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ABSTRACT 

 
This study introduces a new approach to recognize the boundaries between the parts of the 
DNA sequence retained after splicing and the parts of the DNA that are spliced out. The basic 
idea is to derive a new dataset from the original data to enhance the accuracy of the well-
known classification algorithms. The most accurate results are obtained by using a derived 
dataset that consists from the highest correlated features and the interesting statistical proper-
ties of the DNA sequences. On the other hand, using adaptive network based fuzzy inference 
system (ANFIS) with the derived dataset outperforms well-known classification algorithms. 
The classification rate that is achieved by using the new approach is 95.23 %, while the clas-
sification rates 92.12 %, 86.75 %, 83.13 % and 84.51 % are obtained by Levenberg-
Marquardt, generalized regression neural networks, radial basis functions and learning vector 
quantization, respectively. Moreover, this approach can be used to represent the DNA splice 
sites problem in form if-then rules and hence provides an understanding about the properties 
of this problem. 
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INTRODUCTION 
 

The identification of the location and 
distribution of the gene sequences is an im-
portant source of knowledge. Several areas 
can benefit from studies of these structures, 
such as medicine, pharmacology and agri-
culture. They can provide, for example, in-
sights for the development of new drugs 
and treatments for diseases like cancer (Lo-
rena & de Carvalho, 2004). The estimated 
number of the human genes is 30,000, most 
of it encode proteins, but some are tran-
scribed into non-coding RNA molecules 
that function in protein biosynthesis and 
gene regulation (Makal et al., 2008). In eu-
karyotic organisms, there are three major 
stages of producing a functional molecule 
of RNA or protein called gene expression. 
The first stage is transcription that de-
scribes the process of synthesizing a copy 

of the coding strand of the double-stranded 
DNA starting at the promoter site, thereby 
substituting Thymine (T) by the base Uracil 
(U) (Hammer et al., 2005). The second 
stage is the splicing, which is a result of the 
fact that eukaryote genes are composed of 
alternate segments of exons and introns. 
Exons are regions that code for the final 
protein. Introns intermediate exons and do 
not code for proteins. Thus, introns have to 
be removed from the mRNA molecule, 
which is accomplished in the splicing stage 
(Lorena & de Carvalho, 2004; Nantasena-
mat et al., 2005). The third stage is the 
translation, where the mRNA molecule is 
translated to the final protein (see Figure 1, 
from: Segovia-Juarez et al., 2007).  
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Figure 1: Major stages of producing a func-
tional molecule of RNA or protein 

 
The splice junction problem is to dis-

cover exon–intron boundaries (EI or donor 
sites) and intron–exon boundaries (IE or 
acceptor sites) from large DNA sequences. 
Various machine learning tools have been 
proposed to detect splice sites automati-
cally based on DNA sequences. Pertea et 
al. (2001) used a Markov model with a de-
cision tree. Sonnenburg et al. (2002) into-
duced specially designed support vector 
kernels. One of the kernels is to detect 
translation initiation sites in vertebrates and 
another used an extension to the well-
known Fisher-kernel. Fogel and co-workers 
(2003) applied for the first time an evolu-
tionary neural network to address the splice 
junction problem. Hammer et al. (2005) 
presented a prototype based pattern recog-
nition tool trained for automatic donor and 
acceptor recognition. The developed classi-
fication model allowed fast identification of 
splice sites. Their method showed competi-
tive results and the achieved model is much 
sparser. Segovia-Juarez et al. (2007) intro-
duced the hypernetwork architecture as a 
novel method for finding DNA splice sites. 
The hypernetwork architecture is a biologi-
cally inspired information processing sys-
tem composed of networks of molecules 
forming cells. Its learning is based on mo-
lecular evolution. Makal and contributors 
(2008) used Multi-layer Perceptron (MLP), 
Radial Basis Function (RBF) and General-
ized Regression Neural Networks (GRNN) 

to analyze and detect the splice junctions of 
gene sequences. 

 
MATERIALS AND METHODS 

 
Data collection and preprocessing 

The dataset in this study is downloaded 
from the center of machine learning and 
intelligent systems at the University of 
California. It contains 3190 instances (pat-
terns) distributed into three classes (762 EI, 
768 IE and 1655 Neither). The length of 
each pattern is 60 nucleotides. However, 15 
patterns are deleted because it contains am-
biguous letters (D, N, S or R). Five pre-
processing strategies are applied in this 
study: Encoding the nucleotides, extracting 
the statistical properties, ignoring the low 
correlated features, normalizing the pat-
terns, and reducing the redundant features: 
• Encoding the nucleotides: Three differ-

ent ways to encoding the data are sug-
gested and used: firstly encoding the 
symbolic nucleotides (A, C, G, T) by in-
teger numbers (1, 2, 3, 4). Secondly en-
coding the nucleotides pairs (AA, AC, 
AG, AT, CA…TT) by 16 integer num-
bers (1, 2 , 3,…, 16), in this case the 
DNA sequence of length 60 nucleotides 
is represented by 30 integer numbers. 
Thirdly encoding the nucleotides triples 
(AAA, AAC, AAG, AAT, CAA, CAC, 
…., TTG, TTT) by 64 integer numbers 
(1, 2, 3,… , 64), in this case the DNA 
sequence of length 60 nucleotides is rep-
resented by 20 integer numbers. On the 
other hand, the target classes (EI, IE and 
Neither) are encoded by the numbers 1, 
2 and 3.  

• Extracting the statistical properties: 
some interesting statistical properties are 
extracted and added as new features to 
the dataset. Table 1 and Table 2 summa-
rize some statistical properties of the 
pairs and triples nucleotides in EI and IE 
patterns. For example, the percentage of 
the triple CAG in IE patterns at position 
28 is 78 % which is approximately three 
times of these nucleotides in EI. This re-
sult is calculated as following: 
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Table 1: Some statistical properties of the DNA pairs and triples of Intron–Exon patterns 

EI IE Neither Nucleotides Positions 
Number % Number % Number % 

CAG 28 173 22 603 78 38 02 
TAG 28 11 1 137 17 11 01 
TT 15,17,19,21,23,25 238 31 826 107 656 39 
CT 19,25 122 16 303 39 256 15 
AG 29 385 50 761 99 127 07 
CC 23, 25, 27 178 23 493 64 372 22 

 
Table 2: Some statistical properties of the DNA pairs of Exon–Intron patterns 

EI IE Neither Nucleotides Positions 
Number % Number % Number % 

GT 31,35 1066 139 139 18 184 11 
GG 59, 35, 41, 47 494 64 226 29 450 27 
GA 33 ,13, 17 455 59 98 12 331 20 
AA 33 252 33 42 5 100 6 

 
 

Thus we can use Table 1 to construct a 
new vector (feature) such that each ele-
ment in this vector is the number of the 
pairs and the triples that exist in the cor-
responding pattern at the specified posi-
tion. This vector will be used to recog-
nize the IE patterns. In the same way, 
Table 2 can be used to construct another 
vector to recognize the EI patterns.  

• Ignoring the low correlated features: The 
correlation between each feature and the 
target classes is calculated, the features 
that have correlations less than a thresh-
old are ignored, and the other features 
are processed. For example, the correla-
tion of the third vector is 0.005, which 
considers very low, while the correlation 
of the vector 33 is 0.4811, which is the 
highest.  

• Normalizing the patterns: it is often use-
ful to normalize the inputs and the tar-
gets so that they always fall within a 
specified range as following: 

 
xn = 2*(x-minp)/(maxp-minp) – 1 

 

The Matlab function premnmx can be 
used to normalize the inputs and the tar-
gets so that they fall in the range [-1,1]: 
 

[pn, minp, maxp, tn, mint, maxt] = 
premnmx(p, t) 

 
• Reducing the redundant features: In 

some situations, the dimension of the in-
put vector is large, but the components 
of the vectors are highly correlated (re-
dundant). It is useful in this situation to 
reduce the dimension of the input vec-
tors. An effective procedure for per-
forming this operation is principal com-
ponent analysis PCA. It eliminates those 
components that contribute the least to 
the variation in the data set: 

 
[ptrans, transMat] = prepca(p, 0.03). 

 
This means that prepca eliminates those 
principal components that contribute 
less than 3 % to the total variation in the 
data set.  
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Adaptive Network Based Fuzzy Inference 
System (ANFIS) 

ANFIS is widely tested in various ap-
plications including control, system identi-
fication, medical diagnosis systems, time 
series prediction, and noise cancellation 
(Kurian et al., 2005), ANFIS has been writ-
ten in many programming languages in-
cluding Matlab fuzzy logic toolbox. 

Figure 2 illustrates the architecture of 
ANFIS. For simplicity, we assume that 
ANFIS has two inputs x and y and one out-
put z. Suppose that the rule base contains 
two fuzzy if-then rules of Takagi and 
Sugeno’s type: 

 
Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1 
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2 

 

 

Figure 2: Adaptive Neuro-Fuzzy Inference Sys-
tems (ANFIS) 

 
The ANFIS output is calculated by us-

ing the following steps, where Oj,i repre-
sents the output of the ith node in the layer 
j: 
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The membership function for A (or B) 
can be any parameterized membership 
function such as:  
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Training the network consists of finding 

suitable parameters for layer 1 and 4. Gra-
dient decent are typically used for non lin-
ear parameters of layer 1 while batch or 
recursive least squares are used for linear 
parameters of layer 4 or even combination 
of both. 

 
RESULTS AND DISCUSSION 

 
In this section, ANFIS is applied on 

splice-junction gene sequences (DNA) 
dataset. Three datasets are derived from the 
main dataset: Firstly, Dataset1 contains 20 
nucleotides at the middle of the sequence 
(most of the previous studies used 20 to 40 
nucleotides at the middle). Secondly, Data-
set2 contains the highest correlated fea-
tures. The best results are obtained when 
the correlation's threshold is 0.06, at this 
threshold the recommended features are 28,  
29,  30,  31,  32,  33,  34,  35,  36,  47,  and 
60. Thirdly, Dataset3 contains the highest 
correlated features and the two new fea-
tures that are extracted from the statistical 
properties of the main dataset. The best re-
sults are obtained when the correlation's 
threshold is 0.07. Thus the recommended 
features in this dataset are 28,  29,  30,  31,  
32,  33,  34,  35,  36,  47, 61  and 62. 

A k-folding scheme with k=10 is ap-
plied. The training procedure for each data-
set is repeated 10 times, each time with 
90 % of the patterns as training and 10 % 
for testing. All the reported results are ob-
tained by averaging the outcomes of the 10 
separate tests. Table 3 shows the number of 
the rules generated by ANFIS, training per-
formance, the classification rate for each 
class (EI, IE and Neither) and the overall 
classification rate for each dataset by using 
ANFIS. It can be noticed that the best clas-
sification rate among the datasets can be 
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obtained by using Dataset3 at spread=1.5 
which is 95.23 %. Whereas the highest 
classification rate using Dataset1 is 
88.28 % at spread=1.3, and the highest 
classification rate using Dataset2 is 
93.31 % at spread=1.5. In general, the 
overall classification rate using Dataset3 is 
the best at all spread values as seen in Fig-
ure 3. 

Table 4 compares the overall classifica-
tion rate by using five neural networks 
methods, namely, backpropagation with 
Levenberg-Marquardt (LM), generalized 

regression neural networks (GRNN), radial 
basis functions (RBF), learning vector 
quantization (LVQ) and adaptive neuro-
fuzzy inference system (ANFIS). The high-
est classification rate is obtained by apply-
ing ANFIS to Dataset3 (95.23 %), the next 
highest is by applying LM to dataset3 
(92.12 %). Where the learning rate lr=0.1 
and 2 hidden layers are used, the first hid-
den layer consists from 10 neurons and the 
second hidden layer consists from 9 neu-
rons. 

 
Table 3: The classification rate of the adaptive Neuro-Fuzzy Inference System for each dataset and 

numerous spreads  
 

Data Spread Rules Perf. EI IE Neither Overall 

1 31 0.1502 0.8205 0.8381 0.9004 0.8619 
1.3 10 0.2773 0.8205 0.8937 0.9116 0.8828 
1.5 6 0.3025 0.7692 0.8664 0.9024 0.8606 
1.7 4 0.3315 0.8205 0.8947 0.9024 0.8805 

Dataset1 

2 3 0.3379 0.8718 0.8684 0.9146 0.8931 
1 18 0.1673 0.8718 0.7348 0.9136 0.8596 

1.3 9 0.1979 1.0000 0.8401 0.9268 0.9235 
1.5 6 0.2305 0.9744 0.8947 0.9350 0.9331 
1.7 3 0.2975 0.8462 0.9474 0.9268 0.9119 

Dataset2 

2 2 0.3890 0.8718 0.7895 0.8293 0.8302 
1 16 0.1790 0.9231 0.8321 0.9492 0.9122 

1.3 8 0.1890 0.9467 0.9211 0.9666 0.9460 
1.5 6 0.1950 0.9704 0.9211 0.9676 0.9523 
1.7 4 0.2240 0.8934 0.9434 0.9716 0.9437 

Dataset3 

2 3 0.2808 0.9231 0.9472 0.9390 0.9370 
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Figure 3: The overall classification rate for each dataset by using Adaptive Neuro-Fuzzy Inference 

System and numerous spreads
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The next is by applying GRNN to Data-
set3 (86.75 %) at spread σ = 0.1. The clas-
sification rate of applying LVQ to Dataset3 
is (84.51 %), where the number of the clus-
ters k=500 and lr=0.09. The worst testing 
accuracy is obtained by using RBF. Figure 
4 illustrates the classification rate for each 
method that is applied to each dataset. It 
can be observed that when the Dataset3 
(which contains the two new features that 
are extracted from the statistical properties 
of the main dataset) is used, then the classi-
fication rate is the highest for all neural net-
works methods, the next highest is obtained 
by using Dataset2, and the worst is by us-
ing Dataset1. 

 

Table 5 summarizes the previous works 
from Makal et al. (2008). The highest clas-
sification rate in Table 5 was obtained by 
using Pebls (Parallel Exemplar-Based 
Learning Systems, a nearest-neighbor 
learning system designed for applications 
where the instances have symbolic feature 
values) which was only 84.24 %. The next 
was by using backpropagation where the 
classification rate was 83.51 %. Table 6 
summarizes the previous works from 
Hammer et al. (2005). The highest classifi-
cation rate in this table was 96.3 % which is 
obtained by using SVMLIK. The next was 
by using SVMFK where the classification 
rate was 94.7 %. The both results are very 
close to the results in this study.  

 
Table 4: The overall classification rate by using five models and the optimal parameters 

Method Parameters Dataset1 Dataset2 Dataset3 

LM lr=0.1 
2 hidden layers 

Epoch 28 

 
0.8771 

 
0.8930 

 
0.9212 

GRNN σ = 0.1 0.7042 0.7861 
 

0.8675 

RBF σ = 0.3 0.5972 0.6284 
 

0.8313 

LVQ k =500 
lr =0.09 
Epoch 5 

 
0.4257 

 
0.6412 

 
0.8451 

ANFIS σ =1.5 
Epoch 150 0.8606 0.9331 0.9523 
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Figure 4: The classification rate for each dataset by using five neural networks models 
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Table 5: Previous works (Makal et al., 2008) 

Method KBANN Backprob Pebls Perceptron ID3 COBWEB NN 
Rate 83.37 83.51 84.27 67.27 75.43 75.5 79.26 

 
Table 6: Previous works (Hammer et al., 2005) 

Method SVMLIK SVMTOP SVMFK HMM DISC BP C4.5 
Rate 96.3 94.6 94.7 94 94.1 91.2 92.4 

 
 

The previous results indicate to that 
ANFIS with Dataset3 outperforms well-
known machine learning models. More-
over, ANFIS can represent the DNA splice 
sites problem in form if-then rules and 
hence provides an understanding about the 
properties of this problem. It allows to in-
corporate a priori knowledge into the clas-
sification process and provide us with an 
explanation capability, which makes it pos-
sible for the user to check on the internal 
logic of the system. Figure 5 shows the 
generated membership functions and the 
corresponding rules.  

CONCLUSION 
 
Although the comparison in this study 

is restricted to few methods, but it is clear 
using the Dataset3 (which consists from the 
highest correlated features and the ex-
tracted statistical properties) with the other 
classification algorithms tend to increase 
the classification rate. On the other hand, 
using ANFIS with Dataset3 outperforms 
well-known classification algorithms. AN-
FIS can be used to represent the DNA 
splice sites problem in form if-then rules 
and hence provides an understanding about 
the properties of this problem and allows to 
incorporate a priori knowledge into the 
classification process. 

 
 

 
Figure 5: The membership functions of the Adaptive Neuro-Fuzzy Inference System and the corres-

ponding rules 
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