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re ihre Erstellung niemals möglich gewesen. Besonders bedanken möchte
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Zusammenfassung

Nichtlineare hyperbolische Probleme zweiter Ordnung stehen im Focus der vor-

liegenden Dissertation. Zwei verschiedene Arten von Nichtlinearitäten werden

betrachtet: Quasilineare elliptische Differentialoperatoren und Probleme mit Kon-

takt. Dabei ist das Ziel, a posteriori Fehlerabschätzungen für den Diskretisie-

rungsfehler in beliebigen nichtlinearen Zielfunktionalen herzuleiten. Darauf auf-

bauend werden angemessene adaptive Verfeinerungsalgorithmen entwickelt, um

die Effizienz der Diskretisierungsverfahren zu steigern.

Im ersten Teil werden quasilineare hyperbolische Gleichungen zweiter Ordnung

untersucht. Aufbauend auf einer geeigneten Problemformulierung erfolgt die Dis-

kretisierung mit einem Ort-Zeit Petrov-Galerkin Verfahren. Der dann hergeleite-

te zielorientierte a posteriori Fehlerschätzer basiert auf der Lösung eines dualen

Problems. Zu dessen numerischer Lösung wird das durch den Fehlerschätzer

vorgegebene Diskretisierungsverfahren verwendet. Aus dem Fehlerschätzer wer-

den anschließend geeignete Verfeinerungsindikatoren gewonnen, die die Basis

für die adaptive Verfeinerung bilden. Die vorgestellten Verfeinerungsstrategien

führen zu Finite-Elemente-Netzen, die nicht unbedingt den Anforderungen des

Diskretisierungsverfahrens und des Fehlerschätzers genügen. Deshalb wird eine

geeignete Netzstruktur mit Regularisierungsalgorithmen sichergestellt. Numeri-

sche Resultate belegen die Genauigkeit der a posteriori Fehlerabschätzung und

die Effizienz des adaptiven Diskretisierungsverfahrens.

Probleme mit Kontakt bilden den Schwerpunkt des zweiten Teils. Zuerst werden

a posteriori Fehlerschätzer, die den Diskretisierungsfehler in beliebigen nichtli-

nearen Zielfunktionalen messen, für statische Probleme hergeleitet. Dabei er-

folgt die Diskretisierung mit einer gemischten Finite-Elemente-Methode. Bei

der Behandlung dynamischer Probleme mit Kontakt ist neben den geometri-

schen Kontaktbedingungen auch eine
”
Impact“ Bedingung zu berücksichtigen.

Auf Grundlage einer Ort-Zeit Petrov-Galerkin Diskretisierung wird dann auf-

bauend auf der Grundidee des statischen Falls ein a posteriori Fehlerschätzer

entwickelt. Mehrere numerische Beispiele zeigen auch in diesem Fall die Ge-

nauigkeit der a posteriori Fehlerabschätzung und die Effizienz des adaptiven

Diskretisierungsverfahrens.
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Summary

Nonlinear hyperbolic problems of second order are the focus of the thesis at

hand. Two different kinds of nonlinearities are considered: Quasilinear elliptic

differential operators and contact problems. The aim of this thesis is to derive

a posteriori error estimates of the finite element discretisation error measured

w.r.t. arbitrary nonlinear functionals of interest. Based on the a posteriori error

estimate, adequate adaptive methods are developed to enhance the efficiency of

the discretisation.

In the first part of this thesis, quasilinear hyperbolic equations of second order

are examined. Based on an adequate problem formulation, a space-time Petrov-

Galerkin method is used for discretisation. A goal-oriented a posteriori error

estimator is derived. It is based on the solution of a dual problem, which is nu-

merically solved by the discretisation scheme prescribed by the error estimator.

Appropriate refinement indicators are deduced from the error estimator. They

are the basis of the adaptive algorithm. The presented refinement strategies

lead to finite element meshes, which do not necessarily fulfil the requirements of

the discretisation scheme and the error estimator. Consequently, regularisation

algorithms are developed, which ensure a suitable mesh structure. Numerical

results substantiate the accuracy of the a posteriori error estimate and the effi-

ciency of the adaptive discretisation.

Contact problems are the focal point of the second part. At first, a posteriori

error estimators concerning static contact problems are derived. They measure

the discretisation error w.r.t. an arbitrary nonlinear functional of interest. A

mixed finite element method is used to discretise the static contact problems.

Beside the geometric contact conditions, an impact condition has to be con-

sidered in dynamic contact problems. Based on a space-time Petrov-Galerkin

method, an a posteriori error estimator is developed. The main idea in the

derivation corresponds to the idea in the static case. Several numerical exam-

ples show the accuracy of the a posteriori error estimate and the efficiency of

the adaptive discretisation scheme.
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Introduction

Adaptive finite element methods for nonlinear hyperbolic problems of

second order are developed in this thesis. We work in the context of

structural mechanics. The solution of the underlying problem, which

depends on a spatial and a temporal coordinate, usually is the displace-

ment. The first time derivative of the displacement is the velocity. The

acceleration is given by the second time derivative. Hyperbolic problems

of second order are composed of the acceleration and of a spatial differ-

ential operator applied to the displacement. We address two different

nonlinear problem classes: In the first one, quasilinear elliptic differential

operators in space are considered, which lead to quasilinear hyperbolic

equations of second order. The second problem class consists of dynamic

contact problems, for which the differential operator is assumed to be lin-

ear. However, the displacement is restricted by a rigid foundation. This

leads to a hyperbolic variational inequality of second order. A space-

time Galerkin approach is used to discretise the problems. A continuous

Galerkin method based on linear trial functions is applied to discretise

the temporal part, for the discretisation of the spatial part low order

finite elements are used. Adopting the dual weighted residual (DWR)

technique, a posteriori error estimates in arbitrary functionals of interest

are derived. They are the basis of the adaptive mesh refinement meth-

ods, which are applied to enhance the discretisation error at minimum

numerical effort.

xi



xii INTRODUCTION

Nonlinear second order hyperbolic problems arise in many engineering

processes, e.g., in milling and grinding processes, vehicle design, and bal-

listics. Let us take a closer look at a specific engineering process, namely

NC-shape grinding with toroid grinding wheels.
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NC-Shape Grinding with Toroid Grinding Wheels

In Figure 1.1.1(a), a photo of a typical grinding machine is depicted.

The picture illustrates the different length scales of the system. A photo

of the contact area between the grinding wheel and the workpiece is

shown in Figure 1.1.1(b). There, the toroid grinding wheel and the free

formed workpiece surface are clear to see. Shape grinding with toroid

grinding wheels is favoured for achieving high material removal rates

while grinding free formed surfaces. Based on the semicircular profile of

the grinding wheel and a line by line movement, it is possible to machine

geometrically complex surfaces. The contact area between grinding wheel

and workpiece is therefore complex and varying. In Figure 1.1.2, the

engagement of the grinding wheel is illustrated. See, e.g., [65] for a

detailed description of the process.

Grinding processes, which are mainly used to finish the surface, are of-

ten the last step in the production chain for a workpiece. Accordingly

the financial value of the component is already high. On account of

this, workpiece errors due to the grinding process are expensive and

have to be avoided. An accurate simulation provides a basis to improve

this flexible production process and to ensure a suitable process strat-

egy. In our simulation approach, which is described in detail in [114],

a geometric-kinematical process simulation and a finite element simula-

tion of the decisive parts of the grinding machine are coupled. In the

geometric-kinematical simulation, a process force model, see [20], is pro-

vided, which is based on the contact surface between the grinding wheel

and the workpiece. Using a dexel model of the workpiece, see [113],

the simulation calculates the material-removal and reproduces the move-

ment of the grinding wheel and the workpiece according to the NC data.

In the finite element simulation, the grinding wheel and the spindle are

explicitly included. The spindle-grinding wheel-system is depicted in Fig-

ure 1.1.3. The remaining parts of the grinding machine are modelled by

elastic bearings. The workpiece interacts with the grinding wheel only
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(a) Grinding machine

(b) Zoom on grinding wheel and workpiece

Figure 1.1.1. Picture of the grinding machine
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Figure 1.1.2. Schematic overview of the engagement of
the grinding wheel

Figure 1.1.3. Spindle-grinding wheel-system
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in a small contact zone. However, the behaviour of the grinding ma-

chine is strongly affected by the resulting contact force. This contact is

modelled by a dynamic Signorini problem. The two parts of the simu-

lation are coupled in such a way that the displacements of the grinding

wheel determined by the finite element simulation are transferred to the

geometric-kinematical simulation, which calculates the removal on the

basis of these displacements. The coupling is discussed in detail in [112].

Grinding errors result to some extent from the dynamic compliance of

the spindle. Consequently, inertial and damping effects have to be con-

sidered, see [65] for a discussion from the engineering point of view.

Another reason for grinding errors are thermal effects. This topic is ex-

tensively discussed in [20]. The consideration of thermal effects leads to

thermomechanic Signorini problems. They include the heat equation for

the description of the heat transfer. Furthermore, frictional effects have

to be considered because the energy dissipated due to friction is mostly

transferred into heat. A finite element method for the discretisation of

the mentioned thermomechanic Signorini problem is presented in [23].

For the reliable simulation of such a complex process, a precise predic-

tion is required for the contact forces, the contact zone, and their effects

onto the whole body. Furthermore, the contact zone and the contact

forces are strongly depending on time. Hence, the precise consideration

of these dependencies is essential in the numerical simulation. An ade-

quate technique, which gives rise to a flexible and efficient finite element

discretisation, is based on a posteriori error control and resulting adaptive

mesh refinement. This leads to the aim of the thesis at hand, which is

to derive a goal-oriented a posteriori error estimate for dynamic contact

problems and to develop an adequate adaptive refinement method based

on it. If the restriction is not active in dynamic contact problems, they

reduce to linear hyperbolic equations of second order. Consequently, it

makes sense to begin the investigations with linear hyperbolic problems

of second order. However, we treat the more general quasilinear case,

which includes linear equations as a special case.
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Adaptive Finite Elements for Quasilinear Hyperbolic

Equations of Second Order

Quasilinear hyperbolic equations of second order are the topic of Chapter

1. They are continuously formulated as a system of first order. We shortly

discuss their well-posedness. A space-time Petrov-Galerkin method is

used to discretise the quasilinear hyperbolic equations of second order.

The trial space consists of piecewise linear and globally continuous basis

functions in time. The temporal test functions are piecewise constant and

discontinuous. In space, bilinear finite elements are used. The discon-

tinuity of the test functions allows for the decoupling of the time steps.

This decoupling leads to the corresponding time stepping scheme. In

each time step, the solution of a nonlinear elliptic system and an L2-

projection have to be calculated. We present a solution algorithm based

on a stabilised Newton method. Furthermore, we discuss the treatment

of spatial and temporal hanging nodes. The existence and uniqueness

of a discrete solution as well as the convergence to the continuous solu-

tion are ensured. The a priori error estimates show that the presented

method is convergent of second order in time and that the convergence

properties of bilinear finite elements known from elliptic problems carry

over to hyperbolic equations of second order. But we also observe that

the convergence can be disturbed, if the spatial mesh is changed during

the calculation. Consequently, we have to take into account the effects of

mesh changes in the adaptive refinement method.

The derivation of a goal-oriented a posteriori error estimate is the focal

point of Chapter 1. The aim is to estimate the discretisation error in an

arbitrary nonlinear functional of interest. The first step is to represent

the error in terms of the discrete primal and dual residual weighted by the

approximation error of the dual and primal solution, respectively. The

primal problem is the quasilinear hyperbolic equation of second order.

The dual problem is specified by the assumptions of the error repre-

sentation. It is a linear hyperbolic problem of second order, which runs
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backward in time. The error representation involves a discrete dual prob-

lem, which is solved numerically. The solution scheme of the discrete dual

problem is prescribed by the assumptions of the error representation, too.

We derive the dual time stepping scheme and discuss its properties. It

significantly differs from the primal discretisation scheme.

The error representation includes the continuous primal and dual solu-

tion. Thus it cannot be evaluated numerically. We introduce an approx-

imative evaluation of the error identity, which is based on a higher order

interpolation in space and time of the discrete primal and dual solution.

Due to the tensor product structure of the discrete basis functions, the

higher order interpolation allows to split the error estimate into two parts,

one of them measuring the temporal error and one representing the spa-

tial error. Numerical experiments show the accuracy of the a posteriori

error estimate and substantiate the definition of the temporal and spatial

error estimator.

Adaptive Mesh Refinement

The error estimator presented in Chapter 1 does not only provide an ac-

curate estimation of the discretisation error measured in the functional

of interest. It also reflects the spatial and temporal distribution of the

error. This second property is the basis for the adaptive mesh refinement

techniques presented in Chapter 2. First of all, we define appropriate re-

finement indicators, which represent the error on a single mesh cell. For

this purpose, the error estimate is localised to the single mesh cells. In the

temporal direction, it is sufficient to consider the integrals over the single

subintervals. The localisation in the spatial direction is more involved.

We discuss two alternatives: Cellwise integration by parts and filtering.

Refinement indicators have to be sorted according to their effective size

in the refinement strategy. The evaluation of this measure has a substan-

tial influence on the behaviour of the adaptive refinement method. We

discuss several alternative methods. The final step in the preparation

of the refinement indicators consists in a smoothing procedure, which is

needed because of the oscillatoric behaviour of the underlying problem.
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The adaptation of the refinement indicators involves several parameters.

Numerical experiments are presented, which provides the basis for the

choise of those parameters.

The refinement strategy consists in three parts: The so called space-time

refinement strategy decides whether the spatial meshes, the temporal

mesh, or both are adaptively refined. We use the optimal mesh strategy

to select those spatial mesh cells or those temporal subintervals, respec-

tively, which should be refined. For the approximative evaluation of the

error identity, all spatial meshes need to have patch structure. In order

to avoid large additional errors due to mesh changes, we only permit

temporal hanging nodes of maximum degree one. This property closely

connects the meshes of two consecutive time steps. Spatial hanging nodes

of higher degrees can lead to oscillations in the discrete solution. Thus,

spatial hanging nodes of maximum degree one are only allowed. During

the adaptive refinement, the mentioned properties of the mesh sequence

may be and usually are destroyed. Consequently, we develop regulari-

sation algorithms, which ensure this mesh structure. After the adaptive

refinement of a spatial mesh, the spatial regularisation algorithm restores

the patch structure of the mesh and gets rid of all spatial hanging nodes of

degree greater than one. The temporal regularisation algorithm removes

all backward hanging nodes of degree greater than one in a forward loop

over all time steps. Vice versa, all forward hanging nodes of degree greater

than one are regularised in a backward loop. The spatial mesh structure

is conserved during the temporal regularisation. We analyse the regular-

isation algorithms and show that they really ensure the mentioned mesh

structure. In particular, we obtain that only one temporal regularisation

loop is needed. The use of hierarchic meshes is a main ingredient of the

proofs. Furthermore, they rely on the fact that a spatial mesh cell is

refined only once during the adaptive refinement and the regularisation.

Putting all parts together, we present the adaptive solution algorithm

for the quasilinear hyperbolic equations of second order and discuss some

implementation issues, such as the mesh management. For comparison,
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we introduce a heuristic error indicator, which is cheap to be evaluated

but controls the error in a global norm. The error indicator is based on

a residual estimator in space and on an estimator known from ordinary

differential equations in time. Two numerical examples illustrate the

adaptive finite element discretisation. We compare the adaptive discreti-

sation based on the presented error estimator to uniform discretisations,

to adaptive methods based on the heuristic error indicator, and to ex-

plicit methods. The presented adaptive method is more efficient with

respect to the number of unknowns as well as in terms of computing time

in these examples.

Adaptive Finite Elements for Static Contact Problems

Chapter 3 is devoted to static contact problems. We discuss the static

problems for two reasons: Much more analytical results are known in the

static than in the dynamic case. Furthermore, many concepts developed

for static problems, such as the solution approach for the discrete prob-

lems or the basic idea of the a posteriori error estimate, carry over to the

dynamic case. The initial point of our discretisation is the mixed formula-

tion of the static contact problem, where the Lagrange multiplier may be

interpreted as contact force. We present a stable finite element discretisa-

tion. Bilinear finite elements are applied to discretise the displacement. A

piecewise constant approximation of the Lagrange multiplier on a possi-

bly coarser mesh is used. The discretisation leads to a quadratic program

in the Lagrange multiplier with sign constraints only, which can be solved

by adequate nonlinear optimisation algorithms. The convergence prop-

erties of the bilinear finite elements known from the linear elliptic case

carry over to the contact problems, if the contact situation is sufficiently

smooth. Furthermore, the Lagrange multiplier provides a more accurate

approximation of the contact stress than the post-processed values based

on the displacement do.

We derive a goal-oriented a posteriori error estimate, where the discreti-

sation error is controlled in an arbitrary, even nonlinear, functional of
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interest. The basic idea of the derivation is to define a linear elliptic aux-

iliary problem, which includes the discrete Lagrange multiplier as Neu-

mann boundary condition. The discrete solution of the auxiliary problem

is equal to the discrete solution of the contact problem. We additively

split the error into two parts. One represents the error between the dis-

crete solution of the contact problem and the continuous solution of the

auxiliary problem. This error is estimated by the standard dual weighted

residual method, which involves the discrete solution of a linear elliptic

dual problem. Using the same dual problem, the second part, namely the

error between the continuous solution of the auxiliary problem and the

continuous solution of the contact problem, is estimated. This estimate

is mainly governed by the discretisation error of the Lagrange multiplier.

Using a higher order interpolation of the Lagrange multiplier, we obtain

a computational evaluable error estimate. Numerical results show the

accuracy of the proposed approach. Defining approriate refinement indi-

cators, we also obtain an efficient adaptive finite element method based

on the presented a posteriori error estimate.

Adaptive Finite Elements for Dynamic Contact Problems

Dynamic contact problems are the topic of Chapter 4. As in the static

case, we introduce a mixed problem formulation. Beside the geometrical

contact conditions known from static contact problems, an impact law has

to be considered. We work with a purely elastic impact model, i.e. energy

conservation is enforced during the contact. A mixed space-time Petrov-

Galerkin method on the basis of the mixed problem formulation is used

to discretise the dynamic contact problems. Especially, the numerical

solution of the discrete problems in the single time steps is discussed. A

linear optimisation problem with nonlinear constraints has to be solved

in each time step. A benchmark or model problem provides first insight

into the presented method.

The derivation of the goal-oriented a posteriori error estimate proceeds in

many steps analogously to the static case. The auxiliary problem is a lin-

ear hyperbolic equation of second order just like the dual problem. We use
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the error estimator presented in Chapter 1 to estimate the discretisation

error with respect to the functional of interest in the auxiliary problem.

Using a space-time higher order interpolation of the Lagrange multiplier,

we obtain a computationally evaluable estimate for the error between the

continuous solution of the auxiliary problem and the continuous solution

of the contact problem in the functional of interest. The same technique

as in Chapter 1 allows for splitting this estimated error into a spatial

and a temporal part. We define adequate refinement indicators and use

the techniques presented in Chapter 2 to realise the adaptive mesh re-

finement. The accuracy of the error estimator and the efficiency of the

resulting adaptive method are substantiated by two numerical examples.

Following the description of the numerical examples in Chapter 4, we

discuss further open question in the context of adaptive methods for hy-

perbolic problems of second order and more general for time dependent

problems. To this end, we present first results concerning dynamic con-

tact problems, which are beyond the scope of the work at hand. For

instance, we discuss a thermomechanic example. The thesis concludes

with a discussion of the results in Chapter 5.



CHAPTER 1

Adaptive Finite Elements for Quasilinear

Hyperbolic Equations of Second Order

In this chapter, we discuss quasilinear hyperbolic equations of second

order. Starting from the strong formulation, the weak one is presented.

After a short discussion of the analytical properties, a Petrov-Galerkin

space-time discretisation scheme is introduced and analysed. Then an

a posteriori error estimator, which estimates the error with respect to

(w.r.t.) an arbitrary functional, is derived and tested by a numerical

example.

The continuous Galerkin method, which we use for discretisation, is pre-

sented in [8, 49]. The velocity is coupled with the time derivative of the

displacement not by the L2-scalar product but by the underlying bilin-

ear form in [47]. Another possible approach is based on discontinuous

Galerkin methods, which are presented, e.g., in [61, 62, 64, 67, 77]. Be-

sides the space-time Galerkin approach, a lot of finite difference methods

for the temporal discretisation of this problem class exist. An overview

is given for instance in the monograph [60].

For elliptic problems, many different a posteriori error estimators are pre-

sented in literature, see, e.g., the monographs [4, 111] for an overview.

For hyperbolic equations of second order, only few contributions exist.

One approach, which is used to estimate the error in global norms, is

based on finite difference discretisations in time. Here, separate error

estimators are used for the space and the time direction [27, 79, 119]

or error estimates for the whole problem are derived [2, 18]. The other

approach, which is used here, is based on a space-time Galerkin method.

1
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Discontinuous Galerkin schemes are the basis for the error estimators

presented in [7, 67, 78]. There, the norm of the error in the last time

step is controlled, where the dual solution is estimated by analytical ar-

guments and not solved numerically. The same approach for a continuous

space-time Galerkin method was presented in [47]. The DWR method

was used in [9, 10, 11, 12] to derive an a posteriori error estimate for

the linear wave equation. Only the primal residual was considered and

the adaptive algorithm was restricted to the spatial discretisation. Sev-

eral results concerning goal-oriented adaptive finite element methods for

structural dynamics have been published by the group of Schweizerhoff

[71, 72, 83, 87]. The results from Johnson and Bangerth are used and

somewhat extended. An important topic of their work is the reduction

of the numerical effort of the error estimation.

Our approach to goal-oriented adaptivity for quasilinear hyperbolic equa-

tions of second order is based on optimisation arguments as the approach

presented in [99] for nonlinear parabolic problems. We will point out the

differences from and similarites to the derivation in [99] throughout the

text.

1.1. Quasilinear Hyperbolic Equations of Second Order

After some introductory remarks concerning Sobolev spaces, the strong

formulation of quasilinear hyperbolic equations of second order is pre-

sented. Using integration by parts, the weak formulation is derived. An-

alytical properties like existence and uniqueness of weak solutions are

discussed.

1.1.1. Problem Formulation. First, we introduce some notations.

Let us begin with the basic domain Ω ⊂ R2. Throughout this thesis, we

will restrict ourselves to the two dimensional case to simplify the nota-

tion. Furthermore, the presentation of adaptive results is more conve-

nient in two dimensions. The coordinates are given by x = (x1, x2). The

boundary Γ := ∂Ω of Ω is divided into two parts Γ = ΓD ∪ ΓN , which
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are mutually disjoint. Each part ΓD or ΓN can be empty. In contrast

to elliptic problems, a unique solution of the pure Neumann problem

(ΓN = ∂Ω) can be obtained due to the initial values. The time interval

is given by I = [0, T ] with T ∈ R, T > 0, where 0 is chosen as the initial

point without loss of generality.

We study quasilinear hyperbolic equations of second order, whose solu-

tion are given by functions u : Ω̄ → R. To ease the notation, we do not

consider systems of equations, although the theory can easily be trans-

ferred. However, we discuss some examples of this type. The solution u

is called displacement, too. The gradient of the displacement u in space

direction is denoted by ∇u. We study differential operators of the form

A(u) :=
∂a1 (x, t, u,∇u)

∂x1
+
∂a2 (x, t, u,∇u)

∂x2
+ b (x, t, u,∇u)

with a1, a2, b : Ω×I×R×R2→ R, where a1 and a2 have to be continuously

differentiable and b continuous. Some examples of operators of this type

are

∆u, ∆u− u3, div (a (∇u)) ,
where ∆u is the usual Laplace operator applied to u. The operator A is

called linear, if the functions a1, a2, and b are linear. For linear functions

a1 and a2 as well as a nonlinear function b, it is semilinear. In the case

of a1, a2, and b nonlinear, we refer to A as quasilinear operator.

We specify initial and boundary values, us for the initial displacement

and vs for the initial velocity. For notational simplicity, we assume ho-

mogeneous Dirichlet boundary conditions on ΓD. The nonhomogeneous

Neumann boundary conditions on ΓN are given by q. The first and sec-

ond time derivatives are denoted by u̇ and ü, respectively. The gradient

operator in the outward normal direction ν(x) on the boundary connected

to A is called B. If the boundary and u are sufficiently smooth, we obtain

the explicit form

B(u) = a1 (x, t, u,∇u) · ν1 + a2 (x, t, u,∇u) · ν2.
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Definition 1.1.1. A function u ∈ C2 (Ω× I) is a strong solution of the

quasilinear second order hyperbolic initial/boundary-value problem, if

and only if

ρü−A(u) = f in Ω× I (1.1.1)

u = 0 on ΓD × I
B(u) = q on ΓN × I (1.1.2)

u(0) = us in Ω

u̇(0) = vs in Ω

holds.

The density ρ is set to 1 for ease of notation.

1.1.2. Sobolev Spaces. In this section, we briefly present the un-

derlying function spaces. A detailed description of Sobolev spaces can be

found, e.g., in [1]. An overview of the spaces, which are mainly used in

the context of contact problems, is given in [70]. For the time dependent

Sobolev spaces, see, e.g., [42, 48].

The basic function space is L2 (Ω) := L2 (Ω) /N (Ω), where

L2 (Ω) :=

{

f : Ω→ R

∣

∣

∣

∣

f measurable,

�
Ω
f2 dx <∞

}

N (Ω) :=

{

f ∈ L2 (Ω)

∣

∣

∣

∣

�
Ω
f2 dx = 0

}

.

To ease the notation, we do not distinguish between [f ] and f any longer.

The L2-scalar product is defined by

(ω,ϕ) := (ω,ϕ)Ω :=

�
Ω
ωϕdx

for ω,ϕ ∈ L2 (Ω). The space L2 (Ω) provided with the scalar product

(·, ·) is a Hilbert space and the corresponding norm is ‖ω‖20 := ‖ω‖20,Ω :=

(ω, ω).
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Let α = (α1, α2) ∈ N2
0 be a multiindex of order |α| = α1 +α2. The partial

derivative w.r.t. α in the classic sense is given by

∂α =
∂|α|

∂α1x1∂α2x2
.

The weak partial derivative ∂αω ∈ L2 (Ω) of a function ω ∈ L2 (Ω) is

defined by

∀ϕ ∈ C∞
0 (Ω) : (∂αω,ϕ) = (−1)|α| (ω, ∂αϕ) ,

where C∞
0 (Ω) is the space of infinitely times differentiable functions with

compact support. The weak derivative is well defined and it corresponds

to the classic derivative, if ω ∈ C |α| (Ω). The Sobolev space Hk (Ω)

consists of all functions u ∈ L2 (Ω) such that for each multiindex α with

|α| ≤ k, ∂αu exists in the weak sense and belongs to L2 (Ω). The space

Hk (Ω) provided with the scalar product

(ω,ϕ)k :=
∑

|α|≤k

(∂αω, ∂αϕ)

is a Hilbert space and the corresponding norm is

‖ω‖2k := ‖ω‖2k,Ω := (ω, ω)k .

We also use the H1-semi-norm |u|1 with |u|21 := (∇u,∇u).

If Ω is a bounded domain with a piecewise smooth boundary and if Ω

satisfies a cone property, then there exists a bounded, linear operator

γ : H1 (Ω) → L2 (∂Ω) such that γ (v) = v|∂Ω if u ∈ H1 (Ω) ∩ C
(

Ω̄
)

and

‖γ (v)‖0,∂Ω ≤ C ‖v‖1 for each v ∈ H1 (Ω). The operator γ is called trace

operator and γ (u) trace of u on the boundary. The Hilbert space

H1/2 (∂Ω) := γ
(

H1 (Ω)
)

with the norm

‖w‖1/2 := inf
v ∈ H1 (Ω)

γ (v) = w

‖v‖1
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is dense in L2 (∂Ω). The dual space of H1/2 (∂Ω) is H−1/2 (∂Ω) with the

norm ‖·‖−1/2.

Using the trace operator, we define

H1 (Ω,ΓD) :=
{

ϕ ∈ H1 (Ω)
∣

∣γ|ΓD
(ϕ) = 0

}

.

Furthermore, we set H1
0 (Ω) := H1 (Ω, ∂Ω). The space H1

0 (Ω) can equiv-

alently be defined as the closure of C∞
0 (Ω) in H1 (Ω). The dual space

(

H1
0 (Ω)

)⋆
is called H−1 (Ω), too. The dual pairing is denoted by 〈·, ·〉.

We define the space H1/2 (ΓN ) := γ
(

H1 (Ω,ΓD)
)

. It is a closed subspace

of H1/2 (∂Ω) and is a Hilbert space provided with the associated norm

‖·‖1/2,ΓN
. The space H−1/2 (ΓN ) is the dual space of H1/2 (ΓN ). The

norm connected to H−1/2 (ΓN ) is called ‖·‖−1/2,ΓN
.

Using the Bochner integral theory, we can study Sobolev spaces involving

time. Here, X is a real Banach space with norm ‖·‖. The space Lp (I;X)

consists of all strongly measureable functions ϕ : I → X with

‖ϕ‖Lp(I;X) :=

(�
I
‖ϕ‖p dt

)1/p

<∞, (1 ≤ p <∞),

and

‖ϕ‖L∞(I;X) := ess sup
t∈I
‖ϕ(t)‖ <∞, (p =∞).

All continuous functions ϕ : I → X with

‖ϕ‖C(I;X) := max
t∈I
‖ϕ(t)‖ <∞

form the space C (I;X). The first weak time derivative of a function

u ∈ L2 (I;X) is denoted by u̇ ∈ L2 (I;X), where�
I
u̇(t)φ(t) dt = −

�
I
u(t)φ̇(t) dt

holds for all scalar test functions φ ∈ C∞
0 (I). The second weak time

derivative ü is analogously defined. As in the spatial setting, the weak

time derivatives correspond to the usual time derivative, if u is smooth. If

X is a Hilbert space with scalar product (·, ·), then the space-time scalar
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product is denoted by

((u, v)) :=

�
I
(u(t), v(t)) dt.

In general, an outer parenthesis denotes the integration over I. The

following result is the basis for the definition of initial values:

Proposition 1.1.2. Suppose ϕ ∈W with

W :=

{

u ∈ L2
(

I;H1 (Ω,ΓD)
)

∣

∣

∣

∣

∣

u̇ ∈ L2
(

I;L2 (Ω)
)

,

ü ∈ L2
(

I;
(

H1 (Ω,ΓD)⋆
))

}

.

Then ϕ ∈ C
(

I;H1 (Ω,ΓD)
)

and ϕ̇ ∈ C
(

I;L2 (Ω)
)

.

Proof of Proposition 1.1.2. Remark 1, in [42], Chapter XVIII, Sec-

tion 5. �

1.1.3. Weak Solutions. After the discussion of the appropriate

function spaces, we come to the definition of a weak solution. We need

the semi-linear form

a (u) (ϕ) : =

(

a1 (x, t, u,∇u) , ∂ϕ
∂x1

)

+

(

a2 (x, t, u∇u) , ∂ϕ
∂x2

)

+ (b (x, t, u,∇u) , ϕ)

with u, ϕ ∈ H1 (Ω,ΓD) and a1, a2, b ∈ L2
(

Ω× I × R× R2
)

. If it holds

u ∈ H1 (Ω,ΓD) ∩H2 (Ω), then

a(u)(ϕ) = (−A(u), ϕ) + (B(u), ϕ)ΓN

holds by integration by parts for all ϕ ∈ H1 (Ω,ΓD).

The right hand side f belongs to L2
(

I;L2 (Ω)
)

and q to L2
(

I;L2 (ΓN )
)

.

We define a weak solution of the quasilinear hyperbolic problem of second

order as follows:

Definition 1.1.3. A function u ∈W is a weak solution of the quasilinear

hyperbolic equation of second order provided u(0) = us ∈ H1 (Ω,ΓD),

u̇(0) = vs ∈ L2 (Ω), and

〈ü, ϕ〉 + a (u) (ϕ) = (f, ϕ) + (q, ϕ)ΓN
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for each ϕ ∈ H1 (Ω,ΓD) and a.e. t ∈ I.

Remark 1.1.4. By Proposition 1.1.2, we know

u ∈ C
(

I;H1 (Ω,ΓD)
)

,

u̇ ∈ C
(

I;L2 (Ω)
)

.

Consequently, the statement of the initial conditions makes sense.

The basis for the discretisation scheme presented in Section 1.2 is the

following definition of a weak solution:

Definition 1.1.5. A weak solution of the quasilinear second order hy-

perbolic problem is given by a function w = (u, v) ∈ U × V , if

∀ϕ = (ψ,χ) ∈ V × U : A(w)(ϕ) = 0 (1.1.3)

holds. The function u represents the displacement and v the velocity.

We have rewritten the hyperbolic problem of second order as a first order

system. The space-time semilinear form is given by

A(w)(ϕ) := ((u̇− v, ψ)) + ((v̇, χ))

+ (a (u) (χ))− ((f, χ))−
(

(q, χ)ΓN

)

+ (u(0)− us, χ(0)) + (v(0) − vs, ψ(0)) ,

where the initial conditions are enforced weakly through the terms

(u(0)− us, χ(0)) and (v(0) − vs, ψ(0)) .

The weak form of the partial differential equation and of the Neumann

boundary conditions is contained in

((v̇, χ)) + (a (u) (χ))− ((f, χ))−
(

(q, χ)ΓN

)

.

The term

((u̇− v, ψ))
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weakly ensures the equality of v and u̇. The function spaces U and V are

defined as

U :=
{

ψ ∈ L2
(

I;H1 (Ω,ΓD)
)

∣

∣

∣ψ̇ ∈ L2
(

I;H1 (Ω,ΓD)
)

}

,

V :=
{

χ ∈ L2
(

I;H1 (Ω,ΓD)
) ∣

∣χ̇ ∈ L2
(

I;L2 (Ω)
)}

.

Remark 1.1.6. It holds U ⊂ C
(

I;H1 (Ω,ΓD)
)

and V ⊂ C
(

I;H1 (Ω,ΓD)
)

.

The assumptions on the trial spaces U and V are somewhat stronger than

those on W in Definition 1.1.3. They are only made to ease the notation.

1.1.4. Properties of the Continuous Solution. In this section,

we study the analytical properties of the continuous solution of the quasi-

linear hyperbolic equation of second order. Let us begin with the exis-

tence and uniqueness of a weak solution. This question cannot be an-

swered in the general setting. To be complete, we mention the results for

some important special cases: We start with an existence and uniqueness

result for the linear case:

Proposition 1.1.7. Let A be a linear and uniformly elliptic operator.

Then a unique weak solution exists. It depends continuously on the data.

Proof of Proposition 1.1.7. [42], Chapter XVIII, Section 5. �

We have the following regularity result:

Proposition 1.1.8. Assume A to be linear, ΓD = ∂Ω, us ∈ Hm+1 (Ω)∩
H1

0 (Ω), vs ∈ Hm (Ω), and ∂kf
∂tk
∈ L2

(

I;Hm−k (Ω)
)

, k = 0, . . . ,m. Also

suppose that the mth-order compatibility conditions hold. Then

∂ku

∂tk
∈ L∞

(

I;Hm+1−k (Ω)
)

, k = 0, . . . ,m+ 1.

Proof of Proposition 1.1.8. [48], Section 7.2. �

In the semilinear case, there exists a unique local solution:
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Proposition 1.1.9. If A is a semilinear operator, which fulfils the growth-

and smoothness-assumption specified in [36], then a unique solution exists

on [0, T (us, vs)], where us, vs, and f are sufficiently smooth.

Proof of Proposition 1.1.9. [36], Chapter 6. �

Finally, we consider the quasilinear case:

Proposition 1.1.10. Suppose A is a quasilinear operator satisfying some

strong growth- and smoothness-assumption given, e.g., in [63]. Further-

more, let us, vs, and f be sufficiently smooth. Then there exists a unique

solution on [0, T (us, vs)].

Proof of Proposition 1.1.10. The proof of this assertion has been

managed only under non-optimal smoothness assumptions on us and vs,

yet. A first result is contained in [63]. An improved result is given, e.g.,

in [50]. See the references therein for further results. �

We denote the Fréchet derivative of an operator D by D′, see, e.g., [115]

Section III.5. We make the following assumption, which ensures that the

numerical solution algorithm and the a posteriori error estimate work:

Assumption 1.1.11. Let the semilinear form a(·)(·) be three times con-

tinuously Fréchet differentiable w.r.t. the first argument. We assume

that an isolated weak solution w = (u, v) according to Definition 1.1.5

exists. Furthermore, the Fréchet derivative of A leads to a well-posed

linear problem in a neighbourhood of w = (u, v).

The solution of a hyperbolic problem of second order fulfils several con-

servation properties. Of great importance is the conservation of energy.

We want to discuss the conservation of energy in the linear case in de-

tail, because this topic becomes important in the treatment of dynamic

contact problems. The energy can only be conserved, if no outer forces
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act on the body. Consequently, f and q are zero. The kinetic energy is

given by

Ekin :=
1

2
(u̇, u̇) =

1

2
(v, v) .

The potential or inner energy is specified by Ein := 1
2a (u, u). The total

energy is Etot := Ein +Ekin.

Proposition 1.1.12. If ϕ = (−v̇, u̇) is a suitable test function in equation

(1.1.3), then the total energy Etot is conserved.

Proof of Proposition 1.1.12. Since ϕ = (−v̇, u̇) is a suitable test

function in equation (1.1.3), we obtain

0 = (− (u̇− v, v̇)) + ((v̇, u̇)) + (a (u, u̇))

=

(

∂

∂t

1

2
(v, v)

)

+

(

∂

∂t

1

2
a (u, u)

)

= Ekin(T )− Ekin(0) + Ein(T )− Ein(0)

= Etot(T )− Etot(0).

The final point in time T can be chosen arbitrarily. Consequently, the

energy is constant for all t ∈ I. �

1.2. Finite Element Discretisation in Space and Time

In this section, the discretisation scheme for the quasilinear hyperbolic

equations of second order is introduced. It is based on a space-time finite

element ansatz. After the introduction of the finite element approach,

the solution algorithm of the discrete problem is discussed. Finally, the

discretisation approach is analysed.

1.2.1. A Continuous Petrov Galerkin Method. We present the

space-time finite element method. The temporal discretisation is based

on a decomposition of the time interval I = [0, T ] intoM ∈ N subintervals

Im = (tm−1, tm] with

0 = t0 < t1 < . . . < tM = T and I = {0} ∪ I1 ∪ . . . ∪ IM .
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The length of a subinterval Im is km := tm − tm−1. The time instances

ti, 0 ≤ i ≤M correspond to the time steps in a finite difference approach.

We also call this decomposition the temporal mesh Tk. By the time step

m, we denote the step from tm−1 to tm.

The basic domain Ω is subdivided by meshes Tm
h = {T m

1 , . . . ,T m
Nm} , 0 ≤

m ≤M . Here, T m
i are the single mesh cells with

⋃

T ∈T
m
h

T̄ = Ω̄,

where ω denotes the closure of a set ω. We work with quadrilaterals

in this thesis. All mesh cells are open and T m
i ∩ T m

j = ∅ for i 6= j.

Furthermore, the meshes Tm
h have to be regular, i.e. T̄ m

i ∩ T̄ m
j is empty,

a vertex of Ti, or an edge of Ti. The mesh width of Tm
h is defined as

hm := max
T ∈T

m
h

hT ,

where

hT := sup
x,y∈T

‖x− y‖2

is the maximum diameter of an element T . A sequence of meshes {Tm
h }

is called shape regular or quasiuniform, if and only if a number κ > 0

exists such that

∀h > 0 : min
T ∈T

m
h

rT ≥ κh,

with

rT := sup {r ∈ R>0 |Br(x) ⊂ T , x ∈ T } ,
where Br(x) :=

{

y ∈ R2
∣

∣ ‖x− y‖2 ≤ r
}

is the closed ball with radius r.

Starting from now, we assume shape regularity. The sequence of the

meshes in the single time steps is called Mh := (Tm
h )0≤m≤M .

The next step is the definition of the basis functions on the mesh elements.

We begin with the spatial ones. Bilinear basis functions are used on

the quadrilaterals. Together with the spatial mesh, they form the finite

element space

V m
h :=

{

ϕ ∈ C
(

Ω̄,ΓD

) ∣

∣∀T ∈ Tm
h : ϕ|T ∈ Q1 (T ; R)

}

⊂ H1 (Ω,ΓD) .
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b

b

bhanging node

Figure 1.2.1. Mesh with hanging nodes

(a) Mesh with patch structure (b) Corresponding patch mesh

(c) Mesh without patch structure

Figure 1.2.2. Graphical description of meshes with and
without patch structure

Here, Q1 (T ; R) is the set of bilinear basis functions on a mesh cell T . A

detailed presentation of the spatial finite element ansatz may be found,

e.g., in [30].

To realise adaptive mesh refinement, we have to allow for so called hang-

ing nodes in the discretisation, see Figure 1.2.1 for an illustration. Since

functions from V m
h are continuous, the basis value connected to this node
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is not free, but determined by the adjacent nodes. An extensive discus-

sion of this topic is found, e.g., in [34]. The mathematical description

and the used FE-software SOFAR (c.f. [22]) allow the use of more than

one hanging node per edge. However, we restrict ourselves to one hang-

ing node per edge for stability reasons. An additional property, which

has to be satisfied by the mesh, is the patch structure. It is illustrated

in Figure 1.2.2. We need the patch structure for the evaluation of the

presented a posteriori error estimate, see Section 1.3.3. We say, a mesh

has patch structure, if one can always merge four adjacent mesh cells to

one patch element. In Chapter 2, we extensively discuss hanging nodes,

the patch structure and the regularisation algorithms, which ensure that

all adaptively refined meshes have these properties.

After the presentation of the spatial finite element spaces V m
h , we will

now discuss the trial and the test space for the space-time finite element

method. Let us begin with the test space: It is defined as

Wkh :=











ϕkh ∈ L2
(

I;H1 (Ω,ΓD)
)

∣

∣

∣

∣

∣

∣

∣

ϕkh|Im
∈ P0 (Im;V m

h ) ,

m = 1, 2, . . . ,M,

ϕkh(0) ∈ V 0
h











.

Here, Pq (ω;X) is the linear space of polynomials on ω ⊂ Rd with values

in X, which have the maximum degree q. Functions from Wkh are piece-

wise constant and are possibly discontinuous at ti, i = 0, 1, . . . ,M . The

definition of the trial space Vkh is more involved, since it is difficult to

ensure the global continuity, if the spaces V m
h vary. Then hanging nodes

in time arise and have to be treated in an appropriate way. A temporal

hanging node is a degree of freedom, which is contained in V m
h but not in

V m−1
h or vice versa. See Section 2.3 for the precise definition. We work

with the approach presented in [16, 85, 99] for parabolic problems. A

discussion of hanging nodes in time in the context of the wave equation

is given in [9]. We use linear temporal basis functions and choose the

usual Lagrange basis of P1 (Im; R)

τ0(t) =
tm − t
km

and τ1(t) =
t− tm−1

km
.
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We define the set of the local basis functions by

P̃m
1 :=

{

τiϕi

∣

∣ϕi ∈ V m−1+i
h , i = 0, 1

}

.

The space P̃m
1 coincides with P1 (Im;Vh), if V m−1

h = V m
h = Vh holds.

The trial space is given by

Vkh :=
{

ϕkh ∈ C
(

I;H1 (Ω,ΓD)
)

∣

∣

∣ϕkh|Im
∈ P̃m

1 , m = 1, 2, . . . ,M
}

.

Spatial basis functions from V m−1
h , which vanish when stepping from

tm−1 to tm, are only connected to the temporal basis funtion τ0, which is

zero at tm. Spatial basis functions from V m
h , which arise when stepping

from tm−1 to tm, are only coupled with the temporal basis function τ1 and

τ1 vanishes at tm−1. Thus, all functions in Vkh are globally continuous.

Eventually, we can define the discrete solution:

Definition 1.2.1. We say wkh = (ukh, vkh) ∈ Vkh × Vkh is a discrete

solution of the quasilinear hyperbolic equation of second order, if and

only if

∀ϕkh ∈Wkh ×Wkh : Akh (wkh) (ϕkh) = 0. (1.2.1)

holds with

Akh (wkh) (ϕkh) :=

M
∑

m=1

{((u̇kh − vkh, ψkh))m + ((v̇kh − f, χkh))m}

+

M
∑

m=1

{

(a (ukh) (χkh))m −
(

(q, χkh)ΓN

)

m

}

+ (ukh(0)− us, χkh(0)) + (vkh(0)− vs, ψkh(0)) .

Here, (·)m denotes the time integral
�
Im
· dt.

Remark 1.2.2. The discretisation scheme specified in Definition 1.2.1

is called cG(1)cG(1) method. This name expresses that a continuous

Galerkin (cG) method with first order basis functions in the displacement

and in the velocity is used. The cG(1)cG(1) method is a nonconforming

Petrov-Galerkin scheme, since trial and test space are different. The trial
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space Vkh is a subset of V but the test space Wkh is not, since it contains

discontinuous functions.

1.2.2. Solution of the Discrete Problem. In this section, we

derive the time stepping scheme, which results from (1.2.1). In the first

step, we use the test functions (ψkh, 0) and (0, χkh) in (1.2.1) and end up

with the following system of equations

((u̇kh − vkh, ψkh)) = − (ukh(0) − us, ψkh(0)) (1.2.2)

((v̇kh, χkh)) = ((f, χkh)) +
(

(q, χkh)ΓN

)

(1.2.3)

− (a (ukh) (χkh))

− (vkh(0) − vs, χkh(0)) ,

which has to hold for all ψkh, χkh ∈ Wkh. We set ϕm
kh := ϕkh (tm). One

possibility to choose the piecewise constant temporal basis functions of

Wkh is

φ0(t) :=







1 for t = 0

0 else

φm(t) :=







1 for t ∈ Im
0 else

with 1 ≤ m ≤ M . We use φmψ
m
h and φmχ

m
h with ψm

h , χ
m
h ∈ V m

h for

m = 0, 1, . . . M successively as test functions in the equations (1.2.2) and

(1.2.3) and obtain the time stepping scheme:

Time Stepping Scheme 1.2.3. Find wkh = (ukh, vkh) ∈ Vkh×Vkh, where

w0
kh ∈ V 0

h × V 0
h is given by

∀ψh ∈ V 0
h :

(

u0
kh − us, ψh

)

= 0,

∀χh ∈ V 0
h :

(

v0
kh − vs, χh

)

= 0.

For m = 1, 2, . . . ,M , wm
kh ∈ V m

h × V m
h is the solution of the system

(

um
kh − um−1

kh , ψh

)

=
1

2
km

(

vm
kh + vm−1

kh , ψh

)

(1.2.4)
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(

vm
kh − vm−1

kh , χh

)

= −1

2
km

[

a (um
kh) (χh) + a

(

um−1
kh

)

(χh)
]

(1.2.5)

+
1

2
km

(

fm + fm−1, χh

)

+
1

2
km

(

qm + qm−1, χh

)

ΓN
,

which has to hold for all ψh, χh ∈ V m
h .

We evaluate the time integrals over terms only including the test and trial

functions exactly. The time integrals ((f, χkh))m and
(

(q, χkh)ΓN

)

m
are

approximated by the trapezoidal rule, see Section A.1. This ensures the

optimal order of convergence for the presented scheme. However, one may

obtain a more accurate solution by choosing a quadrature rule of higher

order like the Simpson or the two point Gauß rule. The additional error

introduced by the numerical quadrature is discussed in [80, 81]. There,

continuous Galerkin methods in the context of ODEs are considered.

The Time Stepping Scheme 1.2.3 corresponds to the Crank-Nicolson

method (see, e.g., [60]). By rewriting this scheme for the second order

problem, we recover the Newmark method (c.f. [60]) with γ = 2β = 1
2 .

The system (1.2.4-1.2.5) can be decoupled by inserting (1.2.4) into (1.2.5).

We obtain the system

(vm
kh, ψh) =

2

km

(

um
kh − um−1

kh , ψh

)

−
(

vm−1
kh , ψh

)

(1.2.6)

(um
kh, χh) =

1

4
k2

m

(

fm + fm−1, χh

)

+
(

um−1
kh , χh

)

(1.2.7)

−1

4
k2

ma (um
kh) (χh) + km

(

vm−1
kh , χh

)

+
1

4
k2

m

(

qm + qm−1, χh

)

ΓN

−1

4
k2

ma
(

um−1
kh

)

(χh)

for all ψh, χh ∈ V m
h .

We first solve (1.2.7) and next calculate the solution of (1.2.6). The

numerical effort for solving equation (1.2.6) is small, since it is a simple
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L2-projection. If the finite element spaces V m
h do not vary, equation

(1.2.6) reduces to a simple linear combination of vectors in matrix-vector

notation. The solution of (1.2.7) is more involved, since it is a nonlinear

equation. We use a damped Newton scheme (see, e.g., [57]) to solve

(1.2.7). We drop here the index kh to simplify the notation. As initial

value um
0 for Newton’s method, we use the L2-projection on the mesh Tm

h

of the solution of the previous time step um−1. The update dj ∈ V m
h in

the jth Newton iteration is given by

(dj , χh) +
1

4
k2

ma
′
(

um
j

)

(dj, χh) = R
(

um
j

)

(χh) (1.2.8)

for all χh ∈ V m
h with the residual

R
(

um
j

)

(χh) :=
(

um
j , χh

)

+
1

4
k2

ma
(

um
j

)

(χh)

−1

4
k2

m

(

fm + fm−1, χh

)

−
(

um−1
kh , χh

)

−1

4
k2

m

(

qm + qm−1, χh

)

ΓN

+
1

4
k2

ma
(

um−1
kh

)

(χh)− km

(

vm−1
kh , χh

)

.

The existence and uniqueness of the update dj is ensured by Assumption

1.1.11. In the classic Newton scheme, um
j+1 is obtained by um

j+1 = um
j −dj .

To improve the stability of Newton’s method, we use the following simple

damping scheme, which may lead to a convergent iteration, even if the

classic scheme fails. We determine the first integer i ≥ 0 for which strict

monotonicity holds, i.e.

∀χh ∈ V m
h : R

(

um
j − 2−idj

)

(χh) < R
(

um
j

)

(χh) .

The update is then given by um
j+1 = um

j − 2−idj . More sophisticated

globalisations of Newton’s method are described in [44]. If ‖R‖ ≤ tol1

or ‖dj‖ ≤ tol2 with appropriate constants tol1 > 0 and tol2 > 0, um
j+1

is accepted as a solution of (1.2.7). We typically need only one or two

classic Newton steps to solve the nonlinear equation, because the solution

of the previous time step is a good initial value in the Newton iteration.
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The update equation of Newton’s method (1.2.8) is solved by a direct

solver, namely UMFPACK, see [43]. We use a CG method to determine

the solution of the L2-projection in equation (1.2.6), where the linear

system is preconditioned by an SSOR scheme.

The technical details of the solution procedure are described in Section

2.5. In particular, the evaluation of the terms
(

um−1
kh , ψ

)

,
(

vm−1
kh , ψ

)

and

a
(

um−1
kh

)

(χh) is discussed there, which has to be done very carefully, if

the meshes Tm
h and Tm−1

h are different.

1.2.3. A Priori Analysis. The analysis of the continuous Galerkin

method in the context of nonlinear hyperbolic equations of second order

is in the early stages. We summarise the results in this section. In the

linear case, more results are available. In [47], a continuous Galerkin

method similar to the one presented here is analysed in the linear case.

We discuss the same results, namely: The existence of a discrete solution,

a priori error estimation and energy conservation.

First, we present results concerning the existence of a discrete solution.

For the quasilinear case, no results are available at the best of the author’s

knowledge. If A is a semilinear operator, where the nonlinear part is

Lipschitz continuous in u, we have the following result:

Theorem 1.2.4. For a sufficiently small km, there exists a unique discrete

solution wkh.

Proof of Theorem 1.2.4. Theorem 2.1 in [69]. �

The operator πm
h denotes the projection of the function wm−1

kh onto the

space V m
h × V m

h . The a priori error estimate in the semilinear case is

given in the following theorem:

Theorem 1.2.5. We have the a priori error estimate

max
t∈I
{‖u(t)− ukh(t)‖0 + ‖v(t)− vkh(t)‖0}

≤ C

{

max
1≤m≤M

k2
mCt(u) + max

1≤m≤M
h2

mCx(u) +
√NC max

1≤m≤M
‖Jm‖1

}
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and

max
t∈I
‖u(t)− ukh(t)‖∞

≤ CLh

{

max
1≤m≤M

k2
mCt(u) + max

1≤m≤M
h2

mCx(u) +
√NC max

1≤m≤M
‖Jm‖1

}

.

Here, C > 0 is a constant independent of h, k and w, Lh is a factor,

which grows logarithmically in h. The number of mesh changes during

the calculation is given by NC and Jm := wm−1
kh − πm

h w
m−1
kh expresses the

differences between the solution due to the mesh change. The constants

Ct and Cx only depend on u.

Proof of Theorem 1.2.5. Theorem 3.1 in [69]. �

Remark 1.2.6. In [49], superconvergence results in the temporal grid

points tm are derived, which hold for linear A. In the time points tm, the

convergence rate is of order k2q, where q is the polynomial degree of the

temporal basis functions. Since linear polynomials are used, we obtain a

convergence rate of k2 in tm, which corresponds to the convergence rate

on I. Consequently, no superconvergence properties are observed for the

cG(1)cG(1) scheme.

In Proposition 1.1.12, we see that the continuous solution conserves the

total energy. We expect from the discrete solution the conservation of

energy, too. The cG(1)cG(1) method is mainly used, since the total

energy is constant for the discrete solution. See Proposition 1.2.7 below.

A detailed discussion of energy conservation is found, for instance, in [47].

The operator A is assumed to be linear. The potential or inner energy

in time step m is defined as Em
in := 1

2a (um
kh, u

m
kh), the kinetic energy as

Em
kin := 1

2 (vm
kh, v

m
kh) and the total energy as Em

tot := Em
kin + Em

in. As in

the continuous setting, we have the following result concerning energy

conservation:

Proposition 1.2.7. If f and q are zero and if V m−1
h ⊆ V m

h holds for all

m ∈ {0, 1, . . . ,M}, then the total energy is constant.
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Proof of Proposition 1.2.7. Let us assume for a moment that V m−1
h =

V m
h holds. Then, we are allowed to test equation (1.2.1) on a subinterval

Im with (−v̇kh, u̇kh) and obtain

0 = ((vkh, v̇kh))Im
+ (a (ukh, u̇kh))Im

=
1

2
(vm

kh, v
m
kh)− 1

2

(

vm−1
kh , vm−1

kh

)

+
1

2
a (um

kh, u
m
kh)− 1

2
a
(

um−1
kh , um−1

kh

)

= Em
kin − Em−1

kin + Em
in − Em−1

in .

Consequently, it holds

Em
tot = Em−1

tot .

If V m−1
h 6= V m

h holds, we have to project um−1
kh and vm−1

kh by the operator

πm
h onto the space V m

h . Since πm
h ϕkh is equal to ϕkh for functions ϕkh ∈

V m−1
kh under the assumption V m−1

h ⊆ V m
h , the calculation above stays

valid. �

Remark 1.2.8. By a careful analysis of the arguments above one sees

that the difference in the energy is closely connected to the projection

error
∥

∥um−1
kh − πm

h u
m−1
kh

∥

∥ in the mth time step.

1.3. A Posteriori Error Estimation

This section is devoted to the derivation of the basic error idendity. It in-

volves a so called dual problem, whose analytical properties are discussed.

Furthermore, an adequate time stepping scheme for its numerical solution

is derived and analysed. Finally, we discuss the approximate numerical

evaluation of the error identity. The derivation is based on the DWR

technique, see, for instance, [13, 17].

1.3.1. General Result. The aim is to derive an a posteriori error

estimate for the discretisation error in a more or less arbitrary functional,

which represents the quantity of interest. We consider functionals of the

type

J(w) :=

� T

0
J1(w) dt + J2(w(T )), (1.3.1)
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where J1, J2 ∈
(

H1 (Ω,ΓD)×H1 (Ω,ΓD)
)⋆

are three times continuously

Fréchet differentiable. The form of J specified in (1.3.1) considers two

typical situations: One is interested in the mean value of a quantity over

I or in the value at the end point.

The derivation of the error estimate is based on optimisation arguments.

To embed the error estimation in the optimisation context, we define the

Lagrangian

L(ω, ϑ) := J(ω)−A(ω)(ϑ)

for ω ∈ U × V and ϑ ∈ V × U . We call L the continuous Lagrangian.

The discrete analogon is given by

Lkh (ω, ϑ) := J (ω)−Akh (ω) (ϑ)

for ω ∈ U ×V and ϑ ∈ (Wkh ×Wkh)∪ (V × U). The connection between

the Lagrangians and the quasilinear hyperbolic problem of second order

becomes apparent as soon as we consider the Fréchet derivative of L w.r.t.

z:

L′z (w, z) (δw, δz) = −A(w)(δz). (1.3.2)

It corresponds to the weak formulation of the quasilinear hyperbolic equa-

tion of second order. In the discrete case, we recover the space-time

Galerkin approximation. The Fréchet derivative w.r.t. w is

L′w(w, z)(δw, δz) = J ′(w)(δw) −A′(w)(δw, z). (1.3.3)

The right hand side of (1.3.3) and its discrete analogon are discussed in

detail in Section 1.3.2.

The central assumption for the a posteriori error estimation is

Assumption 1.3.1. The point (w, z) ∈ (U ×V )× (V ×U) is a stationary

point of L, i.e.

L′(w, z)(δw, δz) = 0 (1.3.4)

for all (δw, δz) ∈ (U×V )×(V×U). Analogously, (wkh, zkh) ∈ (Vkh × Vkh)×
(Wkh ×Wkh) is a stationary point of Lkh, i.e.

L′kh (wkh, zkh) (δwkh, δzkh) = 0 (1.3.5)
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for all (δwkh, δzkh) ∈ (Vkh × Vkh)× (Wkh ×Wkh).

Assumption 1.3.1 together with (1.3.2) says that w is a weak solution

of the quasilinear hyperbolic equation of second order. Equation (1.3.5)

ensures that wkh is a discrete solution. Furthermore, the equation (1.3.4)

claims that z is a solution of the equation

∀δw ∈ U × V : J ′(w)(δw) −A′(w)(δw, z) = 0. (1.3.6)

According to equation (1.3.3), zkh fulfils

∀δwkh ∈ Ukh×Ukh : J ′ (wkh) (δwkh)−A′ (wkh) (δwkh, zkh) = 0. (1.3.7)

We will discuss the problems (1.3.6) and (1.3.7) after the presentation of

the basic result for the a posteriori error estimate:

Proposition 1.3.2. Under the Assumption 1.3.1, the error identity

J (w)− J (wkh)

=
1

2
L′kh (wkh, zkh) (w − w̃kh, z − z̃kh) +Rkh

=
1

2
[ρ (wkh) (z − z̃kh) + ρ⋆ (wkh, zkh) (w − w̃kh)] +Rkh

(1.3.8)

holds, where the functions z̃kh ∈ Wkh ×Wkh and w̃kh ∈ Vkh × Vkh are

arbitrary. The remainder term

Rkh :=
1

2

� 1

0
L′′′ (wkh + se) (e, e, e) s (s− 1) ds

is of third order in the error e = w−wkh. The primal residual ρ is given

by

ρ (w) (ϕ) := L′kh,z (w) (ϕ) = −Akh (w) (ϕ)

and the dual residual ρ⋆ by

ρ⋆ (w, z) (ϕ) := L′kh,w (w, z) (ϕ) = J ′ (w) (ϕ)−A′
kh (w) (ϕ, z) .

The error indentity (1.3.8) represents the discretisation error w.r.t. the

functional J . It is based on the discrete primal residual ρ (wkh) and the

discrete dual residual ρ⋆ (wkh, zkh). The residuals can be numerically
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evaluated. They are weighted with the dual approximation error z − z̃kh

and with the primal approximation error w − w̃kh, respectively. The

approximation error cannot be evaluated exactly. In Section 1.3.3, we

introduce a numerical evaluation method for the approximation error.

Additionally, we do not know the value of Rkh. However, it is of higher

order in the error and can be neglected.

To prove Proposition 1.3.2, we need the following lemma, which goes back

to Meidner [85] and is a generalisation of the classic result of Becker and

Rannacher [17].

Lemma 1.3.3. Suppose L is a three times continuously Fréchet differ-

entiable functional on the function space Y . Furthermore, let y1 be a

stationary point of L on a subspace Y1 ⊆ Y , i.e.

∀δy1 ∈ Y1 : L′ (y1) (δy1) = 0. (1.3.9)

The corresponding Galerkin solution y2 ∈ Y2 ⊆ Y is defined by

∀δy2 ∈ Y2 : L′ (y2) (δy2) = 0. (1.3.10)

We assume

L′ (y1) (y2) = 0. (1.3.11)

Under these assumptions, we obtain for arbitrary ỹ2 ∈ Y2 the error rep-

resentation

L (y1)− L (y2) =
1

2
L′ (y2) (y1 − ỹ2) +R.

The remainder term R is

R =
1

2

� 1

0
L′′′ (y2 + se) (e, e, e) · s · (s− 1) ds

with e := y1 − y2.

Remark 1.3.4. In the classic result, Y = Y1 is assumed. Then assump-

tion (1.3.11) becomes trivial. Since we consider a nonconforming Petrov-

Galerkin scheme, where Y2 ⊆ Y1 does not hold, the generalised form is

needed.
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We will use the ideas of the proof in Section 3.3 and 4.3 again. Hence we

give the proof here.

Proof of Lemma 1.3.3. The main theorem of calculus leads to

L (y1)− L (y2) =

� 1

0
L′ (y2 + se) (e) ds.

We approximately evaluate this integral by the trapezoidal rule� 1

0
f(s) ds =

1

2
f(0) +

1

2
f(1) +

1

2

� 1

0
f ′′(s) · s · (s− 1) ds

and obtain

L (y1)− L (y2) =
1

2
L′ (y2) (e) +

1

2
L′ (y1) (e) +R.

The assertions (1.3.9) and (1.3.11) yield L′ (y1) (e) = 0. Because of

(1.3.10), we can substitute L′ (y2) (e) by L′ (y2) (y1 − ỹ2) for any ỹ2 ∈
Y2. �

After these preparations, we prove Proposition 1.3.2:

Proof of Proposition 1.3.2. We want to apply Lemma 1.3.3. For

this purpose, we set

Y1 := (U × V )× (V × U) ,

Y2 := (Vkh × Vkh)× (Wkh ×Wkh) ,

Y := (U × V )× ([V ∪Wkh]× [U ∪Wkh]) ,

and L := Lkh. The assertions (1.3.4) and (1.3.5) of Assumption 1.3.1

ensure (1.3.9) and (1.3.10), respectively. Furthermore, we have J(w) =

Lkh (w, z) and J (wkh) = Lkh (wkh, zkh), since

A (w) (z) = Akh (w) (z) = Akh (wkh) (zkh) = 0

holds. It remains to verify (1.3.11). Since Vkh ⊆ U and Vkh ⊆ V , we

directly obtain

L′kh,w (w, z) (wkh, zkh) = J ′ (w) (wkh)−A′ (w) (wkh, z) = 0.
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The proof for the derivative w.r.t. z,

L′kh,z (w, z) (wkh, zkh) = −Akh (w) (zkh) = −A (w) (zkh) ,

is more involved, since Wkh * U and Wkh * V . The function spaces

U and V are dense in L2
(

I;H1 (Ω,ΓD)
)

and in L2
(

I;L2 (Ω)
)

w.r.t.

the L2
(

I;H1 (Ω,ΓD)
)

- and the L2
(

I;L2 (Ω)
)

-norm, respectively. Fur-

thermore, no time derivatives on the test function ϕ are contained in

A (w) (ϕ). Consequently, A (w) (ϕ) = 0 holds for all

ϕ = (ψ,χ) ∈ L2
(

I;L2 (Ω)
)

× L2
(

I;H1 (Ω,ΓD)
)

.

Since Wkh ⊆ L2
(

I;H1 (Ω,ΓD)
)

and Wkh ⊆ L2
(

I;L2 (Ω)
)

, we conclude

A (w) (zkh) = 0 and with it (1.3.11) holds. Finally, we apply Lemma

1.3.3, from which the claim of Proposition 1.3.2 follows. �

1.3.2. The Continuous and the Discrete Dual Problem. The

error identity (1.3.8) involves the quantities z and zkh, which are defined

by the stationarity conditions (1.3.4) and (1.3.5) as solutions of the vari-

ational problems (1.3.6) and (1.3.7), respectively. These problems are

called the continuous and the discrete dual problem. In this context, the

original problems specified in the Definitions 1.1.5 and 1.2.1 are referred

to as primal problems. We begin with the discussion of the continuous

dual problem.

1.3.2.1. The Continuous Dual Problem. In view of (1.3.3), we define

the continuous dual problem as follows:

Definition 1.3.5. We say, z = (ū, v̄) ∈ V × U is a weak solution of the

continuous dual problem, if

J ′(w)(ϕ) = A′(w)(ϕ, z) (1.3.12)

holds for all ϕ = (ψ,χ) ∈ V × U . Here, w is the weak solution of the

primal problem.
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Let us now take a closer look at the continuous dual problem. The Fréchet

derivative of A w.r.t. w is given by

A′(w)(ϕ, z) =
((

ψ̇ − χ, ū
))

+ ((χ̇, v̄)) +
(

a′(u) (ψ, v̄)
)

+ (ψ(0), ū(0)) + (χ(0), v̄(0)) .

We use integration by parts to shift the time derivative from the test

functions to the solution variables and obtain

A′(w)(ϕ, z) = − (( ˙̄v + ū, χ))− (( ˙̄u, ψ)) +
(

a′(u) (ψ, v̄)
)

+ (ψ(T ), ū(T )) + (χ(T ), v̄(T )) .

The Fréchet derivative of J is

J ′(w)(ϕ) = J ′
u(w)(ψ) + J ′

v(w)(χ)

=

� T

0
J ′

1,u(w)(ψ) dt + J ′
2,u(w(T ))(ψ(T ))

+

� T

0
J ′

1,v(w)(χ) dt + J ′
2,v(w(T ))(χ(T )).

Testing equation (1.3.12) with ϕ1 = (ψ, 0) and ϕ2 = (0, χ) for arbitrary

ψ ∈ V and χ ∈ U , we obtain the system

− (( ˙̄u, ψ)) +
(

a′(u) (ψ, v̄)
)

+ (ū(T ), ψ(T )) = J ′
u(w)(ψ)

− (( ˙̄v + ū, χ)) + (v̄(T ), χ(T )) = J ′
v(w)(χ).

Writing the first order system as a second order problem, we deduce that

the strong solution of the continuous dual problem is characterised by

the following relations:

Definition 1.3.6. The function v̄ ∈ C2 (Ω× I) is a strong solution of

the continuous dual problem, if

¨̄v −A′(w) (v̄) = J ′
1,u(w) − ∂

∂tJ
′
1,v(w) in Ω× I

v̄ = 0 on ΓD × I
∂v̄
∂ν = 0 on ΓN × I

v̄(T ) = J ′
2,v(w(T )) in Ω

˙̄v(T ) = J ′
2,u(w(T )) in Ω
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holds. Here, w is the strong solution of the primal problem.

The strong problem formulation allows for more insight into the struc-

ture of the dual problem. The first important observation is that the

dual problem starts at T and runs backward in time to 0. Consequently,

the initial values are specified for T . Furthermore, the dual problem is a

linear hyperbolic equation of second order. By the substitution t̃ = T − t,
it can be transformed into a forward problem. Assumption 1.1.11 ensures

that the theory mentioned in Section 1.1 is applicable. Thus, we obtain a

well-posed problem. The homogeneous Dirichlet boundary conditions of

the primal problem are transferred to the dual problem. The nonhomoge-

neous Neumann boundary conditions are transformed into homogeneous

ones. The descriptive interpretation of the dual solution is that it rep-

resents the influence of a certain space-time point (x, t) onto the error

measured in the functional J .

1.3.2.2. The Discrete Dual Problem. Let us now take a closer look at

the discrete dual problem, it is specified in the following definition:

Definition 1.3.7. The function zkh = (ūkh, v̄kh) ∈Wkh ×Wkh is a solu-

tion of the discrete dual problem, if

J ′(wkh)(ϕkh) = A′
kh (wkh) (ϕkh, zkh) (1.3.13)

holds for all ϕkh = (ψkh, χkh) ∈ Vkh × Vkh. Here, wkh is the discrete

solution of the quasilinear hyperbolic equation of second order specified

in Definition 1.2.1.

We observe that the discrete solution zkh is contained in the test space

Wkh×Wkh of the primal problem, i.e. zkh is a piecewise constant function

in time. The interpolation by piecewise constant functions is of first order.

Thus, the approximation is globally of maximum order k. The a priori

error estimate is discussed later on in more detail. The time stepping

scheme resulting from (1.3.13) is presented in Time Stepping Scheme

1.3.8. It differs from the primal Time Stepping Scheme 1.2.3. It should

be remarked that we are not interested in an accurate numerical solution
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of the dual problem but in an accurate a posteriori error estimation,

which is evaluable efficiently. For this purpose, it is advantageous to use

the Time Stepping Scheme 1.3.8 to calculate an approximation of z.

For the derivation of the dual time stepping scheme from (1.3.13), we

rewrite the discrete Fréchet derivative,

A′
kh (wkh) (ϕkh, zkh)

=

M
∑

m=1

{((

ψ̇kh − χkh, ūkh

))

m
+
(

a′ (ukh) (ψkh, v̄kh)
)

m

}

+

M
∑

m=1

((χ̇kh, v̄kh))m + (ψkh(0), ūkh(0)) + (χkh(0), v̄kh(0)) ,

by means of integration by parts as

A′
kh (wkh) (ϕkh, zkh)

= −
M
∑

m=1

{

((ūkh + ˙̄vkh, χkh))m −
(

a′ (ukh) (ψkh, v̄kh)
)

m

}

−
M
∑

m=1

{((( ˙̄ukh, ψkh))m + [ūkh]m , ψkh (tm)) + ([v̄kh]m , χkh (tm))}

+
(

ū−kh (T ) , ψkh(T )
)

+
(

v̄−kh (T ) , χkh(T )
)

.

Here, the jump of a possibly discontinuous function ω at a time instance

tm is defined by

[ω]m := lim
t↓tm

ω(t)− lim
t↑tm

ω(t).

Since zkh is piecewise constant in time, the temporal derivative is zero.

Thus, A′
kh simplifies to

A′
kh (wkh) (ϕkh, zkh) =

M
∑

m=1

{(

a′ (ukh) (ψkh, v̄kh)
)

m
− ((ūkh, χkh))m

}

−
M
∑

m=1

{([ūkh]m , ψkh (tm)) + ([v̄kh]m , χkh (tm))}

+
(

ū−kh (T ) , ψkh(T )
)

+
(

v̄−kh (T ) , χkh(T )
)

.



30 1. ADAPTIVE FE FOR QUASILINEAR HYPERBOLIC EQUATIONS

Testing equation (1.3.13) by ϕ1 = (ψkh, 0) and ϕ2 = (0, χkh) and using

the simplified form of A′
kh, we obtain the system

J ′
u (wkh) (ψkh)

=

M
∑

m=1

{(

a′ (ukh) (ψkh, v̄kh)
)

m
− ([ūkh]m , ψkh (tm))

}

+
(

ū−kh (T ) , ψkh(T )
)

and

J ′
v (wkh)

= −
M
∑

m=1

{((ūkh, χkh))m + ([v̄kh]m , χkh (tm))}

+
(

v̄−kh (T ) , χkh(T )
)

.

The aim is to derive a time stepping scheme analogous to Section 1.2.2.

Since the test space contains continuous functions, we cannot use the

functions φm defined in Section 1.2.2. Instead, we specify the temporal

test functions by

φ̄M (t) :=







t−tM−1

kM
for t ∈ IM

0 else,

φ̄m(t) :=















tm+1−t
km+1

for t ∈ Im+1

t−tm−1

km
for t ∈ Im

0 else,

for m = M − 1,M − 2, . . . , 1 and

φ̄0(t) :=







t1−t
k1

for t ∈ I1
0 else.

We successively use the test functions φmψ
m
h and φmχ

m
h with ψm

h ∈ V m
h

and χm
h ∈ V m

h for m = M,M − 1, . . . , 0 and obtain the time stepping

scheme:
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Time Stepping Scheme 1.3.8. Find zkh = (ūkh, v̄kh) ∈ Wkh × Wkh,

where zM
kh =

(

ūM
kh, v̄

M
kh

)

∈ VM
h × VM

h is the solution of

(

ūM
kh, ψh

)

= −1

2
kMa

′
(

uM
kh

) (

ψh, v̄
M
kh

)

(1.3.14)

1

2
kMJ

′
1,u

(

wM
kh

)

(ψh)

+J ′
2,u

(

wM
kh

)

(ψh)

(

v̄M
kh, χh

)

− 1

2
kM

(

ūM
kh, χh

)

=
1

2
kMJ

′
1,v

(

wM
kh

)

(χh) (1.3.15)

+J ′
2,v

(

wM
kh

)

(χh)

for all ψh, χh ∈ VM
h . For m = M − 1,M − 2, . . . 1, zm

kh = (ūm
kh, v̄

m
kh),

zm
kh ∈ V m

h × V m
h fulfils

(

ūm
kh − ūm+1

kh , ψh

)

=
1

2
(km + km+1) a

′ (um
kh) (ψh, v̄

m
kh) (1.3.16)

1

2
(km + km+1) a

′ (um
kh)
(

ψh, v̄
m+1
kh

)

+
1

2
(km + km+1) J

′
1,u (wm

kh) (ψh)

(

v̄m
kh − v̄m+1

kh , χh

)

=
1

2
(km + km+1)

(

ūm
kh + ūm+1

kh , χh

)

(1.3.17)

+
1

2
(km + km+1) J

′
1,v (wm

kh) (χh)

for all ψh, χh ∈ V m
h . The function z0

kh =
(

ū0
kh, v̄

0
kh

)

∈ V 0
h ×V 0

h is specified

by the system

(

ū0
kh, ψh

)

=
(

ū1
kh, ψh

)

+
1

2
k1J

′
1,u

(

w0
kh

)

(ψh) (1.3.18)

−1

2
k1a

′
(

u0
kh

) (

ψh, v̄
1
kh

)

(

v̄0
kh, χh

)

=
(

v̄1
kh, χh

)

+
1

2
k1J

′
1,v

(

w0
kh

)

(χh) +
1

2
k1

(

ū1
kh, χh

)

, (1.3.19)

which holds for all ψh, χh ∈ V 0
h × V 0

h .

In the same way as in the primal time stepping scheme, we are able

to decouple the systems (1.3.14-1.3.15) and (1.3.16-1.3.17). The system
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(1.3.18-1.3.19) is already decoupled and consists of two L2-projections.

For the system (1.3.14-1.3.15), we obtain

(

v̄M
kh, ψh

)

= −1

4
k2

Ma′
(

uM
kh

) (

ψh, v̄
M
kh

)

+
1

4
k2

MJ ′
1,u

(

wM
kh

)

(ψh) +
1

2
kMJ ′

2,u

(

wM
kh

)

(ψh)

+
1

2
kMJ ′

1,v

(

wM
kh

)

(ψh) + J ′
2,v

(

wM
kh

)

(ψh)

(

ūM
kh, χh

)

=
2

kM

(

v̄M
kh, χh

)

− J ′
1,v

(

wM
kh

)

(χh)

− 2

kM
J ′

2,v

(

wM
kh

)

(χh)

and for the system (1.3.16-1.3.17)

(v̄m
kh, ψh) = −1

4
(km + km+1)

2 a′ (um
kh) (ψh, v̄

m
kh)

+ (km + km+1)
(

ūm+1
kh , ψh

)

+
(

v̄m+1
kh , ψh

)

+
1

4
(km + km+1)

2 J ′
1,u (wm

kh) (ψh)

+
1

2
(km + km+1)J

′
1,v (wm

kh) (ψh)

−1

4
(km + km+1)

2 a′ (um
kh)
(

ψh, v̄
m+1
kh

)

(ūm
kh, χh) =

2

km + km+1

(

v̄m
kh − v̄m+1

kh , χh

)

− J ′
1,v (wm

kh) (χh)

−
(

ūm+1
kh , χh

)

.

Thus, the systems (1.3.14-1.3.15) and (1.3.16-1.3.17) reduce to a linear

Helmholtz equation and an L2-projection. As in the primal time stepping

scheme, the terms a′ (um
kh)
(

ψh, v̄
m+1
kh

)

,
(

ūm+1
kh , ψh

)

, and
(

v̄m+1
kh , ψh

)

have

to be evaluated with special care, if Tm
h 6= Tm+1

h . Furthermore, the

discrete primal solution wkh is needed to solve the discrete dual problem.

In Section 2.5, we discuss these topics in detail.

At the best of the author’s knowledge, there exists no analysis of the

presented dual time stepping scheme, i.e. no convergence result and no
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a priori error estimate. Since this analysis is not important for the a

posteriori error estimate, we only consider two numerical examples. In

[16], this time stepping scheme is discussed in the context of parabolic

problems. There, superconvergence effects in the temporal grid points

are mentioned. But we are not able to confirm this claim. Since the

temporal basis functions are piecewise constant, we cannot expect the

error to be better than

max
t∈I
|z − zkh|1 = O (h+ k)

and

max
t∈I
‖z − zkh‖0 = O

(

h2 + k
)

.

If we use the space Wkh ×Wkh as test space, the standard discontinuous

Galerkin method based on piecewise constant basis functions is obtained.

This method converges of first order for all t ∈ I. See [109] for a dis-

cussion in the context of parabolic problems. However, we use linear

polynomials in the test space Vkh × Vkh and come to the guess that su-

perconvergence effects in the temporal grid points of the form

max
0≤m≤M

|z (tm)− zkh (tm)|1 = O
(

h+ k2
)

occur. The standard derivation of superconvergence does not work, be-

cause the piecewise constant trial functions offer no possibility to enter

an interpolation in the bilinear forms, which would lead to an additional

power of k. Let us discuss this time stepping scheme in the context of

ordinary differential equations (ODE) to illustrate this. We consider the

ODE u̇ + u = 0 on I with the intial data us. The analytical solution is

given by u = exp(−t)us. The approximation calculated on an equidis-

tant temporal decomposition of length k by the classic Crank-Nicholson

scheme is

ũm =

{

m
∏

i=1

(

1− k

2

)(

1 +
k

2

)−1
}

us.

From
(

1 +
k

2

)−1

= 1− k

2
+
k2

4
− . . . ,
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we see
(

1− k

2

)(

1 +
k

2

)−1

= 1− k +
k2

2
+O

(

k3
)

,

which is a third oder approximation of exp(−k). Consequently, the

Crank-Nicolson scheme is of second order. For the dual time stepping

scheme, we obtain the approximation

ũm =

{

m
∏

i=2

(

1 +
k

2

)−1(

1− k

2

)

}

(

1 +
k

2

)−1

us.

The term
(

1 + k
2

)−1 (
1− k

2

)

is a third order approximation of exp(−k),
as we have seen before. But the term

(

1 + k
2

)−1
is only a first order ap-

proximation of exp(−k). Thus, ũm is only a second order approximation

of exp(−tm). Therewith, the time stepping scheme is only consistent of

first order.

Now, we consider a numerical example to show that no superconvergence

in the temporal grid points exist in the context of linear hyperbolic prob-

lems of second order. Let A be the Laplacian ∆. Then a is the bilinear

form a (∇·,∇·). The basic domain Ω is given by [0, 1]2, ΓD = ∂Ω, ΓN = ∅,
and I = [0, 1]. We assume the dual solution

z (x1, x2, t) := sin (πx1) sin (πx2) cos (π (t− T )) ,

with z ∈ C∞ (Ω× I). With the functions

zs (x1, x2, t) :=

(

0

sin (πx1) sin (πx2)

)

zf (x1, x2, t) :=

(

π2z (x1, x2, t)

−π sin (π (t− T )) z (x1, x2, 0)

)

,

the output functionals J1 and J2 are defined as

J1 (w) :=

�
Ω

1

2
(zf · w) dx

J2 (w) :=

�
Ω
zs · w dx.

This output functional leads to the desired analytical solution.
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Figure 1.3.1. Convergence rate for the dual solution z
w.r.t. h and k

In Figure 1.3.1(a) the spatial convergence rate is depicted. The calcula-

tions have been performed with M = 10000 time steps. Here, L2 stands

for the norm

max
0≤m≤M

‖z (tm)− zkh (tm)‖0
and H1 for

max
0≤m≤M

|z (tm)− zkh (tm)|1 ,

which would show superconvergence effects in the temporal grid points,

if any exist. We observe linear convergence in the H1-semi-norm and

quadratic convergence in the L2-norm w.r.t. h. This corresponds to the
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Figure 1.3.2. Illustration of the interpolation operators

i
(1)
k and i

(2)
2k

expectations on bilinear finite elements. The convergence rate w.r.t. k

is presented in Figure 1.3.1(b). In these calculations, the spatial mesh

consists of N = 262144 mesh cells. The convergence is linear in the

H1-semi-norm as well as in the L2-norm. Since a smooth solution is

considered in this example, we come to the conclusion that the dual time

stepping scheme provides no superconvergence properties in the temporal

grid points tm.
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1.3.3. Approximate Evaluation of the Error Identity. In the

last section, we have discussed the numerical solution of the dual prob-

lem, which is needed to evaluate the error identity (1.3.8). The identity

contains the weights w − w̃kh and z − z̃kh, where w̃kh ∈ Vkh × Vkh and

z̃kh ∈ Wkh ×Wkh are arbitrary functions. The weights measure the ap-

proximation or interpolation error of the spaces Vkh and Wkh w.r.t. the

continuous solutions w and z. We are not able to evaluate these terms

exactly. In literature, many approaches to approximate these terms are

proposed, see, e.g., [13] for an overview. The idea to use a higher order

interpolation of the discrete solutions wkh and zkh has turned out to be

an accurate and efficient approximation. Thus, we also use this idea here.

Furthermore, it allows us to split the spatial and the temporal part of

the error, see Lemma 1.3.9.

In space, we need a higher order interpolation of the bilinear basis func-

tions. Consequently, we work with biquadratic basis functions to con-

struct the interpolation. For biquadratic basis functions, which shall be

based on nodal values, nine nodal values are needed to determine the

basis coefficients. We use the patch structure of the spatial meshes to

obtain these nodal values, see Section 1.2.1 and Figure 1.2.2 for an illus-

tration. The function space, which contains the interpolating functions,

is

V
(2),m
2h :=

{

ϕ ∈ C
(

Ω̄,ΓD

) ∣

∣∀T ∈ Tm
2h : ϕ|T ∈ Q2 (T ; R)

}

(1.3.20)

with V
(2),m
2h ⊂ H1 (Ω,ΓD), where Tm

2h is the mesh of the patch elements

in the mth-time step and Q2 (T ; R) is the space of the biquadratic ba-

sis functions. Eventually, we obtain the operator i
(2)
2h : V m

h → V
(2),m
2h ,

which maps a finite element function from V m
h into the interpolation

space V
(2),m
2h . Furthermore, we define the projection Π

(2)
2h := i

(2)
2h − id.

For the definition of the space time interpolations of higher order, we set

V
(1,1)
kh := Vkh, V

(0,1)
kh := Wkh,

V
(0,2)
kh :=

{

ϕkh ∈ L2
(

I;H1 (Ω,ΓD)
)

∣

∣

∣

∣

∣

ϕkh|Im
∈ P0

(

Im;V
(2),m
2h

)

,

m = 1, . . . ,M, ϕkh(0) ∈ V 0
h

}

.
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The temporal basis functions are τ
(1)
0 = τ0, τ

(1)
1 = τ1,

τ
(2)
0 (t) :=

(tm − t) (tm+1 − t)
km (km + km+1)

,

τ
(2)
1 (t) :=

(t− tm−1) (tm+1 − t)
kmkm+1

,

τ
(2)
2 (t) :=

(t− tm−1) (t− tm)

(km + km+1) km+1
.

Furthermore, we define

P̃m
1,2 :=

{

τiϕi

∣

∣

∣ϕi ∈ V (2),m−1+i
2h , i = 0, 1

}

,

P̃m
2,1 :=

{

τiϕi

∣

∣ϕi ∈ V m−1+i
h , i = 0, 1, 2

}

,

P̃m
2,2 :=

{

τiϕi

∣

∣

∣
ϕi ∈ V (2),m−1+i

2h , i = 0, 1, 2
}

.

Therewith, we denote

V
(1,2)
kh :=

{

ϕkh ∈ C
(

I;H1 (Ω,ΓD)
)

∣

∣

∣
ϕkh|Im

∈ P̃m
1,2, m = 1, 2, . . . ,M

}

,

V
(2,1)
kh :=

{

ϕkh ∈ C
(

I;H1 (Ω,ΓD)
)

∣

∣

∣
ϕkh|Im

∈ P̃m
2,1, m = 1, 2, . . . ,M

}

,

V
(2,2)
kh :=

{

ϕkh ∈ C
(

I;H1 (Ω,ΓD)
)

∣

∣

∣ϕkh|Im
∈ P̃m

2,2, m = 1, 2, . . . ,M
}

.

In time, we use the spatial interpolation operator of higher order i
(2)
2h

transferred to the one dimensional case for the interpolation of piecewise

linear and continuous functions. The approach is illustrated in Figure

1.3.2(b). The interpolation is named i
(2)
2k and the exact terms are given

in Section A.2, since we need them to specify the error estimator. For

the piecewise constant temporal basis functions, we specify a linear inter-

polant i
(1)
k . The idea is exemplified in Figure 1.3.2(a) and the concrete

terms are given in Section A.2, too. We define the projections

Π
(1)
k := i

(1)
k − id and Π

(2)
2k := i

(2)
2k − id

for the temporal interpolants.

Now, we are able to define our space-time interpolations of higher order.

For i = 0, 1, 2 and j = 1, 2, let φ ∈ V
(i,j)
kh . The function φ can be
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represented by the temporal basis functions τ (i),m in the form

φ(x, t) =

M
∑

m=0

τ (i),m(t) · ϕm(x)

with ϕm(x) ∈ V m
h . We define three different space time interpolation

operators: The first one only interpolates the spatial part and is given by

i
(j,2)
h : V

(j,1)
kh → V

(j,2)
kh ,

i
(j,2)
h φ(x, t) :=

M
∑

m=0

τ (j),m(t) · i(2)2h ϕ
m(x),

for j = 0, 1, 2. Let

i
(j+1,i)
k : V

(j,i)
kh → V

(j+1,i)
kh ,

i
(j+1,i)
k φ(x, t) :=

M
∑

m=0

i
(j+1)
k τ (j),m(t) · ϕm(x),

for j = 0, 1 and i = 1, 2 be the interpolation operator, which only inter-

polates the temporal part. The operator interpolating in space and time

is

i
(j+1,2)
hk : V

(j,1)
kh → V

(j+1,2)
kh ,

i
(j+1,2)
kh φ(x, t) :=

M
∑

m=0

i
(j+1)
k τ (j),m(t) · i(2)2h ϕ

m(x),

for j = 0, 1. We are now able to define the space time projections. They

are given by

Π
(j,2)
2h : V

(j,1)
kh → V

(j,2)
kh , Π

(j,2)
2h := i

(j,2)
h − id,

for j = 0, 1, 2, keep V
(j,1)
kh ⊂ V (j,2)

kh in mind,

Π
(1,j)
k : V

(0,j)
kh → V

(0,j)
kh ∪ V (1,j)

kh , Π
(1,j)
k := i

(1,j)
k − id,

for j = 1, 2,

Π
(2,j)
2k : V

(1,j)
kh → V

(2,j)
kh , Π

(2,j)
2k := i

(2,j)
k − id,
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for j = 1, 2, notice V
(1,j)
kh ⊂ V (2,j)

kh ,

Π
(1,2)
k,2h : V

(0,1)
kh → V

(0,1)
kh ∪ V (1,2)

kh , Π
(1,2)
k,2h := i

(1,2)
kh − id,

and

Π
(2,2)
2k,2h : V

(1,1)
kh → V

(2,2)
kh , Π

(2,2)
2k,2h := i

(2,2)
kh − id,

take notice of V
(1,1)
kh ⊂ V

(2,2)
kh . Now, we can state the approximation of

the error identity (1.3.8):

J (w)− J (wkh)

=
1

2
[ρ (wkh) (z − z̃kh) + ρ⋆ (wkh, zkh) (w − w̃kh)] +Rkh

≈ 1

2

[

ρ (wkh)
(

Π
(1,2)
k,2h zkh

)

+ ρ⋆ (wkh, zkh)
(

Π
(2,2)
2k,2hwkh

)]

=: η

Beside the approximation of the weights by the specified projections,

we have neglected the remainder term Rkh. It is of third order w.r.t.

the error e, thus of higher order. Therewith, we are able to define the

error estimator η. It should be remarked that the approximation sign

“≈” only occurs here in the derivation of the error estimate. In every

other step, only real “=”signs occur. Furthermore, no other “higher order

arguments”are involved. In [99], the derivation is based on the semi- and

the full-discrete problem formulation to split the spatial and the temporal

error estimator part. There, the unknown semi-discrete solution has to

be approximated by the full-discrete one, which involves a higher order

argument. In contrast to this, we use the following lemma to split the

spatial and the temporal part of the a posteriori error estimate:

Lemma 1.3.9. The following identities hold:

Π
(1,2)
k,2h = i

(1,2)
k Π

(0,2)
2h + Π

(1,1)
k

= i
(1,2)
h Π

(1,1)
k + Π

(0,2)
2h ,

Π
(2,2)
2k,2h = i

(2,2)
k Π

(1,2)
2h + Π

(2,1)
2k

= i
(2,2)
h Π

(2,1)
2k + Π

(1,2)
2h .
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Proof of Lemma 1.3.9. Let ϕkh be an arbitrary function from V
(1,1)
kh .

It holds

Π
(2,2)
2k,2hϕkh = i

(2,2)
kh ϕkh − ϕkh

= i
(2,2)
kh ϕkh − i(2,1)

k ϕkh + i
(2,1)
k ϕkh − ϕkh.

Since ϕkh is a tensor product function in space and time, we obtain

Π
(2,2)
2k,2hϕkh = i

(2,2)
kh ϕkh − i(2,1)

k ϕkh + i
(2,1)
k ϕkh − ϕkh

= i
(2,2)
k

(

i
(1,2)
h ϕkh − ϕkh

)

+ Π
(2,1)
2k ϕkh

= i
(2,2)
k Π

(1,2)
2h ϕkh + Π

(2,1)
2k ϕkh.

Furthermore, we have

Π
(2,2)
2k,2hϕkh = i

(2,2)
kh ϕkh − ϕkh

= i
(2,2)
kh ϕkh − i(1,2)

h ϕkh + i
(1,2)
h ϕkh − ϕkh

= i
(2,2)
h

(

i
(2,1)
k ϕkh − ϕkh

)

+ Π
(1,2)
2h ϕkh

= i
(2,2)
h Π

(1,1)
k ϕkh + Π

(1,2)
2h ϕkh.

The indentities for Π
(1,2)
k,2h are derived analogously. �

Definition 1.3.10. Let us now define the spatial error estimator terms

ηn
h :=

1

2

[

ρ (wkh)
(

Π
(0,2)
2h zkh

)

+ ρ⋆ (wkh, zkh)
(

Π
(1,2)
2h wkh

)]

,

ηi
h :=

1

2

[

ρ (wkh)
(

i
(1,2)
k Π

(0,2)
2h zkh

)

+ ρ⋆ (wkh, zkh)
(

i
(1,2)
k Π

(1,2)
2h wkh

)]

,

and the temporal error estimator terms

ηn
k :=

1

2

[

ρ (wkh)
(

Π
(1,1)
k zkh

)

+ ρ⋆ (wkh, zkh)
(

Π
(2,1)
2k wkh

)]

,

ηi
k :=

1

2

[

ρ (wkh)
(

i
(1,2)
h Π

(1,1)
k zkh

)

+ ρ⋆ (wkh, zkh)
(

i
(2,2)
h Π

(2,1)
2k wkh

)]

.

Furthermore, we set

ηnn := ηn
h + ηn

k ,

ηni := ηn
h + ηi

k,
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ηin := ηi
h + ηn

k ,

ηii := ηi
h + ηi

k.

Corollary 1.3.11. It holds

η = ηni = ηin.

Proof of Corollary 1.3.11. Lemma 1.3.9 implies the assertion, since

the residuals are linear in the second argument. �

The numerical results presented in the next section substantiate that both

ηn
h and ηi

h measure the spatial error and that ηn
k as well as ηi

k represent

the temporal error. The concrete form of ηn
h is described in Section A.4.1,

ηi
h in Section A.4.2. The temporal error estimator terms ηn

k and ηi
k are

worked out in Section A.3.1 and A.3.2, respectively. We exactly evaluate

the temporal integrals in all terms except for
((

f, i
(1,1)
k v̄kh − v̄kh

))

m
and

(

(

q, i
(1,1)
k v̄kh − v̄kh

)

ΓN

)

m

.

We consider ηn
k , the following discussion directly carries over to ηi

k. The

first idea is to use Simpson’s rule to approximate
((

f, i
(1,1)
k v̄kh − v̄kh

))

m
and

(

(

q, i
(1,1)
k v̄kh − v̄kh

)

ΓN

)

m

.

But this leads to a less accurate error estimation, since ρ (wkh) (zkh) = 0

does not hold anymore. Consequently, we use the trapezoidal rule to

approximate the temporal integrals

((f, v̄kh))m and
(

(q, v̄kh)ΓN

)

m
.

Then, ρ (wkh) (zkh) = 0 holds. Simpson’s formula is applied to evaluate

((

f, i
(1,1)
k v̄kh

))

m
and

(

(

q, i
(1,1)
k v̄kh

)

ΓN

)

m

.

See Section A.1 for a short overview of quadrature rules.

For linear problems with linear output functionals J , it is sufficient to

work with the primal residuals, since they are equal to the dual ones.
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Thus, we define the primal spatial error estimator terms

ηp,n
h := ρ (wkh)

(

Π
(0,2)
2h zkh

)

,

ηp,i
h := ρ (wkh)

(

i
(1,2)
k Π

(0,2)
2h zkh

)

,

and the primal temporal error estimator terms

ηp,n
k := ρ (wkh)

(

Π
(1,1)
k zkh

)

,

ηp,i
k := ρ (wkh)

(

i
(1,2)
h Π

(1,1)
k zkh

)

.

Furthermore, we set

ηp
nn := ηp,n

h + ηp,n
k , ηp

ni := ηp,n
h + ηp,i

k ,

ηp
in := ηp,i

h + ηp,n
k , ηp

ii := ηp,i
h + ηp,i

k .

Since the primal residual ρ and the dual residual ρ⋆ are linear in the

second argument, Lemma 1.3.9 shows that ηp
ni = ηp

in = ηp holds.

The error estimator ηnn corresponds to the error estimator, which is ob-

tained, if the aguments used in [99] are transferred to hyperbolic problems

of second order. The definition of ηii is an ad hoc definition, which is an

obvious idea proposed by the used concept. The error estimator ηp
nn is

similar to the one derived in [9].

In the subsequent chapters, we will write i
(2)
2h for all spatial interpola-

tions of higher order to ease the notation, because it is obvious from the

argument, which interpolation one has to take. The same holds for the

temporal interpolations of higher order i
(1)
k and i

(2)
2k as well as for the

spatial and temporal projections Π
(2)
2h , Π

(1)
k and Π

(2)
2k .

1.4. Numerical Results

In this section, we test the a posteriori error estimation by an example,

for which the analytical solution is known. The differential operator

is A (u) = ∆u + u3. The spatial domain is Ω = [0, 1]2, where ΓN =

{x = (x1, x2) ∈ ∂Ω |x1 = 1} and ΓD = ∂Ω\ΓN . The time interval is I =
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M N Erel Inn
eff Iin

eff Ini
eff Iii

eff
50 64 −4.512 · 10−3 0.534 0.561 0.561 0.591
100 256 −9.168 · 10−4 0.808 0.845 0.845 0.884
200 1024 −2.164 · 10−4 0.955 0.979 0.979 1.004
400 4096 −5.335 · 10−5 1.001 1.014 1.014 1.026
800 16384 −1.344 · 10−5 1.022 1.029 1.029 1.035
1600 65536 −3.398 · 10−6 1.037 1.040 1.040 1.043
Table 1.4.1. Effectivity indices for different estimators
based on the primal and dual residual w.r.t. uniform re-
finement

M N Erel Ip,nn

eff
Ip,in

eff
Ip,ni

eff
Ip,ii

eff
50 64 −4.512 · 10−3 0.564 0.629 0.629 0.710
100 256 −9.168 · 10−4 0.907 1.005 1.005 1.125
200 1024 −2.164 · 10−4 1.126 1.195 1.195 1.273
400 4096 −5.335 · 10−5 1.209 1.247 1.247 1.286
800 16384 −1.344 · 10−5 1.247 1.266 1.266 1.285
1600 65536 −3.398 · 10−6 1.269 1.278 1.278 1.288
Table 1.4.2. Effectivity indices for different estimators
based on the primal residual w.r.t. uniform refinement

M N ηn
k

(

·10−7
)

ηi
k

(

·10−7
)

ηp,n
k

(

·10−7
)

ηp,i
k

(

·10−7
)

200 64 2.828 12.38 7.641 26.77
200 256 2.540 5.270 7.378 12.85
200 1024 2.487 3.182 7.327 8.719
200 4096 2.472 2.647 7.313 7.664
200 16384 2.468 2.512 7.310 7.398
200 65536 2.467 2.478 7.309 7.331
Table 1.4.3. Behaviour of ηk w.r.t. uniform spatial refinement

[0, 1]. We choose the analytical solution

u (x1, x2, t) := sin (πt) sin

(

1

4
πx1

)

sin (πx2) .
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M N ηn
h

(

·10−6
)

ηi
h

(

·10−6
)

ηp,n
h

(

·10−6
)

ηp,i
h

(

·10−6
)

50 1024 −2.933 −2.563 −3.130 −2.385
100 1024 −3.048 −2.895 −3.146 −2.839
200 1024 −3.103 −3.033 −3.153 −3.014
400 1024 −3.127 −3.093 −3.151 −3.085
800 1024 −3.138 −3.122 −3.149 −3.117
1600 1024 −3.144 −3.136 −3.149 −3.133
3200 1024 −3.147 −3.136 −3.149 −3.141
Table 1.4.4. Behaviour of ηh w.r.t. uniform temporal refinement

Hence, f and q are set to

f := ü−∆u− u3, q :=
∂u

∂x1
.

The initial values are given by us = u (x1, x2, 0) and vs = u̇ (x1, x2, 0).

As functional of interest, we choose

J1 (w) =
1

|B|

�
B

(

u2 + v2
)

dx, J2(w) = 0, B := B∞
1
8

(

1

8
,
1

8

)

.

The effectivity index is defined as usual by

Ieff :=
J (w)− J (wkh)

η
.

We add the indices of the different estimators η to Ieff in order to distin-

guish the effectivity indices. For instance, Inn
eff represents the effectivity

index w.r.t. ηnn. The relative error is given by

Erel :=
|J (w)− J (wkh)|

|J (w)| .

In Table 1.4.1 and Table 1.4.2, the effectivity indices for different error

estimators are presented, where the temporal and the spatial mesh are

uniformly refined. We observe that the effectivity indices of ηnn, ηni, ηin,

and ηii are similar, those of ηni and ηin are equal as expected. For these

error estimators, we obtain a very good estimate of the error with ef-

fectivity indices in the range of 1.0. The error estimators based only on
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Figure 1.4.1. Development of ηn
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the primal residuals show worse results, which was expected, because we

consider a nonlinear problem here.

The reasonability of the definitions of ηk and ηh are supported in the

Tables 1.4.3 and 1.4.4. We observe that ηh is almost constant, if the tem-

poral mesh is refined uniformly, while the spatial mesh is kept constant.

There exists a dependence only of higher order. Vice versa, ηk is almost

constant, if the spatial mesh is refined uniformly and the temporal mesh

is left unchanged. We observe the same behaviour of ηk and ηh, if the

meshes are adaptively refined. A direct consequence of this property of

ηh is shown in Figure 1.4.1. If ηh is constant w.r.t. temporal refinement,

then the terms of ηh in the single time steps ηm
h have to depend on k.

We observe a linear depence on k for every fixed temporal grid point

tm. Figure 1.4.1 shows a representative example. We have to keep this

dependence in mind, when we develop the adaptive spatial refinement

strategy in Section 2.2.



CHAPTER 2

Adaptive Mesh Refinement

In the preceding chapter, we have derived an a posteriori error estima-

tor, which accurately estimates the discretisation error w.r.t. an output

functional J . Now, a second property of the error estimator is utilised. It

reflects the spatial and temporal distribution of the discretisation error.

Thus, we improve the solution by refining only those mesh cells, where

the estimated error is large. We have to adapt the error estimator in such

a way that it can serve as basis of the adaptive refinement process, i.e.

we have to derive appropriate refinement indicators. This is the topic of

the first section.

In Section 2.2, we present the adaptive refinement algorithm, which is

based on the space-time equilibration strategy [99] and the optimal mesh

strategy [97, 98]. Mesh refinement is only considered, algorithms for

mesh coarsening are not included. The mesh properties, like patch struc-

ture, only spatial and temporal hanging nodes of degree one, are not

conserved during the adaptive refinement of the spatial meshes. Con-

sequently, we have to regularise the mesh, i.e. additional mesh cells

are refined such that the mentioned properties hold. The regularisation

algorithms are presented and analysed in Section 2.3. Combining all pre-

sented algorithms, we describe the whole adaptive solution algorithm. Its

implementation is the topic of Section 2.5. We present a heuristic error

estimator in Section 2.6, which is compared with the derived error esti-

mator. In numerical examples, we observe that the presented adaptive

solution algorithm leads to an efficient discretisation scheme.

In general, adaptive algorithms for dynamic problems are based on refine-

ment strategies, which are known from static problems, see, for instance,

47
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[13], Section 4.2, and [111], Section 4.1, for a survey of adaptive algo-

rithms for static problems. Commonly used adaptive algorithms for time

dependent problems, see, e.g., [100], Section 1.5.4, and [78], perform an

adaptive refinement process using a prescribed tolerance in every time

step. This refinement process is independent of previous and subsequent

time steps. The crucial point is that the time interval is passed only once.

The tolerance limit cannot be reached, if the solution in the previous time

step has not been calculated exactly enough. Moreover, the difference of

the meshes of two successive time steps may significantly increase the er-

ror. Usually, rapid changes of the problem parameters are the reason for

this behaviour. An alternative is given by algorithms based on the ideas

in [12, 99], where a more global approach is used. The time interval

is passed multiple times and the adaptive refinement strategies take the

refinement indicators of several or all time steps into account. Here, we

significantly extend these ideas to adapt them to our setting.

2.1. Refinement Indicators

In this section, we derive refinement indicators for an adaptive refinement

process on the basis of the presented error estimator. The first step is

the localisation of the error estimator to the single cells. Furthermore,

we have to compensate the time dependence of the local spatial error

estimates and the definition of the spatial higher order interpolation at

hanging nodes is discussed. The last step is smoothing the indicators.

We end up with appropriate refinement indicators, i.e. they lead to good

adaptive meshes, as we will see in Section 2.7.

2.1.1. Localisation of the Error Estimator. In this chapter, we

present all results for the error estimator ηni. The derivation is analogous

for ηnn, ηin, and ηii. The localisation in temporal direction is easy. We

split the integral over I into the sum over all subintervals Im, 0 < m ≤M
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and the error estimate in the initial values. For this purpose, we define

ηn
h :=

M
∑

jm=0

ηn,m
h and ηi

k :=

M
∑

m=1

ηi,m
k .

The detailed form of ηi,m
k is presented in Section A.3 and of ηn,m

h in

Section A.4.

Up to now, we have localised the error estimate to the single tempo-

ral subintervals. This localisation is sufficient for the adaptive temporal

refinement, where the set

Θ̃k :=
{

ηi,m
k

∣

∣

∣m = 1, 2, . . . ,M
}

serve as basis for the refinement strategy. We have to localise the spa-

tial error estimator ηn,m
h to the single mesh cells in every time step. In

literature, two different techniques to realise the spatial localisation are

known: The first one is the cellwise integration by parts of the differen-

tial operator and the other one is based on a filtering operator. To be

complete, we briefly present both methods:

The method based on integration by parts is the “classic” choice, see, for

instance, [4, 111]. In this approach, only the terms

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)

and a′ (um
kh)
(

i
(2)
2h u

m
kh − um

kh, v̄
m
kh

)

have to be modified. We exemplarily study the term

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)

,

the detailed expressions are given in Section (A.5). The part
(

b (um
kh) , i

(2)
2h v̄

m
kh − v̄m

kh

)

is left unchanged, thus we assume b = 0 for a moment. We obtain

a (um
kh) (ϕm

kh) = (ā (um
kh) ,∇ϕm

kh) ,

where

ā (um
kh) :=

(

a1 (x, t, um
kh,∇um

kh)

a2 (x, t, um
kh,∇um

kh)

)

.
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The integral over Ω is split into

a (um
kh) (ϕm

kh) =
∑

T ∈T
m
h

(ā (um
kh) ,∇ϕm

kh)T .

Integration by parts on each T leads to

(ā (um
kh) ,∇ϕm

kh)T = (−A (um
kh) , ϕm

kh)T +
∑

E∈∂T

(B (um
kh) , ϕm

kh)E .

Summing up, we obtain

a (um
kh) (ϕm

kh) =
∑

T ∈T
m
h

(−A (um
kh) , ϕm

kh)T (2.1.1)

+
1

2

∑

T ∈T
m
h

∑

E∈∂T

([B (um
kh)] , ϕm

kh)E ,

where

[B (um
kh)] (2.1.2)

:=















B (um
kh)|T − B (um

kh)|T ′ , E ⊂ T ′, T 6= T ′, if E * ∂Ω

0, if E ⊂ ΓD,

2 (q − B (um
kh)) , if E ⊂ ΓN .

Equation (2.1.1) shows that we have to evaluate the strong differential

operator and the jump terms on the boundary of the mesh cells. This

considerably complicates the calculations, since we have to provide the

second spatial derivative of the solution and the evaluation of the gradient

operator B on the edges. Furthermore, a loop over all edges has to be

realised, where it is very complicated due to the mesh changes to ensure

that all integrals are correctly evaluated.

An alternative is given by the following method, which goes back to [29].

Since the description of this method in the context of the presented error

estimator leads to a complex notation, we restrict ourselves to the term

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)
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again. The application to the other terms is carried out in exactly the

same manner.

Let
{

αj : Ω→ R
∣

∣j = 1, 2, . . . , N̄m := dimV m
h

}

be the nodal Lagrange basis of V m
h and

{

βj = i
(2)
2h αj

∣

∣j = 1, 2, . . . , N̄m
}

the basis of V
(2),m
2h . Furthermore, V̄j ∈ R, j = 1, 2, . . . , N̄m, are the

coefficients of v̄m
kh, i.e.

v̄m
kh =

N̄m
∑

j=1

V̄jαj and i
(2)
2h v̄

m
kh =

N̄m
∑

j=1

V̄jβj .

We set V̄ =
(

V̄1, . . . , V̄N̄m

)⊤
. The value

Ψj := a (um
kh) (βj − αj)

represents the term a (um
kh) (·) w.r.t. the difference of the biquadratic

basis {βj} and the bilinear one {αj}. The vector Ψ = (Ψ1, . . . ,ΨN̄m)⊤ is

assembled in the same as, i.e., the right hand side. The value of

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)

is given by the Euclidean inner product in RN̄m

of Ψ and V̄ , i.e.

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)

= Ψ⊤V̄ =

N̄m
∑

j=1

ΨjV̄j .

The space

V m
2h :=

{

ϕ ∈ C
(

Ω̄,ΓD

) ∣

∣∀T ∈ Tm
2h : ϕ|T ∈ Q1 (T ; R)

}

⊂ H1 (Ω,ΓD)

consists of bilinear basis functions on patches. Because of the patch

structure of the meshes, we have V m
2h ⊆ V m

h . The operator i
(1)
2h : V m

h →
V m

2h interpolates a function from V m
h in V m

2h . We define the operator

π := id− i(1)2h and call π filtering operator. The nodal vector V̄ π denotes
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the coefficients of the filtered function πv̄m
kh w.r.t. the basis αj, i.e.

πv̄m
kh =

N̄m
∑

j=1

V̄ π
j αj .

The interpolation operator i
(2)
2h is the identity on V m

2h . Thus, we obtain

i
(2)
2h παj − παj = i

(2)
2h αj − αj = βj − αj.

The linearity of the second argument leads to

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)

=

N̄m
∑

j=1

Ψj V̄j =

N̄m
∑

j=1

ΨjV̄
π
j ,

see [29] for the detailed calculation. We end up with the nodal values

ΨjV̄
π
j , which provide a sufficient localisation of the term

a (um
kh)
(

i
(2)
2h v̄

m
kh − v̄m

kh

)

,

c.f. [29]. Finally, the values ΨjV̄
π
j have to be shifted from the nodes to

the cells. We use the method presented in [29], i.e. we simply take the

mean value of the values ΨjV̄
π
j of all nodes, which are the vertices of the

mesh cell.

The filtering approach includes the application of the filtering operator

and the shift to the mesh cells as additional operations. These addi-

tional operations lead to a small computational effort, especially in node

oriented finite element codes.

We work with two different approaches to the spatial adaptivity. In the

first approach, we set V m
h = Vh for all m = 0, 1, . . . ,M , i.e. the meshes do

not change from time step to time step. However, the underlying mesh

Th is adaptively refined. This method is called constant mesh approach

(CM). The alternative is that the meshes can change from time step to

time step. We call this the dynamic mesh approach (DM). Using one of

the presented localisation methods, we obtain error indicators ηn,m
T for
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η

Figure 2.1.1. Illustration of the behaviour of a refine-
ment indicator

all T ∈ Tm
h and all m = 0, 1, . . . ,M . The sets

Θ̃CM
h :=

{

ηn
T :=

M
∑

m=0

ηn,m
T

∣

∣

∣

∣

∣

T ∈ Th

}

,

Θ̃DM
h :=

{

ηn,m
T

∣

∣ T ∈ Tm
h , m = 0, 1, . . . ,M

}

are the basis for the spatial adaptive mesh refinement.

2.1.2. Adaption of the Refinement Indicators to the Refine-

ment Strategy. In the last section, we have localised the error estimate

to single mesh cells. We want to use these values to decide, which el-

ements are refined and which are left unchanged. For this end, the re-

finement strategies discussed in Section 2.2 are applied. All refinement

strategies known from literature, just like the ones we use, are based on

sorting the indicators by size, i.e. we need to take the absolute value

of the indicators. The first and “classic” idea is to take the absolute

value of the refinement indicator on a mesh element, i.e. to consider for

instance ιn,m
T ,o :=

∣

∣ηn,m
T

∣

∣. We call this approach “outside”. However, as

we will see in Section 2.7.1, this approach does not necessarily lead to

good adaptive meshes. The reason is illustrated in Figure 2.1.1, where

a typical distribution of refinement indicators in hyperbolic problems is

depicted. We get small absolute values of the indicators, where the sign

of the indicators changes. However, a sign change of the indicator does

not necessarily imply that the error is small. Our approach to overcome

this difficulty is to take the absolute value in different ways. We test the
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following three additional alternatives, which we explain by the example

of ηn,m
T : The first one is named “residual”, where the absolute value of

the primal residual ρ and the dual residual ρ⋆ is added, i.e.

ιn,m
T ,r :=

1

2

(∣

∣

∣

∣

ρ (wkh)
(

Π
(1,2)
k,2h zkh

)

|T

∣

∣

∣

∣

+

∣

∣

∣

∣

ρ⋆ (wkh, zkh)
(

Π
(2,2)
2k,2hwkh

)

|T

∣

∣

∣

∣

)

.

In the approach named “terms”, we take the absolute value of every con-

tributing term:

ιn,m
T ,t :=

6
∑

i=1

∣

∣

∣η
n,m
T ,i

∣

∣

∣ ,

see Section A.4.1 for the definition of ηn,m
h,i . Here, ηn,m

T ,i is the contribution

on a mesh cell T . The last one is called “summand”, there we integrate

over the absolute value of the single contributing terms. Thus,

ιn,m
T ,r : =

1

2
ρ (|wkh|)

(∣

∣

∣
Π

(1,2)
k,2h zkh

∣

∣

∣

)

|T

+
1

2
ρ⋆ (|wkh| , |zkh|)

(∣

∣

∣
Π

(2,2)
2k,2hwkh

∣

∣

∣

)

|T
.

The decision, which way to take the absolute value is the best one, can

only be made based on numerical results, see Section 2.7. We test the four

alternatives, compare the results, and choose the alternative, which lead

to the best results. The indicators contained in Θ̃k can be used for the

adpative refinement in time, if we take the absolute value. The resulting

set of refinement indicators is called Θk :=
{

η̃i,m
k

∣

∣

∣
m = 1, 2, . . . ,M

}

with

the modified refinement indicators η̃i,m
k ≥ 0.

For the spatial refinement indicators, we have to take some other effects

into account. Functions in V
(2),m
2h are continuous. Consequently, we have

to ensure this continuity along edges with hanging nodes. For this end,

we have to calculate the function values in the hanging nodes w.r.t. the

biquadratic interpolation. However, these values differ from the values

determined by the bilinear trial functions. In Figure 2.1.2, this is illus-

trated. On the patch A, which conists of the mesh cells A1, A2, A3 and

A4, the quadratic interpolation on the edges a, c and c, e is determined
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b

b

b

×

×

× hanging node

A4 A3

A2A1

B4 B3

B2B1

C4 C3

C2C1

a

b

c

d

e

(a) Mesh with hanging nodes

b b b× ×
bc

bc

bc

rs rs

ld ld

ϕh

i
(2)
2h ϕh

a b c d e

(b) Piecewise quadratic interpolation on the edges with hanging nodes of the
mesh depicted in (a)

Figure 2.1.2. Illustration of i
(2)
2h on edges with hanging nodes

by the function values in a, b, and c (Marked by small circles in Figure

2.1.2 (b)). For the hanging nodes b and d, we obtain the function values

marked with the small diamonds. They differ from the original function

values (Marked with a small square), which are determined by the lin-

ear trial functions. This approach leads to an accurate estimation of the

error, but it causes problems in the definition of the refinement indica-

tors on the fine cells. Let us explain this with the help of Figure 2.1.2

again. If we use the globally continuous interpolation of higher order, we

obtain large refinement indicators on the cells B1, B4, C1, and C4. Con-

sequently, these cells are refined during the adaptive refinement process.

However, the indicators are large on these cells not necessarily because
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of the large discretisation error but due to the global continuity of the

higher order interpolation. To understand this, let us consider the patch

B. If we only regard B in the definition of the higher order interpolation,

it is determined by the function values in the points a, b, and c. They

form an affine linear function and the higher order interpolation includes

affine linear functions. Thus, the higher order interpolation is equal to

the original function and the difference is zero. But we have learned that

the function value in b w.r.t. the quadratic interpolation is determined

by the function values in a, c, and e and is not equal to the original func-

tion value. Consequently, we do not obtain the affine linear function as

interpolation of higher order but a quadratic function and the difference

is not longer zero. This leads to the large refinement indicator and the

unnecessary refinements. To circumvent this, we use the higher order in-

terpolation locally on every patch indepent from the other patches, when

we calculate the refinement indicators. For the calculation of the error

estimation, we use the globally continuous higher order interpolation. By

using the local higher order interpolation and taking the absolute value,

we obtain the set of refinement indicators for the CM approach

ΘCM
h :=

{

η̃n
T :=

M
∑

m=0

η̃n,m
T

∣

∣

∣

∣

∣

T ∈ Th = Tm
h , m = 0, 1, . . . ,M

}

,

where η̃n,m
T ≥ 0 are the modified refinement indicators.

In Section 1.4, we have seen that ηn,m
h linearly depends on k. In the

set Θ̃DM
h , we have to compare refinement indicators over all time steps,

where the comparison is disturbed by the dependence of ηn,m
T on k. We

define the reference time step length k̂ := T/M and scale all indicators

by the factor k̂/km to compensate for this disturbance.

The numerical results in Section 2.7.1 show that the refinement indicators

in the set Θ̃DM
h do not lead to reasonable adaptive meshes. Despite

all presented modifications, we observe that the refined regions of the

meshes are fragmented as well as that the meshes rapidly change between

two time steps. To further compensate this, we smooth the refinement
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Algorithm 2.1.1 Smoothing of refinement indicators

Input: Mesh Th={Tj| j = 1, 2, . . . , Nh}, number of smoothing iterations
S, set of indicators Θ =

{

η0
T

∣

∣T ∈ Th

}

(1) Set s = 1.
(2) Set j = 1.
(3) Determine

ηs
j =

1

|ad (Tj)|
∑

T ′∈ad(Tj)

ηs−1
T ′

(4) Set j ← j + 1. If j ≤ Nh go to (3).
(5) Set s← s+ 1. If s ≤ S go to (2).

Output: Set of smoothed indicators Θ̃ =
{

ηS
j

∣

∣

∣
j = 1, 2, . . . ,Nh

}

indicators in every time step. The set of the adjacent mesh cells of a

mesh cell T ∈ Th is defined by

ad (T ) :=
{

T ′ ∈ Th

∣

∣ T̄ ∩ T ′ 6= ∅
}

.

The smoothing algorithm is present in Algorithm 2.1.1. Finally, we obtain

the set of refinement indicators

ΘDM
h :=

{

η̃n,m
T

∣

∣ T ∈ Tm
h , m = 0, 1, . . . ,M

}

,

where we apply all mentioned operations to determine η̃n,m
T ≥ 0. The

numerical results presented in Section 2.7 substantiate that the defini-

tion of η̃n,m
T lead to appropriate refinement indicators and therewith to

reasonable adaptive meshes.

2.2. Adaptive Refinement Strategy

The space-time Galerkin method contains the spatial mesh sequence Mh

and the temporal mesh Tk. First, we develop a strategy, called space-

time refinement strategy, to decide, whether the spatial mesh sequence

Mh, the temporal mesh Tk, or both should be adaptively refined.

The overall aim of the adaptive discretisation is to achieve a desired

accuracy, whereas the numerical effort attains its minimum. In view of
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Algorithm 2.2.1 Space-time refinement strategy

Input: Error estimates ηh and ηk, equilibration factor c > 1

(1) If |ηh| > c |ηk|, then refine the spatial mesh sequence
(2) If |ηk| > c |ηh|, then refine the temporal mesh

(3) If c−1 ≤ |ηh|
|ηk |
≤ c, then refine the spatial mesh sequence and the

temporal mesh

Output: Meshes to be refined

Algorithm 2.2.2 Refinement strategy

Input: Θ := {η1, η2, . . . , ηR}
(1) Determine a permutation (i1, i2, . . . , iR) of (1, 2, . . . , R) such

that
ηi1 ≥ ηi2 ≥ . . . ≥ ηiR .

(2) Solve the optimisation problem

r = arg min
1≤r≤R

E(r)N (r)δ.

(3) Set Θr := {ηi1 , ηi2 , . . . , ηir}.
Output: Θr

this aim, the spatial and temporal error should be equal, i.e., speaking in

the terms of the error estimator,

|ηh| ≈ |ηk|

should hold. Thus, the space-time refinement strategy must lead to a

discretisation, where the spatial and the temporal error estimators are

approximately equal. This property has to be conserved during further

refinements. In this thesis, the space-time refinement strategy presented

in [99] is used, which is simple as well as efficient. It is described in

Algorithm 2.2.1. The equilibration factor c measures, when we accept

a discretisation to be equilibrated. In practical experiments, c = 5 has

turned out to be a good choice. Smaller values of c lead to a lot of

refinement cycles, which are time consuming. However, larger values of

c lead to inefficient discretisations.
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Up to now, we have presented a strategy to decide, whether the spatial

mesh sequence Mh, the temporal mesh Tk, or both should be adaptively

refined. In a second step, we select those spatial mesh cells or those

temporal subintervals, repectively, which should be refined. Since the

same refinement strategy is applied to the spatial mesh sequence as well

as to the temporal mesh, we present it in a general setting. The basis is a

set of refinement indicators Θ = {ηi ≥ 0| i = 1, 2, . . . , R}, e.g., Θk, ΘCM
h ,

or ΘDM
h . The refinement indicator ηi is connected to a mesh cell Ti. The

refinement strategy has to determine a subset

Θr :=
{

ηij

∣

∣ j = 1, 2, . . . , r
}

⊆ Θ,

where the mesh cells Tij should be refined. And the set Θr has to be

chosen in such a way that a maximum reduction of the error by a mini-

mum additional numerical effort is achieved. Throughout this thesis, we

apply the refinement strategy presented in [97, 98]. It is very flexible and

leads to a uniform refinement, once the error indicators are equilibrated.

Assuming some regularity properties, this approach has been justified in

[28].

We briefly describe the refinement strategy here in order to give a com-

plete overview. It is presented in Algorithm 2.2.2. There, E(r) is a

prediction of the discretisation error, if r cells are refined. It is based

on the error estimates ηi and on the convergence rate of the underlying

discretisation. The computational effort is measured by N (r). We use

the number of degrees of freedom to measure the effort. The convergence

rate of the underlying discretisation and the dimension of the discretised

domain are expressed by δ. We solve the optimisation problem by testing

all values of r, which is efficiently implemented and does not need much

computing time.

The application of this refinement strategy to the spatial and temporal

discretisation is straightforward. In the DM approach, we compare all

refinement indicators of the spatial mesh sequence Mh with each other,
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not only the indicators of one time step. This leads to a very efficient

adaptive refinement, which we will see in the Sections 2.7, 3.4, and 4.4.

2.3. Mesh Regularisation

During the adaptive refinement process, unstructured meshes are created.

However, we have to ensure several properties of the meshes. The first

one is the patch structure of the spatial meshes, which is needed to define

the higher order interpolation i
(2)
2h , the filtering operator π, as well as the

discrete Lagrange multipliers in Chapter 3 and 4. We also need a kind

of patch structure of the temporal mesh, i.e. it has to contain an even

number of time steps, in order to evaluate the higher order interpolation

i
(2)
2k . We ensure this directly in the refinement strategy. There, we refine

an additional element, if the adaptive refinement led to an odd number

of mesh cells. Since spatial hanging nodes may lead to oscillations in the

discrete solution, we allow only one hanging node per edge. The same

restriction is enforced in static calculations, too. In [35], an a priori and a

posteriori error analysis for triangulations with spatial hanging nodes of

maximum degree one is presented. There, static problems are considered.

In the DM approach, we have to pay special attention to the mesh changes

between the time steps. In view of Theorem 1.2.5, Proposition 1.2.7,

and Remark 1.2.8, the differences between the meshes of two consecutive

time steps should be small. The difference corresponds to the number of

hanging nodes in time and to their degree. We do not control the number

of hanging nodes. But we ensure that only hanging nodes of degree one in

time occur. In the first part of this section, we present the regularisation

algorithms and show in the second one that they lead to the desired mesh

structure.

2.3.1. Regularisation Algorithms. Before we present the regu-

larisation algorithms, we introduce some notation:
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• We denote an arbitrary spatial mesh by Th. We will make addi-

tional assumptions on the meshes in the following items. They

especially ensure that all meshes are hierarchic structured.

• The operator ref (T ) denotes the symmetric and regular refine-

ment of a cell T ∈ Th, where we decompose the quadrilateral T
into four new quadrilaterals T 1

N , . . . ,T 4
N by bisection of all four

edges of T , ref (T ) :=
{

T 1
N , . . . ,T 4

N

}

.

• By refine (Th,Θ), we denote the refinement of the mesh Th,

where all cells in T ∈ Θ ⊆ Th are refined by ref (T ),

refine (Th,Θ) := (Th\Θ) ∪
(

⋃

T ∈Θ

ref (T )

)

• The new cells, which are generated during the refinement ref (T ),

are collected in the set

Ch (T ) := ref (T ) =
{

T 1
N , . . . ,T 4

N

}

.

They are called the children of a mesh cell T . We remark that

the children of T always exist.

• The children of a mesh Ch (Th) are the set

Ch (Th) :=
⋃

T ∈Th

Ch (T ) .

• All spatial meshes are constructed by adaptive refinement of a

fixed initial mesh Ih, Ih = Ch (I⋆
h), where I⋆

h is a mesh without

hanging nodes. Consequently, Ih has patch structure.

• Let U0
h := Ih be the initial mesh and define recursively

Ul
h := Ch

(

Ul−1
h

)

for l = 1, 2, . . .. Furthermore, we set

Ūh :=

∞
⋃

l=0

Ul
h.

For all meshes Th, Th ⊂ Ūh holds.

• If T ∈ Ul
h, we say the cell T has the refinement level

RL (T ) := l. We remark that RL (P (T )) = RL (T ) − 1 and

RL (T ′) = RL (T ) + 1 for all T ′ ∈ Ch (T ).
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• We say a mesh Th is of the refinement level l, if and only if

l = RL (Th) := max
T ∈Th

RL (T ) .

• Let T be an arbitrary mesh cell with RL(T ) = l. The parent

cell of T , P (T ), is the unique cell with RL (P (T )) = l − 1, for

which T ∈ Ch (P (T )) holds.

• We set Ch1 (T ) := Ch (T ) and recursively define

Chp (T ) :=
⋃

T ′∈Chp−1(T )

Ch
(

T ′
)

with p ∈ N, p > 1.

• The set of all children of a mesh element Ch (T ) is then

Ch (T ) :=
∞
⋃

p=1

Chp (T ) .

• The set of all parents of a mesh element T is given by

P (T ) :=
{

T ′ ∈ Ul
h

∣

∣

∣ 0 ≤ l < RL (T ) , T ∈ Ch
(

T ′
)

}

.

• The refinement history of a mesh element T is the set

RH (T ) := P (T ) ∪ {T } ∪ Ch (T ) .

• The neighbourhood of a mesh element T in the mesh Th is given

by

N(T ,Th) :=
{

T ′ ∈ Th

∣

∣dim
(

T̄ ∩ T ′
)

≥ 1
}

.

• A mesh cell T ∈ Th has a spatial hanging node of degree d, if

and only if

d = hang(T ,Th) := max {RL(N (T ))− RL(T ), 0} .

• We say a mesh Th has only spatial hanging nodes of degree d, if

all T ∈ Th have only hanging nodes of degree less or equal d.

• The patch of a mesh element T is given by

patch(T ) := Ch (P (T )) .
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In particular, it holds T ∈ patch(T ).

• A mesh Th has patch structure, if and only if the relation

patch(T ) ⊆ Th

holds for all T ∈ Th.

• We denote a mesh sequence by Mh = (Tm
h )0≤m≤M . All meshes

of this sequence are constructed from the same initial mesh Ih

and are contained in Ūh.

• The set of the corresponding elements CE±
(

T ,Tm±1
h

)

of an el-

ement T ∈ Tm
h is defined as

CE±(T ,Tm±1
h ) :=

{

T ′ ∈ Tm±1
h

∣

∣ T ′ ∈ RH(T )
}

.

• The element T ∈ Tm
h has a forward (backward) temporal hanging

node of degree d, where

d := hang±
(

T ,Tm±1
h

)

:= max
{

RL(CE±(T ,Tm±1
h ))− RL(T ), 0

}

.

• We say a sequence of meshes Mh has only temporal hanging

nodes of degree d in time, if all T ∈ Tm
h have only forward and

backward hanging nodes of maximum degree d in time for all

0 ≤ m ≤M .

• A mesh sequence Mh is called patch regular, if and only if all

meshes Tm
h in Mh have only hanging nodes of degree one in space

and patch structure and if the sequence Mh has only hanging

nodes of degree one.

With this notation, we are now able to introduce the regularisation algo-

rithms. Here, regularisation means that additional mesh cells are refined

to recover the desired mesh structure. Algorithm 2.3.1 presents the reg-

ularisation of one spatial mesh Th. It is directly used in static problems

and in the CM approach. Lemma 2.3.1 ensures that we obtain a mesh,

which has patch structure and no hanging nodes of degree greater than

one, after a finite number of iterations. The algorithm to remove hanging

nodes of degree greater than one in time is introduced in Algorithm 2.3.2.
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Algorithm 2.3.1 Spatial regularisation

Input: Spatial mesh T0
h

(1) Build Θ0 =
{

T ∈ T0
h

∣

∣patch(T ) * T0
h

}

.

(2) Set T1
h ← refine

(

T0
h,Θ

0
)

, p = 1

(3) Build Θ̃p =
{

T ∈ Tl
h

∣

∣hang(T ,Tp
h) > 1

}

.

(4) If Θ̃p = ∅ then T⋆
h = Tp

h and STOP.
(5) Set Θp =

⋃

T ∈Θ̃p patch(T ).

(6) Set Tp+1
h ← refine

(

Tp
h,Θ

p
)

.
(7) Set p← p+ 1 and go to (3).

Output: Spatial mesh T⋆
h

If we enter an admissible mesh sequence in this algorithm, we end up with

a patch regular mesh sequence, see Lemma 2.3.4. The interaction of the

Algorithms 2.3.1 and 2.3.2 to realise an adaptive refinement of the mesh

sequence Mh is described in Algorithm 2.3.3. There, we put the cells,

which are chosen for refinement, into the set Θr. Proposition 2.3.8 en-

sures that we obtain an adaptively refined patch regular mesh sequence.

After the proof of these properties of the regularisation algorithms, we

present the adaptive solution algorithm in Section 2.4.

2.3.2. Analysis of the Regularisation Algorithms. In this sec-

tion, we analyse the regularisation Algorithm 2.3.3. As in the description

of this algorithm, we split up the analysis into two parts. In the first

part, we analyse Algorithm 2.3.1 and in the second one Algorithm 2.3.2.

We begin with the following result for Algorithm 2.3.1:

Lemma 2.3.1. Let T̃h be a mesh of refinement level l−1, which has patch

structure and only hanging nodes of degree one in space. The mesh T0
h is

constructed from T̃h by refinement, in particular T ∈ T̃h or P (T ) ∈ T̃h

holds for all T ∈ T0
h. Then Algorithm 2.3.1 terminates after a maximum

of l − 1 iterations and the output mesh T⋆
h has patch structure and has

only spatial hanging nodes of maximum degree one.

Remark 2.3.2. The mesh T⋆
h is of refinement level l or l − 1. If we

adaptively refine T⋆
h, the resulting mesh fulfils the assumptions of Lemma
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Algorithm 2.3.2 Temporal regularisation

Input: Mesh sequence Mh =
(

Tm,0
h

)

0≤m≤M

(1) Set T̂0,0
h := T0,0

h and m = 1.

(2) Build the set Θ̃0
f,m =

{

T ∈ Tm,0
h

∣

∣

∣
hang−

(

T , T̂m−1,0
h

)

> 1
}

.

(3) Set Θ0
f,m =

⋃

T ∈Θ̃0
f,m

patch(T ) .

(4) Set Tm,1
h ← refine

(

Tm,0
h ,Θ0

f,m

)

and p = 1.

(5) Build Θ̃p
f,m =

{

T ∈ Tm,p
h

∣

∣hang
(

T ,Tm,p
h

)

> 1
}

.

(6) If Θ̃p
f,m = ∅ then set T̂m,0

h = Tm,p
h and go to (10).

(7) Set Θp
f,m =

⋃

T ∈Θ̃p
m

patch(T ).

(8) Set Tm,p+1
h ← refine

(

Tm,p
h ,Θp

f,m

)

.

(9) Set p← p+ 1 and go to (5).
(10) If m < M , set m← m+ 1 and go to (2)

(11) Set TM,⋆
h := T̂M

h and m = M − 1

(12) Build the set Θ̃0
b,m =

{

T ∈ T̂m,0
h

∣

∣

∣
hang+

(

T ,Tm+1,⋆
h

)

> 1
}

.

(13) Set Θ0
b,m =

⋃

T ∈Θ̃0
m

patch(T ) .

(14) Set T̂m,1
h ← refine

(

T̂m,0
h ,Θ0

b,m

)

and p = 1.

(15) Build Θ̃p
b,m =

{

T ∈ T̂m,p
h

∣

∣

∣hang
(

T , T̂m,p
h

)

> 1
}

.

(16) If Θ̃p
b,m = ∅ then set Tm,⋆

h = T̂m,p
h and go to (20).

(17) Set Θp
b,m =

⋃

T ∈Θ̃p
b,m

patch(T ).

(18) Set T̂m,p+1
h ← refine

(

T̂m,p
h ,Θp

b,m

)

.

(19) Set p← p+ 1 and go to (15).
(20) If m > 0, set m← m− 1 and go to (12)

Output: Mesh sequence M⋆
h =

(

Tm,⋆
h

)

0≤m≤M

2.3.1. Consequently, the assumptions of Lemma 2.3.1 hold during an

adaptive refinement process consisting of several adaptive refinements, if

we apply Algorithm 2.3.1 after each adaptive refinement and if the initial

mesh has patch structure and only hanging nodes of degree one in space.
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Algorithm 2.3.3 Adaptive spatial refinement algorithm with regulari-
sation

Input: Mesh sequence Mh = (Tm
h )0≤m≤M and refinement indicators

Θr = (Θm
r )0≤m≤M

(1) Set m = 0.

(2) Set T̂m
h ← refine (Tm

h ,Θ
m
r ).

(3) Regularise T̂m
h in space by Algorithm 2.3.1 and call the result

T̃m
h .

(4) If m < M , set m← m+ 1 and go to (2).

(5) Regularise the mesh sequence M̃h =
(

T̃m
h

)

0≤m≤M
by Algorithm

2.3.2 and call the result M⋆
h.

Output: Mesh sequence M⋆
h =

(

Tm,⋆
h

)

0≤m≤M

Proof of Lemma 2.3.1. We define the sets

T̃p
R :=

{

T ∈ T̃h

∣

∣Ch (T ) ⊆ Tp
h

}

,

T̃p
N :=

{

T ∈ T̃h

∣

∣T ∈ Tp
h

}

.

It holds T̃h = T̃0
R ∪ T̃0

N , T̃0
N ∩ T̃0

R = ∅, T0
h = T̃0

N ∪ Ch
(

T̃0
R

)

, and

T̃0
N ∩ Ch

(

T̃0
R

)

= ∅.

In the first step, we prove that T1
h has patch structure. The set Θ0 is

a subset of T̃0
N , since patch (T ) ⊆ T0

h for all T ∈ Ch
(

T̃0
R

)

. Conse-

quently, we have T̃1
N = T̃0

N\Θ0 and T̃1
R = T̃0

R∪Θ0. Furthermore, it holds

T̃h = T̃1
R∪T̃1

N , T̃1
N∩T̃1

R = ∅, T1
h = T̃1

N∪Ch
(

T̃1
R

)

, and T̃1
N∩Ch

(

T̃1
R

)

= ∅
again. The mesh T1

h has patch structure, since patch (T ) ⊆ T1
h for all

T ∈ Ch
(

T̃1
R

)

by construction and for all T ∈ T̃1
N by definition. From

the definition of the hanging nodes in space and of the set Θ̃, as well as

from RL
(

T1
h

)

≤ l, we conclude RL
(

Θ̃1
)

≤ l − 2 .

The second step is to prove that RL
(

Θ̃2
)

≤ l − 3. Then we iterate the

argument l−2 times and obtain RL
(

Θ̃l
)

< 0, which is impossible by the

definition of the refinement level. Consequently, Θ̃l = ∅ and Algorithm
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2.3.1 terminates. If Θ̃p = ∅ for one 1 ≤ p < l, Algorithm 2.3.1 terminates

in the pth iteration. The mesh T⋆
h has patch structure, since all Tp

h,

p ≥ 1, have patch structure. This claim is shown during the proof of

RL
(

Θ̃2
)

≤ l− 3. Furthermore, it does not contain any hanging nodes in

space of degree two by definition of the stopping criterion.

To complete the proof, we show RL
(

Θ̃2
)

≤ l − 3. First of all, we prove

∀T ∈ Ch
(

T̃1
R

)

: 0 ≤ hang
(

T , T̃h

)

≤ 1. (2.3.1)

Let T be an arbitrary element of Ch
(

T̃1
R

)

. Then P (T ) ∈ T̃h. Further-

more, we have

0 ≤ hang
(

P (T ) , T̃h

)

≤ 1, (2.3.2)

since T̃h contains only spatial hanging nodes of degree one. We define

the sets

I :=
{

T ′ ∈ N
(

T ,T1
h

)∣

∣ T ′ ∈ T̃h

}

,

II :=
{

T ′ ∈ N
(

T ,T1
h

)∣

∣P
(

T ′
)

∈ T̃h and P
(

T ′
)

= P(T )
}

,

III :=
{

T ′ ∈ N
(

T ,T1
h

)∣

∣P
(

T ′
)

∈ T̃h and P
(

T ′
)

6= P(T )
}

.

By construction, it holds

N
(

T ,T1
h

)

= I ∪ II ∪ III.

From T ′ ∈ I, we conclude T ′ ∈ N
(

P (T ) , T̃h

)

. Inequality (2.3.2) yields

RL
(

T ′
)

≤ RL (P (T )) + 1 = RL (T ) . (2.3.3)

For T ′ ∈ II, it holds

RL
(

T ′
)

= RL (T ) (2.3.4)

by the definition of II. Let T ′ be an element of III. Thus,

P
(

T ′
)

∈ N
(

P (T ) , T̃h

)

holds. Then inequality (2.3.2) implies

RL
(

T ′
)

− 1 = RL
(

P
(

T ′
))

≤ RL (P (T )) + 1 = RL(T ) . (2.3.5)
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The relations (2.3.3-2.3.5) yield (2.3.1).

From (2.3.1), we conclude

Θ̃1 ⊆ T̃1
N (2.3.6)

and show now

Θ̃1 =
{

T ∈ T̃1
N

∣

∣

∣hang
(

T ,T1
h

)

= 2
}

. (2.3.7)

Let T be an arbitrary element of T̃1
N and T ′ ∈ N

(

T ,T1
h

)

. Since

T1
h = T̃1

N ∪ Ch
(

T̃1
R

)

and T̃1
N ∩ Ch

(

T̃1
R

)

= ∅, T ′ is either an element of

T̃1
N or Ch

(

T̃1
R

)

. We begin with the case T ′ ∈ T̃1
N . Then T ′ ∈ N

(

T , T̃h

)

holds. Since T̃h contains only hanging nodes in space of degree one, we

obtain RL (T ′) ≤ RL(T ) + 1. In the other case T ′ ∈ Ch
(

T̃1
R

)

, we have

P (T ′) ∈ N
(

T , T̃h

)

. From (2.3.2), we deduce

RL
(

T ′
)

= RL
(

P
(

T ′
))

+ 1 ≤ RL (T ) + 2.

Altogether, we obtain hang
(

T ,T1
h

)

≤ 2 for all T ∈ T̃1
N , i.e. only spatial

hanging nodes of degree two occur. Therewith, (2.3.7) becomes obvious.

In step (5) of Algorithm 2.3.1, the set Θ̃1 is extended to the set Θ1.

For an arbitrary element T ∈ T̃1
N , we have T ∈ T̃h ∩ T1

h. Since the

meshes T̃h and T1
h have patch structure, we have patch (T ) ⊆ T̃h and

patch (T ) ⊆ T1
h, i.e. patch (T ) ⊆ T̃h ∩ T1

h = T̃1
N . Thus, Θ1 ⊆ T̃1

N . It

holds RL
(

Θ1
)

= RL
(

Θ̃1
)

by definition.

The refinement of T1
h w.r.t. Θ1 leads to the mesh T2

h with T̃2
R = T̃1

R ∪Θ1

and T̃2
N = T̃1

N\Θ1. To ensure the patch structure of T2
h, we have to show

that T̃2
N has patch structure. Since T̃1

N has patch structure, the negation

of T̃2
N having patch structure is that there exists an elment T ∈ T̃2

N with

patch (T ) ∩Θ1 6= ∅. Let us assume that such an element T ∈ T̃2
N exists.

Then an element T ′ ∈ patch (T ) ∩ Θ1 exists, too. Because of the patch

structure of Θ1, we have patch (T ′) ⊆ Θ1. This yields

patch
(

T ′
)

∩ T̃2
N = ∅.
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Hence, T /∈ patch (T ′). This is a contradiction to the fact that

T̄ ∈ patch
(

T̄ ′
)

holds for all T̄ ′ ∈ patch
(

T̄
)

. Consequently, the meshes

T̃2
N and T2

h have patch structure.

As for Θ̃1, we can show that

Θ̃2 ⊆ T̃2
N , (2.3.8)

i.e. in particular

Θ̃2 ∩Θ1 = Θ̃2 ∩ Θ̃1 = ∅.
For arbitrary T ∈ Θ̃2 and T ′ ∈ patch (T ), this yields T ′ /∈ Θ1, i.e.

hang
(

T ′,T1
h

)

≤ 1. Consequently, it holds

RL
(

N
(

T ′,T1
h

))

≤ RL
(

T ′
)

+ 1. (2.3.9)

Inequality (2.3.9) holds for all T ′ ∈ patch (T ), in particular for T ∈ Θ̃2.

Since RL
(

Θ̃2
)

≤ l− 2 holds by definition of Θ̃2 and of hanging nodes in

space, we obtain

RL
(

N
(

T ,T1
h

))

≤ l − 1. (2.3.10)

Since inequality (2.3.10) holds for all T ∈ Θ̃2, it is equivalent to

RL
(

Θ̃2
)

≤ l − 3

and we have finished the proof. �

During the proof of Lemma 2.3.1, we have shown θ̃p ⊂ T̃p
N , see (2.3.6)

and (2.3.8), from which the following corollary follows. It provides an

important observation for the forthcoming analysis.

Corollary 2.3.3. It holds T ∈ T̃h or P (T ) ∈ T̃h for all T ∈ T⋆
h, i.e.

during the adaptive refinement and the regularisation by Algorithm 2.3.1,

a mesh cell is refined only once.

The following result holds for Algorithm 2.3.2:

Lemma 2.3.4. Let

M̃h =
(

T̃m
h

)

0≤m≤M
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be a patch regular mesh sequence of refinement level l − 1. The input

mesh sequence

Mh =
(

Tm,0
h

)

0≤m≤M

in Algorithm 2.3.2 results from a refinement of M̃h and all meshes Tm,0
h

have patch structure and only spatial hanging nodes of degree one, in

particular T ∈ T̃m
h or P (T ) ∈ T̃m

h holds for all T ∈ Tm,0
h and all

0 ≤ m ≤M . Then the output mesh sequence

M⋆
h =

(

Tm,⋆
h

)

0≤m≤M

is patch regular.

In the proof of Lemma 2.3.4, we need the following result:

Lemma 2.3.5. Under the assumptions of Lemma 2.3.4, the mesh sequence

M̂h =
(

T̂m,0
h

)

0≤m≤M

contains only backward hanging nodes of degree one. Furthermore, all

T̂m,0
h , 0 ≤ m ≤ M , have patch structure and only spatial hanging nodes

of degree one. It holds T ∈ T̃m
h or P (T ) ∈ T̃m

h for all T ∈ T̂m,0
h in each

time step m, 0 ≤ m ≤M .

Proof of Lemma 2.3.5. The mesh T̂0,0
h has patch structure and only

spatial hanging nodes of degree one by definition. Furthermore, it cannot

contain backward hanging nodes in time and T ∈ T̃0
h or P (T ) ∈ T̃0

h holds

for all T ∈ T̂0,0
h . We assume that T̂m−1,0

h has patch structure, only spatial

hanging nodes of degree one, and only backward hanging nodes of degree

one and that

∀T ∈ T̂m−1,0
h : T ∈ T̃m−1

h or P (T ) ∈ T̃m−1
h (2.3.11)

holds. If we show that T̂m,0
h has the same properties, the claim of the

lemma holds by induction.
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We define the sets

T̃m
R :=

{

T ∈ T̃m
h

∣

∣

∣Ch (T ) ⊆ Tm,0
h

}

,

T̃m
N :=

{

T ∈ T̃m
h

∣

∣

∣T ∈ Tm,0
h

}

.

It holds Tm,0
h = T̃m

N ∪Ch
(

T̃m
R

)

, T̃m
N ∩Ch

(

T̃m
R

)

= ∅, T̃m
h = T̃m

N ∪ T̃m
R , and

T̃m
N ∩ T̃m

R = ∅. Let T be an arbitrary element of Tm,0
h ∩ T̃m

N . Since M̃h

contains only backward hanging nodes of degree one, we know

RL(T ) + 1 ≥ RL
(

CE−
(

T , T̃m−1
h

))

. (2.3.12)

From (2.3.11), we deduce

RL
(

CE−
(

T , T̃m−1
h

))

+ 1 ≥ RL
(

CE−
(

T , T̂m−1,0
h

))

. (2.3.13)

The inequalities (2.3.12) and (2.3.13) yield

∀T ∈ Tm,0
h ∩ T̃m

N : hang−
(

T ,Tm,0
h , T̂m−1,0

h

)

≤ 2. (2.3.14)

For T ∈ Tm,0
h ∩ Ch

(

T̃m
R

)

, we have by similar arguments

RL (T ) + 1 = RL (P (T )) + 2

≥ RL
(

CE−
(

P (T ) , T̃m−1
h

))

+ 1

≥ RL
(

CE−
(

P (T ) , T̂m−1,0
h

))

≥ RL
(

CE−
(

T , T̂m−1,0
h

))

.

Here, we have used

CE−
(

T , T̂m−1,0
h

)

⊆ CE−
(

P (T ) , T̂m−1,0
h

)

.

Consequently, it holds

∀T ∈ Tm,0
h ∩ Ch

(

T̃m
R

)

: hang−
(

T , T̂m−1,0
h

)

≤ 1. (2.3.15)

The inequalities (2.3.14) and (2.3.15) lead to

Θ̃0
f,m =

{

T ∈ Tm,0
h

∣

∣

∣hang−
(

T , T̂m−1,0
h

)

= 2
}

⊆ T̃m
N . (2.3.16)
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We have seen in the proof of Lemma 2.3.1 that the mesh T̃m
N has patch

structure. Thus, the set Θ0
f,m is a subset of T̃m

N , too.

Since we have to regularise only backward hanging nodes of degree two,

see (2.3.16), and because Θ0
f,m ⊆ T̃m

N , the mesh Tm,1
h contains only back-

ward temporal hanging nodes of degree one and T ∈ T̃m
h or P (T ) ∈ T̃m

h

holds for all T ∈ Tm,1
h . Furthermore, the mesh Tm,1

h has patch struc-

ture by construction of Θ0
f,m. We have already discussed this in the

proof of Lemma 2.3.1. Due to the refinement in step (4) of Algorithm

2.3.2, additional forward temporal hanging nodes in T̂m−1,0
h and addi-

tional backward temporal hanging nodes in Tm+1,0
h may be created.

The removal of the spatial double hanging nodes in the steps (5)-(9)

of Algorithm 2.3.2 is carried out in the same manner as in Algorithm

2.3.1. We pass on the ensuring of the patch structure, because the mesh

Tm,1
h has already patch structure. Furthermore, the mesh Tm,1

h fulfills

the assumptions of Lemma 2.3.1. We apply Lemma 2.3.1 and obtain

that T̂m,0
h contains only spatial hanging nodes of degree one and has

patch structure. Corollary 2.3.3 ensures T ∈ T̃m
h or P (T ) ∈ T̃m

h for all

T ∈ T̂m,0
h . During the spatial regularisation of Tm,1

h , we can only create

temporal forward hanging nodes of degree two in T̂m−1,0
h and backward

temporal hanging nodes of degree two in Tm+1,0
h . But it is impossible

to create any additional backward hanging nodes of degree two in T̂m,0
h .

Consequently, the proof is complete. �

By the same arguments as in the proof of Lemma 2.3.5, we obtain the

following result concerning forward hanging nodes in time:

Lemma 2.3.6. Suppose that all meshes T̂m,0
h , 0 ≤ m ≤ M , of M̂h have

patch structure and only spatial hanging nodes of degree one. Suppose

further T ∈ T̃m
h or P (T ) ∈ T̃m

h for all T ∈ T̂m,0
h and all 0 ≤ m ≤ M .

Then the mesh sequence

M⋆
h =

(

Tm,⋆
h

)

0≤m≤M
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contains only forward hanging nodes of degree one. Furthermore, all

Tm,⋆
h , 0 ≤ m ≤ M , have patch structure and only spatial hanging nodes

of degree one.

The following result describes the situation around a forward hanging

node of degree two:

Lemma 2.3.7. Let 0 ≤ m < M and

T ∈
⋃

p

Θp
b,m ⊆ T̂m,0

h .

Then

∀K ∈ CE+
(

T ,Tm+1,⋆
h

)

: RL (K) ≥ RL (T ) + 1 (2.3.17)

holds.

Proof of Lemma 2.3.7. The first case is T ∈ Θ0
b,m. By definition,

there exists a mesh cell T ′ ∈ patch (T ) with

hang+
(

T ′,Tm+1,⋆
h

)

= 2. (2.3.18)

The condition T ′ ∈ patch (T ) implies RL (T ′) = RL (T ) and

P (T ′) = P (T ). Because of the definition of the corresponding elements,

we have

CE+
(

T ,Tm+1,⋆
h

)

⊆ CE+
(

P (T ) ,Tm+1,⋆
h

)

(2.3.19)

and

CE+
(

T ′,Tm+1,⋆
h

)

⊆ CE+
(

P (T ) ,Tm+1,⋆
h

)

. (2.3.20)

From (2.3.18) and (2.3.20),

RL
(

CE+
(

P (T ) ,Tm+1,⋆
h

))

≥ RL (T ) + 2

follows. This implies

CE+
(

P (T ) ,Tm+1,⋆
h

)

⊂ Ch (P (T ))

and

∀K ∈ CE+
(

P (T ) ,Tm+1,⋆
h

)

: RL (K) ≥ RL (T ) .
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Since Tm+1,⋆
h has patch structure, CE+

(

P (T ) ,Tm+1,⋆
h

)

has patch struc-

ture, too. Thus,

CE+
(

P (T ) ,Tm+1,⋆
h

)

= patch (T )

holds, if

CE+
(

P (T ) ,Tm+1,⋆
h

)

∩ patch (T ) 6= ∅.
Together with (2.3.18), this implies

∀K ∈ CE+
(

P (T ) ,Tm+1,⋆
h

)

: RL (K) ≥ RL (T ) + 1.

Finally, (2.3.19) yields the assertion (2.3.17) for T ∈ Θ0
b,m.

Now, we consider T ∈ Θ1
b,m. Then, a mesh element

T ′ ∈ patch (T ) ⊂ T̂m,1
h

exists, where

T ′ ∈ N
(

T̃ , T̂m,1
h

)

holds with T̃ ∈ T̂m,1
h , P

(

T̃
)

∈ Θ0
b,m, and

RL
(

T ′
)

= RL (T ) = RL
(

T̃
)

− 2.

Since P
(

T̃
)

∈ Θ0
b,m, we know

∀K′ ∈ CE+
(

T̃ ,Tm+1,⋆
h

)

: RL
(

K′
)

≥ RL
(

T̃
)

.

The mesh Tm+1,⋆
h contains only spatial hanging nodes of degree one, i.e.

∀K̃ ∈ N
(

K′,Tm+1,⋆
h

)

: RL
(

K̃
)

≥ RL
(

K′
)

− 1

holds. Furthermore, it holds

CE+
(

P (T ) ,Tm+1,⋆
h

)

∩
⋃

K′

N
(

K′,Tm+1,⋆
h

)

6= ∅.
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This yields

RL
(

CE+
(

P (T ) ,Tm+1,⋆
h

))

≥ RL
(

K′
)

− 1

≥ RL
(

T̃
)

− 1

= RL (T ) + 1.

Using the same arguments as in the previous case, we obtain the assertion

(2.3.17) for T ∈ Θ1
b,m. The cases with p > 1 can be proven in the same

manner. We omit the details here. �

Now, we prove Lemma 2.3.4:

Proof of Lemma 2.3.4. Lemma 2.3.5 shows that M̂h fulfils the as-

sumptions of Lemma 2.3.6. Thus, we know that M⋆
h contains only forward

hanging nodes of degree one and that all Tm,⋆
h , 0 ≤ m ≤ M , have patch

structure and only spatial hanging nodes of degree one. What remains

to show is that M⋆
h contains only backward hanging nodes of degree one.

We define the sets

T̃m
R :=

{

T ∈ T̃m
h

∣

∣Ch (T ) ⊆ Tm,⋆
h

}

,

T̃m
N :=

{

T ∈ T̃m
h

∣

∣T ∈ Tm,⋆
h

}

.

From Lemma 2.3.5 and Lemma 2.3.6, we deduce Tm,0
h = T̃m

N ∪Ch
(

T̃m
R

)

,

T̃m
N ∩ Ch

(

T̃m
R

)

= ∅, T̃m
h = T̃m

N ∪ T̃m
R , and T̃m

N ∩ T̃m
R = ∅. Consequently,

M⋆
h fulfills the assumptions of Lemma 2.3.5. The same agruments as in

the derivation of (2.3.16) lead to

Θm
⋆ :=

{

T ∈ Tm,⋆
h

∣

∣

∣hang−
(

T ,Tm−1,⋆
h

)

> 1
}

=
{

T ∈ Tm,⋆
h

∣

∣

∣
hang−

(

T ,Tm−1,⋆
h

)

= 2
}

⊆ T̃m
N

for 0 < m ≤M . We have to show Θm
⋆ = ∅ for 0 < m ≤M .
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We assume that an element T ∈ Θm
⋆ exists. Then T also is an element of

T̃m
N , Tm,0

h , and T̂m,0
h . Furthermore, we know hang−

(

T ,Tm−1,⋆
h

)

= 2, i.e.

∃T ′ ∈ CE−
(

T ,Tm−1,⋆
h

)

: RL
(

T ′
)

= RL (T ) + 2. (2.3.21)

Since T ∈ T̂m,0
h and since M̂h contains only backward hanging nodes of

degree one, we deduce

hang−
(

T , T̂m−1,0
h

)

≤ 1,

i.e.

RL
(

CE−
(

T , T̂m−1,0
h

))

≤ RL (T ) + 1. (2.3.22)

From (2.3.21) and (2.3.22), T ′ /∈ CE−
(

T , T̂m−1,0
h

)

follows. Consequently,

P
(

T ′
)

∈ CE−
(

T , T̂m−1,0
h

)

by construction and

RL
(

CE−
(

T , T̂m−1,0
h

))

= RL (T ) + 1.

The cell P (T ′) is refined during the steps (12)-(19) of Algorithm 2.3.2,

i.e.

P
(

T ′
)

∈
⋃

p

Θp
b,m−1.

Because of T ′ ∈ CE−
(

T ,Tm−1,⋆
h

)

, it holds T ∈ CE+
(

P (T ′) ,Tm,⋆
h

)

.

From Lemma 2.3.7, we know

∀K ∈ CE+
(

P
(

T ′
)

,Tm,⋆
h

)

: RL (K) ≥ RL
(

T ′
)

.

Thus, RL (T ) ≥ RL (T ′). This is a contradiction to (2.3.21) and the

proof is complete. �

The following proposition ensures the desired mesh properties in the DM

approach:

Proposition 2.3.8. If the input mesh sequence

Mh = (Tm
h )0≤m≤M
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in Algorithm 2.3.3 is patch regular, then the output mesh sequence

M⋆
h =

(

Tm,⋆
h

)

0≤m≤M

is patch regular, too.

Proof of Proposition 2.3.8. In Algorithm 2.3.3, we adaptively refine

meshes Tm
h , which have patch structure and only spatial hanging nodes of

degree one. Consequently, Lemma 2.3.1 can be applied. Lemma 2.3.1 and

Corollary 2.3.3 ensure the assumptions of Lemma 2.3.4, which implies the

claim of the proposition. �

2.4. Adaptive Solution Algorithm

Up to now, we have presented all parts of the adaptive solution algorithm.

In this section, we put them together. The adaptive solution algorithm

is given in Algorithm 2.4.1. It is illustrated in Figure 2.4.1. We dis-

cuss the complex adaptive solution algorithm of the DM approach. The

modifications for the CM approach are straightforward and left out.

The first step is to specifiy the initial data. The initial mesh Ih and an

initial decomposition T0
k of the time interval I are chosen. For the calcu-

lation of the refinement indicators, the way of taking the absolute value

and the number of smoothing iterations are determined. Furthermore,

the constants of the refinement strategies, Algorithm 2.2.2, are specified.

We need the number of new mesh cells, which are created, if the cell is

refined. It depends on the refinement and on dim (Ω). To predict the

reduction of the error, we use the convergence rate of the space-time fi-

nite element ansatz. The equilibration constant c > 1 in Algorithm 2.2.1

has to be chosen, too. The number of the adaptive solution iteration is l.

Furthermore, a stopping criterion is specified. It decides, when the adap-

tive solution algorithm terminates. Possible choices are: A fixed number

of iterations l⋆ has been reached or the estimated error is smaller than a

given tolerance tol. Based on Ih, the initial mesh sequence M0
h is created

(Step (1) in Algorithm 2.4.1).
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time step 0 time step 1 . . . time step M

primal primal . . . primal

dual. . .dualdual

estimate estimate . . . estimate

stopping? STOP
yes

no

spatial?

yes

no

refine refine . . . refine

forward forward . . . forward

backward. . .backwardbackward

temporal?

yes

no

temporal temporal . . . temporal

next iteration

Figure 2.4.1. Illustration of the adaptive solution algorithm

The first step is the determination of the solution wl
kh =

(

ul
kh, v

l
kh

)

of

the primal problem (Definition 1.2.1). For this purpose, we use the Time

Stepping Scheme 1.2.3. Since we need wkh during the solution of the

dual problem and the evaluation of the error estimator, we have to save
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Algorithm 2.4.1 Adaptive solution algorithm for the DM approach

Input: Stopping criterion, initial mesh Ih, initial temporal mesh T0
k with

M0 time steps, equilibration constant c, number of smoothing iterations
S, the functions E(r) and N (r)

(1) Set l = 0 and Ml
h = (Ih)0≤m≤M0 .

(2) Solve the primal problem by the Time Stepping Scheme 1.2.3.
Save ul

kh and vl
kh.

(3) Solve the dual problem by the Time Stepping Scheme 1.3.8. Save
ūl

kh and v̄l
kh.

(4) Evaluate the error estimator given in Definition 1.3.10 and cal-
culate the error indicators as outlined in Section 2.1.

(5) If the stopping criterion is fulfilled, then set u⋆
kh = ul

kh and

v⋆
kh = vl

kh and STOP.
(6) Use Algorithm 2.2.1 to determine, whether the spatial, the tem-

poral or both meshes have to be refined.
(7) If only temporal refinement, then set M̃l+1

h = Ml
h and go to (10).

(8) Use Algorithm 2.2.2 to determine ΘDM,l
h,r .

(9) Call Algorithm 2.3.3 with Ml
h and ΘDM,l

h,r . Call the result M̃l+1
h .

(10) If only spatial refinement, then set Ml+1
h = M̃l+1

h and Tl+1
k = Tl

k.
Go to (13)

(11) Use Algorithm 2.2.2 to determine Θl
k,r.

(12) Refine the temporal mesh Tl
k and modify the spatial mesh se-

quence M̃l+1
h according to Θl

k,r. Call the results Tl+1
k and Ml+1

h .

(13) Set l← l + 1 and go to (2).

Output: Desired solution u⋆
kh and v⋆

kh.

it. By this, a huge amount of data can be created1 and it can become a

time consuming operation. These operations are referred to as “primal”

in Figure 2.4.1 and is step (2) in Algorithm 2.4.1.

The backward or dual problem (Definition 1.3.7) is solved in step (3) of

Algorithm 2.4.1 (“dual”in Figure 2.4.1). The Time Stepping Scheme 1.3.8

is applied to solve the dual problem. The dual solution zl
kh =

(

ūl
kh, v̄

l
kh

)

is saved, because we need it in the evaluation of the error estimate.

1E.g. if we have 2000000 unknowns and 10000 time steps, roughly speaking, a data set
of 160GB is created just for the primal solution. The same amount of data is needed
for the dual solution.
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The evaluation of the error estimate and the calculation of the refinement

indicators is the next step (Step (4) in Algorithm 2.4.1 and “estimate”

in Figure 2.4.1). On one hand, we evaluate the error estimate specified

in Definition 1.3.10. For this purpose, we evaluate the terms given in

Section A.3 and A.4. On the other hand, we calculate the refinement

indicators on each cell, i.e. we have to evaluate the localised form of

the error estimator, taking the absolute value and to smooth the data

according to Section 2.1. The refinement indicators are saved for their

use in the refinement strategies.

After the evaluation of the error estimate, we check the stopping criterion

(“stopping?” in Figure 2.4.1). If it is fulfilled, we stop the iteration with

the desired solution w⋆
kh (Step (5) in Algorithm 2.4.1). If it is not, we

proceed with the adaptive refinement.

The first step of the adaptive refinement procedure is to decide, whether

the temporal mesh Tl
k, the spatial mesh sequence Ml

h, or both should

be refined. This question is answered by Algorithm 2.2.1 (Step (6) in

Algorithm 2.4.1). In Figure 2.4.1, we illustrate this step by “spatial?”

and “temporal?”. If no spatial refinement is needed, we set Ml
h = M̃l+1

h

and skip the spatial refinement (Step (7) in Algorithm 2.4.1).

We begin the spatial refinement with the determination of the set ΘDM,l
h,r .

It contains all mesh cells, which are chosen for refinement by Algorithm

2.2.2. For the determination of ΘDM,l
h,r , all refinement indicators of the

mesh sequence Ml
h are compared. This should lead to a maximum efficient

discretisation, since all available information is used in the refinement

strategy and it is not restricted to a single time step. The determination

of ΘDM,l
h,r is step (8) of Algorithm 2.4.1.

The adaptive refinement is carried out by Algorithm 2.3.3. The resulting

mesh sequence is chosen as intermediate mesh sequence M̃l+1
h . This is

step (9) of Algorithm 2.4.1. The detailed adaptive refinement method

is described in Section 2.3. In Figure 2.4.1, we refer to the adaptive

refinement and the spatial regularisation (Algorithm 2.3.1) by“refine”, to
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the forward regularisation (Algorithm 2.3.2, (1)-(10)) by“forward”and to

the backward regularisation (Algorithm 2.3.2, (11)-(20)) by “backward”.

If it has been decided in step (6) not to refine the temporal mesh, we

set Ml+1
h = M̃l

h, Tl+1
k = Tl

k and skip the temporal refinement (Step (10)

of Algorithm 2.4.1). Otherwise, we use Algorithm 2.2.2 to determine

the set Θl
k,r. It contains the temporal mesh cells, which are marked for

refinement. This is step (11) of Algorithm 2.4.1. Then the temporal mesh

is adaptively refined in step (12) of Algorithm 2.4.1. There, we have to

modify the spatial mesh sequence M̃l+1
h , since the number of time steps

is changed and a specific spatial mesh is connected to each time step. If

a time step is refined, we have to add a spatial mesh, call it Tl+1,m+1/2
h ,

in M̃l+1
h . Possible choices for Tl+1,m+1/2

h are Tl+1,m
h , Tl+1,m+1

h or, e.g.,

the mesh consisting of the finest cells of Tl+1,m
h and Tl+1,m+1

h . We simply

insert Tl+1,m+1
h . This is referred to as “temporal” in Figure 2.4.1.

After the adaptive refinement, we increase the number of the iteration

cycle l and restart the iteration with the solution of the primal problem.

This is step (13) of Algorithm 2.4.1. Up to now, we have presented the

adaptive solution algorithm. In the upcoming section, we will discuss the

implementation of Algorithm 2.4.1.

2.5. Implementation Issues

The adaptive solution algorithm has been implemented in the finite ele-

ment library SOFAR (Scientific Object oriented Finite element library for

Application and Research) [22]. SOFAR has been basically designed for

adaptive finite element methods in the context of structural mechanics.

It includes a flexible mesh and degree of freedom management. Further-

more, the inclusion of different basis functions is an easy task, such that

hp-adaptive finite element methods can efficiently be realised. During

the last years, a lot of solution algorithms for time dependent problems,

e.g. parabolic, hyperbolic and mixed parabolic-hyperbolic problems, have

been added to the library, where we have used an object oriented con-

cept. In this approach, all algorithms are created on the basis of general
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interfaces and can be used for different classes, which only have to im-

plement these interfaces. Thus, all adaptive techniques mentioned in this

thesis can easily be applied to other time dependent problem classes than

hyperbolic problems of second order. During the implementation of the

adaptive solution algorithm, one faces three major problems: The man-

agement and storage of the mesh sequence Ml
h, the evaluation of integrals

on different meshes and the storage of the primal and dual solution. One

after the other, we discuss our solution approaches to these problems.

During the calculation, we have to construct the meshes Tl,m
h in each time

step. One idea is to individually save these meshes. There exist several

disadvantages: Since the whole geometry and history has to be stored, a

big amount of data arises. The creation of the mesh is time consuming.

Furthermore, the comparison of different meshes is complicated. To cir-

cumvent all these problems, we have developed the following approach:

We create a so called global mesh Gh, which contains all mesh cells ever

used during the calculation. In the worst case, there holds

Gh =

l
⋃

j=0

Uj
h.

To construct the single meshes Tl,m
h , we take the necessary elements out

of Gh. Every mesh cell in Gh has a unique index. To store the mesh

Tl,m
h , we only have to save the indices of the mesh cells in Tl,m

h . Thus, a

mesh Tl,m
h is identified with its index vector T̄l,m. Whenever we cannot

perform an operation with the index vector and consequently need the

mesh, we recreate it from the index vector. Furthermore, the comparison

of two meshes becomes very easy. Let Tl,m1

h and Tl,m2

h be two meshes

in Ml
h. If we want to check, whether an element T ∈ Tl,m1

h also is an

element of Tl,m2

h or not, we only check, if the index of T is contained in

T̄l,m2 or not. In order to determine the corresponding elements CE± (T ),

we perform this check with the refinement history RH (T ).
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Tl,m
h Tl,m+1

h Tl,m
h ⊔Tl,m+1

h

Figure 2.5.1. Illustration of the assembling on two dif-
ferent meshes

Since the regularisation w.r.t. hanging nodes in time relies on the deter-

mination of the corresponding elements CE± (T ), an efficient implemen-

tation of CE± (T ) is indispensable. It is also needed, when we calculate

an integral of two finite element functions, which are based on differ-

ent meshes, e.g., the L2-scalar product of um
kh and um−1

kh ,
(

um
kh, u

m−1
kh

)

,

with Tm
h 6= Tm−1

h or when we assemble the terms in the time stepping

schemes, which are conntected to the solution in the previous time step,

e.g.
(

um−1
kh , ϕh

)

with ϕ ∈ V m
h . Let us exemplarily study

(

um−1
kh , ϕh

)

here.

We calculate the integral by applying numerical quadrature rules, e.g.

the 2 × 2 Gauß formula, on the single mesh cells T ∈ Tm
h and summing

up the single results. But um−1
kh is not necessarily continuously differ-

entiable on T . Consequently, the approximation of the integral on T
introduces additional errors in the calculation. Because of the low regu-

larity, the use of higher order quadrature rules does not lead to a more

exact approximation. However, we know where um−1
kh is not continuously

differentiable, namely on the edges of Tm−1
h . To circumvent this problem,

we have to calculate the integral on the finest cells of Tm
h and Tm−1

h . The

mesh containing the finest cells of Tm−1
h and Tm

h is denoted by Tm−1
h ⊔Tm

h

and is illustrated in Figure 2.5.1. For the integration, we locally create

the mesh Tm−1
h ⊔ Tm

h . Here locally means that we numerically integrate

on every mesh cell T ∈ Tm
h . If

∣

∣CE− (T )
∣

∣ > 1, we split the integration

up, integrate on every element of CE− (T ) and sum up the results. See,

e.g., [94], Section 5.3, for a detailed discussion.
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The last topic, which we discuss, is the storage of the primal and dual

solution. The primal solution is needed during the solution of the dual

problem and during the evaluation of the error estimator. The dual so-

lution enters in the evaluation of the error estimator, too. Consequently,

we have to store the primal and dual solutions. The first idea is to

save them in the main memory. But then the available main memory

is exceeded quickly, since we also have to store the matrices, auxiliary

vectors, the mesh and so on. Another possibility is to store the data

on the hard disc. This approach is used here. Numerical experiments

show that the additional amount of computing time is negligible, since

the difference is smaller than the natural fluctuation in the computing

time. Other alternatives are checkpointing or windowing. In the check-

pointing approach, the solutions are only stored in some particular time

points, so called checkpoints. The values between the checkpoints are

recalculated, whenever they are needed, see for instance [85]. Beside the

difficult organisation of the data storage, the recalculation also needs a

lot of computing time. Consequently, this approach turned out to be

inefficient [95].

2.6. A Heuristic Error Indicator

The error estimator, which we have presented, is very complex and the

evaluation is time consuming. We want to compare it to a heuristic

error indicator, which can be evaluated easily and quickly. We do not

request an exact error estimate in the functional J from the heuristic error

indicator. It should only provide refinement indicators for the adaptive

refinement process.

For the derivation of the error indicator, we consider the presented space-

time finite element discretisation in the view of Rothe’s method. There,

we discretise the temporal direction first and obtain a so called semi

discrete solution wk. The arising spatial problems are solved by the finite

element method approximatively . For the temporal discretisation by

the continuous Galerkin method based on linear polynomials, we have
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the following a posteriori error estimate, see [96], Chapter 4:

|(eM , ϕ)| ≤ CsCI max
1≤m≤M

{

km sup
t∈Im

|R (t, wk(t), ϕ) − P0R (t, wk(t), ϕ)|
}

,

which holds for all ϕ ∈ H1 (Ω,ΓD). In this estimate, we control the error

e = w − wk at the final time tM = T . The stability constant CS > 0

results from the estimate of the corresponding dual problem, CI > 0 is

the interpolation constant. The residual R (t, wk(t), ϕ) is given by

R (t, wk(t), ϕ) := (u̇k(t)− vk(t) + v̇k(t), ϕ) + a (uk(t)) (ϕ)

− (f(t), ϕ) − (q(t), ϕ)ΓN
.

The operator P0 is the temporal projection on piecewise constant func-

tions. To obtain an evaluable error indicator, we approximate wk by wkh

and ϕ by ϕh ∈ V m
h . Then we can evaluate

ηm
I,k ≈ km sup

t∈Im

|R (t, wk(t), ϕ) − P0R (t, wk(t), ϕ)| ,

where

ηm
I,k

:= km

∣

∣

∣

∣

∣

∣

1
2

(

vm
kh − vm−1

kh , ϕh

)

− 1
2

[

a (um
kh) (ϕh)− a

(

um−1
kh

)

(ϕh)
]

+1
2

(

fm − fm−1, ϕh

)

+ 1
2

(

qm − qm−1, ϕh

)

ΓN

∣

∣

∣

∣

∣

∣

.

The term ηm
I,k provides the temporal refinement indicator in themth time

step.

For the spatial discretisation, we use the residual error estimator pre-

sented in [111], Section 3.3. We obtain

ηm
I,h :=







∑

T ∈T
m
h

(

ηm
I,T

)2







1/2

,

(

ηm
I,T

)2
:= h2

T ‖RT (wm
kh)‖20,T +

1

2

∑

E∈∂T

hE ‖RE (um
kh)‖20,E ,
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where

RT (wm
kh) := um

kh − um−1
kh +

(

1− 1

2
km

)

vm
kh

−
(

1 +
1

2
km

)

vm−1
kh − 1

2
km

(

fm + fm−1
)

+
1

2
km

(

−A (um
kh)−A

(

um−1
kh

))

,

RE (um
kh) :=

1

2
km

(

[B (um
kh)] +

[

B
(

um−1
kh

)])

,

and [B] is defined in (2.1.2). This error indicator is not exact, since we

know only approximations of um−1
kh and vm−1

kh . See [25] for a detailed

discussion. Since the error estimators involve unknown constants and

provide only upper bounds for the error, we are not able to apply the

space-time refinement strategy presented in Algorithm 2.2.1. It is based

on the fact that we know approximations of the spatial and the temporal

error or upper and lower bounds, which is not given in this case. Thus,

we refine both, the spatial and the temporal, mesh in every refinement

interation.

2.7. Numerical Results

Up to now, we have presented an a posteriori error estimation and have

derived refinement indicators for the refinement strategies. In this sec-

tion, we study the effects of the different refinement indicators and choose

the parameters for the subsequent examples. We consider a kind of

penalty discretisation for a dynamic contact problem and a 2D linear

elastic example.

2.7.1. Comparison of Different Refinement Indicators. In this

section, we consider the basic domain Ω = [0, 1]2 and I = [0, 1]. The dif-

ferential operator is given byA(u) = ∆u+u3. We prescribe homogeneous

Dirichlet boundary conditions on ΓD = ∂Ω. The initial values and the

right hand side are given by means of the prescribed analytical solution,
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Figure 2.7.1. Temporal meshes for different ways to take
the absolute value

i.e.

us = u(0),

vs = u̇(0),

f = ü−∆u− u3.

We begin with the discussion of the temporal refinement indicators. For

this purpose, we set

ũ (t) :=















ũ1(t), t ∈ [0, 0.375]

ũ2(t), t ∈ (0.375, 0.625)

ũ3(t), t ∈ [0.625, 1] ,

u (x1, x2, t) := ũ(t) sin (πx1) sin (πx2) ,
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 0.01
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terms
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J
(w

)−
J
(w

k
h
)

J
(w

)

Figure 2.7.2. Error in the output funcitonal w.r.t. adap-
tive temporal refinement

(a) Mesh based on filtering (b) Mesh based on integration by
parts

Figure 2.7.3. Meshes in the CM approach

with

ũ1(t) := exp (8 (t− 0.375)) ,
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Figure 2.7.4. Developement of the error in J w.r.t. spa-
tial adaptive refinement based on the CM approach. Here,
localisation by filtering is named“Filt” and localisation by
integration by parts “IbP”

ũ2(t) := 1024t4 − 2048t3 + 1472t2 − 448t + 49.75,

ũ3(t) := exp (−8 (t− 0.625)) .

The functional of interest is given by

J (w) =
8

3|B|

� 1

0.625

�
B
u dx dt

with B = [0.25, 0.75]2.

Based on a uniform spatial mesh with 4096 cells and an initial temporal

mesh with 20 time steps, we perform 5 adaptive solution cycles, where

only temporal refinements are permitted. In Figure 2.7.1, the temporal

meshes are depicted. For ηi
k and ηn

k , we obtain the same temporal meshes.

They only differ, if we change the method of taking the absolute value.

The general structure of all meshes is similar; we have larger time steps

at the beginning and at the end and smaller time steps in the middle.
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(a) Normal, filtering, one
smoothing step, m = 258

(b) Normal, filtering, one
smoothing step, m = 259

(c) Normal, filtering, one
smoothing step, m = 260

(d) Interpolated, filtering,
no smoothing, m = 258

(e) Interpolated, filtering,
no smoothing, m = 259

(f) Interpolated, filtering,
no smoothing, m = 260

Figure 2.7.5. Meshes created during the adaptive re-
finement process based on different refinement indicators,
localisation by filtering

Looking at Figure 2.7.2, we observe that the results for the “summand”

method of taking the absolute value are worse than the other results.

This also is the case in any other example, which we have considered.

The results for the “terms” and the “residual” method of taking the ab-

solute value are identical. The “outside” method is the best one, which

is supported by other examples, too. Consequently, we will use the “out-

side” method of taking the absolute value. Since the results are the same

w.r.t. ηi
k and ηn

k , we have the free choice and choose ηi
k. The reason will

become apparent after the discussion of the spatial adaptive refinement.
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(a) Normal, integration by
parts, one smoothing step,
m = 258

(b) Normal, integration by
parts, one smoothing step,
m = 259

(c) Normal, integration by
parts, one smoothing step,
m = 260

(d) Interpolated, integra-
tion by parts, no smooth-
ing, m = 258

(e) Interpolated, integra-
tion by parts, no smooth-
ing, m = 259

(f) Interpolated, integra-
tion by parts, no smooth-
ing, m = 260

Figure 2.7.6. Meshes created during the adaptive re-
finement process based on different refinement indicators,
localisation by integration by parts

For the discussion of the spatial refinements indicators, we set

u (x1, x2, t) :=







sin4 (2πx1 + πt) sin (πx2) , x1 ∈ (0.5− 0.5t, 1 − 0.5t)

0, else.

Here, we use a uniform temporal mesh with 400 time steps. Let us begin

with the CM approach. In Figure 2.7.3, the adaptive meshes created

based on filtering and on integration by parts are depicted. These meshes

are representative for both methods. Only small differences occur, if

we use other ways to take the absolute value or exchange ηi
h and ηn

h .
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Figure 2.7.7. Number of mesh elements in the single
time steps
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Figure 2.7.8. Convergence in the output functional J
for different refinement indicators
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The adaptive meshes shown in Figure 2.7.3 look similar, too. This is

supported by the convergence behaviour presented in Figure 2.7.4, where

nearly no difference between the two methods arise. The CM approach

is not sensitive to these modifications. Consequently, we will choose the

refinement indicators based on the results of the DM approach.

The Figures 2.7.5 and 2.7.6 show adaptive meshes created by different

refinement indicators in the DM approach. Because of the large amount of

possible refinement indicators, we only show some typical examples. We

observe that the meshes change rapidly from one time step to the other, if

the indicators are not smoothed. In particular, this occurs for refinement

indicators based on ηi
h. This behaviour is also shown in Figure 2.7.7,

where the number of mesh elements in the different time steps is depicted.

The oscillations in the graphs connected to the non-smoothed indicators

express this behaviour. Furthermore, connected areas are refined for

smoothed refinement indicators. If we do not smooth the indicators,

the refined zones are more fragmented. Since the results for refinement

indicators based on integration by parts strongly depend on the way of

taking the absolute value, we work with the filtering approach. If we

use filtering, the results are the same for additional smoothing steps, i.e.

it is sufficient to apply one smoothing step. However, we have to apply

one or up to three smoothing steps to obtain reasonable results based

on integration by parts. The disadvantage of the additional smoothing is

that it leads to a larger number of refined cells. Consequently, the meshes

can be less effective. This is shown in Figure 2.7.8, where the convergence

of the adaptive methods based on different refinement indicators is shown.

2.7.2. Example 1: Penalty Method for Dynamic Contact.

Dynamic contact problems are discussed in Chapter 4. They lead to

constrained optimisation problems, which can be solved by the penalty

method. This approach simplifies the structure of the problems. If the

penalty parameter is well chosen, this method leads to a reasonable nu-

merical solution of the dynamic contact problem, see for instance [54].



94 2. ADAPTIVE MESH REFINEMENT

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0  0.2  0.4  0.6  0.8  1

DWR
Heuristic

t

k

Figure 2.7.9. Temporal meshes based on the heuristic
error indicator and on the DWR error estimator

Figure 2.7.10. Mesh created by the adaptive refinement
in the CM approach

The basic domain is Ω = [0, 1]2 and I = [0, 1]. Homogeneous Dirich-

let boundary conditions are prescribed on ΓD := {(x1, x2) ∈ ∂Ω|x1 = 0}
and homogeneous Neumann boundary conditions on ΓN := ∂Ω\ΓD. On

the set Γc := {(x1, x2) ∈ ∂Ω|x1 = 1}, the displacement is restricted by
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Figure 2.7.11. Distribution of the number of mesh ele-
ments based on the DWR error estimator and the heuristic
error indicator in the DM approach

M
M
∑

m=1
NM Erel Ieff

50 3200 1.887 · 10−2 1.423
50 8864 6.330 · 10−3 1.245
96 53496 1.871 · 10−3 0.846
190 360208 5.101 · 10−4 0.875
378 2385216 1.360 · 10−4 0.850
752 17370620 3.273 · 10−5 0.805

Table 2.7.1. Adaptive refinement based on the DM ap-
proach with regularisation

the function ĝ (x2) := − (x2 − 0.5)2. We define the function g on the set

Γε
c := [1− ε, 1]× ΓC by g (x1, x2) = ĝ (x2). Let

A (u) := −∆u− ̺ [g − u]2+,Γε
c
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(a) m = 1 (b) m = 50 (c) m = 100

(d) m = 150 (e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350 (i) m = 400

Figure 2.7.12. Meshes created during the adaptive re-
finement process based on the DWR error estimator in the
DM approach

be the differential operator with

[g − u]+,Γε
c
(x) :=















0, if x /∈ Γε
c,

0, if g(x) − u(x) ≤ 0,

g(x)− u(x), else.
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(a) m = 1 (b) m = 50 (c) m = 100

(d) m = 150 (e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350 (i) m = 400

Figure 2.7.13. Meshes created during the adaptive re-
finement process based on the heuristic error indicator in
the DM approach

The penalty parameter is given by ̺ ∈ R+. We have chosen a form

of the penalty term, which is not usual. However, it fits better in our

general framework than penalty terms on the boundary. Furthermore, the
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Figure 2.7.14. Convergence in the output functional J
w.r.t. the total number of mesh cells for different refine-
ment techniques

operator A is not three times continuously Fréchet differentiable. Thus,

we cannot expect the remainder terms to be small. However, the adaptive

concept leads to reasonable results. To obtain a reasonable approximation

of the underlying dynamic contact problem, the parameters ̺ and ε have

to be chosen in dependence of h and k, where ̺ tends towards infinity

and ε towards zero, if h and k tend to zero. In this example, we are

interested in the discretisation error for fixed ̺ = 1000 and ε = 0.125.

The initial conditions are us = 0 and vs := −0.25 sin (0.5πx1). The right

hand side f is set to zero. The output functional is given by

J (w) :=
1

|B|

�
B
u2 dx

with B = [0, 0.25] × [0.375, 0.625].



2.7. NUMERICAL RESULTS 99

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1  10  100  1000  10000  100000  1e+06

CM
DM

DM without Regularisation
Heuristic
Uniform
Explicit

Computing time in s

J
(w

)−
J
(w

k
h
)

J
(w

)

Figure 2.7.15. Convergence in the output functional J
w.r.t. computing time for different refinement techniques

We begin with the comparison of temporal meshes, which are created

during the adaptive refinement process based on the heuristic error indi-

cator and on ηi
k. We choose a fixed spatial mesh with 4096 elements and

an initial time step length of 0.02. We perform five adaptive refinement

cycles, where only temporal refinements are permitted. In Figure 2.7.9,

the resulting temporal meshes are depicted. At the beginning and at the

end of the time interval, the temporal mesh based on ηi
k consists of larger

time steps. In the middle of the time interval, the same length of the

time steps is used.

To compare the different adaptive spatial refinement techniques, we choose

a fixed time step length k = 0.0025 and also perform five adaptive re-

finement cycles. In Figure 2.7.10, the mesh created by the CM approach

is presented. We observe that the region with [g − u]+,Γε
c
> 0, B, and

the connection between these two regions are well resolved. In Figure
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2.7.12, meshes of different time steps, which are created by the DM ap-

proach, are depicted. In the beginning, the region [g − u]+,Γε
c
> 0 is well

resolved. There, a wave arises. It moves through Ω from the right to the

left. The mesh follows this wave. As soon as the wave enters B, only

B is well resolved. Looking at Figure 2.7.11, we see that the number of

mesh elements also corresponds to this behaviour. In the beginning and

in the end, we have a small number of mesh cells, since only small re-

gions have to be refined. In the middle, larger regions have to be resolved

and consequently the number of mesh elements increases. The adaptive

meshes created by the heuristic error indicator are depicted in Figure

2.7.13. During the whole calculation, the region with [g − u]+,Γε
c
> 0

is well resolved. Furthermore, we observe additional refinements to re-

solve the arising wave. At the end, the mesh becomes more and more

unstructured. During the whole calculation, the region of interest B is

not refined. Looking at Figure 2.7.11, we observe oscillations in the first

time steps and in the second half of the calculation.

In Figure 2.7.14, the development of the error measured in J w.r.t. the

total number of mesh elements is depicted. We use the numerical solution

of the CM approach with M = 1502 and

M
∑

m=0

Nm = 287236472

as reference value for the calculation of the error. We observe the same

convergence rate for the adaptive methods based on the presented er-

ror estimator and for the uniform refinement. However, we need less

mesh elements in the adaptive approach to achieve the same error. The

CM and the DM approach lead to nearly the same results. We observe

that no temporal hanging nodes of degree two occur. Consequently, no

differences between the regularised adaptive method and the one with-

out regularisation occur. The heuristic error estimator lead to a slower

convergence in the first adaptive refinement iterations. Furthermore, it

needs much more unknowns to obtain the same error than the adaptive

methods based on the presented error estimator. The reason is that the
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region of interest B is not well resolved. Using the left box rule in the

derivation of the cg(1)cg(1) method, an explicit time stepping scheme

can be derived. By considering a lumped mass matrix, we obtain a time

stepping scheme, which leads to a linear system of equations with a di-

agonal matrix instead of a nonlinear system of equations. However, this

method is not stable and we have to ensure the stability by choosing a

smaller time step size, which depends on the spatial mesh width. The

explicit form leads to a slower convergence and needs more elements to

achieve the same accuracy as the adaptive methods.

In Figure 2.7.14, we measure the computational effort in the total num-

ber of mesh elements and observe that the adaptive refinement methods

based on the presented error estimator are most efficient. However, we

have to perform many additional operations, which need computing time,

in the adaptive algorithm. In Figure 2.7.15, we compare the different re-

finement techniques w.r.t. computing time. We measure the computing

time to calculate one result, if the cg(1)cg(1) method or its explicit ver-

sion are considered. For the adaptive methods, the computing time of

the whole adaptive solution algorithm up to a certain result is measured.

We roughly need the same computing time to achieve the same accuracy

by the CM approach and by uniform refinement. The smaller number

of mesh elements suffices to compensate for the additional effort in the

adaptive algorithm. The DM approach needs more computing time be-

cause of the additional effort for the mesh changes. The comparison of

the DM approach with and without regularisation shows that the effort

for the mesh regularisation is small.

Table 2.7.1 shows the developement of the adaptive solution process based

on the DM approach. In the first iteration only the spatial mesh sequence

is refined. In all other iterations the temporal mesh as well as the spatial

mesh sequence are refined. The effectivity indices show the accuracy of

the error estimate.
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Figure 2.7.16. Temporal meshes based on the heuristic
error indicator and on the DWR error estimator

Figure 2.7.17. Mesh created by the adaptive refinement
based on the CM approach

2.7.3. Example 2: Spindle-Grinding Wheel-System Model

Case. Before we discuss the example, the constitutive equations of lin-

ear elasticity are introduced. As usual, we consider a spatial domain

Ω ⊂ R2. The function u : Ω→ R2 describes the deformation of the body
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Figure 2.7.18. Distribution of the number of mesh ele-
ments in the DM approach based on the DWR error esti-
mator and on the heuristic error indicator

M
M
∑

m=1
NM Erel Ieff

50 9600 1.063 · 10−1 18.74
100 57600 3.483 · 10−1 171.9
200 400800 1.570 · 10−1 124.8
400 2976000 7.174 · 10−2 77.15
800 22944000 2.876 · 10−2 135.3
1600 176140800 9.161 · 10−4 88.83
3196 363193440 6.921 · 10−4 16.10

Table 2.7.2. Adaptive refinement based on the DWR
error estimator in the CM approach

Ω under the body force f and the boundary load q. We assume small

deformations here. Consequently, we work with linear strains, i.e.

ε (u) :=
1

2

(

∇u+∇uT
)

∈ R2×2.
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(a) m = 1 (b) m = 50 (c) m = 100

(d) m = 150 (e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350 (i) m = 400

Figure 2.7.19. Meshes created during the adaptive re-
finement process based on the DWR error estimator in the
DM approach

The relationship between the strains ε (u) and the stresses σ (u) ∈ R2×2

is assumed to be linear and the plain stress assumption is made. The

matrices ε and σ are symmetric. Based on the modulus of elasticity E
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(a) m = 1 (b) m = 50 (c) m = 100

(d) m = 150 (e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350 (i) m = 400

Figure 2.7.20. Meshes created during the adaptive re-
finement process based on the heuristic error indicator in
the DM approach

and Poisson’s ratio ν ∈ [0, 0.5), we have






σ11

σ22

σ12






=

E

1− ν2







1 ν 0

ν 1 0

0 0 1− ν













ε11

ε22

ε12






.
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Figure 2.7.21. Convergence in the output functional J
w.r.t. the total number of mesh cells for different refine-
ment techniques

The bilinear form a is then given by a (ϕ,ψ) := (σ (ϕ) , ε (ψ)). From

the engineering point of view, one is often interested in the so called

equivalent stress, which is used to determine the state of the material. A

popular one is the von Mises equivalent stress σv. It is defined as

σv =
√

σ2
11 + σ2

22 + 3σ2
12

and used as functional of interest in different examples.

In the introduction, we have mentioned the spindle-grinding wheel-system.

The geometry of this system includes several re-entrant corners. Further-

more, it includes jumping material coefficients. As model case, we study

an L-shaped domain

Ω := [−0.5, 0] × [−0.5, 0.5] ∪ [0, 0.5] × [−0.5, 0]
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Figure 2.7.22. Convergence in the output functional J
w.r.t. computing time for different refinement techniques

with

ΓD := {x ∈ ∂Ω |x2 = 0.5}
and ΓN := ∂Ω\ΓD here. The time interval is I = [0, 1]. We choose

E = E(x) = ρ = ρ(x) =







10, if x1 < 0,

100, else,

and set ν = 0.33. The initial conditions are us = vs = 0. The body force

f is set to zero. We apply the boundary load

q(x, t) =







(−100, 0)⊤, if t ≤ 0.05 and x1 = 0.5,

0, else.

The functional of interest is

J1 (wkh) :=
1

|B|

�
B
σv (u) dx

with B := [−0.375,−0.125] × [0, 0.25].
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We begin with the comparison of temporal meshes, which are created

during the adaptive refinement process based on the heuristic error indi-

cator and on ηi
k. We choose a fixed spatial mesh with 3072 elements and

an initial time step length of 0.02. We perform five adaptive refinement

cycles, where only temporal refinements are permitted. In Figure 2.7.16,

the resulting temporal meshes are depicted. The heuristic error indicator

leads to a global uniform refinement of the temporal mesh. However,

larger time step sizes are created at the end of the time interval by the

adaptive refinement based on ηi
k

To compare the different adaptive spatial refinement techniques, we choose

a fixed time step length k = 0.0025 and perform five adaptive refinement

cycles. In Figure 2.7.17, the mesh created by the CM approach is pre-

sented. Let

Γ1
N := {x ∈ ∂Ω |x1 = 0.5}

be the boundary, where nonhomogeneous Neumann boundary conditions

are prescribed. The part of the boundary Γ1
N , B, and the connection

between these two regions are well resolved. In Figure 2.7.19, meshes of

different time steps, which are created by the DM approach, are depicted.

In the beginning, the part of the boundary Γ1
N is well resolved. There, a

wave arises. It moves through Ω from the right to the left. The mesh fol-

lows this wave. At the discontinuity of the material coefficients, the main

part of the wave is reflected. The mesh does not follow the main part,

but the smaller part, which moves further to the left. The region B also

becomes an important factor. The mesh is more and more concentrated

in B. Looking at Figure 2.7.18, we see that the number of mesh elements

is small in the beginning and in the end. There, only small regions have

to be refined. In the middle, larger regions have to be resolved and con-

sequently the number of mesh elements increases. The adaptive meshes

created by the heuristic error indicator are depicted in Figure 2.7.20. In

the beginning, Γ1
N is well resolved. Then the mesh follows the outgoing

wave. In contrast to the meshes created by the DM approach based on

η, the meshes based on the heuristic error indicator resolve the reflected
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wave. We mainly observe refinements for x1 ≥ 0. In the second part of

the calculation, the meshes become more unstructured. This is observed

in Figure 2.7.18, too. There, large oscillations in the number of mesh

elements are depicted, especially, for t ≥ 0.5.

In Figure 2.7.21, the development of the relative error Erel w.r.t. to the

total number of mesh cells is depicted. We use the numerical solution

with M = 3197 time steps and a total number of unknowns of

M
∑

m=1

Nm = 1415035392

in the CM approach as reference value. In this example, the adaptive

method based on the DM approach is most efficient. Only few temporal

hanging nodes of degree two occur. Consequently, the difference between

the DM approach with and without regularisation is small. The CM

approach is more efficient than every other method except the DM ap-

proach. The adaptive method based on the heuristic error indicator does

not provide a good approximation of the functional of interest J , since it

does not lead to refinements in the neighbourhood of B, see Figure 2.7.20.

The different methods are compared in terms of computing time in Fig-

ure 2.7.22. The adaptive methods based on the DM approach as well as

on the CM approach need less computing time than the explicit method,

the method based on uniform refinement, and the adaptive method based

on the heuristic error indicator. The computing time is comparable for

the CM and the DM approach. We also observe in this example that a

small amount of computing time is needed for the temporal regularisa-

tion. Looking at Table 2.7.2, we observe that the error estimate is not as

accurate as in the other examples. The reason is the complex functional

of interest and the relatively coarse discretisation.





CHAPTER 3

Adaptive Finite Elements for Static Contact

Problems

In this chapter, an adaptive finite element method for static contact prob-

lems is discussed. We consider the static case in order to illustrate the

approach to a posteriori error estimation, which we will use in the next

chapter for the error control of dynamic contact problems. The aim is

to derive an a posteriori error bound w.r.t. an arbitrary output func-

tional. We use the dual problem known from elliptic equations for the a

posteriori error estimate. The same dual problem was used in [107], but

there a different and less accurate a posteriori error bound was derived.

One way to derive goal-oriented a posteriori error estimates for contact

problems is based on a dual problem, which was first introduced by Nat-

terer [86]. Contributions to this technique are made in [26, 103, 106].

In all mentioned references, linear output functionals are considered in

contrast to our approach, which can be applied to nonlinear output func-

tionals. In our derivation, we employ an auxiliary problem, which corre-

sponds to an elliptic variational equality. The idea of using this auxiliary

problem was introduced by Braess [31] for static obstacle problem and

generalised by Schröder [102, 104], who even applied it to static fric-

tional contact problems. The error, however, was only estimated in the

norms corresponding to the trial spaces. Other approaches to adaptive

finite elements for static contact problems have been presented in a lot

of contributions [5, 14, 38, 59, 66, 88, 110]. In particular, an adaptive

scheme for two-body contact is contained in [116]. Convergence results

for adaptive algorithms in the context of obstacle problems are proven in

[32, 33, 105].

111
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The outline of this chapter is as follows: After the introduction of the

continuous formulation of the static contact problem in Section 3.1, a

mixed finite element discretisation is presented. The goal-oriented a pos-

teriori error estimator is derived in Section 3.3. Finally, we apply the

presented error estimator to a simplified and a full Signorini problem and

discuss the numerical results.

3.1. Continuous Formulation

Let Ω ⊂ R2 be the basic domain. The boundary ∂Ω of Ω is divided

into three mutually disjoint parts ΓD, ΓC and ΓN with positive measure.

Homogeneous Dirichlet and Neumann boundary conditions are prescribed

on the closed set ΓD and on the relatively open set ΓN , respectively.

Contact may take place on the sufficiently smooth set ΓC , Γ̄C ⊂ ∁ΓD.

See, for instance, [70], Section 5.3, for more details. The rigid foundation

is parameterised by a function g : ΓC → R ∪ {−∞}, g ∈ H1/2 (Γc). We

consider the restriction u ≥ g on ΓC , u ≤ g can be treated analogously.

The strong formulation reads

−∆u = f in Ω

u = 0 on ΓD

∂u

∂ν
= 0 on ΓN

u− g ≥ 0 on ΓC (3.1.1)

∂u

∂ν
≤ 0 on ΓC (3.1.2)

∂u

∂ν
(u− g) = 0 on ΓC . (3.1.3)

Relation (3.1.1) represents the non-penetration condition. The direction

of the contact stresses is determined by (3.1.2). The complementarity

condition is given by (3.1.3). It ensures that contact stresses only occur

if the gap is closed.
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If the solution u ∈ H1 (Ω,ΓD)∩C2 (Ω)1, the strong formulation is equiv-

alent to the variational inequality

∀ϕ ∈ K : a (u, ϕ− u) ≥ (f, ϕ− u) , (3.1.4)

where a (·, ·) := (∇·,∇·) is a uniformly elliptic, symmetric, and continu-

ous bilinear form. The solution u is an element of

K :=
{

ϕ ∈ V := H1 (Ω,ΓD)
∣

∣ γ|ΓC
(ϕ) ≥ g

}

.

One way of solving elliptic variational inequalities is given by their mixed

formulation. The Lagrange multiplier may be interpreted as contact

force. The variational inequality (3.1.4) is equivalent to the following

mixed form: Find (u, λ) ∈ V × Λ with

∀ϕ ∈ V : a (u, ϕ) +
〈

λ, γ|ΓC
(ϕ)
〉

= (f, ϕ) (3.1.5)

∀µ ∈ Λ :
〈

µ− λ, γ|ΓC
(u)− g

〉

≤ 0. (3.1.6)

Here, Λ is the dual cone of the set

G :=
{

ϕ ∈ H1/2 (ΓC)
∣

∣

∣ϕ ≤ 0
}

,

i.e.

Λ :=
{

µ ∈ H−1/2 (ΓC) |∀ϕ ∈ G : 〈µ,ϕ〉 ≥ 0
}

.

The equivalence of the two formulations is a well-known conclusion from

the general theory of minimisation problems in Hilbert spaces presented,

e.g., in [37, 46]. Furthermore, the existence of a unique weak solution

(u, λ) of (3.1.5-3.1.6) is assured, if the inf-sup-condition

α ‖µ‖− 1
2
,ΓC
≤ sup

v∈H1(Ω,ΓD),‖v‖1=1

〈

µ, γ|ΓC
(v)
〉

(3.1.7)

holds for a constant α > 0 and all µ ∈ H−1/2 (ΓC). The inf-sup-condition

(3.1.7) follows directly from the closed range theorem and the surjectivity

of γ|ΓC
, c.f. for instance [104].

1This can be generalised to u ∈ H1 (Ω, ΓD) ∩ H2 (Ω).
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3.2. Mixed Finite Element Discretisation

A finite element approach is applied to discretise (3.1.5-3.1.6). Bilinear

basis functions on the mesh Th are used for the finite element space

Vh :=
{

ϕ ∈ C
(

Ω̄,ΓD

) ∣

∣∀T ∈ Th : ϕ|T ∈ Q1 (T ; R)
}

.

The discrete Lagrange multipliers are piecewise constant on the boundary

mesh BH , the trial set is

ΛH :=
{

ϕ ∈ G
∣

∣∀T ∈ BH : ϕ|T ∈ P0 (T ; R)
}

.

The index H indicates that coarser meshes may be chosen for the La-

grange multiplier. In our calculations, we use H = 2h for stability rea-

sons. We assume that Th has patch structure. Consequently, the mesh

BH is well defined and consists of the edges on ΓC of the patch elements.

A detailed study of this finite element approach for solving contact prob-

lems is contained in [104].

The discrete problem reads: Find (uh, λH) ∈ Vh × ΛH with

∀ϕh ∈ Vh : a (uh, ϕh) +
〈

λH , γ|ΓC
(ϕh)

〉

= (f, ϕh) (3.2.1)

∀µH ∈ ΛH :
〈

µH − λH , γ|ΓC
(uh)− g

〉

≤ 0. (3.2.2)

The system (3.2.1-3.2.2) leads to the following saddle point problem in

Rm:

Kū+Bλ̄ = f̄

∀µ̄ ∈ Rm̃
≤0 :

(

µ̄− λ̄
)T (

BT ū− ḡ
)

≤ 0,

Here, K ∈ Rm×m is the stiffness matrix. The matrix B ∈ Rm×m̃ repre-

sents the dual pairing in (3.2.2). Using the Schur complement

ū := K−1
(

f̄ −Bλ̄
)

,

the saddle point problem is rewritten as the quadratic program (QP)

min
λ̄∈Rm̃

1
2 λ̄

TQλ̄− λ̄T
[

BTK−1f̄ − ḡ
]

s. t. λ̄ ≤ 0.
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The matrix Q := BTK−1B is symmetric and positive semidefinite. Thus,

a standard QP with simple sign constraints has to be solved. This solution

approach has several advantages: There are only simple sign constraints.

Furthermore, the number of active optimisation variables is much smaller

than in a direct approach.

For the numerical solution of this QP any QP-solver can be used, which

only requires a user-defined routine for the calculation of Qλ̄. We use

SQOPT [51]. The inner linear system of equations is solved either by the

direct solver Umfpack, see [43], or by a multigrid method, see, e.g., [30].

A unique discrete solution (uh, λH) on a uniform mesh exists if the dis-

crete analogon of (3.1.7) holds for a mesh independent constant α > 0,

i.e.

∀µH ∈ ΛH : α ‖µH‖ 1
2
,ΓC
≤ sup

vh∈Vh,‖vh‖1=1

(

µH , γ|ΓC
(vh)

)

ΓC
. (3.2.3)

For our discretisation, the quotient h/H has to be sufficiently small for

(3.2.3) to hold [58]. Let Th and BH be regular and quasi-uniform meshes

with h/H constant and sufficiently small. Furthermore, γ(u) ∈ H1,∞ (T )

holds for all T ∈ BH and the number of switching-points between γ(u)

and g is finite. Then the a priori error estimate

‖u− uh‖1 + ‖λ− λH‖− 1
2
,ΓC
≤ Ch (3.2.4)

holds with a constant C > 0 for the presented discretisation (Theorem

4.1 in [56]). Here, some additional properties of the contact situation are

assumed.

3.3. A Posteriori Error Estimation

In this section, we derive an a posteriori error estimate for the discretisa-

tion error w.r.t. some three times Fréchet differentiable output functional

J (·) ∈ V ⋆, which may be nonlinear. For this purpose, we define the as-

sociated dual problem

∀ϕ ∈ V : a (ϕ, z) = J ′ (u) (ϕ)
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with a solution z ∈ V . The corresponding finite element solution zh is

given by

∀ϕh ∈ Vh : a (ϕh, zh) = J ′ (uh) (ϕh) .

We specify a second auxiliary problem by

∀ϕ ∈ V : a (u⋆, ϕ) = (f, ϕ)−
〈

λH , γ|ΓC
(ϕ)
〉

(3.3.1)

with a solution u⋆ ∈ V . Equation (3.3.1) is a linear and elliptic vari-

ational equation with nonhomogeneous Neumann boundary conditions.

The auxiliary problem (3.3.1) corresponds to (3.1.5), but with the dis-

crete Lagrange multiplier λH instead of λ. We observe that uh also is a

discrete solution of (3.3.1). The dual problem associated to u⋆ has the

solution z⋆ defined by

∀ϕ ∈ V : a (ϕ, z⋆) = J ′ (u⋆) (ϕ) .

If J is linear, z⋆ is equal to z. Since u⋆,h = uh, it holds z⋆,h = zh.

After these preliminary definitions, we are now able to derive the a pos-

teriori error estimate. First, we split the error into two parts:

J (u)− J (uh)

= J (u)− J (u⋆) + J (u⋆)− J (uh) .

Both parts are examined separately. The first one is written as

J (u)− J (u⋆) =

� 1

0
J ′ (u⋆ + se⋆) (e⋆) ds

with e⋆ := u − u⋆. The trapezoidal rule is used to approximate the

integral, which leads to � 1
0 J

′ (u⋆ + se⋆) (e⋆) ds

= 1
2 [J ′ (u⋆) (e⋆) + J ′ (u) (e⋆)]

+1
2

� 1
0 J

′′′ (u⋆ + se⋆) (e⋆, e⋆, e⋆) s (s− 1) ds

=: 1
2 [J ′ (u⋆) (e⋆) + J ′ (u) (e⋆)] +R(3)

⋆ ,

where the remainder term R(3)
⋆ is of third order in the error e⋆. Using

the definitions of the dual solutions z and z⋆ and the equations (3.2.1)
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and (3.3.1), we obtain

J ′ (u⋆) (e⋆)

= a (e⋆, z⋆)

= (f, z⋆)−
〈

λ, γ|ΓC
(z⋆)

〉

− (f, z⋆) +
〈

λH , γ|ΓC
(z⋆)

〉

= −
〈

λ− λH , γ|ΓC
(z⋆)

〉

and

J ′ (u) (e⋆) = −
〈

λ− λH , γ|ΓC
(z)
〉

.

Defining the contact residual by

ρc (λ, λH) (z, z⋆) := −
〈

λ− λH ,
1

2
γ|ΓC

(z⋆ + z)

〉

,

we finally arrive at the error identity

J (u)− J (u⋆) = ρc (λ, λH) (z, z⋆) +R(3)
⋆ . (3.3.2)

If J is linear, the contact residual simplifies to

ρc (λ, λH) (z) := −
〈

λ− λH , γ|ΓC
(z)
〉

and the remainder term is zero.

The second part J (u⋆)− J (uh) corresponds to the error in a linear and

elliptic equation and can be handled by the standard DWR technique or

by every other goal-oriented error estimator for linear elliptic variational

equations. For the sake of completeness, we briefly outline the DWR

approach. Using a result from [17], we obtain

J (u⋆)− J (uh)

= 1
2

[

(f, z − z̃h)−
〈

λH , γ|ΓC
(z − z̃h)

〉

− a (uh, z − z̃h)
]

+1
2 [J ′ (uh) (u− ũh)− a (u− ũh, zh)] +R(3)

h

=: 1
2 [ρ (uh, λH) (z − z̃h) + ρ⋆ (zh) (u− ũh)] +R(3)

h (3.3.3)

for arbitrary z̃h, ũh ∈ Vh. The remainder term R(3)
h is given by

R(3)
h =

1

2

� 1

0
J ′′′ (uh + se) (e, e, e) s (s− 1) ds
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λH

i
(1)
H λH

ΓC

Figure 3.3.1. Linear interpolation of the Lagrange multiplier

with e := u⋆ − uh and is of third order in the error e. For a linear J , the

remainder term is zero.

In order to obtain a computationally evaluable error estimate, we approx-

imately evaluate the error identities (3.3.2) and (3.3.3) by

J (u)− J (uh)

= ρc (λ, λH) (z, z⋆) +R(3)
⋆

+1
2 [ρ (uh, λH) (z − z̃h) + ρ⋆ (zh) (u− ũh)] +R(3)

h

≈ ρc

(

i
(1)
H λH , λH

)(

i
(2)
2h zh, i

(2)
2h zh

)

+1
2

[

ρ (uh, λH)
(

i
(2)
2h zh − zh

)

+ ρ⋆ (zh)
(

i
(2)
2h uh − uh

)]

=: η = ηc + ηe.

Here, we made use of the fact that z⋆,h = zh. Furthermore, i
(1)
H defines a

linear interpolant of the Lagrange multiplier λH based on the idea used

in the ZZ-error estimator [120]. The Lagrange multiplier λH ∈ ΛH is

piecewise constant on possibly coarser mesh BH . The interpolant i
(1)
H λH

of λH is built on the original mesh Bh. The basis values, which correspond

to the nodal values, are defined as the mean value of λH on the two

adjacent cells. The approach is illustrated in Figure 3.3.1. The operator

i
(2)
2h specifies a biquadratic interpolant of the discrete primal and dual

solution. It is the same as in Chapter 1.
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Another possibility for the approximate evaluation of ηc is given by

η̄c := ρc

(

i
(1)
H λH , λH

)

(zh, zh) .

More sophisticated interpolation operators are possible. However, they

do not significantly improve the results. We will compare the two ap-

proaches in the next section.

Since the error estimate will be used as basis for an adaptive refinement

algorithm, the terms ηc and ηe have to be localised. The term ηc is

evaluated on the edges of the boundary and the value is then added to

the estimated value of the adjacent element, which contains this edge.

The term ηe is localised by the techniques presented in Section 2.1.1.

It is possible to derive the error estimators η and η̄ without the help of

the auxiliary problem (3.3.1). However, we would not be able to use an

arbitrary goal-oriented error estimator but would have to use a fixed one.

3.4. Numerical Results

In this section, we discuss two examples of static contact problems. The

first one is a simplified Signorini problem. To show that the presented

approach also is applicable to full Signorini examples, we investigate such

an example in the second part of this section.

3.4.1. Example 1: Simplified Signorini Problem. Let

Ω := [0, 1]2

be the basic domain. The boundary is divided as follows:

ΓD := {x = (x1, x2) ∈ ∂Ω| x1 = 0 ∨ x2 = 0 ∨ x2 = 1} ,
ΓN := {x = (x1, x2) ∈ ∂Ω| x1 = 1 ∧ (x2 < 0.1 ∨ x2 > 0.9)} ,
ΓC := {x = (x1, x2) ∈ ∂Ω| x1 = 1 ∧ 0.1 ≤ x2 ≤ 0.9} .
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(a) Primal solution (b) Dual solution
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Lagrange multipler

(c) Lagrange multiplier

Figure 3.4.1. Geometry of the simplified Signorini ex-
ample based on J1

The right hand side is given by f ≡ −1 and the rigid foundation by

g (x2) = − (x2 − 0.5)2. The output functional is set to

J1 (ϕ) :=
1

|B|

�
B

exp (−u) dx

with B := [0, 0.25] × [0.375, 0.625]. The setting is illustrated in Figure

3.4.1. The reference value of the output functional is calculated on a

uniform mesh with 1048576 cells. We use the error estimator presented

in the last section as basis for an adaptive refinement process, where we

localise the estimator by integration by parts as well as filtering. As

refinement strategy, we apply the optimal mesh strategy, which is pre-

sented in Section 2.2. The error estimator presented in [104] is applied to
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N Erel Ieff Īeff Ie
eff

64 9.240 · 10−4 0.910 0.912 0.988
136 1.791 · 10−4 0.634 0.634 0.681
280 1.114 · 10−4 1.147 1.147 1.210
448 9.402 · 10−5 0.987 0.987 1.000
976 2.641 · 10−5 1.091 1.091 1.106
1432 2.520 · 10−5 1.034 1.034 1.047
3472 7.379 · 10−6 1.231 1.231 1.248
4912 6.754 · 10−6 1.136 1.136 1.153
13480 1.855 · 10−6 1.212 1.212 1.230
18640 1.616 · 10−6 1.145 1.145 1.157
53344 4.379 · 10−7 1.182 1.182 1.195
72856 3.787 · 10−7 1.092 1.092 1.095
211288 8.107 · 10−8 0.883 0.883 0.886

Table 3.4.1. Error in J1 and effectivity index for adap-
tive refinement based on integration by parts

N Erel Ieff Īeff Ie
eff

64 9.240 · 10−4 0.910 0.912 0.989
136 1.791 · 10−4 0.634 0.634 0.681
256 1.452 · 10−4 1.048 1.048 1.088
448 1.078 · 10−4 1.023 1.023 1.036
1072 3.265 · 10−5 0.991 0.991 1.000
1600 2.024 · 10−5 1.051 1.051 1.068
4000 7.294 · 10−6 1.185 1.185 1.202
5944 5.707 · 10−6 1.144 1.144 1.159
15520 1.770 · 10−6 1.178 1.178 1.192
23272 1.467 · 10−6 1.121 1.121 1.134
60040 4.254 · 10−7 1.166 1.165 1.178
93088 3.432 · 10−7 1.053 1.053 1.056
237904 7.800 · 10−8 0.863 0.863 0.866

Table 3.4.2. Error in J1 and effectivity index for adap-
tive refinement based on filtering

the problem to compare the presented approach with estimators, which

measure the error in a global norm.
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(b) Comparison of ηc and ηe for J1

Figure 3.4.2. Convergence of different refinement methods

In Figure 3.4.2, the convergence behaviour of different refinement tech-

niques is compared. Since we know that the finite element method is

of optimal order in h, see (3.2.4), one cannot expect a better order of

the adaptive methods. However, the adaptive methods should lead to

a more accurate approximation than the uniform refinement. We see in

Figure 3.4.2 that the adaptive methods based on the presented approach

and based on ηe lead to a smaller error than the uniform refinement.

But with the adaptive refinement based on the residual error estimator,

we obtain the same results as for the uniform refinement. This is not



3.4. NUMERICAL RESULTS 123

(a) Based on η, 10th iteration (b) Based on ηe, 6th iteration

Figure 3.4.3. Adaptive meshes based on localisation by filtering

(a) Based on η, 11th iteration (b) Based on ηe, 7th iteration

Figure 3.4.4. Adaptive meshes based on localisation by
integration by parts

astonishing, because the refinement strategy leads to a globally uniform

refinement in this case after a first adaptive refinement in the contact

zone, see Figure 3.4.5. The results based on ηe and η are nearly the

same, which is explained by Figure 3.4.6(a). There, we observe that ηc

is a factor 10 smaller than ηe and that ηc and ηe are of the same order.
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Figure 3.4.5. Adaptive mesh based on the residual error
estimator, 6th iteration

N Erel Ieff Ie
eff

64 1.931 · 10−2 16.70 27.07
136 9.619 · 10−3 37.52 35.06
208 5.804 · 10−3 27.04 28.67
352 3.461 · 10−3 20.88 22.00
520 5.469 · 10−4 3.572 3.632
784 4.284 · 10−4 3.026 2.850
1432 4.755 · 10−4 13.49 12.07
1888 1.236 · 10−4 2.839 2.514
2464 4.770 · 10−5 1.119 0.975
3400 5.500 · 10−5 1.230 1.127
6208 2.261 · 10−6 0.255 0.212
8080 2.231 · 10−5 1.854 1.651
10792 3.455 · 10−5 2.766 2.605
14128 2.541 · 10−5 2.028 1.934
26752 6.989 · 10−6 2.922 2.710
34720 6.974 · 10−6 1.617 2.213

Table 3.4.3. Error in J2,0.75 and effectivity index for
adaptive refinement

In Figure 3.4.2(b), the different localisation methods are compared for

η and ηe. We observe no decisive differences. Thus, we will only con-

sider localisation by integration by parts in the rest of this section. In
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Figure 3.4.6. Comparison of ηc and ηDWR

Figure 3.4.3, adaptive meshes based on η and ηe localised by filtering

are compared. The overall structure of the meshes is the same for both

estimators. The only difference is that the adaptive refinement based on

η needs twice the number of adaptive refinement iterations. The reason

is the localisation of ηc, which leads to an adaptive refinement of the con-

tact area in every second refinement iteration. The corresponding results

for localisation by integration by parts are depicted in Figure 3.4.4.

In Table 3.4.1, the quantitative results for the adaptive refinement based

on the presented error estimator localised by integration by parts are
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(a) Primal solution (b) Dual solution
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Figure 3.4.7. Geometry of the simplified Signorini ex-
ample based on J2,0.75

shown. The overestimation of the error in the last step results from

the fact that the solution is too close to the reference solution. We also

observe that ηc ≪ ηe, since the effectivity indices based on η and ηe do not

differ much. Furthermore, we have tested η̄c. The effectivity indices Ieff
and Īeff as well as the adaptive meshes are the same for η and η̄ := η̄c+ηe.

Hence, it is sufficient to work with the computationally cheaper estimator

η̄. The quantitative results based on filtering are presented in Table 3.4.2.

They correspond to the results based on integration by parts.

In Figure 3.4.6(a), we have seen that ηc is a factor 10 smaller than ηe.

Let us have a closer look at the ratio between ηc and ηe. We consider the

functional

J2,p (ϕ) :=
1

|Bp|

�
Bp

exp (−u) dx,
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Figure 3.4.8. Convergence of different refinement methods

where Bp := [p− 0.25, p + 0.25] × [0.25, 0.75] with p ∈ [0.25, 0.75]. The

only difference between J1 and J2,p is the carrier Bp. By the parameter

p, we control the distance between the contact boundary ΓC and Bp.

In Figure 3.4.6(b), ηc and ηe are compared w.r.t. p on a uniform mesh

with 16384 cells. Thus, the estimated error in the Lagrange multiplier

i
(1)
H λH − λH is constant and ηc depends only on zh. We observe that

ηc and ηe increase linearly with increasing p. But the gradient of ηc is

greater than the gradient of ηe. For p = 0.25, ηe dominates in η. But

this changes and for p & 0.4, ηc dominates.
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(a) Adaptive mesh based on η,
10th iteration

(b) Adaptive mesh based on ηe,
6th iteration

(c) Adaptive mesh based on resid-
ual estimator, 8th iteration

Figure 3.4.9. Adaptive meshes for different adaptive re-
finement methods

Finally, we consider a discontinuous rigid foundation

g (x2) =







0, for x2 < 0.3 and x2 > 0.7,

−0.1, else.

The output functional is J2,0.75. The numerical solution of this problem

and of the corresponding dual problem are depicted in Figure 3.4.7. Since

the rigid foundation is discontinuous, we do not find the optimal order

of convergence in the H1- norm, see Figure 3.4.8(a), where the estimated
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N Erel Ieff Ie
eff

64 1.768 · 10−2 0.537 0.539
136 4.202 · 10−3 0.348 0.349
340 3.711 · 10−3 0.740 0.741
856 1.410 · 10−3 0.783 0.784
1984 5.241 · 10−4 0.657 0.657
4588 2.311 · 10−4 0.602 0.602
11728 1.096 · 10−4 0.741 0.741
32596 1.721 · 10−5 0.346 0.346

Table 3.4.4. Relative error in J and effectivity index for
adaptive refinement based on integration by parts

error in the H1-norm is depicted. By adaptive mesh refinement based

on the residual error estimator, we obtain the optimal order O(h). This

gain of the adaptive methods is also obvious in Figure 3.4.8(b), where the

error is measured in J2,0.75. In contrast to the first example, the adaptive

method based on ηe is insufficient, since it does not lead to an increased

efficiency of the discretisation. The reason behind this is that the solution

strongly depends on the discretisation of the contact area. As shown in

Figure 3.4.9, this area is well resolved by the adaptive methods based

on η and the residual error estimator but not by the one based on ηe.

The adaptive method based on the residual error estimator resolves the

boundary of the contact zone, whereas the one based on η resolves the

whole contact zone. In Table 3.4.3, the quantitative results are presented.

The effectivity indices are not as good as in the first example. But this

could not be expected because of the underlying problem structure.

3.4.2. Example 2: Full Signorini Problem. We consider a 2D

full Signorini problem in this section. The basic domain is

Ω = [0, 0.05] × [0, 0.2]
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(a) Primal solution

(b) Dual solution
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Lagrange multiplier

(c) Lagrange multiplier

Figure 3.4.10. Geometry of the Signorini example

with

ΓD = {x = (x1, x2)|x2 = 0} ,
ΓC = {x = (x1, x2)|x1 = 0.05 ∧ x2 ≥ 0.15} ,
ΓN = ∂Ω\ (ΓD ∪ ΓC) .

We set q = 0 and f = (0.5, 0)T . The material parameters are E = 10 and

ν = 0.33. The rigid foundation is given by g = 0.055. We are interested

in the von Mises equivalent stress σv, see Section 2.7.3, in the domain
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Figure 3.4.11. Convergence of different refinement methods

B = [0, 0.05]2, i.e.

J(u) :=
1

|B|

�
B
σ2

v (u) dx.

The numerical solution is illustrated in Figure 3.4.10.

Figure 3.4.11(a) shows that we do not obtain the optimal order of con-

vergence in the case of a uniform refinement. We consider the estimated

H1-norm here. However, it is knwon that the convergence rate usually

is not optimal for Signorini problems and that the contact situation and

the domain have to be smooth to obtain convergence of order O(h). It is

recovered by the adaptive method based on the residual estimator. The
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(a) Adaptive mesh based on η, 7th iteration

(b) Adaptive mesh based on ηe, 7th iteration

(c) Adaptive mesh based on residual estimator, 7th it-
eration

Figure 3.4.12. Adaptive meshes for different adaptive
refinement methods

convergence behaviour in J of different adaptive methods is compared

in Figure 3.4.11(b). We observe that the adaptive method based on ηe

converges very slowly. The reason becomes apparent, if we look at the

adaptive meshes (Figure 3.4.12(b)). The contact area is not refined at all,

thus the main influence factor of this example is inaccurately calculated.

The convergence of the adaptive method based on the residual estimator

is the fastest one. It leads to a well resolved contact zone. Furthermore,

B is adaptively refined, because stress peaks occur in (0, 0) and (0.05, 0).

The adaptive mesh is depicted in Figure 3.4.12(c). The error estimator η

leads to a well resolved contact area in contrast to ηe, see Figure 3.4.12(a).

In Table 3.4.4, we observe that ηc ≪ ηe. Consequently, we have to con-

sider ηc in the adaptive refinement process, although its contribution to

η is small.



CHAPTER 4

Contact/Impact Problems

In the preceding chapter, we have discussed adpative finite elements for

static contact problems. These problems are extended in this chapter by

including inertia forces. A lot of numerical approaches to solve dynamic

contact problems, which are based on different problem formulations,

exist: In [118], the penalty-method is used to solve the discrete prob-

lems. Special contact elements in combination with Lagrange multipliers

are presented in [15]. Other techniques for smoothing and stabilizing the

computation with special finite elements, e.g., Mortar finite elements, are

presented in [55, 84, 92]. In [45], the Newmark scheme is used with an

additional L2-projection for stabilisation. Algorithms for dynamic con-

tact/impact problems based on the energy- and momentum conservation

are derived in [6, 76]. An additive splitting of the acceleration into two

parts, representing the interior forces and the contact forces, is the basis

of the methods introduced in [68, 90]. In [41, 93, 108] algorithms based

on variational inequalities and optimisation algorithms are presented. A

space-time finite element approach is discussed in [21]. Detailed surveys

of this topic can be found in the monographs [75], Chapter 7, and [117],

Chapter 9.

But in contrast to the static case, the analysis of the continuous formu-

lation and of the discretisation schemes is in the early stages. In the

monographs [75, 89] and in [53, 82] as well as in the references therein,

models for dynamic contact/impact problems are discussed. Beside the

geometric contact conditions known from the static case, the dynamics

of the contact are modelled by an impact law. The impact law specifies

133
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the development of the energy during the contact. If the energy is con-

served, the contact is purely elastic. The contact is called inelastic, if

energy is dissipated. We use a purely elastic model. Different possibili-

ties to include the impact law in the problem formulation are discussed

in [53, 75]. The existence and uniqueness of a solution is still an open

question. In the linear viscoelastic case, the existence of at least one weak

solution is assured [3]. In this case, the continuous dependence on the

data is proven, too [73]. The convergence of the discretisation schemes

is another open question. Recently, a consistency result, which is the

basis for a priori error estimates, has been derived in the context of the

stabilized Newmark method [74]. The development of adaptive methods

for dynamic contact problems also is in the early stages. In [19, 24, 25],

a posteriori error estimates in the H1-norm based on the semi-discrete

problem formulation are discussed.

4.1. Dynamic Contact/Impact Problems

In this section, we present the continuous problem formulation. The

model presented, for instance, in [40, 75] is used. Especially, the discus-

sion in [75] is helpful. As in Chapter 3, we restrict ourselves to simplified

Signorini problems. The generalisation to Signorini problems is straight-

forward. We present such an example in Section 4.4.

The basic domain is Ω ⊂ R2 and the boundary ∂Ω = ΓD ∪ ΓN ∪ ΓC is

subdivided in the same manner as in Section 3.1. The rigid foundation is

g : ΓC → R ∪ {−∞} , g ∈ H1/2 (ΓC) .

Again, we consider the case u ≥ g. In the description of dynamic contact

problems, we assume homogeneous Neumann boundary conditions to ease

the notation.
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If the solution u is sufficiently smooth, it fulfils the equations of the wave

equation

ρü−∆u = f in Ω× I (4.1.1)

u = 0 on ΓD × I (4.1.2)

∂u

∂ν
= 0 on ΓN × I (4.1.3)

u(0) = us in Ω (4.1.4)

u̇(0) = vs in Ω (4.1.5)

and the contact conditions

u− g ≥ 0 on ΓC × I (4.1.6)

∂u

∂ν
≤ 0 on ΓC × I (4.1.7)

∂u

∂ν
(u− g) = 0 on ΓC × I (4.1.8)

∂u

∂ν
u̇ = 0 on ΓC × I. (4.1.9)

We set ρ ≡ 1 for notational simplicity. In comparison to the static contact

conditions (3.1.1-3.1.3), the persistency condition (4.1.9) has been added.

It corresponds to the complementarity condition (4.1.8), only the gap

u− g is replaced by the gap rate u̇. We see in Proposition 4.1.3 that the

persistency condition ensures the conservation of energy. Therewith, the

impact is purely elastic. To clarify the physical meaning of the persistency

condition, we examine the following equivalent form (c.f. [75]) of the

contact conditions (4.1.6-4.1.9) on ΓC × I:

u− g > 0 ⇒
{

∂u
∂ν = 0

u̇ unconstrained,
(4.1.10)

u− g = 0 ⇒











∂u
∂ν ≤ 0

u̇ ≥ 0
∂u
∂ν u̇ = 0.

(4.1.11)

The condition (4.1.10) says that the movement of the membrane is free,

if the gap is open. If the gap is closed, then condition (4.1.11) means
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that the contact stresses are negative, which is known from the static

context. But now, the velocity has to be greater than zero, too. This

ensures that u − g ≥ 0 holds. Furthermore, we recover the persistency

condition (4.1.9).

After having discussed the strong formulation, we now define the weak

one. We use the notation from Section 1.1, if not stated otherwise.

Definition 4.1.1. A function u ∈ K :=
{

ϕ ∈W
∣

∣γ|ΓC
(ϕ) ≥ g

}

is a weak

solution of the dynamic contact/impact problem if and only if

∀ϕ ∈ K̃ : 〈ü, ϕ− u〉+ a (u, ϕ− u) ≥ (f, ϕ− u) (4.1.12)
(

∂u

∂ν
, γ|ΓC

(u̇)

)

ΓC

= 0 (4.1.13)

u(0) = us (4.1.14)

u̇(0) = vs (4.1.15)

holds for a.e. time t ∈ I with

W :=

{

ϕ ∈ L2
(

I;H1 (Ω,ΓD)
)

∣

∣

∣

∣

∣

ϕ̇ ∈ L2
(

I;H1 (Ω,ΓD)
)

,

ϕ̈ ∈ L2
(

I;
(

H1 (Ω,ΓD)
)⋆)

}

,

K̃ :=
{

ϕ ∈ H1 (Ω,ΓD)
∣

∣γ|ΓC
(ϕ) ≥ g

}

.

Furthermore, f ∈ L2
(

I;L2 (Ω)
)

, us ∈ H1 (Ω,ΓD), and vs ∈ L2 (Ω).

The bilinear form a is given by a(·, ·) := (∇·,∇·). If the solution u is suffi-

ciently smooth, (4.1.12) and (4.1.14-4.1.15) are equivalent to (4.1.1-4.1.8),

see for instance [108]. The generalised persistency condition (4.1.13) (c.f.

[73]) corresponds to the pointwise persistency condition (4.1.9) due to the

sign conditions in (4.1.10-4.1.11). Since the mixed formulation of the dy-

namic contact problem is more suited for the analysis of the problem and

for its discretisation, we write the variational inequality (4.1.12) in the

mixed form:
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Definition 4.1.2. The tuple (u, λ) ∈ W × Λ̃ is a weak solution of the

dynamic contact/impact problem, if and only if

〈ü, ϕ〉 + a(u, ϕ) +
〈

λ, γ|ΓC
(ϕ)
〉

= (f, ϕ) (4.1.16)
〈

µ− λ, γ|ΓC
(u)− g

〉

≤ 0
〈

λ, γ|ΓC
(u̇)
〉

= 0 (4.1.17)

u(0) = us

u̇(0) = vs

hold for all ϕ ∈ H1 (Ω,ΓD), all µ ∈ G⋆, and a.e. t ∈ I. Here, G⋆ is the

dual cone of the set

G :=
{

µ ∈ H1/2 (ΓC)
∣

∣

∣µ ≤ 0
}

,

see Section 3.1, and Λ̃ is given by Λ̃ := L2 (I;G⋆).

The mixed formulation and its equivalence to the variational inequality

formulation are discussed, e.g., in [6, 91]. In particular, the equality of
∂u
∂ν and λ is considered. Now, we examine the energy conservation:

Proposition 4.1.3. If the right hand side f is zero the total energy is

conserved in the dynamic contact problem.

Proof of Proposition 4.1.3. We test equation (4.1.16) by u̇ and ob-

tain

0 = 〈ü, u̇〉+ a(u, u̇) +
〈

λ, γ|ΓC
(u̇)
〉

=
∂

∂t

1

2
(u̇, u̇) +

∂

∂t

1

2
a(u, u) +

〈

λ, γ|ΓC
(u̇)
〉

.

Hence, the temporal derivative of the total energy is given by

∂

∂t
Etot = −

〈

λ, γ|ΓC
(u̇)
〉

.

Because of condition (4.1.17), the term on the right hand side vanishes

and therewith, the total energy is constant. �

Remark 4.1.4. The linear and the angular momentum are also con-

served, see [75].
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4.2. Finite Element Discretisation in Space and Time

After the formulation of the weak problem in an adequate form, we apply

a finite element approach in space and time for discretisation. An essen-

tial result is that all properties from the continuous case carry over to

the discrete formulation. We present a solution method for the discrete

problem and analyse it by means of a model problem. The space-time fi-

nite element approach is similar to the discretisation scheme developed in

[76]. There a finite difference method is used for the temporal discretisa-

tion. Furthermore, the solution algorithms for the discrete optimisation

problems are different.

4.2.1. A Continuous Petrov-Galerkin Method. The basis for

the discretisation is the following weak problem formulation:

Definition 4.2.1. The functions (w, λ) = ((u, v), λ) ∈ (U × V ) × Λ are

a weak solution of the dynamic contact/impact problem, if and only if

∀ϕ = (ψ,χ) ∈ U × V : A(w,ϕ) +
(

(

λ, γ|ΓC
(χ)
)

ΓC

)

= 0 (4.2.1)

∀µ ∈ Λ̄, t ∈ I :
(

µ− λ(t), γ|ΓC
(u(t)) − g

)

ΓC
≤ 0

∀t ∈ I :
(

λ(t), γ|ΓC
(u̇(t))

)

ΓC
= 0

holds with

A(w,ϕ) := ((v − u̇, ψ)) + ((v̇, χ)) + (a (u, χ))− ((f, χ))

+ (u(0) − us, χ(0)) + (v(0)− vs, ψ(0)) ,

U :=
{

ψ ∈ L2
(

I;H1 (Ω,ΓD)
)

∣

∣

∣
ψ̇ ∈ L2

(

I;H1 (Ω,ΓD)
)

}

,

V :=
{

χ ∈ L2
(

I;H1 (Ω,ΓD)
) ∣

∣χ̇ ∈ L2
(

I;L2 (Ω)
)}

,

Λ :=
{

µ ∈ L2
(

I;H1/2 (ΓC)
)∣

∣

∣
µ ≤ 0

}

,

Λ̄ :=
{

µ ∈ H1/2 (ΓC)
∣

∣

∣µ ≤ 0
}

.

For the discretisation of the displacement u and the velocity v, we use the

same spaces as in Section 1.2. The assumptions on the trial sets U , V , and
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Λ are somewhat stronger than the ones on W and Λ̃ in Definition 4.1.2.

They are only made to ease the notation. The spatial mesh sequence and

the temporal mesh are created just like the ones in Section 1.2. The only

new set is the discrete counterpart of Λ. With the spatial trial set

Λm
H :=

{

µ ∈ Λ̄
∣

∣∀T ∈ Bm
H : µ|T ∈ P0 (T ,R≤0)

}

,

see Section 3.2, we define

ΛkH :=
{

µkH ∈ L2
(

I;L2 (ΓC)
)

∣

∣

∣
µkH|Im

∈ P0 (Im; Λm
H)
}

.

Here, Bm
H is the boundary mesh connected to Tm

h . As in Chapter 3, we

choose H = 2h for stability reasons. The discretisation reads:

Definition 4.2.2. The functions

(wkh, λkH) = ((ukh, vkh) , λkH) ∈ (Vkh × Vkh)× ΛkH

are a discrete solution of the dynamic contact/impact problem, if and

only if

Akh(wkh, ϕkh) +
(

(

λkH , γ|ΓC
(χkh)

)

ΓC

)

= 0 (4.2.2)
(

µH − λkH , γ|ΓC
(ukh)− g

)

ΓC
≤ 0 (4.2.3)

(

λkH , γ|ΓC
(u̇kh)

)

ΓC
= 0 (4.2.4)

holds with

Akh (wkh, ϕkh) =
M
∑

m=1

{

((vkh − u̇kh, ψkh))Im
+ ((v̇kh, χkh))Im

}

+

M
∑

m=1

{

(a (ukh, χkh))Im
− ((f, χkh))Im

}

+
(

u0
kh − us, χ

0
kh

)

+
(

v0
kh − vs, ψ

0
kh

)

.

Equation (4.2.2) has to be valid for all ϕkh = (ψkh, χkh) ∈ Wkh ×Wkh,

inequality (4.2.3) for all m ∈ {0, 1, . . . ,M}, all µH ∈ Λm
H , and all t ∈ Im,

and equation (4.2.4) for all t ∈ I.



140 4. ADAPTIVE FE FOR DYNAMIC CONTACT/IMPACT PROBLEMS

We have discretised the dynamic contact/impact problem in the usual

way. Thus, we expect as usual that the properties of the continuous

solution carry over to the discrete one. In the following proposition, we

discuss the conservation of the total energy:

Proposition 4.2.3. If the right hand side f is zero and if V m−1
h ⊆ V m

h

for all m ∈ {0, 1, . . . ,M}, then the total energy is constant.

As in Chapter 1, we assume V m−1
h ⊆ V m

h . Thus, the energy conservation

is disturbed by the adaptive methods and we have to pay attention to

this fact, i.e. the regularisation algorithm presented in Section 2.3 are

applied.

Proof of Proposition 4.2.3. We test equation (4.2.2) on a subinter-

val Im by (v̇kh, u̇kh)1 and obtain

0 = ((vkh, v̇kh))Im
+ (a (ukh, u̇kh))Im

+
(

(

λkH , γ|ΓC
(u̇kh)

)

ΓC

)

Im

=
1

2
(vm

kh, v
m
kh)− 1

2

(

vm−1
kh , vm−1

kh

)

+
1

2
a (um

kh, u
m
kh)

−1

2
a
(

um−1
kh , um−1

kh

)

+ km

(

λm
kH , γ|ΓC

(u̇m
kh)
)

ΓC
.

Consequently, it holds

Em
tot − Em−1

tot = −km

(

λm
kH , γ|ΓC

(u̇m
kh)
)

= 0

because of (4.2.4). �

We have seen that the energy conservation carries over to the discrete

problem. The existence of a weak solution is an open question as well as

the convergence of the discrete solution to the continuous one and an a

priori error estimate.

4.2.2. Solution of the Discrete Problem. In this section, we

discuss the calculation of a discrete solution according to Definition 4.2.2.

1see Proposition 1.2.7 for the discussion of the admissibility of (v̇kh, u̇kh)
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The derivation of the time stepping scheme is carried out in the same way

as in Section 1.2.2. We end up with the initial conditions
(

u0
kh − us, ψh

)

= 0
(

v0
kh − vs, χh

)

= 0

and

(vm
kh, ψh) =

2

km

(

um
kh − um−1

kh , ψh

)

−
(

vm−1
kh , ψh

)

(4.2.5)

2

k2
m

(um
kh, χh) =

1

2

(

fm + fm−1, χh

)

−
(

λm
kH , γ|ΓC

(χkh)
)

ΓC
(4.2.6)

+
2

k2
m

(

um−1
kh , χh

)

+
2

km

(

vm−1
kh , χh

)

−1

2
a
(

um
kh + um−1

kh

)

(χh)

0 ≥
(

µH − λm
kH , γ|ΓC

(um
kh)− g

)

ΓC
(4.2.7)

0 =
(

λm
kH , γ|ΓC

(

um
kh − um−1

kh

))

ΓC
(4.2.8)

for all ψh, χh ∈ V m
h , all µH ∈ Λm

H , and all m = 1, . . . ,M . We have

multiplied equation (4.2.6) by 2
k2

m
, because this form is more convenient

for the solution of the discrete problem, as we will see later on. The

pointwise condition in (4.2.3) reduces to the condition in the single time

instances in (4.2.7), because u is a continuous and piecewise linear func-

tion. Furthermore, the discrete persistency condition (4.2.4) is equivalent

to condition (4.2.8), since all variables in (4.2.4) are constant in time.

The initial conditions are defined by L2-projections, which are solved

by the same techniques as in Section 1.2.2. The solution of the system

(4.2.5-4.2.8) is more involved. Let M̄m ∈ Rdm×dm
be the mass matrix,

K̄m ∈ Rdm×dm
the stiffness matrix, and

Ām :=
2

k2
m

M̄m +
1

2
K̄m ∈ Rdm×dm
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the generalised stiffness matrix. The vector F̄m ∈ Rdm
represents

1

2

(

fm + fm−1, χh

)

+
2

k2
m

(

um−1
kh , χh

)

+
2

km

(

vm−1
kh , χh

)

− 1

2
a
(

um−1
kh

)

(χh) .

The right hand side of equation (4.2.5) is given by Ḡm. Let B ∈ Rdm×d̃m

be the matrix associated to
(

·, γ|ΓC
(·)
)

ΓC
. The vector connected to the

gap function g is ḡ. The vectors ūm, ūm−1, v̄m ∈ Rdm

are connected to the

functions um
kh, u

m−1
kh , vm

kh, respectively. The vector λ̄m ∈ Rd̃m

≤0 represents

the Lagrange multiplier λm
kH . The system (4.2.5-4.2.8) reads in matrix

vector notation:

M̄mv̄m = Ḡm

Āmūm + B̄mλ̄m = F̄m

∀µ̄ ∈ Rd̃m

≤0 :
(

µ̄− λ̄m
)T
(

(

B̄m
)T
ūm − ḡ

)

≤ 0

(

λ̄m
)T (

B̄m
)T (

ūm − ūm−1
)

= 0.

Using ūm = Ā−1
{

F̄m − B̄mλ̄m
}

, we write the last two lines in such a

way that the Lagrange multiplier λ̄m is the only unknown:

M̄mv̄m = Ḡm (4.2.9)

Āmūm + B̄mλ̄m = F̄m (4.2.10)

∀µ̄ ∈ Rd̃m

≤0 :
(

µ̄− λ̄m
)T (

c̄m − Q̄mλ̄m
)

≤ 0
(

λ̄m
)T (

2d̄m − Q̄mλ̄m
)

= 0.

Here,

Q̄m :=
(

B̄m
)T (

Ām
)−1

B̄m ∈ Rd̃m×d̃m

is a symmetric and positive semidefinite matrix,

c̄m :=
(

B̄m
)T (

Ām
)−1

F̄m − ḡm,

d̄m :=
1

2

(

B̄m
)T
{

(

Ām
)−1

F̄m − ūm−1
}

.
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The last two lines correspond to a quadratic program with nonlinear

constraints:
min

µ̄∈Rd̃m

1
2 µ̄

T Q̄mµ̄− µ̄T c̄m

s. t. µ̄ ≤ 0
1
2 µ̄

T Q̄mµ̄− µ̄T d̄m = 0

(4.2.11)

The solution algorithm is now straightforward: First, the solution µ̄ = λ̄m

of the quadratic program (4.2.11) is determined. Then, the displacement

ūm is calculated on the basis of equation (4.2.10). Finally, equation (4.2.9)

is used to determine v̄m.

The quadratic program (4.2.11) can be reduced to a linear program with

the help of the nonlinear constraint. We use the optimisation software

SNOPT [52] to solve the program. In principle, every optimisation soft-

ware, which is designed for this class of program, could be used. The only

restriction is that the matrix Q̄m should not be needed explicitly, since

only a matrix vector multiplication of Q̄m can be computed. We use a di-

rect solver, namely Umfpack [43], to factorise Q̄m and efficiently evaluate

the matrix vector multiplication by forward and backward substitution.

The use of iterative solvers is possible and in particular multigrid solvers

are an interesting alternative.

The advantage of solving in the dual variables is that the number of op-

timisation variables is small compared to the optimisation in the primal

variables. Furthermore, we obtain a value for the Lagrange multiplier,

which is a better approximation of the contact stress than the post pro-

cessed value from the displacement u. The Lagrange multiplier is more-

over an essential quantity in the presented a posteriori error estimate.

4.2.3. Model Problem Analysis. In this section, we test the pre-

sented discretisation scheme with an easy but representative model prob-

lem. This gives a first hint, whether a time stepping scheme is appro-

priate for the discretisation of dynamic contact problems or not. Since

no mathematical theory exists to prove the convergence, we have to rely

on the model problem analysis, which also is used in literature. There,
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optimal time integration parameters are calculated on the basis of the

model problem, c.f. [15, 39]. We use the same problem as in [93], which

is based on the ideas in [15, 39]. We consider a force free movement

of a mass point of 1 kg. The initial position is 0 ≤ us < −kvs, where

vs < 0 is the initial velocity and k is the constant time step length. The

condition us < −kvs is only needed to abbreviate the calculation. The

rigid foundation is located at the coordinate 0. The analytical solution

of this problem is

u(t) = |us + vst| .
The contact takes place for t = tc := −us

vs
and the velocity is given by

v(t) =







vs for t < tc

−vs for t > tc.

We observe that the displacement u is only continuous but not continu-

ously differentiable and the velocity v is undefined for t = tc and discon-

tinuous.

Now, we use the time stepping algorithm presented in the last section to

calculate a numerical approximation to u. First, we have to determine

λ1 ≤ 0 in such a way that u1 ≥ 0 and λ1
(

u1 − us

)

= 0 holds. This is

the case for λ1 = kvs. Then, we obtain u1 = us and v1 = −vs, which

corresponds to the analytical solution. Consequently, the error in this

case is 0 and we have obtained a perfect approximation.

4.3. A Posteriori Error Estimation

In this section, we derive an a posteriori error estimate for the discreti-

sation error w.r.t. some output functional

J(w) =

� T

0
J1(w) dt + J2(w(T )),

see Section 1.3. For this purpose, we define the associated dual problem

∀ϕ = (ψ,χ) ∈ U × V : A′ (ϕ, z) = J ′ (w) (ϕ)
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with a solution z = (ū, v̄) ∈ V × U . The Fréchet derivative2 of A w.r.t.

w is

A′ (ϕ, z) =
((

χ− ψ̇, ū
))

+ ((χ̇, v̄)) + (a (χ, v̄))

+ (χ(0), v̄(0)) + (ψ(0), ū(0)) .

The corresponding finite element solution zkh = (ūkh, v̄kh) ∈ Wkh ×Wkh

is given by

∀ϕkh = (ψkh, χkh) ∈ Vkh × Vkh : A′
kh (ϕkh, zkh) = J ′ (wkh) (ϕkh) .

The continuous and the discrete dual problem are equal to the dual prob-

lems considered in Section 1.3. Consequently, we have to use the same

time stepping scheme etc. and can pass on the details.

We specify a second auxiliary problem by

∀ϕ = (ψ,χ) ∈ U × V : A (w⋆, ϕ) = −
(

(

λkH , γ|ΓC
(ψ)
)

ΓC

)

(4.3.1)

with a solution w⋆ = (u⋆, v⋆) ∈ U×V . It is a linear hyperbolic equation of

second order, see Section 1.1. The auxiliary problem (4.3.1) corresponds

to (4.2.1), but with the discrete Lagrange multiplier λkH instead of λ. We

observe that wkh also is a discrete solution of (4.3.1). The dual problem

associated to w⋆ has the solution z⋆ = (ū⋆, v̄⋆) ∈ U × V defined by

∀ϕ (ψ,χ) ∈ U × V : A′ (ϕ, z⋆) = J ′ (w⋆) (ϕ) .

If J is linear, z⋆ is equal to z. Since w⋆,kh = wkh, we obtain z⋆,kh = zkh.

Now, we derive the a posteriori error estimate. The error is split up into

two parts:

J (w)− J (wkh)

= J (w)− J (w⋆) + J (w⋆)− J (wkh) .

2We skip the (w) in the notation, since A′ does not depend on w.
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First, we look at J (w) − J (w⋆). Using the arguments from Section 3.3

and performing the same calculations, we obtain

J (w)− J (w⋆) =
1

2

[

J ′ (w⋆) (e⋆) + J ′ (w) (e⋆)
]

+R(3)
⋆

with e⋆ := w − w⋆, where the remainder term R(3)
⋆ is of third order in

the error e⋆. Using the definitions of the dual solutions z and z⋆ and the

equations (4.2.1) and (4.3.1), we obtain

J ′ (w⋆) (e⋆)

= A′ (e⋆, z⋆)

= −
(

(

λ− λkH , γ|ΓC
(v̄⋆)

)

ΓC

)

and

J ′ (w) (e⋆) = −
(

(

λ− λkH , γ|ΓC
(v̄)
)

ΓC

)

.

We define the contact residual

ρc (λ, λkH) (z, z⋆) := −
(

(

λ− λkH ,
1

2
γ|ΓC

(v̄⋆ + v̄)

)

ΓC

)

and obtain the error identity

J (w) − J (w⋆) = ρc (λ, λkH) (z, z⋆) +R(3)
⋆ . (4.3.2)

For linear J , the contact residual is given by

ρc (λ, λkH) (z) := −
(

(

λ− λkH , γ|ΓC
(v̄)
)

ΓC

)

and the remainder term vanishes.

The second part J (w⋆)− J (wkh) corresponds to the problems discussed

in Chapter 1. As outlined in the preceding chapter, we can choose any

appropriate a posteriori error estimator to control this difference. We

use the one presented in Chapter 1. Since A is linear in this context, we

obtain

J (w⋆)− J (wkh)

=: 1
2 [ρ (wkh, λkH) (z − z̃kh) + ρ⋆ (zkh) (u− ũkh)] +R(3)

kh (4.3.3)
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for arbitrary z̃kh ∈Wkh×Wkh and ũkh ∈ Vkh×Vkh. The remainder term

R(3)
kh is given by

R(3)
kh =

1

2

� 1

0
J ′′′ (wkh + se) (e, e, e) s (s− 1) ds

with e := w⋆ − wkh and is of third order in the error e. For a linear J ,

the remainder term is zero.

In order to obtain a computationally evaluable error estimate, we approx-

imate the error identities (4.3.2) and (4.3.3) by

J (w)− J (wkh)

= ρc (λ, λkH) (z, z⋆) +R(3)
⋆

+1
2 [ρ (wkh, λkH) (z − z̃kh) + ρ⋆ (wkh, zkh) (w − w̃kh)] +R(3)

kh

≈ ρc

(

i
(1,1)
k,H λkH , λkH

)(

i
(1,2)
k,2h zkh, i

(1,2)
k,2h zkh

)

+1
2

[

ρ (wkh, λkH)
(

i
(1,2)
k,2h zkh − zkh

)

+ ρ⋆ (zkh)
(

i
(2,2)
2k,2hwkh − wkh

)]

=: η = ηc + ηe.

Here, we have used the fact that z⋆,kh = zkh. As in the preceding chapter,

it is possible to derive the error estimate without the use of the auxiliary

problem (4.3.1). However, the use of the auxiliary problem offers the

possibility to use different known error estimators to estimate the error

of it.

We have obtained an evaluable a posteriori error estimate for the dis-

cretisation error in an arbitrary nonlinear output functional. But we also

want to use the estimate as basis for an adaptive refinement algorithm.

Hence, we have to split the spatial and the temporal error and to localise

the error estimate. We have done this for ηe in Chapter 1 and 2. For ηc,

we use the same ideas. Since λkH is a tensor product function, we obtain

i
(1,1)
k,H λkH − λkH = i

(1)
k

(

i
(1)
H λkH − λkH

)

+ i
(1)
k λkH − λkH

= i
(1)
H

(

i
(1)
k λkH − λkH

)

+ i
(1)
H λkH − λkH
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and define accordingly

ηc = ηi
c,H + ηn

c,k

= ηi
c,k + ηn

c,H .

The interpolation i
(1)
H has been defined in Section 3.3 and i

(1)
k in Section

1.3. The terms ηi
c,H and ηn

c,H are evaluated on the edges or faces of

the boundary and the value is then added to the estimated value of the

adjacent element, which contains this edge or face. The values of ηi
c,k and

ηn
c,k are simply added to the value of ηe,k in the corresponding time step.

The computationally evaluated form of ηc is described in Section A.6.

In the preceding chapter, we have seen that it does not matter, whether

we insert i
(2)
2h zh or zh into the contact residual. Consequently, we also

specify the estimator

η̄c = ρc

(

i
(1,1)
k,H λkH , λkH

)

(zkh, zkh)

with

η̄c = η̄i
c,H + η̄n

c,k

= η̄i
c,k + η̄n

c,H .

4.4. Numerical Results

In this section, we discuss two applications of the presented error esti-

mator. In the first example, we discuss a simplified Signorini problem,

which corresponds to the example presented in Section 2.7.2 and has

similarities to the example of Section 3.4.1. Afterwards, a full Signorini

example is presented. We extend the example presented in Section 3.4.2

by considering dynamic effects.

4.4.1. Example 1: Dynamic Simplified Signorini Problem.

We consider a dynamic simplified Signorini problem on the basic domain

Ω = [0, 1]2 and the time interval I = [0, 1]. The boundary is divided into
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M N ηnn
c ηni

c ηin
c ηii

c ηni
e

50 64 118.4 115.7 115.7 113.0 91.46
100 256 44.32 44.07 44.07 43.82 32.38
200 1024 20.42 20.40 20.40 20.37 17.37
400 4096 9.736 9.733 9.733 9.729 8.937
800 16384 4.770 4.769 4.769 4.769 4.508

Table 4.4.1. Development of the contact error estima-
tor ηc w.r.t. uniform spatial and temporal refinement, all
values of the error estimators are scaled by 107

M N η̄nn
c η̄ni

c η̄in
c η̄ii

c ηni
e

50 64 100.7 98.37 98.37 96.06 91.46
100 256 41.75 41.52 41.52 41.29 32.38
200 1024 19.92 19.90 19.90 19.87 17.37
400 4096 9.631 9.628 9.628 9.624 8.937
800 16384 4.743 4.743 4.743 4.743 4.508

Table 4.4.2. Development of the simplified contact error
estimator η̄c w.r.t. uniform spatial and temporal refine-
ment, all values of the error estimators are scaled by 107

M N ηi
c,k ηn

c,k η̄i
c,k η̄n

c,k ηi
e,k

200 64 2.246 2.317 2.149 2.211 2.697
200 256 1.921 1.934 1.864 1.876 2.036
200 1024 1.902 1.905 1.855 1.858 1.944
200 4096 1.880 1.881 1.839 1.840 1.921
200 16384 1.880 1.880 1.837 1.837 1.912

Table 4.4.3. Behaviour of ηc,k w.r.t. uniform spatial re-
finement, all values of the error estimators are scaled by
106

three parts:

ΓD = {x = (x1, x2)|x1 = 0} ,
ΓC = {x = (x1, x2)|x1 = 1} ,
ΓN = ∂Ω\ (ΓD ∪ ΓC) .
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M N ηi
c,H ηn

c,H η̄i
c,H η̄n

c,H ηn
e,h

50 1024 1.357 1.466 1.241 1.345 −2.582
100 1024 1.360 1.413 1.297 1.349 −2.164
200 1024 1.354 1.380 1.320 1.345 −2.067
400 1024 1.351 1.363 1.330 1.342 −2.027
800 1024 1.350 1.356 1.335 1.341 −2.040

Table 4.4.4. Behaviour of ηc,H w.r.t. uniform temporal
refinement, all values of the error estimators are scaled by
107
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Figure 4.4.5. Temporal meshes based on η and on ηe

Homogeneous Neumann boundary conditions are prescribed on ΓN . The

right hand side f is set to zero. The initial conditions are us = 0 and

vs(x) = −1

4
sin

(

1

2
πx1

)

.

The rigid foundation is given by

g (x2) = −
(

x2 −
1

2

)2

.
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(a) Based on η (b) Based on ηe

Figure 4.4.6. Meshes created by adaptive refinement in
the CM approach
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ments in the DM approach based on η and on ηe
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(a) m = 1 (b) m = 50 (c) m = 100

(d) m = 150 (e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350 (i) m = 400

Figure 4.4.8. Meshes created during the adaptive refine-
ment process based on η in the DM approach

The functional of interest is

J1 (w) :=
1

|B|

�
B
u2 dx

with B = [0, 0.25] × [0.375, 0.625] and J2 (w(T )) = 0.
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(a) m = 1 (b) m = 50 (c) m = 100

(d) m = 150 (e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350 (i) m = 400

Figure 4.4.9. Meshes created during the adaptive refine-
ment process based on ηe in the DM approach

In Table 4.4.1 and 4.4.2, the values of various variants of the error estima-

tors ηc are given, where the temporal and the spatial mesh are uniformly

refined. All values are similar. We will use ηni
c , since we have chosen ηni

e

in Chapter 2. Furthermore, the values of ηni
e are given. They are of the
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Figure 4.4.10. Convergence in the output functional J
w.r.t. the total number of mesh cells for different refine-
ment techniques

M
M
∑

m=1
NM Erel Ieff

50 3200 2.615 · 10−2 0.702
94 21808 2.454 · 10−3 0.118
188 57152 7.073 · 10−4 0.075
374 149600 1.135 · 10−3 0.291
714 739704 4.747 · 10−4 0.186
870 1141440 3.474 · 10−4 0.314
1184 2377472 1.404 · 10−4 0.855

Table 4.4.5. Adaptive refinement based on η in the CM approach

same magnitude as ηc. In Figure 4.4.1, we observe that ηni
c and ηni

e are

of the same order, too. Consequently, we consider both terms ηe and ηc

in the error estimate and cannot neglect one.
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To substantiate that ηc,k depends on h only of higher order, we choose a

fixed M and vary the spatial mesh width. The results of this calculation

are given in Table 4.4.3. The value of ηc,k is roughly constant just like

the value of ηe,k. In Figure 4.4.2, the behaviour of ηc,k and ηe,k w.r.t.

uniform spatial refinement is compared. They are of the same order and

magnitude. The values of ηc and ηe are nearly constant in this case. In

dynamic contact problems, the temporal convergence rate is often smaller

than two because of the low temporal regularity of the analytical solution,

see, for instance, [21]. Furthermore, the temporal discretisation error is

mostly dominant.

For the results given in Table 4.4.4, we maintain the spatial mesh and vary

the time step length. We observe that the value of ηc,H is nearly constant.

The term ηe,h shows the same behaviour. Furthermore, it is of the same

magnitude as ηc,H . These results substantiate the definition of ηc,H ,

which only depends of higher order on k. In Figure 4.4.3, we compare

ηe,k and ηc,k. They are of the same magnitude and order. The influence

of ηc,H on ηc becomes greater while M increases. Thus, the difference

between ηc,k and ηc grows, where ηc > ηc,k. The same behaviour is

observed for ηe and ηe,k. But ηe < ηe,k holds, since ηe,h < 0. In Figure

4.4.4, the developement of ηc,H at a fixed time point is depicted, where

the time step size is varied. The value of ηc,H decreases almost linearly.

This result correspond to the behaviour of ηe,h as presented in Section

1.4.

Let us discuss the results of the adaptive solution process. We choose a

fixed spatial mesh with 4096 cells and perform five adaptive refinement

iterations. We use the estimators η and ηe as basis for the adaptive

refinement. The created temporal meshes are depicted in Figure 4.4.5.

The adaptive refinement based on η leads to smaller time steps for small

t and larger time steps for t > 0.2.

To test the adaptive spatial refinement algorithm, we use a uniform tem-

poral mesh with M = 400 time steps. In Figure 4.4.6, the meshes created

in the CM approach are presented. In the mesh based on η, the contact
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zone is well resolved. Some additional refinements are located in B and

between B and the contact zone. The adaptive algorithm based on ηe

leads to more refined cells, especially in the interior of Ω. The basic

structure of the mesh is equal to the structure created by the adaptive

refinement algorithm based on η. The meshes created in the DM ap-

proach are depicted in Figure 4.4.8 and 4.4.9. They are similar for η and

ηe. For small t, the contact zone is well resolved. Then the mesh follows

the arising wave from the right to the left. The distribution of the mesh

cells over the time intervall are similar as shown in Figure 4.4.7. The

adaptive refinement based on η leads to meshes with slightly more cells.

In Figure 4.4.10, we compare different refinement methods. The numer-

ical solution in the CM approach based on η with M = 2341 and

M
∑

m=0

Nm = 7815600

is used as reference value. During the numerical experiments, it turned

out that the ratio between k and h have to be bounded to circumvent

numerical difficulties in the discrete solver. For this purpose, we refine

the spatial mesh sequence and the temporal mesh in each refinement it-

eration. Furthermore, the DM approach is less effective in the presented

situation. The time step, in which the first contact between the mem-

brane and the rigid foundation is detected by the numerical algorithm,

depends on the spatial mesh. The meshes are coarse in the contact zone

in the beginning of the calculation, see Figure 4.4.7, 4.4.8, and 4.4.9.

Thus, the first contact is detected later in the DM approach than in the

CM approach. This fact leads to the reduced effectivity of the DM ap-

proach. The adaptive refinement based on η in the CM approach is the

most effective method. The adaptive refinement based on ηe in the CM

approach is as effective as the uniform refined method. The effectivity in-

dices during the adaptive solution process based on η in the CM approach

are presented in Table 4.4.5.
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Figure 4.4.11. Temporal meshes based on η and on ηe

(a) Based on η
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Figure 4.4.12. Meshes created by adaptive refinement
in the CM approach
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Figure 4.4.13. Distribution of the number of mesh ele-
ments in the DM approach based on η and on ηe

M
M
∑

m=1
NM Erel Ieff Ie

eff

50 12800 3.725 · 10−2 2.692 2.708
96 42912 1.700 · 10−2 3.119 3.132
182 176552 6.339 · 10−3 2.294 2.300
352 725908 3.351 · 10−3 2.532 2.536
678 4177824 5.664 · 10−4 1.049 1.050

Table 4.4.6. Adaptive refinement based on η in the DM approach

4.4.2. Example 2: Dynamic Full Signorini Problem. A 2D

full Signorini problem is considered in this section. The basic domain is

given by Ω = [0, 0.05] × [0, 0.2] with

ΓD = {x = (x1, x2)|x2 = 0} ,
ΓC = {x = (x1, x2)|x1 = 0.05 ∧ x2 ≥ 0.15} ,
ΓN = ∂Ω\ (ΓD ∪ ΓC) .
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(a) m = 1 (b) m = 50

(c) m = 100 (d) m = 150

(e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350

(i) m = 400

Figure 4.4.14. Meshes created during the adaptive re-
finement process based on η in the DM approach

The time interval is I = [0, 1]. We set q = 0 and f = (0.5, 0)T . Homo-

geneous initial conditions are prescribed, i.e. us = vs = 0. The material

parameters are E = 10, ν = 0.33, and ρ = 10. The rigid foundation

is given by g = 0.055. We are interested in the temporal mean value

of the von Mises equivalent stress σv, see Section 2.7.3, in the domain

B = [0, 0.05]2, i.e.

J1(w) :=
1

|B|

�
B
σ2

v (u) dx

and J2(w) = 0.
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(a) m = 1 (b) m = 50

(c) m = 100 (d) m = 150

(e) m = 200 (f) m = 250

(g) m = 300 (h) m = 350

(i) m = 400

Figure 4.4.15. Meshes created during the adaptive re-
finement process based on ηe in the DM approach

We use a fixed spatial mesh with 4096 cells and perform five adaptive

refinement iterations. The temporal meshes created based on η and ηe

are depicted in Figure 4.4.11. The meshes are similar. They use larger

time steps for small t and smaller time steps for large t.

For the discussion of the spatial meshes, we choose a uniform decomposi-

tion of the time interval I with M = 400 time steps. The spatial meshes

created in the CM approach are presented in Figure 4.4.12. They are

similar. The left end of the contact zone and the left corners of Ω are

well resolved. In the left corners, we observe stress singularities due to the

geometry. In Figure 4.4.14 and 4.4.15, the adaptive meshes created in the
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Figure 4.4.16. Convergence in the output functional J
w.r.t. the total number of mesh cells for different refine-
ment techniques in the full Signorini example

DM approach are depicted. For m < 200, we mainly observe additional

refinements in the left corners, where the stress singularities occur. In

the 200th time step, the left boundary of the contact zone and B are well

resolved. The additional refinements are more and more concentrated

in B for m > 200. In Figure 4.4.13, we see that the number of mesh

cells increases for t > 0.4. It attains its maximum for t ≈ 0.7 and then

decreases.

In Figure 4.4.16, the convergence behaviour for different refinement tech-

niques are compared, where we have chosen the numerical solution in the

DM approach based on η with M = 1322 and

M
∑

m=1

Nm = 25480148
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(a) Grinding wheel (b) Workpiece

Figure 4.5.1. Geometry of the grinding wheel and the workpiece

as reference solution. More detailed information about the DM approach

based on η are presented in Table 4.4.6. We observe that ηc ≪ ηe because

Ieff ≈ Ie
eff. Furthermore, the accuracy of the a posteriori error estimate

is substantiated. The adaptive methods based on ηe as well as the DM

approach based on η are very effective. They lead to comparable results.

However, the CM approach based on η is less effective. The results nearly

correspond to the results based on uniform refinement.

4.5. Further Open Questions

This section is devoted to the discussion of further open questions in the

context of the presented error estimators. Furthermore, the perspectives

of the estimators are considered. In [19], a heuristic error indicator for

dynamic contact problems is discussed. It is applied to the dynamic

Signorini problem arising in the NC-shape grinding process. The basic

domain is a quarter of the outer grinding wheel, see Figure 4.5.1(a). The

rigid foundation is given by a free formed workpiece, which is depicted in

Figure 4.5.1(b). The adaptive meshes created by the error indicator are

presented in Figure 4.5.2, where

Nm
H := dim (Λm

H) .

See [19] for a detailed description of this example. The efficient applica-

tion of the presented error estimator to such complex examples requires
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(a) Mesh at m = 1, Nm
H = 20

(b) Mesh at m = 25, Nm
H = 263

(c) Mesh at m = 50, Nm
H = 263

(d) Mesh at m = 75, Nm
H = 257

(e) Mesh at m = 100, Nm
H = 71

(f) Mesh at m = 125, Nm
H = 263

(g) Mesh at m = 150, Nm
H = 257

(h) Mesh at m = 175, Nm
H = 257

(i) Mesh at m = 200, Nm
H = 71

Figure 4.5.2. Meshes for different time steps of the dy-
namic Signorini problem, view on the contact zone of the
grinding wheel
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an improvement of the computational realisation. Parallelisation of dif-

ferent steps of the adaptive solution algorithm is one method to enhance

the efficiency. Especially, the evaluation of the error estimator and the

adaptive refinement are well suited for parallelisation, since the evalua-

tion and the refinement in each time step can be performed independent

of the other time steps. In linear problems with linear functionals of

interest, the solution of the primal and dual problem may easily be cal-

culated in parallel, since in this case the dual problem does not depend

on the primal solution. The use of a multigrid scheme to solve the dis-

crete problems is another possibility to enhance the adaptive method.

Furthermore, a detailed analysis of the implementation is needed to find

the time consuming operations, which should be enhanced. For instance,

it could be more efficient to save the mass matrices during the solution

of the primal problem and to reload them while solving the dual prob-

lem than to assemble them during the solution of the primal and of the

dual problem. The mesh management and the calculation of integrals on

different meshes can be enhanced further.

Beside the improvement of the realisation of the introduced adaptive

method, more sophisticated adaptive methods are an interesting alter-

native. One possibility is given by multi-adaptive methods. They are

discussed in the context of ODEs in [80]. In our temporal discretisation,

the time step length k does not depend on the spatial variable x. In

multi-adaptive methods, the variation of k with x is permitted. Thus a

very efficient discretisation is obtained. But the numerical solution of the

discrete problem is problematic, since it does not lead to a classic time

stepping scheme. We have derived the error estimate for a special space-

time finite element approach, which is based on bilinear basis functions

in space and linear basis functions in time. The use of higher order basis

functions would be favoured. To obtain the maximum performance of

the higher order ansatz, we have to apply hp-adaptive methods, i.e. we

change the basis functions locally from mesh cell to mesh cell and from

time step to time step. The derivation of the general a posteriori error

estimate is the same, but the evaluation of the weights is much more
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(a) Spindle-grinding wheel-system (b) Workpiece

Figure 4.5.3. Mesh of the spindle-grinding wheel-system
and the workpiece

involved. Furthermore, the efficient implementation of such a method

is complex. First results concerning hp-adaptvie methods for parabolic

problems are described in [101].

In the introduction, the NC-shape grinding process has been discussed.

From the engineering point of view, dynamic, rotational, damping, con-

tact, frictional, and thermal effects have to be considered in the simu-

lation of this process. The decisive parts of the grinding process, the

grinding wheel and the workpiece, are simulated in detail. Furthermore,

the spindle is explicitly included, where the stiffness of the grinding ma-

chine machine is modelled by elastic bearings. In Figure 4.5.3, the finite

element meshes of the spindle-grinding wheel-system and of the workpiece

are depicted. It should be mentioned that the geometry of the workpiece

changes because of the material removal during the grinding process.

Due to the different length scales, additional refinements in the contact

zone between grinding wheel and workpiece are needed. In Figure 4.5.4,

some simulation results are exemplarily presented. The model including

all mentioned effects and the corresponding finite element discretisation

scheme are explained in [23].

In this paragraph, we discuss the necessary extensions of the presented

error estimator in order to apply it to the whole simulation of the NC-

shape grinding process. The transfer of the presented approach to quasi-

linear second order hyperbolic equations, which also includes a nonlinear

term depending on the first temporal derivative of the solution, should be
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(a) G. wheel, m = 75 (b) Workpiece, m = 75

(c) G. wheel, m = 150 (d) Workpiece, m = 150

(e) G. wheel, m = 225 (f) Workpiece, m = 225

(g) G. wheel, m = 300 (h) Workpiece, m = 300

Figure 4.5.4. Temperature distribution in the grinding
wheel (view on the contact zone) and in the workpiece
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straightforward. From the modelling point of view, this would allow to

consider linear and nonlinear damping effects. Another important topic

is the coupling of second order hyperbolic and parabolic problems. Such

mixed problems arise, e.g., if thermal effects on mechanical structures

are modelled. An appropriate coupling of the presented error estimator

with the one described in [99] for parabolic problems should lead to a

reasonable estimator for the mixed problems.

We restrict ourselves to the case of a simple linear differential operator

in the contact problems. The extension to quasilinear differential oper-

ators is of great interest. The consideration of these operators in the

presented error estimator for contact problems should be an easy task.

Furthermore, we neglect frictional effects. The approach to derive the

error estimators should be applicable to frictional contact problems, too.

In the static case, the generalisation of this approach was done without

any difficulty, see [104]. During frictional contact, energy is dissipated

and usually converted into heat. This leads to a heat flux into the partic-

ipating bodies. Thus, the consideration of thermal effects have to be inte-

grated into the modelling and the discretisation of the contact problems.

Combining an error estimator for mixed parabolic hyperbolic problems

with an error estimator for frictional contact problems should lead to an

adequate error estimator for thermomechanical contact problems. Our

research on contact problems is based on the assumption that an elastic

body hits a rigid foundation. In many situations, these assumption does

not hold and we have to consider the contact between two or more elastic

bodies. The application of the presented techniques to two body contact

problems is a challenging task.





CHAPTER 5

Conclusions

The aim of the thesis at hand was to develop space and time adaptive

finite element methods for nonlinear hyperbolic problems of second or-

der. The two main ingredients of the adaptive method, the underlying

a posteriori error estimator and the adaptive refinement algorithm, were

presented. We derived goal-oriented a posteriori error estimates for quasi-

linear hyperbolic equations of second order, static contact problems, and

dynamic contact/impact problems on the basis of the DWR technique.

Several numerical examples substantiated the accuracy of the estimate.

Hence, the basic applicability of the presented error estimator to nonlin-

ear hyperbolic problems was shown. However, we do not and possibly

cannot prove that the numerically evaluated value of the error identity

converges to the continuous value in the considered setting. As outlined

in Section 4.5, the efficiency of the error estimation can and has to be

improved further. Beside the acceleration of the implementation, simpli-

fications of the error estimator are an alternative. For instance, we can

confine ourselves to the evaluation of the primal residual, if we are only

interested in adaptive refinement. The restriction to the primal residual

reduces the computing time for the evaluation by more than 50%. A sec-

ond opportunity to speed up the evalution is provided by simplification

of the discrete dual problem. The solution on coarser meshes does not

enhance the efficiency, because the effort for the interpolation on the fine

grids offsets the saved computing time during the solution process.

Refinement indicators, which are the basis of the adaptive refinement

method, were deduced from the error estimator. In view of the a priori

error estimates and of the definition of the higher order interpolation,

171
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it is required that the mesh sequence contains no temporal and spatial

hanging nodes of degree greater than one and that all spatial meshes have

patch structure. This structure is usually destroyed during the adaptive

refinement. Thus, we presented a regularisation algorithm, which restores

the mesh structure. The efficiency of the adaptive method w.r.t. the total

number of mesh cells as well as computing time was shown by numerical

examples. But we also obtain less efficient adaptive meshes, especially

in the DM approach, if the solution on coarse meshes does not exactly

represent the problem behaviour. In dynamic contact/impact problems,

the solution algorithm detects the first contact between the elastic body

and the rigid foundation too late. Consequently, additional refinements

in the contact zone are only performed in later time steps, which leads to

a less accurate approximation. The treatment of the described difficulty

is a basic open question in adaptivity for nonlinear problems. A second

conclusion from the numerical experiences is that we have to balance the

flexibility of the adaptive approach and the complexity of the underlying

algorithms. In some examples, the simpler CM approach is more efficient

than the DM approach. Criteria for balancing flexibility and complexity

in advance are needed.

The presented space and time adaptive finite element methods are the

foundation of the adaptive simulation of the NC-shape grinding process.

It relies on the accurate and efficient determination of the dynamic be-

haviour of the spindle-grinding wheel-system and of the contact between

the grinding wheel and the workpiece, since all other effects depend on

the dynamics and on the contact situation. The next steps towards the

integral adaptive simulation of the NC-shape grinding process consist in

the successive extension of the presented error estimator towards prob-

lems including damping, rotational, frictional, and thermal effects.
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CHAPTER A

Practical Realisation of the General Concepts

A.1. Quadrature Formulas

Throughout this thesis, integrals of the form
�
Im
f(t) dt have to be eval-

uated numerically. For this purpose, we use quadrature formulas Q with�
Im

f(t) dt = Q(f) + E(f),

where E is the error term. The following three quadrature formulas of

different order are applied:

(1) For approximation of integrals of piecewise constant functions,

the box formula

Q(f) = kmf
m

is used. The error term is given by

E(f) = −k2
mf

(1)(ξ), ξ ∈ Im.

(2) The trapezoidal rule

Q(f) =
1

2
km

[

fm + fm−1
]

is exact for piecewise linear functions. The error equation

E(f) = − 1

12
k3

mf
(2)(ξ), ξ ∈ Im,

holds.
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(3) The evaluation of integrals of piecewise quadratic polynomials

is done by the Simpson formula

Q(f) =
1

6
km

[

fm + 4fm− 1
2 + fm−1

]

.

The error term is given by

E(f) = − 1

2880
k5

mf
(4)(ξ), ξ ∈ Im.

The Simpson formula is of fifth order in km and is exact for

polynomials of maximum degree three.

A.2. Interpolation of Higher Order in Time

For the evaluation of the a posteriori error estimate, two different inter-

polation methods of higher order in time are needed. The first one is

i
(1)
k , which is linear and is used in the case of piecewise constant trial

functions. The other one is i
(2)
2k , which is quadratic. Piecewise linear

functions are extrapolated by this method. The interpolation operator

i
(1)
k is defined as

i
(1)
k vkh(t) :=

tm − t
km

vm−1
kh +

t− tm−1

km
vm
kh

with t ∈ Im and vkh ∈ Wkh. The evaluation of the interpolation at

different time instances results in the terms

i
(1)
k vkh (tm) = vm

kh

i
(1)
k vkh (tm−1) = vm−1

kh

i
(1)
k vkh

(

tm− 1
2

)

=
1

2
km

[

vm
kh + vm−1

kh

]

.

The interpolation operator i
(2)
2k is defined as

i
(2)
2k vkh(t) :=

(tm − t) (tm+1 − t)
km (km + km+1)

vm−1
kh +

(t− tm−1) (tm+1 − t)
kmkm+1

vm
kh

+
(t− tm−1) (t− tm)

(km + km+1) km+1
vm+1
kh
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for t ∈ Im ∪ Im+1 and vkh ∈ Vkh. The basic evaluation terms are

i
(2)
2k vkh (tm−1) = vm−1

kh , i
(2)
2k vkh (tm) = vm

kh, i
(2)
2k vkh (tm+1) = vm+1

kh

and

i
(2)
2k vkh

(

tm− 1
2

)

=
1

2

km+1 + 1
2km

km + km+1
vm−1
kh +

1

2

(

1 +
km

2km+1

)

vm
kh

−1

4

k2
m

(km + km+1) km+1
vm+1
kh

i
(2)
2k vkh

(

tm+ 1
2

)

= −1

4

k2
m+1

km (km + km+1)
vm−1
kh +

1

2

(

1 +
km+1

2km

)

vm
kh

+
1

2

km + 1
2km+1

km + km+1
vm+1
kh .

A.3. Temporal Error Estimate

The temporal part of the discretisation error is estimated by ηk. It is

derived in Section 1.3. Here, the general form is concretised for the

implementation.

A.3.1. Terms in the Temporal Error Estimator. The temporal

error estimator ηn,m
k is given by

ηn,m
k =

6
∑

j=1
ηn,m

k,j = −1

2
A (wkh)

(

Π
(1)
k zkh

)

m

+
1

2
J ′ (wkh)

(

Π
(2)
2k wkh

)

m

−1

2
A′ (wkh)

(

Π
(2)
2k wkh, zkh

)

m

for m = 1, . . . ,M . The single terms are

ηn,m
k,1 := −1

2

((

u̇kh − vkh, i
(1)
k ūkh − ūkh

))

m

−1

2

((

v̇kh, i
(1)
k v̄kh − v̄kh

))

m
,

ηn,m
k,2 := −1

2

(

a (ukh)
(

i
(1)
k v̄kh − v̄kh

))

m
+

1

2

((

f, i
(1)
k v̄kh − v̄kh

))

m
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+
1

2

(

(

q, i
(1)
k v̄kh − v̄kh

)

ΓN

)

m

,

ηn,m
k,3 :=

1

2

(

J ′
1,u (wkh)

(

i
(2)
2k ukh − ukh

))

m
,

ηn,m
k,4 :=

1

2

(

J ′
1,v (wkh)

(

i
(2)
2k vkh − vkh

))

m
,

ηn,m
k,5 :=

1

2

((

˙̄vkh + ūkh, i
(2)
2k vkh − vkh

))

m

+
1

2

(

[ū]m+1 ,
(

i
(2)
2k ukh − ukh

)

(tm)
)

+
1

2

((

˙̄ukh, i
(2)
2k ukh − ukh

))

m

+
1

2

(

[v̄]m+1 ,
(

i
(2)
2k vkh − vkh

)

(tm)
)

,

ηi,m
k,6 := −1

2

(

a′ (ukh)
(

i
(2)
2h

(

i
(2)
2k ukh − ukh

)

, v̄kh

))

m
.

Using appropriate quadrature rules, we obtain the following form of the

terms:

ηn,m
k,1 =

1

4

(

um
kh − um−1

kh , ūm
kh − ūm−1

kh

)

−km

12

(

vm
kh + 2vm−1

kh , ūm
kh − ūm−1

kh

)

+
1

4

(

vm
kh − vm−1

kh , v̄m
kh − v̄m−1

kh

)

,

ηn,m
k,2 = −km

12

[

a
(

um−1
kh

) (

v̄m−1
kh − 3v̄m

kh

)

− 2a (um
kh) (v̄m

kh)
]

−km

6
a

(

1

2

(

um
kh + um−1

kh

)

)

(

v̄m
kh + v̄m−1

kh

)

+
km

12

[

−2 (fm, v̄m
kh) +

(

fm−1, v̄m−1
kh − 3v̄m

kh

)]

+
km

6

(

fm− 1
2 , v̄m

kh + v̄m−1
kh

)

+
km

12

[

−2 (qm, v̄m
kh)ΓN

+
(

qm−1
kh , v̄m−1

kh − 3v̄m
kh

)

ΓN

]

+
km

6

(

qm− 1
2 , v̄m

kh + v̄m−1
kh

)

ΓN

,
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ηn,m
k,3 = −km

6

[

J ′
1,u (wm

kh) (um
kh) + J ′

1,u

(

wm−1
kh

) (

um−1
kh

)]

+
km

3
J ′

1,u

(

1

2

(

wm
kh +wm−1

kh

)

)(

i
(2)
2k u

m− 1
2

kh

)

,

ηn,m
k,4 = −km

6

[

J ′
1,v (wm

kh) (vm
kh) + J ′

1,v

(

wm−1
kh

) (

vm−1
kh

)]

+
km

3
J ′

1,v

(

1

2

(

wm
kh + wm−1

kh

)

)(

i
(2)
2k v

m− 1
2

kh

)

,

ηn,m
k,5 = −km

6

(

ūm
kh, v

m
kh + vm−1

kh

)

+
km

3

(

ūm
kh, i

(2)
2k v

m− 1
2

kh

)

,

ηn,m
k,6 =

km

6

[

a′ (um
kh) (um

kh, v̄
m
kh) + a′

(

um−1
kh

) (

um−1
kh , v̄m

kh

)]

−km

3
a′
(

1

2

(

um
kh + um−1

kh

)

)(

i
(2)
2k u

m− 1
2

kh , v̄m
kh

)

,

where

u
m− 1

2
kh = ukh

(

tm− 1
2

)

, tm− 1
2

=
1

2
(tm−1 + tm) ,

is the evaluation of the specified function at the time instance tm− 1
2
.

A.3.2. Terms in the Interpolated Temporal Error Estimator.

In Section 1.3, the interpolated temporal error estimator

ηi,m
k =

6
∑

j=1
ηi,m

k,j = −1

2
A (wkh)

(

i
(2)
2h Π1

kzkh

)

m

+
1

2
J ′ (wkh)

(

i
(2)
2h Π2

2kwkh

)

m

−1

2
A′ (wkh)

(

i
(2)
2h Π2

2kwkh, zkh

)

m

has been derived for m = 1, . . . ,M . The single terms ηi,m
k,j are

ηi,m
k,1 := −1

2

((

u̇kh − vkh, i
(2)
2h

(

i
(1)
k ūkh − ūkh

)))

m

−1

2

((

v̇kh, i
(2)
2h

(

i
(1)
k v̄kh − v̄kh

)))

m
,

ηi,m
k,2 := −1

2

(

a (ukh)
(

i
(2)
2h

(

i
(1)
k v̄kh − v̄kh

)))

m

+
1

2

((

f, i
(2)
2h

(

i
(1)
k v̄kh − v̄kh

)))

m
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+
1

2

(

(

q, i
(2)
2h

(

i
(1)
k v̄kh − v̄kh

))

ΓN

)

m

,

ηi,m
k,3 :=

1

2

(

J ′
1,u (wkh)

(

i
(2)
2h

(

i
(2)
2k ukh − ukh

)))

m
,

ηi,m
k,4 :=

1

2

(

J ′
1,v (wkh)

(

i
(2)
2h

(

i
(2)
2k vkh − vkh

)))

m
,

ηi,m
k,5 :=

1

2

((

˙̄vkh + ūkh, i
(2)
2h

(

i
(2)
2k vkh − vkh

)))

m

+
1

2

(

[ū]m+1 , i
(2)
2h

(

i
(2)
2k ukh − ukh

)

(tm)
)

+
1

2

((

˙̄ukh, i
(2)
2h

(

i
(2)
2k ukh − ukh

)))

m

+
1

2

(

[v̄]m+1 , i
(2)
2h

(

i
(2)
2k vkh − vkh

)

(tm)
)

,

ηi,m
k,6 := −1

2

(

a′ (ukh)
(

i
(2)
2h

(

i
(2)
2k ukh − ukh

)

, v̄kh

))

m
.

Evaluation of the time integrals by appropriate quadrature rules leads to

ηi,m
k,1 =

1

4

(

um
kh − um−1

kh , i
(2)
2h

(

ūm
kh − ūm−1

kh

)

)

−km

12

(

vm
kh + 2vm−1

kh , i
(2)
2h

(

ūm
kh − ūm−1

kh

)

)

+
1

4

(

vm
kh − vm−1

kh , i
(2)
2h

(

v̄m
kh − v̄m−1

kh

)

)

,

ηi,m
k,2 = −km

12
a
(

um−1
kh

)

(

i
(2)
2h

(

v̄m−1
kh − 3v̄m

kh

)

)

+
km

6
a (um

kh)
(

i
(2)
2h v̄

m
kh

)

−km

6
a

(

1

2

(

um
kh + um−1

kh

)

)

(

i
(2)
2h

(

v̄m
kh + v̄m−1

kh

)

)

+
km

12

[

−2
(

fm, i
(2)
2h v̄

m
kh

)

+
(

fm−1, i
(2)
2h

(

v̄m−1
kh − 3v̄m

kh

)

)]

+
km

6

(

fm− 1
2 , i

(2)
2h

(

v̄m
kh + v̄m−1

kh

)

)

−km

6

(

qm, i
(2)
2h v̄

m
kh

)

ΓN

+
km

12

(

qm−1, i
(2)
2h

(

v̄m−1
kh − 3v̄m

kh

)

ΓN

)
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+
km

6

(

qm− 1
2 , i

(2)
2h

(

v̄m
kh + v̄m−1

kh

)

ΓN

)

,

ηi,m
k,3 = −km

6

[

J ′
1,u (wm

kh)
(

i
(2)
2h u

m
kh

)

+ J ′
1,u

(

wm−1
kh

)

(

i
(2)
2h u

m−1
kh

)]

+
km

3
J ′

1,u

(

1

2

(

wm
kh + wm−1

kh

)

)(

i
(2)
2h i

(2)
2k u

m− 1
2

kh

)

,

ηi,m
k,4 = −km

6

[

J ′
1,v (wm

kh)
(

i
(2)
2h v

m
kh

)

+ J ′
1,v

(

wm−1
kh

)

(

i
(2)
2h v

m−1
kh

)]

+
km

3
J ′

1,v

(

1

2

(

wm
kh + wm−1

kh

)

)(

i
(2)
2h i

(2)
2k v

m− 1
2

kh

)

,

ηi,m
k,5 = −km

6

(

ūm
kh, i

(2)
2h

(

vm
kh + vm−1

kh

)

)

+
km

3

(

ūm
kh, i

(2)
2h i

(2)
2k v

m− 1
2

kh

)

,

ηi,m
k,6 =

km

6

[

a′ (um
kh)
(

i
(2)
2h u

m
kh, v̄

m
kh

)

+ a′
(

um−1
kh

)

(

i
(2)
2h u

m−1
kh , v̄m

kh

)]

−km

3
a′
(

1

2

(

um
kh + um−1

kh

)

)(

i
(2)
2h i

(2)
2k u

m− 1
2

kh , v̄m
kh

)

.

A.4. Spatial Error Estimate

In this section, the concrete terms of the spatial error estimator are dis-

cussed. The spatial error estimator in the first time step is

η0
h = −1

2

(
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0
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ū1
kh − ū0
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+
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0
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.

It represents the error in the initial conditions and in the jump terms of

the dual problem.
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A.4.1. Terms in the Spatial Error Estimator. The spatial error

estimator for 0 < m < M is
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h =

6
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Using suitable quadrature formulas, we obtain
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In the last time step, only the term ηn,M
h,5 has to be modified. It is of the

form
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.

A.4.2. Terms in the Interpolated Spatial Error Estimator.

For 0 < m < M , the interpolated spatial error estimator ηi,m
h is given by
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h =
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Numerical integration leads to
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m−1
kh

)

+
(

vm
kh,Π

(2)
2h ū
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We obtain
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in the last time step. All other terms have the same form as for

0 < m < M.
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A.5. Localised Spatial Error Estimator

The terms ηm
h,2a and ηm

h,6 change for m = 1, 2, . . . ,M compared to Section

A.4, when the spatial error estimator is localised by integration by parts.

A.5.1. Terms in the Spatial Error Estimator. The term ηn,m
h,2

is written as
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The term η̃n,m
h,2a represents the evaluation of the strong formulation and

ηn,m
h,2c the jump terms on the boundary of the mesh cells. Now, the term
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h,6 = ηn,m
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is discussed. We end up with
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A.5.2. Terms in the Interpolated Spatial Error Estimator.

We write the term ηi,m
h,2 as
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h,2 = η̃i,m
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In detail, theses terms are given by
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The term ηi,m
h,6 is split up into
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A.6. Terms in the Error Estimator for Dynamic Contact

In this section, the terms in the error estimator for dynamic contact

problems are evaluated. We begin with the terms for the temporal error:

A.6.1. Temporal Error Estimator Terms. The error estimator

in time is given by
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A.6.2. Spatial Error Estimator Terms. The spatial error esti-

mator is
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The interpolated spatial error estimator is given by
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