(c). Function MaximumFACEREC finally returns the maximum
weight over all blocks and thus, by Theorem the degree of a maximum face
in an embedding of G.
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1: function MaxiMmuMFAcE(graph G)
2 Compute BC-tree 4 of G and SPQR-tree 75 for each block B € 2.
3: let B, be the root block of
4: for all v € By, do
5: wp,, (v):= >, CONSTRAINTMAXFACE(B, V)
v—BERA
6: end for
7 return MAXIMUMFACEREC( Byoot)
8: end function
9: function CoNSTRAINTMAXFACE(block B, vertex c)
10: forall v € Bdo
11: wp(v):= > CONSTRAINTMAXFACE(B’, v)
v—B'e€AB
12: end for
13: CoMPUTEEDGEWEIGHTS(B, wg)
14: cstrWeight( B, c) := CONSTRAINTMAXFACEBLOCK(B, wp, ¢)
15: return cstrWeight( B, c)
16: end function
17: function MaximuMFAceREC(block B)
18: CoMPUTEEDGEWEIGHTS(B, w;g)
19: Wnax :=MAXIMUMFACEBLOCK(B)
20: forall B—ce % do
21: cstrWWeight( B, c¢) :== CONSTRAINTMAXFACEBLOCK(B, ¢)
22: W := cstrWeigh(B,c)+ Y. cstrieighi{ B, c)
23: forallc — B’ % do e
24: wp/(c):=W — cstrWeight(B’, c)
25: Wmax := Max( Wmax, MAXIMUMFACEREC(B’))
26: end for
27: end for
28: return Wy,
29: end function

Listing 5.6: Planar embedding with maximum external face.
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Theorem 5.3. Let G = (V, E) be a planar and connected graph. Then, Algorithm
MAXIMUMFACE(G) computes a planar embedding of G with maximum external
face in time O(|V|+ |E|).

Proof. We still have to proof the linear runtime. The computation of the BC-tree
% and the SPQR-trees 73 require altogether time linear in the size of G, that
is, O(|V|+|E|). Function CoNSTRAINTMAXFACE is called for each block B (except
Bioot) €xactly once. Each call takes time linear in the size of B—excluding recur-
sive calls—, and thus altogether time O(| V| +|E|).

Function MaxiMmuMFACEREC is called for each block B = (V3, E) exactly once.
The calls to CoMPUTEEDGEWEIGHTS and MaxiMmuMFACEBLock take time O(| V3| +
|Ez|). CoNSTRAINTMAXFACEBLOCK is called for each tree arc B — ¢ in 9 and each
such call takes time O(n, + m.) by Lemma where n. denotes the number
of allocation nodes of ¢ and m, the total number of skeleton edges incident to
representatives of c. For all calls with B, this sums up to O(|Vz|+|Eg|). Therefore,
the total runtime of MaximuMFAcE is O(|V|+ | E|). O

All algorithms presented in this section can easily be generalized to graphs
with predefined non-negative edge weights, in particular to edges with weights
zero. We will use this in the following section. For ease of notation, we de-
note the corresponding algorithm for computing the edge weights with Com-
PUTEEDGEWEIGHTS.

5.2 Minimum Block-Nesting Depth

In this section, we present a linear-time algorithm for minimizing the block-
nesting depth. We define this problem formally as follows:

MINIMUM BLOCK-NESTING DEPTH EMBEDDING (MBNDE)

Instance: | aplanar and connected graph G

Solution: | aplanar embedding (11, f;) of G
Minimize: | the block-nesting depth of (II, f)

Let G = (V, E) be a planar graph. Consider a block B with a planar embed-
ding I's. An extension of I's denotes a planar embedding of G that results from
embedding all graphs G, g with ¢ € B and B’ # B such that c lies on the external
face and placing them into a face of I'p.

Let m, g be the minimum block-nesting depth of a planar embedding of G 5
with ¢ on the external face. We define further:

mg(c) := max{0}ui{m.p|ce B, B # B}
mp = max mg(c)
CcEB

Mp = {c€B|mp(c)=mp}
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(a) embedding with depth three (b) extended dual BC-tree

T
B() BZ B4
N |
fIZ /fl\ J
B B, B, B
I
Jli
B
(c) embedding with depth five (d) extended dual BC-tree

Figure 5.6: Two different extensions of an embedding I'y of a block By with their
corresponding extended dual BC-trees.

That is, mp(c) is the largest block-nesting depth that occurs if we embed all the
graphs G, p (with ¢ € B’) with minimal block-nesting depth among all embed-
dings with ¢ on their external faces. Furthermore, m g denotes the largest block-
nesting depth we need to consider when extending an embedding of B and Mg
is the set of cut vertices where this value occurs.

Then, we can easily derive the minimum block-nesting depth of an extension
of an embedding of B. If it is possible to place all the vertices in M into a com-
mon face, then the minimum block-nesting depth is m g, since the height of the
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extended dual BC-tree does not increase. Otherwise, we have a path fex — B —
f’ — B’ in the resulting extended dual BC-tree, where fe is the external face of
the resulting embedding and f” is the non-external face into which a block B’
with m. p = mp has been placed. Hence, the block-nesting depth increases by
two, that is, it is m + 2. This is also illustrated in Figure

The following lemma formulates the resulting relationship between minimiz-
ing the block-nesting depth and maximizing the external face:

Lemma 5.5. Assume we set the weight of all edges in B to 0 and the weight of a
vertexv in B to 1 if v € My and 0 otherwise. Let (I'*, f*) be a planar embedding of
B with maximum external face f*. Then, the minimum block-nesting depth of an
extension of an embedding of B is

mpg if the weight of f* =|M |

mg+2 otherwise

The problem of finding a planar embedding of a graph G, 5 with minimum
block-nesting depth such that c lies on the external face can be tackled in the
same way. Based on this result, Algorithm MiNnIMUMDEPTH shown in Listings
through[5.9| proceeds similar to algorithm MaxiMuMFAck for connected graphs.

First, the values m. s for all edges ¢ — B in the BC-tree 9 are computed by a
bottom-up traversal of 9. The weight of each vertex v # c in B is set according
to Lemmal5.5/and a maximum face in B containing c¢ is computed.

Afterwards, £ is traversed from top to bottom. When a block B = (Vj, E3)
is visited, the values m g are already computed for each cut-vertex c in G that
is contained in B. According to Lemma5.5, we set the vertex weights in B and
compute the minimum block-nesting depth of an extension of B by finding a
maximum face in B. Before we proceed with the descendants of B in the tree 93,
we have to compute the values m, g for all edges B — ¢ € 9. We distinguish two
cases:

Mg ={c,...,ci} with k >2: We compute a maximum face in block B containing
¢ using the vertex weights we have already assigned.

Mg ={c}: In this case, m, = maxX,ecy; - Mmp(v) is less than mp and we cannot
reuse the vertex weights. However, this case can occur at most once for
each block which allows us to invest (| B|) running time. We calculate
new vertex weights according to M, = {c € V3 \ {v} | mp(c) = m,} and find
a maximum face in B containing ¢ using these vertex weights.

We obtain the following theorem.

Theorem 5.4. Let G = (V, E) be a planar and connected graph. Then, Algorithm
MINIMUMDEPTH(G) computes a planar embedding of G with minimum block-
nesting depth in time O(|V|+ | E|).
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procedure MINIMUMDEPTH(graph G)
Compute BC-tree B of G and SPQR-tree 75 for each block B € A.

1:

2

3 let B,,o: be the root block of %

4 for all v € B, do

5: maxCDepth, [v]:= max. CONSTRAINTMINDEPTH(B, 1)
root v—BER

6

7

8

end for
(B, m) := MINIMUMDEPTHREC( B;oot)

: end procedure

©

: function CoNSTRAINTMINDEPTH (block B, vertex c)
10: if B is aleafin 23 then

11: cDepth[B,c] =1

12: return 1

13: end if

14: forallve B, v#cdo

15: maxCDepthg[v] = rr};axﬁ CONSTRAINTMINDEPTH(B’, 1)
v—Bes

16: end for

17: m :=max{maxCDepthy[v]|v € B,v # c}

18: M :={v € B| v # c,maxCDepthy[v] = m}
19: forall v € Bdo

1 ifveM
20: wg(v):= .
0 ifveM
21: end for
22: CoMPUTEEDGEWEIGHTS((B, w;g)
23: Wmax := CONSTRAINTMAXFACEBLOCK(B, wg, ¢)

m if Wiax =|M|
24: cDepth[B, c] .= )
m+2 otherwise
25: return cDepth[B, c]

26: end function

Listing 5.7: Planar embedding with minimum block-nesting depth.
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1: function MintMmuMDEPTHREC(block B)

2:

3:
4:

10:
11:
12:

13:

14:
15:

16:

17:
18:
19:
20:

21:

22:
23:
24:

25:

26:
27:
28:

m; = mag(maxCDepthB[v]
ve
M, :={v € B| maxCDepthgy[v] = m,}
forall v € Bdo
( ) 1 ifve M1
wp(v):=
i 0 ifveM,
end for
CoMPUTEEDGEWEIGHTSy( B, wp)
(B*,£*) := (B, MaxiMUMFACE(B), wg)
m, if 0*=|M;|
m*:=
mi+2 otherwise
forall B—ce % do
if M, # {c} then

Wmax := CONSTRAINTMAXFACEBLOCK(B, wp, )
m if wmax=|M; \ {c
cDepth{B,c] 1 o= IMi\{c}
m,+2 otherwise

else

m, = max maxCDepthg[v]
VEB,v#c

M, :={v € B| maxCDepthy[v] = m,}
if m, =0 then

cDepth[B,c] =1
else

forall v € Bdo

wy(v) ::{

end for
CoMPUTEEDGEWEIGHTSy( B, w5)
Wmax := CONSTRAINTMAXFACEBLOCK(B, w3, ¢)

m,  ifl=|M,|

my+2 otherwise

1 ifVEMQ
0 1fU¢M2

cDepth[B, c] .= {

end if
end if
> continued on next page. . .

Listing 5.8: Function MINIMUMDEPTHREC (part 1).
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29: forall c —» B’  do

30: maxCDepthy [c] := max{cDepth[B”,c] | {B",c} € B, B’ # B"}
31: (B”,m’) := MINIMUMDEPTHREC(B’)

32: if m’ < m* then (B*, m*):=(B”, m’)

33: end for

34: end for

35: return (B*, m*)

36: end function

Listing 5.9: Function MINIMUMDEPTHREC (part 2).

The following table summarizes the important variables used in Listings

through

variable purpose

maxCDepthgz[v] | Maximum of all minimum block-nesting depths of the
graphs G. 5, B’ # B with v on the external face, or 0 if v
is not a cut-vertex.

cDepth|B, c] Minimum block-nesting depth of graph G, g with ¢ on the
external face.

5.3 Minimum Block-Nesting Depth and Maximum Ex-
ternal Face

Since MaximuMFACE and MINIMUMDEPTH proceed in a similar fashion, it is pos-
sible to combine both algorithms to a new algorithm MiINDEpTHMAXFACE that
computes a planar embedding with maximum external face among all planar
embeddings with minimum block-nesting depths. This can be achieved by us-
ing a pair (d, w) as weight attribute, where the first component d refers to the
0/1 weight attribute used in MiNnitmuMDEPTH and w refers to the weight attribute
used in MaxiIMUMFACE. An edge in G has simply weight (0, 1). The linear order on
these pairs is defined lexicographically, that is,

(d,w)>(d w') <= d>d or (d=d and w > w'’)

Each time a maximum face in a block has to be computed, we first determine
a maximum face according to the linear order defined above. If the resulting
maximum face has weight (d*, w*) and d* is the number of cut-vertices we want
to place in a common face (for example, d* = |[Mj| as in Lemma [5.5), we also
have found a planar embedding with a maximum face among all planar embed-
dings with minimum block-nesting depth. Otherwise, the value d* is irrelevant,
since all extensions will have the same block-nesting depth and there might be
planar embeddings with a larger external face. Therefore, we call the procedure
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for finding a maximum face in a block again, this time respecting only the second
component of the weight attribute.

Theorem 5.5. Let G =(V, E) be a planar and connected graph. Then, Algorithm
MINDEPTHMAXFACE(G) computes a planar embedding of G with maximum exter-
nal face among all planar embeddings of G with minimum block-nesting depth
in time O(|V|+ |E|).

5.4 Experimental Analysis

Pizzonia [2005] has conducted an experimental study on the effect of minimiz-
ing the block-nesting depth with respect to well-known quality measures like
drawing area, number of bends, and total edge length. However, the study only
focuses on the algorithm by Pizzonia and Tamassial [2000] for minimizing the
block-nesting depth with fixed embeddings of blocks; it does not include the new
algorithms introduced in this chapter. On the other hand, the Diploma thesis by
Kerkhof [2007] (supervised by Petra Mutzel and Carsten Gutwenger) compares all
these algorithms as well as some further extensions; furthermore, all algorithms
are implemented in OGDF [Chimani et al.,|2010]. We present some of the results
in the followingf]

Besides the Rome graphs, the study uses a newly generated benchmark set
of graphs with many blocks, called the Block graphs. The latter benchmark set
consists of 20 groups i = 1,...,20, such that the graphs in each group i contain
(at most) i blocks. For each group, 100 graphs have been generated, where each
block is a planar graph with up to 30 vertices.

We consider 6 embedding algorithms:

e SiMpLE: the PQ-tree based planar embedding algorithm, where a largest
face is used as external face.

o MinDepTHFIXBLocks: the algorithm by|Pizzonia and Tamassial[2000].

e MaxiMUMFACE: the embedding algorithm computing an embedding with
maximum external face (see Section5.1).

e MiniMUMDEPTH: the embedding algorithm computing an embedding with
minimum block-nesting depth (see Section5.2).

e MINDEPTHMAXFACE: the combination of maximum external face and min-
imum block-nesting depth (see Section|5.3).

o MaxFACELAYERS: an extension of the maximum external face algorithm [see
Kerkhof, 2007]; inner faces are embedded such that the cycle we get after
removing the external face is again as large as possible, and so forth.

2We thank Thorsten Kerkhof for providing the data.
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Figure 5.7: Average block-nesting depth (Rome graphs).

As drawing algorithm, we used the orthogonal layout algorithm in OGDF, which
is based on a network-flow model for bend minimization combined with an edge
routing heuristic for routing edges to high-degree vertices, and a sophisticated
flow-based compaction phase.

5.4.1 The Rome Graphs

Figure[5.7|shows the average achieved block-nesting depth for the Rome graphs.
Interestingly, all algorithms obtain an average block-nesting depth of about 3 for
all graphs with 50 and more vertices. This seems to be caused by the special
structure of the Rome graphs; moreover, we cannot expect a significant influence
of minimizing the block-nesting depth for these graphs. For the smaller graphs,
MiNDEepPTHFIXBLOCKS performs much worse than MiNiIMUMDEPTH and even MAx-
IMUMFACE, caused by the requirement to fix the embeddings of blocks.

Considering the important aesthetic criterion of total edge length (Figure5.8),
we observe that maximizing the external face results in a good improvement for
smaller graphs with about 10-12% shorter edges; the effect is even better for
MaxFaceLavers. For larger graphs, the relative difference to SiMpLE decreases.
In general, MINDEPTHFIXBLOCKS performs worst, even worse than SIMPLE.

Another important criterion is the area used by the drawing; see Figure
We distinguish between the area of the drawing’s bounding box and the area used
by all inner faces. We observe, that the effect of the choice of the embedding has
a bigger effect on the area occupied by inner faces. Especially for the smaller
graphs, we achieve improvements by about 20-25% on average; obviously, maxi-
mizing the external face is the essential criterion here.
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Figure 5.8: Average relative improvement for total edge length compared to simple
embedding (Rome graphs).

5.4.2 The Block Graphs

The special structure of the Rome graphs did not really allow us to study the ef-
fect of minimizing the block-nesting depth. For the Block graphs, the average
block-nesting depth obtained by the various algorithms is much more diverse;
see Figure All algorithms perform significantly better than SimpLE; MaxI-
MUMFACE and MINDePTHFIXBLOCKS are more or less equal, with a gap of about
0.5 to the optimum MINIMUMDEPTH.

Figure shows that a large external face leads to much less bends than,
for example, just minimizing the block-nesting depth. The former algorithms
save up to 15 bends on average for the larger graphs compared to SimMPLE; the
algorithms minimizing the block-nesting depth only save up to about 4 bends,
which is more or less marginal. Looking at the average total edge lengths (Fig-
ure(5.12), we see two clear winners, namely MAXFACELAYERs and MINDEPTHMAX-
FacE, requiring about 15% less than SimpLE. It is interesting to observe that the
combination of maximizing the external face and minimizing the block-nesting
depth performs clearly better than just optimizing only one of these properties.
Again, MiINDepTHFIXBLOCKS brings up the rear, but still reaches a good improve-
ment of about 5-10%. Our findings are confirmed by the results for the area of
inner faces. MAXFACELAYERS and MINDEPTHMAXFACE are again the winners, with
a remarkable improvement of about 30%.
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5.4.3 Summary

Our experimental study has shown that the choice of the embedding can have
a considerable influence on the quality of the resulting drawing when applying
the topology-shape-metrics approach. While the larger Rome graphs seem to
have some kind of special structure diminishing the influence of the embedding
to some amount, experiments with graphs from the Block library prove that the
choice of the embedding is also important for large graphs; for the Block graphs
the relative improvement achieved by the advanced embedding algorithms stays
almost constant as the graphs get larger.

Maximizing the degree of the external face turns out to be more important if
we want to have a small number of bends, short edges, or a small area. However,
we think that a small block-nesting depth improves readability, since it reveals
the structure of the graph in a better way. Together with the observation that the
combination of a large external face and a small block-nesting depth sometimes
performs even significantly better, we recommend to use MINDEPTHMAXFACE as
embedding algorithm in the topology-shape-metrics approach; a very good al-
ternative is MAXFACELAYERS, which can also be combined with minimizing the
block-nesting depth; see [Kerkhof, 2007].
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Chapter 6

Embedding Constraints

As far as the laws of mathematics refer to reality, they are
not certain, and as far as they are certain, they do not refer
to reality.

ALBERT EINSTEIN (1879 — 1955)

In many application domains information visualization is based on graph
representations. Examples include software engineering, database modeling,
business process modeling, VLSI-design, and bioinformatics. The computation
of concise graph layouts by automatic layout systems facilitates the readabil-
ity and immediate understanding of the displayed information. However, these
layout systems need to take into account application specific as well as user-
defined layout rules in addition to the aesthetic criteria we typically try to op-
timize in graph drawing. In database diagrams, for example, links between at-
tributes should enter the tables only at the left or right side of the corresponding
attributes, the placement of reactants in chemical reactions or biological path-
ways should reflect their role within the displayed reactions, and in UML class
diagrams, generalization edges should leave a class object at the top and enter a
base class object at the bottom. Many of these layout rules impose restrictions on
the admissible embeddings for a drawing. Even more important is the possibility
to use drawing restrictions in order to express the user’s preferences and to guide
the layout phase. A general survey of constraints in graph drawing algorithms is
given by|Tamassia [1998].

In this chapter, we consider restrictions on the allowed order of incident edges
around a vertex, for example, to specify groups of edges that have to appear
consecutively around the vertex or that have a fixed clockwise order in any ad-
missible embedding. Such constraints occur, for example, in the form of side
constraints, where incident edges are assigned to the four sides of a rectangular
vertex, or port constraints where edges have prescribed attachment points at a
vertex. In particular, we introduce three types of constraints which may be arbi-
trarily nested: grouping, oriented (prescribed clockwise order), and mirror con-
straints (prescribed reversible order). We call a planar embedding that fulfills the
given set of constraints an ec-planar embedding.

155
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Furthermore, it is desirable to integrate embedding constraint into the pla-
narization approach for computing graph layouts with few crossings. The first
step can be solved by successive ec-planarity testing. Our first contribution to
embedding constraints therefore is a linear time algorithm for testing if a graph
with a set of embedding constraints is ec-planar; see Section The main chal-
lenge here is to incorporate oriented constraints, where a given clockwise order
of (groups of) incident edges needs to be satisfied. Furthermore, we characterize
all possible ec-planar embeddings using BC- and SPQR-trees, which also yields a
linear time algorithm for computing an ec-planar embedding.

The second step of the planarization approach can be tackled by repeatedly
solving the one-edge insertion problem, as introduced in Section 4.1|for the un-
constrained case. The algorithm presented there essentially computes a shortest
path ¥ between those nodes in the SPQR-tree 7 of G whose skeletons contain
v and w, respectively. The optimal insertion path is then constructed by simply
concatenating locally optimal insertion paths of the tree nodes on W. However, if
embedding constraints have to be observed, that is, restrictions on the order of
the edges around the vertices of G are given, locally optimal solutions need not
lead to globally optimal solutions and the greedy approach cannot be applied
anymore. The best local decision now depends on the decisions for other parts
of the edge insertion path. Our second contribution is thus a linear-time algo-
rithm to solve the one-edge insertion problem with embedding constraints (see
Section [6.4): Given an ec-planar graph G with an additional edge e and a set of
embedding constraints C for the graph G + e, compute an ec-planar embedding
of G together with a crossing minimal edge insertion path for e that observes C.

Even though constraint handling is an important issue because of its rele-
vance in practical applications, for example, in interactive graph drawing (see, for
example, [Bohringer and Paulisch, 1990, North, 1996, Brandes and Wagner, 1997,
Brandes et al., 2002]), there is only few previous work concerning constraints on
the admissible embeddings of a graph. Di Battista et al.|[2002] consider embed-
ding constraints that appear in database schemas, where table attributes are ar-
ranged from top to bottom within a rectangular vertex representing a table, and
links connecting attributes may attach at the left or right hand side of these at-
tributes. The integer linear programming approach in [Eiglsperger et al., 2000]
considers side constraints in the shape computation phase of orthogonal graph
drawing. Dornheim [2002] studies the problem of computing embeddings sat-
isfying topological constraints that consist of a cycle together with two sets of
edges that have to be embedded inside or outside the cycle, respectively. Buch-
heim et al.|[2006] describe how to adapt the planarization approach for directed
graphs when incoming and outgoing edges have to appear consecutively around
each vertex. Recently, Angelini et al. [2010a] presented a linear-time algorithm to
test if a given embedding of a subgraph of G can be extended to an embedding
of the entire graph G.
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(a) partitioning of edges (b) constraint tree

Figure 6.1: The hierarchical partitioning of edges imposed by an embedding con-
straint (a) and the corresponding constraint tree (b).

6.1 ec-Constraints and ec-Planarity

Let G = (V,E) be a graph. An embedding constraint specifies the admissible
clockwise order of the edges incident to a vertex in a combinatorial embedding
of G. Here, we consider the case where a vertex has at most one embedding con-
straint and either all or none of the edges incident to a vertex are subject to em-
bedding constraints.

An embedding constraint at a vertex v € V is a rooted, ordered tree T, such
that its leaves are exactly the edges incident to v. The inner nodes of T, also
called constraint-nodes or c-nodes for short, are of three types: oc-nodes (oriented
constraint-nodes), mc-nodes (mirror constraint-nodes), and gc-nodes (grouping
constraint-nodes). Since T, is an ordered tree, it imposes an order on its leaves
and thus on the edges incident to v. We consider this order as a cyclic order
and represent all admissible cyclic, clockwise orders of the edges incident to v by
defining how the order of the children of c-nodes in 7, can be changed:

e gc-node: The order of children may be arbitrarily permuted.
e mc-node: The order of children may be reversed.

e oc-node: The order of children is fixed.

Figure[6.1/shows an example for an embedding constraint. A c-node with a sin-
gle child is obviously redundant, therefore we demand that each c-node has at
least two children. While gc- and mc-nodes alone resemble the concept of PQ-
trees [Booth and Lueker, |[1976], the additional concept of oc-nodes is necessary
to model important constraints like, e.g., side constraints, and significantly com-
plicates planarity testing.

Let C be a set of embedding constraints at distinct vertices of G. A combi-
natorial embedding I" of G observes the embedding constraints in C, if for each
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embedding constraint T, € C, the cyclic clockwise order of the edges around v
in I' is admissible with respect to T,. A planar embedding observing the embed-
ding constraints in C is an ec-planar embedding with respect to C, and (G, C) is
ec-planar, if there exists an ec-planar embedding of G with respect to C.

6.2 ec-Expansion

A basic building block of the ec-planarity test is a structural transformation ap-
plied to a given graph G with embedding constraints C. For each embedding
constraint 7, at vertex v, this transformation expands v according to the struc-
ture of T,. We call the resulting graph the ec-expansion E(G, C) of G with respect
to C. The details of this transformation are given below.

6.2.1 Construction of the ec-Expansion

The ec-expansion E(G,C) of G with respect to C is constructed as follows. Let
T, € C be an embedding constraint and T, the subgraph obtained from T, by
omitting its leaves. Recall that the leaves of T, are exactly the edges incident
to v. We replace v in G by the tree T’ and connect the edges incident with v
with the parents of the corresponding leaves. This transformation introduces a
vertex in G for every c-node in T,. Each vertex u corresponding to an oc- or
mc-node is further replaced by a wheel gadget which is a wheel graph with 2d
spokes, were e,..., e, are the edges incident to u. Then, the respective wheel
gadget consists of a cycle x1,)1,...,X4,y4 of length 2d and a vertex, called hub,
incident to every vertex on the cycle; see Figure [6.2(a). The vertex u is replaced
by this wheel gadget, such that e; is connected to x; for 1 <i < d. According to
the type of the expanded c-node, we distinguish between O-hubs (oc-nodes) and
M-hubs (mc-nodes). We refer to the edges introduced during the ec-expansion
as expansion edges. Figure[6.2|b) shows the expansion of a vertex according to
the constraint tree shown in Figure (b).

The purpose of the wheel gadgets is to model the fixed order of the children
of the corresponding c-node. Since a wheel gadget is a triconnected graph, it
admits only two combinatorial embeddings that are mirror images of each other.
The order in which non-gadget edges are attached to the wheel cycle is either
the order given by the corresponding c-node, or the reverse order. Every face
adjacent to the hub is a triangle. We call these faces inner wheel gadget faces.

Lemma6.1. Let G =(V, E) be a graph with embedding constraints C. Then, its ec-
expansion E(G, C) has size O(|V|+|E|) and can be constructed in time O(|V|+|E|).

Proof. Consider an embedding constraint 7, € C. Since the leaves of T, are in
one-to-one correspondence to the edges incident to v and each c-node has at
least two children, the size of T, is linear in deg(v). We replace each oc- and mc-
node u by a wheel gadget with 4deg(u) edges. Thus, the expansion of vertex v
creates O(deg(v)) edges, and the total number of additional edges in E(G, C) is



6.2. ec-Expansion 159

(a) wheel gadget (b) vertex expansion

Figure 6.2: Expansion gadgets: (a) a wheel gadget replacing a vertex with degree 4;
(b) vertex expansion according to the constraint tree in Figure (b) (the thick
hollow vertex is the root).

bounded by ZU <y O(deg(v)) = O(|E|). Therefore, the size of the expansion graph
is O(|V|+|E|), and the expansion can obviously be computed in O(|E(G, C)|) =
O(|V]|+|E]) time. O

6.2.2 ec-Expansion and ec-Planar Embeddings

In this section we discuss the relationship between planar embeddings of the ec-
expansion E(G, C) and ec-planar embeddings of (G, C). Though the ec-expansion
serves as a tool for modeling the embedding constraints in C, a planar embed-
ding of E(G, C) needs to fulfill certain conditions in order to induce an ec-planar
embedding of G with respect to C. We call a planar embedding I' of E(G, C) ec-
planar if

(a) the external face of I does not contain a hub;

(b) every face incident to a hub is a triangle consisting solely of edges of the
corresponding wheel gadget; and

(c) each O-hub #h is oriented correctly, that is, the cyclic, clockwise order of the
edges around / in I" corresponds to the order specified by the correspond-
ing oc-node.

Let I" be an ec-planar embedding of E(G,C). We obtain an ec-planar em-
bedding of (G, C) as follows. For each vertex v with corresponding embedding
constraint in C, there is a connected subgraph G, in E(G, C) resulting from ex-
panding v. Let G, C E(G, C) be the graph induced by the vertices not contained
in G,. The conditions above assure that the planar embedding I', of G, induced
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(a) (b)

Figure 6.3: (a) a crossing required between edges of two different blocks caused by
embedding constraints; (b) the expansion using a wheel gadget merges the two
blocks into a single one (b).

by I' is such that G, lies in the external face of I',. The edges that connect G,
to G, correspond to the edges incident to v in G. Their cyclic clockwise order
around G, is admissible with respect to T,, since the wheel gadgets fix the order
of the edges specified by oc- and mc-nodes, and O-hubs are oriented correctly.
We shrink G, to a single vertex by contracting all edges in G, while preserving the
embedding, thus resulting in an admissible order of the edges around v.

If we have an ec-planar embedding of (G, C), then the edges around each ver-
tex v are ordered such that the constraints in T, are fulfilled. It is easy to see that
we can replace each such vertex v by the expansion graph corresponding to T, in
such a way that we obtain an ec-planar embedding of E(G, C). Thus, we get the
following result:

Lemma 6.2. Let G be a graph with embedding constraints C. Then, (G, C) is ec-
planar if and only if E(G, C) is ec-planar. Moreover, every ec-planar embedding of
E(G, C) induces an ec-planar embedding of (G, C).

6.3 ec-Planarity Testing

It is well-known that planarity testing can be reduced to biconnected graphs, that
is, it is sufficient to test the blocks of a graph independently. However, adding
embedding constraints complicates this task. Let G be a graph with embedding
constraints C. Consider a cut vertex ¢ in G that connects two blocks b; and b, via
the edge sets S; and S, respectively; see Figure (a). If these edge sets are sub-
ject to embedding constraints that force the edges in S; and S, to be intermixed
as in Figure[6.3|(a), then the given graph is not ec-planar even if its blocks are ec-
planar. We solve this problem by first applying the ec-expansion to the graph.
This replaces the cut vertex ¢ by a wheel gadget so that ¢ does not separate b,
and b, anymore; see Figure (b).
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By Lemma we know that it is sufficient to test the ec-expansion E(G, C)
for ec-planarity. In contrast to the graph G itself, the following lemma shows that
we can test the blocks of E(G, C) separately.

Lemma 6.3. E(G, C) is ec-planar if and only if every block of E(G, C) is ec-planar.

Proof. 1f E(G, C) is ec-planar, then there is an ec-planar embedding of E(G, C),
and this embedding implies an ec-planar embedding for each block of E(G, C).

Suppose now that each block of E(G, C) is ec-planar. Consider a wheel gadget
% in E(G, C). Since ¥ is triconnected, ¥ is completely contained in a single block
B of E(G, C). For each edge (u, v) € ¢4, the pair {u, v} is not a separation pair in B
by construction, hence every inner wheel face of ¥ is also a face in every planar
embedding of B. Moreover, the hub of ¥ is not a cut vertex of E(G, C), since all
its incident edges are in B.

We construct an ec-planar embedding of E(G, C) as follows. We start with an
arbitrary block B of E(G, C). Let Il be an ec-planar embedding of B. In particular,
the external face of IT is not an inner wheel face of a wheel gadget. We add the
remaining blocks successively to I1. Let B’ be another block of E(G, C) that shares
a vertex ¢ with B, and let IT' be an ec-embedding of B’. We pick faces f €1l and
f’ €I’ that are adjacent to ¢ and not inner wheel faces of a wheel gadget. This
is possible, since the only vertices adjacent solely to inner wheel faces are the O-
and M-hubs. Then, we insert IT’ with f” as external face into the face f of I1. This
results in an ec-planar embedding of BU B’. We can add the remaining blocks (if
any) in the same way, resulting in an ec-planar embedding of E(G, C). O

If we can characterize all ec-planar embeddings of the blocks of E(G, C), the
construction in the proof of Lemma[6.3]also shows us how to enumerate all ec-
planar embeddings of E(G, C) by traversing its BC-tree. In the following, we de-
vise such a characterization. Let B be a block of E(G, C) and 7 its SPQR-tree.

Observation 6.1. Every wheel gadget % is completely contained within the skele-
ton of an R-node. In particular, the hub of 9 occurs only in the skeleton of a single
R-node.

Proof. ¥ is triconnected, and for each edge (u,v) € ¥, the pair {u, v} is not a
separation pair in B by construction. Therefore, all edges of 4 occur in the same
skeleton graph, which must be the skeleton of an R-node u. The hub h of ¥
is only incident to edges of ¢ and no other edge of B, hence h occurs only in
skeleton(u). O

If B is planar, then the skeleton of an R-node is a triconnected planar graph,
thus having exactly two planar embeddings which are mirror images of each
other. We call two O-hubs contained in the same skeleton S conflicting if none
of the two planar embeddings of S orients both O-hubs correctly. The following
theorem gives us an easy to check condition for ec-planarity and characterizes
all possible ec-planar embeddings:
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function ISEcPLANAR(Graph G, Constraints C)
Construct ec-expansion E of (G, C).

if E is not planar then return false

1:

2

3

4 for each block B of E do

5: Construct SPQR-tree 7 of B.
6 for each R-node u €7 do

7 if skeleton(u) contains two conflicting O-hubs then
8 return false

9: end if

10: end for

11: end for

12: return true
13: end function

Listing 6.1: Ec-planarity testing.

Theorem 6.1. Let G be a graph with embedding constraints C. Let B be a block of
E(G,C) and 7 its SPQR-tree. Then, the following holds:

(@) B isec-planar if and only if B is planar and no skeleton of an R-node of 7
contains conflicting O-hubs.

(b) If B is ec-planar, then the embeddings of the skeletons of 7 induce an ec-
planar embedding of B if and only if each O-hub in the skeleton of an R-
node is oriented correctly.

Proof. 1f B admits an ec-planar embedding, then this embedding induces em-
beddings of the skeletons of 7 such that every O-hub in the skeleton of an R-
node is oriented correctly. In particular, no R-node skeleton contains conflicting
O-hubs.

Suppose now that B is planar and no R-node skeleton contains conflicting
O-hubs. For each R-node skeleton containing at least one O-hub, we can chose
planar embeddings such that all O-hubs are oriented correctly within the skele-
tons. We have to show that the embeddings of the skeletons induce an ec-planar
embedding of B, even if we chose arbitrary embeddings for the remaining skele-
tons. This holds, since every such embedding IT has the property that each O-hub
is oriented correctly because wheel gadgets are completely contained within R-
node skeletons by Observation|[6.1} and inner wheel faces are preserved. We can
pick any face of II as external face which is not an inner wheel face (such a face
always exists) and obtain an ec-planar embedding of B. O

Algorithm IsEcPLANAR depicted in Listing [6.1] applies Theorem [6.1] and de-
vises a linear time ec-planarity test, which can easily be extended so that it com-
putes an ec-planar embedding as well.

Theorem 6.2. Let G = (V, E) be a graph with embedding constraints C. Then,
Algorithm ISEcCPLANAR fests (G, C) for ec-planarity in time O(|V|+ |E|). Moreover,
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if (G, C) is ec-planar, an ec-planar embedding of (G, C) can also be computed in
time O(|V|+|E|).

Proof. By Lemma and it is sufficient to test every block of E(G, C) for
ec-planarity. Hence, the correctness of Algorithm ISEcPLANAR follows from The-
orem[6.1}

Constructing the ec-expansion (Lemmal6.1) and testing planarity can be done
in linear time. For each block B of E(G, C), we construct its SPQR-tree, which
requires linear time in the size of B; see Section The check for conflicting
O-hubs is easy to implement: For each R-node skeleton S, we compute a planar
embedding of S. If this embedding contains both correctly as well as not cor-
rectly oriented O-hubs, then there is a conflict, otherwise not. Since the total
size of skeleton graphs is linear in the size of B and a planar embedding can be
found in linear time, we need linear running time for each block. Hence, the total
running time is linear in the size of E(G, C) which is O(|V|+|E|) by Lemmal[6.1]

In order to find an ec-planar embedding of G, we just have to compute em-
beddings of the skeleton graphs for each block as described in Theorem[6.1]and
combine the embeddings as described in the proof of Lemma|6.3 O

6.4 ec-Edge Insertion

6.4.1 ec-Edge Insertion Paths and ec-Traversing Costs

We first generalize the terms insertion path and traversing costs introduced in
Section Intuitively, the edges in an insertion path are the edges we need to
cross when inserting an edge (x, y) into an embedding. Let G +(x,y) be a graph
with embedding constraints C. An ec-edge insertion pathfor (x, y) in an ec-planar
embedding IT of G is a sequence of edges e;,..., e, of G satisfying the following
two conditions:

1. There s a face f, €Il with x, e, € f,, aface f, €I with e,y € f,, and faces
fl'EHWith e,-,eiﬂef,- for1<i<k.

2. The edge order around x and y is admissible with respect to C if (x,y)
leaves x via face f, and enters y via face f,.

Finding a shortest ec-insertion path in a fixed embedding I1 is easy: We only need
to identify the set of faces F, incident to x where the insertion path may start, and
F, incident to y where it may end, and then find a shortest path in the dual graph
of IT connecting a face in F, with a face in F,.

We are interested in the shortest possible ec-insertion path among all ec-
planar embeddings of G, which we also call an optimal ec-insertion pathin G. In
particular, we need to identify the required ec-planar embedding of G. In order
to represent all ec-planar embeddings of G, we apply Lemma6.2]and use its ec-
expansion instead. More precisely, we use the subgraph K = E(G +(x,y),C)\ e,
where e = (v, w) is the edge of E(G + (x,y),C) connecting the expansion of x
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with the expansion of y. An ec-insertion path in an ec-planar embedding of K is
defined as before with the only difference that we replace the second condition
with

2'. ey,..., e, contains no expansion edge of K.

It is easy to see that we can also use this definition for a subgraph B of K and two
distinct vertices of B that are not hubs.

We adapt the notion of traversing costs defined to ec-planarity. Let e be a
skeleton edge, and let IT be an arbitrary ec-embedding of the graph expansion™(e)
with dual graph IT*, in which all edges corresponding to gadget edges have length
oo and the other edges have length 1. Let f; and f, be the two faces in I separated
by e. We denote with P(IT*, e) the length of the shortest path in IT* that connects
f1 and f> and does not use the dual edge of e. Hence, we have P(IT*, e) € NU {oo}.

The following lemma follows analogously to Lemmal4.1}

Lemma 6.4. Let u be a node in 7 and e an edge in skeleton(u). Then, P(IT*, e) is
independent of the ec-embedding1l of expansion™(e).

Proof. Let m be the number of edges in G, = expansion*(e) and G/ be the graph
obtained from G, by replacing each gadget edge with m + 1 parallel edges. Then,
each embedding IT of G, corresponds to an embedding IT" of G/, and P(IT*, e)
is oo if and only if the corresponding path in IT’ is longer than m. Lemma 4.1
shows that for the general case, that is, without embedding constraints, P(IT*, e)
is independent of the embedding I1. Applying this lemma and observing that the
ec-embeddings of G, are a non-empty subset of the embeddings of G, yields the
lemma. O]

Thus, we define the ec-traversing costs c(e) of a skeleton edge e as P(IT*, e) for
an arbitrary ec-embedding I1 of expansion™(e). We formally define the one-edge
insertion problem with embedding constraints as follows:

ONE-EDGE INSERTION PROBLEM WITH EMBEDDING CONSTRAINTS

Instance: | an ec-planar graph G = (V, E), two distinct vertices
x,y €V, aset of embedding constraints C for G+(x,y)

Solution: | an ec-planar embedding IT of (G, C) and an ec-edge in-
sertion path p for (x,y)

Minimize: | the length of p

6.4.2 The Algorithm for Biconnected Graphs

The hard part is to find an ec-insertion path in a block B of K. Our task is to
compute an optimal ec-insertion path between two nodes v, w of B. Algorithm
OpTIMALECBLOCKINSERTER in Listing[6.2]and [6.3]solves this problem. In this algo-
rithms, we use the notation min; , A which returns a tuple in the set A of n-tuples
whose i-th component is minimal among all tuples in A.
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OprTiIMALECBLOCKINSERTER is called with a block B of an ec-planar ec-expan-
sion and two distinct vertices v and w of B. Since we assume that B contains all
gadget edges, we do not need to pass further constraint information for the edge
(v, w). In particular, using any insertion path in any ec-planar embedding of B
that connects v and w and does not cross a gadget edge yields an ec-embedded
planarization of BU(v, w). Hence, we look for an ec-embedding of B that allows
the insertion of the edge (v, w) with the minimum number of crossings.

First, we compute the SPQR-tree 7 of B and embed the skeletons such that
they imply an ec-embedding of B, that is, the R-node skeletons are embedded
correctly. Then, the shortest path Y := u;,..., ux between an allocation node yu,
of v and uy of w is identified. In order to achieve a consistent orientation, we
root 7 such that T is a descending path in the tree, that is, y; is the parent of
ui—1 for i =2,..., k. Note that the rooting of the SPQR-tree implies a direction
of the skeleton edges: the edges in a skeleton with reference edge e, = (s, t) are
directed such that the skeleton is a planar s¢-graph; see, for example, [Di Battista
and Tamassia, |1996a]. This direction is necessary in order to identify the left and
the right face of an edge.

The algorithm traverses the path T from u; to ux—; and iteratively computes
the lengths of the shortest ec-insertion paths that start from v and leave the
pertinent graph P; of u; to the left or to the right, respectively, where all ec-
embeddings of P; are considered. Here, left and right refer to the direction of
the reference edge of u;. These lengths are maintained in the variables A, and
Ar. Finally, when node uy is considered, this information is used to determine a
shortest insertion path ending at w.

For each node yu;, the following information is computed:

o ¢/ (respectively ¢ !) indicates if the shortest ec-insertion path leaving P, to
the left (right) uses the shortest ec-insertion path that leaves P,_; to the left
(in this case the value is ¢) or to the right (the value is r).

e A] (respectively A!) is the subpath that is appended to the path leaving P;_;
when leaving P; to the left (right).

These values are solely used for the purpose of creating the optimal ec-insertion
path at the end of the function. If s € {/, r} denotes a side, we denote with § the
other side, that is, £ = r and vice versa.

The body of the for-loop starts by expanding all edges of the skeleton S; of u;
except for edges representing v or w. The resulting graphis called G;. If 1 <i < k,
then G; will contain two virtual edges e, (representing v) and e,, (representing
w). Note that we obtain P; (plus reference edge) by replacing e, with P;_;.

We distinguish according to the type of u;. If u; is a P-node, then the optimal
ec-insertion path leaving P;_; to the left (right) is also an optimal ec-insertion
path leaving P; to the left (right); we just need to permute the parallel edges in
S; such that e, is the leftmost (rightmost) edge. Otherwise, we have four pos-
sibilities for extending an ec-insertion path leaving P,. Such a path may start
in a face left or right of e,, and may end in a face left or right of e¢,,. In ad-
dition, we have to consider two special cases: if i = 1 then G; contains v and
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function OpTIMALECBLOCKINSERTER(Block B of K, vertex v, vertex w)

Construct SPQR-tree 7 of B such that the embeddings of the
skeletons imply a feasible embedding of B.

Find the shortest path u,..., ux in 7 between an allocation node

u1 of v and uy of w.
Root 7 such that u; becomes the parent of u_; (if k > 1).

A=A, =0 > length of shortest insertion path leaving to the left/right

fori=1,...,kdo
let S; = skeleton(u;)

let G; be the graph obtained from S; by replacing each edge not repre-
senting v or w with its expansion graph, and let II; be the embedding
of G; induced by the embeddings of the skeletons of 7.

> ¢ ll ,» indicates which insertion path of y;; is chosen.
> A}, denotes the subpath within S; when leaving left/right.

if u; is a P-node then

(@, A):=(L,€); (¢}, Al):=(r,€) > no crossings required
else > S- or R-node
if i =1 then
L, := R, := the set of adjacent faces of the copy of v in S;
else

let e, be the representative of v in §;
L, :={theleft face of ¢,}
R, :={theright face of e,}

end if
if i = k then

L, := R, := the set of adjacent faces of the copy of w in S;
else

let e, be the representative of w in S;
L, :={ the left face of ¢,,}
R,, :={ theright face of e, }

end if

> Compute shortest ec-insertion paths (from 1/r to 1/r) within G;.
> Note: pyr = py and p,, = pr ifi € {1, k}.

Per = SHORTESTECINSPATH(IT;, Ly, Ly,)

Pee = SHORTESTECINSPATH(IT;, Ly, Ry,)

Prr := SHORTESTECINSPATH(II;, R, L))

Pre := SHORTESTECINSPATH(IT;, R,), Ry)

> continued on next page. . .

Listing 6.2: Computation of an optimal ec-insertion path (biconnected case).
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> Collect possible solutions.

Ae:={(Ae+1pecl €, pee), (Ar +1prel, 1 pro) }

A= {(AZ + |p€r|’£» pﬂr)’ (Ar + |prr|’ r, prr)}

if u; is an R-node that can be mirrored then
A=A U A+ prel, 4, 5Dy (Ar + | perl 1Py ) 3
Ar =N Ui (Ae+prd 4 p7y), (Ar +peel 1 py) }

end if

> Pick best solution.

(A, ), A}):=min; 3 A,

(Ar, @l Al):=min; 3 A,

end if
end for

> Build final ec-insertion path. Note: A, = A, always holds here!

Si =/ > Start with empty path.

for i := k downto 1 do > Collect path backward.
pi = A;'i; Si_1:= ¢;’i

end for

return p; +---+ pi
end function

Listing 6.3: Function OpTIMALECBLOCKINSERTER (part 2).

the ec-insertion path may start in any face adjacent to v; if i = k then G; con-
tains w and the ec-insertion path may end in any face adjacent to w. We com-
pute the (at most) four possible shortest ec-insertion paths using the function
SHORTESTECINSPATH(II, F;, F;). Here II is an ec-embedding of an ec-expansion,
F; are the faces where the insertion path may start, and F; are the faces where
it may end. The ec-insertion path is found using a breadth-first search (BFS) in
the dual graph of I1, where edges corresponding to gadget edges are removed
(which means that it is forbidden to cross their primal counterparts). We call
these shortest ec-insertion paths py, per, pre, prr, Where py, stands for the path
starting in a face in L, and ending in a face in R,, and so on. We have two choices
for a shortest ec-insertion path leaving P; to the left if we consider only the given
embedding of the skeleton of u;:

e We leave P,_; to the left (or start at v if i = 1) and end in a face in R,, (that
is, we enter e,, from right). This path has length A, + |p|.

e We leave P;_; to the right (or start at v if i = 1) and end in a face in R, (that
is, we enter e,, from left). This path has length A, + |p|.

For the shortest ec-insertion path leaving P; to the right, we have two similar
cases. Further choices are possible if u; is an R-node that can be mirrored. We
could mirror the embedding of S;, expand the skeleton edges as before such that
we obtain an embedding I1;, and compute the four paths in I1; again. Notice that
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I1; is not simply the mirror image of II;. However, this is not necessary. We ob-
serve that, for example, the path p, is obtained from p,, by reversing the subse-
quences of edges that have been created by expanding a common skeleton edge
of S;. We call this path p?* . A similar argumentation holds for p;, p,¢, p,r. It fol-
lows that we have at most four possible choices for leaving P; to the left and to
the right, respectively. Among all possible choices, we pick the shortest one.

After processing all nodes yu;, it is easy to reconstruct the best ec-insertion
path from v to w using ¢;,, and A}, . Notice that A, = A, holds at the end, since
Lk =Rk,

6.4.3 Correctness and Optimality

Lemma 6.5. There exists an ec-embeddingIl of B such that p, +---+ py. is an ec-
insertion path for v and w in B with respect to11.

Proof. Consider the path Y = u,, ..., u; computed by the algorithm. By construc-
tion of T, the skeleton of u; contains v, the skeleton of u; contains w, and, for
each j = 2,...,k — 1, the skeleton of u; contains neither v nor w. Moreover, T
does not contain a Q-node.

First, we prove the lemma for the case where Y consists of a single node u;.
In this case, the skeleton of u; contains both v and w. We distinguish two cases
according to the type of u;:

(@) up is a P-node. Let I1 be an arbitrary ec-embedding of B. Since v and w
share a common face in I1, the empty path returned by the algorithm is an
ec-insertion path for v and w in B with respect to IT; see Figure[6.4/(a).

(b) u; is an S- or an R-node. In this case the graph G, constructed by the
algorithm is the original block B, since all skeleton edges are expanded.
Moreover, I1; is an ec-embedding of B, and p,, = py and p,, = p,¢ are ec-
insertion paths in B with respect to I1;. We do not need to consider the case
where the embedding of the skeleton can be mirrored, since this will not
yield a shorter path. Hence, p, is either p,, or p,, and thus an ec-insertion
path in B with respect to II;.

Assume now that k > 1. For i = 1,..., k, we denote with H; the pertinent
graph of u;, with r; the reference edge of u; in H;, and, for 1 < i, with e; the
edge in skeleton(u;) whose pertinent node is u;—;. Recall that s; € {/,r} is the
side of H; where the computed insertion path shall leave. We show by induction
over i that, for 1 < i < k, there is an embedding I'; of H; such that p; +---+
p; is an ec-insertion path leaving H; at side s;. The embeddings I'y,...,T"x_; are
iteratively constructed during the proof. For our convenience, we denote with I';
the embedding of H; — r; induced by I';.

i = 1. Consider the different types for node u;:

(@) u, is a P-node. This case does not apply, since u, is not an allocation
node of v.
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Figure 6.4: Proof of Lemma k =1and yu, is aP-node (a), and u; is a P-node (b).

(b)

U1 is an S- or an R-node. In this case, G; = Hj, and p; is a path leaving
either I, or the mirror image of II; to side s;. Hence, we set I'; to II;
or its mirror image, respectively.

1 <i < k. We distinguish again between the types of u;.

(@

(b)

u; is a P-node. In this case, p; = €, that is, the empty path, since no
further edges need to be crossed. The embedding I'; is obtained as
follows. If s; = ¢, we permute the edges in skeleton(u;) such that e;
is to the right of r;; otherwise, we permute the edges such that e; is
to the left of r;. Then, we replace e; by I';_,, and the remaining edges
e # r; in skeleton(u;) by an arbitrary embedding of expansion(e); see

Figure[6.4|(b).

u; is an S- or an R-node. In this case, p; is either p;,_, or ps,_5; the
latter case corresponds to mirroring the embedding of skeleton(u;)
before.

We first restrict us to the case in which p; is set to py, s, that is, an
ec-insertion path in the embedding I1; that starts in a face at side s;_;
of e; and ends in a face at side §; of edge r;. We obtain I'; by replacing
e; byI'; inlIl;; see Figure Since the ec-insertion path p; +---4+p;_;
leavesI'; to the side s;,_;, p) +---+p; is an ec-insertion path leaving I';
to the side s;.

Finally, assume that p; = ps,_,5,. Let I[I; be the embedding that we
obtain by first mirroring the embedding of skeleton(u;) and then ex-
panding and embedding each skeleton edge not representing v or w
as before. We observe that p; is an ec-insertion path in I1; that starts
in a face at side s;_; of e; and ends in a face at side s; of edge r;; see
Figure With the same argumentation as above, we obtain I'; by
replacing e; withT';_| in1I;.

To conclude the proof, we consider the node u;. We know that uy is either
an S- or an R-node, and we may assume that py = p;, ,s,» since py, = py and
prr = pre holds for i = k. Hence, p; is an ec-insertion path in I that starts in
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Figure 6.6: Proof of Lemma u;iisan R-node, R, ={f1}, L, ={f2}.

a face at side s;_; of e; and ends in a face adjacent to the copy of w in G,. We
obtain II by replacing e; with I',_, in Iy, and thus p; +--- + pi is an ec-insertion
path for v and w in II. O

Lemma 6.6. LetI1' be an arbitrary ec-embedding of B and let p’ be a shortest ec-
insertion path for v and w in B with respect toll’. Then |p’| > |p1+ -+ pk|.

Proof. Let G;, S;, and s; be as defined in OpTIMALECBLOCKINSERTER, and let Aé
and Aﬁ be the value of A, and A,, respectively, after the i-th iteration of the for-
loop. For i =1,...,k, we denote with H; the pertinent graph of u;. Observe,
that IT" induces embeddings of G; and S;. Accordingly, we denote the induced
embedding of G; with IT’, and of S; with X/.

Since p’ is a shortest ec-insertion path, it does not visit a face twice. There-
fore, we can subdivide p’ into p’ = p; +---+ p;}. such that p; contains exactly the
edges of p’ that are in G;, for 1 < i < k. This follows from the fact that H; shares
only two vertices with the rest of the graph and p’ does not visit a face twice.
For 1 < i < k, we denote with s; € {/, r} the side at which the ec-insertion path
p;+---+p;leaves H; in1IT".

We show by induction over i that A;; <|pj+---+pijl

i=1. If k = 1, then G; = B and the proposition follows immediately, so as-
sume k > 1. If y; is not an R-node, then AS; = 0 and the proposition fol-
lows immediately. Otherwise, the algorithm also computes the shortest ec-
insertion path leaving at side s in X}, where the costs of the edges are their
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traversing costs. Since the traversing costs are independent of the embed-
ding by Lemma we get A}, <|p]].

1<i<k. Assume now that A£< <Ip; +---+p;.| for 1 <j < i. We distinguish two
7
cases:

(@) u;is aP-node. In this case, we have s;_, = s/, since p; +---+ pi does
not contain an edge of H;_;. This yields

Ag =2 SIpi -t prl S Ipi+e 4Pl

(b) u;isanS- or an R-node. Observe that p/ is an ec-insertion path in IT’
starting in the face at side s; of the edge representing v and ending in a
face at side §7, | of the edge representing w if i < k, or a face adjacent
to w otherwise. This implies an ec-insertion path in X, where the
costs of a skeleton edge are its traversing costs. On the other hand,
the algorithm computes a shortest ec-insertion path in >, since the
traversing costs of a skeleton edge are independent of the embedding
by Lemma Thus, we get Ay — Ay <|p;l, and hence

Finally, we get |p, + -+ pi| = Ai{ <|p’| and the lemma holds. O

Theorem 6.3. Let B=(V, E) beablock of K and let v and w be two distinct vertices
of B. Then, function OpTIMALECBLOCKINSERTER computes an optimal ec-insertion
path for v and w in B in time O(|E|).

Proof. The correctness and optimality of the algorithm follows from Lemma 6.5
and Lemma[6.6] Constructing the SPQR-tree and embedding the skeleton graphs
takes time O(|E|). Let G; =(V}, E;) be the graph considered in each iteration of the
for-loop. Then, each iteration takes time O(|E;|), since SHORTESTECINSPATH takes
only time linear in the size of G; by applying BFS. Moreover, the set E; consists
of some edges E; of G plus at most two virtual edges (the representatives of v
and w). Thus, |E;|+---+|Ex| = O(|E]), and hence we get a total running time of
O(E). O

6.4.4 Generalization to Connected Graphs

The edge insertion algorithm can easily be generalized to connected graphs by
using the same technique as in Sectionfor the unconstrained case; see Al-
gorithm OPTIMALECINSERTER in Listing[6.4} For each block B; on the path from v
to w in the block-vertex tree 8 of G, we compute the optimal ec-edge insertion
path p; between the representatives of v and w with a corresponding ec-planar
embedding I1;. Then, we concatenate these ec-edge insertion paths building the
optimal ec-edge insertion path for v and w.
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1: function OpTIMALECINSERTER (ec-expansion G, vertex v, vertex w)
2 Compute the block-vertex tree A of G.

3 Find the path v, By, ¢y,..., Bi-1, Ck—1, Br, w from v to w in A.
4 fori:=1,...,k do

5: let x; and y; be the representatives of v and w in B;

6 pi = OPTIMALECBLOCKINSERTER(B;, X;, y;)

7 end for

8 return p, + -+ pi

9: end function

Listing 6.4: Computation of an optimal ec-insertion path.

The proof of Lemmal4.4|uses induction over the number of blocks on the path
from v to w in 9. We briefly recall this proof. Let By, ..., B; be the blocks on this
path and let H; be the union of the blocks B; to B;. LetIl; be an embedding of B;
such that p; is an optimal edge insertion path for the representatives x; and y; in
B; with respect to II;. Let ¥; denote the concatenation p; +:--+ p;.

An embedding I'; for H; with an optimal edge insertion path ¥; can be itera-
tively constructed by combining the embeddingI';_; for H;_, and the embedding
I1; for block B;. Both y;_; and x; denote the same vertex in G and there exist opti-
mal edge insertion paths ¥;_, for v; and y;_; as well as p; for x; and y;. Therefore
there is a face f €I';_; that contains y;_; and either v, if ¥;_; is empty or the last
edge in W;_,. Similarly, there is a face f’ € II; that contains x; and either y; if
pi is empty or the first edge in p;. We can directly concatenate the two paths if
both faces coincide. This can be achieved by choosing f as the external face of
I';_; and placing this embedding of H;_, into face f” of I1;. Then ¥; is an optimal
ec-insertion path for v; and y; in H; with respect to I';.

We need to show that—under the presence of embedding constraints—ec-
planarity is preserved, that s, I'; is still an ec-planar embedding. The only critical
point in each step is the selection of f as the external face; but this does not
change the clockwise order of the edges around the vertices of G. Furthermore,
we ensure in the computation of the ec-edge insertion paths p; that we do not
cross any expansion edges. Hence, we know that the paths ¥;_; and p; do not
start or end in a face containing a hub. Therefore, the ec-planarity conditions are
still fulfilled and I is ec-planar.

It is obvious that p; +--- + py is an ec-edge insertion path for v and w with
respect to an embedding II that results from inserting the remaining blocks not
contained in H; (as shown in the proof of Lemma into I'x. The length of
the computed ec-edge insertion path is obviously minimal, since a shorter path
would imply that there exists a shorter path within a block. The block-vertex
tree of a graph can be constructed in linear time and the running time of OpTI-
MALECBLOCKINSERTER(B;, x;, y;) is linear in the size of the block B; (Theorem|[6.3),
thus yielding linear running time for OpTIMALECINSERTER.

Together with Lemmal6.1} we obtain the following result:
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Theorem 6.4. Let G = (V, E) be a graph with embedding constraints C and e =
(v, w) € E such that G — e is ec-planar. Then, we can compute an optimal ec-edge
insertion path for (v, w) in G — e in O(|V|+|E|) time.

6.5 Summary and Discussion

We introduced a flexible concept of embedding constraints which allows us to
model a wide range of constraints on the order of edges incident to a vertex. We
presented a linear time algorithm for testing ec-planarity, as well as a characteri-
zation of all possible ec-embeddings. The latter is in particular important for de-
veloping algorithms that optimize over the set of all ec-planar embeddings. We
showed that optimal edge insertion can still be performed in linear time when
embedding constraints have to be respected. In order to devise practically suc-
cessful graph drawing algorithms, the following problems should be considered:

e Develop faster algorithms for finding ec-planar subgraphs.

e Solve the so-called orientation problem for orthogonal graph drawing, for
example, allow us to fix some edges to attach only at the top side of a rect-
angular vertex. The problem arises when angles are assigned at each vertex
between adjacent edges to fix the assignment to the vertex’s sides, for ex-
ample, in network flow based drawing approaches. The vertices then need
to be oriented such that the edges that are assigned to the same sides at
different vertices are aligned.

¢ In some applications, only a subset of the edges is subject to embedding
constraints at a vertex v, that is, some edges can attach at arbitrary posi-
tions. Hence, we wish to extend the concept of embedding constraints for
so-called free edges that are not contained in the tree T,,.



174 Chapter 6. Embedding Constraints




Chapter 7
Conclusion

Science is a wonderful thing if one does not have to earn
ones living at it.

ALBERT EINSTEIN (1879 — 1955)

The planarization method—in combination with the topology-shape-metrics
approach— is one of the most important methods for drawing graphs. It is by far
the best method with respect to the fundamental aesthetic criterium of minimiz-
ing the number of crossings in a drawing.

The main goal of this thesis was to improve this method for practical applica-
tions. Therefore, we developed efficient heuristics for tackling two major prob-
lems: crossing reduction and finding good planar embeddings. We improved the
crossing reduction step by presenting a new linear-time algorithm for solving the
one-edge insertion problem optimally. In the original version of the planariza-
tion method, this problem was only solved for a given fixed embedding, thus
producing lots of unnecessary crossings when choosing a bad initial embedding.
Beforehand, it was not even clear if the one-edge insertion problem was solv-
able in polynomial time. We could also show that further pre- and postprocess-
ing methods, as well as random permutations lead to excellent results. We pre-
sented two new methods, namely the non-planar core reduction and the incre-
mental postprocessing strategy, which—besides the optimal one-edge insertion
algorithm—both are essential for achieving the best quality. In an experimental
study, we showed that these heuristics get close to optimal results for real-world-
like graphs (the established Rome graphs) as well as for graphs from graph classes
with known crossing numbers (a new benchmark set introduced in this thesis).
In case of the Rome graphs, we could show that even the quality achieved by ex-
act crossing minimization methods [Buchheim et al., 2008, Chimani et al.,|2008]
will not be significantly better in practice.

Even when finding a planarized representation with only few crossings, the
resulting drawings can look quite bad if the planar drawing algorithm uses an
inappropriate planar embedding. Since optimizing aesthetic criteria like, for ex-
ample, the number of bends over all embeddings is computationally hard (even
for 4-planar graphs), it is worthwhile to come up with other properties that make
up good planar embeddings. Here, we discussed the block-nesting depth—thus

175
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generalizing the result by |Pizzonia and Tamassia [2000]—and the degree of the
external face. For both problems, we presented linear-time algorithms. As can be
shown, such embeddings can improve layout quality significantly; see [Kerkhof,
2007].

Though the planarization method is the superior approach in many cases, the
planarization approach still lacks acceptance in practice. One reason is the high
implementation effort requiring expert knowledge. With the public availability
of our algorithms in the OGDF library, we try to overcome this dilemma. Another
problem is that in many application domains further restrictions on admissible
drawings exist. Typically, such constraints can easily be integrated into simpler
drawing algorithms. Therefore, we incorporated embedding constraints into the
planarization method. Although these constraints cannot model all restrictions
we find in application domains, it is a good step in this direction, hopefully help-
ing to bring the planarization method into practice. In Chimani and Gutwenger
[2007], we also extended the planarization method for drawing hypergraphs, for
example, we study the insertion of hyperedges. The concept of hyperedges is also
present in various applications.

The fundamental basis for all these algorithms is the SPQR-tree data struc-
ture. Though this data structure is simply an enriched version of the tricon-
nected components and there exists a linear-time algorithm for finding the tri-
connected components [Hopcroft and Tarjan, 1973a] since the early 1970s, there
was no linear-time implementation for constructing SPQR-trees so far. The rea-
son was that the paper by Hopcroft and Tarjan contained various faulty parts,
thus inhibiting linear-time implementations for triconnectivity decomposition
in general and SPQR-trees in particular. In this thesis, we gave a corrected ver-
sion of their algorithm and applied it to SPQR-trees. The resulting implemen-
tation is fast and stable in practice. Moreover, we made it publicly available in
graph drawing libraries, at first in AGD and later in OGDE This data structure is
not only very useful for countless graph drawing problems, but has also appli-
cations in completely different areas, for example, wave digital filters [Franken
et al., 2003, |2005] or information flow security [McCamant and Ernst, 2008, Mc-
Camant, |2008]. Since our first publication of a corrected version of the Hopcroft
and Tarjan algorithm in [Gutwenger and Mutzel, 2001], further linear-time im-
plementations of SPQR-trees were made possible, for example, recently an im-
plementation in the Java graph drawing library yFiles [Mader, 2008].

Although the planarization method is now a practical tool for drawing sparse
graphs of medium size, there is still work to do. We do not think that it is im-
portant to improve the performance of this method for denser graphs, since the
topology-shape-metrics approach in general is not the proper method for draw-
ing such graphs: Other methods like, for example, multi-level force directed al-
gorithms will give better results in most cases and scale even for graphs with
100,000s of edges. However, the performance of the planarization method should
still be improved for large sparse graphs. In particular, the postprocessing meth-
ods used in the crossing minimization heuristics should be faster. One possible
approach could be the usage of dynamic updates with the optimal one-edge in-
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sertion algorithm. This is in particular difficult when supporting the full range of
postprocessing, since in this case, we also need to support edge deletions. Fur-
ther ideas could be to exploit multi-core processors by parallelization (this is ob-
viously easy when applying several permutations in the crossing minimization
heuristic) or speed-up techniques for finding shortest paths in the one-edge in-
sertion algorithm. An important and challenging problem is also to extend our
concept of embedding constraints to free edges, that is, edges that can be at-
tached everywhere at a vertex.

From the theoretical point of view, there are several interesting yet also chal-
lenging open problems to consider. First of all, instead of just inserting a single
edge optimally, we could insert a vertex with all its incident edges optimally. In
[Chimani, Gutwenger, Mutzel, and Wolf, 2009b], we have recently presented a
polynomial-time algorithm for solving this problem. However, it heavily relies
on dynamic programming and its running time is still far away from being prac-
tical. A yet open problem is the optimal insertion of k edges at once, where k > 2
is a constant. Notice that even for the special case, where the edges to be inserted
are all incident to a common vertex, an iterative application of the one-edge in-
sertion algorithm will not yield an optimal result. For example, the insertion of
the first edge could fix the embedding of an R-node (one of the two choices we
have), but this choice is inappropriate for the remaining edges. Even more com-
plications arise when considering P-nodes. However, the optimal insertion of
several edges at once could significantly improve the final planarized represen-
tation and probably reduce the effort for postprocessing, hence we think this is
an open problem that could improve the planarization method also in practice.
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