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Abstract

The Internet Malware Analysis System (InMAS) is a modular plat-
form for distributed, large-scale monitoring of malware on the Internet.
InMAS integrates diverse tools for malware collection (using honeypots)
and malware analysis (mainly using dynamic analysis). All collected infor-
mation is aggregated and accessible through an intuitive and easy-to-use
web interface. In this paper, we provide an overview of the structure of
InMAS and the various tools it integrates. We also introduce the web
frontend that displays all information on different levels of abstraction,
from a coarse-grained overview down to highly detailed information on
demand.

1 Introduction and Motivation

The Internet has become a vital part of today’s critical infrastructures, not only
in Germany. A failure, even if it is only a partial failure, of the Internet can
have dramatic consequences on economy and society [4]. Security incidents like
the spread of Code Read in 2001 or Conficker in 2009 have shown that malicious
software (malware) can have a significant influence on today’s Internet. It is
therefore important to anticipate such incidents, detect them once they occur,
and finally react in a robust and effective way. Anticipation and detection are
the main benefits of an early-warning system.

An early-warning system should satisfy two properties: On the one hand, it
should give an overview over the current state of the network similar to a global
view of the system. On the other hand, it should detect anomalous network be-
havior and classify its cause as exactly as possible. Especially interesting from
our point of view are network anomalies caused by distributed and wide-spread
attacks onto the network infrastructure, which are today mostly caused by mal-
ware. Nowadays, malware is such a severe threat because it has the ability to
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spread autonomously by infecting vulnerable computers on the Internet. Ex-
amples include worms, Trojan horses, and bots. An early-warning system must
be able to give an overview over the current zoo of spreading malware together
with the level of danger associated with them.

In this paper, we provide an overview of the Internet Malware Analysis
System (InMAS), a modular platform for distributed, large-scale monitoring of
malware on the Internet. Historically, InMAS evolved from two tools that still
make up the core of the system: (1) the honeypot tool Nepenthes [1], and (2) the
dynamic malware analysis tool CWSandbox [20]. To cover other propagation
vectors of modern malware (such as email and drive-by download attacks) and
to support the analysis of collected binaries, the system has been extended by
new sensor types, new analysis techniques, and new visualization approaches,
on which we report in this paper.

Figure 1: Schematic overview of InMAS.

In a nutshell, InMAS is centered around a single database (Malware Repos-
itory) that stores all of the collected and analyzed data (see Figure 1). The
Malware Repository is origin and destination for all InMAS activities, i.e., all
analysis tools query this database to either retrieve or store information about
malware binaries. Through this concept of sharing data, all sensors, analyzers,
and visualization tools are decoupled, increasing the modularity of the system.

In addition to the already mentioned sensors and analyzers, another building
block of InMAS is a web interface for administrators and analysts. The web
interface shows the results of all performed analyses and allows administrators
to configure InMAS, e.g., by adding new sensors to the system or improving the
classification rules of some analysis tools.
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While the basic structure of InMAS has been described elsewhere [6], this
paper focusses on two particular aspects of InMAS that have not been presented
earlier: First, we give an overview of the structure of InMAS and the diverse
capture (Section 2) and analysis (Section 3) tools it integrates. Second, we
introduce the philosophy behind the web frontend and provide examples of the
look-and-feel of InMAS to the user (Section 4). We conclude in Section 5.

2 Malware Capture in InMAS

In order to cover various propagation vectors of malware, InMAS has the capa-
bility to support different types of sensors. In this section, we present four sen-
sor types for detecting and collecting malicious software. Due to space reasons,
we focus on technical aspects of the sensors. Note that InMAS also supports
several techniques for data privacy protection such as pseudonymization and
anonymization of the collected data.

2.1 Low-interaction Server-Honeypots

Server honeypots are honeypots that provide services to hosts on the Internet,
i.e., this type of honeypot passively waits for attackers to connect and exploit
the offered services. According to the interaction level of the honeypot, these
service are either real or emulated. InMAS supports both low-interaction and
high-interaction honeypots (we focus on the latter in the next section).

The current setup of InMAS supports the two low-interaction honeypots
Nepenthes [1, 19] and Amun [8], that both emulate common vulnerabilities
of Windows and Unix services. As soon as a client connects to one of the
honeypots, all actions are recorded and sent to the InMAS database server.
Thus, all information beginning with the first connection to the final exploit
is stored at a central location for analysis. Beside the detection of attacks,
the honeypots also try to interpret incoming shellcode and extract information
about download locations of malware. Downloaded files are sent to malware
analysis system of InMAS for dynamic, behavior-based analysis.

2.2 High-interaction Server Honeypots

Low-interaction honeypots, as the ones mentioned above, are only capable of
detecting attacks using known vulnerabilities. Additionally, the known vulner-
abilities need to be implemented in the honeypot before any detection can take
place. As a result, the detection of zero-day exploits is hard, as it requires the
current service emulation to support this new exploit and the shellcode must
be known as well. The detection of attacks using unknown vulnerabilities is
impossible. Although current low-interaction honeypot solutions are modular,
the implementation of new vulnerabilities modules and the detection of new
shelllcode needs to be done manually.
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To circumvent this drawback InMAS supports the high-interaction honeypot
HoneyBow [22]. Instead of service emulation, HoneyBow uses a real system with
real services. In order to detect attacks against these services, some special
monitoring software is installed as well. Therefore, HoneyBow can detect zero-
day exploits and attacks against unknown vulnerabilities. Again, the collected
files are sent to the malware analysis component of InMAS.

2.3 Spamtraps

Another common attack vector is email spam. With the increasing security
mechanisms in networks, malware has shifted to other attack methods than only
scanning for vulnerable systems. Almost all of the major botnets, for example
Storm Worm [16, 12] or Waledac [17], use email spam for propagation. In order
to detect these kinds of attacks, InMAS allows the integration of spamtraps.
Spamtraps are email accounts without a productive purpose, i.e., no regular
email traffic is expected. Therefore, any received email on one of these accounts
is considered as spam. Besides single email accounts, it is also possible to register
domains and collect all incoming emails targeting this domain.

Each incoming email is automatically processed by InMAS. Each embedded
URL or attachment is extracted and stored separately. Executable attachments
are passed to the Malware Repository to generate an analysis report, and URLs
are passed to client-honeypots for further investigations. Spamtraps are on the
one hand sensors to measure the amount of spam in a network and hence, a good
indicator for propagation campaigns of botnets. On the other hand, they serve
as an input vector to client-honeypots, which we describe in the next section.

2.4 Client Honeypots

Client honeypots are used to study attacks against client applications, such as
web browsers and document readers. The above mentioned spamtraps form the
major input vector to the client honeypots used within InMAS. In contrast to
server honeypots, client honeypots do not passively wait for attackers to come
by, but actively crawl the Internet for malicious content.

The current setup of InMAS supports the integration of CaptureHPC [10],
a high-interaction client honeypot. CaptureHPC is used for the detection of
attacks against a web browser. For this purpose, URLs found in email spam
are passed to the server instance of CaptureHPC, which distributes them to
individual virtualized clients running for example Internet Explorer to visit the
websites. Special monitoring software, called CaptureClient, on each of the
clients monitors any changes to the system. With the help of an exclusion
list, i.e., rules of allowed changes, CaptureHPC determines if a website is to be
considered malicious or not. The results are stored in the InMAS database. As
attacks against client applications, especially web browsers, have increased in
the recent years, the integration of client honeypots as sensors to InMAS was a
major step towards getting a better overview of current attacks on the Internet.
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3 Malware Analysis in InMAS

An early-warning system has to deal with a huge number of collected mal-
ware samples every day. Therefore, it is mandatory that InMAS uses tools
and techniques to analyze new malware samples with no (or only limited) user
interaction. Nearly all analyses within InMAS are fully automated. By com-
bining both static and dynamic analysis techniques, we try to extract as much
information about collected malware samples as possible.

Beside antivirus scanners and CWSandbox, we integrate several custom-
built tools, like MalOffice, TrumanBox, and SimUser. These analysis tools and
the corresponding interfaces are discussed in detail in the following sections.

3.1 Dynamic Analyses using CWSandbox

Dynamic analysis of malware either aims at the code or at the behavior of the
particular sample. For the latter approach several tools have been developed
in recent years [2, 15, 20]. Those execute a malware sample in a controlled
environment and record all system-level changes such as modifications of the
filesystem or the registry. As a result, an analysis report is created, which
provides detailed information about all observed activities performed by the
analyzed sample.

InMAS utilizes CWSandbox [20] for dynamic, behavior-based analysis. All
collected samples are executed within the sandbox system for around 2.5 min-
utes. Most of the malware-related analysis techniques are based on the XML
encoded behavior report generated by CWSandbox.

3.2 MalOffice

Malicious documents, i.e., documents that contain malicious payload (for ex-
ample a keylogger) became a serious threat recently. This attack vector is often
used in targeted attacks against governments, military, and similar high profile
targets [14]. MalOffice is a combined approach of static and dynamic analysis
to detect malicious data files, e.g., Word or PDF documents that exploit a vul-
nerability in the according application [7]. The scanning technique allows us to
find obvious malicious artifacts in files, such as embedded PE32 files or known
exploit code. In the dynamic approach, the particular document is loaded in
its associated application, which in turn is monitored for suspicious behavior.
Since some exploits only trigger on particular application versions, we use many
instances running different versions of these host applications in parallel.

The monitoring is carried out in several CWSandbox systems that allow us
to observe suspicious actions like the creation of files, spawning of processes
or outgoing network connections that happen when opening a document. For
every document there are several virtual machines containing exactly one version
of a certain application. The resulting analysis reports are checked against
predefined policies in order to reach a verdict.
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The overall result for a document is calculated from several single analy-
sis outcomes. A numeric value is assigned to every single outcome: probably
benign (0), suspicious (0.5), and malicious (1). The overall result is just the
average value of the single results. If a single result states that a document is
malicious, the overall result is malicious (1) as well.

3.3 SimUser

Some malware samples trigger only under certain circumstances, which depend
on user behavior. The typical example are keyloggers monitoring keystrokes and
sending the harvested information to an attacker periodically [11]. Executing
a keylogger binary in a sandbox environment will not reveal much malicious
behavior, as there will not be any of the mentioned activity in the absence of
user activity. In order to study this kind of malware, we need some sort of user
simulation to trigger needed events.

We have developed a tool called SimUser to simulate the behavior of a
victim. The core of SimUser is based on AutoIt, a scripting language designed
for automating the Windows GUI and general scripting [3]. We use AutoIt to
simulate arbitrary user behavior and implemented SimUser as a frontend to
enable efficient generation of user profiles. SimUser itself uses the concept of
user behavior templates that encapsulate a concise user task, e.g., opening a
website and entering a username/password combination in the form fields to
log in. These templates can be combined in an arbitrary way to generate a
profile that simulates user behavior according to specific needs.

The resulting user profiles can be used within the dynamic analysis envi-
ronment to simulate the behavior of a user and to trigger conditional malicious
activity by that. Therefore, CWSandbox can be instrumented to execute a
SimUser script while it is analyzing a malware sample.

3.4 TrumanBox

One of the most important requirements during dynamic malware analysis is
connectivity to the Internet, since most of the malicious software is meant to
send data to other systems or receive commands, for instance by contacting
an attacker-controlled server. Hence, providing full Internet access during the
dynamic malware analysis process is important in order to obtain good and ex-
tensive reports. However, there are scenarios where it is not acceptable to grant
Internet access to a malicious sample, e.g., when the sample tries to send out
loads of spam or aims to spread itself to other machines. Restricting connectiv-
ity to the Internet during malware analysis often causes results of lower quality
as many functions are not triggered and hence can not be reported.

As a solution, we have developed TrumanBox [9], a system that can be
deployed as a router or bridge in an existing network infrastructure without
any need for reconfiguration. Using TrumanBox, we cannot only restrict access
to the Internet, but also transparently redirect connections to the TrumanBox
itself. The redirected connections are handled by generic services providing

6



functions and an environment similar to the service expected by the malware.
This way, we obtain extensive results without affecting third-party systems.
Furthermore, we can even analyze malware trying to connect to a server that
is already offline, since connections are transparently handled by TrumanBox
instead of timing out with a “host unreachable” error.

During our tests we have proved this expectation. Using TrumanBox, we
have been able to trigger activities of malware samples which tried to contact
servers that have been taken offline a long time ago. These activities could not
have been reported with a regular Internet connection. Furthermore, we can
utilize TrumanBox to collect all spam emails during the analysis of spambots.
Thus, no spam is sent to third party users, but we can nevertheles collect mails.

3.5 Generic Unpacking

Modern malware typically employs advanced obfuscation techniques to avoid
detection by intrusion detection systems and antivirus engines. Additionally,
obfuscation also serves the purpose of hampering human analysis of the binary.
In order to neutralize signature-based detections, many nefarious programs vary
their obfuscation scheme by, for example, randomly changing the encryption
key. Signature-based detection is thereby rendered impossible as only a very
tiny stub of the program remains constant among all versions. Such behavior
has been frequently seen in the wild [16].

To apply obfuscations, a so-called packer takes the readily-compiled mal-
ware, transforms the image code and data, and then prepends a decoding stub
to the executable file. When the program is executed on a victim’s computer,
the stub decrypts the actual malware in memory at first and then jumps to the
original entry point.

To account for the rising occurrence of obfuscated malware, we have extended
the deobfuscations capabilities of InMAS and have also integrated an out-of-
the-box generic unpacker into the system. In this context, a diverse set of
generic unpackers has been presented by the academic community in the recent
past [13, 21]. After having evaluated all of the publicly available solutions
in this field, we chose Ether [5], because it is powerful, publicly available, well
documented, and can be easily automated. However, as with every other generic
unpacker mentioned above, Ether suffers from a severe lack of performance,
which means that the unpacking of an exemplary sample takes several minutes
on average. For this reason, we cannot run Ether for every submitted binary;
unpacking must be explicitly requested in the webinterface.

To bridge this gap, we have also implemented basic unpacking features into
CWSandbox. Whenever a sample terminates, our component dumps the mem-
ory contents to disk and tries to rebuild a valid executable file. The dumper also
reconstructs the import address table (IAT), i.e., the references of the program
to external libraries in the system. This information is typically also obfuscated
by the packer and reconstructing the imports is hence a mandatory step for
reverse engineering. By looking at the imports, an analyst can watch the in-
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teraction of a program with its environment and thus gain in-depth knowledge
about the sample’s behavior.

The dumper component of CWSandbox does not impact performance and
can be used for each analyzed binary. The output is an unpacked executable
that is enabled to further human analysis. The drawbacks of this solution in
comparison to Ether are, that we cannot determine the original entry point of
the unpacked program and that the data sections have already been modified
due to the execution of the program.

4 InMAS Backend

Since potentially every Nepenthes and Amun installation can send the collected
samples to our system, we effectively have an InMAS sensor system that is
distributed all across the world. We monitor attacks on our honeypot systems
and spamtraps and log a lot of attack-related data, like the IP address of an
attacker, the port number of the attacked service, or even the SMTP server used
to send spam. In addition we gather the malware which is involved or distributed
by these attacks. Furthermore, we receive a considerable amount of malware by
our online analysis service cwsandbox.org, which is also a part of InMAS. This
global mesh of sensors along with the wide variety of analysis and appropriate
aggregation of attack and malware data allows the derivation of a substantiated
status report. The statistic analysis of this data helps to detect changes in
service usage and new vulnerabilities in services of client side applications, e.g.,
web browsers or office applications, and to detect network anomalies. This
data is very important for the operator of an early-warning system, security
professionals, and vendors using this real world data to generate signatures for
antivirus scanners or intrusion detection systems. We now introduce the web
interface, which is the central interface for users of the system.

4.1 Webinterface

Representing data within the context of an early-warning system it is impor-
tant to provide an abstract overview of relevant events supporting easy and
immediate recognition of anomalies, without restricting professionals in further
investigations. This requirement is considered throughout the whole web in-
terface implementation. Users can set up their own queries to the recorded
data and analysis results, or just control the automated generated statistics and
metrics. We use several visualization techniques to attract the attention of the
analysts to the main results and assist to recognize current attacks in an early
state. At the same time, the webinterface provides detailed information about
the monitored attacks and the malware analysis results.

The webinterface of InMAS provides access to all the stored information
that is collected with the different sensor types and analyzers. Each supported
sensor type disposes its own web interface. These single purpose interfaces are
accessible through buttons at the top of the main webinterface, see Figure 2
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for an example. We use this subdivision to enable the partially utilization of
our system, if some components of it are not needed. In conjunction with the
implemented user and role management, it is also possible to enable and disable
selected modules – or even single analyses results of a module – for a set of users
or a single user. Thus, the webinterface can be easily customized and thereby
optimized for the individual access rights and requirements of an analyst.

Figure 2: CWSandbox live feed section

The Live Feed pages offer a quick overview to the analyst. Depending on
the individual subsystem, e.g., CWSandbox, server honeypots, spamtraps, or
client honeypots, it reveals the latest submissions, attacks, accessed webservers,
or received spam messages. Figure 2 shows the incoming submissions to the
CWSandbox interface. The Live Feed shows only the general information of
these submissions. All analysis-related information, like the antivirus scanner
result and the behavior report, are accessible over a link within each entry.
Figure 3 shows the details subpage for one CWSandbox submission.

As mentioned before, the webinterface also provides several analysis results
to the analysts. Figure 4a shows the analysis tool section for the server honey-
pots. In this part of the InMAS webinterface, it is possible to have an in-depth
look at all recorded attacks provided by the registered honeypots. Stored infor-
mation are aggregated and displayed using visual methods like pie or bar charts.
The chart in Figure 4a for example shows the number of attacks and downloads
of malware for each day of the week, aggregated over a period of approximately
two weeks. These analysis tool section exist for all InMAS subsystems.

Beside the configurable analysis tool sections, InMAS also provides an anal-
ysis section, where several statistics are summarized, Figure 4b shows this sec-
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Figure 3: Details subpage of a CWSandbox binary analysis

(a) The server honeypots analysis
tab showing recent attacks.

(b) The spamtraps analysis tab showing the number of
emails received during the last seven days.

Figure 4: Examples for analysis results provided by InMAS webinterface.
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tion for the spamtrap webinterface. This page shows all statistics that are also
accessible in the analysis tool section, but with a fixed time period.

4.2 Visualization

Besides the visual preparation of statistics which shows global correlations, like
the number of monitored attacks or the top command and control server, we
also use visualization to support the analysis of behavior reports [18]. The
CWSandbox reports, which often consist of several hundred lines of text, usually
offer a level of detail that allows careful analysis, but overwhelm a human analyst
who is interested in a quick assessment of a particular malware sample.

Figure 5 shows two visualization forms generated from a CWSandbox anal-
ysis report. The tag cloud in Figure 5a shows all Windows API calls which are
monitored during an analysis run. The font size of each API call corresponds
to the frequency within the behavior report. The tag cloud provides a quick
overview of the main operations executed by the analyzed sample.

(a) Tag cloud visualization. (b) Treemap visualization.

Figure 5: Examples for different visualization techniques used within InMAS.

The second form of visualization are so-called treemaps (see Figure 5b). A
treemap displays information as a set of nested rectangles. For construction of
the treemap we need to define a tiling algorithm: The width of each rectangle is
proportional to the percentage of Windows API calls from the behavior report
belonging to this section, i.e., if more API calls belong to a specific section,
the according rectangle is wider. We also split each rectangle according to the
operation of this API call to obtain another dimension within the treemap. The
individual sections within the treemaps are plotted in a fixed order and color.

Since both the tag cloud and the treemap do not consider the time sequence
in which operations occur, we use a third method for visualization. Thread
graphs visualize the temporal behavior of each individual thread spawned by a
sample. A thread graph can be seen as a behavioral fingerprint of a sample.
Figure 6 shows an example for the thread graph of a behavior report.
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Figure 6: Thread graph visualization of a CWSandbox analysis report.

The x-axis represents the time (sequence of performed actions), while the y-
axis indicates the operation/section of the performed action. The thread graph
implementation – like the tag cloud and treemap – offers a zoom-functionality
that shows detailed information about the Windows API calls selected. In
addition, an analyst can choose which threads of the behavior report should be
plotted. Overall, the thread graph shows all information which are contained in
the CWSandbox analysis report in a more accessible way.

5 Conclusion

In this paper, we presented the Internet Malware Analysis System (InMAS), a
highly automated system to collect and analyze malicious software. The system
combines a unique set of sensors to capture malware as well as analysis tools
for both static and dynamic malware analysis.

Currently, InMAS is operated at the University of Mannheim and receives
an average of 200 malware samples per hour. Samples are submitted either
through the public webinterface of CWSandbox or by deployed honeypots. With
15 sandbox systems running in parallel, we are able to analyze an average of
300 samples per hour. Thus, our installation successfully handles all requests
and has additional capacity to re-analyze older or interesting binaries with dif-
ferent priorities. The modular setup of InMAS allows the integration of further
sandbox hosts, in case the incoming rate of samples increases. Overall we have
collected more than 910,000 distinct binaries and generated a total of about
1.77 million analysis reports within the last two and a half years. The analy-
sis reports can be split up into about 840,000 VirusTotal results and 924,000
CWSandbox reports. As a result, our systems offers a detailed insight into
todays’ malware and its development over the past years.
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