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Abstract
This paper compares the performance of six widely applied techniques to estimate panel VARs

from macroeconomic (large T ) data. We show that the bias of the popular least squares dummy

variable estimator remains substantial even when the time dimension of the dataset is relatively

large. Adopting a bias correction to the simple �xed-e¤ects estimator is strongly recommended

to obtain consistent estimates of the implied impulse response functions. Multivariate extensions

of the GMM-type estimators usually applied for estimating single-equation dynamic panel data

models perform reasonably well in terms of bias, but poorly in terms of root mean square error, in

particular if the variance of the �xed e¤ects is large relative to the variance of the innovations. To

illustrate the methodological arguments we present an application in which we use annual OECD

country data to estimate the e¤ects of changes in government consumption on aggregate output,

private consumption, investment, and real wages.
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1 Introduction

Macroeconomists make extensive use of vector autoregressive models (VARs) to estimate

the evolution and the interdependencies between multiple time series. Estimating VARs

from panel data has generated interest, mainly because panel VARs allow one to control

for unobserved heterogeneity and provide more precise estimates of the VAR coe¢ cients

and thus the implied impulse response functions.

Many macro studies have estimated panel VARs using existing techniques for single-

equation dynamic panel data models, see Section 2 for a list of applications. In such

models, it is well-known that the simple least squares dummy variable (LSDV) estimator

is not consistent for a �nite time dimension T even when the cross-sectional dimension N

gets large, see e.g. Nickell (1981). Previous studies estimating macro panel VARs have

typically followed one of two strategies to address this issue. The �rst strategy is to use

instrumental variables or generalized method of moments techniques. A second strategy

is to adhere to the simple LSDV estimator, referring to the fact that its bias approaches

zero if the time dimension of the panel dataset approaches in�nity.

Both strategies have their relative merits. The GMM techniques have been designed

for the case of a large cross-sectional dimension relative to the time dimension. Since

the number of cross-sectional units (e.g. countries) is often small in macro applications,

GMM estimators may appear less suited for estimating macro panel VARs. Concerning

the simple LSDV estimator, the critical question is whether the number of time periods

encountered in macro studies is su¢ ciently large to make its bias unimportant from an

economic point of view. In fact, the economic importance of the bias of the simple LSDV

estimator has been a matter of debate in many studies estimating macro panel VARs (see

Section 2 for a list of applications).

Recent advances in the study of single-equation dynamic panel data models have

opened up a third strategy to estimate panel VARs. Kiviet (1995), Hahn and Kuersteiner

(2002), Bun and Kiviet (2003, 2006), Bun and Carree (2005, 2006), and Bruno (2005) have

suggested bias-corrections to the simple LSDV estimator. In single-equation simulation

studies, such bias-corrected estimators have often turned out to be more e¢ cient than

GMM-type estimators.4

In this paper we examine the properties of various techniques to estimate panel vector

autoregressive models. Throughout the paper, we have macroeconomic applications in

mind, which means that we consider highly though not perfectly persistent time series

and datasets having relatively small N and relatively large T . The estimation techniques

we consider are representatives of the aforementioned three widely applied strategies to

estimate macro panel VARs� simple �xed-e¤ects procedures, bias-corrected �xed e¤ects

4Panel VARs can also be estimated using Bayesian techniques (see e.g. Canova and Ciccarelli 2004 and
Canova, Ciccarelli, and Ortega 2007) or likelihood-based procedures (see e.g. Binder, Hsiao, and Pesaran
2005, Yu, de Jong, and Lee 2008, and Mutl 2009).
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procedures, and IV or GMM-type techniques.

Speci�cally, we compare six estimation techniques. The �rst set consists of least�

squares-type estimators: (1) pooled OLS, (2) the simple least squares dummy variable

(i.e. �xed e¤ects) estimator (LSDV), and (3) a bias-corrected least squares dummy vari-

able estimator. We consider with Hahn and Kuersteiner�s (2002) estimator a bias corrected

version of the �xed-e¤ects estimator that does not require a preliminary consistent esti-

mator, e.g. a GMM estimator. Hahn and Kuersteiner (2002) argue that their estimator

may therefore be understood as an implementable version of Kiviet�s (1995) estimator.

A second set of estimators consists of ��rst-generation�IV and GMM techniques. In

particular, we consider (4) the Anderson and Hsiao (1982) IV estimator and (5) the

�standard� Arellano and Bond (1991) GMM estimator. We use generalizations of the

single-equation estimators to work on a system of equations, see Binder, Hsiao, and Pe-

saran (2005). Finally, as estimation technique (6), we consider �second-generation�GMM

techniques that exploit additional moment conditions. We consider the three versions of

�extended�GMM estimators that have been generalized to the multi-equation setting by

Binder, Hsiao, and Pesaran (2005).

Our focus on macroeconomic panel VARs relates our paper to two branches in the lit-

erature. First, our paper complements previous simulation studies that have investigated

estimation techniques for single-equation dynamic panel data models in a macroeconomic

context, see Judson and Owen (1999), Ramalho (2005), and Bruno (2005). We consider

multi-equation panel VARs instead of single-equation models. Second, our paper com-

plements previous Monte Carlo evidence for the estimation of panel VARs presented in

Binder, Hsiao, and Pesaran (2005). They focus on short panels typically used in micro-

econometrics (T = 3 or 10 and N being large) and do not consider the class of �xed e¤ects

estimators due to their focus on small-T data.

We compare the various estimation techniques in terms of their biases and root mean

square errors (RMSEs). Since the applied macroeconomist using panel VARs is typically

not interested in the VAR coe¢ cients per se but uses impulse response functions to inves-

tigate the dynamic behavior of the system of equations, we also investigate how strongly

potential biases in VAR coe¢ cient estimates a¤ect the implied IRFs. We proceed in two

steps. First, in the framework of our Monte Carlo study, we compare the estimated IRFs

to their true counterparts. Second, we present an empirical application and compare the

IRFs obtained using di¤erent estimation techniques.

In the application, we use annual observations on 19 OECD countries spanning the

years between 1960 and 2008 to quantify the macroeconomic e¤ects of �scal policy shocks.

Quantifying the e¤ects of government spending is of obvious policy relevance and previous

papers have uncovered several theoretically interesting and surprising responses, such as

the positive e¤ect of government spending shocks on private consumption (e.g. Blanchard

and Perotti 2002, Galí, López-Salido, and Vallés 2007) or real wages (e.g. Monacelli and
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Perotti 2008); much of this literature is surveyed in Perotti (2007). Studies that use

datasets closest to the one used in our application are Beetsma, Giuliodori, and Klaassen

(2006, 2008), who study international spillover e¤ects from �scal spending in a panel with

yearly EU country data using the LSDV estimator.

Our results can be summarized as follows. First, our Monte Carlo experiments show

that the bias of the widely applied least squares dummy variable estimator remains sub-

stantial even when T is relatively large. Adopting a bias correction to the simple �xed-

e¤ects estimator is strongly recommended to obtain consistent estimates of the implied

impulse response functions. Multivariate extensions of the GMM-type estimators usually

applied for estimating single-equation dynamic panel data models perform reasonably well

in terms of bias, but poorly in terms of root mean square error, in particular if the variance

of the �xed e¤ects is large relative to the variance of the innovations. This leads us to con-

clude that bias-corrected versions of the �xed-e¤ects estimator are the estimators of choice

for estimating macro panel VARs. Overall, our �ndings corroborate and extend previous

studies that have investigated single-equation dynamic panel models, see e.g. Judson and

Owen (1999).

Since impulse responses (which are the objects of interest in most applied panel VAR

studies) are complicated nonlinear functions of all estimated parameters, the e¤ects of

biases in individual coe¢ cients on the resulting impulse responses are in general hard to

predict. To provide an example for how strongly the shape of impulse response functions

may depend on the speci�c estimation technique used, we estimate a �scal panel VAR and

compare the IRFs obtained using di¤erent estimation techniques. In our application, we

�nd that the impulse responses following government spending shocks obtained using the

widely applied simple �xed e¤ects (LSDV) estimator are still reasonably close to the bias-

corrected ones, though they tend to understate the persistence of shock e¤ects notably.

This relation is in line with the Monte Carlo evidence, which documented a substantial

negative bias of the simple LSDV coe¢ cient estimates.

The remainder is organized as follows. Section 2 motivates our Monte Carlo analy-

sis by presenting a collection of previous papers that have estimated macro panel VARs

using (similar) estimation techniques as the ones considered in this paper. Section 3 intro-

duces the setup of the Monte Carlo study. Section 4 brie�y describes the six estimation

techniques considered. The results of the simulations are presented in Section 5. The

application where we estimate a �scal panel VAR for OECD countries can be found in

Section 6. The last section concludes.

2 Applied macro panel VAR studies

In this section, we brie�y gather empirical publications that have estimated panel VARs

from datasets having properties similar to those considered in the subsequent Monte Carlo

study and that have applied similar estimation techniques as the ones considered in this
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Table 1: A collection of studies estimating macro panel VARs

Study N T Estimator Area of research

Alesina et al. (2002) 18 37 LSDV Fiscal policy and investment

Ardagna, Caselli, and Lane (2007) 16 42 LSDV Government debt

Asdrubali and Kim (2004) 22 (50) 31 (28) OLS Risk sharing

Asdrubali and Kim (2008) 12 26 OLS EU budget

Beetsma, Giuliodori, and Klaassen (2006) 11 38 LSDV Fiscal policy

Beetsma, Giuliodori, and Klaassen (2008) 14 35 LSDV Public spending shocks

Becker and Ho¤mann (2006) 28(50) 47 (28) GMM Risk sharing

Binet (2003) 27 10 LSDVC Fiscal competition

Blanco (2009) 18 44 GMM Finance and Growth

Buch, Carstensen, and Schertler (2010) 17 108� LSDV International banking

Doménech, Taguas, and Varela (2000) 18 �33 LSDV Ricardian equivalence

Erdil and Yetkiner (2009) 75 11 LSDV Health care expenditures

Gavin and Theodorou (2005) 15 88� LSDV Common macro dynamics

Goodhart and Hofmann (2008) 17 136 (88)� LSDV House prices and credit

Justesen (2008) 40-70 6 LSDVC Growth and economic freedom

Kim and Lee (2008) 7 23 LSDV Demography and savings

Lee (2007) 16 16 LSDV Housing investment

Love and Zicchino (2006) 36 11 GMM Financial development

Ravn, Schmitt-Grohé, and Uribe (2007) 4 124� LSDV Government spending shocks

Rousseau and Wachtel (2000) 47 16 GMM Financial intermediation

Tagkalakis (2008) 19 32 LSDV Fiscal policy and consumption

Tani (2003) 166 10 LSDV Regional evolutions

Notes: N : number of cross-sectional units; T : number of time periods (years); studies using quarterly

data are marked with an asterisk (�). The studies are broadly classi�ed as: LSDV: least squares dummy

variable estimator; LSDVC: bias-corrected version of the least squares dummy variable estimator; GMM:

generalized method of moments techniques (either ��rst-generation�GMM or �extended�GMM)
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paper.

Table 1 presents a collection of such studies. Of course, we do not claim that the list

of papers is comprehensive, but it nevertheless serves as a motivation for the subsequent

Monte Carlo analysis.5 The papers are ordered alphabetically and we report the dimen-

sions of the datasets employed, the estimation techniques applied, and some keywords

describing the area of research. For simplicity, we do not give details on the speci�c esti-

mation technique but classify the papers only broadly along the dimensions ��xed e¤ects

(LSDV)�, �bias-corrected �xed e¤ects (LSDVC)�, or �GMM�techniques, respectively.

The table shows that the simple LSDV estimator is widely applied to estimate panel

VARs from macro data. In Section 5, we investigate the small-sample performance of this

estimator using a Monte Carlo study and compare it to various alternatives, such as a

bias-corrected LSDV estimator or GMM-type techniques.

3 Monte Carlo setup

Our simulation setup for the panel VAR closely follows Binder, Hsiao, and Pesaran (2005)

and Mutl (2009). Yet, we consider long instead of short panels, which relates our setup to

the single-equation analysis presented in Judson and Owen (1999). Consider a �rst-order

panel VAR for K variables given by

yit = �yi;t�1 + (Ik ��)�i + "it; (1)

where the subscript i 2 f1; :::; Ng refers to the cross-sectional dimension and t 2 f1; :::; Tg
to the time dimension of the panel of observations yit: The model contains K equations

so that the observations yit; the individual-speci�c e¤ects �i, and the disturbances "it are

K � 1 vectors. The coe¢ cients on the lagged endogenous variables are summarized in a
K �K matrix �.

The disturbances "it are normally distributed with E ("it) = 0 and a positive de�nite

variance-covariance matrix 
": The disturbances are assumed to be independent across

i = 1; :::; N and t = 1; :::; T: We consider only �xed-e¤ects speci�cations of the individual-

speci�c e¤ects �i. They are generated as

�i=
p
�

�
qi � 1p
2

�
�i;

qi��2 (1) ; and �i � N (0;
") ;

with qi and �i being distributed independently of each other and of "it for all i and t:

The parameter � measures the degree of cross-section to time-series variation. While the

performance of the LSDV estimator does not depend on � , the performance of GMM-type

5Note that the list does not include contributions that have applied Bayesian panel VAR techniques,
see e.g. Canova, Ciccarelli, and Ortega (2007), because a closer investigation of such techniques is beyond
the scope of this paper.
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estimators has been shown to deteriorate with increasing the ratio of the variance of the

individual e¤ects to the variance of the innovations, see e.g. Kitazawa (2001) and Binder,

Hsiao, and Pesaran (2005). We follow Binder, Hsiao, and Pesaran (2005) and consider the

cases of � = 1 and � = 5.

In our baseline simulations, we use one of Binder, Hsiao, and Pesaran�s (2005) types

of designs for the matrix of slope coe¢ cients, �; for a two-variable (K = 2) �rst-order

(p = 1) stationary panel VAR. Since we focus on macroeconomic applications where time

series are typically highly persistent, we restrict most of our attention to the case where

the maximum eigenvalue of � is 0.95. Results for an alternative Monte Carlo design,

where time series are somewhat less persistent and � has maximum eigenvalue of 0.8 will

be discussed brie�y. For the case of high persistence, � and 
" are speci�ed as6

� =

 
0:7 0:25

0:25 0:7

!
;
"=

 
0:08 �0:05
�0:05 0:08

!
:

The simulations are replicated 1,000 times and the resulting estimates are saved. To

initialize the yit process, we follow Judson and Owen (1999) by choosing yi0 = 0 and then

discarding the �rst 50 observations of the simulated data for each cross-sectional unit.

In the simulations, we vary the size of our simulated panel. For our baseline exercises,

we choose N = 20 for the cross-sectional dimension and for the time dimension T , we

consider values of 10; 20; 30; :::; 80. These choices are made having annual and quarterly

time series used in macroeconomic research in mind, see Table 1.

4 Estimators

(1) Pooled OLS The multivariate OLS estimator for VARs can be found in Lütke-

pohl (2006, p. 60). In the presence of �xed e¤ects, pooled OLS provides upwards biased

estimates of autoregressive coe¢ cients even when T is large, see e.g. Hsiao (1986).

(2) Simple least squares dummy variable estimator (LSDV) The LSDV, �xed

e¤ect, or within group estimator is discussed in e.g. Bun and Kiviet (2006, p. 415). The

within transformation of the LSDV estimator eliminates the �xed e¤ects but introduces a

correlation between lagged dependent variables and the time-averaged idiosyncratic error

term. The associated bias decreases in T; see e.g. Nickell (1981) or Hahn and Kuersteiner

(2002).

(3) Bias-corrected least squares dummy variable estimator developed by
Hahn and Kuersteiner (2002) (LSDVC) We use the bias-corrected �xed-e¤ects

estimator developed by Hahn and Kuersteiner (2002). Hahn and Kuersteiner (2002) un-

derstand their estimator as an implementable version of Kiviet�s (1995) estimator, because

6We follow Binder, Hsiao, and Pesaran (2005) in using di¤erent error variance matrices 
" for di¤erent
designs so as to obtain similar population R2 values for all equations of the PVAR model and across
designs.
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their procedure does not require a preliminary consistent estimator for initialization as is

required for Kiviet�s approach. The estimator we implement is given by equations (3) and

(4) in Hahn and Kuersteiner (2002). Note that this estimator is not designed for samples

with small T:

(4) Anderson and Hsiao (1982) estimator (AH) The Anderson and Hsiao

(1982) estimator takes �rst di¤erences of the dynamic system to eliminate the �xed e¤ects.

This introduces a correlation between lagged dependent variables and di¤erenced errors.

Anderson and Hsiao (1982) have shown that the level of the endogenous variable lagged

two periods can serve as an instrument.

(5) Standard GMM estimator à la Arellano and Bond (1991) (SGMM)
Building on the work of Anderson and Hsiao (1982), Holtz-Eakin et al. (1988) and Arellano

and Bond (1991) have developed GMM estimators that use all linear moment restrictions

speci�ed by the model, as more lagged instruments become available for the di¤erenced

equation. Binder, Hsiao, and Pesaran (2005) have derived the multi-equation extension of

the Arellano and Bond (1991) estimator, which we use to estimate the panel VAR (we refer

to their paper for computational details). Note that the number of moment restrictions

increases at the order T 2; which has implications for the �nite-sample performance since

very remote lags are unlikely to be informative instruments. For this reason, we do not use

all available moment restrictions but use a maximum of four lagged levels as instruments.

(6) Extended GMM estimators à la Ahn and Schmidt (1995), Arellano and
Bover (1995), and Blundell and Bond (1998) (EGMM) Subsequent extensions

of the Arellano and Bond (1991) estimator use an augmented set of moment conditions.

These extended GMM estimators consider moment conditions implied by homoskedastic-

ity (Ahn and Schmidt 1995) and initialization restrictions (Arellano and Bover 1995, and

Blundell and Bond 1998). While the standard Arellano and Bond (1991) estimator works

on the di¤erenced equation only, the Blundell and Bond (1998) estimator additionally uses

moment conditions in which lagged di¤erences are used as instruments for the level equa-

tion. Blundell and Bond (1998) and Blundell, Bond, and Windmeijer (2000) have shown

that this estimator exploiting the levels equation performs better than the Arellano and

Bond (1991) estimator when time series are highly persistent. To estimate the panel VAR,

we use the multivariate versions of the extended GMM estimators as presented in Binder,

Hsiao, and Pesaran (2005). We use their extended GMM estimator that uses only the

moment conditions implied by orthogonality and initialization restrictions (EGMM1) and

the GMM estimator that uses only the moment conditions implied by orthogonality and

homoskedasticity (EGMM2). The estimator that uses all three sets of moment conditions

will be referred to as EGMM3. The corresponding designs for the instrument matrices

can be found on page 812 in Binder, Hsiao, and Pesaran (2005). For each version of the

estimator, we allow for a maximum lag length of four when constructing the matrix of
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instruments.

5 Monte Carlo Results

In the �rst part of this section, we compare the various estimation techniques in terms

of their biases and root mean square errors (RMSEs). Thereafter, we illustrate for some

selected cases how strongly potential estimation biases a¤ect the shape of the implied

impulse response functions (IRFs).

5.1 Comparison in terms of biases and RMSEs

Tables 2 and 3 (at the end of the paper) summarizes the simulation results from the

various designs. To facilitate a convenient comparison of the various estimation results,

we illustrate them also graphically. Figure 1 displays the average bias (�rst row) and root

mean square error (second row) of the di¤erent estimators over 1,000 simulations, for our

baseline setting with N = 20 and � = 1. To save on space, we display the results only

for the coe¢ cients �11 and �21: The results for �12 and �22 are very similar since the

coe¢ cient matrix � is symmetric (detailed results are available upon request).

To make the �gure less crowded, Figure 1 does not display the results for pooled

OLS. In the presence of �xed e¤ects, pooled OLS provides upward biased estimates of

autoregressive coe¢ cients. As can be seen from Tables 2 and 3, this bias does not vanish

when T is increased. For larger values of � ; the bias of pooled OLS becomes even more

pronounced.

Figure 1 shows that the simple LSDV estimator has a substantial negative bias for

�11 even when T becomes relatively large. Its bias decreases as the time dimension gets

larger, however it remains large even if T = 80: This result is important, since using the

simple LSDV estimator to estimate panel VARs from datasets having T less than 40 or so

is not uncommon. The negative bias of the LSDV estimator results in impulse response

functions that fade out much too quickly (see Section 5.2 for an illustration).7

Figure 1 also shows that adopting a bias-correction leads to drastic improvements in

the performance of the simple LSDV estimator. While the Hahn and Kuersteiner (2002)

(LSDVC) estimator is not successful at removing the bias completely as long as T is

about 50 or less, this estimator is clearly preferable over the simple LSDV estimator.

While alternative bias-correction procedures exploiting an initial consistent estimator (see

e.g. Bun and Kiviet 2003, 2006, or Bun and Carree 2005, 2006) may be even more accurate

than the relatively simple bias-correction of Hahn and Kuersteiner (2002), the guideline

for practitioners is nevertheless clear-cut: In any case, adopting a bias-corrected version

of the LSDV estimator is strongly recommended instead of using its uncorrected version.

This is even recommended when quarterly data are available and the time dimension gets

7Our results are in line with the single-equation evidence presented in Judson and Owen (1999). For
instance, for their speci�cation with an autoregressive coe¢ cient of 0:8 and T = 10; N = 20; they report
a bias of the LSDV estimator of �0:238:
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Figure 1: Bias and RMSE of various estimators for N=20, � = 1
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Notes: The �gure displays the average bias (�rst row) and root mean square error (second row) for two of

the four coe¢ cients in the symmetric matrix � over 1,000 simulations. Table 2 (at the end of the paper)

provides the numbers underlying the �gure. The Monte Carlo design is

N = 20; p = 1; � = 1;� =

�
0:7 0:25
0:25 0:7

�
;
" =

�
0:08 �0:05
�0:05 0:08

�
: The data-generating process is the panel

VAR given by equation (1).

LSDV: Simple least squares dummy variable estimator; LSDVC: Hahn and Kuersteiner�s (2002)

bias-corrected LSDV estimator; AH: multivariate Anderson and Hsiao (1982) estimator; SGMM:

multivariate Arellano and Bond (1991) GMM estimator; EGMM1: multivariate extended GMM

estimator using the instrument matrices P1i and P2i as given in Binder et al. (2005); EGMM2:

multivariate extended GMM estimator using the instrument matrices P1i and P3i as given in Binder et

al. (2005); EGMM3: multivariate extended GMM estimator using the instrument matrices P1i,P2i, and

P3i as given in Binder et al. (2005) (see page 812 in their paper).
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as large as 80: Note that this recommendation does not depend on the choice of the speci�c

evaluation criterion, since it holds irrespective of whether one considers bias or RMSE.

The multivariate version of the Anderson and Hsiao (1982) estimator is found to be

almost unbiased in this setting when T is larger than about 20. This re�ects that this IV

estimator is consistent irrespective of whether the number of time periods, the number of

cross-sectional units, or both tend to in�nity, see Arellano (1989). However, as can be seen

from the second row in Figure 1, this estimator performs poorly in terms of RMSE. This

apparent lack of precision makes the Anderson and Hsiao (1982) estimator unattractive

for empirical applications.

Among the GMM-type estimators, the extended GMM estimators clearly outperform

the estimator based on the standard Arellano and Bond (1991) moment conditions. This

is not surprising since previous single-equation studies have documented that the Arellano

and Bond (1991) estimator can perform poorly if the time series are highly persistent (e.g.

Blundell and Bond 1998, Blundell, Bond, and Windmeijer, 2000) as is the case in our sim-

ulations. In fact, the multivariate Arellano and Bond (1991) estimator is found to perform

worst among all estimators considered. Macroeconomists should therefore abandon this

estimator when having prior knowledge that their data may have characteristics similar

to the ones considered in this Monte Carlo design.

As has been documented for single-equation models, the additional instruments used

by the extended GMM estimators result in a substantial reduction in the �nite sample

bias of GMM estimators. It is noteworthy that, in general, the extended GMM estimators

perform relatively well in our setting, although these estimators are designed for datasets

with a large number of cross-sectional units and few time period. In terms of bias, the

performance of the EGMM2 estimator is approximately equal to the one of the Hahn

and Kuersteiner (2002) bias-corrected LSDV estimator. However, the apparent drawback

of the GMM estimators is that their standard errors and RMSEs are relatively large in

comparison to �xed-e¤ects estimators. This �nding is in line with previous single-equation

studies that have documented that the bias-corrected LSDV estimators seem to have better

�nite sample properties than various GMM estimators, see e.g. Judson and Owen (1999)

or Ramalho (2005).

The other two extended GMM estimators (EGMM1 and EGMM3, respectively) are

found to display a positive bias for �11 which does not vanish if T is increased. Thus,

we conclude that, among the extended GMM estimators, the version EGMM2 tends to

perform best for the Monte Carlo design under investigation.8

We now consider a Monte Carlo design in which we increase the ratio of the variance

8We also checked the performance of the conventional single-equation versions of the Arellano and Bond
(1991) and Blundell and Bond (1998) GMM estimators, respectively, when these techniques are used to
estimate the panel VAR equation-by-equation. The results are qualitatively the same and quantitatively
very similar to the ones obtained using the multivariate extensions (detailed results are available upon
request).
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Figure 2: Bias and RMSE of various estimators for N=20, � = 5
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Notes: The �gure displays the average bias (�rst row) and root mean square error (second row) for two of

the four coe¢ cients in the symmetric matrix � over 1,000 simulations. Table 2 (at the end of the paper)

provides the numbers underlying the �gure. The Monte Carlo design is the same as in Figure 1, but for

� = 5 instead of � = 1: For details, see the notes to Figure 1 and Sections 3 and 4.

LSDV: Simple least squares dummy variable estimator; LSDVC: Hahn and Kuersteiner�s (2002)

bias-corrected LSDV estimator; AH: multivariate Anderson and Hsiao (1982) estimator; SGMM:

multivariate Arellano and Bond (1991) GMM estimator; EGMM1: multivariate extended GMM

estimator using the instrument matrices P1i and P2i as given in Binder et al. (2005); EGMM2:

multivariate extended GMM estimator using the instrument matrices P1i and P3i as given in Binder et

al. (2005); EGMM3: multivariate extended GMM estimator using the instrument matrices P1i,P2i, and

P3i as given in Binder et al. (2005) (see page 812 in their paper).
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of the individual e¤ects to the variance of the innovations (� = 5 instead of � = 1). Figure

2 and Table 2 (at the end of the paper) summarize the corresponding simulation results.

In line with Kitazawa (2001) and Binder, Hsiao, and Pesaran (2005), we �nd that the

performance of the GMM-type estimators deteriorates dramatically in such setting (note

the di¤erent scaling of the y-axis in comparison to Figure 1). By contrast, the performance

of the bias-corrected LSDV estimator is una¤ected by the degree of cross-section to time-

series variation. In macroeconomic applications, the degree of cross-section to time-series

variation can often be expected to be large, for instance when a panel of OECD countries

is investigated. This is a further argument in favor of using bias-correction procedures

when estimating macro panel VARs.

We also provide the results for an alternative Monte Carlo design where we increase

the number of cross-sectional units from 20 to 50 (for � = 1 and � = 5, respectively).

While a cross-section of 50 units is typically not available in macro cross-country panel

datasets, it is often available at lower levels of geographical aggregation, for instance if

states or regions within a country are the units of investigation. To save on space, we do

not present the results graphically but refer to Tables 2 and 3 for detailed results.

In general, the IV and GMM-type estimators tend to become more e¢ cient as the

cross-sectional dimension N is increased. The performance of the �xed-e¤ects estimators,

by contrast, does not depend on N: This makes even the standard SGMM estimator less

biased than the simple LSDV estimator for T � 40. Among the extended GMM estimators,

the improvement in the performance of the EGMM1 estimator is most pronounced. This

estimator becomes even less biased than the bias-corrected �xed-e¤ects estimator (but only

for � = 1). Yet, as before, the bias-corrected estimator tends to perform better in terms of

RMSE. Concerning EGMM2, we �nd that its bias is smaller than the one of the Hahn and

Kuersteiner (2002) estimator if T � 40 and � = 1 (while the ordering remains reversed

with respect to RMSE). The RMSE of the Anderson and Hsiao (1982) estimator remains

the highest among the estimators considered. Overall, the trade-o¤ between bias and

RMSE of the various estimators tends to become less pronounced if more cross-sectional

units are available. In other words, the EGMM1 estimator may become an option if the

panel dataset has relatively large N . However, the bias-corrected LSDV estimator clearly

dominates the GMM-type procedures for the case � = 5:

Finally, we run a Monte Carlo experiment for a design in which the maximum eigen-

value of the coe¢ cient matrix � is 0.8 instead of 0.95. The results of this Monte Carlo

design are summarized in Table 3 (at the end of the paper). The RMSE of the Anderson

and Hsiao (1982) estimator decreases substantially but still remains larger than the one

of the bias-corrected LSDV estimator. For the case � = 1; EGMM1 and EGMM3 per-

form worse than under the previous design assuming a maximum eigenvalue of 0.95. As

before, EGMM2 performs similarly in terms of bias as the Hahn and Kuersteiner (2002)

estimator, but its bias for �1;1 changes sign for T ' 40 (getting positive). When � = 5;
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the performance of EGMM2 worsens substantially, as already documented for our baseline

Monte Carlo design. Similarly, EGMM1 and EGMM3 perform badly when � = 5 (the bias

is positive and does not decrease with T ).

5.2 Implied impulse response functions

The applied macroeconomist using panel VARs is typically not interested in the VAR co-

e¢ cients per se but uses impulse response functions to investigate the dynamic behavior of

the system of equations. The IRFs re�ect complex nonlinear interactions of the estimated

VAR coe¢ cients at di¤erent time horizons. For this reason, it may be di¢ cult to assess

the overall performance of an estimation technique by looking at biases and RMSEs of

particular VAR coe¢ cients alone.

To illustrate the economic importance of potential estimation biases, Figure 3 displays

the mean (reduced-form) IRFs over the 1,000 Monte Carlo repetitions at each time horizon,

for the intermediate case T = 30; N = 20; and � = 5. The �gure shows the responses of

equations 1 and 2, respectively, to a one-unit shock in equation 1. The dashed lines are the

2.5th and 97.5th percentiles of the estimated responses at each time horizon, respectively.

The true impulse responses are given by the bold lines. To save on space, we restrict our

attention to three selected estimators: the simple LSDV estimator (�rst row), its bias-

corrected version LSDVC (second row), and the EGMM2 system GMM estimator (third

row).

The �rst row in Figure 3 illustrates that the negative bias of the simple LSDV estimator

has a non-neglible e¤ect on the implied IRFs even if the time dimension of the dataset is 30

years. While the researcher would infer the correct signs of the e¤ects in this setting, the

IRFs fade out too quickly. Our results show that the bias of the simple LSDV estimator

should not be neglected even when T is relatively large. These �ndings can thus be seen

as a natural extension of Judson and Owen�s (1999) results for the single-equation case.

The second row in Figure 3 shows the mean IRFs obtained with the bias-corrected

LSDVC estimator for the same setting. One can see that the IRFs are relatively close to

the true ones.

Perhaps surprisingly, the mean IRFs obtained using the extended GMM estimator

EGMM2 appear close to the true ones (see the third line in Figure 3), although we know

from the Monte Carlo studies that this estimator is biased in the setting considered. Yet,

a closer examination of Table 2 shows that, for this estimator, the direction of the bias

di¤ers between �11 and �21 (being positive for �11 and negative for �21). Since the IRFs

are nonlinear combinations of all VAR coe¢ cients, a pattern like in Figure 3 can emerge.

Of course, this observation should not be taken as evidence that the EGMM2 estimator is

a good choice at all in this setting. The poor precision of the EGMM2 estimator translates

into broad con�dence bands.
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Figure 3: True and estimated IRFs for T=30, N=20, and �=5; three selected estimators
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Notes: The �gure displays the mean IRFs over the 1,000 Monte Carlo repetitions at each time horizon,

for the intermediate case T = 30; N = 20 and � = 5 (the associated biases and RMSEs are displayed in

Figure 2). The �gure shows the responses of equations 1 and 2, respectively, to a one-unit shock in

equation 1. The dashed lines are the 2.5th and 97.5th percentiles of the estimated responses at each time

horizon, respectively. The true impulse responses are given by the bold lines.
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6 Application: Panel VAR estimates of �scal policy e¤ects

In this section, we present an application to illustrate the methodological arguments made

in the Monte Carlo study. We present panel VAR estimates for the e¤ects of changes in

government consumption on aggregate output, private consumption, investment, and real

wages for a sample of OECD countries. Quantifying the e¤ects of government spending

is of obvious policy relevance and previous papers have uncovered several theoretically

interesting and surprising responses, such as the positive e¤ect of government spending

shocks on private consumption (e.g. Blanchard and Perotti, 2002, Galí, López-Salido, and

Vallés 2007) or real wages (e.g. Monacelli and Perotti, 2008); much of this literature is

surveyed in Perotti (2007).

Most previous papers in this tradition have used quarterly data. Yet, there are rel-

atively few countries for which quarterly �scal data of undisputed quality are available.

Accordingly, the largest part of the previous literature has used data for the US and only

a small number of other countries like Canada, the UK, Australia, and Germany (e.g.

Perotti, 2004) or Canada, Japan, the UK, and the aggregate Euro area (Pappa, 2009), or

used panel VARs on quarterly data from these countries like Ravn, Schmitt-Grohe, and

Uribe (2007).

In this paper, we use annual observations on 19 OECD countries spanning the years

between 1960 and 2008 to quantify the macroeconomic e¤ects of �scal policy shocks. Stud-

ies that use datasets closest to the one used in this application are Beetsma, Giuliodori,

and Klaassen (2006, 2008), who study international spillover e¤ects from �scal spending

in a panel with yearly EU country data.

The application we present is ideally suited in the present context, for several reasons.

First, using annual data allows us to provide evidence based on a broader country sample,

which is of obvious interest. Second, annual data allows us to address the point made

by Beetsma, Giuliodori, and Klaassen (2006, 2008) that, in current institutional settings,

budget decisions are taken mostly once a year, such that an empirical approach using

annual data provides a more natural interpretation of the estimated shocks than quarterly

data do. Annual data frequencies might also mitigate the potential problem of anticipation

of �scal policy changes, as has been argued by Ramey (2009). Third, and most impor-

tantly in the present context, the Monte Carlo experiments presented in Section 5 have

been conducted for datasets having similar dimensions as our annual dataset for OECD

countries (N = 19 and T = 49). Therefore, it is interesting to compare results obtained

using di¤erent estimation techniques in this application.

6.1 VAR speci�cation

Our �scal panel VAR consists of real (de�ated with the de�ator of gross domestic product)

government consumption expenditure gt, real gross domestic product yt, real private �nal

consumption expenditures ct, real gross �xed investment it, and real compensation per
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employee as a measure of the real wage rate wt. All variables except for wt are converted

to a per capita basis by dividing through the population number and all variables enter

the panel VAR in natural logarithms. The data are taken from the European Commis-

sion�s annual macroeconomic database (AMECO) and are described in more detail in the

appendix.

While the Monte Carlo evidence presented in Section 5 has focused on panel VARs

of �rst order, we want to be less restrictive in the present application and use a second

order model (robustness checks show, however, that using either only one or three lags

of the endogenous variables has no substantial e¤ects on the results presented below).

In the following, we brie�y explain how the bias-correction of the Hahn and Kuersteiner

(2002) estimator can be implemented for general VAR models. To make the Hahn and

Kuersteiner (2002) estimator suitable for models with higher order VAR dynamics, one

can use the fact that any VAR(p) process can be written in VAR(1) form by imposing

blockwise zero and identity restrictions on the VAR slope coe¢ cients, see e.g. Lütkepohl

(2006, p. 15 and p. 194) and also Hahn and Kuersteiner (2002, p. 1640). To model higher

order dynamics, we therefore use an extended version of the Hahn and Kuersteiner (2002)

estimator that allows for linear constraints. To control for time e¤ects, we use a projection

matrix to average the observations over individuals and then use the transformed data in

the estimations (which is equivalent to including the matrix of time dummies as regressors).

As in Beetsma, Giuliodori, and Klaassen (2006, 2008), we control for linear country-speci�c

time trends.

6.2 Identi�cation of spending shocks

We identify �scal spending shocks by ordering government spending �rst and orthogonalize

impulse responses by a Cholesky decomposition. This recursive identi�cation approach

assumes that government spending is exogenous within the period and responds to other

shocks than its own only with a lag. This way of identifying �scal shocks is standard in

the �scal VAR literature (e.g. Perotti, 2007; identi�cation is of course more involved if

the estimation of tax shocks is aimed at, which is not the case here; see e.g. Blanchard

and Perotti, 2002).

However, the recursive identi�cation scheme is potentially problematic if data are at

annual frequency. For quarterly or higher frequency data, lags in the planning and imple-

mentation of �scal policy decisions can plausibly be assumed to rule out any endogenous

reaction of government spending to the state of the business cycle within a quarter. At

annual frequency, the government might, in principle, react to changing economic condi-

tions within a period. Beetsma, Giuliodori, and Klaassen (2009) have studied the possible

identi�cation problem by comparing VARs on annual and quarterly data for countries

where both frequencies are available. They �nd that the assumption of a zero response

of government spending to output within a year is not rejected by their data. Therefore,

they conclude that the recursive identi�cation is a sensible procedure even with annual
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Figure 4: Impulse responses to a one percent shock to government spending in period 1

data. The interpretation is that the budget is set once a year and the variations within the

year are comparatively small. Our empirical identi�cation approach uses this argument.

6.3 Results

The main conclusion suggested by the Monte Carlo evidence presented in Section 5 was

that (i) the simple �xed e¤ects estimator commonly used in the applied macro panel VAR

literature is potentially problematic even when T is relatively large and that (ii) the bias-

corrected version of the �xed e¤ects estimator due to Hahn and Kuersteiner (2002) is

quite successful at removing the bias while being an e¢ cient estimator at the same time.

Accordingly, in our �scal panel VAR application, we restrict our attention to these two

estimation techniques and compare the implied impulse response functions obtained using

both estimators.

Figure 4 shows the estimated impulse responses to a one percent shock to government
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spending in period 1. The solid lines are the IRFs that are implied by the simple (�xed

e¤ects) LSDV estimates and the IRFs from the bias-corrected �xed e¤ects estimator LS-

DVC (Hahn and Kuersteiner 2002) are marked with asterisks. To make the �gure less

crowded, only the latter impulse responses are accompanied by 90% bootstrapped con�-

dence bands (shown by the dashed lines in the �gure; number of bootstrap repetitions is

1,000).

All responses are estimated to be positive. The bias-corrected estimates show markedly

more persistence than the simple �xed e¤ects estimates. This observation re�ects the

negative bias of the simple �xed e¤ects estimator in samples of this size (see Section 5). In

fact, there is a remarkable level of endogenous persistence in the estimates obtained using

the Hahn and Kuersteiner (2002) bias correction. Output is still as high as on impact

after 8 years, i.e. at a time when the exogenous persistence of �scal spending itself has

reduced the increase in government consumption to about half its impact value.

Other than with respect to persistence, the impulse responses from the �xed e¤ects

(LSDV) and bias-corrected (LSDVC) estimates turn out to be fairly similar (with the

LSDV responses lying within the con�dence bands of the LSDVC-based ones). Note that

this result is not in con�ict with the �nding of substantial biases in the LSDV coe¢ cient

estimates that has been reported in the Monte Carlo study in Section 5. The reason is

that impulse responses are complicated nonlinear functions of all estimated parameters,

such that the e¤ects of biases in individual coe¢ cients on the resulting impulse responses

are in general hard to predict.

To interpret the size of the responses, note that a one percent shock to government

spending increases real gdp on impact by about 0:1 percent. In the literature, as well as

in policy discussions, �scal spending e¤ects are often quoted in terms of the ��scal output

multiplier�, i.e. the response of real gdp to a government shock of the size of one percent

of gdp. The �scal output multiplier can be recovered by dividing the output response by

the sample mean of the share of government consumption in gdp, which is 18.19% in our

sample. Hence, the results presented in Figure 4 imply an impact multiplier on output of

about 0:55%. Over the course of the following periods, however, the gdp response increases

further with a marked hump-shape, such that the maximum �scal output multiplier reaches

a level of almost one after about two to three years.

To compare these numbers to previous literature, note that our estimates are close

in size to those reported by Ravn, Schmitt-Grohe, and Uribe (2007) for their quarterly

panel comprising four countries, and somewhat less than estimates for quarterly US data

from Perotti (2007) or Monacelli and Perotti (2008). The latter studies �nd an output

multiplier reaching 1 to 1.5 percent for a shock equalling one percent of gdp, depending on

the exact sample and method used. Our estimated output multipliers are also somewhat

smaller than the ones documented by Beetsma, Giuliodori, and Klaassen (2008) for their

annual EU country panel.
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In our sample, consumption is on average 57.62% of gdp, so that the estimated impact

response translates into a consumption multiplier of about 0:11 : The peak response is

about 0:17 for a shock sized one percent of gdp. This number is substantially smaller than

what has been reported in some previous studies; for example, Perotti (2007) estimates the

consumption response to be one percent for the US, and about half that value for the other

countries for which he has quarterly data (Australia, Canada, UK). At the same time, our

estimates are quite well in line with those of Ravn, Schmitt-Grohe, and Uribe (2007).

In any case, we �nd the positive response of consumption to be statistically signi�cant.

Note that some studies, e.g. Perotti (2004), have found that the consumption response

becomes smaller, or turns negative, for sample periods starting in the 1980s. When we

restrict the sample to cover the years 1980 to 2008, we can con�rm this �nding for our

broader country set, in that the private consumption response is initially notably smaller

and generally insigni�cant.9

Our estimate of a strongly positive response of the real product wage is consistent with

�ndings for the US presented by Monacelli and Perotti (2008). The e¤ect documented

here is larger than for Monacelli and Perotti�s (2008) broadest measures of the real wage,

although consistent with the one they report for the manufacturing sector. The most

obvious di¤erence of our results with respect to earlier literature is the positive investment

response in Figure 4, while the typical �nding in the literature (e.g. Perotti, 2007) shows

a negative response. However, we do not �nd the investment response to be statistically

signi�cant at the chosen con�dence level.

For the sake of completeness, we also experimented with the extended GMM estimators

EGMM1, EGMM2, and EGMM2. These estimation techniques yield impulse response

functions that are in general more persistent than under our preferred estimation technique

LSDVC. This �nding is in line with the Monte Carlo evidence presented in Section 5. As

can be seen from Table 2, the positive bias of the extended GMM estimators is particularly

pronounced when the degree of cross-sectional heterogeneity is large, which is a likely

characteristic of our dataset for OECD countries (as noted before, the e¤ects of biases in

individual coe¢ cients on the resulting impulse responses are in general hard to predict).

Finally, the small number of cross-sectional units (N = 19) makes the extended GMM

estimators less suited for our application.

7 Conclusion

This paper aimed at providing macroeconomic practitioners with guidelines for estimating

panel VARs. We have extended the existing Monte Carlo evidence for estimating panel

VARs from panels with short time and large cross-sectional dimension to panels that are

characterized by a relatively large time but a small cross-sectional dimension as typically

encountered in macroeconomic applications. We have compared widely used estimation

9These results are not reported for brevity, but are available upon request.
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techniques that have hitherto been studied in the literature in a single equation context.

Our results for multi-equation models complement the ones presented by Binder, Hsiao,

and Pesaran (2005), who have restricted their attention to the case where T � 10 and N
is large.

We have shown that the simple LSDV estimator that is widely applied in the macro

panel VAR literature remains problematic even when is T large. Our analysis suggests that

bias-corrected versions of the least squares dummy variable estimator are the estimators

of choice for estimating macro panel VARs. This recommendation is also supported by the

fact that bias-corrections are relatively easy to implement.10 Our results for multivariate

panel VARs are in line with previous evidence for dynamic single-equation panel data

models, see e.g. Kiviet (1995), Judson and Owen (1999), Bun and Kiviet (2003), Ramalho

(2005), or Bruno (2005).

Since macroeconomic practioners usually focus on the impulse response functions im-

plied by the estimated VAR coe¢ cients, we have illustrated how strongly IRFs are a¤ected

by the estimation biases of individual VAR coe¢ cients. To investigate the practical im-

portance of the methodological arguments made in the Monte Carlo analysis, we have

presented an application in which we use a panel VAR to estimate the e¤ects of gov-

ernment spending shocks in OECD countries. In this application, the resulting impulse

responses from simple �xed e¤ects estimates are still reasonably close to the bias-corrected

ones, though they tend to understate the persistence of shock e¤ects notably. Since im-

pulse responses depend nonlinearly on all estimated VAR coe¢ cients, the e¤ects of biases

in individual coe¢ cients on the resulting IRFs can take various forms. For this reason, we

recommend to use bias-correction procedures when estimating �xed-e¤ects speci�cations

of panel VARs from macroeconomic datasets. In any case, it is advisable to compare

results obtained using di¤erent estimation techniques in empirical applications.

In this paper, we have restricted our attention to those estimation procedures that

have actually been used by previous studies to estimate macro panel VARs (and for which

barriers for e¢ cient application by practitioners are low). Speci�cally, we have considered

with Hahn and Kuersteiner�s (2002) estimator only one possible approach to implement

a bias-correction to conventional estimators. The theoretical literature on bias-correction

procedures is evolving rapidly and alternative estimation procedures to estimate macro

panel VARs may therefore be considered. However, the recent advances in the economet-

rics literature are typically developed for single-equation models and are usually tested

for small-T data, see for instance Bun and Carree (2005) and Bun and Kiviet (2006).

Hahn, Hausman, and Kuersteiner (2007) have used �long di¤erence techniques�to derive

a new bias-corrected instrumental variables estimator. Extending these recent estimators

10This does, of course, not mean that such estimation techniques are necessarily superior for all parameter
combinations and panel dimensions (also see Bun and Carree 2005 and Bun and Kiviet 2006 for a discussion
on this issue in the single-equation context).
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to the multivariate case and investigating their appropriateness for datasets having di¤er-

ent dimensions than the usual microeconometric datasets is an important task for future

research.11

11Estimation techniques not considered in this paper are likelihood-based procedures (see e.g. Binder,
Hsiao, and Pesaran, 2005 or Yu, de Jong, and Lee 2008), and Bayesian approaches (see e.g. Canova,
Ciccarelli, and Ortega 2007). For the case of nonstationary data, we refer to Breitung (2005) and Larsson
and Lyhagen (2007), who consider cointegration in panel VARs. Finally, the issue of cross-sectional
dependence in panel VARs (see e.g. Huang 2008) is clearly an important issue but an investigation is
beyond the scope of this paper.
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A Appendix: Data for the �scal panel VAR application

The countries included in the panel VAR are all OECD countries for which the required

data are available over the length of the sample period from 1960 to 2008. These countries

are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece, Ireland,

Italy, Japan, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, the United

Kingdom, and the United States (Germany has been omitted to avoid problems with

structural breaks due to German uni�cation).

The source of all data is the website of the European Union�s Directorate General

for Economics and Finance Annual Macroeconomic Database (AMECO). The variables

included in the �scal VAR are de�ned as follows.

� yt: Real gdp per capita: Gross domestic product at 2000 market prices, divided by
total population.

� gt: Real government spending per capita: Final consumption expenditure of general
government at current prices, divided by the price de�ator of gdp, and divided by

total population.

� ct: Real private consumption per capita: Private �nal consumption expenditure at
2000 prices, divided by total population.

� it: Real gross investment per capita: Gross �xed capital formation at 2000 prices,
total economy, divided by total population.

� wt: Real wage rate: Index of real compensation per employee, de�ator GDP, total
economy (2000=100).

All variables enter the panel VAR in natural logarithms.
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