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Abstract. Recent works in evolutionary multiobjective optimization
suggest to shift the focus from solely evaluating optimization success in
the objective space to also taking the decision space into account. They
indicate that this may be a) necessary to express the users requirements
of obtaining distinct solutions (distinct Pareto set parts or subsets) of
similar quality (comparable locations on the Pareto front) in real-world
applications, and b) a demanding task for the currently most commonly
used algorithms. We investigate if standard EMOA are able to detect and
preserve equivalent Pareto subsets and develop an own special purpose
EMOA that meets these requirements reliably.

1 Introduction

Almost all publications about evolutionary multiobjective algorithms (EMOA)
put their emphasis on approximating the Pareto front in the objective space
whereas the relevance of an appropriate approximation of the Pareto set is widely
neglected. The knowledge about the Pareto front is important for the product
designer. But as soon as a solution in objective space has been selected it is
important to know for the product engineer if there are alternative solutions in
the decision space that lead to the same objective vector. Such Pareto-optimal
solutions in decision space exist if there are symmetries in the objective function.
This phenomenon occurs for example in the test problems considered by Chan
and Ray [1] or Preuss et al. [2]. Basically, the Pareto set could be partitioned
into subsets where the images of each subset are identical, i.e., each Pareto
subset of this partition represents the entire Pareto front. Figure 1 illustrates
and distinguishes different cases that may occur in multiobjective problems.

Apart from artificial test problems, there are of course real-world problems
that exhibit such symmetries. For example, consider the problem of designing
a proper diet for people with special needs. Besides taking into account nutri-
ent and non-nutrient requirements, there are also aesthetic standards regarding
shape, colors and others (cf. Seljak [3]). Of course, there are numerous ways to
compile alternative but equally valuable meals that differ only in the exchange
of some vegetables.
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Here, we are interested in the capabilities of standard EMOA of detecting
and/or preserving Pareto subsets of equivalent quality. A more detailed view of
our aims and methods is given in section 2. For our analysis, we construct an
artificial problem class that exploits symmetries in the objective function in an
extreme manner along with various geometric transformations. The same blue
print can be used to construct further test classes in future. This approach is pre-
sented in section 3, which is enriched with an experimental investigation of the
problem hardness via design of experiment (DOE) methods. Section 4 evaluates
standard EMOA and a special purpose EMOA on this problem class which leads
to the observation that standard EMOA and even the special purpose EMOA
do not provide fully satisfying results. Therefore, we develop a new EMOA ap-
proach that is based on the multistart technique along with several scalarization
methods. We can show empirically that this approach delivers a reliable and
accurate approximation of all Pareto subsets with equivalent quality. We finish
with our conclusions in section 6.

Fig. 1: Different Pareto set and Pareto
front type combinations: One Pareto set and
one Pareto front (type I), one Pareto set and
multiple Pareto front parts (type II), multi-
ple Pareto subsets and one Pareto front (type
III), and multiple Pareto subsets and Pareto
front parts (type IV). Type III problems are
rarely investigated, although they potentially
provide multiple preimages for every objec-
tive vector of interest.

type I type II

type III type IV

2 Aims and Methods

To investigate the behavior of EMOA and their operators in presence of multiple
Pareto set parts (type III problems), we concentrate on three main questions:

– Which properties make these problems especially hard or simple for standard
EMOA?

– What are the mechanisms in EMOA that lead to better or worse performance
in terms of Pareto set preservation and Pareto front approximation?

– How can Pareto set preservation in EMOA be improved?

Obviously, standard performance measures for multiobjective optimization
algorithms disregard how Pareto sets are dealt with; they only refer to population
distributions in the objective space. We therefore define two simple new measures
which require knowledge about Pareto subset numbers and locations and are thus
not applicable to real-world application problems.
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The formal definitions refer to a population P of points (ind) in decision space
and a set S of Pareto subsets (set). The boolean function near(ind,set) becomes
true if the tested individual reaches the vicinity of the tested set. For determining
when exactly this is the case, the concrete problem must be taken into account.
VAR stands for the sample variance s2, determined to s2 = 1

n−1

∑n
i=1(xi−x)2 .

Covered sets (cs): The number of covered Pareto subsets (which comprise at
least one individual in their vicinity).

cs(P, S) := |{set ∈ S : ∃ind ∈ P,near(ind, set)}| (1)

Set population spread (sps): The standard deviation of the Pareto subset
population counts (the number of individuals found on a Pareto subset).

sps(P, S) :=
√

VAR({∀set ∈ S : |ind ∈ P,near(ind, set)|})
(2)

For measuring the Pareto front approximation quality of a population, we
utilize the common S-metric (hypervolume). Furthermore, standard experiment
layout and visualization techniques from the design of experiments (DOE) field
(see Montgomery [4]) are employed.

3 A test-problem class: SYM-PART

In a previous work [2], a configurable type III test problem with two distinct
Pareto sets, overlapping only in the decision space origin, has been investigated.
These distinct Pareto sets were caused by the point symmetry of the bi-modal
objective function. It is easy to see that such property entails loss of surjec-
tiveness by creating two or more preimages of the optima and search points in
their vicinity. As soon as at least the global optimum of one objective function
(which is by definition part of the Pareto front of the resulting multiobjective
function) is affected, multiple, possibly connected Pareto subsets emerge. In the
following, we use this reasoning to construct SYM-PART (symmetrical parts)
test problems with a controllable number of Pareto subsets, heavily relying on
symmetry properties of the underlying singleobjective functions.

3.1 Construction of the test problems

Starting point is a very simple and well known test problem with two objectives
and two-dimensional search space, namely,

f(x1, x2) =
(

(x1 + a)2 + x2
2

(x1 − a)2 + x2
2

)
(3)

for some a > 0. The Pareto set X ∗ = {x ∈ R2 : x = (x1, 0)′ with x1 ∈ [−a, a]}
maps to the Pareto front F∗ = f(X ∗) = {z ∈ R2 : z = (4 a2 ν2, 4 a2 (1 −
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Fig. 2: Blue print of the initial test problem: Each subset of the Pareto set is a line
of length 2 a. Parameter b specifies the vertical distance between neighboring Pareto
subsets, whereas parameter c specifies the distance to the next Pareto subset on the
horizontal line. Each Pareto subset maps to the same Pareto front.

ν)2)′ with ν ∈ (0, 1)}. Our idea is to translate the problem above to different
regions in search space (see Fig. 2), such that each of these Pareto subsets are
of equivalent quality since each Pareto subset maps to the same Pareto front.

For this purpose we define test problem (3) only in a certain neighborhood.
Such a neighborhood will be called tile hereinafter (see Fig. 3).

b

2a + c

tile (-1,-1) tile ( 0,-1) tile ( 1,-1)

tile (-1, 0) tile ( 0, 0) tile ( 1, 0)

tile (-1, 1) tile ( 0, 1) tile ( 1, 1)

1

Fig. 3: Tile pattern for function (3) translated to tiles (i, j) that are defined by a rect-
angular region with width 2 a + c and height b. Here, (i, j) denotes the tile identifier.

The tile identifiers are determined via

t̂1 = sgn(x1)×
⌈ |x1| − (a + c

2 )
2 a + c

⌉
(4)

t̂2 = sgn(x2)×
⌈ |x2| − b

2

b

⌉
(5)

where a, b and c are the parameters for specifying the tile pattern. We restrict
the problem to 9 tiles, i.e., the tile identifiers ti only attain values in {−1, 0, 1}
by using the relation ti = sgn(t̂i) × min{| t̂i|, 1}. Now we are in the position to
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define the first test problem instance:

f (1)(x1, x2) = f(x1 − t1 (c + 2 a), x2 − t2 b)

The second test problem instance requires that x is rotated by ω = 45◦ via

r(x) =
(

cos ω − sinω
sinω cos ω

)
x

before calculating the tile identifiers t1, t2 in (4) and (5). This leads to (see Fig. 4,
left)

f (2)(x1, x2) = f (1)(r1(x), r2(x)) .

Finally, we add a transformation that distorts the shape of the Pareto subsets:

d(x1, x2) = x1 ×
(

x2 − L + ε

U − L

)−1

for some small ε > 0 and where U and L denote the upper and lower bound
of the search space, respectively. When transforming x1 prior to calculating the
tile identifiers, the third test problem instance is defined by (see Fig. 4, right)

f (3)(x1, x2) = f (2)(d(x1, x2), x2) .

x1

x2
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SYM−PART rot.+ trans., Pareto set

Fig. 4: Empirically detected (randomly enumerated) Pareto sets of SYM-PART test
problems instances 2 and 3 (instance 1 refers to the original problem depicted in Fig. 3).
Instance 2: 45◦ rotation, no transformation (left), instance 3: 45◦ rotation with trans-
formation (right). Note that Pareto subset sizes differ here.

Needless to say, we are aware of the weaknesses of these test instances since
they exploit only one type of symmetry and since they are defined only for two
dimensions in search and objective space. But as can be seen shortly, these simple
test problems can be used to demonstrate interesting phenomena occurring in
standard EMOA and some special purpose EMOA presented below.
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3.2 Experimental investigation of problem hardness

In the following sections, several EMOA are tested for their ability to reach
and preserve many or all existing Pareto subsets. It is therefore necessary to
establish differently difficult problem instances of the SYM-PART problem class.
In particular, the three problem instances developed in §3.1 shall be assessed.
Apart from the fact that we do not employ any evolutionary algorithm but
simple, deterministic, grid-based search methods, exploring the effect of problem
modifications onto optimization methods is related to the approach of Langdon
and Poli [5].

Experiment 1 relies on the utilization of design of experiments (DOE) tech-
niques as first introduced by Fisher [6]. The controllable input variables or
factors—in this case problem properties—are varied systematically in discrete
levels. Observing the resulting performance changes then enables estimating the
impact of single properties (main effects) and combined properties (interaction
effects). An experimental layout that requires to actually test all possible factor
level combinations is called a fully factorial design. For larger numbers of factors,
one often uses fractional factorial designs. These reduce the number of runs by
ignoring certain factor level combinations at the expense of explanatory power
regarding higher-order interaction effects. For a more thorough introduction into
DOE methods we refer to standard textbooks (e.g. Montgomery [4]).

Experiment 1: Problem hardness of different SYM-PART configurations.

Pre-experimental planning: First experiments revealed that a standard op-
erator/value NSGA2 (see Tab. 3) performs reasonably well in preserving Pareto
sets over a long time (30,000 evaluations). Replacing search operators or pa-
rameter values seems to weaken this ability. The NSGA2 is therefore chosen as
constant base algorithm when modifying the treated problem.
Task: Detect which SYM-PART modifications have a large impact on the ability
of an EMOA to discover and preserve as many Pareto sets as possible. Recom-
mend few considerably different SYM-PART instances for further use.
Setup: We apply a full factorial design: NSGA2 is run with 30 repeats on each
factor level combination (16). Low and high factor levels are given in Tab. 1.
Bounds refers to the rectangular search space bounds, shift stands for translation
of the whole tile structure relative to the origin, rotation and transformation are
as stated in §3.1.
Results/Visualization: The mean number of covered sets (cs) and the set
population spread (sps) are used to compute main and interaction effects. These

Table 1: SYM-PART problem designs, made of combinations of 4 factors, each of
which has a low (left) and high (right) level. Chosing all 4 low levels results in the
original problem as described in §3.1.

parameter bounds (L:U) shift vs. origin rotation angle transformation

factor levels −50:50/−20:20 (0, 0)/(2, 2) 0◦ / 45◦ no / yes
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Fig. 5: DOE main effects, original mean values, without adjustment towards the aver-
age. As the standard deviations of the observed cs(P ,S) values are almost 1 (up to ≈ 5
for the largest values of sps(P ,S)), all but the largest two effects are insignificant.

are depicted in Fig. 5 and Fig. 6, respectively. Due to space limitations and to
enhance comparability, all effects are plotted into one diagram, thereby deviating
from standard DOE practice. Higher-order interaction effects (of more than two
factors) are disregarded.
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Fig. 6: DOE interaction effects, as Fig. 5 at the original location, but differently scaled,
without adjustment. All except the trans-bound and rot-trans interactions are insignif-
icant due to the high variance level.

Observations: The strongest main effects are caused by the transformation
and the extent of decision space bounds (trans and bounds in Fig. 5). Measures
cs(P, S) and sps(P, S) return consistent values: For smaller decision spaces, less
Pareto subsets are kept, and the spread of set populations increases. The trans-
formation has a similar effect and obviously makes the problem harder if switched
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on. Shift and rotation apparently do not affect problem hardness. The interaction
effect plots Fig. 6 document that only two interactions need to be considered:
Trans-bound and rot-trans. Both interaction effects are much weaker than the
important main effects. Whereas trans-bound signals harder problems if both
factors are either set to their low or to their high levels, rot-trans points into
the other direction. If only rotation or only transformation is switched on, the
problem appears to be harder than if both are on or off.
Discussion: Surprisingly, changing decision space bounds has a large effect on
performance in terms of cs(P, S) and sps(P, S). If the relative amount of search
space that must be covered for placing individuals in all Pareto subsets ap-
proaches 1, the EMOA gets more and more difficulties. We attribute this behav-
ior at least in part to the polynomial mutation (PM) operator which uses the
upper and lower bounds for adjusting its step size distribution. We must how-
ever state that the PM operator works reasonably well even under very tight
bounds around the Pareto subsets. As setting the bounds to the high factor
level (-20/20) greatly increases problem difficulty, we consider only these in the
following.

Dissecting the impact of the 4 possible combinations of rotation and trans-
formation leads to an unexpected order of increasing hardness: ¬rot ∧ ¬trans
(mean/stddev(cs)=8.83/0.33) < rot ∧ ¬trans (8.49/0.49) < rot ∧ trans (8/0.60)
< ¬rot ∧ trans (7.71/0.76). To keep the number of problem instances for fur-
ther testing as low as possible, we select only 3 of these, namely the simple one
(¬rot∧¬trans), the rotated one (rot∧¬trans), and the rotated and transformed
one (¬rot ∧ ¬trans). Instead of the latter, one could also chose the not rotated
but transformed instance. However, we refrained from doing so because the dif-
ference between these two is rather small, and it is currently not clear why the
instance without rotation may be more difficult.

4 Evaluation of Standard EMOA on SYM-PART

Compared to §3.2, we now follow the opposite approach and test several common
EMOA on the three previously selected SYM-PART problem instances.

Experiment 2: Investigate convergence/diversity tradeoff for different EMOA.

Pre-experimental planning: First results confirmed the expected behavior:
Standard techniques do not perform well even on the simplest instance of the
SYM-PART problem. The algorithms only kept a very limited number of tiles
(cs(P ,S)).

Later, it was discovered that this unwanted behavior was seemingly caused
by adaptive mutation featuring n = 2 step sizes [7]. After changing the variation
operator to polynomial mutation [8], which became the standard mutation oper-
ator within EMOA in recent years, the quality of results increased significantly.
This is indicated by the average number of tiles preserved by different EMOA, in
turn using the two mentioned mutation operators. Mean values for cs(P ,S) are
given next to the corresponding standard deviations (in brackets) in Tab. 2. As
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polynomial mutation performed much better, this operator was applied in the
investigation of different EMOA on all instances of the SYM-PART problem.

Table 2: Test of standard EMOA with different mutation operators, namely polyno-
mial mutation (PM) and adaptive mutation with two step sizes (AM). The values give
average cs(P ,S) values of 18 runs with 10,000 evaluations each (standard deviations
are given in brackets).

algorithm AM PM

NSGA-II 1.65 (0.745) 8.61 (0.608)
SPEA2 1.94 (0.873) 8.94 (0.236)

Task: The performance of EMOA is to be tested on all instances of the SYM-
PART problem. More detailedly, we look for drawbacks of the standard tech-
niques in contrast to an algorithm that is explicitly developed to keep diversity
in solution space as well as in decision space. Are the algorithms able to discover
new tiles and can they keep the new tiles for the rest of the optimization run?

Setup: We invoke two standard techniques next to a new development within
the field. The Pisa framework1 is used to conduct the referred optimization runs
with the standard techniques. Here, all specifications of the SYM-PART problem
have been implemented as a variator, which can be optimized with respect to
different objectives and multiple selectors. Among the set of available selectors,
NSGA-II and SPEA2 are chosen, because these appear to be the currently most
well-known and commonly used algorithms in the field [8, 9]. Additionally, the
more recent KP1 by Chan and Ray [1] is tested.

KP1 was designed for maintaining diversity in decision space as well as in
objective space. Therefore, two criteria to measure the diversity of solutions
in the corresponding spaces are defined and applied in each generation. These
are dominated hypervolume of each individual for the objective space and a
neighborhood counting approach for the decision space. Both are described in
detail by Chan and Ray [1]. The OMNI-Optimizer by Deb et al. [10] considers
only one of such measurements in the different space at a time and is not included
in this study.

The parameters of the variation operators are set to standard values, i.e.
SBX and PM with distribution indices ηc = 15 and ηm = 20, respectively.
Crossover and mutation probability are set to one. Selection is performed using
a (100 + 100) selection scheme for 300 generations in either cases, resulting in
30,000 fitness function evaluations per run (see Tab. 3).

The additional effort for a third algorithm in the study seems to be justified
as the development aims of this algorithm directly address the difficulties of the
chosen test problems.

1 PISA - Platform and Programming Language Independent Interface for Search Al-
gorithms, ETH Zurich, www.tik.ee.ethz.ch/pisa/
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Table 3: Parameter setting for standard EMOA depicting mutation and crossover prob-
abilities (mut.prop. and cross.prob.), distribution indices (ηm and ηc), and the selection
scheme in use.

parameter mut.prob. ηm cross.prob. ηc selection

value 1 20 1 15 (100 + 100)

Results/Visualization: Tab. 4 and 5 give average final results of the 30 runs
performed for every algorithm on every instance of the SYM-PART problem.
Tab. 4 more detailedly depicts the average number of tiles preserved by the
indicated algorithm after 30,000 evaluations. The mean hypervolume received
after the corresponding runs is contained in Tab. 5. But, these averaged values of
the final results do not give evidence for the behavior of the different algorithms
during the runs. This aspect is tackled in Fig. 7, where all repetitions of runs have
been averaged generation by generation. For example, the upper left diagram of
Fig. 7 depicts three curves, one for each instance of the SYM-PART problem.
Each curve is generated averaging the results achieved after the first generation,
the second one, up to the 300th one. The same holds for all other curves within
all diagrams in Fig. 7. The middle row holds SPEA2 results while the lower one
displays the results of KP1 by Chan and Ray. The upper row is dedicated to
NSGA2 and the left column to the generation-wise averaged number of tiles kept
as can be seen from the example above.

The right column gives the generation-wise average values of the dominated
hypervolume. Here, the displayed area is shortened to the starting phase of the
runs up to generation 50. This is done to highlight the interesting developments
during the runs and implies that no major changes in the behavior take place
after the depicted interval of the run. The final results of the averaged runs can
be taken from Tab. 4 and 5 as described above.

Table 4: Test of different algorithms on all instances of the SYM-PART problem.
The values give the average cs(P, S) of 30 runs with 30,000 evaluations each (standard
deviations are given in brackets).

algorithm simple rotated rot.+trans.

NSGA-II 6.333 (1.446) 5.633 (1.450) 4.667 (1.124)
SPEA2 6.3 (1.022) 5.2 (1.157) 5 (1.364)
KP1 8.3 (1.290) 6.733 (1.818) 6.5 (0.9738)

Observations: With respect to the number of tiles kept, Tab. 4 shows the ex-
pected behavior of the algorithms within this study: The number of tiles kept
decreasing with growing hardness of the considered instance of the SYM-PART
problem. This means, most of the tiles are kept on SYM-PART 1 by all algo-
rithms. Here, KP1 clearly outperforms the other algorithms keeping 8.3 of 9
tiles on average. This is the highest value achieved within all experiments. The
lowest number of tiles is received for SYM-PART 3, the rotated and transformed
instance and therefore the most difficult one. On this problem, NSGA2 receives
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Table 5: Test of different algorithms on all instances of the SYM-PART problem. The
values give the average dominated hypervolume after 30 runs with 30,000 evaluations
each (standard deviations are given in brackets).

algorithm simple rotated rot.+trans.

NSGA-II 22.254 (0.00353) 22.255 (0.00305) 22.254 (0.00358)
SPEA2 22.257 (0.00237) 22.257 (0.00243) 22.255 (0.00278)
KP1 22.241 (0.00712) 22.231 (0.00689) 22.220 (0.00781)

the lowest value achieved within all experiments (4.667). For all algorithms, the
values for SYM-PART 2 are greater than the ones for SYM-PART 3 and smaller
than the ones for SYM-PART 1. KP1 performs better than the other algorithms
on all instances. Interestingly, NSGA2 is better than SPEA2 on SYM-PART 1
and SYM-PART 2, while SPEA2 performs better on SYM-PART 3.

The behavior of the algorithms changes when taking the dominated hypervol-
ume into account (see Tab. 5). SPEA2 receives the best results on all instances,
followed shortly by NSGA2. KP1 clearly achieves the worst values of dominated
hypervolume on all instances. Furthermore, the values from this algorithm de-
crease with problem complexity. This behavior can not be observed for NSGA2
and SPEA2. Here, the largest dominated hypervolume is obtained on the rotated
instance of SYM-PART, while the lowest values are achieved on the rotated and
transformed SYM-PART 3.

More dramatic differences in the behavior of KP1 in contrast to NSGA2
and SPEA2 can be observed in the diagrams of Fig. 7 considering the average
cs(P, S) values per generation. In contrast to the behavior of KP1, NSGA2 and
SPEA2 loose tiles during the averaged optimisation runs. KP1 first looses tiles
as well but turns its behavior after about 20 generation on all three instances.
Starting here, KP1 almost constantly captures tiles back. Interestingly, steps
can be observed even in the averaged runs. This is due to increasing as well
as decreasing cs(P, S) values within single runs. As a consequence, also KP1
is not able to keep all newly discovered tiles for the rest of the run. Some are
lost again after only a few generations. But, in contrast to NSGA2 and SPEA2,
this algorithm is able to keep more tiles than get lost. This leads to the over all
increasing number of tiles on average.

The curves depicting the hypervolume do not yield such interesting results.
The values here increase rapidly to almost optimal values for all algorithms.
More detailedly, NSGA2 and SPEA2 act almost comparable on SYM-PART 1
and SYM-PART 2. The dominated hypervolume increases a bit more slightly
on SYM-PART 3. This also holds for KP1, where a more distinct difference can
be observed between SYM-PART 1 and SYM-PART 2. Over all, the results for
KP1 seem to converge to the almost optimal values for the run a bit faster. But,
as can be seen from Tab. 5, these values are worse than the ones for SPEA2 and
NSGA2.
Discussion: With respect to the course of the tiles kept, an important difference
in the behavior of the algorithms is observed. While this course decreases for
NSGA2 and SPEA2, it increases for KP1. The final conclusion that all but one
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Fig. 7: Average runs of NSGA-II, SPEA2 and KP1 of Chan and Ray (labeled KP1) on
all instances of the SYM-PART function. The left column presents the average cs(P, S)
values over the evaluations while the right one gives the average dominated hypervolume.
The average runs have been received from 30 runs performed, 30,000 fitness function
evaluations each. Only the first part up to 5,000 evaluations is presented in case of the
hypervolume plot due to better observability of results.

tile are lost after more generations of NSGA2 and SPEA2 while all tiles are
captured back using KP1 is not shown, but is an self-evident assumption.

The values for the dominated hypervolume reveal that the more tiles are kept,
the less hypervolume is achieved. This leads to the assumption that both criteria
are conflicting. The fact that no hypervolume is lost with increasing number of
tiles in the KP1 runs contradicts this assumption. Therefore, KP1 can be stated
to be the best algorithm within this study, although not dominating all the
hypervolume the other algorithms do. This is due to KP1 preserving diversity
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not only in the solution space, but also in the decision space. Considering both
criteria, it would be better to stop the runs of the standard algorithms more
early, i.e. after about 50 generations. At his point, they already dominate almost
all possible hypervolume and occupy the highest number of tiles.

What is not tackled in this investigation is the distribution of individuals
over tiles sps(P, S). In the most comprehensive algorithms, the user would like
the number of individuals to grow on newly occupied tiles. At the end of a run,
a uniform distribution of individuals over all Pareto sets within tiles is aspired.

5 A Multistart Approach for Pareto Subset Detection

An alternative approach to detect and maintain several Pareto subsets of equiv-
alent quality is provided by the multistart technique. The algorithm described
here is still of experimental state but very promising. The main idea is as follows:
We run a singleobjective optimizer for each objective function. Since the optimal
solution of each objective function is Pareto-optimal we have a kind of anchor
that can be used to approximate the associated Pareto subset successively by
deploying some singleobjective optimizer repeatedly with different weights of the
scalarized multiobjective function.

Let f(x) = ( f1(x), . . . , fd(x) ) be the objective function with x ∈ Rn. At
first, N runs with a standard (1, λ)-ES are made for each of the d objectives.
The ES stops if the standard deviation σ of the mutation operator is below
some threshold δ > 0. Each solution x∗ is stored and annotated with the index
of the objective function used: (x∗, k) ∈ Rn × {1, . . . , d}. Thus, we obtain N · d
candidate solutions in this manner.

Suppose there are s ∈ N Pareto subsets with equivalent quality. If all Pareto
subsets are hit by the multistart approach then we need only s·d anchor solutions
as starting points of the singleobjective search with the scalarized multiobjective
function to approximate all Pareto subsets. Since the number s of the equivalent
Pareto subsets is unknown in general, we deploy an unsupervised clustering
method to reduce the N · d candidate solutions to s · d anchor solutions required
for the next step. Actually, it is possible to reduce the number of anchor solutions
to s since we can apply the clustering method to the N solutions of each objective
separately (recall that we have annotated each candidate solution with the index
of the objective function used). Since the different objective functions may be
of varying difficulty for the optimization, we can use the d outcomes of the
clustering method as a consistency check. This idea, however, is currently not
implemented. We simply cluster the candidate solutions of the objective function
with index 1 and proceed with ŝ estimated anchor solutions.

The scalarization used in the sequel is known as the weighted Tchebycheff
method [11]: The multiobjective function f : Rn → Rd is scalarized via

f<s>(x) = max
i=1,...,d

{wi |fi(x)− u∗i | }

where u∗ ∈ Rd is the utopian solution. Since we have made N singleobjective
optimizations of each objective fi : Rn → R in the first phase of our algo-
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rithm, we have obtained an accurate estimator of the ideal solution z∗ with
z∗i = min{fi(x) : x ∈ Rn} for i = 1, . . . , d. As a consequence, we may set
u∗i = z∗i − 1 to get a valid utopian solution required for the weighted Tcheby-
cheff method (WTM). We have chosen WTM because of its ability to find also
solutions whose images are on a concave Pareto front. Needless to say, here we
tacitly assume that the Pareto subsets are connected.

The user may choose how many representatives of each Pareto subset are
desired. Suppose we like to obtain k representatives. Then for each of the ŝ
anchor solutions x∗ we start a standard (1, λ)-ES with initial σ0 = 10 δ, seeding
point x∗, and weights that cover all possible weight assignments with maximal
uniformity. In case of d = 2 objectives the weights are given by w1 = j/(k − 1)
and w2 = 1−w1 for j = 1, . . . , k− 1. Notice that the anchor solution x∗ is used
as initial parent of the ES for j = 1 only. The best solution found in this run
serves as initial parent for j = 2. And so forth until j = k − 1. In this vein, we
finally arrive at an approximation of all Pareto subsets that were detected in the
first phase of the algorithm.

For an assessment of this approach, we made some experiments for the three
test instances introduced previously. The parametrization was as follows: λ = 5,
N = 50, δ = 10−5, k = 10. The initialization of the ES in the first phase
used σ0 = 20/6 and the starting point was sampled uniformly from the region
[−20, 20]2.

Each run out of 30 in total detected the 9 Pareto subsets reliably and ap-
proximated the Pareto subset with high accuracy. In the first phase each run of
the (1, λ)-EA stops on average in less than 60 generations. Thus, we required less
than 60× λ×N × d = 30, 000 function evaluations of the single-objective func-
tions, which is equivalent to 15, 000 function evaluations of the multiobjective
function. The second phase (clustering) does not evaluate the objective function.
The third phase required less than 5, 000 function evaluations of the scalarized
multiobjective function. Thus, this approach required less than the equivalent of
20, 000 multiobjective function evaluations for a reliable and accurate approxi-
mation of all Pareto subsets for all test instances. Figure 8 shows typical results
for the three test instances.
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Fig. 8: Typical runs of the multistart approach on all instances of the SYM-PART
problem (from left to right: instances 1, 2, and 3, as described in §3.1).
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6 Conclusions and Future Work

We have shown that standard EMOA are not able to reliably detect and/or
preserve all Pareto subsets of equivalent quality. This is not surprising as they
have not been designed for this purpose. Moreover, this property is not required
in some cases. But if we need this property we have to deploy special purpose
EMOA. We have tested one such EMOA given in the literature and we have
developed another EMOA that is based on a multistart approach which meets
our requirements. It is imaginable that EMOA with niching can be successful in
this case, too. But this analysis remains for future research, as well as the devel-
opment of additional problem classes that exploit different types of symmetries
and that are defined in higher-dimensional decision and objective spaces.
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