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SUMMARY

The basic concept that a function of time may be sampled, i.e.,
specified for particular values of its argument, and subsequently
reconstfucted, or interpolated, in some manner to form an approximation
to the original function of time is fairly well-known. The idea is so
- intuitively appealing that any restrictiens upon the nature of the sampled

function or the interpolation technique are not at all appayent. Elec-
trical engineers are perhaps most familiar with Shannon‘s Theorem, dealing
with one aspect of sampling,.to the effect that band-limited functions
require only a finite number of samples per unit time for exact recon-
struction.

When this idea is to be used practically, analysis quickly shows

that the joint operations of sampling and interpolating can be viewed as

a sort of frequenky domain filter introducing distortion' to the original
spectrum as well as obliterating some frequency components., Under a suit-
able restriction, namely a sufficiently high sampling rate, it is possible
.to obtain an output spectrum which closely resembles that of the input

and thus in some sense represents an approximation of the original signal.
The advantages gained by having to deal only with samples rather than an
entire function often counterbalance the loss of accuracy in the resultant
approximation -- legding to an interpeolation error versus sampling rate

~ trade off. Any low pass deQice will interpolate a sampled input but some

have more engineering interest than others. Such a device is the zero-order

hold which maintains the constant value of the latest sample until the
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next sample occurs.

The preceding remarks make clear that some error characteriza-
tion is necessary to rate the performance of a given interpolator with
a2 specific input in terms of the sampling interval. The commonly used
error criterion of.the expected value of the mean squared error, J(T, AY,
is just such a figure of merit. For the zero-order hold, @(T, A) is a
functional of the variatien, a2 basic second-order statistic of a random
process defined by V(t) = R(0) - R{t). The Fourier transform relation-
ship between R(t) and S{w) is used to establish a frequency domain rep-
resentation of V(t} which is shown to be dominated by the behavior of
S(w) for large w. It is then shown that @(T, A) is well-behaved; how-
ever, & basic¢ problem in evaluating error criteria, i.e., their relation-
ship to actual error performance still remains. The quality of‘J(T, \)
is analyzed by the Bienayme Inequality for the general random process.
Gaussian random processes possess sufficient tractability that several
aspects of the relation of J(T, A) to both the error iﬁ one sampling
interval and the time average error along a sequence of such intervals
are analyzed.

Simple bounds on V(t), and hence on R{t),are shown to exist for
all band-limited processes and V(t) is shown to be monotone and convex
for sufficiently small t. Upper bounds are shown to exist for general
classes of nen-bapd-limited processes, These relations are sufficient
to establish bounds.on zero-order hold interpelation error, and some
general curves are presented which permit selection of a suitable sampling

rate knowing only two basic parameters of the process, R(0) and |R"{0}].

It is also shown that the effective delay introduced by the zero-order
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held is not necessarily one-half sampling period unless a condition on
v'(t) is fulfilled.

The Bienayme Inequality is shown to yield a confidence level on
the difference between the value of‘@(T, A) and the actual mean square
error in a sampling interval for any process. Properties of Gaussian
processes are used to show that the mean square error process has a
variance expressed as a functional of the autocorrelation function,

An approximation, valid for high sampling rates, is used to show that
the behavior of Gaussian processes, during an observation interval con-
sisting of several consecutive sampling intervals, is well-behaved and
that the time average mean squared error should converge quickly to the
value given by the quadratic interpolation error bound. The behavior of

this time average error is examined for several common spectral densi-

ties.




CHAPTER 1
INTRODUCT ION

Definition of the Problem

Sampling with subsequent interpolation as a means of representing
- & function is based on the central idea that atfleast some functions are
completely, i.e., uniquely, specified if a sufficiént number of values
per unit time are known. Most of the analyses arising from the problems
posed by the sampling theorem are treatments of highly idealized, restric-
tive cases requiring such simplifications as band-limited functions or
non-realizable inferpolatérs.

One of the most common realizable interpolators is the zero-order
sample-and-hold in which the output during an interval is a constant
equal to.the value of the sample representing that interval. Such an
approach is intuitiveiy acceptable if, in addition, it is recognized
that the output is truly an appfoximation to the sampled input process
due to the unavoldable presence of such phenomena as loss of frequency
infermation resﬁlting from spectral overlapping and distortion of fre-
quency information resulting from the interpolator's filtering tenden-
cies,

The approximate nature of any realizable interpolétor output
means that any discussion of the performance of an interpolator will

necessarily require that some error criterion be defined and used as

a figure of merit. Both the particular interpolator structure being




analyzed as well as the statistical parameters of the input may influence
the nature of this figure of merit.

The characterization of the inherent error between interpolator
input and output is thus a key factor if.some guantitative measure of
the quality of the approximation is to be obtained, and it is this charac-
terization which is to be investigated for a class of interpolators. 1In
particular, two aspects of special significance will be dealt with. The
first problem is to determine the general tendencies of zero-corder sample-
and-hold error, i.e., what is the nature of the mean of this error, and
the second problem is to determine the relationship between the expected
behavior and the actual behavior, i.e., what is the nature of the variance

of this error.

Origin and History

The underlying concept of sampling theory seems to havg been out-
lined first by Cauchy (1)} in 1841 when he stated a relationship between
frequency components and sampling rates roughly corresponding to the
intuitive appioach that if a function of time is band-limited, i.e.,
contains no frequency components outside some finite range, and is
sampled at a rate at least twice as fast as the period of the highest
frequency component, then it should be possible te at least construct a
good approximation to the sampled function since it cannot change appre-
ciably between sampling intervals of this order. Nyquist (2} pointed out
the fundamental importance of a sampling period ona-half the period of the

highest frequency contained in a telegraph signal by using a Fourier series

expansion as an approximation. Whittaker (3} showed that for a function




f(t) with Fourier transform F(ju), where F(ju) = 0 for || > m, knowledge
of f(n) for n = 0, 21, 2 ,,. is sufficient to reconstruct the entire
time function if a "cardinal" interpolation function is used and that

such an f(t) may also be written as

oo

£(t) = zf(n) &H{E—;?—l

=L

s$in mt
nt

cardinal interpolator.

where may be considered to be the impulse response of the

Electrical engineers are normally more familiar with Shannon's
Theorem dealing with this property of band-limited functions, to wit:

If a function f(t) contains no frequencies higher than

W cps, it is completely specified by giving its ordinates

at a series of points spaced 1/2W seconds apart.
| which Shannon subsequently used to develop his formula for maximum error-
free channel capacity (4). Balakrishnan (5) extended this concept to
show that when sampling random processés with band-limited spectral
densities, the Nyquist rate, in conjunction with a cardinal interpolation

function, is sufficient to yield a reconstructed signal equal to the

original in a mean square sense, i.e., that

N
limit E {[|x(t) - Z "('22‘&3 sznﬁfééﬂt-;?)] ”2} 0.
-N

N =

The interpolation process is most easily understood when viewed

as & frequency domain operation based upon the fact that any sampled

signal defined as
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£ (t) = E:f(nT)b(t-nT),

-0

where f(t) has the Fourier transform F(jy), has the transform

Fw) =1 ) Fliw - D)=

X 1
=1 FQw) +1

= [~18

{Fl5tw + D] + Fli - 2’%2)]} ,

It is apparent that if F(jw) is band-limited and T < n/uc, then F'(ju)
contains an undistorted version of the original spectrum as well as an
infinite number of images centered about the 2%2 peints, Seen in this
light, all that is needed for interpolation is a flat, low-pass filter with
gain T which will remove the high frequency sidebands and pass only a
resultant spectrum identical to the original F(jw). In the frequency
domain, such a filter may be shown to represent the ideal, or cardinal,
interpolator discussed earlier. A similar interpretation may be made

for the case of random process sampling. Effectively, any realizable
low-pass device will filter from F*(ju) a frequency spectrum related to
F(jw) in a manner depending upon the filter rolloff, the sampling rate
and F(jw). In the ffequency domain, the difference between the input

and output can be attributed to some combination of three sources: first,
distortion of the base-band frequencies by the low-pass characteristics

of the interpolator filters; second, errors of omission, ji.e., attenuation

of the high frequency terms present in the original spectrum by the neces-

sary cutoff tendencies of the interpolator; and, third, errors of commission,




i.e., obliteration of low frequency terms in F(w) by the additional
frequency terms in the base band which result from the overlapping of

the high frequency image terms in F¥(jw) with the low frequency % F( jw)
term, The latter two errors are normally present in the more general non-
band-limited case but are also present in the degenerate band-limited
case with insufficient sampling rate (T > &% ). In the time domain,
although it is difficult to define specific error sources, a contributing
factor is the causality restriction normally placed on the interpolator,
In any case, these problems do not negate the utility of the sampling
concept but they do demand that it not be used without an understanding
of its limitations.

For various reasons, such as those above, the interpolator output
is an approximation to the sampled input and some measure of the quality
of the approximation is needed. The error comparator of Figure 1 yields
a useful interpolator error parameter. A uniform.sampling interval of T
is assumed and a delay, d, is considered te be a variable in the error.
The interpolator filter has impulse response ho(t) and, by inspection,

the interpolator output, X(t), becomes

o0

Rt = Zx(n’l‘)ho(t -nT)

-

leading to an instantaneous error defined as

e(t, d) = x(t-4) - %{t) .

Further examination of this error, where the selection of ho(t)
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is to be made in such a manner that the error is minimized, leads to one
of the two basic interpolator types, namely, the optimal interpolator.
Such an attack is related to the familiar Weiner filter problem and seeks

to minimize the expression

E {[ x(t) - z x(nT)ho(t - nT)]z}

-

by solving for a realizable interpolator response, ho(t), where the
statistics of x(t) are known. This problem has been analyzed in
detail by several researchers. The first contributors to the area

of optimal filtering of sampled data seem to have been Franklin (6} and
Lloyd and McMillan (7) folloﬁed closely by Stewart (8), whose work
along with that of Spilker (9), not only yields optimal filter cri-
teria but also delineates some of the theoretical bounds and limiting
behavior to be expected in these interpolators. Perhaps the best such
analysis to date, as well as the most recent, is that of Leneman (10)
who discusses a procedure for determining an optimal filter subject to
several additional constraints which increase the generality of his
solution.

Examination of this error, where ho(t) is chosen so as to be
easily realizable, leads to the other basic interpolator type, the
Taylor series interpolator. This general class of interpolators oper-
ates by using n sampled values to estimate n coefficlents in an approxi-
mate Taylor series expansion about each sample point. The simplest, and

perhaps most common, of these are the zero-order hold which retains only

the constant term of the Taylor series, and its immediate offspring, the




exponential hold, which is essentially a zero-order hold with an
exponentially decaying output. The first-order hold uses two sample
points to estimate the constant and first derivative which together
approximate the function during a sampling peried. The actual form and
behavior of such interpelators is obviously dependent upon what sampled
values of x(t) may be used to evaluate the coefficients in therexpansion.
If only past values are utilized to yield the interpolated output, then
the output may be used as an approximation without delay, although such

an interpolation procedure may introduce an effective decay -- a phenomenon
further investigated in Chapter III., In some applications, past as well
as future data may be used in selecting the series coefficients for the
approximation and an actual delay is introduced into the interpolated
output, For example, if an actual delay of one sampling period is per-
missible, the first-order hold may be used as a linear point connector
“which yvields a linear approximation which is exact at both end;points of
the sampling interval., General nth order hold circuits have been postu-
lated, with and without delay, and should yield better and better approxi-
mations at the cost of increasing complexity.

A particular case of interest occurs when a wide sense stationary
random process x{t) is sampled periodically every T seconds by an impulse
sampler acting as the input to a zero-order hold whose impulse response
has a duration of T seconds. The instantaneous error, for nT € t < (n+1)T,

becomes
e(t, d) = x(t -d) - x(nT)

with an associated mean square error for the nth sampling interval defined




{n+1)T

¥(nT, d) = %J' ] e%(t) dt .
n

For random processes restricted as above, it may be readily shown that

Efe(t, d)] = E{x(t-d)] - E[x(rT)] = ©

regardless of the probabiiity distribution of x{t) and that

{(n+1)T
E{Y(nT, )} = TE {f : [ x(t-d) -x(nT)]2d1}=
n

T
=%j-o [R(0) - R(x-d)] dr .

This expected value is a functional of the variation of x(t), which is

.defined by
V(<) = R(0) - R{x) ,

and is a measure of one aspect of the interpolation error performance.
Investigation of the variation shows it to have a frequency

domain integral form imposed by the Fourier transform relationship
between R{¢) and S{w), or

v(g) = é‘f S{w)[1 - cos wt] dw .

The error criteria defined above are two of the most basic, and

the expected mean square error criterion is in general use as an inter-

polator figu;e of merit, but a further examination is needed to determine
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their characteristics as indicators of error performance.

Purpose of Research

The primary engineering problem which appears when sampling with
subsequent interpolation is to be utilized is determination of the
sambling réte. Such a determination must be made in light of the sampling
fate'versus interpolation error trade off which exists for any but the
jdeal unrealizable interpolator. This research is directed toward deter-
mination of interpeclation error criteria, couched in terms of simple input
process statistics, which will permit.choice of a sampling rate sufficient
to constrain this error to an acceptable level.

The zerco-order sample-and-hold will be the basic interpelator to
be investigated. Bounds on the behavior of the expected mean square
error for both band-limited and non-band-limited sampled random proceéses
will be shown to exist., This error criterion will also be analyzed to
determine its dependability, i.e., a comparison of the error criterion
to actual interpolator performance, for the general sampled process, and
gome additional observations will be made for the case where x{t) is
Gaussian,

The expected mean square error criterion formulated for the zero-
order sample-and-hold in terms of the variation, and hence related to
the specfral density of x(t), will be shown to fall into one of several
categories based on the behavior of S{w) for large w. Each category is
based upon a set of non-restrictive conditions which insure the tracta-

bility of the variation, which in turn serves to bound the error criter-

ion. The bounds so obtalned may then be used to select a sampling rate
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sufficient to guarantee satisfaction of a constraint on expected mean
square error.

A related problem in the determination of an expected value error
criterion is to determine its relationship to the actual performance,
since if the two differ greatly then the validity of the errer criterion

.is suspect. For the interpolator discussed above, a mean sguare error,
w(nT,.d), has been defined for each sampling peried. It is apparent
that ¥(nT, d)} is a random process derived from the sampled process x(t)
but, in addition, is dependent upon the time origin of the sampling

- process and the values of n and T.

The expected value of y(nT, d) is an intuitive choice for a mean
square error figure of merit since it is a valid criterion for any samp-
1ing period (due to the wide sense stationarity restriction imposed on
x(t)) as well as for any ensemble member (due to the nature of the
expected value operator). However, this expected value, by itself, has
the serious inherent flaw that it yields neither information about the
range of values that ¥(nT, d) can assume, nor about the distribution of
these values, nor about the behavior of W(nT, d) along a specific ensemble
member, Several approaches to this problem will be discussed and a
specific expression for the variance of ¥(nT, d) will be obtained for
the Gaussian process in terms of a functional of the autocorrelation
function of x{t). Although the Gaussian process yields fourth-order
moments 1n terms of second-order statistics and is obviously a natural
area of investigation, the analysis will also include comments applicable

to more general random processes.

The conventional mean square error criterion has dominated
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discussion of interpolators because of the ease of its formulation in
terms of simple second-order statistics. The utility of additional error
criteria is undeniable, especially in the context of interpolation where,
for example, the instantaneous error between input and output is instinct-
‘ively the most natural figure of merit assignable to an interpolator.
Aithough the Gaussian process is often assumed as a model for many sta-
tistical problems, its tractability has yet to be utilized to analyze
interpolétion errors. For this case, knowledge of the second-order proba-
biiity distribution will be shown to be sufficient to calculate the non-
sfationary,:periodic probability distribution of e(t, d) in terms of a
" Gaussian distribution with a variance defined by V{(t - nT) and thus pro-
vide some insight into the nature of the instantaneous error.

In brief, the research is aimed at examination of those charac-
teristics of sample-and-hold interpolation error which will tend to
define and clarify the relationship between the sample input, the inter-

polated output, and the sampling rate.

Review of the Literature

All previous analyses of sampling interpolation error found in the
literature are limited in the sense that they have been constrained to
studies of the band-limited case or to the non-band-limited case with
exact input statistics or to limited examinations of the instantaneous
error. However, there are several basic papers which should not be
overlooked,

Papoulis has made two contributions related to the interpolation

problem, The first is a discussion of errors in band-limited interpolation,
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although not for zero-order hold, where data, i.e., certain sample values,
are altered by any one of several mechanisms -- among them sampling time
jitter, round~off error in the samples, and a restricted case of high
frequency spectrum overlapping (errors of commission) (11). A discus-
sion of an approximation technlque to realize ideal interpolator response
is also included in this paper. His second contribution (12, 13) to this
area concerns the nature of a band-limited random process, and presents
some upper and lower bounds for the variation in terms of the statistics
of x(t).

Liff (14), and Leneman and Lewis (15} have investigated the behavior
of a number of the more common interpolator schemes for specific input
statistics and the latter have presented curves relafing their relative
mean square error performance. McRae (16) has also investigated and com-
pared the mean square errcr resulting from a number of conventional inter-
polation techniques under the assumption of an approximate spectral den-
-éity.

Finn (17) has analyzed several aspects of the zero-order sample-
and-hold interpolator, in particular, mean square error bounds for the
general band-~limited random process, analysis of expected interpolation
error for some specific cases, and an instantaneous error analysis based

upon use of the Tchebycheff Inequality.
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CHAPTER II
ANALYSIS OF VARIATION

This chapter is devoted to discussion and development of bounds
on the variation in terms of parameters of the spectral density for both
the band-limited and non-band-limited cases. An investigation of the
variation is worthwhile in itself since it serves as a measure of the
mean square behavior of a random process; however, its primary importance
here is its vital role in the interpolator error problem to be discussed
in Chapter III, where it will be shown that the expected mean square error

is a functional of the variation.

Definition of Variation

Consider x(t) to be a wide sense stationary real valued random
process with autecorrelation function R{q) and spectral density S(uw)
related by the Fourier Transform pair

Jut du

R(g) = %J S{w)e = %J‘ S(w)coswrdw , (2-1a)

=]

S{w) =I H(-u,-)r:-j('rt de =f R{t)cos wuxdr , (2-1b)

-0 -0

where the cosine integrals result because S{w) and R(x) are even func-

tions.

For such a random process, the variation has been defined to be
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v{x) = R(0) - R(x), (2-2)

Intuitively, one can relate V(t) to the mean square behavior of x(t)

since

V(o) = 3 & {[x(ts) - x(t)]Q} , (2-3)

- V(x) may also be written in terms of the spectral density as

V{q) %J‘ S(w)dw-%f S{w) cos wr duw (2-4)

-y -

%J:m S{w)[1 - coswr]dw .

The variation is obviously bounded above by 2R{0) and below by zero for
all ©. These two bounds are rather crude, however, since they are based
on the absolute maximum and minimum values of [1 - coswe] and it seems
that V(T) should not jump from its zero value at ¢ = 0 to its maximum
value 2R(0) for arbitrarily small x. Inherent restrictions in the integral
formulation of (2-4) may be used to obtain more meaningful functionai
bounds.

Henceforth, R{x), V(x), and S(w) will be considered to be related
in the manner defined in this section. If S{w) is termed band-limited to
w s then S{w) = 0 for all |w]| > w,+ Only real valued x{t) are to be con-

sidered.

The Variation of a Band-Limited Random Process

Upper Bounds

Differentiability of R(x). Papoulis (18) and Finn (19) have




16

analyzed the behavior of band-limited processes by making use of the
fact that R(x) so restricted must be infinitely differentiable, thus
|R"(0)| is finite -- a result easily seen in the frequency domain.

Let F(juw) be the Fourier transform of f{t), then {jw)"F(juw) is
n
the Fourier transform of Q_ﬁ . Note that a derivative so determined
: dt
might not always be finite, i.e., might contain impulses, therefore,
d"f
=
dt”
be investigated by examination of the inverse transform of (jw)"S{w),

(O)i does not necessarily exist, The behavior of R(n)(T) may thus

i.e.,
L™ (.an j
Py . T _
] G)"sWeMT w . (2-5)
-0
For band-limited spectral densities, (2-5) may be bounded as follows,

n
PR Ye . N Jwe We Ye _.n
o I-u I (5w) S(w)e™ |dw < 7SE'I_M S (w) dw =w, R(0) . {2-6)
c ¢

Thus the inverse transform integral of (2-5) is bounded and R(n)(m)
exists for any n. In particular, |R"(0)| < mézR(O). This property along

with the trigonometric relations,
lein ol <o , (2-7a)

1 -cosg =2 sinz(%) , (2-7b}

may be used to obtain an upper bound on V{x).

Quadratic Bound. Suppose that S{w} is band-limited to w,, then
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2 {w
vix) < IR"(0)] % < —5—R(0) . (2-8)

Proof:

It

v{x) %I S{w)[1 ~coswr] dw .

This may be rewritten from (2-7b) as

[N ]
v(z) = -21; J'_wc S(w)[2 sinz(%‘)]du . (2-9)
C

But S(w) > 0, and by using (2-7a) in (2-9),

2 . LW 2
Vo) < % %f_:wzs () cs =1é- IR"(0)} .
c

In addition, since R(x) is differentiable, then |R"(0)| gwfn(o), and

2 (w )2
Vie) ¢ 5 IR"(0)] < —5—R(0) .

Sine Bound. Suppose that S{w) is band-limited to W then, for

Te [O,-n/bc] ,

V(T) <2 sin2(u—;‘3)R(0) . (2-10)

Proof: Since [1 - cos x] is monotone increasing for x e [0, 7],

then

1 -cosb>1l -cos x, 0< x<b<n. {2-11)
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From (2-11),
1 ¢ Ye _
v(a) = E'H‘I S(w)[1 - coswe Jdw <
-

m
< i—f_wc S(u) L - cosw Jow = 2 51n2(——) I S(u)du .

This bound was obtained independently by Papoulis (20). It is not

necessarily the best bound for all varlations since the quadratic bound

of the precedlng section may well be valid for « > ;— but it does serve
c

to define the extreme behavior possible for any variation.

A Lower Bound

Finn (21) obtained a lower bound on V{x), and the following deriva-
tion yields his result and shows its relationship to a lower bound obtained
by Papoulis. N

Suppose that S(w) is band-limited to w , then

wcT 2
v(t) 2 2[ [R"(0}} 2 5 T-z IR"(0)] (2-12)
for 0< T <TZ 2"
C

Proof: Since sin x is concave (has a negative second derivative)
for x ¢ [0, n], then sin x is greater than the secant line connecting

sina and sinb for 0 { a < x { b { x. The equation of the secant line

1s x Elgll ard is a reasonable straight line approximation to sin x for
0<a<hb< % « Thus,
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sinx > x §i§J2 , 0<x<b<mn, (2-13)
and
W T =2
L p ¥ 20t 1 rYe - sin(%)
v(x) =‘?I-.., S(w) sin’(ZD)du g;j_u S| () — | o -
© ¢ 3
(uct 2 @t 2
sin(~=) We sin(—)
=f—=2—~| L[ VB = 2|—2= [r"(0)] .
W n W
c -w c
C
This may be further simplified since I o
. e
Eé: s;n >
. Wt 2 2 wcT
sl S I =
V(r) 2 2j=—=—=| |R'(0)] 2 2 = {R"(0)| =
C c
_ ucT 2
IE sin(*E-) )
= 2 wc_T ‘R (O)l +

2

-Papoulis (22), using the straight line approximation to sin x
given by f x for x ¢ [0, /2], also obtained a form of the lattér bound

for the case where 1 < 5%“ . This quadratic bound is obviously not as
- c

tight a bound as the sine squared bound given in (2-12), at least for
small ©, and they approach each other only as w T ¥ 0. Note that (2-12)

{mplies that if V(Tl) = 0, then T > §E .
¢

Derivative Behavior of V(<)

Monotonicity of V(g). Suppose that S(w) is band-limited to w ,




then V(x)} is monotone increasing for 7 ¢ [0, u/hc].
Proof: It suffices to show that V'(x) is non-negative in the

interval [0, u/hc]. Now

n

v (<) %{%f Ve S{w)(1 - coswc]dw} = (2-14)
al

c

1 “c
-2;.[-“ wS{w) sinwyde .
c

Using (2-13) in this integral expression, a lower bound may be obtained

as follows,

1 W, sinw < :
Ve 2 g [ Cuslur = Ta - (2-15)
c
sinw «
- < RO

This lower bound on V'(x) is non-negative for ¢ ¢ [0, n/mc], thus v(t)
is monotone increasing.

Convexity of V(x). Suppose that S(w) is band-limited to W,

then V(x) is convex for « ¢ [0, n/2 ].
Proof: The expression in {2-14) may be differentiated once more

to yield

V(xg) = i‘f e wzs(w)coswrdu . (2-16)

=W
c

By inspection, the integrand is non-negative for xe [0, u/aae], thus
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v'(q} is non-negative and V(1) is convex, i.e., has an increasing posi-
tive first derivative.

‘Derivative Bounds. Suppose that S{w) is band-limited to w ,

then, for « € Lo, ﬁ/ﬁc] ,

sin W,
— IR (0)| < v'ix) < W SinldcTR(O) . (2-17)
c
Proof: The lower bourd follows from (2-15). Since w sinwt is
monotone increasing for < & [0, n/bc] and w & [O, wc], then

W

Vi(e) = %J’ € wS(w)sin wrdw <w, sinw,
-
c

W
1
T EJ‘_UC S{w)dw ,
¢

and the upper bound follows. This technique could be used to bound

higher order derivatives.

The Variation of a Non-Band-Limited Randem Process

Immediate extension of the previous techniques to the non-band-
limited case is not obvious. In particular, it seems impossible to
formulate a lower bound without excessive restriction on the nature of
S(w). However, some meaningful results can be obtained,

Classification of Non-Band-Limited Processes

In the following sections, and throughout the remainder of the
_ discussion, the only non-band-limited random processes considered are

those with spectral densities which may be written as the ratioc of two

even polynomials inw, i.e.,
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2 2m
i NEUQI ) a, + a s + .‘f + a,
2 2 :
D(w“) by +bgu® 4 ..L +b

o (2-18)

on”

where D(wg) has no real roots and m { n-1. Such spectral densities

will further be classified according to their relative high frequency
behavior. The concept of the order, k, of S{w), may be used where k = p-m

and

a
S(w) = 28w~ (2-19)
2n
for large w. The order also serves to define the rollbff " rate of the
spectral density, It can be shown that first-order spectral densities
represent non-differentiable random processes while all higher order

spectral densities represent differentiable processes,

Consider the inverse transform of wgé(u)
[# =]
-2%1—‘[-“ m25(u)ejm‘t dur . {2-20})

From Fourier Transform theory (23) if (2-20) exists then it must repre-
sent the second derivative of -R{x). For first-order spectral densi-

ties, (2-20) does not exist in the normal sense since

2 4 2n
«® 2 a w +32u +,.. ta
2m
lwzs(w)ldm = 2 < cht
Iqm I 2n

2
-0 k:»0 + b2w +... +32nw

is undefined because the integrand approaches a non-zero constant for

large w, A more complete answer could be obtained from impulse theory;
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however, for the purposes of this discussion, it is sufficient to note
that |R"(0)]| is undefined for first-order spectral densities. The integral

of (2-20) exists automatically for all higher order data since

o o awltapti.t
J. lu28(u)|dtg=f aw az_u agmu

2
-o0 -0 bo+bdl' +lll +b2nl|.l

n dw < @

because (2m+2) < 2p-2 50 that for large w the integrand falls off at
least as fést as some c/u2 and is thus integrable. Existence of this
integral implies that 0 < |R"(0)| < ® for all higher order S{w). Now,
granting an interchange of limits and expectation, the expected value

of x'(t) is

e [rx(tre) -x(8)42] 2[R(0) -R(E)T)
o, sy - g (RHERAY w0

which exists under the above conditions, hence x(t) is differentiable in
the mean square sense (24), It will be seen that the two broad classifi-
cations: first-order or non-differentisble, and higher order or differ-
entiable are sufficient to determine bounds on the variations of the class
of non-band-limited processes defined in (2-18).
Differentiable Random Processes

The following:quadratic bound may be determined from the above dis-
cussion.

Suppose that x(t) is a random process differentiable in the mean

square sense, and has an autocorrelation function R(x) with Fourier Trans-

form S{w), then
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; (1)
Vi) < IR—(QQ-L w2 = -h@;-— R(0) (2-21)

where udz 2 [R"(0)[/R(0).

Proof:

vix)

%f-w S(w)1 - coswy]dw = (2-22)

'f S{w) sin2(%§) dw <

-

1]
A~

o

2 o
[ s =% %f_w WS (w)de

[ Fa¥
A

using (2-%) and the fact that both S{u) and sin2(%§) are positive for
all w. Since x(t) is differentiable, then the last integral in (2-22)
must exist and equals |R"(0)|. Defining an artificial effective band-
Jimited frequency

. " (o) | 1/2

Wy = LR (2-23)

and then substituting it in the above, the quadratic bound of (2-21) may
. be obtained, V{x) might now be compared to the variation of a process
band-limited to Wy

Non-Differentiable Random Processes

In general, random processes do not have to be differentiable, and
the familiar exponential autocorrelation function, i.e., R(t) = e‘““l,
Is just such a case. With additional restrictions, some results can be

obtained for this situation.




Suppose that x(t) is a random process with autocorrelation func-

tion R{x) and spectral density S{w}, where
k
[—2- S(w)] 2 0
W

for all w, then

k|z]

Vi) < > = wnltl r(0)
where w_ = k
n -~ 2R{0) °
Proof:
V) = ,ll—tf_m S(w)[sinQ(%)]dw <
1 = k 2 W
< = = sin“(5¥) dw
—nfmuz 2
since % > S(w) for all w. Lety = %L then
kT 1,2 kll ¢ sin
k A W = T Sin
uf_mw2 sin"(Fdu = 75 f_m 2 o

(2-24)

(2-2%)

but this last integral is a well-behaved one with a value equal to m.

Substitution in the above leads to the_bound}of (2-25),

The form chosen to express the normalized bounds for both non-

band-limited cases is related to the autocorrelation of the process,

R{0), and defines an "effective" cutoff frequency, W, OT W, Since the

variation itself is known to be bounded by 2R(0), neither of these
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bounds yields any information if their value is greater than 2R{0) -- a
condition which occurs in both bounds if either W T Or W T is greater
than 2. Both bounds are valid for any T, but obviousiy have an effec-
tive useful limit.
Lower Bounds

For the non-band-limited case, there do not seem to be any tech-
nigues leading to a lower bound similar to that obtained for the band-
limited case even permitting excessive restrictions on the nature of
S(w).

Papoulis (25) lists a non-functional lower bound, i.e.,
V() 2 z%'V(2n1),but this yields no information as to the nature of V(x).
Basically, any integral bounding approach such as those used for the
upper bounds breaks down when lower bounds for infinite integrals are
sought.

Derivative Bounds

With the addition of a few more constraints on S(w), a comment
on the monotonicity of R{t) can be made.
Upper Bound. Suppose that x(t) is mean square differentiable

and has autocorrelation function R{x) and spectral density S(w), then
viie) < [R"(0)|r, x>0 (2-26)

Froof: The expression

fea) .
Vi{g) = -21;_[ wWS{w)ein wrdu
=0

may be bounded since w sinwt< m21, a2 consequence of (2-7a), and
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v <[ uise = [R(0) )

Since x(t) is differentiable, then existence of the integral of w25 (1)
is assured,

Monotonicity. Suppose x(t) has R(t) with Fourier transform S(w)

and there exist k and Wy such that for n > 2

~on > S(w) (2-27)
W

and

wan(m) > ulzns(m) for |w]| > Wy (2-28)

then V'(t) > 0 if 1 < I:t_ and
: 1

S("'l) n
k/(-{dl)2n > 2{n-1){1 + cos ulx) *

(2-29)

Proof: The integral expression for V'{g) may be written as a

one~-sided integral composed of two parts, i.e.,

= =]
Vi(g) = Ei-j ‘wS(w)sinwtdu = 3‘;! wS(w)sinwrdw =
-0 0

3

Q

1(/"-!: . : 1 oo
wS{w)sinwrdw + ;I wS(w)sinwrdw .
/v

Each of these two integrals may be bounded under the assumptions made

aboves
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2n
n/ 9! S(w,)

1/t
;t]'-f wS(w)sinwrdw > %f TS sinwrdw >
o wy w
2n
S(ul) J. sinugdy  _ S{w)[1 +cosw1-|:]
- b
wl (1{/ )21‘1 -1 ﬂ2(5)2n 2
T
and,
1" 1"
Ej wS(w)sinwrdw > - ;I wS(w)dw >
n/t /¢
L]
1 kdo | _ -k

-~ ® “/‘E u2n"l 2‘“:(“_1) (%) 2n-2
Combining the bounds,

. S(lul)[l + cos ul-c]

' 1
v* () ZK(E)QI'I-Q K( k ) T 2n-1)
T 2n

¥y

but the term in brackets is positive for ¢ restricted as above, thus
V(q)} 1s monotone increasing. No functional lower bound is obtainable

for this general case.

Application_to Characteristic Functions

Consider the characteristic function defined by

ol{u) = E{ejux} = j = Ejux p(x)dx ,

®(u} and p{x)} have the same relationship as R{t) and S{w). Symmetry of
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p{x) means ®{u) is real and corresponds to the case for R{x) where x(t)
is Teal, Since the results obtained for V(t) can be related to bounds

on R{t), and if p(x) is symmetric and as tractable as the S{w) considered
previously, then bounds can be established for ®{u).

Gnedenko and Kolmogoroff {26) established one property of such
transforms (to be discussed for the variation in the next section), namely
that if |¢(uk)l = 1 for some u # 0, then ®(u} is the characteristic func-
tion of an improper distribution requiring impulses, i.e., x(t) may assume

only discrete values.

Mean Square Periodicity of V{t)

The process x(t) is said to be mean square periodic if there exists
a TO such that the following equivalent conditions may be satisfied for

To # 0 and any value of «:

E{lx(t+2) - x(0)1%) = E{lx(t+T_+x) - 20213},

]

V() vir + To) ’

R(T) R('L'- + TO) .

Papoulis (27) showed that if V(TO) = 0 for some < # 0, then

x{t) is mean square periodic since if
o
vir) = 2= [ sl - coswr Jaw=0 (2-30)
YO o d_ : o 4

then either S{w) = 0, a trivial case, or S{w) is a collection of impulses

occurring at the zeroes of (1 -cosum], i.e,.,
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o
S() = ) AW - &%), (2-31)
- o

Thus, R(x) is periodic, since it has a Fourier Series representation,
with a period at least as small as T

V(x) may attain another extreme, 2R(D), and a related analysis
yields some additional information about mean square periodic¢ processes.

Suppose that V(wz) = 2R(0), then x(t) is mean square periodic and
for ©, = 2rm,, n=1,2,..., 'V("o) = 0,

Proof:

V(TQ) = }[‘f S(U)Sinz(w_;g)dw = QR(O)’

-TX}

but,
1 = v ]
R{0) = =~ S (w)dw
2’t I-m ?
thus v(-cz) can equal 2R(0) if and only if
3 (AL 4 = 2]
1 2,02 _ 1
ﬂf_mS(w)sin ( 5 Ydw = 1[J‘-mS(t.v)d(.l.,

Since sinzf%g)'g 1, this equality can hold only if S{w) consists of

W,
impulses occurring at the ones of sinz(—az), i.e.,

4o
$(w) = Z B olw - Eﬁ—ﬂ-bi], (2-32)
oo 2

hence R(x) is periodic.
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Now

e = 3¢ Lo 1) Gohas < viame

Using the sifting property of the impulse,

2 +]
B {2k+1)ny 2B :
V('to) = Z?ks:'m2 """-5;—"2 = Z% sin2[(2k+l)mt] =0 .
i3 2 -0

Similarly,

V[(2t\+l)‘t2] = 2R(0) for n = 0,1,2,... ,

The converse statement that V(qo) = 0 implies existence of «,
such that V(Tz) = 2R(0) is not true. Consider S(w} as specified in

(2-31), then

oo
a1 oy . 20T 2052y .
vieg= L] ) ale - o 1psin (57 =
=00

A T
C T gy
n b
-00 °

K

a
For V(12)= 2rR(0), = for all n, a

must equal some odd multiple of

]

o]

condition obviously not satisfied by the above series unless n takes on

only odd values as would be the case if An = 0 for n even, i.e., S(w)

has the form given by (2-32),
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The extreme values attainable by any autocorrelation function,
band-limited or non-band-limited, can occur only if the spectral den-

sities are of the restricted impulse summation form discussed above and

imply mean square periodicity of the random process.
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CHAPTER 11II

SAMPLE AND HOLD INTERPOLATOR PERFORMANCE

The preceding chapter has investigated some of the properties
of the second-order statistics of a random process, in particular,
the behavior of the variation. This information will now be used to
determine interpclation error bounds for some sample-and-hold inter-

polators.

A Definition of Interpolator Error

Sample-and-held interpolation, in general, is based upon the
premise that seme finite number of samples of a time function, taken
at equally spaced and sufficiently short intervals, can be used to
create an approximate finite Taylor series expansion which will repre-
sent the original function adequately over one sampling interval. There
is, of course, a complex relationship between the number of samples used
in the expansion, the length of the sampling interval, the statistics of
the random process, and the quality of the approximation. A block diagram
of a structure yielding a useful interpolator error comparator was illus-
trated in Figure 1. An input x{(t) is sampled at a uniform rate, unless
otherwise specified, so that one sample is taken every T seconds. The

sampled input to the interpolator is given by

x(t) = Zx(to + nT)o(t - t, - nT) (3-1)

-
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where to represents any shift between the actual time origin and the
sampling points. The interpolator response to a unit sample occurring

at t =t +nl is ho(t -ty - nT). The output of the interpolator is

o0 o

Ae) = [ ) x(t_+nT)s(z -t -nThh (t -wldr = (3-2)
= Z:x(to +nlh (t -t - nT) .

To obtain an error criterion, the difference between x{t) and an arbi-
trarily delayed version of %(t) is used as a basis and leads to an

instantaneous error
e(t, d) = x(t - d)} - X(t) . (3-3)

It will prove advantageous to define the delay in terms of a fractional

delay, A, where
d = AT

so that the relationship of the delay to the sampling interwval duration

T remains clear.

Expected Mean Sguare Error Criterion

General Derivation

The following discussion will be restricted to consideration of

those interpolators whose response to each input sample is non-zero only

within that particular sampling interval. The expression of {3-2)
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simplifies considerably for such interpolators since, for a given t,

only one term in the summation is non-zero; i.e., if te [t°-+nT, to~+(n+1)T]

then
x(¢) = x(t  + nT)h (t - t - nT) (3-4)
aﬁd
e(t, AT) = x(t -AT) - x(t0+n'l')ho(t -ty -nT), (3-3)
The nth sampling interval has a mean squared error associated with it
given by

t_ +(n+i1)T
¥, (0T, A) = :}-j olt" e2(t, AT) dt = (3-6)

t +nT
0

t0+(n+1)T 2
[x(t-kT)-x(t0+ﬁT)ho(t-t°'ﬁT] dt.

-

J

t +nT
o
Making a change of variables, the expected value of'¢h(nT, A} is
_ 1 T2
X am " ¥ - - L) i~ .
F T =2 E fo [x*(t* +¢_ +nT -AT) - 2x(t" +t_ +nT -AT)x(t_ +nT)
e h (t") + x2(t_+nT)h 2 (t*)]de' ) =
a (o] 0
1 pt 2
- . ) ] - - 1 L3 -
= & fo {R(O)[l +h O (t*)] - 2R(t' -AT)h (&%) § dt* , (3-7)

.where due to the stationmarity of x(t), @g(T, %) 1is the same for each

sampling interval, and is a measure of the quality of the approximation.

Since the expected mean square error criterion is independent of to’ it
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is often assumed to be zero; however, the actual mean square error is
related to t,.

Zero-Order Hold

Consider the simplest Taylor series interpolator where only the
most recent sample value is retained and used as an interpolated x(t).
The response of such an interpolator to a unit input sample is unity
within the appropriate sampling interval and zero elsewhere, From (3—4),
it is readily seen that the interpolated output X(t) is equal to x(to-PnT)
for t ¢ [to +aol, t 4 (n+1)T).

The instantaneous error e{t, AT) for t & [t0-+nT, t, * {nt1)T)

becomes
e(t, AT} = x(t = T) - x(t_ +nT) (3-8)

and the expected mean square error of (3-7) becomes

_ y T
F(TA) = ffo [R(0) - R(t' - AT)]dt" = (3-9)
(1-\)T {(1-\)T
2 2
= T'I_XT [(r(0) - Ri{x)}]dr = T‘I-LT Vit)dr .

Figure 2 illustrates some wave forms representative of the general

behavior of a zero-order sample-and-hold.

Error Reduction by Delay

If in (3-9) above, T is considered fixed, then A might be chosen
such that ‘J(T, A) is a minimum. It is widely stated that A = 1/2 yields

this minimum; however, an additional condition needs to be satisfied.
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x(t) |
_
| S P
. - —— .
0 T 2T aT 4T 5T
e ——
e{t,0)

Figure 2. Typical Waveforms Present in a Zero-Order
Sample-and-Hold Interpolator (A = 0),
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Maxima and minima of (T, A} occur at points where é% ¥ (T, k)]lx=x
m

either equals zero or ceases to exist., Assuming that an interchange of
differentiation and integration is valid, the derivative may be evaluated

ag follows

(13T

L, =502 V(e 1, = (3-10)
m -\T m

it

.-1.2—{—'[\1[(1 - T] + TV -xm'f]} =

z{v[xmr] -v[ (1 -xm)'r]} =0,

where the last step follows from the evenness of V{t}. For continuous
V(t), a mild restriction, the first derivative of {(T, \) must exist for
all values of A, thus any extrema must satisfy the condition of (3-10).
Such points are minima of ¥(T, A} if, in addition to (3-10),

2

d —
== [T, A) o > 0, or,
o2 Ly 1k - or

2
d I . .
W7 (¥(1, M1 ix-—-xm = 21 {v' (0 1) +v' [ )T]} > 0. (3-11)

Inspection of {3-10} shows hm = % will always satisfy the first deriva-

tive condition. Evaluating (3-11} for this value of A, it may be seen that
the second derivative condition is satisfied only if V'(%) >0 and is

automatically satisfied for band-limited processes if T < EE since, from
c

(2-15), v'{t} is monotone increasing for T ¢ [0, &L]. It may also be
C

satisfied by some non-band-limited processes as discussed in Chapter II.

The following conclusion may be drawn. In general, if %(t) repre-

sents the interpolation of x{t) by a zero-order sample-and-hold, then,
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judged by the expected mean square error criterion, %(t) is a better
approximation to x{(t - %) than it is for any other value of delay, if
V?(%) > 0., However, for this same criterion, if V‘(%} is not positive,

then the apparent delay in X(t) is not T/2 but whatever value of Km

satisfies both (3-10) and {(3-11),

Band-Limited Interpolation Error

The formula for (T, A) given in (3-9) is a functional of the
variation, V(t), discussed in Chapter II. Using the following well-

knowrn theorem from analysis (28): "If f,(x) < £,(x} on La, b], then ~

b b
f fl(x)dx g.f fz(x)dx.", the bounds on V(T} can be extended to bounds
a a

on @(T, r).
Lower Bounds

Suppose S{w} is band-limited to w., then for T, < 2tﬂuc, where T,
is the larger of AT and (1 -A)T,

- 21a" (0} | [4cT - 2 sin(—~*) cos[——— (1 -2&}]
WTA) 2 > { " T (3-12)
(uch 2
[Rv(0)] |21™M™3 - 2972
3 TN (1 -3 +271° . (3-13)
2

Proof: Using the two bounds of (2-12), i.e.,
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w2 w. T, 12
sin(~S-) sin(=S) (oo
2 n 2 |R (O)I 2
CV(T) > 2 o [R"(0)] > o T

in the expression of'J(T, A), (3-12) and (3-13) are obtained by inte-
gration over the interval [-AT, (1 -A)}T] where the constraints on T in
the formulation of (2-12) are met since T, is the larger of AT and (1-2)T.
A bound of this form was obtained by Finn (29).

Upper Bounds
Quadratic Bound., Suppose S{w) is band-limited to Wes then

2
¥, 00 < RO - + 2H) L (3-14)

? L}
Proof: Using the bound of (2-8) on the expression for ¥(T, \)
and integrating, obtain (3-14), This bound was obtained by Finn (30).
It is a useful bound only for T such that the quadratic bound on the var-

1/2
iation is less than 2R(0) or T < T, = 2 E"OO) / .

Sine Bound. Suppose that S(w) is band-limited to w, then, for

T, < &L where T, is the larger of AT and (1-A)T,
o _

uCT _wcT _
wT - 2 sin( 5 } cos[ 5 (1-2x)]

¥(T,0) < 2r(0) ot . (3-15)

Proof: Integrate the bound of (2-10) to obtain (3-15).
Inspection of the quadratic bound shows that for A = 1/2, this

bound is reduced by a factor of 1/4 over its value for A = 0, i.e., no

delay.
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Figure 3 illustrates the nature of the interpolation error bounds
for a general band-limited process. The shaded region between the tightest
upper and lower bounds indicates where @(T, A) is constrained to lie for

smaller values of T.

Non-Band-Limited Interpolation Error

A similar extension of the variation bounds of nen-band-limited
random processes to interpolation error bounds is possible and a restric-
tion on the limiting behavior of a zero-order sample-and-hold is noted.

First-Order Data

Suppose x(t) is a non-differentiable random process and there

exists a k such that H% > S{w) for all w, then
I

I, N < 5;,— [1-2 4227 - w Il -2A +22]r(0) (3-16)

-k
Proof: The bound of (2-25%), v(t) < E%§L » when used in the expres-
sion of (3-9) and integrated yields (3-16).

Higher-Order Data

Suppose x(t) is a mean square differentiable random process, then

2
I, 0 RO -+ Los (3-17)

(w.T)2
- -+ R0

where Wy = lg%é?ll ,

i}
Proof: If x{t) is mean square differentiable, then V(1) glﬂ—égll 2
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Normalized Interpolation Error Bounds f%g Band-Limited
Random Processes (A = 0 and [R"(0}] = w[R(0)/4).

a) 2[uc'r -2 sin(ucT/Q)cos(wcT/2)]/(mc’l‘) - (3-1%),

b) [R"(0) |[T%/3R(0) = w 1%/12 -(3-14),

¢l -[ucT -2 sin(ucT/Q)cos(ucT/2)]/2ucT-(3-12).

T

3

ucT
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and integration over | -AT, {1-A)T] yields (3-17).

Figure 4 illustrates the form of the normalized bounds for both
non-band-limited cases. WNeither bound is plotted past ¢t = 2 since the
original variation bound equals 2R(0) at this point.

Effect of Delay

Quantitative statements concerning the effect of delay on‘JTT,X)
are seemingly impossible“to makes however, the effect on the bounds of
{3-16) and (3-17) may be seen by inspection. Let the bound for non-dif-

ferentiable processes be denoted as
B ) = (-2 +2? (3-18)

and that for differentiable processes as

2

By0) = RO (1 -2+ L (3-19)

Both obviously have minimum value for A = 1/2., However, the relative
improvement (reduction of the bounds) for first-order data with delay

is one half that for higher order data with delay since

1
5,0
B,{O 1

d Bn(§?

L]

Rate of Improvement with T

An Improvement Criterion

Any interpolator is expected to yield improved performance as the

length of the sampling interval approaches zero. This is obviously true




TN o T2

r(0) ¢} R{0) |
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0O . . v - 0 . " -
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Figure 4. Normalized Interpolation Error Bounds for Non-Band-Limited
Processes,
(a) Non-Differentiable Process (w_ = k/2R(0) ,
(b) Differentiable Process (w, = E RPAO ]1/2)
i i 2 RIO . s
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for the zero-order held since the upper bounds on mean square interpola-
tion error approach zero for small T. An additional factor, the rate of
improvement, may be analyzed by L'Hospital’s Rule. Consider an improve-

ment c¢riterion defined as

n =S iﬁ (3-20)

then, for a given V(t), lim # = k, where k has either the value one or
T2 0
two depending on the nature of V(t). From the definition of (T, \) and

by using a theorem for differentiating through an integral,

(1)1
%{(1-x)v[(1-a\)ﬂ+w[u]} - —25 - v(z)dr
T v
n=" (Tn T .
2
;éj-kT Vix)dt

In the limit as T > 0, n has the form 0/0 and can be evaluated by
repeatedly differentiating both numerator and denominator as required

by L'Hospital's Rule until a value is found for the limit, i.e.,

{0 [ 01122 0]
Tim n m iy =
T+0 Tao  (0VLQ)T] $AVT]

14 102 [a0T] 3 TR T {00 )T ])
m . )

T+0 (1-0) 29[ (10)T] +2 2V AT ]

1f v*(0%) is non-zero, as it would be for a non-differentiable process,

then the above shows

Iim q_ =1,
T+ 0
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If v'{0t) is zero, then one more application of L'Hospital's Rule yields

2{(1-0)3 [ (1017 3w+ T{a ) el 0TI

lim tg = lim

T30 T>0 23 (1-0T] + 23w (A1)
and
lim ng = 2.
T=0

Ne further analysis is needed since if vi(oh) = 0, then V" (0) # O.

Limiting Behavior

An Interpretation of 5. The interpolation error improvement for T
approaching zero, as judged by n, has been shown to be a constant indepen-
dent of data characteristics such as cut-off frequency or roll-off rate
for the entire class of differentiable random processes, and a similar
result holds for non-differentiable random processes although the value
of n obtained in the limit is not the same for both classes.

The improvement criterion defined above may be viewed as the ratio
of the percentage change in @(T, X} to the percentage change in T and thus
vields a quantitative measure of the utility of decreasing T to effect a
decrease in the interbolator error. . A change of variables yields another
interesting result. Suppose that the interpolation error versus the
sampling frequency, f_ = % » is plotted on a lqg-log scale. As T =0,

5
fs-* ®, and the slcﬁe of the resulting curve may be determined from

109[\'1;(;1-; , 0] - tog[( , )]
&

=

lim

fE log(f,) - log(f )
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Logl§(T,, M) - Llog[¥(T, )]
= lim 1 1 =
T, =T log(-f-l') - log(s)

B §UTA
it 3!5_ f‘{)g(r) - e (T)

where L'Hospital's Rule has been used to determine the limit. Since

" n(T) approaches a constant for small T, the interpolation error versus
sampling frequency, on log-log coordinates, becomes a straight line for

large fs.

Comparison with Numerical Results. The value of n(T) in the
limit cbuld have been used to predict some results obtained by McRae
(31), who compared the performanée of a number of interpolatlion schemes
by calculating the error resulting when they sampled a set of approximate

spectral densities of the form illustrated below in Figure 5.

S(u)"

1

Figure 5. McRae's Approximate Spectral Density,
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The spectrum is considered flat out to a break frequency of W, and rolls

We 2N
off as (;f) thereafter, thus approximating any type of data from first-
order {n = 1) to band-limited {n = ®), When the spectrum is known exactly,
the interpolation error equation for the zero-order hold may be written

as

(1-M)T
f [R(0) - R(T)]dT = . (3-21)

(1-k)'r
{ I Swif1 - cosw’r]cb}d't

n
—in

(T, \)

|]
1

and evaluation of the error becomes a straightforward computational
problem, which McRae soclved. As indicated by the theoretical results,
the slope of McRae's interpolation error curves versus sampling fre-
quency plotted on a leg-log scale turned out to be constant for sampling
frequencies greater than about 10 fc, i.e., T< TS%— Furthermore, the
slope for all data of order 2 or greater was twice the slope for first-
order data. All these results bear out the intuitive feeling that first-
order dafa,'with its relatively high concentratidﬁ of spectral power at
large w, should be more difficult to samplé ahdiinterpolate than higher

order data.

Exponential Held

Erro: in the Exponentlial Hold

Some of the results of Chapter II may be used to determine a
bound eon the performance of the exponential hold. A typical interpolated

output from such a device is shown in Figure 6. From the earlier
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x{t)

| -////’/"_‘h\\\\uhﬁh_“‘_ﬂb”,; .
\—/ (a)
%0
; . ) — 1
G
x(t) 4
f -  —
. s t
: . (c}

Figure 6. Typical Input and Cutput of Exponential Hold.

a) - Input,
b) : Exponential Hold Output,
cl Zero-ﬁrdar Hold Ou’tput.
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discussion of interpdlators, the following equations hold:

h,(t) = et e o0, 1) ;

~a (t-nT}

%(t) = x{(nT)e , t € [nT, (n+1)T);

~a{t-nT)

e(t,x) = x(t-AT}-x(nT)e , telnT,(n+1)T);

and, from (3-7)
T 1) = :}—f {R(O)[1+€27] - R(xAT)e %} dr . (3-22)
O

The zero-order hold is a special case where g = 0.

Upper Bound

Suppose x(t) is a mean square differentiable random process,

then for oT <1

T ¢ '3—(370)- {1 1-9432 - 2 z-preD)J426m) 3} = ¢ (3-29)

where ue2_>_ [R"(0) | /R(0).

Proof: Consider the two exponential inequalities:

(:-x>l-x;

and

X -ox + 2P

valid for x > 0. Using these inequalities to bound (3-15),
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= 1

T
xFe(T,x) < f {R(O)[2-2n'c+2(u1:)2] -2R(=c-u)[1-m]}d—: = - (3-24)
. 0

. %IT{[R(O)-R(':-LT)]U-Q:] + (a-,)zn(o)} gt .
0

However, Chapter II dealt with bounds of the variation, R(0) - R(t1), so

that the following bound is known,

2
R(0) -R(t) < l&“E(QLL 7 < (u;ﬂ R(0)
where uéz > |R"(0){/R(0). To preserve the sense of the inequality of
(3-17), the sign of the variation must remain positive or l-at < O.
The result could be extended to larger et for band-limited processes since
both upper and lower bounds are known. Using this bound_in (3-24) and
carrying out the indicated integration, (3-23) follows.

Least Upper Bound

Consider (weT)2, the sampling rate parameter, to be fixed at the
value K. Inspection of (3-23) suggests that there might exist A\ and ¢T
such that this bound on the interpolation error is minimized or at least
reduced. That such is the case is shown in the following analysis.

Let Y = aT, then with K = (ueT)2
¥ = ‘il(-g—_)-- {Ka-12012:2 -Y(3-BK.+6X2)]} + 82, (3-25)

For well behaved functions where the existence of all partial defivatives

may be assumed, the necessary and sufficient conditions that f(Y, \) has

a local minimum are that £, =% =0, £ and £, are positive and
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f,fY - £, £y < 0. Taking the necessary pertials in (3-29)
¥, = R—l(-gl [-k(3-8 +61%) + 1671, (3-26a)
¥y = lﬂ% {K[-12+ 2a] - (-8 +12>~]} , (3-26b)
Py = ﬁggl (2 - 3), (3-26¢)
¥, = 3RO, (3-260)
tyy = KR(O)[2 - Y] . (3-26e)

If %T =¥ =0 then (3-26a) and (3-26b) require that

K

. K _ 2
Y =1 (3-8 +69

(3-27)

vy = (3-6)/(2-3) .,

For a minimum to have other than academic interest, K must be reasonably
small and A must be real. Equating the two expressions in (3-27) and
rewriting, an equation in a form suitable for analysis by the inverse

root locus technidgue may be obtained, i.e.,

K O - 2/3)0.° - a/ax +1/2) .
'13"6' X1y o -1l=0.

This analysis..shows that real A exist between O and 1/2 for K ¢ 8. Fur-

thermore, for such X, (3-27) requires 0 <y < 3/2, a reasonable range

of decay rates. Since *TY > 0, independent of A and vy, and by > O if

Y < 3/2, then a minimum may be obtained if the following equation is also
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satisfied. Substituting for Y, then

2
¥ -ty = (B2 (23017 - £ R0) )24 = (3-28)

2
[ﬁGO)_] 152 - 720 + 25 -%’].

Rewriting (3-28), and-using the root locus technique again, it may be
- shown that for X ¢ [o, %:] and K = (wcT)2 < 3.85, then (3-28) is nega-
.tiwn; Thus, for w T < 1.96 there exist real values for a, the decay
rate of the exponential hold, and A, the percentage delay, such that
the bound on @;(T, A) has a minimum value,

Considering the restrictions imposed by the above and substitu-
ting for vy in (3-25) then

¥ = Ql(zgl {(4 -1 421249) - 5152- (3-8 +67\2)2} = (3-29)

fi

| 2
@(39)- L-2+227- %E%—l (3-8 +60.9)

Recognizing the first term as that previously obtained for the quadratic
bourd on zero-order Interpolation, then the second may be viewed as a
measure of the improvement gained with exponential hold. For small K
and A = 1/2, this improvement is relatively insignificant. However,

© since (3-8 +6.°) has its maximum value at A = O for \ e [0, 1/2], then
.some appreciable improvement over the zero-order bound can be achieved

with an exponential held; in fact,

Vheo ® KR(0)  9K%R(0) _ KR(O) (o - %7, (3-30)

3 384 12
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where = %g and K < 3,85, This does not necessarily imply that the
exponential hold is a better interpolator than the zero-order hold; how-
ever, its upper bound is smaller than the upper bound of the zero-order
hold and in the limit as T > O these bounds approach the actual performance
of the respective interpolator errors., Figure 7 compares the zero-order

hold bound {aT = 0) to the least upper bound for the exponential hold.

Sampling Jitter

Elements of the preceding analysis may be used to examine a fairly
general case of sampling jitter in zero-order interpolation.

Nature of Tn

The following definitions will be used. The time of occurrence
of the nth sampling interval will be denoted as tn. The duration of the
nth interval is defined by Tn = tn+1 - tn. Normally, the mechanism of
the sampling process would be set up to sample at some nominal rate with
an interval duration denoted by T. The actual sampling interval fluc-
tuates,. or jitters, about T from sample to sample. A typical interpola-
taf7§ut§ut is compared to a uniform rate sample and hold interpolater in
Figure 8. Tn may be considered to be a random variable, distributed on
the interval [?'- AI, T + &2] according to some probability density

- tn be always positive, only those values

an(Tn). In order that t o+

of & for which 4, < T will be used. The nominal interval duration T is

1 1
not required to be the expected value of Tn although in most cases they

will be identical due to the physical situation they model. '1'n will be

termed statistically independent if ... = P (1) = P (T) = Pr (T) = .ouy
T 1 n n+l

n-
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Figure 7.

Comparison of Exponential and Zero-Order
Hold Interpolation Error Bounds.

Zero-Order Hold Bound,
b.

Exponential Hold Bound.
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Figure 8. The Effect of Sampling Time Jitter on Zero-
. Order Hold Interpolation.
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56



97

i.e., an('r) = p(T), and (T, Ty 0T 00 e, Tay) = ij(‘rj)ijﬂ('rjﬂ)...

ij+k(Tj+k) for any j and k.

A Bound on Interpolation Error

Suppose that the sampling interval Tn is distributed on the

interval [T - 4, T + &2] according to the probability density p; (Tn)
1]

where 4, < f, and is statistically independent as defined above so that

1
Pr (Tn) = p(Tn), and x(t) is mean square differentiable, then
n

1 t +T 2 R"(0 >
E 1 {f; jt PO [x(t) - x(t)] dt} < JJS—)—L E {Tn b (3-31)
n

Proof:

t +T

t +T nn
1 n n 2.8 e
E, 1 {Tn f_t [x(t) -x(t )] di}— ET{EX[TH J't [x(t)
n X n
2
- x(tn)] dti}
since Tn is independent of x{t). The expectation operator on x{t) is

that of (3-5) and
t 4T | _
Bt {T—ln- f_t " ™ [x(t) - x(tn)]zd»}_- El.{’(]!'E_Tn, o)} -
- . ) )
' Ttoy . _
= ‘]'?_& {¥(1_,0)} p(T_)dT_
1

which could be evaluated given q?(‘rn, 0) and p(T ). Both \T/(Tn, 0) and

P(Tn) are positive and @ITn, 0) has an upper bound given by (3-14),
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Using this bound in the above
x T {: j “ntTn [x{t) - x{¢ )] dé} I R" T;ﬂ p(T )dT =
: *‘—‘—““';" £ (1))

For T as restricted, E; [Tn2]does not depend upon n.

Higher Order Systems

The above bounding techniques do not seem to be applicable to
.higher order hold interpolation since im the limit as T =+ 0, these inter-
palators tend to approximate the derivative of the process and hence
become independent of the second derivative of R(t). For the zero-order
interpolator, the |R"(0)| bound obtained approaches the actual behavier

as T becomes small.
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CHAPTER IV
VARIANCE OF MEAN SQUARE ERROR

This chapter is devoted to a discussion and analysis of the
dependability of the |(nT, A} defined earlier, i.e., how good an esti-
mate of the actual behavior of interpolator error is given by @IT, A).
Several approaches to this problem will be made as well as an analysis of

the interpolator error of a Gaussian random process,

The Interpelation Error Random Process

Interpelation Error Parameters

The interpolation error measure @(T, A) discussed heretofore rep-
resents the mean value of a rather unorthodox random process (or random
series since its arguments are discrete) because the actual value of
¥(nT, A} is dependent upon n, T, the value of the nT product, A\, and the
phase relationship of the sampling process and x(t), as well as the
nature of the particular ensemble member during the observation interval
[nT, (n+1)T). In paiticular, previous discussions of interpolator error
have seemingly failed to investigate the relationship between that fange
of values which \(nT, A) may attain and the value of (T, A).

Range of ¥(T, \)

The difference in interpolator error from one sampling interval to
the next is not necessarily negligible even for high sampling rates as

may be seen from the following. Consider T to be sufficiently small that

the error is a straight line during any sampling period or
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e, (t) = x"(nT + AT)(t - nT - AT), t e [nT, (n+1)T), (4-1)

where the one subscript will be used to distinguish those error param-
eters based upon this straight line approximation. Then

(n+1)T

¥ (T, 2) = HnT x'2(rT + AT) (¢t - AT - nT)?

12

3 (4-2)

= x‘2(n‘r + AT)(1 -3 +3>L2)

and the interpolation error for a given sampling interval is effectively
determined by the samples of the derivative function and could vary sub-
stantially from sample to sample even for T sufficiently small that x{t)
does not change appreciably in an interval, Consequently, an examination
of ¥(nT, \) to determine the range of its values about ¥(T, \) is in
order. Since ¥(nT, \) depends on a quadratic function of x(t), then
Var[&] will depend upon the fourth-order moments of x{(t); however, a

tractable form exists for Gaussian x(t).

Properties of a Gaussian Process

In the following discussion, x(t) is assumed to be a stationary,

zero-mean, Gaussian process with normalized auto correlation function

R(t, -t,)
p(tl, t2) = p(t2 - tl) = TR (4-3)

and thus has the following first and second order densities:

- 2 - 2
plx(t)] = [208(0)] 72 expl - e ] (4-4)

and
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2 .
X) -2p(t2rtl)x1x2+x

2
2

. _.1/2
plx(t)),x(t,)] = {202 (0)1 157 (t,t)) ] exp{}

{(4-5)

For such a process, it can be shown that {32),
E{x(tl)x(tz)x(ta)x(t4)} = R'("z‘tl)R(t_z;'ta)'m(ta'tl)“(ta'tz)

R (t,t Rltgt,) . (4-6)

Instantaneous Error

Consider the difference between a random process shifted in time

2R(0)[ 1 -p2(t2-tl}]

by an arbitrary amount, d, and its value at some fixed time, t . Motivated

by the previous discussion, this will be termed instantaneous error and

defined as

e(t,to,d) = x(t-d) - x(to) . (4-7)

For any stationary process, it follows that e(t,to,d) has zero mean. For
a Gaussian process, the joint probability density of (4-5) is sufficient
to yield p[e(t,to,d)] by utilizing a transformation of variables (33),

Since

o . etx(ty)
Ple(t,t ,d) < e} “qun'f T k() x(8 ) Jax(t-a)ax(t,) 5 (4-8)

-
then -

p{e(t,to,d)] = c-id; [P{e(t,to,d) < e}] =

i
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L&+ ]

=j pletx(t )}, x(t)Idx(t)) =

-0

= [ plx(t-d), x(t-d) -elax(t-d) .

-0

Performing this substitution and integration on the second-order density

of (4-5) yields
{e(t,t ,d)} = ple(t-d-t )} = [anv( a-t )12 e’ (4-9)
4 pye t,‘to, = p{e t- -to = [4nV(t-d- o exp - m . -

The instantaneous error, e(t,to,d) is therefore a non-stationary,
zero mean process and, in addition, is Gaussian since it is formed by a °
linear transformation of a Gaussian process and has the first-order
density given in (4-9) in terms of the variation.

Squared Error

Consider the above difference squared and termed squared error and

defined by

e2(t,t,,d) = [x(t-a) - x(¢)]% . (a-10)

Again a transformation of variables may be used to determine p [eQ(t,to,d)]

and
- 2
p[ez(t,to,d)] = [41tv(t-d-to)e2] I/Qexp{-my} . (4-11)

Thus, ez(t,to,d) has a first-order density in the form of the gamma

density functien, and
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E{e?(t, ¢ ,)} = 2v(t-d-t ) (4-12)
var[e%(t-d-t )] = 8v3(t-d-t ) . (4-13)

Mean Squared Error

Consider the above squared error averaged on the interval [tl, t2]

and termed mean square error amnd defined by

t
¢(t°,tl;t2’d) = tgitl‘ft 2 LX(t-d)-x(to)]zdt
' 1

t
== % Pt d)at (4-14)
- o
2™ Yy

For any stationmary x(t), ¢(to,t1,t2,d) has the mean value

it ,t, ,t.,,d) = ——g——f ‘2 [R(0) - R{t-d-t )]dt = {4-15)
Vet sty ‘t2-t1t - o -
1

t,-d-t
=== % (RO - R(w)]ar .
271 Tt d-t

For Gaussian x{t)}, the variance of w(to,tl,tz,d) may be stated
in terms of products of the autocorrelation by substitution in the rela-

tionship,

vér[y] = E [y2] - g2 [y]. (4-16)

Now
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E{*zé'to'tl't2’dﬂ

t t
E{j L 2 [x(a-d)-x(t_)]%a [ 2 [x(g-d) (4-17)
_ (t2 t t .

-t1)2 1
-x(to)]2 dé} =

t,-d

2
E{ L [ ] 03301 x%6)-26%a)x(p )x( )
(ty-t)) t,-d

+ xz(a)xz(to)-2x(a)x2(B)x(t°)+4x(a)x(ﬁ)xQ(to)

- 2x(u)x3(t0)+x2(5)xz(to)-2x(B)x3(to)+x4(to)]dadé}.

Intérph&nging_the expectation operator and the double integral, and call-

ing ﬁﬁoh {4-6) to simplify the fourth-order moments, then (4-17) may be

written as
tyty-d
E{¥%(t,,t,,t,,d)) - lt)zf | [8%(0) +aR(0)R(a-)  (4-18)
to t)-t_-d

- 16R(O)R(a)+4R2(ﬁ)+2R2(a-ﬁ)-BR(B)R(Q—B)+
+ gR(a)R(B)] dadp .
Combining {4-15), (4;16), and (g-la), tﬁeﬁ

t,-t_-d

"1 i . 2 .l _ 2 o . _ 2
Var{y(t ,t,,t5,d)] = 22%(0) -tz_tl‘[tl_to_d[sa(o)n(a) 4R“(a) ]da +
L tytg~d |
=L [ [ LR(OR@-p)-8R(B)R(a-p) +

(tp-ty) t)-t_~d

+ 292(n-p) +4R(a)R(B) Jdadp .
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By choosing t _,t,,t,, and d appropriately, (4-18) may be inter-
preted as the variance of the J(nT, A} discussed in Chapter I1I. For
this case, the interval of interest is [nT,(n+1)T), or t =t,=nT, and
t2A=to-+T, and the delay, d, is equal to AT. Making the appropriate

substitutioens,

T

Var[p (T 0)] = %5 |

T
[2R2(0) - BR(O)R(a-2T) + (4-19)
T°% "o

+ aR%(aAT) + aR(0)R{a-p) + 2R2(a-p) +

+ 8R{a-AT)R(B-AT) - 8R(B-AT)R(a-p)]dadp .

Note that if T is considered small enough that only the first few terms

in the Taylor series expansion are important, then

Var(y(T,\)] = & [R"(0) [*(1-mn+0%) % (4-20)

where [R"(0)| exists.

The Derivative Approximatien

Suppose that T is considered small encugh that the straight line
error approximation discussed in (4-1) is valid where in order to deal
with the derivative term, x(t) will be assumed to be mean square differ-
entiable. Then for Gaussian x(t), under this assumption, where

t e [aT, (n+1)T)

e (t) = x (nT +AT) (¢ =nT -AT), (4-1)

¥ (0T = x 2T (1 -3+ DTY3 (4-2)
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§,(T0) = RO [(1 -3 +39)T7/3 (4-21)
and
varly, (1 M)] = 2 [R"(0) 2 1-340 )71 = 2f (1,0, (a-22)

where (4-6) has been used to simplify the fourth-order moment of x'(nT+\T).
Note that (4-22) has the same form as (4-20). This simplified form will

- be used in the discussion immediately following.

The Tchebycheff Inequality

Suppose that x(t) is Gaussiam, and ¥, (nT,\) = x'%(nT -AT) %; ;
then
P {ly, -1 2 Wy} < 2 (4-23)
or, equivalently,
P{ﬂlek'\FI}S‘(‘;g:'l")"é, k*'> 2, (4-23b)

Proof: The Tchebycheff Inequality (34)

P{iz - 2|3 a) g_%l (4-24)
: | a

becomes, upon subsiitﬁ%iah.of“- f?fhr Vét[ﬁ&]fbem {4-22),

BUTAR IS

For a = kq',l » (4-232) follows. Further, since | > 0 and 471 > 0, if

k > 1 and N’z -q?l[ > ktir-l, then ¥, > mi?l, |ﬂr1 -\]71| =¥ -\l—fl 2 k\E, and
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¥ Z'Ek+l}§l. Substitution of this last inequality in (4-23s) yields

AU AR A P{u 2 “*”473 < k% .

For kt1 = k*, (4-23b) follows.
If the bound is to have any meaning, then the bound must be less

than 1, i.e., k> /2 . For example, when k = 2, then
- _ —y _ 1
p{lﬂfl"lflfzzﬂfl} -P{\P123~V1}£2

Since {; is non-negative and @i is small and Var[wl] is couched in terms

of‘gl, some further analysis is in order and leads to another bound.

The Bienaymé Inequality

Suppose that (T, \) is known, then
P{ v L
F(nT, ) > k§ (T, A)p < Q- (4-25)
Proof: Consider the non-negative random variable, x. Now

x = J?mxp-(x)dfx =f KX

o0
xp{ x}dx +f xp(x}dx >
o _ kX -

Zf xp(x)}dx > kx I p(x)dx = ki Pix> k‘i‘}
kX KX |

thus

R

and (4-25) follows. This bound is superior to (4-23) in that it does not
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require either the Gaussian hypothesis or fourth-order moments, and,

.furﬁﬁermofe, for k < 2 +,/3 and Gaussian x(t) it even yields a bound

Lower than that obtained by the Tchebycheff Inequality.

Both the Tchebycheff- and Bienaymé-derived bounds yield informa~

“tion about the probability that a specific &(nT,K) lies between 0 and

k{F(T; A}. The preceding chapter discussed techniques for bounding
¥(T, \) and use of the upper bounds in (4-23a), (4-23b}, or (4-25)

serves only to make them more conservative.

Errer Behavior in a Run

The preceding ahalyses have been directed toward characteristics
of the error in a single sampling interval. Another useful analysis is
that of fhe-multiple interval error behavior, or run error behavior,
where-a run is defined as N consecutive sampling intervals of duration

T. 1In effect, an observation interval of length T = NT is available for

“study, This is exactly the situation which arises in practice and leads

to # comparison of the average error behavior of a finite run to the
expected error criterion for the single interval.

Infinite Run

Suppose that x(t) is ergodic, then

To 2
| ° et amyat (4-26)

-T
o

$(T,A) = 1im

L
T 9w 2To
0

with probability one.

Proof; Substituting the expression for e2(t, AT) given in (3-8)

and rewriting the infinite integral as an infinite summation of finite




integrals, then

T 2w -T N=w®
o] o]

T N-1
. 1 2 _ 1 (n+1)T
lim ET_;J‘ © e“(t)dt = 1lim {-(_ZN'H}T Zf n [x(t-AT) (4-27)
Nt

- x(nT)]2d{} =
N-1

T
-1 _1_ 20 -
=7 lim {ZN-I-I z f [x“(z-AT+nT)
N N °

- 2x('|:-?\'l'+nT)x(nT)+x2(nT)] d«:} .

Granting the validity of the interchange of the integration and limiting
processes, then (4-27) may be written as

N-1

T

1 . 1 2 v 2y

=i lim @ —— xS(t-AT+nT) - 2x(t-AT+nT ) x(nT ) +x(nT): dr. (4-28)
TIO N o 2NH _% { J

But for ergodic processes (35)

N-1

lim 1 Z x(nT +8)x(nT+6+<) =R(x), T> 0
AN+
N N

with probability one, and, upon using this property in {4-28), the limit
portion reduces to 2R(0) -~ ZR{t - AT), thus
T

| T
im s [ % e%(t, amdt =3 2[R(0) - R(xAT))er = F(T,N)
o]

T "o =T
o o

and (4-26) is proved.

The error parameter @(T,R) is therefore valid as an estimate of
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théllong term behavior of the interpolator. The remaining sections in
this chapter will discuss the error existing in short runs where To is
finite.

Finite Runs

An Approximgté Expression. Consider the derivative error approxi-

mation introduced in (4-1), (4-2), (4-21), and (4-22) with the resultant
mean square error given in (4-2) as

2
51

g‘;l(nT',x) = x'2(nT +AT)(1 -3\ +2 5 (4-29)

which presupposes a Eairly high sampling rate. This is a good approxima-
tion, especially in the sense of error analysis, since the expected value
of wl(nT,K) is identical to the quadratic bounds obtained for (T, \),
the actual expected mean square error, in (3-14) and (3-17), for band-
limited and differentiable processes respectively. Thus

T2

I, 0 RO -n ) T o, .

Errer_in Appro;imation. For band-limited processes, it is pos-
sible teo place a tighter bound upon the difference between the actual
expected mean square error, ¥{T,\), and the approximate expected mean
square-errox,'$l(T, A}, since @E(T, A) is an upper bound on (T, \) and
since J{T, X} has a léwer bound given in (3-12) then ¥(T, \) must lie

between the extremes given by these bounds. Rewriting (3-12), then

2 ft
510 -HIM) < R Geaead) T 2le(o)l) (4-30)

Ye

{uCT - sin(x wcT) - sin[_wcT(l-k)]}

méT
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The sine functions may be replaced by a truncated series expansion which

will preserve the inequality, i.e.,

X3 Xs
sin x < x - 37 + 57 7

due to the property of alternating convergent series that the difference
between the infinite and finite series is bounded by next term in the

expansion. Making tHis substitution,

2

qu(T,h) -¥(T,n) < R"(0)] % (.,,CT)2[1-5>\+1012

Ao < (aem)

< Mg)- (mc'l')4l_l -sn +1n2 - 1003 w0

where the latter inequality follows from (2-6). Therefore, the differ-
ence in the expected value of the true and derivative approximation mean
square errors is bounded by an ((,JCT)4 term for band-limited random pro-
cesses.

The Sampled Mean., Consider a finite run where N consecutive

sampling intervals are observed. The data so obtained can be viewed as
an estimate of the long run behavior of the interpolator. Defining ¢ in

the following manner,

. N-1 N-1
\ 2
o =_.;q_1f_ Z w{rl('nIg,k) = %Nf (1-3n+32) z x"2(nT +2\T) , (4-32)
=0 . n=g

then @ is an unbiased estimate of 1171('1‘,?\), that is, E{q:} = ,}1 (T,\). The

random portion of (4-29) may be isolated to form a sample mean which can

be analyzed by standard techniques {36},




N-1
12
Z: x'“ (aT + AT)

where E{p} = |IR"{0)|. The variance of i may be determined if

N-1 N-1

E{ln - E{p}] g: Y Y x"¥nT AT)x "2 (o1 +xr)} - E {p}

n=o m=0

can be calculated. If x*(t) is fourth-order stationary, then

ol
var(u] = £} + 5 Z (-DE{(xZ(0)x 2D} - B} . (a-39)
i=l

These preliminaries lead ta the following results.

Variance of Mean Sguare Error. Suppose x(t) is Gaussian and dif-

ferentiable and T is sufficiently small that the straight line error
approximatien is valid, then the sample mean of a Tun of duration To = NT

seconds has & variance given by

2 o : 2 2
Vazlo] = [‘T (1-gx+3:x )]. [QR N(0 %)R"Q(i'rﬂ. (4-35)

Proof: Since x{t) is Gaussian and differentiable, then

Efx%(0)x"2(1iM)} = R"(0) + R"2(s1)

from {4-6). Using this equality, as well as the fact that Ez{p}= R"Z(O),

in (4-34), then
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N-1
var{p] = 2 R*%(0) + " Y, (-){R"2(0) +26"2(m)] - B"Z(0) .
i=)

Rearranging terms, this can be written as

N-1

N-1
var{e] = R“Q(o)[s- S 1+ N% Z (N-iﬂ + Niz (N-1)R"2(iT) .
' 1

i=] i=

This can be simplified further since

N-1
N% L (1) =f§[(N-l) + (N-2) + .., +1] =
i=1

.2 pen? M-1)y ) L
2 2 N’
NT
sqf&t
: N-1
var{n] = § R"2(0) + 5 ) (N-0)R"3Gm),
o . NE RFIRE :
Notin@ that

2
° 2
o= F[1-2+3%]y,

(4-35) immediately follows.

Run Variance in Error Analysis
Under the-assumptions of high sampling rates, and differentiable

random processes, the interpolation error in a sampling interval approaches




a straight line and the time average run error on the interval [0, nT)

- has been shown to be

o N-1
= (-2 439 ) x'HaT +21)

n=o
The expected value of ¢ is simply

2 2
= (1 -2 +32°)[R"(0)] .

'If the process is also Gaussian, it was shown that

N-1
Var(e] = [ (1 *3* LRSS )J [QRN(O) +% z {1 -i/N)R"z(iT) , (a-38)
. i=1

. Equation {4-35) may be rewritten as

Var{e] = ¢ {- 42 (l-l/N[ iT]}

Thisfarm indicates thg:t the Tchebycheff .Inequality might now be used to
greater advantage. in :determini_ng a confidence leve)l on the difference in
. the run avefage- and-_ezxpected' value of a run since although the variance
'i.# depehdent on 52 it is multiplied by 2 function which should decrease
iiﬁh increasing N. The Tchebycheff bound previously discussed, (4-23a)

a-nc.l.(4-23b-), could have been obtained from (4-37) for N = 1. For N> 1,

*{le - 71 2 : (4-38)
®
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Substitution of (4-37) in (4-38) leads to

N=1
P{le -¢] 2 k¥} < k—gN* 142} (- En ]2}. (4-39)
i=]

If a fixed observation interval [0, To) is considered and N is allowed

‘to increase without limit where NT = T o then (4-39) may be rewritten

as an integral expression_since

.N.l " 2 T " 2
lim {l%f-l.l% z (1 -i/N)[:“ é‘;- ]} = %j‘o ° Q1 -T/To)[g" g] dt

N >
Nbo i=1

thus

- ]
o
for sampling intervals approaching zero.

Neither the form of (4-39) nor that of (4-40) lends itself to
general_étatements unless a specific R"(t) is te be evaluated. However,
it'éan:be seen that for those R"2(¢) which are monotone decreasing, an
increase in N leads to a decrease in the bound given by (4-39) for

P{}q -9] > h;} since the summation term could be rewritten as
N-1 | ,
1 iT | (R"(4T
LR Mgey-1 T
e o _

which corresponds to the area of a monotonic staircase function and

decreases with increasing N {37).
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It is interesiing to note that fér either (4-39) or (4-40) if the
observation interval, T ,is small enough that R"z(m) ol R"Q(O) for

T ¢ [0, To)’ then both the summation and integral terms above have con-

" stant values and the bound on P{[¢ - ;[ 2 ka} becomes approximately 2/k2,
and the confidence level on ¢ becomes the same as that obtained for
¢1(nT,%) earlier (4-23).

Knowing R(t), and thus R"(1), the behavier of the run average
errer may be analyzed, generall& leading to a confidence level about ?

which improves as N, the number of samples considered in the run, is

increased,
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CHAPTER V
SAMPLE CALCULATIONS

Several of the techniques of error analysis developed in the pre-
. ceding chapters will now be applied to the investigation of some common
classes of spectral densities. The causes to be discussed are band-limited
white noise, a non-band-limited but differentisble process, the non;dif-
ferentiable exponential autocorrelation function, and the sampled sine
wave. The latter c#se will be shown to have some interesting additieonal
properties. The mean square error calculations may be simplified some-
what by considering only the two values of delay which are of prime inter-
:est, A =0and A = 1/2, Values for A = 1/2 may be obtained if ¥(T, 0) is

known by using a relation obtained by Liff (38),
v AT, 1/2) =¥ (1/2, 0} , (5-1)

which followe from the evenness of V{tr) and the integral formulation of
¥, n.

o '-Tﬁé mear: squaée ¢rror criterion has another property im the limit
a5 T becomes iarge, ét least for those processes with autocorrelation
?fuhéfions-tending to;zero for large tv. Obviously, for such processes
V(z)} approaches R(0O) for large v and since ¥(T, A\) is the average over

T of 2V{r), then

im {§(1, x)} = R(0) .

T
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Band-Limited White Noise

Suppose white noise is passed through an ideal flat lowpass filter

of cutoff frequency, w_. The output has a spectral density given by
c Y

n/bc N, for fu| < w,
S{w) = (5-2)
0 for |wj > W,

with the corresponding autocorrelation function

sin w T
R(z) = N —m—rie, (5-3)
€
The integral formulation for {(T, ) may be written since R(t) is known

and becomes

. 2 (1-0)T sin w v
F(T,N) = ff-u Nl1 - T (5-4)
- 2 (o1 N (1 - $02 9y
wcT -kwcT °
For A = 0, this reduces to
- 2N
$(T, ») = —ff [w T - Silw T)]

sin x integral.

where Si(x) represents the familiar

Differentiation of R(t) yields

W T cos(uct) - sin (uct)

R'(t) =u N -5 R (5-3)
c
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and

2 sin(wct) -Q(MCT)GOS(MCT)~'Gddt)281n(wcf)

2
R"(t) = w N . . (5-6)
cC 0 (hl 1:)3
c
Application of L'Hospital's Rule readily shows that
" 2
00 - - o,
and
2 _ N _ .2
wg = IR"(0}|/R(0) = w /3 . (5-7)

The interpolation error function and its bounds are plotted on a
leg~log scale in Figure 9, The units of the horizontal axis are in terms
of the ratio of the sampling frequency to the cutoff frequency to more
effectively illustrate the magnitude of the increase in the sampling rate
necessary to reduce the interpolation error.

Either E(T, A\) or its upper bound might now be used in:the Bienayme
Inequality bound of (4-25) or, if x(t) is Gaussian, in the Tchebycheff
Inequality bound of (4-23) to obtain results that are the same for all
sampled processes ip the sense that given a &(T, @), these bounds are
independent of other aspects of the process.

For Gaussian x(t), however, the run variance, which is a function

of R"(1), may be used to obtain the confidence level of (4-39). For

sampled band-limited white noise, substitution of (5-6) into (4-30) yields
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P{‘@ -9l 2 kcp} { + — Z _l_-_i@)_ (6 sin (i w T) (5-8)

(1 w T)

- G(iluéT)cos(iucT) -3(iwcT)251n(iw6T)]%}.

Given k, N, and T, (5-8) could be calculated and used to examine the run
average behavior of sampled data.

Suppose it is desired to sample and interpolate an x(t)} with
sin weT

R{t) = N, —% where the expected interpolation error is to be less
¢

than 0,01 R{0). From Figure 9, it may be seen that usﬁnc = 24 is suffi-
cient or T ==n/1240.' The Bienayme Inequali;y (4-25) may be used to show
that P{y(nT, 0) > (T, 0)} < 1/2 and P{¥(nT, 0) 2 3)(T, O)} < 1/3. If
the process is assumed Gaussian, then the Tchebycheff Inequality (4-23)

may be used to show that pf*l("T’ 0} > aﬁKT, OX} < % and no information

is gained, However, from the curves presented for the run variance where

2
the value of{ + 2 z (N- i)[ ci)‘l” ]} has been plotted versus N, it
igl . -
appears that §{¢ 2 3@} < 0.301 for runs of duration greater than ten

sampling intervals. The average error behavior s thus rapidly converg-

ing to the expected error behavior.

A Non-Band-Limited Differentiable Process

Consider the non«band-limited but low pass spectrum

2 ———— (5_9.)
(a2+u2)2

which could have resulted from the passage of white noise through an
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appropriate linear filter. A process with such a spectral density would

also have the autocorrelation function

R(z) = eI 4 gpepeltl, (5-10)

Substituting in y{T, A), the expected interpolation error becomes

- (1-2)7
Wi, =2 (1=l gz enl®ler
AT
For A = 0, this becomes
aT
Ik = 2 et _ ot -
I, = 2 J'o [1-¢% - ¢t at (5-11)

2 -aT
== laT + (2 +4aT)e™ - 2],

bifferentiating R{t) ,

R'(c) = -a2je)e ol (5-12)
R"(t) = —a° "’[i":l+ct:a'l’rl‘s"°‘[":l
R"(0) = ~a2
and
”&2 = q2 .

J(T, 0} and its bound are indicated in Figure 11.

If x(t) is Gaussian, the run variance, can be calculated and leads

to the following confidence level




1.0

0.1

.01

Figure 11: " :N?ei‘malized.'Ihterpolation Error Compared to its

Theoretical Bound for a Second-Order Non-Band-
Limited Spectral Density.
-(a) = Upper Quadratic Bound,

(b} ¥(1,0)/R(0).
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N-1

Plo -9l > &) g_;%{— 2 Z (1-1/N[€2T(1 - 21aT + (4aT) )]} {5-13)

@1T,0) and its bound are indicated in Figure 12, plotted on a

log-log scale. For an interpolation error less than 0.015 R(0), it may be

. \ . S ; :
seen that ws/w = 31. 4 or T 3.4 - & is sufficient. Inspection of

the run variance curve shows that for a run centaining 4 or more samples
where x(t) is Gaussian, P{w 2 35} < 0.23 and, for runs of 9 or more samples,
P{@ pd 25} < 0.5. The average error behavior is again seen to be rapidly

converging to that predicted by the expected mean square error criterion.

The Exponential Autocorrelation Function

For the familiér exponential autocorrelatioen functien

R(z) = ea(T) (5-14)
S() = 2/af+ w?) (5-15)
and substitution ieadé to
(1-2)T
y(T, Ay = 2 [1-e% g0,
¥ T f.n Jac
For A, = 0O ,
aT
V1,0 == -t -
[e]

= aT -1+ e (5-16)
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Inspection shéws_fhat a process with such an autecerrelation func-

'Jtium must be non-differentiable since IR"(O)I.does not exist. Examination

of ${w) further shows that
2
k/w® - S{w) >0
for all w if k > 2¢. For k = Za, then

lim w’(w) = k = 20 .
by ®

“Thus, the bound of Chapter III can be applied yielding

¥(T, 0) <aT =w T (5-17)

.where W, o= §ﬁ%§7 . E(T, 0) along with ite bound is sketched in Figure 13.

Jffﬂ$ predicted in Chapter III, for higher sampling rates, the rate of

decrease in ihterpoldﬁion exrror for a given increase in sampling fre-
quency 1s one half that obtained for the differentiable processes of
Figures 9 and 11, |

Since the discussion of the run variance depended upon the exis-
tence of a derivative approximation to the error, it cannot be used in

this case.

Sampling of a Sine Wave with _Random Phase
The-invesiigatioﬁ_of;the nature of the distribution of ¥{nT, \)
was undertaken to QQ;luat&”'ﬁ(T, A)'s value as an estimate of interpola-
tor per£orman9e. Asga single sample estimate, it Is obvious.that

E{ﬁ{nT, Xi} is the expected value of ¥(nT, \) for any ensemble member

as well as for each sampling interval along any ensemble member. The
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Figure 13. Normalized Interpolation Error Compared to its
Theoretical Bound for the Exponential Autocorrelation
Function.
a) Upper Linear Bound,

b) ¥(T,0)/R{0),




long run behavior of ¥{(nT, \) for ergedic processes, i.e., the infinite

?f&mé'average of ¢(nT, K) along an ensemble member, has been shown to be

' th?'same as i(T, x) for each ensemble member. The following pathelogical
case 1n?olving éampléd sine waves yields a result where a finite time
average is sufficient to determine y(T, X).

Consider the énsemble whose members may be represented by
x(t) = A cos(mot + 0) (5-18)

f@here A an-:l-fa.r-0 are kﬁonn constants and € is uniformly distributed on
#[0; 2n). Since this ensemble is ergodic, then equality between (T, \)
and the infinite time average along one ensemble number is expected.

" The. following short fun relation is also true.

_ : Suppose xft) is as above and is sampled at some rational multiple

| ?o? the Nyquist rate, i.6., T = — (I where (59 < 1, then the mean

squared €rror is periodic Hith‘periOd T = SL s thus the average of
o

the interpelation error over any consecutive l intervals equals w(T X}
 Proaf: The expression for the average interpolation €rror may
be written as
~ N+{ 1 (nd1)T
2 .
&z{é (t,d)}_= zf {]‘ (A sinﬁo t-d+ﬁ) ~A sin{mw T+6)] dt]?.
” (5-19)

This exﬁression will be simplified by rearranging its terms using various
trigonometric identiﬁies and then using the following two identitles

(39)
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£-1 ‘ ) sinl(1-1/2)2 T]
l cosl_lzon]‘T ) =5 [1 + TN ORY m = (5-20a)
i: : = =
; L, :
1 sin( 2mx ~w T) )
-2 [1 + sin wo‘l‘o =0
and
b . cosl (4 - 1/2)2»6Ti}
Z sinleJoT]’ _ =3 [cot(wo'l') - 1n (o,T) ‘ _ = {5-20b)
i=o T= T =£;—
o 2]
1 cos| 2mx - wOT}:'
2 [cot(wo'l') N sin (uOT) =0.
Now,
N+L-1
2 L (mH)T
A‘E{ez(t, d-)} = %.-f Z {fn‘r [sinz(uot -d +8) +sin2(mo'l' +0)

n=N ~
- 2 sinfu t -d +6)sin(n T +e)}dtj .

The integrand may be rewritten as

cos(?mo'[ +28) - % cos(z’mot AT +28) -2 sin(nuoT +6)

N3 =

L1 -
+ sin(u t = AT +6)]

which becomes upon integration on LnT, {n+1)T]

L1 - 5 cas(2m T +20)]T - ﬁ;f {s.in[€2n+2)uoI - 2d + 28] -

o 2 .
- sinl 2w T - 2d +29]} + J; sm(mo"l‘ +6) {cosl_ (n+l)w°T -d +8]

- cosLmoT -d + B]} .
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Now
2 sin(mo'l' + e)cosl_(nﬂ)uo'[ -d+8] -2 sin(moT + e)cosLmoT -d+8] =

= sin| (2n+l)on -d+28] - sin[,wo'l' -d] - sin[_?mo'l' -d +28] -sin{d) =
= sin[(2n+l)wo‘l']cos(29 -d) + cos| (2n+1)mo'l‘]sin(26 -d)

- sin[2mo'1‘]cosl_ 26 -d] - cos[zmo‘r]sin(ze -d) -sin[uo'l'-d]-sin(d).

The average may now be written as

5 N+E-1
Ag{eQ(t, d)} = 7T ) {T - & cos(2m T + 20) - (5-21)
N

2 Lsin(l2n+2]u T - 20 +20) - sin(2n T -2d +28)] +
o]

+4

t_-}o— L cos(28 -d) {sinL(?n'l'l)uoT] - sin[?moT]} +

—+

sin(28 - d) {cosL(2n+1)uoT] - cosl_2moT]} -

sin(uoT - d} - sin d]} .

For T = %ﬁ— , all the summations in (5-21) can be written in the form
0

of either (5-19) or (%-20) and

AQ{l - Gl? Lsin(uoT -d) + sin(d)]} (5-22)
5 :

ﬂ_g {eg(t, d)}

H

A2{1 - m Lsin(BfE - @) + sin d]}f

For this ensemble, the autocorrelation function is
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A2
R{t) = > cos(wor) $

A2
Ri{t) = - B sin(wot) $
o

2
5 cos(wgr) ;

R" (1) = -

2“’0

w =w s (5~23)

ard

¥(T, )) = %‘f §{A2 - Azcoson]dT = (5-24)

= A2{1 - ;if (sin[(l-l)uoT] - sin[huoT]i}.

For T =,iEL and d = ko T, (5-22) and (5-24) are identical. Thus, any
[s]

I consecutive samples are sufficient to estimate J(T, A} with zero error,
Note that for band-limited processes, the upper and lower sine

bounds of (3-12) and (3-15) converge as |R"(0)| approaches its maximum

valuye of ufa(o) and for R{t) = Acos{wt), since |R*(0)}| = weCQR(Q), they

become identical and equal to (%-24),

Applicatiens

General Procedure

Examination of the upper bounds on interpolator error for differ-
entiable processes given in (3-14) and (3-17) indicates that the effect

of the delay, A\, 1s separate and distinct from that of the sampling rate

and furthermore that this quadratic bound is completely defined given
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R{0), |R"(0}|, N\, and T. Defining a percentage error bound as

(T 0) R"(0)
3Rt671

and using the effective band-limited frequency defined in {(2-23), then

(5-25}

1v12 o 0dy 02
5 (wdT)2 L?d(F;)] LQn(J;)]

E™ = 3 = 3 = 3

which may be solved for wes where wo o= 2ufs = Qu(%), j.e.,

2Ty o |RM(0)] L1/2

W, = = = | R (5-26)
s !\/3_5 E 3R(0

or, for T,

LBR(O /2E.

FO (5-27)

In practice, the parameters R(O) and }R"(0)| could be determined
by either of the following techniques: spectrum analysis or differentia-
tion of x(t). Suppose that a spectrum analyzer has been used to obtain
S{u) and that the order is at least two, then numerical analysis techniques
may be used to evaluate the infinite integrals of S{w) and ws(w). If

x(t) and x'(t) are available, then an rms meter may be used to evaluate
R{0) and R*{0V] . In either case, sufficient information is avail-
able to obtain Wy and thus a sampiing rate.

Note that due to the normalization of both axes in Figure 12, the

upper quadratic interpolation error bound sketched there is valid for any
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differentiable process. Knowing the percentage error level desired, a
value of (ws/bd) can be read off and w_ can be found in terms of w,.

The Butterworth Spectra

Consider the family of differentiable Butterworth spectra defined

by

1
1+(w®&2n

S{w) = (5-28)
where n > 2. The first-order spectrum (n = 1} is the exponential auto-
correlation function previously discussed. Both (5-26} and (5-27) require
knowledge of R(0O) and |R"(0)| which are readily obtainable from the inte-

gral

f * Xm-ldx - x
o1 4+ x2P  p sin(gﬁ)

valid if 0 < m < 2n -- a condition satisfied in both the necessary inte-

grals if n 2 2. A change of variables yields

W
0

2x I;m 1 + (gi)'n 2n sin(é%)

o
and
| e : °
IR"(O}T.=='£?I i —Jizéﬂu ol o
ST md g,y +th) 2n sin(gﬁ)i

.

from which
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2 _ siniw/2n 2
Wy = sin§3172n) Wy (5-29)

Using these results in (5-26),

1/2

- 2x sin{a/2n) i
Vs = E135n(3n/2n) . Yo (5-30)
Note that, for a given percentage error, We has its maximum value, ;ﬁ?L-uo
3 E

for n = 2, and rapidly converges to its limiting value of %% W (n =),
This means that, in order to achieve the same percentage interpolation
error, the sampling frequency for a second-order Butterworth need only be
3 times greater than that required to sample and interpolate an ideal
flat band-limited process with cutoff frequency W, i.e., an infinite
order Butterworth,

An Approximate Spectral Density

Analysis reveals similar results for the spectral form assumed by

McBae and illustrated in Figure 6. For second-order or greater,

Wy = W, 2n
R(o)=lf du+lf (=) do =
nJ "
W
- & (2n_
_x(2n-l)
and
2n
t oA
R =T
¥ Wy u
w 3
1
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from which

2 2n=-1 2

“a F 3(2n-3) Y1 °

Using these results in (5-26),

_ 2g 2n-1 /2
we = 3¢ L I

2n- 17

L3

As expected, W has 'its maximum value, ;é?g Wy for n = 2 and converges to
its minimum value, 2% w , for n ==, Again.it should be noted that the
sampling frequencies vary by a factor of /3 and it appears that knowledge
of an approximate rolloff point (uo, Wy s etc.) is sufficient to estimate

a suitable sampling rate.

A Numerical Example -

As an example of the utility of the bounds obtained, consider the
following problem. A signal having a Butterworth spectral density of the
form of (5-28) is to be sampled and interpolated by a zero-order hold, and
the sampling frequency is to be selected so that the percentage error
.meets an acceptable level. For purposes of illustration, several orders
of data and error levels will be compared for the same break frequency,
i.e., w, = Zﬂfo = 2-.;:104 rps. No attempt is made to normalize the sig-
na) power of differ&ﬁt‘ar&é# spectra te the same level since the percenmt-
age errer criterion {akes this into account,

First-Order Data. The first-order Butterworth spectrum is recog-

nizable as that of the exponential autocorrelation function with R(O) ==uo/2,

The smallest applicable value of k which satisfies (2-24) isu%?, thus

k__ . . :
Yy = 3R(0T = Yo Once w is known, Figure 13 may be used to evaluate
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(ws/mn) for a given error level. For this first-order signal, the sampling

'frequencies must be 6250 KC, 1250 KC, and 625 KC to bound percentage

error to 1%, 5%, and 10% respectively, as defined by (5-25).

Second-Order Data. For higher order Butterworth spectra, wy is

given by (5-29) or, for n = 2,

cin ” 1/2

_ 4
Wy = [sin 35/4) ] Wy = 29 x 10

Once w, is known, the generalized bound in Figure 1l may be used to

d
determine (us/hd) for a given error level. Alternately, w_ may be com-
puted from (5-26). For the second-order signal, the sampling frequencies
mast be 362KC, 162KC, and 114 KC for percentage error levels of 1%, 5%,
and 10% respectively.

Third-Order Data. For the third-order Butterworth spectrum, (5-29)

may be used to evaluate Wy s

_ rsiniwn/6 1/2 _ 4
ud_[sin31t6)] t"o"/z_"‘”‘m .

Again either Figure 11 or {5-26) may be used to show that the sampling
frequency must be 256 KC, 114,5KC, or 80.5KC for error levels of 1¥, 5%,
and 10% respectively.

Infinite-Order Butterworth Spectrum. As n % in (5-28), the spec-

trum approaches the flat band-limited spectrum of (5-2) where N,= 1 and

.. rsin(w/on) /2 op 4
Wy 1im [sin o 17 w x10

o © V3
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The necessary sampling rates may be determined by either method and are

209 KC, 94,6 KC, and 65.7KC for error levels of 1%, 5%, and 10% respec-

tively.
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CHAPTER VI
CONCLUSIONS

The zero-order sample-and-hold interpolator is a widely used
interpolation device:whose performance is usually rated in terms of an
expected mean square:error criterion. The research was principally
directed towards estimation of this error for the sampling of fairly
general classes of random processesy however, several useful results
pertaining to the general behavior of the second-order statistics of
random processes were obtained as well as an analysis of the quality
of the expected mean square error c¢riterion as an estimate of the true
error behavior.

Random processes which are either band-limited or have spectral
densities expressible as ratios of even polynomials in w have variations
which are bounded by relatively simple functions of T invelving basic
statistical parameters of the process. For a band-limited process; the
variation is, of course, constrained to lie between O and 2R(0) but, in
addition, has both a functional upper bound amnd a non-zeroc lower bound.
The derivative behavior of band-limited variations is such that they are
monotonic increasing@fer tel[O, n/hc] and are convex {have non-negative
second derivative) for T e o, n/ﬁbc]. Non-band-1imited processes, while
also constrained to lie béiﬂeen 0 and 2R(0), also possess either a quad-

ratic or linear upper bound depending on the differentiability of the

process. The variatien of any process cannot equal either of its
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theoretical extremes, 0 or 2R(0Q), for T # O, unless x(t) is mean square
periodic, i.e., R(t) = R{t # TO) in which case the spectral density is of
the impulse summation form.

A meaningful expected value error criterion for a general inter-
polator may be defined as the expected value of the time averaged squared
difference between the interpolated output and the delayed original input.
For the zero-order sample-and-hold interpolator, this error criterion is
a functional of the variation and may thus be bounded in terms of the
relations obtained for the variation, thereby leading to the curves illus-
trated in Figures 11 and 13. The ﬁtility of these bounds has been
enhanced by generalizing them in terms of percentage interpolation error
and a nermalized sambling rate. Once the effective bandwidth parameter,
W, OF Wy, is determined from basic process statistics, it may be used in
conjunction with these two curves to select a sampling rate which will
satisfy a constraint on interpolation error.

It {s well known £hat the operation of zero-order sample-and-hold
interpeolation intreduces an effective delay, i.e., the interpolated cut-
put. () is a better appfoximatihn, in tﬁe mean square sense, to a delayed
version of the input, x(t-d), than it is to the original undelayed sampled
.proCess, x(tj¢ It is widely stated that the value of this delay is ene-
half the sampling périod; however, for random processes there exists a
condition on the first derivative of V(t) which determines the value of
tﬁis-defay and is nbt necessarily satisfied for a delay of one-half sampling
period. Although there do exist random processes for which the effective

delay is not one-half sampling period, the derivative condition is auto-

matically satisfied for amy band-limited process sampled at a rate greater
2n

<Ly,

C

than one-half the Nyquist rate (T ¢ =
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For the classes of spectral densities considered, either band-
limited or ratios of even polynomials, the limiting behavior of the
zero-order hold judged in terms of the sampling rate versus-interpolation
error trade off is the same for all differentiable processes, band-limited
or not, and is twice that for first-order data (non-band-limited spectral
densities rolling off as (:7)2).

The interpolation error in an exponential hold for differentiable
random processes has a quadratic upper bound. Furthermore, there exists
a decay rate which will minimize this bound for a given sampling rate
yielding some improvement over the zero-order hold bound; however, for
high sampling rates and low values of decay, the two bounds converge.

The expected mean square error behavior of a zero-order sample-
and-hold interpolator with a randomly fluctuating sampling interval
.(sampling time.jitter) is bounded by a function dependent upon the proper-
ties of the variation bound and thg statistics of the Jitter.

The expected mean square error criterion utilized to evaluate
interpoclator perform;nce is a good estimate of the actual behavior of the
error from interval to interval. Several approaches were used to point
out the relationship between the expected value of the interpolator error,
¥{T, 1), and the range of values which ¥(nT, %) can assume. The Bienayme
Inequality may be used to shaw.fﬁﬁt P{ﬁfﬁi,.k) > kp(T, h)} < % .

Fer differentﬁablé=Gau§§i&ﬁ;pr0ces$es, where the sampling rate is
sufficiently high th;t"tﬁeterr6£ in an inierval is approxim#tely a straight

line, the Tchebycheff Inequality may be used to establish a similar rela-
2
(k-1)?

In addition,

tionship, Py (nT, \) 2 Ky, (T, ) 2 Kk (T, M} <
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for such processes, ‘a confidence level exists which relates the time aver-
age interpolation error over a finite run {a number of consecutive sampling
intervals) to the expected mean square error. This confidence level
depends upon the duration of the run, the number of sampling intervals in
the run, and the nature of the derivative of the sampled process (R"(t)).
The central conclusion drawn from the research is that the zero-
order sample-and-hold interpolator possesses extremely well-behaved
expected mean square error characteristics, which may be used in their
simplified bounding forms to estimate a suitable sampling rate, yet deperd

only upon basic input process statistics. Furthermore, the overall per-

formance of the interpolator is adequately represented by this criterion.
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APPENDIX 1
GENERAL BEHAVIOR OF THE AUTQCORRELATION FUNCTION

The results of Chapter II were obtained for the variation, not
directly for the more familiar autocorrelation function, because the
frequency domain integral for the variation is simpler te manipulate.

The two functions are directly related, however, and differ only by a
constant and a sign inversion. As the autocorrelatien function is the
standard second order statistical parameter, this appendix will present a
synopsis of the results of Chapter II in terms of their effects upon R{t).
The following properties are the most important. Although two other quad-
ratic bounds {an upper and a lower) were discussed in Chapter 11, they
cannot tighten the bounds given here and are therefore not included in
this appendix.

Suppose x{t) is a random process with autocorrelation function
R{t) with Fourier Transform S(w) band-limited to w,; then R(t) has the

following properties:

T _2
Si“(%—) on
R(r) < R(0O) - 2 ——t— {R" (0} for © ¢ [oO, =1, (A1.1)
[ c

2

R(t) > R(0) - [R"(0)| % for te [0, 2/R(0)/IR"(O)]], (AL2)
2, %"

R(t) > R(0) - 2 sin (-%-—)R(O) for T ¢ [0, f—] , (A1.3)

c
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R(t) is concave for = ¢ [0, /2 ] , (A1.4)
R(x) is monotonically decreasing for ¢ ¢ [0, n/ucﬂo (Al.5)

Proof: All of the above follow from the results of Chapter II and

the fact that
R{z) = R(O) - v(a),

The implications of the above may best be appreciated by inspec-
tion of the sketch given in Figure 14. R{4) is constrained to lie within
the shaded region. Defining Ty as that value of ¢ for which the bound of

(Al.2) intersects -R{0), i.e.,

(R"(0){

= 2[_13 (0) ]l/ :
'1:1 -

and since [R"(0)| > wc2R(0), then «, 2(‘% . For those R{x) with small
c

values of «,, it is apparent that a combination of the bounds of (A1.2)

and (Al.3) must be used to yield the best overall bound,




X R{t) concave

Figure }4. Bounds for a Band-Limited Autocorrelation Function with
o 2 '

[R"(0)] = === R(0).
a) Upper Sine Bound -- (Al.1),

b) Quadratic Lower Bound -- (A1.2L
‘¢) Lower Sine Bound -~- (Al.3), '

7777] Rix) monotone -
// A’ “decreasing’
St lm 151; .
Sm llm . AS . W T
2 z 2n 6 ¢

GoT
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