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LIST OF NOTATIONS

length of the side of plate

stress energy density

half thickness of the layer

total thickness of the plate

displacements in the Cartesian coordinates
Poisson's ratio

complementary energy functional

interelement boundary

boundary comprising of interelement boundary and
the physical boundaries where tractions and

displacements are prescribed

interlayer boundary

physical boundary where displacements are specified

physical boundary where tfactions are specified

Other notations are explained wherever they first
appear.



SUMMARY

Unidirectionally reinforced multilayer plates with
various loading conditions are studied using the finite
element method. The method is based on a hybrid stress model
in which self-equilibrated stresses are assumed within the
element and the continuity requirements along the interlayer
and interelement boundaries are then enforced. The analysis
also takes into account transverse shear deformation which
is of particular importance in the case of composite materials
such as those for automobile tires. Triangular elements are
chosen for analysis and the results obtained in this disser-
tation are compared with earlier results using finite element

techniques and also using classical laminated plate theory.



CHAPTER 1
INTRODUCTION

Perhaps the most interesting and useful development
in the field of structural analysis since the early 60's has
been the finite element method of analysis. The fields of
application of methods based on finite element concepts have
expanded steadily to virtually all forms of engineering
involving structural design. Also, the capability of finite
element methods to deal with complex geometrical shapes
hitherto regarded as insoluble combined with the availability
of high speed digital computers have made finite element
concepts the most widely applied in aerospace, civil,
mechanical and shipbuilding industries.

Although the concept of finite elements can be
developed intuitively based on the physical approximation of
substituting the actual continuum with a set of discrete
(finite) elements, it is important to realize that it can
also be based on the minimization principles. The continuous
functions for the mechanical or physical quantities pertaining
to the continuum are replaced by approximate functions which
are smooth in each element but are continuous in the whole
body. These approximate functions are constructed using the

unknown parameters such as the values of the quantities at



the nodal points of elements combined with a set of inter-
polation functions. The strain energy functions are sought
which are expressed in terms of the nodal values and when
the energy is minimized with respect to nodal parameters,

a number of algebraic equations governing the unknown
parameters are obtained. In effect, what we have done is to
replace the original differential equations governing the
behavior of the continuum with a set of newly derived alge-
braic equations.

It has been established that variational methods
involving energy principles are applicable to the structural
analysis of various assemblies of finite elements. In the
same way as variational methods being extensively used in
the mathematical formulation of finite element methods, the
development of finite elements has aided the advancement of
new variational principles. One such most important develop-
ment is with regard to variational principles with relaxed

(1,2,5:%,5:8) gue finite elememnt

continuity requirements.
models developed by using these principles are called
"Hybrid finite element models.'" Usually, these models
employ stationary principles wherein two or more fields are
varied simultaneously. In brief, the concept consists of
assuming displacement and/or stress fields to be continuous
within each element, but the continuity or equilibrium

conditions along the interelement boundaries are relaxed in

such a way that they are satisfied in an integral average



sense and hence will be completely satisfied when the

element size becomes infinitesimally small. Thus the
continuity or the equilibrium conditions along the inter-
element boundaries become conditions of constraint and
appropriate boundary variables are used as the corresponding
Lagrangian multipliers. In the present thesis, Hybrid stress

model has been used for solving multilayer plate problems.

l.1. Literature Survey

Several literatures cite the various finite element
models based on modified variational principles.[1’2’3’4’5’6)
Fraeijs de Vuebeke has proposed the so-called Equilibrium
Modelc7) and Fraeijs de Vuebeke and Sandercs) have used this
model for analyzing plate bending using oblique coordinates.
The hybrid stress model used in this thesis and the equi-
librium model proposed as above both follow from the same
principle. In both cases, equilibrium equations are satis-
fied a priori within the element. In the equilibrium model,
the equilibrium conditions are maintained for the boundary
tractions of two neighboring elements. These latter
equilibrium conditions are conditions of constraint along
boundaries and the traction continuity along the boundaries
is exactly satisfied but the displacements along the inter-
element boundary are satisfied in an integral average sense.

No multilayered plate problem is solved and results are shown

for several rectangular and square single layer plates. The



same concept has been utilized by Mau, Pian, Ttmg(gJ and
Pian, MaucloJ for the analysis of multilayered plates and
shells. Here also, as in the previous case the equilibrium
conditions of constraint are applied along the boundaries
between two elements (interelement boundary) and the traction
continuity along these boundaries is satisfied exactly. On
the boundary between two layers (interlayer boundary), they
still match a compatible displacement field. In other words,
displacement continuity on the interelement boundary is
effected in an average sense while the traction continuity

on the interlayer boundary is effected in an average sense.
Solutions have been given for several numerical plate
problems and are compared with elasticity solution and

(11) who have used a

solution given by Barker, Lin and Data
three-dimensional element with a cubic displacement variation
along the plane and a linear variation of displacement along
the thickness. An iterative technique called conjugate
gradient routine has been used to minimize the total potential

energy of the system and results have been compared with

elasticity solution and the classical plate theory solution.

1.2. Tire Stress Analysis

A complete stress analysis of a tire should establish
the nature of stresses and deformations at all points in the
tire under loading conditions which are of importance. This

encompasses both theoretical and experimental approaches.
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In fact, the studies in the past have relied heavily on
trial and error designs and full scale experimental testing.

(15,16,17,18,19) on tire stress

The .existing literature
analysis is confined mainly to elastic treatments with some
approximations in force-deformation relations and material

characteristics. Some of these studies(15’16’17)

attempt to
predict the tire equilibrium shape instead of a detailed
stress distribution analysis, However, all these analyses
have not been able to completely overcome the inherent
complexity of the problem arising out of the following:
(1) Effects of transverse shear deformation which
is particularly important in case of composite
materials.
(ii) Complexity due to materials characterization:
The tire carcass being a composite of rubber
matrix with textile, steel or glass cords,
offers great difficulty in writing the stress-
strain relations for the structure as a whole.
(iii) Prescribing external loads on tire: Considera-
tion of the simplest cases of inflation pressure
and centrifugal force limits the existing
solutions to special cases. In general, the
loading also involves an asymmetric system of
forces acting at the tire-ground interface.
Very recently, this aspect has been particularly

treated by matrix analysis.



(iv) Effects of geometric and material nonlinearities
created by large deformations.

The present study attempts to overcome some of these
difficulties. Since the warping of the cross-section (as
a result of transverse shear deformation and discontinuous
material properties) is quite severe in case of multilayer
laminates, it is appropriately taken care of by assigning
rotational degrees of freedom for each layer.

Also, since the present finite element study discretizes
the structure into layered elements, different material
properties can be assigned to different layers to represent
a truly anisotropic material behavior. However, the study
is limited to case of orthotropic material properties.

The present analysis is limited to plates with the
above refinements. From here, the extension of analysis to
shells (toroidal shell which the tire is composed of),
consideration of geometric non-linearities and proper
consideration of forces at tire-ground surface can be made.

In addition to overcoming some of the complexities
mentioned above, the present study also takes advantage of a
refined finite element model to predict the behavior of the

structure.



CHAPTER IT
THEORETICAL DEVELOPMENTS

2.1. Functional for the Finite Element Modgi

The method outlined here is based on hybrid stress
model derived from the modified complementary energy principle.
In this case, the conditions assumed a priori are: (i)
Satisfaction of equilibrium equations within the domain of
the element, and (ii) Existence of a strain-energy density
function. Instead of consideration of equilibrium of boundary
traction as in the equilibrium model, the boundary displace-
ments are interpolated in terms of a finite number of boundary
displacements at the nodes. The interpolation functions
giving the boundary displacements are so constructed that
when the nodal displacements of two neighboring elements
coincide, the displacements along the entire boundary are
compatible. Also since the assumed stresses must satisfy
the prescribed boundary tractions along the portion of the
boundary where tractions are prescribed, we could simply
enforce a condition Ti - Ti = 0 on such boundary where Ti
are prescribed traction. This would be a condition of
constraint on that particular boundary and corresponding
Lagrange multipliers arce the boundary displacements.

Thus we can write the functional in general as:



For the numerical formulation, we choose u; . on Sc
m
in the same way as uip on p. . These uio are interpolated

in terms of the nodal displacements q on I Similarly one

can assume ﬂi on Su which is of the same type as u. 5 on p_,
m
but we assign values to g on Su so as to correspond to the
m

prescribed u..

Thus, the functional reduces to:

P A C - - _
mo 9 Sorg
where
ol = Fon * Sunw* qﬂn

For the case of a laminated system, the functional can be

written down as:

[
e
w

(o

£ 5Tu ds - STiuig,cls:{ (1)
S



where uip is the displacement specified on the interlayer

boundary Sj and u?p is the displacement specified on the

interelement boundary 3Qm.

2.2. Finite Element Discretization

This process consists in assuming a stress field which
is in equilibrium within the element and boundary displace-
ment field in terms of the nodal values of the displacements.
The two fields are independently assumed and the interpolation
functions applied to interlayer or interelement boundaries
are so constructed as to give the required type of variation
of the displacements along those boundaries.

For the sake of convenience, the two boundary displace-
ments are separately written. In what follows, the finite
element discretization is done for multilayered plates with
transverse loading. The self-equilibrated stress field o is

chosen in the form

g = P (2)

where A is a matrix of cartesian coordinates giving the
stress distribution and 8 is a vector of stress parameters.

From this, the boundary traction field is derivable as:

s
il

ne

LR =)

(3)

where B is a matrix of boundary coordinates.

B
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This traction field can be split up into two fields,
one giving the boundary traction along interlayer boundary,

i.e.,

(B!

=3
i
neeE

U

on _] {48)

and the other on the interelement boundary as:

T & %ww% on 0Ly (4b]

~m

The displacement field is assumed in general as:
i =l (5)

where L is again a matrix of boundary coordinates and q is

~

a vector of nodal displacements for the element.

The displacement field along the interlayer boundary

is written as:

gy = Ll (53)

R (5b)

then,
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C A B
) 13(0"1_‘]\ din = > E H Li)w
f]_.‘-'j
where
t! =} f§:} A da
;}.‘ ST
J
\T ., ds - g"iﬁ : '
T R i (2;p) Lil ds = PG4
‘3_] i}_] -
where
S -
Bf ~ 3k ¥ (63)
The summation for interlayer boundaries (i.e. summa-
tion over j) includes only the above two integrals. The
integral pertaining to the interelement boundary is:
(‘ » il fa = I 4 i
§ Tyt ds = §(Ba8) Lot ds
ol Il oLy m
T
= ﬁf %ﬁ1%
where
-
= D ;
Gm S ERRT (6b)
0Ly,
The integral due to external loading is given by:
= C7,L.4 ds (6¢)

S T&th ds vl 3-i
Sﬁﬂ
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The prescribed tractions are on the interlayer boundary

(transverse loading case).

‘ - (6d )

’C_//‘
._.-.}
=
g

2 Ot

PR

where

Proper substitution in the functional gives:

'T T

]qtﬁ’*@,'

IU_’{
R
v
=
1
I

(3(0;
|

I

fr ot

E‘?_;..
¥

Moo 20 e =%
j

When B is used to represent the stress parameters of all
layvers, we write the functional as one summation over the

number of elements as:

L 3 L. BY 22 *\‘(i-j} *R Gl ~Q4
Where H' and Gl are supermatrices with H and Gj as diagonal
elements. Since B's are independently assumed, %% = 0 gives:
9 = =R s gl * 4,

from which



p - g v H G (62)
and
PHR - BG4 Eont
then
M- 2 0-20651 - 5061« BEjd » B g,1 -9' ]
or

M- 2 [ sRed - P61 -Te]

From the expression for B, substituting for BT:

Thus

13
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Thus,

element stiffness matrix is given by:

and the element load vector

2

n o
T
1P

(8)
When a transformation is introduced to relate the element
nodal displacements q to a column of independent global
displacement q#*, the functional becomes:

T\' —

T
P R e T _ %
S zifd -4 Q

N>

The application of minimum principle yields the matrix
equation

LR % :
K4 = qQ (9)
which when solved gives the global displacements.
To obtain stresses, the expression for B as given by
Eq. (6e) is substituted in Eq. (2) giving
o e
¢ = Ald g v+ g

S
H Gn) 4

(10)
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With the values of q known, stresses are evaluated at any

desired point.

2.3, Stress Field Generation

It is now necessary to write a series of self-
equilibrating stress distributions covering all possibilities
giving a complete stress system. As suggested by Ahmad and

(12)

Irons , any self-equilibrating stress field can be
expressed as the sum of three stress fields in different
sets of parallel planes. In other words, one can write stress
systems in xy-planes, varying arbitrarily with z and similar
systems in yz- and xz-planes. Thus stresses have to be
derived from three interpretations avoiding all redundant
terms to keep the variables independent. The stress functions
are chosen from Table 1 of Ref. 12.
The basic criteria in the derivation of stress field

are:

(i) The normal stress in the z-direction is zero.

< 2 - Bm = 0

(ii) The normal stresses in the x and y directions

and the inplane shear stress (i.e. o o

xx?* Yyy’

Txy) vary linearly in x, y and z.

(iii) The transverse shear stresses vary quadratically
in z.

(iv) Since, later in the theoretical development, a

cubic variation for the normal displacement w
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is used, the shear strains, being the first order
derivatives of displacements will be quadratic.
Thus, the transverse shear stresses vary
quadratically in x and y in addition to z.
With this as background, we write the following three
stress functions arrived at by various relevent interpreta-
The parameters B's are numbered according to the

tions.

order in which the various interpretations are chosen.

' ; SR 3 2 v S
Pro= Paryov §W4:x7; ' pzo7ﬁy Py XY #
LBy 0 BT By sy b

2 a 3 3 3
Po XY+ By Y+ Py XYt P XY ¢

e

A
Pg,g & Y ) f < ( P’I ¥ 94?( " P’:’:y +
Po*Y * RPeY b BX v pLY o+

z

3 ;
2 i hzy Fofpx f hexy 1‘{%272 3

2
p?é'x
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Gy = Pt BpFY By XY 9427“272+

3.2 3
945 w»y ot ?*4#9 <y o+ oz ( Pao®  * 9337(2

>t

z 2

Bug XY+ Pog XY r Py Y+ Py X
{3 2

%45 X ')’ ¥ 84.6 X‘)Ja N ?’5@, XZYZ ) + Z ( @3! —Y i

Pog® t P>V o+ @433’2 i {34476{ * Py r

E Z 2 3
@SBX L 954 Ky~ * 955-’*7 t Z <‘3397K *

94-7““7 i |35-.)7(2 + Bsz x* )

Py = Ps Yo - Bsg ™7 7 P,Qxyz ¥ 9’627‘27 &
@Gaxya - pm—xzyz + [376 743\/2 + Py 7(2*}(3 5
z ( @53%2 ¥ P’Go'?’z * BearY T B Xy -
Boo %Y° % Ba YD ¥ P Y+ Pp XYY
Pog X))+ F (BT B B
preyz + Pay 7 13«:»,?_7‘72 ¥ pss"{‘a7 yo*

3 ) -
2 ( Py %mya " F’aoxd)



The stresses are derived from the stress-functions as

<
~
0

9

Substituting for ¢1, ¢2, and $5, we get

T =

2{35? +(2p3¢+2 [361')7< + 2 [3317 +

18

follows:

(2P38+ ZPaa)xy ¥ (2[3’44+2‘37o)7"2+

o

2 :
= p547Uy i (;;ﬁSH + & P77) 73Y +

Q%yz T (2 Psy + 2 PBy) x* o+ 2 95\73*

{2 et (PR By % 0 B

(‘3?’47 t 6 %5?‘4) XY + (6 B, + 2 Bag ) #E ¥

contd .
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£ Faa™ t i ['3(13973)

2&1 + 2;’%‘#1 + (2@;5+ 2?’@277 +

(2P ¥ 6 Fgp ) XY + 2[5%7(2 +

(2 B+ 2 B) Y2+ 2 B, X+ (2B, +
2B VTt (2t G PB) xYP 4 2927’@
t 2 {2 Bt 6% + (6B 2B ) Y +

2
+ (6@22+

(6 P¥ ¢ P‘Tj‘) XY o+ 6 Py, X
21384)3/2} +zzizp72+6{58‘x +
. 9&37}*“ 2? ( 2 Pgp)

2 919 + z§337~ + 2[332'5( -+ 6[3417(7 +

i 3
L zpzox ;- 2{3437 ¥

B Ea R o By N
G Py ¥V v 6P, XY+ 2§ (2pet 2By)
P2 By v Pao) X + (GBy T 2By ) Y +

* 2Py Y

+ ZZ i(zis’ﬁ*'eﬁq_g;) f (2%2(—,*' {2’&53]7{ +
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contd.
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Applying the conditions on the stress field as
enunciated in the beginning of this section, we set the
following parameters to zero in the stress functions.

In K these parameters are:

p3 7 914 ? &15 2 %E ? %17 2 918 ’ 921; ?22 ’ 923 ’

pz¢ ? pzs ? pzs £ ﬁz? ? &28

In s they are:

Paa ? ﬁaz ’ 94\? a2 @43 ! E45 7 @4@ L ﬁ4a:

G45 v Pso > Psy o Pea o 953 ? @54 ; Ess ’ @55

In ¢, they are:

ng 2 ﬁa? ) Peg o Q?o ’ f371 4 ﬁ?z ’ %73 ? %74.3 &75 )

@7@ » P s @73 ) Pya? o 9% ’ %32 ’ ﬁ ’ P

8% 84
Considering all the remaining parameters as 81 (in
order to rewrite the final expressions for stresses in terms

of B), the following expressions for stresses are finally

obtained.
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. 3 ) 1 - 1 ] 5 L i
Tux = ¢ Psy * (2 334 Ll - &@i) & ® 3 Bafy T gaﬁwry

1 i 1 L
+ 2 SLEPZO‘*(E%,%*@%)* Yoo P,y + e%w}

1 4 1
Cyy = 2B + 2B % + (28 + 28) Y + 2f*Y +

2 2fi, + 6PnK (2Bt GFL)Y v 6B %Y

2. = 0
- _ 1 L 1 1 i
Iy = ~ ﬁsg - Eazx - 2 P‘eny + Z ( bos — 2 E’eaty‘
i
T BV )
_ 1 i i L 2
Tyz = B ~ X - 2By -2y XY - ppXT +

2 b}
pJ;'Qa yz T ‘ ( "2 ‘l’vis -2 E:‘ox ) L (-F 3 g"\z -

i
2 R,% )
" y 3 L
T = - E’i)o - zpék = 15335‘)’ - 2§%36¥.y + ﬁﬁxzﬂ
; " 2 i
B, Y: ¢ z (~epy, —2BY) £ 7 (-3ps
£
=% 347_7 )

To regulate and thereby simplify the parameters in

these expressions, we introduce the new parameters B such

that in o©
XX
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e = ; 2 P_m A - S Py
B, f.L
- P?’g - pm > [ e & giz
L .
o [56‘3 = e’{g ) c ,;,,4.7 rj:‘
In Uyy
1 g
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. 2 L
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and from
i B i
¢ [534 vz %fol = \34
we have
¢ ?34 = B, * B
From
i 1
© ?)33 ) ‘ ?)65 - 915
we get

1
6 Pse = Pss * B0

Thus, the final expressions for the stresses are written as:

Tyx = P+ Bx + VoY o+ PuXY + oz (‘\512 Ll

Py T By Y )



Yy

T

q
i

w1

q

vz

11

P

Pa + Bs* © Bgy + B, xy +

z (P + P + PoY + Pn xy)

25
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2.4. Element Shape and Area Coordinates

In the following development, triangular elements
have been used for analysis. Being perhaps the most attrac-
tive shape, they are well suited to the analysis of structures
with irregular boundaries and it is easy to vary the element
size in the vicinity of stress concentrations etc. They
also can best describe the topology for shell structures.

Instead of writing the stiffness matrices for triangular
elements in rectangular cartesian coordinates, we use natural
or area coordinates for the same purpose. Natural coordinates
rely on the element geometry for their definition. They have
the property that one particular coordinate has unit value
at one node of the element and zero value at other nodes,
its variation between nodes being linear. The use of natural
coordinates, which are invariant with respect to the orienta-
tion of the triangle, for the three node triangular element
(known as area coordinates in particular) in deriving inter-
polation functions is particularly advantageous because of
special closed form integration formulas that can be used to
evaluate the integrals in the element equations.

The area coordinates are denoted as s (1 & 1,2,8) nas
in Fig. 1. These describe the location of any point p within
or on the boundary of the element 1-2-3. The cartesian
coordinates of a point are linearly related to the area

coordinates by the following equations.



T

Fig.

1.

e
.

Area Coordinates for the Element

27




In other words, the position of the point may be
specified relative to the triangle by the three areas Al, Az

and A3 or, more conveniently by the non-dimensionalized
areas:

where A = Al * A, A3 = area of the triangle.

Since any two area coordinates are sufficient to

specify the point uniquely, we have another interdependence
relation

The relation between area coordinates and the rectangular

cartesian coordinates is written down in the matrix form as
follows.

28



gx ) 7%, %
Yy o= by
P
| L.

24 | ] 723
'i |
| ! A
vy o= e Y
<! 2 {) ZA >
! ! :
f; : | -\/1?
{9 .
where
/23 = 72 - -yB
t}(\32 = Ky =K
and

CA =

29

()
i {
. | { e
b | 352 f (12a)
A g
_ J L 3 )
?(32 XZY.") - Xﬁya W‘I (7(\‘
n
RS Ky V= XY g{“/(( (lZ"b)
b |
o
_Xm Xﬁ'z XZ.\,‘"; l ikl }
o

(X =220V =¥5) = (%= %3) (K- V3)

For the purpose of establishing rules for differen-

tiation and integration only 1 and gz are considered as

independent variables. Thus

constant and 8
3;2

52; implies that ¢, is held

implies that Zq is held constant, whereas
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C varies in both cases. The differentiation rule follows

as.:

(2 ) f > |
oL, 2% i
) y = L] ¢ /
|2 ==
| oG, o7/

/_
Wit

b, ¥

(13)

and det [J] = 2A.

2.5. Element Nodal Degrees of Freedom

In our formulation, the in-plane displacements u and
v are assumed to have linear variation while the normal
displacement is assumed to have a cubic variation. Physically,
this would mean that the triangular surface bends like a
classical plate while it stretches linearly. Also, the fact
that the transverse shear stresses are derived directly from
the transverse shear strains which contain first order
derivatives of w with respect to x and y, combined with the
assumption that transverse shear stresses vary quadratically,

necessitates a cubic variation for w. This variation is also



31

justified by the fact that transverse shear stresses Oy and
oyz do work only on the rectangular boundary surfaces where
such a variation is assumed.

In the case of multilayer plates, transverse shear
deformation plays an important role because of discontinuous
material properties. To account for these effects, the
rotational degrees of freedom B and ey are assumed different
for each layer. With the assumption that O, and ey are
constant across the thickness of any one layer, they are
derived from the in-plane displacements u and v at the top and
the bottom surface of each layer. Thus for each layer there
will be 21 degrees of freedom with five degrees of freedom
at corner nodes and one degree of freedom for the midside
node.

Correspondingly, for a three layer element, there are
nine degrees of freedom for a corner node and again one degree
of freedom for the mid-side node, thus totaling to 33 degrees

of freedom for the element. The degree of freedom disposition

is shown in Fig. 2.

2.6. Boundary Displacement Fields

The two displacement fields, one each on the inter-
layer and the interelement boundary are separately written
to aid numerical computation. Thus the elements of the matrix
g in Eq. (5) are split up into two groups under Ej in. EGQ.

(5a) and Gm in Eq. (5b).
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Node Layer Position Displacements
Top ul,vl,w
L 2 2
Bottom u“,v-,w
2. 2
Top u”t,vo,w
d ¢ 3.5
(Corner) Bottom u",vo,w
Top usav3’w
3 4’ 4
Bottom u L,V o,w
2 All Any W
3 All Any W
Top ul,VI:W
- )
Bottom u’,vo,w
Top uz,vz,w
(Corner) Bottom u’,vo,w
Top u3,v3,w
? 4 4
Bottom u L,V ,W
5 All Any W
6 All Any W
TOP ulsvliw
i Bottom uz,vz,w
Top uz,vz,w
7 2 3.3
(Corner) Bottom us,vs,w
Top u”,vo,w
3 Bottom u4,v4,w
8 All Top w
9 All Bottom w
Fig. Degree of Freedom Disposition for the

Triangular Element
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On the interlayer boundary, the displacement distri-
butions are functions of area coordinates only. Denoting by
i and j the top and the bottom surfaces of any layer (Fig.

3) of thickness 2h and writing 1-4-7 as a subscript to denote

the triangular shape, we have the in-plane displacements

» i
= u
i gi + 'u4‘¢2 + u, gs
1 1
v = v
147 A T
j ; ; (149
=
u147 lzi i UZ,;Z ‘u7g3
) ] J
v x
t47 Lt’l Vd, 1:a ! V? ‘g3

The cubic variation of w over the triangular surface 1is
obtained by using the procedure suggested by Silvester(lz)
for writing down the interpolation functions for higher order
elements. Using these functions, the element equations can

be made to contain derivatives and integrals of the area

coordinates. Then:

W= ) v (15)

where
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o<t <t VO o < <t <t <r
=2 = - 3 b=
14 P <
=
™
| {
/ /
\ =
—
Fe e =
L B B P I 4:1.41
5 s =T

Element Nodal Degrees of Freedom

L

Fig.
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P = B G (AT-1) (3% -2)

Po = 25T, (35,-1)

Py = 26X, (3%5,-1)

B = ZE el =ifntE -r)
s = 2 5,6, (3¢, 1)

fo = 3 5,C,(35,-1)

¥, = 36 (3%5,-1)(3%-2)
e = 32 4T, (3%,-1)

S
Fd T;1":’3 (3 E1ﬂ ‘)

There are no i,j superscripts on w since w remains the same

for the entire thickness of the element. Thus, in Eq. (5a),

elements of vector u%p

respectively (6x21) and (21x1).

are (6x1), those of Lj and q are

The in-plane displacements on the rectangular boundary
(interelement boundary) are linear interpolations of the

corresponding nodal displacements. These consist of a
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linearly interpolated displacements due to stretching and
due to rotation of the two end nodes. For example, for any
boundary, say 1-4, as in Fig. 4, (where S is the distance

measured from node 1):

1H4_ = th - [IZ

where
Wy = U+ u
- W v (Mg g
= w(ﬁ—%) U (F)
Again
LH 5 ig%;jé_ ; U, = ui;?}éb
Similarly
LIZ = 7,96 t8)
where



(a)

Wy

=
|
|
|
b= - s a% (:)
(b)

Variation of in-plane displacement
'u' along 1-4

©

Fig. 4. Variation of Interelement Boundary Displacements

37



38

and
3 )
6, & LT
| 2h
i ]
6 _ u4_?__,}.£4:_
& 2R
Hence
L . ui +IE
U, + W S 4 4 2
1 - - & +
i [ ’**2_*‘1” (=) 2 (%)

'lli“-u.j1I 5 uir_m_‘__ 5
 § Sty 89 « Bethe§i]

Rearranging terms with proper subscripts to denote

the boundary or the node,

u = _ 4 1 z_ 1 oS4y 1 UL
= O 1614)(2*%)“1 o e 1 )

FCP g (G- B

14

_ 54 Z . _ 544 { _z
\;14 - ( i ‘im ) ( 2 ) 11 T (1 “ )( 5 Z[,,) 1"r1
514 1 - St4N ;0 - 2y ]
( ) ( 4. + ( 214) ( Z zh) Y@

Eq. (16) cont.
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Sus - L 5 y
u = 1 — 47 1 4+ Z — 247 I < &
47 ( 54?) (g rauld, + C L, )05 - 20)
+ ¢4 547 ) ( A 11i + ( 247 (L - = uJ
{47 5 (47) Z 2h) 7
- - P47 1, I : _ Sz N (L 2y )
Va7 , Yl v ) vy r O FG-5)%
47 {47

"(5“)(‘+mfv +(54I)<1_§_ v,

) 55 1 5 v B
YT ",E—;")(-*z+§g)u?+(“é2)(i‘§;3“
3
(Y (43 ¢ (2 (s- By o
in e L 37 2h 15
i = i :‘,7._1_‘ ! :2_:,__‘] __571 / Z J

The normal displacement variation is written again by using

Silvester's procedure.
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1

I

P LOm ) -28ey 2oy o
814 14
9( ) (- 24 (2= 33wy o _
L4 Lii ik
- ) ) 3 544
g.{ Sl f+ 21 f = 2 ) w, o+
"14 3 5 3 Sy
) (1- -m—-—i") (2 __f_iﬂ) W, ]
Ly Ly
= S % S
(2= =y (2 - 3247y ¢ 3547y
[ Laz ( L7 ) {47 4
9 ( 247 ) (1- 5_47) (2 3_54,7) Wy -
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D ( 547 - 247y 47y w, +
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{71 71
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{a £y o5 8
2 ( :j—?-L ‘A 271, 1= 35711 r +
\,71 ‘f-“ ) ( {71 ) 9
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These give the elements of matrix Em in Eq. {5b) and
it has (9 x 21) elements. While writing Ehe area integrals,
we encounter integrations with respect to L1» Cpo and £z on
triangular boundaries (Eq. (6a) and with respect to s and z
on the rectangular boundaries (Eq. (6b). These integrals
are separately evaluated numerically by using relevant
numerical integration techniques. In such a case, we shall
use a one-dimensional formula for integrations on rectangular
boundaries. For this purpose, it is necessary to write
integration variables in the non-dimensionalized form with
integration limits varying from -1 to +1. The non-

dimensionalization of z is effected simply by writing:
Z = 4 (182a)

where z is measured from the mid-surface of the layer and
2h is the thickness of the element. In the s-direction on

any rectangular boundary, we write the modification as:

As s varies from 0 to & (length of the side of the element),

it can be seen that s varies from -1 to +1. Then

% = -% (1+53)
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(1-2) = %5 (1-3)
(1-232) = =1 (1+33)
LR~ 8') = L {d=a8}
G2+ %) = L(is7)

(18 b)

and any integral of any function f(s,z) is transformed as:

h £
SS fL8;2) da dz2 = Ah SS £(35,2) ds dz (19)
-h o

2.7. Boundary Tractions

From the stress field chosen, it is possible to

derive the boundary traction field as:

I =

WP

P

To do this, we use the basic relation given in the

index notation as:

or
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(e Y = T G |
| T i | Ox« Sxy D—vaz} P D |
" | ;|
) ' ! ;
{ Ty L = ‘ 0 5 Ty op | { Ne .
) { , Yy vz | | yf (20)
L | !
T | b
£ b T Tz 0z2 [!'nz|
\ ) b . ‘l\

where nj are the direction cosines of the normal to the
boundary.

The direction cosines of the normal to any boundary,
say, for example 1-4, are derived as follows: The coordinates
s and z for this boundary are shown in Fig. 5. Writing
down the derivations in the cartesian coordinate system as

shown in Fig. 5 we have the position vector R given by:

-

R = x1 +v7i + zX

where T, ?, % are unit vectors in the cartesian coordinate
system. But on this boundary, x and y are given by Eq. 12,

i.e.,
P = Xy O 0= ‘z;?_) X, 3;2

Z - -y1(1—Z:?;) +y2§

Lz being zero on this boundary.

Thus
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y
K () (R
(x4:75)
(x15Y4)
>
i R
g %_ - X
1
9R
3z
3R
5T,
n
Z
L. +t,=1 _
12 L,y 1
LY Ly ™0
P"Z:D @
|

Fig. §.

Derivation of Direction Cosines on the Boundary



B o= K =0) + %L, § T+ | Y (1-8) + %8,0 T + 2k

By the basic vector mechanics and the right hand rule the

magnitude and direction of the vector normal to this boundary
is given by

n = 2R , 3K
2%, 2
= (YY) T (XX T
From this
.ﬂ14 i COs5 A = ._»12_..__?1
X —
[ 7]
(21 a)
n"; = Hiflg & T2
|77 )
where
sl 2 . 2
B = O 90"+ (- %2 )
Similarly for boundaries 4-7 and 7-1
m47 - '-‘7{3 ‘Vz
x R WA L N———
V-7, 0 + (%= %3)? 3
~/ o s el T

Y- Y22 4 (e -%3)§
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7 RARMRE

ﬂ% = _’_v.__..__u_: . - e a_,_
VICH-Y5) + (%3 - %) §

(21¢)

On all these boundaries

On the upper triangular surface

147 47

Ny = ])y = 0D
147

n, = 1

On the lower triangular surface

147 V47
ﬂ_x = ﬂy = Q
147
ﬂz = =1

Using these values of direction cosines and Eq. (20), the

expressions for the boundary stresses are written.

Denoting

by superscripts, the boundaries of the element, they are:

T

T

14 B (o‘ ) 14 14
i KA r =0 My + (Ux'y)\c -0 f‘iy
' 2
14 ( ” .
= g i
VT o ey o Y
o 3
14
. 14
Ty ({rﬁzzﬁszo Ny * (Dﬂyz]\g *Oﬂy



T = ( O0hx) 0y o+ (o i
A \‘;1 0 A § xy) %0 Y
A7 - 7 47
v (COxy)g o Mn (Tyydy oo Dy
47
T s (G- ) 47 47
z Xz O # (@) n
%, = Yz =0 7
7 = o 7
7 ;
T = (0yy) " i 7
v \ X n s
s L, =0 x o+ ( YV)ﬁﬁ:ONHY
7 ¢ & ) ”
z F wz n + (o n’
L,=0 X ( HE T o o y
147 ‘ i 147 147 .
Ty (upper) = ( 5¥;z)z;}1rwz Ty (upper) = (G}{Q}?z
147 y 147 147 i4
T‘J{ ( 10W€Y} = - (O-:J(Z ' ﬂz ) T,y (lowfl’f') <o "'(:0_}12) nz
= =1 zz=-h
147 4 3
T.Z (:-U.EPCV- | £ 2 ( lUW(_“.r) = O } .
(22)
\,

The expressions for the stresses are substituted from Eq.

(11). In what follows, only two typical boundary tractions

are written in detail.
44
T = | Bt Belmed, 4 ms)

2

+ PJ_;V(‘\/\\{;.“? 72:2) +

:ﬁ'io( Xy t]" g _X’Z,T‘;;‘ ;' 'C Vi .'f;1 +* \/2;2) + Z SL p1‘2 '

Contd.

47

147

7
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+

—

+ gm CRG & Fa ) & B UVt + Y51,
O Pa 0% %5, ) (V% % 8,) i) nl L s+
BG: {‘X!”Q,‘ + 7(':?_\@1) F 99 (Vﬂ:t + yz\éz) + 7 i 9*4 ¥

By (MT + %28,) + Bao( MG, + ¥, 6,) ] ”'; (22a)

14 B ’ . .
TZ_ - L p‘zq T P’Z(D kﬁxfc:ﬂw}“xzz;z) i &27(‘)’1‘%-!*"/2@2) t

GZS ( TGy T R G, ( V“Qi ad yztaz‘) - —9‘72@ (X5, Wz\gz.vz'f
. 2
Par (MG + M%) =z { @yt Bo) + B NG, * V5]
_ g- A _ “

o { ( {3\5 ¥ P’zo bt Py (\/1151 + Y,%,) 7[ ] Oxn

E %2'5 4 {G’zg(ﬂ(icf t X5, ) + Bz(,(}’a‘(;, + N hs) F

2
?)28 ( Y\;fé‘ + A, ﬁz> ( WG, + -\a{p_ 1;2_) =F %30 ( Xit)t t %2 G,)
*%2‘2 (NG, *+ AN }2 - Z { ( B+ Pg) + By ("‘IT;;**?.I;z)}

z
74 _ 14
-z i( \‘?!?+ 919) 't" P’zz( K% + X2T,) }.] Ny
(22b)
Since these expressions are used in conjunction with the
displacements, it is necessary to convert the ¢ coordinates

to the coordinates s and z, so that we have integrals

modified as in Eq. (19).

Referring to Fig. 4, any distance on the boundary 1-4

is given by



where (xl, yl) are the coordinates of node 1 and (x,y) refer

to the arbitrary point on the line 1-4.

Letting

But

or

Therefore

Kz (1-Ty)
T }/2(1—\{21)

(=8, { (Rm 2+ (s

"'y‘l}z }



: ) . 5 5
X Gy R (-5, = X (o "‘ZE& )+ % (34)
14 E‘\d.
Substituting from
es _ . w B
{
*Go o+ X, (=% ) = ZL o (4-3 ) + o e S )
t 2y 2 \ ? \d. ) 4

and

Nt Y, (1% = ——7—2/1—— (1-‘”5'{4*) +z—m(«+3!4)

Similarly on the other two boundaries

¥, b U B 2 LRy .. *3 =
e 323 3 U5y ) ¥ o (1 5,)
KL UL, - —?% (1~ %47) + 1’2?; (1+3,,)

and

7‘1"41 + Ky ‘§3

)
N
i
S|
Lt

u

Y6t Y%, . (143

Thus, for example

50
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(4 - ; _ _
T - L Py T 'I;i(xl (1-544) + X (V+ 54)) +

%Z(}q(\——gu_) 1-7'/(“*-574)) ol 29 ( *1( "§i4} *

%o (Ax3,)) ( (1-3) + VY2 (A 54)) + z{ By +
P

E%? ('x'(f_.314) + Ay {1+ §r4)) * T (_yl(i"g14> ¥

Yo (14 34)) + "fi (% (1-3) + % (v 3 ) +

(Y (A-34) + Vz(**'gm\n}] e+ LBy v
%@(‘K,(hgm) + X2 (1+344)) + %9(y1(\*§,4) +

V2 (U3 % 0 LB, + By (% (153, +

2 0e3u)) + A0 (1 (e5,) v Gesgn ] 0

(23)

The expressions for all other boundary tractions are written
in a similar manner. These give the elements of the matrix

B in Eq. (3).

2.8. External Load Calculations

Three types of loading are considered for the
numerical work. They are:
(i) concentrated load at the center of plate
(ii) uniformly distributed load
(iii) loads varying sinusoidally in both directions.
Since the boundaries on which these transverse loads
are prescribed are the triangular boundaries, it is necessary

to consider only the boundary displacement distribution matrix



L. pertaining to these boundaries (Eq. (6c)). However, the

nodal displacement vector is still common for both the types

of boundaries since all the nodal degrees of freedom are

involved when writing any boundary displacement matrix.
While solving the multilayer plate problem, the

components of the prescribed tractions are given by:

O

O L
L= (RO
. |
0
O
O
where N /

p(x,y) is the distributed load on the top of the
uppermost layer of the element.

It may be mentioned here that for the case of
uniformly distributed load, p will be a constant value and
the load calculations on elements with same geometry remain
the same. In fact, in such a case, it is siffucient to
evaluate the stiffness matrices for only typical elements
and later perform the assembly procedure. On the other hand,
for sinusoidal loading, the load intensity varies from point
to point. With a fixed cartesian coordinate system, it is
necessary to evaluate the loading vector for each and every

element of the structure and complete the assembly.
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CHAPTER III
ELASTICITY ANALYSIS OF MULTILAYER LAMINATES

Due to the recent developments in high-modulus fibers
and to the necessity for light-weight, high-strength
structures, composite material constructions are becoming
increasingly popular. These constructions consist of
several layers stacked one above the other at various
orientations to each other unidirectionally reinforced
composites are considered here. In particular, tire struc-
ture consists of layers of reinforcing cords embedded in
rubber matrix.

It is well-known that for an orthotropic material (with
three planes of elastic symmetry), the three-dimensional

stress-strain relations are given by:

fy é%; L on = (B 0 + Pis O33) ]
€, = }%é L 920 = ( PoyOu + Moz 033) |
c T “%—:_3 [ 733 = (Hg 0y + Pap 025) ]
v, = % / Gy

923 = 023/ Gy

Yy = a1/ Gy
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where
Hee ‘
Do fa o Pe o, By | Pey My

Unidirectionally reinforced composite is a special
case of orthotropic composite in that the elastic properties
in the two directions other than the direction of reinforce-
ment will be same. If, for example, the properties in X5~
and Xg- directions are same, the above stress-strain

relations reduce to equations in which:

B2 = Bs oy Bem My, Mym Ry, Haz= Hap
Tz ¥ Gy
Then
& = £ [ o - B (o + %) ]
€; “éf* [ o T (Hpp Ty T Hoy Ga3) 1
€, = L O3y = Py Ty + Hy50,,) ]
ﬂz = Oy / &G g
Y,y = o)
Y = O3/ G2

31
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It can be seen that for such a case only six independent
elastic constants (El, EZ’ Higs GlZ’ Hozs 623) describe the
stress-strain relations.

Thus, the compliance matrix used for each lamina

or layer of the composite element is written in the matrix

form as;:
| I 1—— / 4 )
% € } /e, P, ), 0 0 o -WFQ1?
14
{ !
!EZ % aikm/EZ Ye s -H23/EE 0 0 o 1 22
| |
| | B 1 :
) - [l e v 000 sy
/ r
i
Yoy / o 0 0 Ya, O O i %2
| 3 ¥
| i |
i 9231 0 Is) 0 0 {/ng 0 I G-Z'S
i b
] o 0 O O ‘G Gy
| P\

\Y21J - . (/
The above relations hold for the principal axes of elastic 24')
symmetry in 1,2,3 directions.

For an arbitrary orientation of the lamina, as shown
in Fig. 6, where the principal axes (1,2,3) do not coincide
with the cartesian reference axes (x,y,z) of the laminate,

the following transformation law is used:



Fig.

b.

Fiber Orientation

Within Lamina Element
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7 ? 7 i %

' C-TT?Q( ". m n 0 ~Zmn 0 Q ! 6“1 i

; a- ; | 2 i 2mn 0 0 i ]

VY o n m 0 2 | d,

i I

T:j-ZZ | O Q i 0 9 0 | 0'"3 "-,}

) ‘ )

... s ’ = % ma - 8] f!"i?v l’]z 0 0 ‘; J o l

S V i j \ 19 |
i i 9] Q O ii

vz _=|_ 0 W i . U234
O-—Z—x .‘I O 0 o 9] =[] m | g: 0—31 i

(25)

where m = cosf and n = sinb, ® being the angle between the
two sets of axes.
The above relation can be written in the abbreviated

form as:

& = 14
and similarly

e = 1k (26 )
Inverting

~1 T ”“_19.'& (27)

Writing Eq. (24) in a similar way, we have
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& = 4, (28)

Substituting Eq. (28) and Eq. (27) in Eq. (23), we get

x T Lol o, (29a)
or
€x * 5, 9% (29b)

Thus, the compliance matrix S is transformed in order

~

to refer to the cartesian coordinate system.
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CHAPTER 1V

NUMERICAL CALCULATIONS

4.1. Numerical Integration

When writing down the stiffness matrix, integrations
over areas and volumes are encountered at several stages
such as in Eq. (6). Since these terms involve matrices
individually, the final outcome in each case is a matrix
of some order. The matrix operations are discussed in
Section 4.2. It may be too difficult or impractical to
integrate these expressions in closed form. Also, the element
of volume or surface over which the integration has to be
carried out needs to be expressed in terms of the local
coordinates (area coordinates, in our case) with appropriate
limits of integration. Thus to get satisfactory results,
numerical integration techniques are used.

The volume integral in terms of the cartesian
coordinates is transformed, in general, to an integral of

area coordinates by the following relation:

1

1
SS(; F(x,y,z) dx dy 1z = S §
-1

=4

F(E M,t ) detla}
dg drl dg

1
B g R

where the Jacobian matrix of transformation is given by an

expression like Eq. (13). It should be noted here that this
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transformation is valid for any general local coordinate
system. In the present case, since area coordinates are
being used to transform the cartesian (x,y) coordinates,
g and n could be thought of as 4 and Zs (CS is not indepen-
dent, Eq. (12)) and z could be z. Thus the above transforma-

tion can now be written as:

1 i-g,

S._} 5?(7;1’.{;2?2) det [7] Ch;: d(;g dz

e 9

where det[J] now refers particularly to Eq. (13) and the
above integral is for a case where z is simply transformed
to z by Eq. (18a).

The numerical integration constants for evaluating
the above integral have been devised by Radau based on Gauss
expressions for numerical integration. Hence these constants
are known as Gauss-Radau integrating constants involving
area coordinates(l4).

The integration in the z direction in the above
expression is taken care of by simple Gauss quadrature formulae
in one dimension. Thus in evaluating the volume integral in
our case, two sets of integration constants are used. Gauss
quadrature constants (Table 8.1 of Ref. 14) and Gauss-Radau
constants (Table 8.2 of Ref. 14). For accuracy, five constants

(n=5) are chosen in each case.

There are two categories of area integrals involved in
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our numerical work. The first one, as indicated in the
expression of Eq. (6a) pertains to the interlayer boundary
and involves only coordinates Lys Gy and Ls (z will have
either +h or -h value) and hence the following transformation

is effected:

}a

. 1 -t
SS F(X,¥) dx dvy = S g F(Z,6,0,) det (7] dz_ dt,
a 0

and the numerical integration is carried out using Gauss-
Radau constants.

The second area integral is over rectangular boundaries
(interelement boundary) as in Eq. (6b) and which involves
two independent non-dimensionalized coordinates s and z each
of which has integration limits -1 and +1. 1In this case,
one-dimensional Gauss quadrature constants for each coordinate
are applied. Thus, the same constants are chosen twice in
this case.

The area integral giving the load vector (Eq. (6c¢c)) is
in terms of T1s T3 and Ty only and Gauss-Radau constants are

used for numerical integration.

4.2. Matrix Operations and Computer Program

The various matrices encountered in the calculations
are given below. The notations are the same as those used
in the derivation of the functional in Section 2.1.

Stress field:
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& * g kB
(6x1)  (6x31j(31x1)
Boundary tractions:

interlayer boundary:

re)

e By

Gx1)  (ex3t) (3t %1)

interelement boundary:

Im - ém P

(a4 x1) (qx31) (3121)

Displacement fields:
interlayer boundary:
dl L
"‘if‘ - -r}._

(6x1)  (exzt) (21 x1)

interelement boundary:

m

e & b

e s 12

(9x1)  (ax21) {21 xy)

Volume Integral:

( 3% 34) (21 6) 6 6) (Lx31)
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Area Integrals:

interlayer boundary:

: C T
8y = § B.L, ds
5] "’J J
(31 %zt) (31 %6 Y{exzt)
interelement boundary:
G . i:. PT | ¢
2 in J = 3 ?”1d4
d_;i.m
(31221 (31 x9) (ax21)

Order of stiffness matrix for each layer of element: 21 x 21
Order of stiffness matrix for the entire element: 33 x 33

The computer program is written for the multilayered
plates according to the following steps:

(i) Read the number of elements, degrees of freedom
for nodes, global nodal numbers for the corner
and mid-side nodes.

(ii) Store all integration constants for use in one-
dimensional Gauss quadrature formula and Gauss-
Radau formula.

(iii) Read overall dimensions of plate, thickness of
layers, material properties of layer and
lamina orientations,.

(iv) Calculate elements of matrices §j and Em.

(v) Calculate the elements of the compliance matrix

tfor each layer by using the transformation

matrix (Eq. (25)).



(vi)

(vii)

(viii)

(1x)

(x)

(xi)
(x)
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Obtain the elements of the matrix involving
volume integral for each layer. Perform the
necessary operations as given in Eq. (7) thus
getting the stiffness matrix for each layer.

By assembling the matrix elements for all
layers, obtain the stiffness matrix for the
element (layer assembly).

Obtain the load vector for any given transverse
load.

Perform the assembly of elements of stiffness
matrix for all elements geometrically similar
to the one chosen above. (Element assembly.)
Repeat steps (iv) to (ix) to cover all other
typical elements to obtain the global stiffness
matrix for the structure.

Apply appropriate boundary conditions.

Solve a set of simultaneous equations to get

the displacements.

It is to be noted that two distinct assembly procedures are

adopted here.

The interlayer assembly procedure consists in

writing down the stiffness matrix for the element consisting

of several layers. For a particular manner of numbering the

element nodes,

the process remains the same for all elements.

The (21 x 21) matrix for each layer is merged into a

(33 x 33) matrix for the element. The numbering of the nodes

for one element follows the description given in Section 2.5
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and shown in Fig. 2.

The interelement assembly is carried out as in any
other finite element assembly. To save the computer storage
space , the assembled global matrix is written directly in the
banded form. Typical mesh patterns and the nodal numbering
adopted to obtain an economical storage capacity are shown
in Fig. 7. These numbers refer to the nodes which has all
the layers incorporated in it and thus the stiffness matrix
for any element here would have already incorporated the
stiffness matrices of all the layers.

Two commonly used subroutines, one for matrix multipli-
cation and the other for transposing the matrix are written.

A library program was used to invert any square symmetric
matrix.

The final set of equations (in the banded form) are
solved by Gaussian elimination technique as suggested by
Zienkiewicz(14).

Once the displacements are known, they are substituted

in Eq. (10) and the stresses are derived.
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CHAPTER V

RESULTS AND DISCUSSION

In order to check the suitability of the hybrid model
developed in this study, several numerical problems are
solved. These results are compared with the available

results.

5.1. Convergence Study

To observe the convergence of the results obtained
from the present hybrid stress finite element model, a simple
numerical problem of a single layer square plate subjected
to a concentrated load at the center is solved. The plate
is assumed to be simply supported all over and is considered
isotropic. The geometric and physical properties of the
plate are:

length of side, a = 10 in

thickness of plate = 1 in

Poisson's ratio = 0.3

Modulus of Elasticity E = 30 x 10° psi.

The vertical deflections at the center of the plate
are obtained for various mesh patterns with increasing number
of meshes as shown in Fig. 7. The results are shown in Fig.
8 where the ratio of present value of central deflection to

the exact value is plotted against the number of mesh
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divisions for half span. Since the plate is symmetric in

its geometry, loading and boundary condition only one-quarter
plate is taken for analysis. The plot shows a progressive
convergence and with N = 6, the result is only about 3%
smaller than the exact value. It should be noted here that
in this case of a single layered plate, the number of

degrees of freedom per element reduces to 21.

5.2. Comparative Results

To study the applicability of the present method to
numerical problems of layered plates, two typical examples
of 3-layered plates are chosen for detailed analysis. The
geometry of the plate and other details are shown in Fig. 9.
The notations L and T refer to the two principal axes of
symmetry in the plane of the plate. In the following
problems longitudinal axis of the top and bottom layers
coincide with the x-axis (i.e. 6 = 0) and that of the middle
layer is perpendicular to these (i.e. 8 = 90). Thus we
have 0°/90°/0° orientation of the laminates and the elements
of matrix T in Eq. (22) are known. Only a sinusoidal load

with a unit central intensity and varying as

s B : nip 4 Y
!‘1 CX,) n 3 S1vi =

is considered to he acting transversely on the plate.

The properties of the lamina with respect to their



Fig. 9. Details for Three-Layer Square Plate
Under Sinusoidal Load
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principal axes of symmetry (Fig. 6) are:

E, = 25 x 10° psi
E, = 1 x 10° psi
Gy, = 0.5 x 10° psi
G,z = 0.2 x 10° psi

Hpp = Mgz = 0.25

Thus we have the six independent elastic constants that
describe the stress-strain relations for each layer (Eq. (24)).
The span to depth ratio (S = %) is varied in the

following examples and the stresses and displacements are

normalized for plotting purposes as follows:

X ¥
5
{:j:.- G - "l \:“' i
vy a2 Fy
g ]
G N7 = ;1 b] ~ 7
- B,
{Ju b __\_.__5. '{__L
t f}J
and
zZ = -

The simply supported boundary conditions are (Fig. 9)
at x = 0 or a, v=w=20

0 or a, u=w =0

jus]

ct
<
it
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In the graphs that follow the examples, results are
plotted as obtained by three methods. Firstly, results from
the classical laminated plate theory (due to Reissner) are
shown. These results do not take into account transverse
shear deformation. The next two sets of results, one obtained
by Barker-Lin-Dana (Ref. 11) and the other by the present
study, both account for transverse shear deformation in their
analyses.

The results given by Barker-Lin-Dana utilize a 2 x 2
mesh in the quarter plate. Since their method 1is mainly a
three dimensional finite element analysis, each of the three
layers is assumed to have three elements in the thickness
direction. Each quadrilateral element has two triside nodes
and each node has three degrees of freedom. Thus each
element has 72 degrees of freedom.

Case 1: This example has a span to depth ratio equal

to four (i.e. S = 4). A 2 x 2 mesh is used in quarter plate
and it has 990 degrees of freedom. Fig. 10 shows the plotting
of the variation of the in-plane displacement u at (a,a/2)
through the thickness. It can be seen that the results
obtained by the three dimensional analysis and the present
study agree fairly well. The result of the classical plate
theory does not agree well with the above results due to the
fact that transverse shear deformation has not been

considered here. Fig. 11 shows the variation of the normal

stress o at the center of the plate and Fig. 12 shows the
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—————— Classical laminated plate theory
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variation of in-plane shear stress Oxy at the corner of the
plate. Fig. 13 is a plot of the variation of transverse
shear stress Tz through the thickness.

In all these cases, good agreement can be inferred
between the results obtained in the present study and the
three-dimensional finite element analysis. However, the
results of the classical plate theory can not be relied on
in all these cases.

Case 2: The next four figures pertain to the case
where the span to depth ratio is increased to 10 (i.e. S =
10). 1In this case Barker-Lin-Dana have used a 3 x 3 mesh
for a quarter plate with only two elements through the thick-
ness of each layer. Thus the number of degrees of freedom
for the quarter plate is 1344. However, the same material
properties as in the previous example are retained here.

Fig. 14 shows the variation of the in-plane displacement u

at the side of the plate. Figs. 15 and 16 show the variation
of the normal and in-plane shear stresses at the center and
the corner of the plate, respectively. Fig. 17 shows
variation of the transverse shear stress at the side of the
plate.

It can be seen from these plots that there is a very
good agreement between the results obtained by the present
study and by the three dimensional finite element analysis.
Also the results due to classical plate theory tend to agree

with the finite element results more 1n this case than in
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~—-—--— Barker-Dana-Lin

—x—x— Present study
z
0.5 o
$’//V
interfaces gff

; 0
- . + X

-0.8 —0.43 0.4 0.8
o
44

7
e s = 10
P lo.s
Simply supported 3-layer plate under
sinusoidal loading
Fig. 15. Variation of Normal Stress 6x (%, %, z)



80

Classical laminated plate theory

...... Rarker-Lin-Dana

—r—x-— Present study
z
NN\ To.s
\\“ N :
NN
AR

/ ) |
N =
o
4 " XY

-0.3 0.2 -0.1\, 0.1 0.2 0.3

W
ST T TR
"N
interfaces \§§
\\‘i\.
1 g.s * Q‘-\ s = 10

Simply supported 3-layer plate under
sinusoidal loading

Fig. 16, Variation of In-Plane Shear Stress ny (i ;%)



81

—————— Classical laminated plate theory
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the previous case. This explains the well known fact that
the effect of transverse shear deformation becomes smaller
as the plate becomes thinner.

Viewing all these results in an overall fashion, it
is evident that the transverse shear deformations are effec-
tively taken care of by the present finite element model
particularly in case of laminated composites such as automo-
bile tires where the distortion of the section of the plate
can be expected.

Also as can be seen from u-displacement in Fig. 10
(case of a thick plate) the original normal is seen to be
distorted considerably where as the u-displacement in the
latter case (case of thin plate, Fig. 14) shows a distortion
which is far less than the first case.

The good comparisons indicate that the present model
could be extended to the analysis of shells for the case of
automobile tires. The present finite element formulation can
also be modified to take into account large deformations to

make the analysis of the tire problem more accurate.
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