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Abstract

Electromagnetic forming (EF) is a high speed forming process in which strain rates of over 103
s~! are achieved. The workpiece is deformed by the Lorentz force resulting from the interac-
tion of a fast varying electro magnetic field with the eddy currents induced by the field in the
workpiece. Within a research group (FOR 443) funded by the German Research Foundation
(DFG) an object oriented simulation tool for this multi physical process has been developed
(SOFAR), that can handle the fully coupled simulation in a single software environment. In
this contribution, details of the algorithmic implementation of the electromagnetic side of the
coupled model are discussed and validated. Basis of this validation are benchmark simulations
developed for this purpose. In particular, the implementation of transient field computation for
coupled problems within SOFAR is compared with an experienced FD-code (FELMEC) devel-
oped at the Institute of Electrical Machines, Drives and Power Electronics.
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1 Introduction

Electromagnetic forming (EF) is a dynamical forming process that is driven by the interaction
of a pulsed magnetic field with eddy currents induced by the exciting field. The workpiece to
be formed consists of good conducting material like copper or aluminum. A tool coil adjacent
to the workpiece is excited by a fast time varying current. The resulting pulsed magnetic field
diffuses into the work piece and induces eddy currents there. These eddy currents again in-

"This work is based on the results of the research group FOR 443. The authors wish to thank the Deutsche
Forschungsgemeinschaft — DFG for its financial support.
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teract with the exciting magnetic field which results in a material body force, e.g. the Lorentz
force representing an additional supply of momentum that results in deformation. EF offers
advantages over other forming methods such as increase in formability for certain kinds of ma-
terials, reduction in wrinkling, the ability to combine forming and assembly operations, reduced
tool making costs etc.. Despite these advantages, its industrial application is concentrated on
joining tubular semifinished material (see [1, 2]), whereas electromagnetic sheet metal forming
(ESF) has not been developed to a point where it may be routinely used for industrial purposes
yet. The determination of the optimal progression of the magnetic field strength including the
design of tool coils and power supply devices requires still scientific research. Nevertheless,
recent research activities [3, 4] have led to a precise description and process analysis of the
free forming of aluminum sheet metal.

The above mentioned difficulties demonstrate the significance of reliable simulation tools
for EF. However, these require a non linear coupling of a mechanical simulation considering the
material’'s dependence on the strain rate with an electromagnetical one. Since the introduction
of high speed computers in the late 80’s, several different approaches to EF have been carried
out (see [5, 6, 7, 8, 1, 2, 3, 9]). The simulation developed within the DFG research group FOR
443 is based on a general approach to the formulation of continuum thermodynamic models for
a class of rate-dependent metallic engineering materials dynamically formed via strong mag-
netic fields due to Svendsen and Chanda [10, 11]. The validity of (a specialised form of) these
models has been verified experimentally in Brosius et al. [12, 13]. The algorithmic formula-
tion of the coupled model and its efficient numerical implementation has been carried out and
discussed in [14]. As software environment the object oriented code SOFAR (Small Object ori-
entated Finite-element-library for Application and Research) has been chosen [15]. Moreover,
the mechanical side of the simulation has been validated by benchmark simulations in [16].

In the present contribution we discuss different algorithmic approaches to the model-
ing of the electromagnetic subsystem of the coupled process and report on its validation by
a benchmark procedure. It is analysed which numerical techniques are best suited to solve
certain problems arising in the simulation. In particular, the algorithmic implementation within
SOFAR is compared to a well experienced FD-code (FELMEC) developed and maintained at
the Institute of Electrical Machines, Drivers and Power Electronics. In addition, results from
experiments carried out at the chair of forming at the university of Dortmund by Badelt et al. [3]
and Beerwald et al. [4] serve as references.

2 Model Formulation of the Electromagnetic Subsystem
2.1 Derivation of Basic Equations

The state of an electrodynamic system is characterized by for vector fields E, D, B, H, fulfilling
Maxwell’'s equations

divD =p divB =0
f+l3 curIE:—é. (1)

curl H
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Here J denotes the conducting current and p the density of electric charges, which is zero in
the given situation. Dots indicate total derivatives. In the realm of the quasistatic hypothesis,
which applies to EF since the characteristic wave length of the electromagnetic field are much
longer than the structure of interest, displacement currents D are negligible (see e.g. [17]
or [18]). The region Q in which the forming process takes place consists of three parts, the
workpiece W, the tool coil S and the space around workpiece and tool-coil. We assume that
the respective materials possess linear isotropic polarization and magnetization with permittivity
e and permeability 11 = po such that B = uH and D = <E may be assumed throughout Q within
the scope of accuracy, where 1o denotes the permeability of the vacuum. We further assume
that the tool coil remains stationary during the process such that B equals the time derivative
B = 8, B outside W. If the workpiece moves at a velocity 7, we obtain B = 8; B + curl(? x B)
inside W. Finally, J is related to the other fields by the constitutive equation

-

J=~E. (2)

Here, v = ~(Z,t) denotes the conductivity of the material at a point & at time ¢. To solve
Maxwell’s equations, a vector potential A and a scalar potential ¢ are introduced. If A and ®
fulfill the coupled equations

—

1 - S
curl ;curlA +YO0 A —~ (77 x curl A) —vygrad ¢

Ad = divd A — div (UXE) : (3)

then B =curl 4, E = ~ (— grad® — 8 A + 7 x l?), D =¢E, H = 1/uB fulfill the quasistatic ver-
sion of Maxwell’s equation for linear isotropic materials in each part of the region Q. Solutions
to (3) need not to be continuous at interfaces between two materials. However, the components
of B and J normal to the interface are continuous as well as the tangential components of E.
In the following, we assume that a Coulomb gauge condition div A = 0 holds. If additionally
div <U X E) = 0 holds, equations (3) decouple. Both the Coulomb gauging and the latter con-
dition are generally fulfilled for 2D problems or in the axisymmetric situation. Consequently,
the second equation can be solved independent of A and grad ® can be inserted in the first
one. In addition to equation (3), boundary conditions are necessary to determine A and ¢: As
before, 2 denotes the domain, in which a magnetic field distribution is to be computed and S
is the domain of a coil with (congruent) front surfaces 7y and F, and a spiral lateral surface L.
Further, let the potential Uy and U, be given on F; and F, respectively. As the area adjacent
to S possesses conductivity v = 0, ¢ solves on a stationary tool coil S the equation

A(D:O |n8 CD:U-I Onj:1
®=U, onFs h®=0 oncL, (4)

where 0, denotes the derivative in direction of the outer normal. Outside S we may assume
® = 0. Although there exists no boundary for A, it is justified to restrict it to a bounded domain Q
and to assume that A vanishes on its boundary, since A(z) = O(1/|Z|?) for |Z| — occ. If instead
of the potential U on the front sides of the coil the total current I = I(t) in the tool coil is known,
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then the two equations (3) have to be tackled simultanously, i.e. the system

curl L curl 4 = — (8th+ grad® — @ x curl ff) in Q
i
A®=0 insS ®=0 InQ\S (5)

has to be considered together with the afore mentioned boundary conditions for A and ¢ and
with
—'y/ (at A + grad <D> di=1I (6)
c

for any cross section C parallel to Fy and F> (da = surface element).
2.2 The Axisymmetric Situation

Spiral coils as used for EF are not axisymmetric, but can be approximated in good accuracy by
the following idealization: If S consists of n windings, each winding is replaced by a torus of the
same cross section C. The resulting n tori are cut at an azimuthal angle of ¢ = 0. These cuts
are considered as perfectly isolating. Next, the cross section at ¢ = 0 of each torus (except
of the first one) is set on the same potential level as the cross section of the preceding torus
at ¢ = 2x. If 7, denotes the kth torus resulting from this process and Uj the potential of 7 at
@ =0, then ® = &(r, p, 2) satisfiesfork=1...n

Ad=0 in7; o=U, forpo=0 (in7y)
& =U foro=2r (inTg) Oh®=0 onod7;. (7)

Consequently, ¢ possesses the form

O(r,p,2) = Up + Ui ®)

with U}, = Up,1 — Uy. For the determination of

oU
b=_—"¢
v oy ¢ )
where ¢, denotes a unit vector in azimuthal dircection, only the potential differences 6U;, need
to be considered. They can be obtained from the measured total current I = I(¢) in the coil as
follows: The average over all currents flowing through an arbitrary cross section C; through the

kth torus amounts to

- e
I =— A (0] a= — A N _" 1
’y/CIc <8t +grad ) da *y/Ck (at + 27rre“0> da (10)
From relation (10), 06U, can be determined:
1 . 1 S
oUy, - €, dd = —— — Ot A da (11)
Ch 2nr ~y Ch
implying
b\ (1 N
oU, =—-2r | hln—= |l =+ Ot A dd (12)
a Y Cr
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for a coil with rectangular cross section, where h is the height (= size in z-direction), a the inner
and by, the outer radius of the kth winding. Thus, we obtain

—1
(r-hlnb—k> -<I+fy 8tffda) inS
ag C.

TxcurlA inw
0 iNQ\ (SUW).

1 " .
Vx—curlA+~vy0 A=
7!

The coefficients a, and by in this equation depend on the spatial variable ¥ in so far as they
assume a certain value depending on the coil winding in which 7 is located.

3 Discussion of different Algorithmic Implementations

There exist several possibilities to model the electromagnetic subsystem. The finite element
(FE) method offers a flexible method that can easily be adapted to changing demands and that
offers various numerical algorithms that allow an optimized performance for a large scale of
different problems. In particular, both the electromagnetic and the mechanical subsystem can
be implemented in a single software environment which results in an enormous gain of perfor-
mance. The latter is much more difficult with the FD method or the boundary element method
due to their inherent restrictions. In addition, the FE method allows the use of unstructured
meshes and adaptive refinement such that it can cope with singularities, problems having so-
lutions with restricted regularity or other numerical difficulties. Thus the software environment
SOFAR had been chosen for the development of a simulation tool for EF. On the other hand,
complex computer code is susceptible for errors and thus a well experienced, clearly written
code that serves as reference is desirable. For this purpose, the above mentioned FD code is
applied.

3.1 Program Structure

Essential for an FE tool to be applied in research is its clear structure such that extensions and
new algorithms can quickly be implemented. Such a structure can be reached by an object
oriented design as done in SOFAR: The interface to the developer is implemented in JAVA. On
the other hand, time critical jobs like basic linear algebra (BLAS-) operations are implemented
in fast native C and FORTRAN Code. Unstructured meshes which are typical for adaptive
refinement and remeshing strategies can easily be handled. In particular, SOFAR administrates
geometric singularities as e.g. hanging nodes. The assembly of the corresponding stiffness
matrices is done automatically. Moreover, SOFAR allows access to any geometric substructure
of a particular finite element like edges or faces. The latter enables easy implementation of
edge elements which are used for 3D electrodynamical problems [19, 20]. Moreover, effective
algorithms like multigrid solver or error estimators are available. SOFAR can be extended by
external routines (written in C or FORTRAN) due to a user interface. This user interface was
e.g. applied for the implementation of structural mechanic finite elements developed at the chair
of Mechanics at the University of Dortmund.
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3.2 Design of suitable Meshes

One has to decide wether the whole coupled problem is treated in one mesh or if each subsys-
tem is simulated in a mesh of its own. The first approach offers the advantage that a consistent
linearization of the coupled non linear equation can easier be implemented. On the other hand
coefficients of largely differing magnitude within the common stiffness matrix lead to largely
differing eigenvalues and thus probably disturb the stability of the method. Moreover, the nu-
merically sensitive parts of the electrodynamical and the mechanical subsystem are localized
in different spatial areas. A treatment in different meshes allows to adapt the particular mesh
by local refinement. Consequently, electromagnetic and mechanical subsystem are simulated
in different meshes in case of the SOFAR simulation.

It is natural that the mechanical mesh moves with the structure. Whether the electro-
magnetic mesh should rest or move is a difficult question: A moving electromagnetic mesh,
representing the Lagrangian point of view offers two advantages: First, data exchange be-
tween the structure mesh and the electromagnetic mesh is easier, because node-oriented data
can be transferred without rearrangement. Second, the convective term o x curl A nee_d not to
be considered explicitely if the time derivative 8; A is replaced by the total derivative A in (13)
(see [18]), since ]

/T:@tff+gradg<17-/f>—churl/f. (14)

The term grad ; (U- ff) disappears if 7 and A are perpendicular which is the case for all 2D or

axisymmetric problems. In a moving mesh, A is simply obtained by considering corresponding
nodal values of two subsequent meshes. On the other hand, a fixed mesh, representing an
Eulerian approach, avoids global remeshing in every time step. Then @ x curl A has to be
considered in the weak form of (13). As the Péclet-number

P, = ’”l;'h ~05 (15)

is small in the given situation, the stability of the numerical solution process is not affected. The
circumstance that the resulting stiffness matrices are no longer symmetric such that (precon-
ditioned) conjugate gradient solvers cannot be applied is of minor importance, as SOFAR is
equipped with a BICGSTAB solver that can treat the corresponding linear equations effectively.
Moreover a fixed mesh reduces the expenses for the accumulation of the stiffness matrix be-
cause only part of it needs to be reassembled. While the electromagnetic field calculation in
SOFAR works on a fixed mesh, the FD method uses a moving one. A detailed comparison of
the performance and accuracy of these two approaches represents work in progress.

3.3 Finite Element Formulation

While a standard finite element approach with so called nodal elements is applicable for 2D
problems or problems with certain symmetries, numerical field computation in 3D requires a
more sophisticated approach. Therefore, Nédélec introduced edge elements in 1980 and 1986
[19, 20]. Here the degrees of freedom that have to be determined are not nodal values of A
but integrals over A along the edges of the discretizing mesh. These elements simulate the
typical jumps, solutions to Maxwell’s equations exhibit at interfaces between different materials
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and, hence, avoid locking and spurious modes. As the benchmark problem considered below
is formulated for an axisymmetric situation, nodal elements with four nodes are applied.

We derive now the weak form of equation (13) and its discretization in the axisymmetric
situation, which is the basis of the FE simulation. If A, denotes the azimuthal component of A
and r the radial component of a point and z its axial component then (13) is equivalent to

A A* A
1 / (r (8TA¢6TA* + a,,A@é?ZA*) + @—> — ’y/ (vra7,A<p +v,0; A, + Y "°> A*
wJjq r w T

—1
/r(hlnb—k> -<I+7/ 8tA¢>-A* inS
+7/61A¢A* = S a Cp
Q

0 inQ\S

for all test functions A* ¢ H' that decay sufficiently fast for » — 0. In all integrals, the integration
has to be carried out with respect to drdz. Inserting the FE basis representation of A, and A*
we obtain a linear system of equations. The first integral leads to the permeability matrix K,
the third to the conductivity matrix B and the second to an unsymmetric matrix C' representing
the convective part. Since the source vector f= f(c'?) is a function of & the resulting equation

Ka+Cd+ Bi = f(d) (16)

has to be solved iteratively. This can be avoided by discretization of fck o0t A, and adding
the resulting linear equations to the stiffness matrix. But the management of the additional
coupling of degrees of freedom, that are not linked to each other by a neighbor relation, is more
expensive than the implementation of the iterative scheme. Moreover, in each iteration step
only f(d@) has to be reassembled such that numerical costs remain small. Benchmark tests
have shown that this methods exhibits satisfactory performance.

3.4 Finite-Difference Approach

The Finite-Difference method is usually restricted to structured orthogonal grids. However, a
generalization to nonstructured meshes including triangular and nonrectangular quadrangular
cells is possible. The arising methods, one of which is applied in the inhouse FD-code FELMEC,
are e.g. referred to as Box-Techniques, the resulting difference schemes of which are closely
related to schemes based on Finite Elements [21].

The method used here is based on a modified vector potential W' = r - A, for axisym-
metric arrangements and described in [22, 23]. The values of W’ on the nodes are the primary
unknowns of interest. In order to compute them, for each time step a system of linear equations
is set up by evaluating Ampere’s law for each node on a path through the grid cells adjacent to
the node under consideration.

It should be mentioned that the values of the nodal amperage I are not prescribed
as external quantities, but are themselves unknown in workpiece and tool coil. For nodes in
free space they are zero anyway, whereas for the tool coil cross-section I is replaced by an
expression including the time derivative of W;, and the external driving voltage u., along the
winding turn under consideration. All winding turns are also regarded as branch elements of a
network, for which Kirchhoff’s laws are applied. The prescribed current i of the tool coil is given
by a current source. The necessary voltage-current relations of the windung turns are set up
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as a summation of the nodal amperages I on the winding cross-section. The resulting overall
system of equations is solved directly for each time step.

In contrast to [23], where the coupling of the moving structure to the orthogonal base
grid is carried out by an interpolation strategy leaving the original base grid unaltered, here a
remeshing procedure is applied. First, all grid cells of the base grid, which are totally or partially
covered by the workpiece, as well as cells with nodes lying to close to the workpiece mesh are
deactivated. Hence, an interior boundary in the base grid occurs. Then, the exterior workpiece
contour and the resulting interior base grid contour are linked by triangular cells forming a co-
herent mesh. Here, additional triangular cells occur, whenever nodes of the interior base grid
contour are connected diagonally. In order to ensure that all nodes of the original workpiece
mesh are adjacent to four quadrangular grid cells, an extended workpiece mesh with an addi-
tional layer of nonconductive grid cells is used for the procedure described above. The topology
regularized by this mesh extension is considered advantageous for the computation of nodal
forces by evaluating Maxwell’s stress tensor. Figure 1 shows a detail of a mesh generated
for a workpiece geometry at 63 us, which resulted from the staggered EMAS-MARC coupling
presented in [9]. As pointed out before, the coefficients for the generalized FD-scheme or Box-
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Figure 1: Detail from remeshed Finite-Difference grid showing the workpiece mesh, its non-
conductive extension and the linking layer to the remaining active base grid.

scheme can be derived in quite the same way as in the basic orthogonal grid by evaluating
Ampere’s law. In order to obtain expressions for the magnetic field strength in a triangular cell
depending on the nodal values of V', a linear approximation for ¥ in z and =2 in the triangle is
chosen:

W (r,2) = co + ¢pr + oz . (17)

The constants co, ¢, and ¢, are computable in dependence on the three nodal values Vi, ¥,
and V|, by solving a linear system of equations. The coefficients ¢, and c. are related to the
flux density components in the triangular cell as a result of B = curl A:
Cz
B,=2¢, , B.(r)=——. (18)
T
The contribution to the circulation of the magnetic field around a node under consideration,
which results from the part of the integrational path through the triangle from one edge to
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another according to Fig. 2, can be calculated as follows:

Mw M
/ Hdl = 1/ <—czﬁ + 2¢, dz> . (19)
My HeJ My r

Since it does not depend on the path itself due to curl B = 0 for the field in (18) and x = const.

Q tu» Zn

rIII ’ zIII
M LIII

Figure 2: Triangular cell with nodes I, Il and Ill, edge median points M, ), M and M, and
part of integrational path (arrows) surrounding node under consideration, here No. |, along
median lines.

inside the cell, simply a parametrized straight line can be assumed for evaluating (19). The
constants ¢, and ¢, are replaced by the nodal values of W’. Finally, a linear combination of
these modified nodal vector potentials is obtained:

My

.y Hdl = oq Wy + aq Wiy — (o + ag) Vi (20)
LIl

Here, e.g. the coefficient oy is given by

ap = MLA ((Zlu — 2)(zn — 2n) + (Tﬁ| - 7"|2> In %) (21)
and A stands for
A= (Tﬁ - 7“|2) (zm — 21) — (Tﬁ| - 7“|2> (21— 21) - (22)

The logarithmic expression in oy results from integrating the 1/r-dependence. However, it can
be shown that for large radii and comparably low radial distances of the nodes the coefficients
o become approximately those expressions, which are obtained in rectangular coordinates (2D
problems) for first order finite elements.

The quadrangular grid cells in the workpiece are treated in a similar way based on a
subdivision of such a cell into four underlying triangles. The modified vector potential W, of the
center point as the point in common for the four triangles is assumed to be a linear combination
of the values V), , of the quadrangle’s vertices with weighting coefficients «1._4 depending on
geometry and their sum equaling one. The paths of integration are led from the edge median
points to the center point right through the adjacent triangle. The according contribution to the
magnetic circulation under consideration depends on V. as well as on two vertex potentials.
After replacing W, by the aforementioned linear combination only the vertex potentials occur
and the resulting coefficients for matrix assembly are obtained.

In contrast to the base grid, where matrix assembly is carried out row by row, i.e. nodal
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equation by nodal equation, for the nonorthogonal parts of the mesh the matrix is assembled
by adding the contributions e.g. arsing from (21) to the coefficient matrix grid cell by grid cell,
similar to matrix assembly in the Finite Element Method.

3.5 Timestepping

As time stepping for the electromagnetic subsystem the generalized trapezoidal rule has been
chosen. Only the conductivity matrix B and the convective matrix C' have to be reassembled in
every time step, while the permeability matrix K does not change due to the choice of a fixed
mesh. At the beginning of the process vibration due to the switching on of power have to be
filtered out. Consequently the parameter of the generalized trapezoidal rule has to be chosen
close to the backward Euler situation. Later, the optimal parameter yielding an acurracy of
O(6?) can be chosen, where 4, is the size of the time step.

In the FD-code the same method also known as 6-method is applied. According to the
following approximation of integrals of a quantity ¢(¢) over one time step

t+5t
/ A7) d7 = (1 — 6)3rgsast + 051 (23)
t

6 = 0 results in the backward Euler formula, whereas 6 = 0.5 is the mere trapezoidal rule. For
the computations carried out here for 6 a value of about a third has been chosen sometimes
referred to as Galerkin approach. A moving mesh is used, so that the convective term does not
occur explicitly. All contributions to electromagnetic induction, motion conditioned as well as
arising from field variation, are included by evaluating the total derivative of the nodal modified
vector potentials W’. However, the reluctance matrix has to be regenerated in every time step.

3.6 Coupling Strategies

The coupling between the two subsystems is carried out in a staggered way. This means
that the magnetic field distribution is calculated with respect to the position and velocity of the
structure in the nth time step. After that the new position of the structure is determined such that
a balance between inner and outer forces arises. However, benchmark simulation have shown
that this algorithm can be improved by adding an additional iteration loop: To ensure that the
computed momentum balance of the structure in the (n + 1)st time step represents a balance
between the Lorentz forces in the (n + 1)st time step and the inner forces of the structure at this
instant, the following scheme is applied: Let all values having index n be variables of the nth
time step. Then the update for the (n + 1)st time step looks like this:

T(n+1

1. A predictor value Aj ) for the vector potential and for its time derivative in the (n + 1)st
step is computed according to the measured amperage in the tool coil at time ¢™*) and
the kinematic state of the workpiece. For this, the assembly routine of the magnetic mesh
checks wether a certain point lies in the workpiece or not. The values for conductivity and
for the velocity of the structure are chosen respectively.

2. The stiffness matrix and load vector in the workpiece mesh are assembled. For this, the
nodal values of the current Lorentz force density are computed according to

— —
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3. The assembled equation in the workpiece mesh is solved. The computed deformations
are added to the vertex positions of the workpiece mesh. It is checked, whether the
residual force associated with the resulting state of deformation is zero in the scope of
desired accuracy. If the latter is false, another step of the Newton-Raphson iteration has
to be performed with the altered position of the workpiece. Otherwise, the vector potential
/T(z"”) according to the new kinematic state of the structure is computed. If it does not
deviate from /Yﬁ”*” within the scope of accuracy, the next time step is started. Otherwise,
the equilibrium position of the structure with respect to outer forces resulting from A’ﬁ;“”

and its time derivative is determined.

4. A series of vector potentials /Tﬁj”” and corresponding equilibrium positions of the me-
chanical structure is computed, until Eﬁﬁ’;” = Eﬁc"”) within the scope of accuracy. Then a

new time step is started.

Using the Finite-Difference code FELMEC for the electromagnetic subsystem one can set up
an explicit coupling scheme, the accuracy of which is considered sufficient, if a small time step
of e.g. 0.1 ... 0.2 us is chosen. Having calculated the nodal forces in the workpiece the electro-
magnetic simulation has to be interrupted after each time step. The calculation of nodal forces
is carried out by a local evaluation of Maxwell’s stress tensor on a surface around a node under
consideration. The list of nodal forces is written out and passed to the structural mechanical
part of SOFAR as a prescribed load, which calculates an update of the workpiece shape and
mesh. With this updated mesh the electromagnetic computation is continued. Control and
synchronization of the two processes are carried out by a shell script and JAVA-routines in
SOFAR.

4 Validation by Benchmark Problems

Details of the implementation of the coupled electromagnetic field computation described above
have been validated by several benchmark simulations involving comparisons with the pro-
grams EMAS, FEMM and ANSYS. The mechanical side has been tested in [16]. Here we
present a benchmark test that allows to validate the fully coupled simulation, where the above
described FD-code serves as reference. Although many questions have already been clarified,
the benchmark process and the optimization of SOFAR are still work in progress.

To validate whether SOFAR computes a correct force distribution, first a fully coupled
simulation is carried out with SOFAR. Thereby the same geometry and input currency are re-
garded as described in [16]. In particular, the mechanical side is simulated by an elastoplastic
element. Although this modeling fails to account for the rate dependency of the mechanical
structure it suffices for a validation of the electromagnetic field computation as it leads to ap-
proximatively correct results (see [16] or [1, 2, 3, 9]). Next, the FD-code is coupled with SOFAR
such that the computation of the electromagnetic field is carried out by the FD-Software, while
SOFAR simulates the mechanical subsystem. The results of these simulations are compared
to each other and to experimental results. Both simulations mirror the forming process qual-
itatively correctly: Figure 3 shows the shape of the work piece after 35 us. The form of the
work piece stays extremly similar during the whole forming process in both simulations. This
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shows that both approaches, although completely different, are basically numerically equiva-
lent for this example. Moreover, comparison to experimental data from [3, 4] shows that the

z

SOFAR (electromagnetic and mechanical) FELMEC (electromagnetic) and SOFAR (mechanical)

von Mises Stress [ . 3 ; 3 —  eseep—
80 101 122 143 164 186 207 228 249 270 291 MPa

Figure 3: Workpiece contour and von Mises stress at instant of time t = 35 us

~

coupling of SOFAR with the FD-code leads to a satisfactory result™: Figure 4 shows the verti-
cal displacement of the structure on the axis and at a radius of 21 mm for both simulations in
comparison with experimental data. However, with the current parameters, SOFAR computes
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Figure 4: Position of upper workpiece surface on axis r = 0 mm, graph on left hand side, and
atr = 21 mm, graph on right hand side.

a slightly larger distribution of forces than the FD-simulation leading to more deformation of the
work piece. In the beginning, both simulations yield nearly the same displacement but after 35
and 20 us respectively the deviation becomes obvious achieving a value of about 2 mm after
60 us. This deviation is mainly caused by the different spatial discretizations used for electro-
magnetic field computation (up to 47000 unknowns in the case of the FD-SOFAR simulation
and 1126 unknowns for the SOFAR computation). The results of the simulation show that the
discretization within SOFAR has been chosen much too coarse. To increase the accuracy of
SOFAR without reducing its efficiency, adaptive meshing algorithms based on local error esti-
mation will be implemented soon. Moreover, the choice of optimal numerical parameters is still
work in progress and will be carried out with the help of further benchmark tests.

5 Conclusions

The algorithmic implementation of the electromagnetic subsystem of a fully coupled simulation
tool for electromagnetic forming has been presented. Details of the realization of the underly-
ing physical model are discussed. In particular, the tool coil is correctly modeled as massive

"Note that an elastoplastic model slightly overestimates the deformation of the workpiece (see e.g. [16]).
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conductor with the help of an iterative scheme. Convective terms are accounted within the
weak form of the field equations. The non linear coupling between the magnetical and me-
chanical subsystem is performed in a staggered but implicit way, allowing for larger time steps.
The applied algorithms have been tested and optimized with the help of suitable benchmark
tests. Although SOFAR can in principle cope with the computation of the Lorentz force distribu-
tion coupling the electromagnetic system and the mechanical structure, further improvements
concerning the accuracy of the field computation are necessary to obtain full accordance to
experimental data. In particular, numerical algorithms for error control and adaptive refinement
have to be implemented and validated by further benchmark simulations. This will improve
SOFAR to a convenient and reliable tool for the simulation of EF forming processes.
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