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Importance of Memory Error Exploits

 Memory error exploits continue to be the dominant threat

 Behind most “critical updates” from Microsoft and other vendors

 Mechanism of choice in “mass market” attacks, including worms

 Defense techniques to address this problem continues to be 

the hot topic of research

 Over 20 techniques have been invented so far

 Techniques that provide full protection haven’t been practical

 High performance cost

 Code compatibility issues

 Diversity based defenses emerging as more promising

 Address Space Randomization (ASR)

 Instruction Set Randomization (ISR)
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Previous Diversity Based Techniques

Runtime performance overheads
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PointGuard

ASR (with AAR)

ASR (with AAR+RAR)

ISR

RAR: Relative Address Randomization

AAR: Absolute Address Randomization

Randomizes code 
representation
Targets only foreign 

code execution

Randomizes pointer 
representation
Targets control data 

attacks
Has code 
compatibility issues 
and is unsound

Randomizes 
absolute addresses
Targets control 

data attacks

Randomizes absolute 
and relative addresses
Targets control and 

non-control data attacks

DSR 
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DSR Technique

 Basic idea:  randomize data representation

 Xor each data object with a distinct random mask

 Effect of data corruption becomes non-deterministic

 Example: use out-of-bounds access on array X1 to corrupt variable 

X2 with value V

– Actual value written: mask(X1)  V

– When X2 is read, its value interpreted as mask(X2)  (mask(X1)  V)

– mask(X2)  mask(X1)  V ≠ V (because mask(X2) ≠ mask(X1) )

X1 X2

Example: Buffer overflow



Secure Systems Laboratory,  http://seclab.cs.sunysb.edu
5

Differences with PointGuard

 DSR randomizes all data objects, not just pointers

 PointGuard breaks working programs, DSR doesn’t

 Attacks targeted:

 PointGuard targets absolute address-dependent attacks 

(pointer corruption)

 DSR targets relative address-dependent attacks

 Helps defeating non-control data attacks that corrupt files names, 

userids, command names, authentication data, …

 Automatically defeats absolute address-dependent attacks as 

pointer corruption step is relative address-dependant

 Unlike PointGuard, DSR is not vulnerable to information 

leakage attacks (details forthcoming)
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DSR Transformation Approach

 For each variable v, introduce another variable m_v for 
storing its mask

 Randomize values assigned to variables (LHS)

 Example:   x = 5              x = 5; x = x ^ m_x;

 Derandomize used variables (RHS)

 Example:  (x + y)             ((x ^ m_x) + (y ^ m_y))

 Key problem: aliasing

int x, y, *ptr; …

ptr = &x; …

ptr = &y; …

z = *ptr

 Unfortunately, we cannot statically determine the mask 
associated with *ptr – it could be that of x or y
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Aliasing Problem

 Solution to aliasing problem: assign the same 

randomization mask to possibly aliased objects

 Requires alias analysis

 Current implementation supports Steensgaard’s algorithm for  

alias analysis

 Flow-insensitive

 Context-insensitive

 Field-insensitive

 All heap objects allocated at the same point represented by a single 

logical object

 Linear time complexity
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Pointer Analysis & Mask Assignment

int intval;

int *p1,*p2,*p3;

int **pp1,**pp2;

p1  = &intval;

pp1 = &p1;...

pp1 = &p3;...

pp2 = pp1;

p2  = *pp2;

…

= &pp2;

pp2
pp1 

p1,p3

intval

P2

mask: m1

mask: m2

mask: m3

p2 = *pp2

p2 = *(pp2^m3)^m2;

p2 = pp2^m4;

mask: m4
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Optimization

 Basic idea: mask only overflow candidate objects (OCOs),

e.g., arrays, structures containing arrays, objects whose 
addresses are taken

 Optimization is very effective because majority of memory 
access in a typical program are to non-OCOs

 Ensure that optimization doesn’t significantly impact security

 Claim: all data corruptions involve overflows from OCOs

 All relative address-dependent attacks involve overflows from 
OCOs

 All absolute address-dependent attacks involve corruption of 
pointers

 Require a relative address-dependent step, e.g., buffer overflow, 
integer overflow, heap overflow, etc.

 Implication: need protection from overflows in OCOs
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Protection from Overflows in OCOs  (Optimization ctd)

 Protect non-OCOs from overflows in OCOs

 Non-OCOs separated from OCOs with an unmapped memory 

page

 Guard against overflows among OCOs

 Use of distinct masks provides automatic protection for 

overflows between unaliased OCOs

 Prevent overflows between aliased OCOs by allocating them in 

disjoint memory regions

 Stack: allocate local OCOs on disjoint stacks (buffer stacks) if small 

in number; allocate in heap if the number is high

 Static: number of disjoint memory areas statically known

 Heap:  heap OCOs allocations (typically large in number) randomly 

distributed in a fixed number of heap memory regions
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Implementation

 Based on source-to-source transformation of C programs

 Uses CIL as front-end and OCAML as implementation language

 Implementation issues

 Handling overflows within structures

 Use field-sensitive pointer analysis so as to assign distinct mask to 

each field of a structure (not done yet)

 Handle functions such as memcpy, bzero in a context-sensitive way

 Handling variable argument functions

 Treat them as if they take array (with maximum size limit) parameter

 Transformation of libraries

 Source code available: need dynamic mask resolution

 Source code unavailable: need summary functions for library calls
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Execution Time Overheads
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Effectiveness Against Various Attacks

 Stack buffer overflows

 Overflows to corrupt data on main stack (e.g., return address, 
based pointer, saved registers) fail

 Overflows among overflow candidate objects

 fail if source and target objects are in different buffer stack or 
disjoint memory regions

 succeed with probability 2-32 otherwise

 Static buffer overflows

 Overflows to corrupt non overflow candidate objects fail

 Overflows between overflow candidate objects 

 fail if source and target objects are in different memory regions

 succeed with probability 2-32 otherwise
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Effectiveness Against Various Attacks

 Heap overflows

 Traditional attack (corruption of heap control data) succeeds 
with probability  2-32

 An overflow from one heap block to the next succeeds with 
probability > 2-32 (property of a program)

 Heap objects randomly distributed

 Nonetheless, such overflows also detected when control data 
between the heap blocks get corrupted

 Format string attacks

 Traditional attack with %n directive fails

 DSR cannot stop attacks that print contents of stack with %x

 Relative address attacks based on integer overflows

 If source and target objects share the same mask, such attacks 
can be successful (protection provided in the form of RAR)
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Effectiveness Against Attacks targeting DSR

 Information leakage attacks

 If a masked data is leaked, an attacker can deduce the mask if 

the plaintext data value is known

 Attempt to read masked data results in reading plaintext data

 Brute force and guessing attacks

 become difficult because of low probability of success 

 Partial pointer overwrites

 become impossible on stack-resident data because the main 

stack does not contain overflow candidate objects 
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Related Work

 Runtime guarding: StackGuard, StackShield, RAD, Libsafe, 
Libverify, ProPolice, FormatGuard, …

 Attack specific, no comprehensive protection

 Runtime bounds and pointer checking: [Austin+94], 
[Jones+97], Cyclone, CCured, [Ruwase+04], [Xu+04], 
[Dhurjati et al 06]

 High overheads or incompatibility with legacy code

 Runtime enforcement of static analysis results: CFI, DFI, 
WIT

 Don’t target all exploits (e.g., data leakage/corruption) 

 Randomization techniques: ASR (PaX, [Bhatkar+03], 
[Xu+03]), ISR ([Barrantes+03], [Kc+03]), PointGuard

 No or limited protection from non-control data attacks
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Summary of Contributions

 Randomization of all types of data provides comprehensive 
coverage

 Control data attacks

 Non-control data attacks

 Unlike other randomization techniques, resistant to 
information leakage attacks

 Higher range of randomization than other randomization 
techniques

 Capable of detecting exploits that are missed by full bounds-
checking techniques

 Example: overflows within structures

 Low runtime overhead

 Average around 15%
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Thank You!

R.Sekar
Email: sekar@cs.sunysb.edu


