
Secure Systems Laboratory, http://seclab.cs.sunysb.edu
1

Data Space Randomization (DSR)

R. Sekar
Department of Computer Science

Stony Brook University

Sandeep Bhatkar
Symantec Research Labs

Detection of Intrusions and Malware &Vulnerabilities Assessment

July 10, 2008

Paris, France

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
2

Importance of Memory Error Exploits

 Memory error exploits continue to be the dominant threat

 Behind most “critical updates” from Microsoft and other vendors

 Mechanism of choice in “mass market” attacks, including worms

 Defense techniques to address this problem continues to be

the hot topic of research

 Over 20 techniques have been invented so far

 Techniques that provide full protection haven’t been practical

 High performance cost

 Code compatibility issues

 Diversity based defenses emerging as more promising

 Address Space Randomization (ASR)

 Instruction Set Randomization (ISR)

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
3

Previous Diversity Based Techniques

Runtime performance overheads

L
e

v
e

l
o

f
p

ro
te

c
ti

o
n

PointGuard

ASR (with AAR)

ASR (with AAR+RAR)

ISR

RAR: Relative Address Randomization

AAR: Absolute Address Randomization

Randomizes code
representation
Targets only foreign

code execution

Randomizes pointer
representation
Targets control data

attacks
Has code
compatibility issues
and is unsound

Randomizes
absolute addresses
Targets control

data attacks

Randomizes absolute
and relative addresses
Targets control and

non-control data attacks

DSR

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
4

DSR Technique

 Basic idea: randomize data representation

 Xor each data object with a distinct random mask

 Effect of data corruption becomes non-deterministic

 Example: use out-of-bounds access on array X1 to corrupt variable

X2 with value V

– Actual value written: mask(X1)  V

– When X2 is read, its value interpreted as mask(X2)  (mask(X1)  V)

– mask(X2)  mask(X1)  V ≠ V (because mask(X2) ≠ mask(X1))

X1 X2

Example: Buffer overflow

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
5

Differences with PointGuard

 DSR randomizes all data objects, not just pointers

 PointGuard breaks working programs, DSR doesn’t

 Attacks targeted:

 PointGuard targets absolute address-dependent attacks

(pointer corruption)

 DSR targets relative address-dependent attacks

 Helps defeating non-control data attacks that corrupt files names,

userids, command names, authentication data, …

 Automatically defeats absolute address-dependent attacks as

pointer corruption step is relative address-dependant

 Unlike PointGuard, DSR is not vulnerable to information

leakage attacks (details forthcoming)

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
6

DSR Transformation Approach

 For each variable v, introduce another variable m_v for
storing its mask

 Randomize values assigned to variables (LHS)

 Example: x = 5 x = 5; x = x ^ m_x;

 Derandomize used variables (RHS)

 Example: (x + y) ((x ^ m_x) + (y ^ m_y))

 Key problem: aliasing

int x, y, *ptr; …

ptr = &x; …

ptr = &y; …

z = *ptr

 Unfortunately, we cannot statically determine the mask
associated with *ptr – it could be that of x or y

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
7

Aliasing Problem

 Solution to aliasing problem: assign the same

randomization mask to possibly aliased objects

 Requires alias analysis

 Current implementation supports Steensgaard’s algorithm for

alias analysis

 Flow-insensitive

 Context-insensitive

 Field-insensitive

 All heap objects allocated at the same point represented by a single

logical object

 Linear time complexity

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
8

Pointer Analysis & Mask Assignment

int intval;

int *p1,*p2,*p3;

int **pp1,**pp2;

p1 = &intval;

pp1 = &p1;...

pp1 = &p3;...

pp2 = pp1;

p2 = *pp2;

…

= &pp2;

pp2
pp1

p1,p3

intval

P2

mask: m1

mask: m2

mask: m3

p2 = *pp2

p2 = *(pp2^m3)^m2;

p2 = pp2^m4;

mask: m4

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
9

Optimization

 Basic idea: mask only overflow candidate objects (OCOs),

e.g., arrays, structures containing arrays, objects whose
addresses are taken

 Optimization is very effective because majority of memory
access in a typical program are to non-OCOs

 Ensure that optimization doesn’t significantly impact security

 Claim: all data corruptions involve overflows from OCOs

 All relative address-dependent attacks involve overflows from
OCOs

 All absolute address-dependent attacks involve corruption of
pointers

 Require a relative address-dependent step, e.g., buffer overflow,
integer overflow, heap overflow, etc.

 Implication: need protection from overflows in OCOs

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
10

Protection from Overflows in OCOs (Optimization ctd)

 Protect non-OCOs from overflows in OCOs

 Non-OCOs separated from OCOs with an unmapped memory

page

 Guard against overflows among OCOs

 Use of distinct masks provides automatic protection for

overflows between unaliased OCOs

 Prevent overflows between aliased OCOs by allocating them in

disjoint memory regions

 Stack: allocate local OCOs on disjoint stacks (buffer stacks) if small

in number; allocate in heap if the number is high

 Static: number of disjoint memory areas statically known

 Heap: heap OCOs allocations (typically large in number) randomly

distributed in a fixed number of heap memory regions

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
11

Implementation

 Based on source-to-source transformation of C programs

 Uses CIL as front-end and OCAML as implementation language

 Implementation issues

 Handling overflows within structures

 Use field-sensitive pointer analysis so as to assign distinct mask to

each field of a structure (not done yet)

 Handle functions such as memcpy, bzero in a context-sensitive way

 Handling variable argument functions

 Treat them as if they take array (with maximum size limit) parameter

 Transformation of libraries

 Source code available: need dynamic mask resolution

 Source code unavailable: need summary functions for library calls

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
12

Execution Time Overheads

0

5

10

15

20

25

30

patch tar grep ctags gzip bc bison

Runtime overhead

Average: 15%

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
13

Effectiveness Against Various Attacks

 Stack buffer overflows

 Overflows to corrupt data on main stack (e.g., return address,
based pointer, saved registers) fail

 Overflows among overflow candidate objects

 fail if source and target objects are in different buffer stack or
disjoint memory regions

 succeed with probability 2-32 otherwise

 Static buffer overflows

 Overflows to corrupt non overflow candidate objects fail

 Overflows between overflow candidate objects

 fail if source and target objects are in different memory regions

 succeed with probability 2-32 otherwise

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
14

Effectiveness Against Various Attacks

 Heap overflows

 Traditional attack (corruption of heap control data) succeeds
with probability 2-32

 An overflow from one heap block to the next succeeds with
probability > 2-32 (property of a program)

 Heap objects randomly distributed

 Nonetheless, such overflows also detected when control data
between the heap blocks get corrupted

 Format string attacks

 Traditional attack with %n directive fails

 DSR cannot stop attacks that print contents of stack with %x

 Relative address attacks based on integer overflows

 If source and target objects share the same mask, such attacks
can be successful (protection provided in the form of RAR)

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
15

Effectiveness Against Attacks targeting DSR

 Information leakage attacks

 If a masked data is leaked, an attacker can deduce the mask if

the plaintext data value is known

 Attempt to read masked data results in reading plaintext data

 Brute force and guessing attacks

 become difficult because of low probability of success

 Partial pointer overwrites

 become impossible on stack-resident data because the main

stack does not contain overflow candidate objects

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
16

Related Work

 Runtime guarding: StackGuard, StackShield, RAD, Libsafe,
Libverify, ProPolice, FormatGuard, …

 Attack specific, no comprehensive protection

 Runtime bounds and pointer checking: [Austin+94],
[Jones+97], Cyclone, CCured, [Ruwase+04], [Xu+04],
[Dhurjati et al 06]

 High overheads or incompatibility with legacy code

 Runtime enforcement of static analysis results: CFI, DFI,
WIT

 Don’t target all exploits (e.g., data leakage/corruption)

 Randomization techniques: ASR (PaX, [Bhatkar+03],
[Xu+03]), ISR ([Barrantes+03], [Kc+03]), PointGuard

 No or limited protection from non-control data attacks

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
17

Summary of Contributions

 Randomization of all types of data provides comprehensive
coverage

 Control data attacks

 Non-control data attacks

 Unlike other randomization techniques, resistant to
information leakage attacks

 Higher range of randomization than other randomization
techniques

 Capable of detecting exploits that are missed by full bounds-
checking techniques

 Example: overflows within structures

 Low runtime overhead

 Average around 15%

Secure Systems Laboratory, http://seclab.cs.sunysb.edu
18

Thank You!

R.Sekar
Email: sekar@cs.sunysb.edu

