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SUMMARY 

The basic concept that a function of time may be sampled, i.e., 

specified for particular values of its argument, and subsequently 

reconstructed, or interpolated, in some manner to form an approximation 

to the original function of time is fairly well-known. The idea is so 

intuitively appealing that any restrictions upon the nature of the sampled 

function of the interpolation technique are not at all apparent. Elec

trical engineers are perhaps* most familiar with Shannon's Theorem, dealing 

with one aspect of sampling, to the effect that band-limited functions 

require only a finite number of samples per unit time for exact recon

struction. 

When this idea is to be used practically, analysis quickly shows 

that the joint operations of sampling and interpolating can be viewed as 

a sort of frequency domain filter introducing distortion1 to the original 

spectrum as well as obliterating some frequency components. Under a suit

able restriction, namely a sufficiently high sampling rate, it is possible 

to obtain an output spectrum which closely resembles that of the input 

and thus in some sense represents an approximation of the original signal. 

The advantages gained by having to deal only with samples rather than an 

entire function often counterbalance the loss of accuracy in the resultant 

approximation -- leading to an interpolation error versus sampling rate 

trade off. Any low pass device will interpolate a sampled input but some 

have more engineering interest than others. Such a device is the zero-order 

hold which maintains the constant value of the latest sample until the 
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next sample occurs. 

The preceding remarks make clear that some error characteriza

tion is necessary to rate the performance of a given interpolator with 

a specific input in terms of the sampling interval* The commonly used 

error criterion of the expected value of the mean squared error, -\jr(T, \ ) , 

is just such a figure of merit. For the zero-order hold, \]/(T, \) is a 

functional of the variation, a basic second-order statistic of a random 

process defined by V(T) = R(O) - R(T). The Fourier transform relation

ship between R(T) and S(w) is used to establish a frequency domain rep

resentation of V(T) which is shown to be dominated by the behavior of 

S(w) for large u„ It is then shown that \]/(T, \) is well-behaved; how

ever, a basic problem in evaluating error criteria, i.e., their relation

ship to actual error performance still remains. The quality of f{l9 X) 

is analyzed by the Bienayme Inequality for the general random process. 

Gaussian random processes possess sufficient tractability that several 

aspects of the relation of i|r(T, \) to both the error in one sampling 

interval and the time average error along a sequence of such intervals 

are analyzed. 

Simple bounds on V(T), and hence on R(T),are shown to exist for 

all band-limited processes and V(T) is shown to be monotone and convex 

for sufficiently small T. Upper bounds are shown to exist for general 

classes of non-band-limited processes. These relations are sufficient 

to establish bounds on zero-order hold interpolation error, and some 

general curves are presented which permit selection of a suitable sampling 

rate knowing only two basic parameters of the process, R(O) and |Rn(0)|. 

It is also shown that the effective delay introduced by the zero-order 
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hold is not necessarily one-half sampling period unless a condition on 

V'(x) is fulfilled. 

The Bienayme Inequality is shown to yield a confidence level on 

the difference between the value of iHT, \) and the actual mean square 

error in a sampling interval for any process. Properties of Gaussian 

processes are used to show that the mean square error process has a 

variance expressed as a functional of the autocorrelation function, 

An approximation, valid for high sampling rates, is used to show that 

the behavior of Gaussian processes, during an observation interval con

sisting of several consecutive sampling intervals, is well-behaved and 

that the time average mean squared error should converge quickly to the 

value given by the quadratic interpolation error bound. The behavior of 

this time average error is examined for several common spectral densi

ties. 
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CHAPTER I 

INTRODUCTION 

Definition of the Problem 

Sampling with subsequent interpolation as a means of representing 

a function is based on the central idea that at least some functions are 

completely, i.e., uniquely, specified if a sufficient number of values 

per unit time are known. Most of the analyses arising from the problems 

posed by the sampling theorem are treatments of highly idealized, restric

tive cases requiring such simplifications as band-limited functions or 

non-realizable interpolators. 

One of the most common realizable interpolators is the zero-order 

sample-and-hold in which the output during an interval is a constant 

equal to the value of the sample representing that interval. Such an 

approach is intuitively acceptable if, in addition, it is recognized 

that the output is truly an approximation to the sampled input process 

due to the unavoidable presence of such phenomena as loss of frequency 

information resulting from spectral overlapping and distortion of fre

quency information resulting from the interpolator's filtering tenden

cies. 

The approximate nature of any realizable interpolator output 

means that any discussion of the performance of an interpolator will 

necessarily require that some error criterion be defined and used as 

a figure of merit. Both the particular interpolator structure being 
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analyzed as well as the statistical parameters of the input may influence 

the nature of this figure of merit. 

The characterization of the inherent error between interpolator 

input and output is thus a key factor if some quantitative measure of 

the quality of the approximation is to be obtained, and it is this charac

terization which is to be investigated for a class of interpolators. In 

particular, two aspects of special significance will be dealt with. The 

first problem is to determine the general tendencies of zero-order sample-

and-hold error, i.e., what is the nature of the mean of this error, and 

the second problem is to determine the relationship between the expected 

behavior and the actual behavior, i.e., what is the nature of the variance 

of this error. 

Origin and History 

The underlying concept of sampling theory seems to have been out

lined first by Cauchy (l) in 1841 when he stated a relationship between 

frequency components and sampling rates roughly corresponding to the 

intuitive approach that if a function of time is band-limited, i.e., 

contains no frequency components outside some finite range, and is 

sampled at a rate at least twice as fast as the period of the highest 

frequency component, then it should be possible to at least construct a 

good approximation to the sampled function since it cannot change appre

ciably between sampling intervals of this order. Nyquist (2) pointed out 

the fundamental importance of a sampling period one-half the period of the 

highest frequency contained in a telegraph signal by using a Fourier series 

expansion as an approximation. Whittaker (3) showed that for a function 
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f(t) with Fourier transform F(jy), where F(jy) » o for |u| > n, knowledge 

of f(n) for n = 0, ±1, ±2 ... is sufficient to reconstruct the entire 

time function if a "cardinal" interpolation function is used and that 

such an f(t) may also be written as 

CO 

f(t) . I f(n) iin^ni]. 
-OO 

where ~*r~~7— may be considered to be the impulse response of the 
itx 

cardinal interpolator. 

Electrical engineers are normally more familiar with Shannon's 

Theorem dealing with this property of band-limited functions, to wit: 

If a function f(t) contains no frequencies higher than 
W cps, it is completely specified by giving its ordinates 
at a series of points spaced l/2W seconds apart* 

which Shannon subsequently used to develop his formula for maximum error-

free channel capacity (4). Balakrishnan (5) extended this concept to 

show that when sampling random processes with band-limited spectral 

densities, the Nyquist rate, in conjunction with a cardinal interpolation 

function, is sufficient to yield a reconstructed signal equal to the 

original in a mean square sense, i.e., that 

limit E |[ |x(t) - I x(gj) ,(2fft.n) |] j - 0 . 

The interpolation process is most easily understood when viewed 

as a frequency domain operation based upon the fact that any sampled 

signal defined as 
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oo 

A t ) - £ f(nT)*(t-nT), 
_0O 

where f(t) has the Fourier transform F(jw)? has the transform 

oo 

F (jy) = j 2J FLJvy - — ) ] = 
-oo 

oo 

= - F(ju) + ̂  ^ { F f ^ y + ~f^)] + p[j(w - ~x^)]| • 
1 

It is apparent that if F(jy) is band-limited and T < -K/U 9 then F (jy) 

contains an undistorted version of the original spectrum as well as an 

0<trr> 

infinite number of images centered about the -=— points* Seen in this 

light, all that is needed for interpolation is a flat, low-pass filter with 

gain T which will remove the high frequency sidebands and pass only a 

resultant spectrum identical to the original F(jy). In the frequency 

domain, such a filter may be shown to represent the ideal, or cardinal, 

interpolator discussed earlier,, A similar interpretation may be made 

for the case of random process sampling. Effectively, any realizable 

low-pass device will filter from F (jy) a frequency spectrum related to 

F(jy) in a manner depending upon the filter rolloff, the sampling rate 

and F(jy). In the frequency domain, the difference between the input 

and output can be attributed to some combination of three sources: first, 

distortion of the base-band frequencies by the low-pass characteristics 

of the interpolator filter; second, errors of omission, i.e., attenuation 

of the high frequency terms present in the original spectrum by the neces

sary cutoff tendencies of the interpolatori and, third, errors of commission, 
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i.e.? obliteration of low frequency terms in F(jw) by the additional 

frequency terms in the base band which result from the overlapping of 

the high frequency image terms in F (jw) with the low frequency =• F(jy) 

term. The latter two errors are normally present in the more general non-

band-limited case but are also present in the degenerate band-limited 

case with insufficient sampling rate (T > g— ). In the time domain, 
c 

although it is difficult to define specific error sources, a contributing 

factor is the causality restriction normally placed on the interpolator. 

In any case, these problems do not negate the utility of the sampling 

concept but they do demand that it not be used without an understanding 

of its limitations. 

For various reasons, such as those above, the interpolator output 

is an approximation to the sampled input and some measure of the quality 

of the approximation is needed. The error comparator of Figure 1 yields 

a useful interpolator error parameter. A uniform sampling interval of T 

is assumed and a delay, d, is considered to be a variable in the error. 

The interpolator filter has impulse response h (t) and, by inspection, 

the interpolator output, x(t), becomes 

oo 

x(t) = £ x(nT)h (t -nT) 
-oo 

leading to an instantaneous error defined as 

e(t, d) = x(t -d) - x(t) . 

Further examination of this error, where the selection of h (t) 
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L _ . 

Interpolator 

(X)— ^M) 

(t-d) 

Figure 1. Block Diagram of Interpolator Error 
Comparator. 



is to be made in such a manner that the error is minimized, leads to one 

of the two basic interpolator types, namely, the optimal interpolator. 

Such an attack is related to the familiar Weiner filter problem and seeks 

to minimize the expression 

E j[x(t) - £ x(nT)ho(t-nT)]
2) 

by solving for a realizable interpolator response, h (t), where the 
o 

statistics of x(t) are known. This problem has been analyzed in 

detail by several researchers. The first contributors to the area 

of optimal filtering of sampled data seem to have been Franklin (6) and 

Lloyd and McMillan (7) followed closely by Stewart (8), whose work 

along with that of Spilker (9), not only yields optimal filter cri

teria but also delineates some of the theoretical bounds and limiting 

behavior to be expected in these interpolators. Perhaps the best such 

analysis to date, as well as the most recent, is that of Leneman (10) 

who discusses a procedure for determining an optimal filter subject to 

several additional constraints which increase the generality of his 

solution. 

Examination of> this error, where h (t) is chosen so as to be 
j O 

easily realizable, leads to the other basic interpolator type, the 

Taylor series interpolator. This general class of interpolators oper

ates by using n sampled values to estimate n coefficients in an approxi

mate Taylor series expansion about each sample point. The simplest, and 

perhaps most common, of these are the zero-order hold which retains only 

the constant term of the Taylor series, and its immediate offspring, the 
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exponential hold, which is essentially a zero-order hold with an 

exponentially decaying output. The first-order hold uses two sample 

points to estimate the constant and first derivative which together 

approximate the function during a sampling period. The actual form and 

behavior of such interpolators is obviously dependent upon what sampled 

values of x(t) may be used to evaluate the coefficients in the-expansion. 

If only past values are utilized to yield the interpolated output, then 

the output may be used as an approximation without delay, although such 

an interpolation procedure may introduce an effective decay — a phenomenon 

further investigated in Chapter III. In some applications, past as well 

as future data may be used in selecting the series coefficients for the 

approximation and an actual delay is introduced into the interpolated 

output. For example, if an actual delay of one sampling period is per

missible, the first-order hold may be used as a linear point connector 

which yields a linear approximation which is exact at both end; points of 

the sampling interval. General n order hold circuits have been postu

lated, with and without delay, and should yield better and better approxi

mations at the cost of increasing complexity. 

A particular case of interest occurs when a wide sense stationary 

random process x(t) is sampled periodically every T seconds by an impulse 

sampler acting as the input to a zero-order hold whose impulse response 

has a duration of T seconds. The instantaneous error, for nT < t < (n+l)T, 

becomes 

e(t, d) = x(t -d) - x(nT) 

with an associated mean square error for the n sampling interval defined 

as 
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, r (n+l)T 9 
ijr(nT, d) = f J e (t) dt . 

nT 

For random processes restricted as above, it may be readily shown that 

E/e(t, d)] = E[x(t -d) ] - E[x(nT)] = 0 

regardless of the probability distribution of x(t) and that 

,(n+l)T fr(n+l)T |̂ 
E{+(nT, d)J = f E J [x(t-d) -x(nT)]^dt| = 

= | J [R(0) - R(x-d)] dT . 

This expected value is a functional of the variation of x(t), which is 

defined by 

V(T) = R(0) - R(T) , 

and is a measure of one aspect of the interpolation error performance. 

Investigation of the variation shows it to have a frequency 

domain integral form imposed by the Fourier transform relationship 

between R(T) and S(u), or 

oo 

V(T) = ir" J S(w)[l -cos W T ] dw . 

The error criteria defined above are two of the most basic, and 

the expected mean square error criterion is in general use as an inter

polator figure of merit, but a further examination is needed to determine 
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their characteristics as indicators of error performance. 

Purpose of Research 

The primary engineering problem which appears when sampling with 

subsequent interpolation is to be utilized is determination of the 

sampling rate. Such a determination must be made in light of the sampling 

rate versus interpolation error trade off which exists for any but the 

ideal unrealizable interpolator. This research is directed toward deter

mination of interpolation error criteria, couched in terms of simple input 

process statistics, which will permit choice of a sampling rate sufficient 

to constrain this error to an acceptable level. 

The zero-order sample-and-hold will be the basic interpolator to 

be investigated. Bounds on the behavior of the expected mean square 

error for both band-limited and non-band-limited sampled random processes 

will be shown to exist. This error criterion will also be analyzed to 

determine its dependability, i.e., a comparison of the error criterion 

to actual interpolator performance, for the general sampled process, and 

some additional observations will be made for the case where x(t) is 

Gaussian. 

The expected mean square error criterion formulated for the zero-

order sample-and-hold in terms of the variation, and hence related to 

the spectral density of x(t), will be shown to fall into one of several 

categories based on the behavior of S(w) for large u. Each category is 

based upon a set of non-restrictive conditions which insure the tracta-

bility of the variation, which in turn serves to bound the error criter

ion. The bounds so obtained may then be used to select a sampling rate 
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sufficient to guarantee satisfaction of a constraint on expected mean 

square error. 

A related problem in the determination of an expected value error 

criterion is to determine its relationship to the actual performance, 

since if the two differ greatly then the validity of the error criterion 

is suspect. For the interpolator discussed above, a mean square error, 

\|f(riT, d), has been defined for each sampling period. It is apparent 

that \|r(nT, d) is a random process derived from the sampled process x(t) 

but, in addition, is dependent upon the time origin of the sampling 

process and the values of n and T. 

The expected value of \|r(nT, d) is an intuitive choice for a mean 

square error figure of merit since it is a valid criterion for any samp

ling period (due to the wide sense stationarity restriction imposed on 

x(t)) as well as for any ensemble member (due to the nature of the 

expected value operator). However, this expected value, by itself, has 

the serious inherent flaw that it yields neither information about the 

range of values that ̂ (nT, d) can assume, nor about the distribution of 

these values, nor about the behavior of ̂ (nT, d) along a specific ensemble 

member. Several approaches to this problem will be discussed and a 

specific expression for the variance of i)r(nT, d) will be obtained for 

the Gaussian process in terms of a functional of the autocorrelation 

function of x(t). Although the Gaussian process yields fourth-order 

moments in terms of second-order statistics and is obviously a natural 

area of investigation, the analysis will also include comments applicable 

to more general random processes. 

The conventional mean square error criterion has dominated 
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discussion of interpolators because of the ease of its formulation in 

terms of simple second-order statistics. The utility of additional error 

criteria is undeniable, especially in the context of interpolation where, 

for example, the instantaneous error between input and output is instinct

ively the most natural figure of merit assignable to an interpolator. 

Although the Gaussian process is often assumed as a model for many sta

tistical problems, its tractability has yet to be utilized to analyze 

interpolation errors. For this case, knowledge of the second-order proba

bility distribution will be shown to be sufficient to calculate the non-

stationary, periodic probability distribution of e(t, d) in terms of a 

Gaussian distribution with a variance defined by V(t - nT) and thus pro

vide some insight into the nature of the instantaneous error. 

In brief, the research is aimed at examination of those charac

teristics of sample-and-hold interpolation error which will tend to 

define and clarify the relationship between the sample input, the inter

polated output, and the sampling rate. 

Review of the Literature 

All previous analyses of sampling interpolation error found in the 

literature are limited in the sense that they have been constrained to 

studies of the band-limited case or to the non-band-limited case with 

exact input statistics or to limited examinations of the instantaneous 

error. However, there are several basic papers which should not be 

overlooked. 

Papoulis has made two contributions related to the interpolation 

problem. The first is a discussion of errors in band-limited interpolation, 
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although not for zero-order hold, where data, i.e., certain sample values, 

are altered by any one of several mechanisms — among them sampling time 

jitter, round-off error in the samples, and a restricted case of high 

frequency spectrum overlapping (errors of commission) (ll). A discus

sion of an approximation technique to realize ideal interpolator response 

is also included in this paper. His second contribution (12, 13) to this 

area concerns the nature of a band-limited random process, and presents 

some upper and lower bounds for the variation in terms of the statistics 

of x(t). 

Liff (14), and Leneman and Lewis (15) have investigated the behavior 

of a number of the more common interpolator schemes for specific intout 

statistics and the latter̂  have presented curves relating their relative 

mean square error performance. McRae (16) has also investigated and com

pared the mean square error resulting from a number of conventional inter

polation techniques under the assumption of an approximate spectral den

sity. 

Finn (17) has analyzed several aspects of the zero-order sample-

and-hold interpolator, in particular, mean square error bounds for the 

general band-limited random process, analysis of expected interpolation 

error for some specific cases, and an instantaneous error analysis based 

upon use of the Tchebycheff Inequality. 
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CHAPTER II 

ANALYSIS OF VARIATION 

This chapter is devoted to discussion and development of bounds 

on the variation in terms of parameters of the spectral density for both 

the band-limited and non-band-limited cases. An investigation of the 

variation is worthwhile in itself since it serves as a measure of the 

mean square behavior of a random process; however, its primary importance 

here is its vital role in the interpolator error problem to be discussed 

in Chapter III, where it will be shown that the expected mean square error 

is a functional of the variation. 

Definition of Variation 

Consider x(t) to be a wide sense stationary real valued random 

process with autocorrelation function R(T) and spectral density S(u) 

related by the Fourier Transform pair 

oo . oo 

R ( T ) = ^ J S (y )e dy s — J S(y)coswTdy , (2-la) 
-OO —OO 

oo . co 

S(w) = J R W e " ^ dT = J R(T)cosuTdT , (2-lb) 
-oo -co 

where the cosine integrals result because S(y) and R(«E) are even func

tions. 

For such a random process, the variation has been defined to be 
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V(T) = R(0) - R(T) . (2-2) 

Intuitively, one can relate V(T) to the mean square behavior of x(t) 

since 

V(T) = §E[[x(fhc) - x(t)]2] . (2-3) 

V(T) may also be written in terms of the spectral density as 

OO 00 

V(T) = ^ J S(w)du - 7£ $ S(w)cosuTdw (2-4) 

OO 

=
 2K J 5 (u) [ l - COSUT] dw 

The variation is obviously bounded above by 2R(0) and below by zero for 

all %* These two bounds are rather crude, however, since they are based 

on the absolute maximum and minimum values of [l - COSUT] and it seems 

that V(T) should not jump from its zero value at T = 0 to its maximum 

value 2R(0) for arbitrarily small T. Inherent restrictions in the integral 

formulation of (2-4) may be used to obtain more meaningful functional 

bounds. 

Henceforth, R(T ) , V(T), and S(w) will be considered to be related 

in the manner defined in this section. If S(u) is termed band-limited to 

y , then S(u) = 0 for all |u| > u .. Only real valued x(t) are to be con

sidered, 

The Variation of a Band-Limited Random Process 

Upper Bounds 

Differentiability of R(T). Papoulis (18) and Finn (19) have 
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analyzed the behavior of band-limited processes by making use of the 

fact that R(t) SO restricted must be infinitely differentiate, thus 

IR"(0)1 is finite -- a result easily seen in the frequency domain. 

Let F(jw) be the Fourier transform of f(t), then (ju) F(ju) is 

dnf 
the Fourier transform of . Note that a derivative so determined 

atn 

might not always be finite, i.e., might contain impulses, therefore, 

I (0)J does not necessarily exist. The behavior of R (T) may thus 
dtn 

be investigated by examination of the inverse transform of (ju) S(w), 

i.e., 

oo 

JL 
2n 

(ju)nS(y)£jWT du . (2-5) 

For band-limited spectral dens i t i e s , (2-5) may be bounded as follows, 

' J r . u n . y r 

| ( jw)nS(w )6 J ( J T |du < — - [ S(w)dw = u
 nR(0) . (2-6) 

2K 2K . 
-u -y 

c c 

c 

( ) 
Thus the inverse transform integral of (2-5) is bounded and R (T) 

exists for any n. In particular, |R"(0)| < U R(0). This property along 

with the trigonometric relations, 

|sin <p| < cp , (2-7a) 

1 - cos <p « 2 sin2(|) , (2-7b) 

may be used to obtain an upper bound on V(«c). 

Quadratic Bound. Suppose that S(u) is band-limited to w , then 
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2 ( u t ) 2 

V(T) < IR" C0) | ^ < - ^ — R(0) . (2-8) 

Proof: 

oo 

V(T) = ^ J S(u)[l - C O S U T ] du 

This may be rewritten from (2-7b) as 

V(T) = ̂ J W ° S(y)[2 sin2(^f)]du . (2-9) 
-u c 

But S(u) > 0, and by using (2-7a) in ( 2 - 9 ) , 

VW < \ i t \ u , 2 S( W )du=^ |R"(0) | . 
-u 

c 

-C ± 
2 2K 

In addition, since R(T) is differentiable, then |Rff(0)l < W R(0), and 

2 (w T ) 2 

V(T) < V lR"(o)l < ~V-R(o) . 

Sine Bound. Suppose t h a t S(u) i s band- l imi ted t o u , t hen , for 

t e [ 0 , %/uc] , 

9 W r T 

V(T) < 2 sin4(-™-)R(0) . (2-10) 

Proof: Since [ l - cos x] i s monotone i nc rea s ing for x e [ 0 , i t ] , 

then 

1 - cos b > 1 - cos x, 0 < x < b < i t . ( 2 - l l ) 



18 

From (2-11), 

1 r Wc 

V(T) = ;r~ J S(u>) [l - COSCJT]CIU < 
-u 

<-£ 
p uc 

-u 

U T 
S(w) [l - cos(j T ]du = 2 sin (""o"")̂ "! S(w) dui 

This bound was obtained independently by Papoulis (20). It is not 

necessarily the best bound for all variations since the quadratic bound 

IT 

•of the preceding section may well be valid for % > — , but it does serve 
c 

to define the extreme behavior possible for any variation. 

A Lower Bound 

Finn (21) obtained a lower bound on V(«r), and the following deriva

tion yields his result and shows its relationship to a lower bound obtained 

by Papoulis. 

Suppose that S(u) is band-limited to u , then 

V(T) > 2 
L 

U T _ 2 

'sin(-j-) 

u 
|R"(o)i > \ 

sin 
uT-,2 c 

y T 
c 

J 

|R"(0)| (2-12) 

for 0 < T < T < 2z 
u 

Proof: Since sin x is concave (has a negative second derivative) 

for x e [0, it], then sin x is greater than the secant line connecting 

sin a and sin b for 0 < a < x < b < i c . The equation of the secant line 

sin b 
is x and is a reasonable straight line approximation to sin x for 

it 0 1 a 1 D 1 9 • Thus, 
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v sin b n y. * , y. 
s in x > x —r— , 0 < x < b < i t j (2-13) 

and 

V(T) = - f y ° S(u) sin2(^f)dy > i \"* S(u) 
- W - W 

s in ( - r - ) 
/UT\ 2 V 2 ; u T c 

2 

dw 

U T~|2 
c_ 
2 

sin(-TT-) 
- u S(u)du = 2 
TI J 

CJ T —j 2 

sin(-f-) 
(0 

iRH(o)i . 

This may be fu r the r s impl i f ied s ince 

V(T) > 2 

- . u t n 2 
sin(-y) 

y 
|R"(0)| > 2 

ucT 2 
r-u T sin -TT* 

C 2__ 
2 u T c 

y 
|Rn(0)| = 

ui T • 

'sin.(-j-) 

u T 
c 

,RM(0) 

Papoulis (22), using the straight line approximation to sin x 

given by - x for x e [0, it/2], also obtained a form of the latter bound 

for the case where T < ;r~~ • This quadratic bound is obviously not as 
c 

tight a bound as the sine squared bound given in (2-12)? at least for 

small T ? and they approach each other only as u T -> 0. Note that (2-12) 

implies that if V(T,) = 0, then T, > —• . r 1 ' 1 — u 

Derivative Behavior of V(T) 

Monotonicitv of V(t). Suppose that S(u) is band-limited to u , 
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then V(T) is monotone increasing for T e [0, TC/U ]. 

Proof: It suffices to show that V'(t) is non-negative in the 

interval [0, TC/U ]. Now 

V ( T ) = ^j^J C S(u)[l - cosuT]du| - (2-14) 

•JL 
2rc 

yS(y) sinuxdu . 
-y c 

Using (2-13) in this integral expression, a lower bound may be obtained 

as follows, 

1 f» W
r SinU) T 

V ' ( T ) > ~ uSfej)[tJT — ]du = (2-15) 
-w c 

c 

2K 

s in y T 
— | R H ( 0 ) i . y 

c 

This lower bound on V'(«t) i s non-negat ive for % e [ 0 , n /u ] , t hus V(*c) 

i s monotone i n c r e a s i n g . 

Convexity of V ( T ) . Suppose t h a t S(y) i s band- l imi ted to y , 

then V ( T ) i s convex for T e [ o , TT/2W ] . 

Proof: The express ion in (2-14) may be d i f f e r e n t i a t e d once more 

to y i e ld 

V " ( T ) = ~ j ° u2S(y)cosyTdy . (2-16) 

By i n s p e c t i o n , the in tegrand i s non-negat ive for t e [ o , it/2y ] , thus 
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V"M is non-negative and V(tr) is convex, i.e., has an increasing posi

tive first derivative. 

Derivative Bounds. Suppose that S(u) is band-limited to w , 

then, for T e [o, */"<.] , 

sin w T 
C '|-,H 

U) 

c 

|R (0)| < V'(T) < u> sinu -uR(O) . (2-17) 

Proof: The lower bound follows from (2-15). Since w sinux is 

monotone increasing for % e [0, it/w ] and u e [0, u ], then 

1 P yc 1 P Wc 
V 8(T) = 2~ J uS(u)sinuTdu < u sinu T ^r J S(u)du , 

and the upper bound follows* This technique could be used to bound 

higher order derivatives. 

The Variation of a Non-Band-Limited Random Process 

Immediate extension of the previous techniques to the non-band-

limited case is not obvious. In particular, it seems impossible to 

formulate a lower bound without excessive restriction on the nature of 

S(w). However, some meaningful results can be obtained. 

Classification of Non-Band-Limited Processes 

In the following sections, and throughout the remainder of the 

discussion, the only non-band-limited random processes considered are 

those with spectral densities which may be written as the ratio of two 

even polynomials in u, i.e., 



^ , 2 , , 2m 
KT/ 2x a + a0w + ... + a0 y 

S(U) = ̂
 = —2 ! " ^ (2"18) 

D(y ) b + b0y + ... + b 0 y o 2 2n 

2 
where D(y ) has no real roots and m < n -1. Such spectral densities 

will further be classified according to their relative high frequency 

behavior. The concept of the order, k, of S(y), may be used where k s n-m 

and 

S(y) l ^ y " 2 k (2-19) 
2n 

for large y. The order also serves to define the rollbff rate of the 

spectral density. It can be shown that first-order spectral densities 

represent non-differentiable random processes while all higher order 

spectral densities represent differentiable processes. 
o 

Consider the inverse transform of y S(y) 

oo 

jL J y 2 S(y) £
j U T dy . (2-20) 

2 * - oo 
—OO 

From Fourier Transform theory (23) if (2-20) exists then it must repre

sent the second derivative of - R ( T ) . For first-order spectral densi

ties, (2-20) does not exist in the normal sense since 

|y S(y)|dy = I 
00 a_y + aju +... + a~ y 

u J. i_ 2 2n 
-oo b + b^y + ... + â . y o 2 2n 

2n 

dy 

is undefined because the integrand approaches a non-zero constant for 

large u. A more complete answer could be obtained from impulse theoryj 
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however, for the purposes of this discussion, it is sufficient to note 

that [ Rft (0) ( is undefined for first-order spectral densities. The integral 

of (2-20) exists automatically for all higher order data since 

2 j . 4 . , 2m+2 
« °° o * °° a u + ajy + ...+a 0u 

1 Uftfa>l»-,f . ° f 2 ^ a , » < • 
-co -oo D T DJy + . . . T D,~ U) 

because (2m+2) < 2n-2 so that for large u the integrand falls off at 

least as fast as some c/u and is thus integrable. Existence of this 

integral implies that 0 < |R"(0)| < « for all higher order S(u). Now, 

granting an interchange of limits and expectation, the expected value 

of x'(t) is 

U m 6([»tt+^-»(t)]*}. lim fa[R(o) -R(e)lj, . R „ ( o ) 

which exists under the ab̂ pve conditions, hence x(t) is differentiate in 

the mean square sense (24). It will be seen that the two broad classifi

cations! first-order or non-differentiable, and higher order or differ

entiate are sufficient to determine bounds on the variations of the class 

of non-band-limited processes defined in (2-18). 

Pifferentiable Random Processes 

The following quadratic bound may be determined from the above dis

cussion. 

Suppose that x(t) is a random process differentiable in the mean 

square sense, and has an autocorrelation function R ( T ) with Fourier Trans

form S(y), then 

i 
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V(T) < 15^211 T2 = J!al- R(o) (2-21) 

where y^ • |R"(O) |/R(O) . 

Proof: 

oo 

V(T) = ̂ J S(u)Ll - cosuT]du = (2-22) 
-oo 

OQ 

— f S(w) sin2(^) dw < 
it J 2 — 

oo 2 oo 

< - J (-jjF) S(w)dw = ^" 2TC" J w a(w)dw , 

using (2-5) and the fact that both S(u) and sin'(-?) are positive for 

all y, Since x(t) is differentiable, then the last integral in (2-22) 

must exist and equals |R (0)|. Defining an artificial effective band-

limited frequency 

» d 5 1 1 ^ ? 1 ] V 2 (2-23> 

and then substituting it in the above, the quadratic bound of (2-21) may 

be obtained, V(T) might now be compared to the variation of a process 

band-limited to u,. 
d 

Non-Pifferentiable Random Processes 

In general, random processes do not have to be differentiable, and 

the familiar exponential autocorrelation function, i.e., R(t) = e"a'T' , 

is just such a case. With additional restrictions, some results can be 

obtained for this situation. 
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Suppose that x(t) is a random process with autocorrelation func

tion R(T) and spectral density S(cj), where 

[ ™ - S(u)] > 0 (2-24) 
u 

for a l l u , then 

V(T) < ^ = w n k l R(0) (2-25) 

w h e r e wn = 2RW * 

Proof: 

oo 

V(T) = £ f S(y)[sin2(^f)]dy < 

" - o o 

oo 

. I f k . 2/U>T\ j 

* * J _ .:5 sin ( - r > d u 
-co U 

k / \ tJT 
since -^ > S(u) for a l l y . Let Y = "o* then 

w 

OO t I °° 2 

| j ^ s l n 2 ( f ) d u = ikij ^ ^ 
—CO w —OO Y* 

but this last integral is a well-behaved one with a value equal to it. 

Substitution in the above 1©ads to the bound Of (2-25). 

The form chosen to express the normalized bounds for both non-

band-limited cases is related to the autocorrelation of the process, 

R(0), and defines an "effective" cutoff frequency, u oru,, Since the 

variation itself is known to be bounded by 2R(0), neither of these 
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bounds yields any information if their value is greater than 2R(0) -- a 

condition which occurs in both bounds if either W,T or u T is qreater 
d n ^ 

than 2. Both bounds are valid for any *c, but obviously have an effec

tive useful limit. 

Lower Bounds 

For the non-band-limited case, there do not seem to be any tech

niques leading to a lower bound similar to that obtained for the band-

limited case even permitting excessive restrictions on the nature of 

S(u). 

Papoulis (25) lists a non-functional lower bound, i.e., 

V W > "n v^2 t), but this yields no information as to the nature of V(T) . 
4 

Basically, any integral bounding approach such as those used for the 

upper bounds breaks down when lower bounds for infinite integrals are 

sought. 

Derivative Bounds 

With the addition of a few more constraints on S(w), a comment 

on the monotonicity of R(T) can be made. 

Upper Bound. Suppose that x(t) is mean square differentiable 

and has autocorrelation function R(T) and spectral density S(w), then 

V'(T) < |R"(0)|T, T > 0 . (2-26) 

Proof: The expression 

OQ 

1 P 
V'(t) = 7^ uS(w)sin wtdu -00 

2 
may be bounded since u sinu«f< w t, a consequence of (2-7a), and 
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oo 

V ( T ) < ̂ -J y2TS(w)dw = |R"(0)|T . 

Since x(t) is differentiable, then existence of the integral of y S(u) 

is assured. 

Monotonicity. Suppose x(t) has R(t) with Fourier transform S(y) 

and there exist k and y. such that for n > 2 

~5J > S(u) (2-27) 
y 

and 

y 2 n S ( y ) > u ^ S d j ) for | y | > W][ (2-28) 

then V ' ( T ) > 0 i f T < ~ and 

s(U]l) 

w l 

. y/v \2n 2 ( n - l ) ( l + cos U ^ T ) (2-29) 

Proof: The integral expression for V'(x) may be written as a 

one-sided integral composed of two parts, i.e., 

oo oo 

V * ( T ) = o" J y S ( y ) s i n y t d y * - yS(y)siny«s:dy » 
- 0 0 0 

1 f TC/T 
s - uS(w)sinWTdy + - yS(y) siny«cdy . 

it «i n J / 
0 TT/t 

Each of these two integrals may be bounded under the assumptions made 

above: 
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1 j%*A ĵ  J . V T WJ S (y 1 ) 
- y S ( w ) s i n y T d u > - ^—•-•• • _ ~< s i n 
•n: J _ ~ it J 2 n - l 

2n, 
^VUT ; 

WTdw > 
w l 

> 
y l 2 n S ( y l ) r * / T s i n u t d u w 1

2 n S ( y ) [ l + c o s w 1 T ] 

J 2n- l 2,**2n-2 / / \ ^ n - i ^/TC\ 
1 T 

and, 

— uS(u) s i n WTCIW > - - uS(u)dw > 
I C f c l / ~~ 7T J / — 

TZ/X 1 t / T 

- % J 

00 

kdu -k 
/ , .2n- l 0 / .^ /itv2n-2 

TC/T w 2 i un - l ) (-) 
t 

Combining the bounds, 

r ( w k jsK>[i + °o«y] J 

but the term in brackets is positive for T restricted as above, thus 

V(T) is monotone increasing. No functional lower bound is obtainable 

for this general case. 

Application to Characteristic Functions 

Consider the characteristic function defined by 

OS 

•<u) = E { 6 ^ X } = J ejuxP(*)dx . 

>(u) and p(x) have the same relationship as R(%) and S(u). Symmetry of 
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p(x) means ̂ (u) is real and corresponds to the case for R(T) where x(t) 

is real. Since the results obtained for V(T) can be related to bounds 

on R(t), and if p(x) is symmetric and as tractable as the S(u) considered 

previously, then bounds can be established for <3>(u) . 

Gnedenko and Kolmogoroff (26) established one property of such 

transforms (to be discussed for the variation in the next section), namely 

that if |®(u, )|=1 for some u, / 0, then ̂ (u) is the characteristic func

tion of an improper distribution requiring impulses, i.ee, x(t) may assume 

only discrete values,, 

Mean Square Periodicity of V(T) 

The process x(t) is said to be mean square periodic if there exists 

a T such that the following equivalent conditions may be satisfied for 

T ^ 0 and any value of TS 

E { [ x ( t + T ) - x ( t ) ] 2 ) - E { [ x ( t + T o + T ) - x ( t ) ] 2 ) , 

V(T) - V(T + T Q ) , 

R ( T ) = R ( T + T ) . o 

Papoulis (27) showed that if V(*c ) = 0 for some T / 0, then 

x(t) is mean square periodic since if 

oo 

V(T 0) = ~ - j S(w)[l - COSUT ]du =0 , (2-30) 

then either S(w) = 0, a trivial case? or S(w) is a collection of impulses 

occurring at the zeroes of [l - C O S U T ] , i*e», 
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S(u) = V A 6(U - ̂ ) . (2-31) 
LJ n T 

Thus, R(«r) is periodic, since it has a Fourier Series representation, 

with a period at least as small as T . r o 

V(T) may attain another extreme, 2R(0), and a related analysis 

yields some additional information about mean square periodic processes. 

Suppose that V(T 9) = 2R(0), then x(t) is mean square periodic and 

for %Q
 s 2m 2, n-1,2,......, -V(T ) = 0. 

Proof: 

V(T 2) = £1 S(w)siri (-r^du = 2R(0), 
-oo 

but, 

oo 

R(0) = —• J S(u)du , 
-co 

thus V(T 0) can equal 2R(0) if and only if 

OO ( j p p OO 

- S(u)sin (-^-)du - - I S(u»)dw . 

2 Since sin (-r0 < 1, t h i s equali ty can hold only if S(y) consis ts of 
2,WTo 

impulses occurring at the ones of sin \ - ~ " ) , i.e., 

S ( U) - I Bk6[w .i2k±lhL]( {2.32) 

hence R(^) is periodic. 
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Now 

v(,o) 
1 f °° I f xztf, (2k+l)n i I , 2, WV , „/0 v — J / ̂  B ^ u - — * — J > sin (— )du = V(2nT2) 

Using the sifting property of the impulse, 

V(T ) = ) — sin' 
© Lj 71 

(2k+l) 11T 

2<T, E 
Bk 9 
— sin [(2k+l)mc] = 0 

S i m i l a r l y , 

V[(2n+l)-c2] = 2R(0) for n = 0 , 1 , 2 , 

The converse s ta tement t h a t V(^ ) = 0 impl ies ex i s t ence of %^ 

such t h a t V(«r«) = 2R(o) i s not t r u e . Consider S(w) as spec i f i ed in 

(2 -31 ) , then 

0 

V n . 2 r
r a?2, 

_00 

n7W*2 
For V ( 0 - 2R{0) 9-

J—~' must equal some odd multiple of - for all n, a 

o 

condition obviously not satisfied by the above series unless n takes on 

only odd values as would be the case if A = 0 for n even, i.e., S(w) 

has the form given by (2-32). 
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The extreme values attainable by any autocorrelation function, 

band-limited or non-band-limited? can occur only if the spectral den

sities are of the restricted impulse summation form discussed above and 

imply mean square periodicity of the random process. 
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CHAPTER III 

SAMPLE AND HOLD INTERPOLATOR PERFORMANCE 

The preceding chapter has investigated some of the properties 

of the second-order statistics of a random process, in particular, 

the behavior of the variation. This information will now be used to 

determine interpolation error bounds for some sample-and-hold inter

polators. 

A Definition of Interpolator Error 

Sample-and-hold interpolation, in general, is based upon the 

premise that some finite number of samples of a time function, taken 

at equally spaced and sufficiently short intervals, can be used to 

create an approximate finite Taylor series expansion which will repre

sent the original function adequately over one sampling interval. There 

is, of course, a complex relationship between the number of samples used 

in the expansion, the length of the sampling interval, the statistics of 

the random process, and the quality of the approximation. A block diagram 

of a structure yielding a useful interpolator error comparator was illus

trated in Figure 1. An input x(t) is sampled at a uniform rate, unless 

otherwise specified, so that one sample is taken every T seconds. The 

sampled input to the interpolator is given by 

CO 

x#(t) = Tx(t + nT)6(t - t - nT) (3-l) 
ILJ O O 
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where t represents any shift between the actual time origin and the 

sampling points. The interpolator response to a unit sample occurring 

at t s t + nT is h (t - t - nT). The output of the interpolator is 

(t) =J ) £ x(t0+nT)6(T-to-nT))h0(t -t)d* = (3-2) 

-oo 

Y x(t + nT)h (t - t - nT) . u o o o 

To obtain an error criterion, the difference between x(t) and an arbi

trarily delayed version of x(t) is used as a basis and leads to an 

instantaneous error 

e(t, d) = x(t - d) - x(t) . (3-3) 

It will prove advantageous to define the delay in terms of a fractional 

delay, \f where 

d - \T 

so that the relationship of the delay to the sampling interval duration 

T remains clear. 

Expected Mean Square Error Criterion 

General Derivation 

The following discussion will be restricted to consideration of 

those interpolators whose response to each input sample is non-zero only 

within that particular sampling interval. The expression of (3-2) 
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s i m p l i f i e s cons iderab ly for such i n t e r p o l a t o r s s i n c e , for a given t , 

only one term in the summation i s non-zero ; i . e . , i f t £ [ t +nT, t + (n+ l )T] 

then 

x ( t ) = x ( t + nT)h ( t - t - nT) 
O 0 0 

(3-4) 

and 

e ( t , XT) = x ( t -XT) - x ( t +nT)h ( t - 1 - n T ) . (3-5) 
' 0 O 0 / * / 

t h 
The n sampling i n t e r v a l has a mean squared e r r o r a s soc ia t ed with i t 

given by 

t 0 +(n+l )T 
+h(nT, X) = - J e ( t , XT) dt = (3-6) 

t +nT o 

t +(n+l)T 
~ ° [ x ( t - X T ) - x ( t +nT)h ( t - t - n T ^ d t . 
1 J , , T O 0 0 

t +nT o 

Mak ing a change of v a r i a b l e s , the expected value of \3/v(nT, \ ) i s 

t h ( T , X ) s f E If [ x 2 ( f + t Q + nT -XT) - 2 x ( t ' + t Q + nT -XT)x( t Q +nT) 

• h ( t r ) + x 2 ( t + n T ) h 2 ( t ' ) ] d t o o o J 

S T / { ^ ^ [ l + h ^ t t ' ) ] - 2H(t« -XT)ho(tf)l dt» , (3-7) 

.where due to the stationarlty of x(t), i|rh(T, X) is the same for each 

sampling interval, and is a measure of the quality of the approximation. 

Since the expected mean square error criterion is independent of t , it 
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is often assumed to be zero? however^ the actual mean square error is 

related to t „ o 

Zero-Order Hold 

Consider the simplest Taylor series interpolator where only the 

most recent sample value is retained and used as an interpolated x(t). 

The response of such an interpolator to a unit input sample is unity 

within the appropriate sampling interval and zero elsewhere* From (3-4), 

it is readily seen that the interpolated output x(t) is equal to x(t +nT) 

for t e [ t + nT, t + (n+l)T). 

The instantaneous error e(t, XT) for t £ [t +nT«t + (n+l)T) 
' o f o 

becomes 

e(t, XT) = x(t - XT) - x(t +nT) (3-8) 
o 

and the expected mean square error of (3-7) becomes 

T 
2 ~ + (T,\) - f J [R(0) - R(f - XT)]dt* = (3-9) 

o r (l-^)T 9 , (l-X)T 
= | [R(0) - R(x)]dT = i~ V(T)dT . 

J-XT -XT 

Figure 2 illustrates some wave forms representative of the general 

behavior of a zero-order sampie-and-holde 

Error Reduction by Delay 

If in (3-9) above? T is considered fixed? then X might be chosen 

such that ^(T, X) is a minimum. It is widely stated that X = l/2 yields 

this minimum; however, an additional condition needs to be satisfied* 
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Figure 2. Typical Waveforms Present in a Zero-Order 
Sample-and-Hold Interpolator (\ = 0 ) . 
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Maxima and minima of \|f(T, X) occur at points where -jr- [^T(T, X)]| . 
m 

either equals zero or ceases to exist. Assuming that an interchange of 

differentiation and integration is valid, the derivative may be evaluated 

as follows 

o | [ t ( T A ) ] 'x=X 
d 2 r ( 1 A ) T 

si^LT
 vWdTiU 

(3-10) 
m 

= ~( -TV[( l -X )T] + TV[»X T]) = T L
 L mJ u m -' 

= 2 { V [ V ] - V [ ( l - X m ) T ] } = 0 , 

where the last step follows from the evenness of V(T)„ For continuous 

V(T), a mild restriction, the first derivative of ̂ -(T, X) must exist for 

all values of X, thus any extrema must satisfy the condition of (3-10). 

Such points are minima of ̂ r(T, X) if, in addition to (3-10), 

ri2 -
-^P [f(T, X)] | > 0, or, 
dX^ m 

2 
•^2 W T > X)^ 1\»\ = 2T { V , ( X

m
T ) +V,W1^m)T]} >0. (3-11) 

dX m 

Inspection of (3-10) shows X - -r will always satisfy the first deriva

tive condition. Evaluating (3-ll) for this value.of X, it may be seen that 

T 
the second derivative condition is satisfied only if V'(—) > 0 and is 

2TT 
automatically satisfied for band-limited processes if T < — since, from 

wc 

(2-15), V ( T ) is monotone increasing for T e [o, •— ] „ It may also be 
yc 

satisfied by some non-band-limited processes as discussed in Chapter II„ 

The following conclusion may be drawn. In general, if Sc(t) repre

sents the interpolation of x(t) by a zero-order sample-and-hold, then, 
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judged by the expected mean square error criterion, x(t) is a better 

T 
approximation to x(t - ~) than it is for any other value of delay, if 

T T 
V'(^) > 0. However, for this same criterion, if V'(-) is not positive, 

then the apparent delay in x{t) is not T/2 but whatever value of X 
m 

satisfies both (3-10) and (3-11). 

Band-Limited Interpolation Error 

The formula for ijr(T, X) given in (3-9) is a functional of the 

variation, V(T), discussed in Chapter II. Using the following well-

known theorem from analysis (28): "If f.(x) < fAx) on [a, b], then 

» b _ b 
j f1(x)dx < J f2(x)dx.

,f, the bounds on V(T) can be extended to bounds 
a a 

on ̂ r(T, X). 

Lower Bounds 

Suppose S(u) i s band- l imi ted to CJ , then for T. < 2%/u , where T. 
C A. ~~ C A 

i s the l a r g e r of XT and ( l -X)T, 

j ( T t X ) i 2lB^2UK 
U 

CJ T u T 
T - 2 s i n ( - f - ) c o s [ - ~ - ( l - 2 X ) ] ' 

u T 
c 

(3-12) 

[R"(Q)| 
3 

CJ T. „ 
• / c X N s i n ( — ™ ) 

wcTX 
tl " 3X + 3X 2 ]T 2 (3-13) 

Proof; Using the two bounds of (2 -12 ) , i . e . , 
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V(T) > 2 

u c T ~ 
s i n ( — ) 

w. 
R"(0)| > 

sin(~7r-) 

w. 

R"(0) 

in the expression of ̂ (T, X ) , (3-12) and (3-13) are obtained by inte

gration over the interval [AT, (l -X)T] where the constraints on T in 

the formulation of (2-12) are met since T is the larger of XT and (l-X)T 

A bound of this form was obtained by Finn (29). 

Upper Bounds 

Quadratic Bound. Suppose S(w) is band-limited to y , then 

^(T, X) < |R" (0) | (1 -3X + 3X2) ~- (3-14) 

ProofJ Using the bound of (2-8) on the expression for ̂ (T, X) 

and integrating, obtain (3-14). This bound was obtained by Finn (30). 

It is a useful bound only for T such that the quadratic bound on the var-

/ \ r R(0) -I 1/2 
iation Is less than 2R(0) or T < x = ^iTD^frXT J 

Sine Bound . Suppose that S(u) is band-limited to u then, for 

T\ 1 6T w n e r© T\ i s t n e larger of XT and (l-X)T, 

f (T,\) < 2R(0) 

W-T w T 
2 sin(-§-) cos[-§- (l-2X)]| 

(3-15) 

Proofs Integrate the bound of (2-10) to obtain (3-15). 

Inspection of the quadratic bound shows that for X = 1/2, this 

bound is reduced by a factor of 1/4 over its value for X = 0, i.e», no 

delay* 

*•* 
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Figure 3 illustrates the nature of the interpolation error bounds 

for a general band-limited process. The shaded region between the tightest 

upper and lower bounds indicates where \|r(T, X) is constrained to lie for 

smaller values of T. 

Non-Band-Limited Interpolation Error 

A similar extension of the variation bounds of non-band-limited 

random processes to interpolation error bounds is possible and a restric

tion on the limiting behavior of a zero-order sample-and-hold is noted. 

First-Order Data 

Suppose x(t) is a non-differentiable random process and there 

k 
exists a k such that .7-0 > S(u) for all us then 

u 

f(lf X) < -~ [l -2X +2X2] = u T U -2X +2X2]R(0) (3-16) 

where % = ^ y . 

Proofs The bound of (2-25), V(T) < —"r-̂ - , when used in the expres

sion of (3-9) and integrated yields (3-16). 

Higher-Order Data 

Suppose x(t) is a mean square differentiable random process, then 

.2 
)|f'(T, X) < |:R"(0)| (l -3X+3X2) ~- = (3-17) 

2 
(yJ) _ 

= — ~ ~ (1 - 3X + 3X )R(0) 

|RT,(0H 
where Urf = -^y-L . 

I R!1 (0) Proof: If x(t) is mean square dif ferentiable, then V(T) <i----̂ --i-



tilAi , 
R(o) A 

2.54 

Figure 3. Normalized Interpolat ion Error Bounds for Band-Limited 
Random Processes (X = 0 and JR»(0) | = u c

2 R(0) /4) . 
a) 2[(J T - 2 sin(u T/2)cos(u T/2)] /(u T) - (3-15), 

b) |R"(0)|T2/3R(0) * u c T 2 / l 2 - (3-14) , 
c) [u T - 2 sinCw T/2)cos(w T / 2 ) " | / 2 J J - (3-12), 

c c c c 
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and integration over L-XT, (l-X)T] yields (3-17). 

Figure 4 illustrates the form of the normalized bounds for both 

non-band-limited cases. Neither bound is plotted past CJT = 2 since the 

original variation bound equals 2R(o) at this point. 

Effect of Delay 

Quantitative statements concerning the effect of delay on \Jr(T,X) 

are seemingly impossible to makes however, the effect on the bounds of 

(3-16) and (3-17) may be seen by inspection. Let the bound for non-dif-

ferentiable processes be denoted as 

B (X) = y (l - 2X + 2X2) (3-18) 

and that for differentiate processes as 

2 
Bd(X) = |R" (0) | (1 -3X +3X

2) 5j . (3-19) 

Both obviously have minimum value for X = 1/2. However, the relative 

improvement (reduction of the bounds) for first-order data with delay 

is one half that for higher order data with delay since 

Va* V21.. i 
^ ' B ( h ' ~2' 

n 2. 

Rate of Improvefflent with T 

An Improvement Criterion 

Any interpolator is expected to yield improved performance as the 

length of the sampling interval approaches zero. This is obviously true 



R(0) 
»(TA) 

Figure 4. Normalized Interpolation Error Bounds for Non-Band-Limited 
Processes, 
(a) Non-Differentiable Process (u = k/2R(0) , 

(b) Differentiable Process (u>d = [ R ( Q ? ] )• 
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fox the zero-order hold since the upper bounds on mean square interpola

tion error approach zero for small T. An additional factor, the rate of 

improvement, may be analyzed by L'Hospital's Rule. Consider an improve

ment criterion defined as 

ylT * T * 0~^,w/ 

then, for a given V(T) , lim TJ = k, where k has either the value one or 
T"* ° 

two depending on the nature of V(T). From the definition of ̂ (T, X) and 

by using a theorem for differentiating through an integral, 

(1 -X )T 
f ((l-X)V[(l-X)T] + XV[_XT]) - 4 f V(T)dr 
1 L 1 JZ J AT 

11 * * — — — — — ^ ^ 
4 f V(T)(JT 
T2 d -XT 

In the limit as T -* 0, t] has the form 0/0 and can be evaluated by 

repeatedly differentiating both numerator and denominator as required 

by L'Hospital's Rule until a value is found for the limit, i.e., 

H T{(1-X) 2V'|.(1-X)T]+ X2V«(XT)1 H 
lim r\ a lim ** «• — - — — — = 
T-*0 T-*0. (1-X)V[(1-X)T] +XV[XT] 

H . UA)V[(1:A)Tl>iLaV,[XT>T{(l-X)3V''L(lA)T]+\3Vw[\T]} 
* H m :: "— 4———————.———-—. . — 

T-» 0 (l-X)^fl[(l-X)T] + X V [ XT] 

If V'(0+) is non-zero, as it would be for a non-differentiable process, 

then the above shows 

lim f] = 1 . 
T-* 0 n 
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If V'(0+) is zero, then one more application of L'Hospital's Rule yields 

T- 2ftl-X)Y[(l-\)T] +X3V"[XT]) + T{(l-X)4V"'[(l-\)T]-hX4V[\T]) 
1 im f? = 1 i m •——••-•"•—»..••- • •*,,„„,. •m„im,..,i.. r x - - „. •,,,'',,,, *• - Y 
T*0 d T-*0 (l-X)3V"[(l-X)T] + X3Y»[XT] 

and 

lim n . = 2 . 
T-»0 d 

No further analysis is needed since if V'(0 ) - 0, then V"(0) / 0. 

Limiting Behavior 

An Interpretation of n, The interpolation error improvement for T 

approaching zero, as judged by r\9 has been shown to be a constant indepen

dent of data characteristics such as cut-off frequency or roll-off rate 

for the entire class of differentiate random processes, and a similar 

result holds for non-differentiable random processes although the value 

of i\ obtained in the limit is not the same for both classes. 

The improvement criterion defined above may be viewed as the ratio 

of the percentage change in ^r(T, X) to the percentage change in T and thus 

yields a quantitative measure of the utility of decreasing T to effect a 

decrease in the interpolator error. A change of variables yields another 

interesting result. Suppose that the interpolation error versus the 

sampling frequency, f = =: , is plotted on a log-log scale. As T -» 0, 

f -* *>, and the slope of the resulting curve may be determined from 
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* lim 
T -»T 

"logifd^ X)] - log[f(T, X)] 

log(̂ r-) - logCjr) 

K |'(T)/f(T) _ 

~ (-lA) """ ^ ( T ) 

where L'Hospital's Rule has been used to determine the limit. Since 

f)(T) approaches a constant for small T, the interpolation error versus 

sampling frequency, on log-log coordinates, becomes a straight line for 

large f . 

Comparison with Numerical Results. The value of q(T) in the 

limit could have been used to predict some results obtained by McRae 

(31), who compared the performance of a number of interpolation schemes 

by calculating the error resulting when they sampled a set of approximate 

spectral densities of the form illustrated below in Figure 5. 

S(w) 

wr 2n 
(T2) 

y Id 

Figure 5. McRae*s Approximate Spectral Density. 
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The spectrum is considered flat out to a break frequency of w and rolls 

y 2n 

off as {-£-) thereafter, thus approximating any type of data from first-

order (n = l) to band-limited (n = «). When the spectrum is known exactly, 

the interpolation error equation for the zero-order hold may be written 

as 

+ (T, X) = f [R(0) - R(T)]dT = (3-21) 
1 -XT 

2 

f 

(l-X)T . 
S(w)[l - cosuT]du}dT 

AT 
2K 

and evaluation of the error becomes a straightforward computational 

problem, which McRae solved. As indicated by the theoretical results, 

the slope of McRae's interpolation error curves versus sampling fre

quency plotted on a log-log scale turned out to be constant for sampling 

frequencies greater than about 10 f , i.e., T < TTTT- • Furthermore, the 

c 

slope for all data of order 2 or greater was twice the slope for first-

order data. All these results bear out the intuitive feeling that first-

order data, with its relatively high concentration of spectral power at 

large u, should be more difficult to sample and interpolate than higher 

order data. 

Exponential Hold 

Error in the Exponential Hold 

Some of the results of Chapter II may be used to determine a 

bound on the performance of the exponential hold. A typical interpolated 

output from such a device is shown in Figure 6. From the earlier 
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:(t) 1 

SCt) I 

x(t) 4 

(a) 

(b) 

-*- t 
(c) 

Figure 6. Typical Input and Output of Exponential Hold. 

a) Input, 
b) Exponential Hold Output, 
c) Zero-Order Hold Output. 



50 

discussion of interpolators, the following equations hold: 

he(t) = e"
at, t e [o, T) ; 

x(t) = x(nT)ra(t-nT), t e [nT, (n+l)T); 

e(t,X) = x(t-XT)-x(nT)<fa(t~nT), t e [nT, (n+l)T)5 

and, from (3-7) 

T 
f @(T,X)=fJ {R(0)[l+€_2aT] -2R(TAT)6"aT}dT . (3-22) 

o 

The zero-order hold is a special case where a = 0. 

Upper Bound 

Suppose x(t) is a mean square differentiable random process, 

then for aT < 1 

t e ^ A ) < ^ {(u,eT)
2[l-3X+3X2 - Si (3-8X+6X2)]+2(aT)2} =^ (3-23) 

where u 2> (R"(Q) |/R(0). 

Proof: Consider the two exponential inequalities: 

f X > 1 - x ; 

and 

-2x 2 
€ < 1 - 2x + 2x 

valid for x > 0. Using these inequalities to bound (3-15), 
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1 

f e ( T , X ) < | J |R(0)[2-2aT+2(aT)2] -2R(T-\T)[l-aT]]dT = (3-24) 

T 

'0 
| J ( [ R ( 0 ) - R ( T A T ) ] [ U T ] + (<rr)2R(o)} dx . 

However,. Chapter II deal t with bounds of the var ia t ion , R(0) - R ( T ) , so 

that the following bound i s known, 

R(0) - R ( T ) < l^ML T 2 < ^~— R(0) 

o 
where w > |RU(0)|/R(0). To preserve the sense of the inequality of 

(3-17), the sign of the variation must remain positive or 1-cnr < 0. 

The result could be extended to larger aT for band-limited processes since 

both upper and lower bounds are known. Using this bound in (3-24) and 

carrying out the indicated integration, (3-23) follows. 

Least Upper Bound 

/ \2 Consider (« T) , the sampling rate parameter, to be fixed at the e 

value K. Inspection of (3-23) suggests that there might exist X and aT 

such that this bound on the interpolation error is minimized or at least 

reduced. That such is the case is shown in the following analysis. 

Let Y » aT, then with K = (w T ) 2 

' e 

t = ̂ -|i<[4-im+12X2 -YC3-8X+6X2)]} + 8f2 . (3-25) 

For well behaved functions where the existence of all partial derivatives 

may be assumed, the necessary and sufficient conditions that f(y, X) has 

a local minimum are that f = f. = 0. f and f.. are positive and 

Y x YT xx r 
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2 
fXY " fXXfw < °* T a k i n9 t n e necessary partials in (3-25) 

fy » ̂  [-K(3-8X+6X2) + 16T] , (3-26a) 

% = ^ {K[-12+ 24X] - y[-8+12X]} , (3-26b) 

\r = ^ 3 * ( 2 - 3 X) > (3-26c) 

*YT = 5 R ( 0 ) ' (3-26d) 

+XX = KR^0)[2 - r ] . (3-26e) 

If? ̂ fy = tx = °> t h e n (3-26a) and (3-26b) require that 

T = j | (3 - SX + 6X2) (3-27) 

Y * (3-6X)/(2 -3X) . 

For a minimum to have other than academic interest, K must be reasonably 

small and X must be real. Equating the two expressions in (3-27) and 

rewriting, an equation in a form suitable for analysis by the inverse 

root locus technique may be obtained, i.e., 

3K (X - 2/3)(X2 - 4/3^ +1/2) , - 0 
16 — — — ^ - 1/2) — - A - o . 

This analysis shows that real X exist between 0 and 1/2 for K < 8. Fur

thermore, for such X, (3-27) requires 0 < y < 3/2, a reasonable range 

of decay rates. Since f > 0, independent of X and y, and fo. > 0 if 

y < 3/2, then a minimum may be obtained if the following equation is also 
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satisfied. Substituting for y , then 

*xY - txxV = L^ 2 1 (2 -*rf - I R(0) xRto'Ls-r] - (3-28) 

-L^F]2L54X2-72X+25-^]. 

Rewriting (3-28), and using the root locus technique again, it may be 

shown that for X e [0, ~] and K = (y T) < 3.85, then (3-28) is nega

tive. Thus, for w T < 1.96 there exist real values for a, the decay 

rate of the exponential hold, and X, the percentage delay, such that 

the bound on \|re(T, X) has a minimum value. 

Considering the restrictions imposed by the above and substitu

ting for y in (3-25) then 

12 

KR 

^f- {(4 -12X +12X2) - J | (3 -8X +6X2)2} = (3-29) 

P L1-3X+3X2]- ^ M (3-8X+6X2)2 . 

Recognizing the first term as that previously obtained for the quadratic 

bound on zero-order interpolation, then the second may be viewed as a 

measure of the improvement gained with exponential hold. For small K 

and X Z 1/2, this improvement is relatively insignificant. However, 
o 

since (3-SK+6X ) has its maximum value at \ = 0 for X e [o, 1/2], then 

some appreciable improvement over the zero-order bound can be achieved 

with an exponential hold; in fact, 

I = ££ 
lx=o 3 

121 . %&M = EMu 21S] /, .^ 
3 384 12 L 32 J ' V J - J U ; 
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3K 
where Y = 77 and K < 3.85. This does not necessarily imply that the 

exponential hold is a better interpolator than the zero-order hold| how

ever 9 its upper bound is smaller than the upper bound of the zero-order 

hold and in the limit as T •* 0 these bounds approach the actual performance 

of the respective interpolator errors. Figure 7 compares the zero-order 

hold bound (aT = 0) to the least upper bound for the exponential hold. 

Sampling Jitter 

Elements of the preceding analysis may be used to examine a fairly 

general case of sampling jitter in zero-order interpolation. 

Nature of T 

The following definitions will be used. The time of occurrence 

of the n sampling interval will be denoted as t . The duration of the 

+h 
n interval is defined by T = t ., - t . Normally, the mechanism of 

7 n n+1 n Jf 

the sampling process would be set up to sample at some nominal rate with 

an interval duration denoted by T. The actual sampling interval fluc

tuates^ or jittersj about T from sample to sample* A typical interpola

tor output is compared to a uniform rate sample and hold interpolator in 

Figure 8. T may be considered to be a random variablef distributed on 

the interval [f - Av T + A2] according to some probability density 

p~ (T ). In order that t - t be always positive, only those values 
n 

of A, for which A < T will be used. The nominal interval duration T is 

not required to be the expected value of T although in most cases they 

will be identical due to the physical situation they model. T will be 

termed statistically independent if ... =• P- (T) - p- (T) = p~ (T) S .. 
n-1 n n+1 



*e(T,\) 

12 
5* 
12 

7TC 

12 

a=0 

a T = 1 6 ( w e T ) 2 

we T 

Figure 7. Comparison of Exponential and Zero-Order 
Hold Interpolation Error Bounds. 
a. Zero-Order Hold Bound, 
b. Exponential Hold Bound, 

m 
m 
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xCt) 

:(t) 

*3 *4 

(a) 

> > 

0 -

i_ *2 *3 *4 *5 

(b) 

S(t) 
i i 

9 — 

T 2T 3T 

(c) 

4T 5T 3T 

(c) 

4T 

Figure 8, The Effect of Sampling Time Jitter on Zero-
Order Hold Interpolation. 
a) Sampling Instants, 
b) Interpolator Output, 
c) Interpolator Output of Uniform Rate, 

Zero-Order Sample-and-Hold. 
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i.e., pp (T) = p(T), and p(T.,T ,T ,.e.,T ) = pT (T .)pT (T )... 
n J J J J j j+1 

p_ (T.,,) for any j and k. 
1j+k J + k 

A Bound on Interpolation Error 

Suppose that the sampling interval T is distributed on the 

interval [T - A,, T + A ] according to the probability density pT (T ) 
n 

where A < "T, and i s s t a t i s t i c a l l y independent as defined above so t h a t 

Pj (T ) = p(T ) , and x ( t ) i s mean square d i f f e r e n t i a t e , then 

\r ff J / " " W*> -«jM <- ^ ETK2} • (3-3D 

ProofJ 

t +T 
n n 

,T T-J " n t x ( t ) - x ( t n ) ] 2 d t . E T ( E j ( [ f / [x(t) 
' U t J K~ n t 

- x ( t n ) r dt] 

s ince T i s independent of x ( t ) . The expec t a t i on ope ra to r on x ( t ) i s 

t h a t of (3-5) and 

T fr I " f"(t) -x(t )]2dtU ET{ (̂Tn, 0)} = 

J f A {^Tn^°^(Tn)dTn 
1 1 

which could be evalua ted given \|r(T , 0) and p(T ) . Both \j/-(T , 0) and 

p(T ) a re p o s i t i v e and \|r(T , 0) has an upper bound given by (3 -14) . 
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Using this bound in the above 

v fcO'T" ««> • '<«H <-C t ^ ^} *.>-.• 
n 1 

= 1̂  (0) I p fr 2 ~i 
3 T L n J 

r 2 T 
For T as restricted, E_ J_T j does not depend upon n. 

Higher Order Systems 

The above bounding techniques do not seem to be applicable to 

higher order hold interpolation since inj the limit as T -* 0, these inter

polators tend to approximate the derivative of the process and hence 

become independent of the second derivative of R(T). For the zero-order 

interpolator, the |Rn(o)| bound obtained approaches the actual behavior 

as T becomes small. 
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CHAPTER IV 

VARIANCE OF MEAN SQUARE ERROR 

This chapter is devoted to a discussion and analysis of the 

dependability of the ij/(nT, X) defined earlier, i.e*5h how good an esti

mate of the actual behavior of interpolator error is given by \|r(T, X). 

Several approaches to this problem will be made as well as an analysis of 

the interpolator error of a Gaussian random process.. 

The Interpolation Error Random Process 

Interpolation Error Parameters 

The interpolation error measure \)/(T, X) discussed heretofore rep

resents the mean value of a rather unorthodox random process (or random 

series since its arguments are discrete) because the actual value of 

•\J/(nT, X) is dependent upon n, T, the value of the nT product, X, and the 

phase relationship of the sampling process and x(t), as well as the 

nature of the particular ensemble member during the observation interval 

[nT, (n+l)T). In particular, previous discussions of interpolator error 

have seemingly failed to investigate the relationship between that range 

of values which \fr(nT,: X) may attain and the value of T|/(T, X). 

Ranfe of ̂ (T, X) 

The difference in interpolator error from one sampling interval to 

the next is not necessarily negligible even for high sampling rates as 

may be seen from the following* Consider T to be sufficiently small that 

the error is a straight line during any sampling period or 
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e^t) = x'(nT + XT)(t - nT - XT), t e [nT, (n+l)T) , (4-1) 

where the one subscript will be used to distinguish those error param

eters based upon this straight line approximation. Then 

1 p (n+l)T 9 

fx(nT, X) = Y J x (nT + XT) (t - XT - nT) 
nT 

2 
= x'2(nT + XT)(l -3X +3X2) ~- (4-2) 

and the interpolation error for a given sampling interval is effectively 

determined by the samples of the derivative function and could vary sub

stantially from sample to sample even for T sufficiently small that x(t) 

does not change appreciably in an interval. Consequently, an examination 

of \]r(nT, X) to determine the range of its values about \|/(T, X) is in 

order. Since \jk(nT, X) depends on a quadratic function of x(t), then 

Var[\Jf] will depend upon the fourth-order moments of x(t) ; however, a 

tractable form exists for Gaussian x(t). 

Properties of a Gaussian Process 

In the following discussion, x(t) is assumed to be a stationary, 

zero-mean, Gaussian process with normalized auto correlation function 

R(t2-t1) 
p(tr, t2) = p(t2 - tx) - ~"-R(O)~™ ^ 4" 3^ 

and thus has the following first and second order densities: 

2 
p[x( t ) ] = [2nR(0) ]~ l / 2 exp[- ^QJ] (4-4) 

and 
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9 0„ 

-l/2 C x - 2D (t - t )x x +x 
p L x C t ^ ^ C t J ] = {(2n) 2 R 2 (0)Ll-p 2 ( t 9 - t 1 ) ]} exp l—L—-£-i-A-2_2 

1 2 l 2 I J I 2 R ( 0 ) [ l - p 2 ( t 2 - t 1 ) ] . 

(4-5) 

For such a process, it can be shown that (32), 

E{x(t1)x(t2)x(t3)x(t4)} = R(t2-t1)R(t4-t3)+R(t3-t1)R(t4-t2) 

+B(t4-t1)R(t3-t2) . (4-6) 

Instantaneous Error 

Consider the difference between a random process shifted in time 

by an arbitrary amount, d, and its value at some fixed time, t . Motivated 

by the previous discussion, this will be termed instantaneous error and 

defined as 

e(t,t ,d) = x(t-d) - x(t ) . (4-7) 
0 0 

For any stationary process, it follows that e(t,t ,d) has zero mean. For 
o 

a Gaussian process, the joint probability density of (4-5) is sufficient 

to yield p£e(t,t ,d)] by utilizing a transformation of variables (33). 

S i n c@ 

00 e+x(t ) 
p{e(t,t o,d) < e] = J J ° p[x(t-d),x(t o)]dx(t-d)dx(t 0) , (4-8) 

-00 -00 

then 

p{e(t,t ,d)} - j~ [P{e(t,t ,d) < e}] = 



62 

oo 

= J p[e+x( t o ) , x ( t o ) ]dx( t o ) = 

-co 

oo 

= J p t x ( t - d ) , x(t-d) -e ]dx( t -d) . 
- O Q 

Performing t h i s subst i tut ion and integrat ion on the second-order density 

of (4-5) yields 

p | e ( t , t o , d ) } = p {e ( t -d - t o ) } = [4^V( t -d - t o ) ] " 1 2 e x p | - 4 V ( ^ d _ t X (4-9) 

The instantaneous error, e(t,t ,d) is therefore a non-stationary, 
o 

zero mean process and, in addition, is Gaussian since it is formed by a 

linear transformation of a Gaussian process and has the first-order 

density given in (4-9) in terms of the variation. 

Squared Error 

Consider the above difference squared and termed squared error and 

defined by 

e2(t,to,d) = [x(t-d) - x(tQ)]
2 . (4-10) 

Again a transformation of variables may be used to determine p [e (t,t ,d)] 

and 

p[e2(t,to,d)] = [4„V(t-d-to)e
2]'1 2 e x p ( - ^ ~ r y ) . (4-11) 

Thus, e ( t , t ,d) has a f i r s t -o rder density in the form of the gamma 

density function, and 
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E|e2(t,to,dj} = 2V(t-d-tQ) (4-12) 

Var[e2(t-d-t )] = 8V2(t-d-t ) . (4-13) o o 

Wean Squared Error 

Consider the above squared error averaged on the interval [t., t j 

and termed mean square error and defined by 

t. 

'2 "1 "t. 
ftt^t^t^d) = 7 T t " J 2 Wt-d)-x(t0)]

2dt 

t 

'2 l " t 
r~rl, 2 e2(t,to,d)dt (4-14) 

For any s t a t i o n a r y x ( t ) , \jr(t , t . , t ^ , d ) has the mean value 

+ C V t l , t 2 , d ) * F^T 1 2 t R ( 0 ) " Rtt-d^o)]^ = <4"15) 
1 

t« -d - t 
r^r- f 2 ° [R(O) - R(n:)]d* . 
"2 1 t . - d - t 1 o 

For Gaussian x(t), the variance of \jr(t ,t.,t9,d) may be stated 

in terms of products of the autocorrelation by substitution in the rela

tionship, 

Var[y] = E [y2] - E 2 [y] . (4-16) 

How 
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E ^ a l t 0 , t l f t 2 > d ) } = E J — L ~ 2 J 2 [x(a-d)-x( tQ ) ] 2da J 2 [x(p-d) (4-17) 

^ V V *l *l 

- x ( t o ) ] Z d p « 

t 2 -d 

J — 1 — - J J [x 2 (a)x 2 (p)»2x 2 (a)x(p)x( t o ) 
t(t2-t1) t d 

2 , x 2 
+ x (a)x (t )-2x(a)x (p)x(t .)+4x(a)x(p)x^(t ) 

- 2x(a)x3( t )+x2(p)x2( t )-2x(p)x3( t )+x4(t )]dadpL 
KJ \J \J \J [ 

Interchanging the expectation operator and the double integral, and call-

in® upon (4-6) to simplify the fourth-order moments, then (4-17) may be 

written as 

VV d 

E{t 2( t 0 ? t 1 ? t 2 ,d)} = — ^ — j J J [6R2(0)+4R(0)R(a-p) (4-18) 
^ V V t -t -d 

1 0 

- 16R(0)R(a)+4R2(p)+2R2(a-p)-8R(p)R(a-f) + 

+•8R(a)R(p)] dadp . 

Combining (4-15),. (4-16), and (4-18) , than 

t 2 - t
0 - d 

Var[#(t . t . j t ^ d ) ] = 2R2(<i) - r - ^ T - f [8R(Q)R(a)-4R2((i)]da + 
0 1 4 t ^ - t T 4 .. . , "2 1 t. - t -d 1 o 

... ..:..l. w* -5 f f [4E(Q)R((S-p)-8R(p)R(a-p) + 
(t - t ) 
vx2 V t , - t -d 

1 0 
+ 2R (a-p) +4R(a)R(p)]dadp . 
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By choosing t >t1,t-2, and d appropriately, (4-18) may be inter

preted as the variance of the f(nT, X) discussed in Chapter III. For 

this case, the interval of interest is [nT,(n+l)T), or t =t.-nT, and 
o 1 

t 2-t 0+T, and the delay, d, is equal to XT. Making the appropriate 

substitutions, 

X T 
Var[i|r(T,X)] « -^ f f[2R2(0) - 8R(0)R(a-XT) + (4-19) 

+ 4R2(a-XT) + 4R(0)R(a-p) + 2R2(a-p) + 

+ 8R(a-XT)R(p-XT) -8R(p-XT)R(a-p)]dadp . 

Note that if T is considered small enough that only the first few terms 

in the Taylor series expansion are important, then 

Varty(T,\)] ~ | |R,,(0)|2(l-3X+3X2)2r4 (4-20) 

where | R"(0)| exists. 

The Derivative Approximation 

Suppose that T is considered small enough that the straight line 

error approximation discussed in (4-1) is valid where in order to deal 

with the derivative term, x(t) will be assumed to be mean square differ

ent iable. Then for Gaussian x(t), under this assumption, where 

t e [nT, (n+l.)T) 

e^t) » x'CnT +XT)(t - nT -XT), (4-1) 

^(nT^) = x'2(nT+XT)(l - 3X +3X2)T2/3 (4-2) 
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^(TjX) = |R"(0) |(1 -3X+3X2)T2/3 (4-21) 

and 

VartyjCT,*)] = § |R" (0 ) | 2 ( l - 3 \+3 \ 2 ) 2 r 4 = ^ ( T j X ) , (4-22) 

where (4-6) has been used to simplify the fourth-order moment of xB(nT+XT) 

Mote that (4-22) has the same form as (4-20). This simplified form will 

be used in the discussion immediately following. 

The Tchebycheff Inequality 
2 

ry T 

Suppose that x(t) i s Gaussian, and-^r. (nT,X) = x' (nT -XT) -r- , 

then 
p {l+i "txl > ty]} < 2A2 (4-23a) 

or, equivalently, 

P J > . > kty.) < — ^ — ^ , k ! > 2 . (4-23b) 
1 1 U ( k » - l ) 2 

Proof: The Tchebycheff Inequality (34) 

P{U - 2 |> a } < 5 M i l (4-24) 
a 

becomes, upon subst i tut ion of 2f|? for Var[\)r ] from (4-22), 

f i 2 
P| I f i " ^ 1 > a} < 2{~f) 

For a » fc\|r. , (4-23a) follows. Further^ since i|r > 0 and -ty. > 0, if 

k > 1 and [ijr. - \k | > Jok , then \k > \k , |\k -ik | ~ iff, -ijr, > k\k * anc* 
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fi > (k+l)^, . Substitution of this last inequality in (.4-23a) yields 

p { Iti "fx' > kti) " p (+i > (k+1)^] < -| . 
k 

For k*X * k% (4-23b) follows, 

If the bound is to have any meaning, then the bound must be less 

than 1, i,e., k > For example, when k - 2, then 

P {If! -• JI > aFi] = P (f x > a^] < I 

Since f, is non-negative and ty. is small and Var^.] is couched in terms 

of $\ , some further analysis is in order and leads to another bound. 

The Bienavml Inequality 

Suppose that \Jr(T, \) is known, then 

P{tCnT,X) > kf(T,X)} < | . (4-25) 

Proofs Consider the non-negative random variable, x* Now 

OQ Irv CO 

*** f p f* 

x = j xp(x)dsc ~ J xp(x)dx +. xp(x)dx > 
o o kx 

> I xp(x)dx > kx p(x)dx = kx p(x > kx j 
kx kx 

thus 

P {x > kx] < 1/k , 

and (4-25) follows. This bound is superior to (4-23) in that it does not 
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require either the Gaussian hypothesis or fourth-order moments, and, 

furthermore, for k < 2 + J z and Gaussian x(t) it even yields a bound 

lower than that obtained by the Tchebyeheff Inequality. 

Both the Tchebyeheff- and Bienayme-derived bounds yield informa

tion about the probability that a specific i|r(nT,X) lies between 0 and 

k:Tfr(T, X). The preceding chapter discussed techniques for bounding 

jjtit t. X) and use of the upper bounds in (4-23a), (4-23b), or (4-25) 

serves only to make them more conservative. 

Error Behavior in a Run 

The preceding analyses have been directed toward characteristics 

of the error in a single sampling interval. Another useful analysis is 

that of the multiple interval error behavior, or run error behavior, 

where a run is defined as N consecutive sampling intervals of duration 

T„ In effect, an observation interval of length T - NT is available for 

study. This is exactly the situation which arises in practice and leads 

to a comparison of the average error behavior of a finite run to the 

expected error criterion for the single interval. 

Infinite Run 

Suppose that x(t) is ergodic, then 

*(T,X) lim 2T 
X •• oo o 
o 

~r~ F ° e2(t, XT)dt 
T J-T 

o 

(4-26) 

with probability one. 

2 
Proof? Substituting the expression for.e (t, XT) given in (3-8) 

and rewriting the infinite integral as an infinite summation of finite 
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integrals, then 

T. 1 f To 2U, ,. . . f 1 ^f. (n+l)T 
r^*„ 2TJ„T • : ( t ) d t - X l i a + l J f [ J [x(tAT) (4-27) 

nT 
-N 

- x(nT)]2dt) = 

N-l T 

T i i m 1 5 m I J tx2(T~XT+nT) -

- 2x(T-\T+nT)x(nT)+x2(nT)] dx i . 

Granting the va l id i ty of the interchange of the integrat ion and limiting 

processes, then (4-27) may be writ ten as 

N-l 
1 

0 N ->• ©e 

T 
k l lim S H T E {x2^T-XT+nT) -2x(x-XT+nT)x(nT )+x2(nT)j dr . (4-28) 

-N 

But for erg ©die p r o c e sse s (35) 

N - l 

lim — [ x(nT+6)x(nT+9+x) = R ( T ) , T > 0 

-N 

with probability one, and, upon using this property in (4-28), the limit 

portion reduces to 2R(0) - 2R(T - XT), thus 

T T 
lim ^ - J ° e2(t, XT)dt - ™J 2[R(0) - R(x-XT)]dT = f(l9\) 

f HN>9 O -T O 

and (4-26) is proved. 

The error parameter \|r(T,X) is therefore valid as an estimate of 



70 

the long term behavior of the interpolator. The remaining sections in 

this chapter will discuss the error existing in short runs where T is 

finite. 

Finite Runs 

An Approximate Expression. Consider the derivative error approxi

mation introduced in (4-1), (4-2), (4-21), and (4-22) with the resultant 

mean square error given in (4-2) as 

^(nTjX.) « x,2(nT + XT)(l - 3X + 3X2) rr (4-29) 

which presupposes a fairly high sampling rate* This is a good approxima

tion, especially in the sense of error analysis, since the expected value 

of f,(nT,X) is identical to the quadratic bounds obtained for T]/(T, X), 

the actual expected mean square error, in (3-14) and (3-17), for band-

limited and differentiable processes respectively. Thus 

^(T, X) < |R"(0)|(l -3X +3X2) Y = ̂ (T, X) . 

Error in Approximation. For band-limited processes, it is pos

sible to place a tighter bound upon the difference between the actual 

expected mean square error, \J/(T,X), and the approximate expected mean 

square error, ̂ .(T, X), since \k (T, X) is an upper bound on f(l9 X) and 

since f(J» X) has a lower bound given in (3-12) then TMT., X) must lie 

between the extremes given by these bounds. Rewriting (3-12), then 

^(T.X) -f(T,X) < |Rn(Q)|(l-3M-3\2) \ - 2JB^2ii (4-30) 

u 

u T - sin(X u T) - sin[w T(l-X)]' 
c c c 

(j T c 
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The sine functions may be replaced by a truncated series expansion which 

will preserve the inequality, i.e., 

3 5 
s X X 

sin x v_ x - ^ 9 T , , 

due to the property of a l ternat ing convergent ser ies that the difference 

between the in f in i t e and f in i t e ser ies i s bounded by next term in the 

expansion. Making t h i s subs t i tu t ion , 

_ 2 
f,(T,X) - t ( T , \ ) < JR" (0) | "~r (w T)2[l-5X+10X2-10X3+5\4] < (4-31) 

< 5 M (U cT)4[ i _ 5 \ + 10X2 - 10X3 +5X4] 

where the latter inequality follows from (2-6). Therefore, the differ

ence in the expected value of the true and derivative approximation mean 

/ \4 
square errors is bounded by an (u T) term for band-limited random pro
cesses. 

The Sampled Mean. Consider a finite run where N consecutive 

sampling intervals are observed. The data so obtained can be viewed as 

an estimate of the long run behavior of the interpolator. Defining qp in 

the following manner, 

N-l 2 N-l 

• * " I E fj^TjX) = 5 (1 -3X+3X2) £ xt2(nT+XT) , (4-32) 

ri*o n=o 

then f is an unbiased estimate of iK (7,X), that is, E{<PJ = ̂ ( T j X ) . The 

random portion of (4-29) may be isolated to form a sample mean which can 

be analyzed by standard techniques (36), 
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N - l 

N I xS2 ^nT + XT^ (4-33) 

n^o 

where E^JIJ - | R n ( 0 ) | . The variance of \i may be determined i f 

N-l N-l 

E ^ - E f r } ] 2 } = ' E / ^ £ £ x ,2£nT+KT)x ,2(mT+VT)} - E 2 ^ } 

nso m=o 

can be calculated. If x ' ( t ) i s fourth-order s ta t ionary, then 

N-l 

\fer[|i] = | E{x:,4(0)] + ~f E (N-l )E(x , 2 (0)x , 2 ( iT)) - E2{jx} . (4-34) 

i=l 

These preliminaries lead to the following results. 

Variance of Mean Square Error* Suppose x(t) is Gaussian and dif-

ferentiable and T is sufficiently small that the straight line error 

approximation is valid, then the sample mean of a run of duration T = NT 

seconds has a variance given by 

VarLf] 
~ 2, 2x^2 
T (1-3X+3X. ) • n 2, 

N-l 

^ • 4 E <> - *>«" 2 <«> 
i=l 

(4-35) 

Proof: Since x(t) is Gaussian and differentiable, then 

Efxr2(0)xr2(iT)} = R"2(0) + 2R"2(iT) 

from (4-6). Using this equality, as well as the fact that E [p.] = R " 2 ( O ) , 

in (4-34), then 
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N - l 

Var[|i] » | R " 2 ( 0 ) + ~f I (N-i)LR"2(0)+2Rn 2(iT)] 
N 1-1 

R1l2(0) 

Rearranging terms, t h i s can be writ ten as 

Var[|i] - R"2(0) r. 
N- l N-l 

i ~ 1 + i E»-o + 4 I »-i)R"2(iT) . 
N " J N' . . 

1*1 i - l 

This can be simplified further since 

N-l 

-~ £ (N-l) - - ^ [(N-l) + (N-2) + . . . '+ 1] = 

2 r ( N - l ) 2 + ( N - l ) -I 1_ 
o L 2 J " " N * 

i » l 

so tha t 

N-l 

V a r b ] = | R M 2 ( 0 ) + 4 £• (N-i)R"2( iT). 
U 1*1 

Noting that 

-2 T r 2n 
<p: - - j 11 - 3X + 3X J y. , 

(4-35) immediately follows. 

Run Variance in Error Analysis 

Under the assumptions of high sampling rates, and differtntiable 

random processes, the interpolation error in a sampling interval approaches 
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a straight line and the time average run error on the interval [o, nT) 

has been shown to be 

N-l 

<p = |- (1 -3\ +3X2) £ x'2(nT+XT) . 

n-o 

The expected value of f is simply 

(4-32) 

f = Y (1 - 3 \ +3X2)[Rif(0) (4-36) 

If the process i s also Gaussian, i t was shown that 

te£f ] Vix -$k *3x2) 
N-l 

T ^ + f f E (l~i/N)Rft2(iT) 
i-1 

. (4-35) 

Equation (4-35) may be rewritten as 

us N-l 

Var[<p]^2jf + | [ fl-^tiWr 
i=l 

(4-37) 

This form indicates that the Tchebycheff Inequality might now be used to 

greater advantage in determining a confidence level on the difference in 

the run average and expected value of a run since although the variance 

-2 
is dependent on cp it is multiplied by a function which should decrease 

with increasing N. The Tchebycheff bound previously discussed, (4-23a) 

and (4~23b), could have been obtained from (4-37) for N = 1. For M > 1, 

P(lf ~ <FI > k<p) < ̂ ~ W . 
• J (k^p) 

(4-38) 
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Subst i tut ion of (4-3?) in (4-38) leads to 

N.-1 

'•I 
i-1 

P{lt - t I > # } < ̂  | l + 2 £ (1 - iA>Ej£gf ]2J . (4-39) 

I f a fixed observation interval [o , T ) i s considered and N i s allowed 
o 

to increase without limit where NT = T , then (4-39) may be rewritten 

as an integral expression since 

r N_1 a T 

$-*<» 
i-1- " ° ° 

thus 

T 

P{|* -ft > kf] < -£- J ° (1 - T A j f t ] dx (4-40) 
k I o ' 

o 

for sampling intervals approaching zero. 

Neither the form of (4-39) nor that of (4-40) lends itself to 

general statements unless a specific R" (T) is to be evaluated* However^ 

it can be seen that for those R" (T) which are monotone decreasing, an 

increase in N leads to a decrease in the bound given by (4-39) for 

P{[? -fl y tap-1 since the summation term could be rewritten as 

N-l 
2 
T 

4-1 1 "K" IUI 
© 

T L ^ " T ^FIo) 3 
« 1 W 

1=1 

which corresponds to the area of a monotonic staircase function and 

decreases with increasing N (37). 
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It is interesting to note that for either (4-39) or (4-40) if the 

2 2 
observation interval $ T *is small enough that R" (T) Z. R" (0) for 

o 
%'•£• [0> T ), then both the summation and integral terms above have con-o 

stamt values and the bound on P||<p - f | > k<pj becomes approximately 2/k , 

and the confidence level on f becomes the same as that obtained for 

fjCnT,^) earlier (4-23). 

Knowing R ( T ) , and thus R"(T), the behavior of the run average 

error may be analyzed, generally leading to a confidence level about f 

which improves as N, the number of samples considered in the run, is 

increased. 
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CHAPTER V 

SAMPLE CALCULATIONS 

Several of the techniques of error analysis developed in the pre

ceding chapters will now be applied to the investigation of some common 

classes of spectral densities. The causes to be discussed are band-limited 

white noise, a non-band-limited but differentiable process, the non-dif-

ferentiable exponential autocorrelation function, and the sampled sine 

wave* The latter case will be shown to have some interesting additional 

properties. The mean square error calculations may be simplified some

what by considering only the two values of delay which are of prime inter

est, X - 0 and X = 1/2. Values for X *= l/2 may be obtained if f(l9 0) is 

known by using a relation obtained by Liff (38), 

^ ^f 1/2) = t (T/2, 0) , (5-1) 

which follows from the evenness of V(T) and the integral formulation of 

\|f(T, X). 

The mean square error criterion has another property in the limit 

as T becomes large, at least for those processes with autocorrelation 

functions tending to zero for large t. Obviously, for such processes 

V(x) approaches R(0) for large T and since f(l9 X) is the average over 

T of 2Vt<r), then 

lim (f(T, X)| = 2R(0) , 
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Band-Limited White Noise 

Suppose white noise is passed through an ideal flat lowpass filter 

of cutoff frequency, u . The output has a spectral density given by 

Tt/u N for |(jl < w ' c o — c 
S(u) = < (5-2) 

0 for |w| > u 
c 

with the corresponding autocorrelation function 

sin w T 
R < ^ • No ITT- • (5"3> 

C 

The integral formulation for i|r(T, X) may be written since R(T) is known 

and becomes 

_ 9 « (l-X)T sin u T 

*<T'X)"fJ\T "o^-n^T-^*: (5-4) 
-XT c 

0 - (lA)uT 
^ I c w r' 1 sin a T , 
c -Xu T c 

For X - 0, this reduces to 

2N 
f(T, X) » — [u T - Si(uT)] 

c 

where Si(x) represents the familiar ^ i^ -^ integral. 

Differentiation of R(T) yields 

u T cos(u t ) - sin (y T ) 
R ' ( T ) = UN -£ - * — £ - (5-5) 

(u T ) 2 
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and 

0 2 sin(w T) -2(y T)COS(UT) - (W T) sin(w T) 
R" (T) « y^NQ — — £ - — — £ - j - £ — - £ — — - £ — . (5-6) 

(UCT) 

Application of L'Hospital's Rule readily shows that 

2 

R"(0) - - ^ - N 
o 0 

and 

yrf
2 « |Rn(0)|/R(0) - wc

2/3 . (5-7) 

The interpolation error function and its bounds are plotted on a 

log-log scale in Figure 9> The units of the horizontal axis are in terms 

of the ratio of the sampling frequency to the cutoff frequency to more 

effectively illustrate the magnitude of the increase in the sampling rati 

necessary to reduce the interpolation error. 

Either \j/-(T, \) or its upper bound might now be used in the Bienayme 

Inequality bound of (4-25) or, if x(t) is Gaussian, in the Tchebycheff 

Inequality bound of (4-23) to obtain results that are the same for all 

sampled processes in the sense that given a \|r(T, X), these bounds are 

independent of other aspects of the process, 

For Gaussian x(t), however, the run variance, which is a function 

of R M(T), may be used to obtain the confidence level of (4-39). For 

sampled band-limited white noise, substitution of (5-6) into (4-39) yields 
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f(T,Q) 

'ft Co) 

Figure 9. Normalized Interpolation Error Compared to its 
Theoretical Bounds for Band-Limited White Noise, 
a) Upper Sine Bound, 
b) Quadratic Upper Bound, 
c) f(T,0)/R(0), 
d) Lower Sine Bound. 
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r N_1 

p{k -*| > k^ < -L i | + 1 £ i i - i M [6 s i n ( i T) (5.8) 
k L . , (i (j T) 

1=1 C 

- 6(i w T) cos(iw T) -3(iw T) sin(iy T)] /. 
C C C C I 

Given k, N, and T, (5-8) could be calculated and used to examine the run 

average behavior of sampled data* 

Suppose it is desired to sample and interpolate an x(t) with 
sin yc^ 

R(T) = M ' — where the expected interpolation error is to be less 
" G 

than 0.01 R(0). From Figure 9, it may be seen that w /u =* 24 is suffi-
s c 

cient or T « it/l2w . The Bienayme Inequality (4-25) may be used to show 

that P{f (nT, 0) > 2JF(T, 0)} < 1/2 and p{f(nT, 0) > 3^(T, oj] < l/3. If 

the process is assumed Gaussian, then the Tchebycheff Inequality (4-23) 

may be used to show that P-Hr. (nT, 0) > 3fc(T, 0)1 < ̂  and no information 
is gained. However, from the curves presented for the run variance where 

f N-l ^ 
J 2 4 V - R" (iT) 2] 

the value of jg + — ^ (N-i)Lpv )0) ] ( has been plotted versus N, it 

l-l 

appears that PJq> > 3<p] < 0.301 for runs of duration greater than ten 

sampling intervals. The average error behavior is thus rapidly converg

ing to the expected error behavior. 

A Non-Band-Limited Differentiate Process 

Consider the non-band-limited but low pass spectrum 

. 3 
S(y) « -£--~-i (5-9) 

(a + y 2 ) 2 

which could have resulted from the passage of white noise through an 
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appropriate l inear f i l t e r . A process with such a spectral density would 

also have the autocorrelation function 

R(x) = €-°lT l + « | T h - a | T ' . (5-10) 

Subst i tut ing in \Jr(T, X), the expected interpolat ion error becomes 

*(T, X) - f / 1 A TLl - 6 " ° | T | - O | T | t - a ' T l ] d r . 
-XT 

For X. * 0, t h i s becomes 

* ( T ' X) = T̂ I Ll " ^ " t £ " ^ d t (5-11) 
o 

= ^ [ a T + (2 + a T ) T a l - 2] . 

d i f fe ren t ia t ing R(T) , 

R'(T) = ^ 2 | T | € - « K I (5-12) 

R"(T) = „ a
2 - a i T i + a 3 | T [ 6 - a i T i 

Rf,(0) « -a 2 

and 

2 2 
Wd = a * 

^(T, 0) and its bound are indicated in Figure 11. 

If x(t) is Gaussian, the run variance, can be calculated and leads 

to the following confidence level 
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Figuore l l i iJQ^rnalized Interpolat ion Error Compared to i t s 
Theoretical Bound! for a Second-Order Non-Band-
Limited Spectral Density. 
(a) Upper Quadratic Bound, 
(b) ^(T,0)/R(0) . 
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N-l f 

>{lf -9l > kf] < -|{jjj + I £ (1 -i/N)[6~2laT(l -2iaT + (iaT)2)]j. (5-13) 

\|/(T,0) and i t s bound are indicated in Figure 12, plotted on a 

log-log scale . For an interpolat ion error l ess than 0.015 R(O), i t may be 

Otr O 

seen that u^Ju^ = 31*4, or T = W^=1^ i s sufficient. Inspection of 

the run variance curve shows that for a run containing 4 or more samples 

where x(t) is Gaussian, P{<p > 3?] < 0.23 and, for runs of 9 or more samples, 

P|<p > 2pJ < 0.5. The average error behavior is again seen to be rapidly 

converging to that predicted by the expected mean square error criterion. 

The Exponential Autocorrelation Function 

For the familiar exponential autocorrelation function 

R(T) « €" a ( T ) (5-14) 

S(y) = 2a/[o2+ w 2 ) (5-15) 

and substitution leads to 

2 
» (1-\)T 

.-a T f(T, X) » f [l-6-a»^]dT 
1 J AT 

For K » 0 , 

T 

f(T, 0) - ^ J a [l-e^dt 
o 

~r [aT - 1 + €"
aT] . (5.16) 

aT 
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Inspection shows that a process with such an autocorrelation func

tion must be non-differentiable since |R (0)| does not exist. Examination 

of S(w) further shows that 

k/u2 - S(w) > 0 

for all u if k > 2o. For k = 2a, then 

lim w ~S(CJ) = k = 2a . 

Thus, the bound of Chapter III can be applied yielding 

f(T, 0) < aT - w T (5-17). 

where u * 'Ml6) ' 4^* 0) along with its bound is sketched in Figure 13. 

As predicted in Chapter III, for higher sampling rates, the rate of 

decrease in interpolation error for a given increase in sampling fre

quency is one half that obtained for the differentiable processes of 

Figures 9 and 11, 

Since the discussion of the run variance depended upon the exis

tence of a derivative approximation to the error, it cannot be used in 

this east* 

Sampling of a Sine Wave with Random Phase 

The investigation of the nature of the distribution of ifr(nT, X) 

was undertaken to evaluate* +(T, X)'s value as an estimate of interpola

tor performances As a single sample estimate, it is obvious that 

EJ^CnT, X)J is the expected value of iJ/'CnT, X) for any ensemble member 

as well as for each sampling interval along any ensemble member. The 
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Figure 13. Normalized Interpolation Error Compared to its 
Theoretical Bound for the Exponential Autocorrelation 
Function. 
a) Upper Linear Bound , 

b) f(l,0)MQ). 
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long run behavior of \|r(nT, X) for ergodic processes, i.e., the infinite 

time average of \fr(nT, X) along an ensemble member, has been shown to be 

the same as \|f(T, X) for each ensemble member. The following pathological 

case involving sampled sine waves yields a result where a finite time 

average is sufficient to determine i)r(T, X). 

Consider the ensemble whose members may be represented by 

x(t) * A cos(w.t + 6) (5-18) 
o 

where A and w are known constants and © is uniformly distributed on 

[0, 2n.). Since this ensemble is ergodic, then equality between ̂ (T, X) 

and the infinite time average along one ensemble number is expected. 

The following short run relation is also true. 

Suppose x(t) is as above and is sampled at some rational multiple 

of the Nyquist rate, i.e., T = — (j), where (T) < 1, then the mean 
o 

squared error is periodic with* period T - m — , thus the average of 
e (j 

o 

the interpolation error over any consecutive I intervals equals f(l$ X), 

Proof: The expression for the average interpolation error may 

be written as 

N+I.-1 / ^ T W ~y 

A£{e2Ct,d)J > j ^ \ ^ Ij [A' s ih(u t-d+e) -A slti(nw- T+e)] ' 2dt] L 
w t nT • ° ° J 

n = N (5-19) 

This expression will be simplified by rearranging its terms using various 

trigonometric identities and then using the following two identities 

(3£}» 



l-l 

1 c o s U a ^ T ] 

i=o H T ™ MMIH miufiitlmm 

tu 
0 

s inL(^ - l / 2 )2u Tl 

s in (u T) (5-20a) 

U _ nm 
J-%r 

o (~ sin£2mit - u Tl 
1 + s in u T 

o 
= 0 

and 

l - l 

) s i n [ i 2 j T] 

i=o T = ir-*-" 
iSy 

x r c o s [ ( J - l/2)2u)oT] 
= -r cot(u T) -••———-~-r---7---̂ Y—"—* 2 1 o s in (u T) (5-20b) 

- mn 
T = j — • 

• U J o 

r cosL2mn - D 
~ - cot(u T) - ——-' —; y '-

2 o s in (w T 

cos|_2mit - w^Tj 

r. 0 . 

Now, 
v-t I D •> 

A^{e 2 ( t , d)] - | - E | J [ s i n 2 ( u o t - d + 6 ) + s i n 2 ( n u o T + 9 ) 

n-N 

- 2 s in(u t - d + e ) s i n ( n u T + 6 ) ] d t > . 

The integrand may be rewritten as 

[ l - 7; cos(2nu> T +26) - ^ cos(2w t - 2XT +29) - 2 s in(nu T +6) w 2 o 2 o o 

• s i n ( « t - XT + 0 )1 
o 

which becomes upon i n t e g r a t i o n on [nT, (n+l)T] 

Ll - § cos(2nu T+28}]T - —• / s in£(2n+2)« aT - 2d + 28] -
o : 

- sin[2nw T -2d +2©]} + j p sin(nujQT +e) (cosL (n+l)uQT - d + 0] 
o 

- cosLnu T - d + e ] | . 
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Now 

2 sin(nu T + e)cosL (n+l)u T - d + 9] - 2 sin(nu T + 0)cosLnu T - d + el o o J o o J 

= s in [ (2n+ l )u T - d + 2 0 ] - sinLu T - d ] - sin[.2nu T - d + 2 0 ] - s in (d) -
O 0 O 

= sin[(2n+l)w T ] c o s ( 2 0 - d ) + cosL(2n+l)w T ] s i n ( 2 0 - d ) 
0 0 

- sini.2nu T ] c o s i . 2 0 - d ] - cos[2nu> T ] s i n ( 2 0 - d ) - s in[u T - d ] - s i n ( d ) , 

The average may now be w r i t t e n as 

N+£-l 

( e 2 ( t , d)J = jfe £ ( T " \ cos(2rxjQT + 20) (5-21) 

4u 
i - Lsin(L2n+2]u T -2d +20) - sin(2nu T - 2d + 20) ] + 

+ ™ [ c o s ( 2 6 - d ) {sinL(2n+l)u T] -s in[2nw T]} + 
o 

+ s in (20 - d) | cosL(2n+ l )u T] - cosL2rw T ] } -

- sin(td T - d) - s in d ] | . 

For T = j^- , all the summations in (5-21) can be written in the form 
o 

of either (5-19) or (.5-20) and 

A; (e2(t, d)| ;= A 2{l- ~ y Lsin(uQf - d) + sin(d)]] (5-22) 
Q 

s A {l - ~TJ^ Lsin(°jr - d) + s in d]|< 

For t h i s ensemble, the a u t o c o r r e l a t i o n funct ion i s 



92 

2 
A 

R(T) = -r- eos(y T) ; 
z 0 

A2 

pf(T) = „ — sin(wQT) | 
o 

A2 

R™ (T) = - — — cos(y T) i 
2y 2 ° 
o 

and 

y = w «: (5-23) 
e o ' 

(1 -X) T 
f(T, X) - | J |[A2 - A2coswoT]dt = (5^24) 

-XT 

= A jl - J~Y (sin[(l-X)uQT] - sin[Xu T])| . 

For T = y— and d = Xy J, (5-22) and (5-24) are identical. Thus,, any 
o 

t consecutive samples are sufficient to estimate \|r(T, X) with zero error. 

Note that for band-limited processes, the upper and lower sine 

bounds of (3-12) and (3-15) converge as |R"(0)j approaGhes its maximum 

2 - 2 
value of y R(0) and for R(T:) ~ A cos (m) ^ since [RM (0)j ~ y iCo)^ they 

become identical and equal to (5-24). 

Applications 

General Procedure 

Examination of the upper bounds on interpolator error for differ

entiate processes given in (3-14) and (3-17) indicates that the effect 

of the delay, X, is separate and distinct from that of the sampling rate 

and furthermore that this quadratic bound is completely defined given 
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R(0), lR"(0)|, X, and T. Defining a percentage error bound as 

fr(T, 0) < |R"(0)1 T2 =
 ((JdT) 

2 

m^~^RtuyT ~ - E (5~25) 

and using the effective band-limited frequency defined in (2-23), then 

1 \ T 2 i „ / d \ 12 
t T^2 L W J T ™ ) ] L2n(—)] o (w,T) L -d f J L u /J 

P2 - d __ s _ s 

which may be solved for u , where w = 2icf = 2%{=)9 i . e . , 
S S S I 

u = 
• V3-E E 

or, for T, 

,1/2 

— "^W1^2. (>-«) 

T - I 3R(0) .V2 
T - LTFWT] * ( 5 ™ 2 7 ) 

In practice, the parameters R(0) and [RH(0)| could be determined 

by either of the following techniques: spectrum analysis or differentia

tion of x(t). Suppose that a spectrum analyzer has been used to obtain 

S(u) and that the order is at least two, then numerical analysis techniques 

may be used to evaluate the infinite integrals of S(y) and w'S(w). If 

x(t) and x'(t) are available, then an rms meter may be used to evaluate 

VHTO) and ,/]R"T0T\ • In either case, sufficient information is avail

able to obtain u , and thus a sampling rate. 

Note that due to the normalization of both axes in Figure 12, the 

upper quadratic interpolation error bound sketched there is valid for any 
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differentiate process. Knowing the percentage error level desired, a 

value of (y /y,) can be read off and y can be found in terras of y,. s' d s d 

The Butterworth Spectra 

Consider the family of differentiable Butterworth spectra defined 

by 

S(y) = 
1 + (y/y ) 

o 
2n 

(5-28) 

where n > 2. The first-order spectrum (n = l) is the exponential auto

correlation function previously discussed. Both (5-26) and (5-27) require 

knowledge of R(0) and |R"(0)| which are readily obtainable from the inte

gral 

J 
m m-1 . x dx 

-°° 1 + x 2n n sinij^j 

valid if' 0 < m < 2n -- a condition satisfied in both the necessary inte

grals if n > 2. A change of variables yields 

:(0) • £ J 
dy 

i + (^-)zn 

y 

2n sin(^-) 2n 

and 

SO: 2 
u dy \$*ioY\,*.Af -—^ 

y 
2n s in( |p 

from which 
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2 „ sin(n/2n) 
d sin(3it/2n7 o 

(5-29) 

Using these results in (5-26), 

CJ 
2g. _sin(it/2n).,.1 ' 
E L3sTnT3^/2n) J (j (5-30) 

Note that, for a given percentage error, u has its maximum value, -—2-- u 
* s J * / T E ° 

for n - 2, and rapidly converges to its limiting value of -~ w (n = °°). 
Jt o 

This means that, in order to achieve the same percentage interpolation 

error, the sampling frequency for a second-order Butterworth need only be 

Jz t imes greater than that required to sample and interpolate an ideal 

flat band-limited process with cutoff frequency u , i.e., an infinite 

order Butterworth. 

An Approximate Spectral Density 

Analysis reveals similar results for the spectral form assumed by 

McRae and illustrated in Figure 6. For second-order or greater, 

i p u l i P °° wi 2n 
R(0) = - du + - C — ) du 

it *J it J w 

1 ( 2" > 
it v2n-l ; 

and 

R"(0) - ̂  f 1 w2du + i f ~ ~ du 
it «J it J , / n - < 

u1 w 

2n 

2̂ 

u. 1 r 2n i 
it L3T2r^3T J 
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from which 

2 _ 2n- l 2 
Ud * 3(2n^3T U l ' 

Using these r e s u l t s in (5 -26) , 

2JL [ 2n-l i 1 / 2 

's 3E L2n-3 U- = - L2n-3J yl 

2ir 

As expected, y has its maximum value, — — y for n = 2 and converges to 
S 2* '/5"E 

its minimum value, ̂ fw., for n *• «*. Again it should be noted that the 

sampling frequencies vary by a factor of Vo and it appears that knowledge 

of an approximate rolloff point (y , y. , etc.) is sufficient to estimate 
o i 

a suitable sampling rate. 

A Numerical Example 

As an example of the utility of the bounds obtained, consider the 

following problem. A signal having a Butterworth spectral density of the 

form of (5-28) is to be sampled and interpolated by a zero-order hold, and 

the sampling frequency is to be selected so that the percentage error 

meets an aeeeptable level. For purposes of illustration, several orders 

of data and error levels will be compared for the same break frequency, 

4 

i.e., y = 2irf ~ 2^x10 rps. No attempt is made to normalize the sig

nal power of different order spectra to the same level since the percent

age error criterion takes this into account. 

First-Order Data. The first-order Butterworth spectrum is recog

nizable as that of the exponential autocorrelation function with R(0) -y /2« 
o 

The smallest applicable value of k which satisfies (2-24) is u , thus 

k yn * MToT ~ w * Once y is known, Figure 13 may be used to evaluate 
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(y /y ) for a given error level. For this first-order signal, the sampling s n 

frequencies must be 6250 KC, 1250 KC? and 625 KC to bound percentage 

error to l%f 5%, and 10% respectively^ as defined by (5-25). 

Second-Order Data. For higher order Butterworth spectra, y , is 

given by (5-29) or? for n = 2, 

1/2 4 

0 
rSinU/i) T / 0 , 

d Lsin (3i/4) J o 

Once u« is known, the generalized bound in Figure 11 may be used to 
ct 

determine (y /y ) for a given error level. Alternately, u may be com

puted from (5-26). For the second-order signal, the sampling frequencies 

must be 362 KC, 162 KC, and 114 KC for percentage error levels of 1%, 5%$ 

and 10% respectively. 

Third-Order Data. For the third-order Butterworth spectrum, (5-29) 

may be used to evaluate y ,, 

---cHSfsSk^V^""4-3ir/6) 

Again either Figure 11 or (5-26) may be used to show that the sampling 

frequency must be 256 KC, 114.5 KC, or 80.5 KC for error levels of 1%, 5%9 

and 10$ respectively. 

Infinite-Order Butterworth Spectrum. As n -*°° in (5-28), the spec

trum approaches the flat band-limited spectrum of (5-2) where N• .= 1 and 

i- rsin(it/2n) i1/2 2% 1A4 
d
 n^ro

 Lsm(3it/2n) o ^ 
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The necessary sampling rates may be determined by either method and are 

209 KG* 94.6 KC? and 65*7 KC for error levels of l%$ b%$ and 10% respec

tively. 
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CHAPTER VI 

CONCLUSIONS 

The zero-order sample-and-hold interpolator is a widely used 

interpolation device whose performance is usually rated in terms of an 

expected mean square error criterion. The research was principally 

directed towards estimation of this error for the sampling of fairly 

general classes of random processes! however, several useful results 

pertaining to the general behavior of the second-order statistics of 

random processes were obtained as well as an analysis of the quality 

of the expected mean square error criterion as an estimate of the true 

error behavior* 

Random processes which are either band-limited or have spectral 

densities expressible as ratios of even polynomials in w have variations 

which are bounded by relatively simple functions of T involving basic 

statistical parameters of the process. For a band-limited process^ the 

variation is, of course, constrained to lie between 0 and 2R(0) buts in 

addition, has both a-functional upper bound and a non-zero lower bound* 

The derivative behavior of band-limited variations is such that they are 

monotonic increasing for T t [0, n/w ] and are convex (have non-negative 

second derivative) for T e [0, it/2w ]. Non-band-limited processes^ while 

also constrained to lie between 0 and 2R(0)j also possess either a quad

ratic or linear upper bound depending on the differentiability of the 

process. The variation of any process cannot equal either of its 
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theoretical extremes, 0 or 2R(0), for T / 0, unless x(t) is mean square 

periodic, i.e., R(t) = R(T + T ) in which case the spectral density is of 

the impu1se summa ti on form. 

A meaningful expected value error criterion for a general inter

polator may be defined as the expected value of the time averaged squared 

difference between the interpolated output and the delayed original input» 

For the zero-order sample-and-hold interpolator, this error criterion is 

a functional of the variation and may thus be bounded in terms of the 

relations obtained for the variation, thereby leading to the curves illus

trated in Figures 11 and 13. The utility of these bounds has been 

enhanced by generalizing them in terms of percentage interpolation error 

and a normalized sampling rate8 Once the effective bandwidth parameter, 

y or y ., is determined from basic process statistics, it may be used in 

conjunction with these two curves to select a sampling rate which will 

satisfy a constraint on interpolation error. 

It is well known that the operation of zero-order sample-and-hold 

interpolation introduces an effective delay, i.e9, the interpolated out

put x(t) is a better approximation, in the mean square sense, to a delayed 

version of the input, x(t-d), than it is to the original undelayed sampled 

process, x(t). It is widely stated that the value of this delay is one-

half the sampling periods however, for random processes there exists a 

condition on the first derivative of V(T) which determines the value of 

this delay and is not necessarily satisfied for a delay of one-half sampling 

period. Although there do exist random processes for which the effective 

delay is not one-half sampling period, the derivative condition is auto

matically satisfied for any band-limited process sampled at a rate greater 

than one-half the Nyquist rate (T < ,-—) „ 
- wc 
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For the classes of spectral densities considered, either band-

limited or ratios of even polynomials, the limiting behavior of the 

zero-order hold judged in terms of the sampling rate versus interpolation 

error trade off is the same for all differentiable processes, band-limited 

or not, and is twice that for first-order data (non-band-limited spectral 

1 2 densities rolling off as (-) ). 

The interpolation error in an exponential hold for differentiable 

random processes has a quadratic upper bound. Furthermore, there exists 

a decay rate which will minimize this bound for a given sampling rate 

yielding some improvement over the zero-order hold bound; however, for 

high sampling rates and low values of decay, the two bounds converge, 

The expected mean square error behavior of a zero-order sample-

and-hold interpolator with a randomly fluctuating sampling interval 

(sampling time jitter) is bounded by a function dependent upon the proper

ties of the variation bound and the statistics of the jitter* 

The expected mean square error criterion utilized to evaluate 

interpolator performance is a good estimate of the actual behavior of the 

error from interval to interval* Several approaches were used to point 

out the relationship between the expected value of the interpolator error, 

T|/(T, X), and the range of values which \j/(nT, X) can assume. The Bienayme 

Inequality may be used to show that Pfy(nT, X) > lojr(T, X)] < ~ . 

For differentiable Gaussian processes, where the sampling rate is 

sufficiently high that the error in an interval is approximately a straight 

line, the Tchebycheff Inequality may be used to establish a similar rela

tionship, PfMnT, X) > ty (T, X) > kip (T, X)} < — ^ _ . I n addition, 

. * ( k - i r 
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for such processes, a confidence level exists which relates the time aver

age interpolation error over a finite run (a number of consecutive sampling 

intervals) to the expected mean square error* This confidence level 

depends upon the duration of the run, the number of sampling intervals in 

the run, and the nature of the derivative of the sampled process (R"(T))„ 

The central conclusion drawn from the research is that the zero-

order sample-and-hold interpolator possesses extremely well-behaved 

expected mean square error characteristics, which may be used in their 

simplified bounding forms to estimate a suitable sampling rate, yet depend 

only upon basic input process statistics^ Furthermore, the overall per

formance of the interpolator is adequately represented by this criterion* 
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APPENDIX I 

GENERAL BEHAVIOR OF THE AUTOCORRELATION FUNCTION 

The results of Chapter II were obtained for the variation, not 

directly for the more familiar autocorrelation functions, because the 

frequency domain integral for the variation is simpler to manipulate0 

The two functions are directly related, however, and differ only by a 

constant and a sign inversion. As the autocorrelation function is the 

standard second order statistical parameter, this appendix will present a 

synopsis of the results of Chapter II in terms of their effects upon R(T) 0 

The following properties are the most importanto Although two other quad

ratic bounds (an upper and a lower) were discussed in Chapter II, they 

cannot tighten the bounds given here and are therefore not included in 

this append!Xo 

Suppose x(t) is a random process with autocorrelation function 

R(T) with Fourier Transform S(w) band-limited to u$ , then R(T) has the 
c 

following properties? 

R ( T ) < R(0) - 2 

u T _2 
. / c x s i n l y ) 

u |R" (0 ) | for t e [ 0 , - 1 , ( A l . l ) 
c 

R ( T ) > R ( 0 ) - [R? f(0)| \ for T e [ o , 2 M^)/\W (0) | ] , (AI.2) 

o U~T 

R ( T ) >,R(0) « 2 s in ( - ~ ) R ( 0 ) for T e [ 0 , — ] , 
^ LJ 

c 

(A1.3) 
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R(T) is concave for *c e [0, IC/2J ] (A1.4) 

R(T) is monotonically decreasing for % e [o, n/u ] (A1.5) 

Prooft All of the above follow from the results of Chapter II and 

the fact that 

R(T) = R(O) - V(T)„ 

The implications of the above may best be appreciated by inspec

tion of the sketch given in Figure 14, R(TJ) is constrained to lie within 

the shaded region. Defining T, as that value of T for which the bound of 

(A1.2) intersects -R(0), i.e., 

*1 5 2 
R(0) 

U 
Rs«(0) 

1/2 

and since |Rn(0)| > u R(o), then t, > — 0 For those R(T) with small 
c i — u 

values of t, , it is apparent that a combination of the bounds of (A1.2) 

and (Al*3) must be used to yield the best overall bound. 



R(T) concave 

R(T) monotone 
decreasing 

Figure 14. Bounds for a Band-limited Autocorrelation Function with 

u 2 
|R"(0)| = ̂ p R(0). 

a) Upper Sine Bound ~ (Al.l), 
b) Quadratic Lower Bound — (A1.2), 
c) lower Sine Bound — (A1.3). 

Q 
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