
TECHNISCHE UNIVERSITÄT DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Intelligent Group Movement and Selection
in Realtime Strategy Games

Mike Preuss, Nicola Beume, Holger Danielsiek,
Tobias Hein, Boris Naujoks, Nico Piatkowski,

Raphael Stüer, Andreas Thom and Simon Wessing

No. CI-255/08

Technical Report ISSN 1433-3325 December 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Dept. of Computer
Science/LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the Technische Universität Dortmund and was printed with financial
support of the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46908883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Intelligent Group Movement and Selection
in Realtime Strategy Games

Mike Preuss, Nicola Beume, Holger Danielsiek, Tobias Hein, Boris Naujoks,
Nico Piatkowski, Raphael Stüer, Andreas Thom, Simon Wessing

Abstract—Movement of groups in realtime strategy games is
often a nuisance: Units travel and battle separately, resulting in
huge losses and the AI looking dumb. This applies to computer
as well as human commanded factions. We suggest to tackle that
by using flocking improved by influence-map based pathfinding
which leads to a much more natural and intelligent looking
behavior. A similar problem occurs if the computer AI has
to select groups to combat a specific target: Assignment of
units to groups, especially for multiple enemy groups, is often
suboptimal when units have very different attack skills. This can
be cured by using offline prepared self-organizing feature maps
that use all available information for looking up good matches.
We demonstrate that these two approaches work well separately,
but also that they go together very naturally, thereby leading
to an improved and—via parametrization—very flexible group
behavior. Opponent AI may be strenghtened that way as well as
player-supportive AI. A thorough experimental analysis supports
our claims.

Index Terms—Realtime strategy games, path finding, neural
networks, evolutionary algorithms, tactical decision making

I. INTRODUCTION

The Realtime Strategy (RTS) genre recently featured some
of the most successful and also most complex computer
games. It may also be regarded as one of the roots of
nowadays popular massive multiplayer online games (MMOG)
like ‘World of Warcraft’. However, while graphics and sounds
RTS games have been improved dramatically over the last
years, opponent strategies, or more general, the whole game
AI has not made such big steps. One reason for this nuisance
may be the complexity of the games which is even increased
by the realtime component: game AI has to cope with many
different subproblems (e.g. ressource distribution, path-finding
and strategic decisions like where and when to attack), without
much time to search for suitable solutions. Several of these
problems cannot be resolved by cheating because optimal
solutions are not known beforehand. For example, pathfinding
in a dynamic game setting with moving objects cannot be fully
pre-computed, and ‘teleporting’ foot units may look strange
to human opponents. However, game AI should perform well
and still look believable [1] in order to provide fun to human
players.

Bio-inspired techniques (computational intelligence, CI)
have mostly been integrated in simple computer games, e.g.
arcade video games, for improving the game’s artificial intelli-
gence such as the intelligence of non-player-characters (NPC)
or the handling of the game [2]. However, they are increasingly

Chair of Algorithm Engineering, Computational Intelligence Group, Faculty
of Computer Science, Technische Universität Dortmund, Germany

employed also in more complex RTS games. First attempts
produce game AI that is capable of adaptive behavior, e.g.
Louis et al. [3], [4] combined EAs with memories to produce
strategies online in the game. Detecting the opponent’s group-
ing behavior is a subproblem of opponent modeling, which
has been addressed by Spronck et al. [5] as well as knowledge
acquisition in RTS games in general [6].

While developing a complex game plan by means of CI
methods appears rather hard, using the methods for sub-
sidiary in-game decisions—especially for group movement
and selection—seems manageable. We here combine and
extend two recent approaches of ours, namely [7] and [8].

The first approach employs flocking, a technique introduced
by Reynolds [9], and Influence Maps (IMs) [10] to improve
the path-finding of units. The latter may be left to the A∗

algorithm [11], but from a strategic perspective, the results
can be poor, e.g. if calculated paths are directly leading
through enemy territory or the moved groups split up on their
way. Such problems can be overcome by flocking which is
introduced in sec. III-A. Although performing already well, we
show that flocking alone is not able to cope with all ocurring
situations. However, flocking teams up well with influence
maps, areal based aggregations of the game AI’s available
data which are introduced in sec. III-B. Note that the use of
flocking+IM is not restricted to groups run by the game AI:
it may also be applied to humanly controlled groups.

Another problem for game AI is the selection of units for
attacking a certain target or defending against a specific group.
Here we suggest an approach based on Self-Organizing Maps
(SOMs) as introduced in section III-D. SOMs can be trained
offline by using simple substitute objective functions (instead
of game simulations) and virtually need no time to give an
answer to the question which units to select in-game.

The major part (section IV) of this work consists of a
thorough experimental analysis, testing our approaches in
different scenarios within the RTS game Glest (see sec. II).
We end with the most interesting experiment from our point of
view, where all proposed techniques act in common. Groups
behaving according to the proposed techniques—if beheld by
a human—appear to be ‘intelligent’ or human-like, although
we are aware that such properties might never be measurable.

II. GLEST

Strategy games are usually placed in war or battle scenarios,
where players have to build bases and armies and destroy
the other players’ units. Glest is an open source RTS game

2

TABLE I
DAMAGE MULTIPLIERS, ATTACK AGAINST ARMOR TYPES (TECHS).

Leather Plate Stone Wood

Arrow 1.5 0.5 0.3 1.0
Sword 1.0 1.0 0.5 1.0
Fire 1.0 0.8 0.5 1.0

published by Figueroa et al. [12] under GNU Public License
(GPL, [13]). While this work is based on version 2.0.1, Gle
st version 3 has been released with improved gameplay and
balancing. Therefore, some of the observations shown here
might not be relevant to the new version. The game is settled
in a fantasy medieval world and players can either control
a magic or a tech faction. Both possess unique unit types,
buildings and enhancements. While the game also has other
aspects like resource harvesting and building, this work only
deals with battle situations.

The flocking studies consider the magic faction only and
group selection with SOM is done for the tech faction, only.
However, his partitioning has no particular reason; both ap-
proaches could be applied to either faction. The magic faction
uses wizards as basic units, which can be trained to become
powerful warlocks and may conjure dragons and daemons as
fighting units. The tech faction uses laborer as basic units, who
may be trained to become knights, archers or engineers who
are able to construct (flying) battle machines. Basic tech unit
types are archers and swordmen, both armored with leather.
Armored swordmen are slower than the two mentioned, but
possess a plate armor. Horsemen are equally well armored and
much faster. The technician, a weak unit, is prerequisite for all
following units. The catapult is slow, but accomplishes a high
damage. The battle-machine is very versatile, being the only
unit that has a short- and a long-range weapon. At last, there
are two flying units: The airship and the ornithopter. Archers
and battle-machines are the only ground units that can attack
flying units. The units take up different resources and usually
become available in the mentioned order during the game.

Each unit has a number of hit-points (HP) representing the
unit’s health. When it is attacked, the HPs are decreased by the
damage value of the attacking weapon. A unit dies when its
HPs reaches zero. Moreover, the game provides a configurable
intransitive superiority relation of the different unit types
by means of a damage multiplier table. The actual damage
inflicted by an attack of a specific unit type onto another is
modified according to the armor type of the defending unit.
Default damage multipliers are given in Tab. I.

III. TECHNIQUES

Flocking, influence maps, and self-organizing maps are
introduced, accompanied by describing how they are modified
to satisfy our needs and coupled within the game.

A. Flocking

Flocking is a suitable method to simulate natural group
movement in computer games of e.g. swarms of birds, schools
of fishes, military units, or crowds. A flock is able to reach a

certain target as a group and to avoid obstacles on the way.
Recently, it has been applied to control the movement and
formation of units in ego-shooters e.g. by Shen and Zhou [14]
in Unreal Tournament and by Davison [15] in Half-Life.

Reynold [9] gives three simple rules to adjust the behavior
and motion of units (called boids).
• Separation: A boid tries to scatter from others. This rule

can be seen as the opposite of the cohesion rule and
represents the collision avoidance within the flock.

• Cohesion: A boid sticks together with the others and tries
to advance to the centroid of the group.

• Alignment: A boid steers into the same direction as
the neighboring boids calculated as the average of the
summed up direction vectors of the boids in its sight.

The final direction of a boid’s movement v is calculated as
the weighted sum of the results of the three rules as

v = wref · vref + wcoh · vcoh + wsep · vsep,

where vref is the reference vector reflecting the direction of
the calculated flock path, vcoh is the vector from the unit’s
position to the average position of the flock, and vsep is the
separation vector. The corresponding weights are wref , wcoh,
and wsep. The calculation of the direction requires information
on the boid’s neighborhood, namely the location of and
distances to its neighbors, and the directions the neighbors
are heading. A boid’s orientation is defined by a line of sight.
Its ability to recognize its environment is specified by a range
and an angle of sight α.

The implementation at hand is different from Reynolds
original idea to have boids moving around randomly and
eventually building a flock [9]. Instead, the player selects some
units he wants to group together. This group of units is called
flock and a target is assigned to the flock by the player. A path
to the given target is obtained using the A*-algorithm [11]
already implemented in Glest. To follow this path, a local
path-finding incorporating the flocking method is started.

In our scenario, the most significant parameters of flocking
are the angle of sight α, the separation weight wsep and
the distance of separation determined by the length of the
separation vector |vsep|. A reduced angle of sight makes the
flock behave like a snake, each unit following its predecessor
in-line, whereas a broader value makes the flock move more
scatteredly. The separation, i.e. the ambition of every boid to
move away from other boids, depends on wsep and |vsep|.

B. Influence Maps

Influence Maps (IM) are an areal based representation of
knowledge. In games they are usually employed to store in-
formation on the current game situation for tactical decisions.
They exploit the topographic information of the actual map
to represent how players influence different areas of it. Via
IMs, players are able to find out where opponent units are
concentrated or explore weakly exposed areas. We invoke two-
dimensional environments only, a broader approach regarding
different topologies can be found in [16].

Usually, a map is divided into tiles. The IM is set to the same
size as the game’s map with typically less tiles. As influence

3

Fig. 1. Example of influence map generation. The first figure shows the units
of two different factions (male, blue and female, red) placed on the map. The
second figure yields the local influence of the units (+4 and −4, respectively)
and their propagation of the influence values through the map. Finally, the right
figure depicts the resulting influence map with the influence of the factions,
whereas darker colors mean higher influence values. In addition, the positions
of the units are shown as well as the borders of the faction’s influence.

values a certain property of a unit is used, e.g. hit-points or
attack strength. The tiles are initialized with a value of 0.
To calculate the IM for a game situation, an influence value
of every unit on the map is derived and propagated through
the map. Usually, the influence of a unit decreases linearly
or quadratically with increasing distance to the tile where the
unit is located.

The example in Fig.1 shows the calculation of a simple IM
with two hostile factions (blue/male and red/female). Each unit
has an influence value of 4, which decreases by a factor of
2−d in relation to the distance d (measured in tiles) to the
given unit, and the propagation is aborted after values ≤ 1.
The propagation is shown in the central image of figure 1
and the resulting influence map retrieved by summing up all
influences in the right figure. Note that the influence on a tile
may exceed the influence of a single unit if several units of one
faction are close to each other. Vice versa, the influences of
two adversary units may also cancel each other out. The right
image of this figure shows a graphical representation of the
calculated influence with the boundaries of the controlled area
outlined for each faction. The degree of influence is shown by
the intensity of the faction’s color.

To use an IM for path-finding it has to be kept up-to-date at
all times. For this purpose, every unit caches its influence. We
combine the unit’s hit-points HP and the damage D a unit is
able to cause to its combat strength cu as

cu =
Du ·HPu

100
.

as the influence of a unit. It is propagated over the unit’s
range of sight like explained above. When a unit is moved its
influence is subtracted from the map at the old position, added
at the new one, and propagated through its area of influence
afterwards.

To calculate a path for a unit, its influence has to be
subtracted from the current IM so that it is not affected by
itself. The resulting accumulated influence at each position
(x, y) of the IM is called ζx,y in the following. This influence
has to be integrated into the cost function used by the A*-
algorithm of Glest to calculate an appropriate path for the
unit. Note that the resulting path will not reflect the shortest
Euclidean distance directly. To integrate the influence values
received from the IM in the cost considered by the A*-

algorithm, this cost τ(x, y) of tile (x, y) is defined as the
product of the Euclidean distance δ and a factor based on
the influence:

i(x, y) =
ζx,y − cu

180
; τ(x, y) =

δe−1 if i(x, y) < −1,
δe if i(x, y) > 1,
δei(x,y) otherwise.

The unit’s combat strength cu is subtracted to allow the unit
to pass tiles with low hostile influence; 180 seemed to be a
good scaling value. The distinction according to i(x, y) avoids
inappropriate τ values. With τ close to zero, the A* algorithm
would not be able to calculate an appropriate path with all cells
sharing costs close to zero. Expensive costs may cause dead
ends even in open-range areas when every surrounding cell is
much more expensive than the one the unit is located on. Both
problems impede the unit from reaching its target. The cost
function effectuates that for a unit tiles with strong influence of
its faction become extremely cheap, whereas tiles with enemy
influence become much more expensive. Thus, the unit will
prefer to move around enemy territory.

C. Combination of Flocking and IM

For path-finding, a flock is considered as a single unit. Each
unit has to update the influence map with its own cached
influence as described above. To determine the costs of a tile a
new combat strength cF for the complete flock F is calculated:

cF =
1

SEW
·
∑
u∈F

HPu ·
∑
u∈F

Du

The idea is that the combat strength of a group is higher than
simply the sum of strengths of its units. This holds because
the flock itself causes more damage to single opponent units,
while damage caused to the flock is scattered over several units
in the flock. To quantify the synergy effects, we introduced
the synergy effect weight (SEW). This parameter enables the
user to scale the aggressiveness of the flocked units. If SEW
is very high, the flock will not attack enemies on its way
although it would clearly win the combat. A very low SEW
value makes the flock attack even overwhelming enemy forces.

An appropriate choice of SEW leads to units taking the
secure path around stronger enemies whenever a path around
is possible. If the safe path is too long, it is more expensive
to take this path compared to traveling through the enemy
territory. In this case, our unit will take the direct path. If our
unit is stronger than the enemy, the unit/flock will take the
direct path and attack the enemy in any case. This behavior
is implemented having in mind that the territory is virtually
already under control of the own faction.

The general idea to couple the techniques of flocking and IM
is not new but to our knowledge, the combined techniques have
not been used to support group movement and path-finding
in RTS games. Flensbak [17] uses three two-dimensional
influence maps for each of the desired behaviors alignment,
cohesion, and separation. The influence maps are particularly
used to provide information on the neighboring units and to
control the shape of the flock. Miles and Louis use influence
maps as nodes in decision trees to determine different game

4

situations and as decision support system [18], [19]. The
players use information from the A*-algorithm working on
an IM to determine the costs of their objectives but they do
not use it for moving their units. This approach is close to
the original idea of using IM to analyze game situations for
strategic decision making.

D. Self-Organizing Maps for Unit Selection

Group selection or rather unit selection for the creation of
specific groups is of tactical as well as of strategic use.
• Tactical attack: If an enemy base or unit group shall

be attacked by the AI, and some information about the
defenders is available, it is favorable to bring enemy units
that perform well against it.

• Tactical defense: In case the AI is attacked, possibly
by multiple enemy groups, it makes sense to send the
available units against the enemy units they can fight best.

• Strategic build: The unit build process—and thus also
the exploration of the tech tree, including buildings—
shall take into account information about the favored unit
types of the adversary.

Whereas for the latter use data must be gathered and
accumulated on a longer time scale, tactical decisions have
to be taken ad hoc, or on a very narrow time scale.

Since most RTS games feature thouroughly balanced units
with different abilities, we often find a situation of intransitive
superiority (e.g. A beats B, B beats C, and C beats A as in the
“Rock, Paper, Scissors” children’s game). Here, no globally
optimal strategy exists; we need a possibility to respond to
any opponent group composition, a context-sensitive memory.
Self-Organizing Maps (SOMs) as conceived by Kohonen [20]
can deliver exactly that. A SOM maps a high-dimensional data
space to a low-dimensional, usually 2-dimensional map space
combining the goals of visualization and dimension reduction
of complex data sets. SOMs are topology-preserving maps, i.e.
while mapping the data from the input space to the map space
they consider the underlying structure of the data and attempt
to obtain the topological relationships. Neighboring elements
of the input space are also close to each other in the projected
map space. Consequently, a SOM creates a map of regions of
similarity by grouping similar data.

The SOM consists of a set of nodes arranged in a discrete
lattice, defining the topology of the map. We employ a toroid-
shaped lattice by connecting its opposite edges. Each node i of
the lattice is associated with a randomly initialized reference
or weight vector wi = (ωi1, ωi2, . . . , ωin)T ∈ Rn. The
dimension n of the weight vectors correspond to the dimension
of the input vector. The input vector x = (ε1, ε2, . . . , εn)T

specifies the distribution of unit types over an opponent’s
army. Likewise, the weight vectors wi represent a mix of the
defending player’s unit types.

Basically, the learning algorithm conforms to the original
algorithm devised by Kohonen [20]. In each iteration t an
input vector x is randomly drawn from the data set using a
desired probability distribution over the input space. While
traversing the SOM’s nodes, the distance between the input
vector x and each node’s weight vector wi is calculated. The

applied distance measure can be an arbitrary function that
takes two objects as input and returns a scalar value like the
Euclidean distance. The node with the shortest distance to the
input vector, thus the node that matches the input vector best
is called the best-matching unit (BMU). The BMU’s weight
vector is manipulated to approximate the input vector even
further. Nodes within a defined radius r around the BMU are
being adapted as well. The influence ` of the adaption is de-
fined by a Gaussian curve centered at the BMU and declining
with increasing distance to the BMU. The neighborhood size
shrinks with increasing iterations. The learning process will
terminate after a predefined number of iterations is reached.

Operation of the established SOM works by looking up the
BMU in the same way as during training, but without ma-
nipulating the nodes. The found BMU (and its neighborhood)
deliver information that may then be processed further.

Usually, SOMs are used in conjunction with a (weighted)
Euclidean distance. A specialty of our work is the development
of a non-standard distance measure for this purpose. It is
designed to relate to suitability instead of similarity. Consider
i.e. the following situation: During the game, the AI gets aware
that the opponent is about to attack with a certain group of
units E. A part of the problem to find the optimal defending
group is the question: How successful would a certain group
U be when facing the attackers? Of course, this could be
answered by a simulation of the upcoming battle in the game,
thereby obtaining a suitability measurement. The simulation
ends when one party is defeated or after 5,000 game cycles
elapsed. While pE and pU denote the fractions of surviving
units from the attacking and defending groups, the outcome is
measured as (pE − pU) → min! at the end of the game.
The optimum of this function is −1.0, which means that
all attacking units have been eliminated, while all defending
units survived. However, simulating is far to computationally
intensive during the game. Instead, we developed a substitute
objective function f(E,U) based on our knowledge of the
properties of the game’s units. The function returns a score of
a group U against a hostile group E. In our example situation,
E is the attacking group and U is the AI’s defending group.
In our setup, U is retrieved from the AI’s memory, the SOM.

A unit can have several attack skills. Every skill s is
evaluated with a score cs against the set of attackable units Es

in the opponent’s group E. d(ts, re) is the damage multiplier
of attack-type ts against armor-type re of hostile unit e.

cs =
∑
e∈Es

d(ts, re) (1)

Every unit u in group U is awarded a score cu for its most
useful attack skill only. cu is calculated as

cu = max{cs,1, . . . , cs,n}. (2)

A group’s score f(E,U) then is the sum of all its units’ scores
cu. To account for the mutual strengths and weaknesses, the
final objective is (f(U,E)− f(E,U))→ min!.

Obviously, the function does neither take costs like time
and resources, nor features like speed, hitpoints and attack-
strength into account. Finding an optimal group under these
additional constraints would be a multi-criteria problem that

5

is not covered by our approach. Our objective function only
considers aspects concerning the relative strength of units.
Preliminary experiments showed that otherwise only the most
expensive units would benefit.

As already stated, it is necessary to adapt defending groups
to the attacking ones in the learning process. While this is a
trivial task with Euclidean distance, we need to optimize the
substitute objective function. Here, a (1+1)-EA carries out the
optimization of the defender’s mix of units. An introduction to
evolutionary algorithms (EA) is given by Beyer and Schwefel
in [21]. Incorporating an EA into a SOM has already been
proposed by Kohonen [20], [22].

The influence ` of adaptation is controlled by the number
of objective function evaluations. Every time the BMU is
found during the training, the EA is run for b` · 10c function
evaluations. ` is 1.0 for the BMU and declines with increasing
distance. Mutation is carried out on the real number represen-
tation of the groups, by shifting a certain amount between two
randomly drawn unit types. The shifted amount is determined
by a normal distributed random variable with mean 0.0 and
variance 0.05. The mutation-strength can be seen as analogy
to the learning rate often used with a Euclidean distance.

IV. EXPERIMENTAL ANALYSIS

The experimental analysis shall demonstrate advantages and
drawbacks of the considered techniques in RTS games. Using
artificial settings that clearly deviate from standard Glest,
it is easy to test if the desired output, e.g. in terms of a
recommended unit group, is indeed attained.

By performing initial proof-of-principle tests as done for
flocking+IMs in experiment 1, and for SOMs in experi-
ment 3, we demonstrate the general viability of the pro-
posed approaches. Experiment 2 investigates the adaptability
of flocking+IMs concerning aggressive/defensive behavior by
changing one parameter. To support our assumption that SOM
training by means of a simple substitute objective function
instead of simulations is reasonable, we investigate the corre-
lation between these two data sources in experiment 4. Within
experiment 5, we apply our technique to the anti-grouping
problem in standard Glest, also studying proper parametriza-
tion and parameter robustness of the SOM training process.
Experiment 6 investigates a sample szenario in which the
combination of all techniques shall lead to a clear advantage—
and in fact it does.

The reports on the received results adhere to the suggestion
by Preuss [23]. It demands the author to think about the tackled
questions and the employed means before the experiment is
carried out and to report the results in a structured, easily
accessible way.

Experiment 1: Proof-of-principle: When does pure flocking
improve group behavior? Do IMs cure its weaknesses?
Preexperimental planning: By testing different settings,
we established a scenario in which the attacking group loses
the final combat when not employing flocking and wins in
the other case. Additionally, we found a counter-example
where flocking leads to performance losses. In this case the
combination with IM brings success.

Starting Point Defensive Tower

X

XTarget Point

Fig. 2. Map sketch for the first and second scenario tackled. The encircled
defensive tower position in the middle only exists in scenario 2.

Task: Our base hypothesis (we want to reject) is that neither
flocking nor IM have any effect on the group behavior.
Setup: A group of combat units is sent to two hostile
defensive towers (high combat strength, 7000 HP). The first
map (cf. Fig. 2) is empty apart from these entities and features
no obstacles like mountains or rivers, and is rather small
(64x64 tiles). The group consists of six units with different
abilities: two demons (average speed, weak combat strength,
short-ranged, 700 HP), two battlemages (average speed, weak
combat strength, long-ranged, 700 HP), and two drakeriders
(fast speed, high combat strength, medium-ranged, 1300 HP).

In the second map, (cf. Fig. 2), hostile turrets are added
along the way of the combat units and the attacking group is
enlarged by an initiate (slow speed, weak combat strength,
medium-ranged, 450 HP). Remark that the initiate is the
weakest unit in the game so that the group’s strength does
not increase significantly. The units have to pass along eight
defense towers with sufficient range to attack the group. The
flocking parameter settings are: angle of sight α = 90,
separation weight |wsep| = 3.0, and separation distance
|vsep| = 4.0. When using IM, it is applied within the A*-
algorithm to calculate the moving path. For each map and
all four movement types (movement with/without flocking,
pathfinding with/without IM), we run 500 games with different
random seeds. Note that inflicted damages are subject to
random variation.
Results/Visualization: Fig. 3 presents the number of sur-
viving units within the different scenarios and Fig. 4 the HP
values of the teams after the combat. Note that zero survivers

w/o flocking
w/o IM

w/o flocking
IM

flocking
w/o IM

flocking
IM

0

100

200

300

400

500

0

1

2

3

4

w/o flocking
w/o IM

w/o flocking
IM

flocking
w/o IM

flocking
IM

0

100

200

300

400

500

0

1

2

3

4

Fig. 3. Number of surviving units on the first map (top) and the second
map (bottom) for four different strategies with 500 runs each. We show all
combinations of normal and flocking movement with and without IM.

6

indicates that the attacker lost the game.
Observations: In the following, the different settings and their
influence on the resulting movement behavior are described.

Without flocking. Fast units break away from the slower
ones and the group splits up. On the open-ranged map, the
units reach the two hostile turrets with long delays, so that
the turrets have to fight only a few units at the same time.
In most cases, the turrets kill each unit before the next ones
arrives and thus defeat the group. Thus, only about 8% of the
games are won thereby with only few units surviving (Fig. 3).

On the second map, the path calculated for each unit passes
the range of the eight defense towers located in the middle of
the map. So especially the slow units get hurt by these towers,
e.g. initiates are killed in most games as they need too much
time to cross the dangerous area (Fig. 3). Nevertheless, the
winning ratio is roughly the same as on map 1, since faster
units are hardly afflicted by the towers.

Using flocking. The units stick together by adapting their
movement to the speed of the slowest group member. So in
the first map, the units of the group reach the two defensive
towers at the same time. As the group outnumbers the two
towers, these are hardly able to defeat the group. Consequently,
in nearly all games the flock wins with four surviving units
(Fig.3). On the second map, flocking causes a significant
drawback. The flock sticks together but moves rather slowly
due to the slow units. The path of the flock leads through the
range of the eight towers in the middle of the map. Compared
to the results without flocking, the flock is under attack for
a longer time and many units are lost. None of the games is
won (Fig. 3).

IM without flocking. No significant differences for wins,
surviving units, or HP values can be recognized for the normal
movement supported by IM-based paths on both maps.

IM with flocking. IM-supported pathfinding does not change
the flock behavior for map one, still all games are won. On
the second map the results change from 100% losses to about
80% wins (Fig. 3) by IM and more than 40% wins with four
surviving units. The mean HP values for the attacking team
exceeds the value for the rival team, while it is 0 without IM
(Fig. 4).
Discussion: The bad results for the normal movement stem
from the different speeds of the considered units. Here, these
units reach their common target one after another, which
enables the towers to kill them easily. Incorporating flocking,
the group arrives at the target as a whole. In this situation, the
flock is strong enough to destroy the towers.

However, flocking decreases the speed of faster units to
the speed of the slowest flock member. This may cause fatal
drawbacks in specific situations as demonstrated on map 2,
which is almost never won with flocking, although it is nearly
always won without. Thus, we can clearly state that flocking
often makes a difference and reject the initial hypothesis.
However, the results also underline the need to improve the
flocking method.

This is demonstrated to be done by the IM supported
pathfinding. In the first map, no improvements occur since
all games are already won and there is no dangerous area to
circumvent intelligently. On the second map, group behavior

w/o flocking
w/o IM

w/o flocking
IM

flocking
w/o IM

flocking
IM

0

1000

2000

3000

4000

5000

6000

7000

mean HP value
attacking team

max. HP value
attacking team

mean HP value
defense towers

max. HP value
defense towers

w/o flocking
w/o IM

w/o flocking
IM

flocking
w/o IM

flocking
IM

0

2000

4000

6000

8000

10000

12000

14000

mean HP value
attacking team

max. HP value
attacking team

mean HP value
defense towers

max. HP value
defense towers

Fig. 4. Mean and maximal HP values of the attacking team and the two
defense towers on the first map (top) and the second map (bottom) for four
different strategies (movement with/without flocking, pathfinding with/without
IM). The starting HP value of the attacking team is 5400 on map 1 and 5950
on map 2. The two defense towers own 14000 HP together (7000 each).

changes significantly with the IM path-finding which leads the
group around the invincible set of towers in the middle of the
map. Thus, the attacking units do not lose any hit-points on
their way to their target.

When flocking is not active, the group separates even further
than without IM as the path is longer. Consequently, the
attacked towers have more time to fight arriving units and
the attacking units are defeated (Fig. 3).

Combining flocking and IM is the most successful alterna-
tive for the second map, without losing performance for the
first one. Flocking lets the group stick together and the IM
takes care for secure paths around opponent units, thereby
successfully avoiding the eight towers in map two.

The combination of the flocking method and the path calcu-
lation with the modified A*-algorithm is a great improvement
in the shown situation. The drawbacks of flocking could be
invalidated with the help of the IM path-finding. Summarizing,
this possibility of an intelligent moving behavior represents a
real alternative to the normal movement in RTS games.

Experiment 2: Can we reliably control defensive/aggresive
behavior under flocking and IM with the SEW parameter?
Preexperimental planning: We perform first test with vary-
ing SEW value in order to find a reasonable interval to
investigate in the following.
Task: We demand that the group behavior invoked with
changing SEW is a) significantly different in the extreme
values (aggressive/devensive) and b) follows an unambiguous
pattern (similar to a linear model) that makes it controllable.
Setup: The SEW should control the aggressiveness that can
be observed in either attacking stronger enemy units or passing
around these with possibly attacking weaker ones. Thus, a
third scenario is defined that differs from the prior ones in
two enemy positions on the way to the group’s target (cf.
Fig. 5). The first enemy position consists of three defensive

7

TABLE II
PERCENTAGE OF GAMES WON WITH DIFFERENT NUMBERS OF SURVIVING

UNITS FOR THREE VALUES OF SEW .

SEW value surviving units

7 6 5 4 3 2 1 0

4 0 0 0 5.8 27.8 17.4 10.8 38.2

8 0 0 100 0 0 0 0 0

12 100 0 0 0 0 0 0 0

TABLE III
PERCENTAGE OF GAMES WITH SURVIVING DEFENSE TOWERS (SDT).

SEW value sdt team 1 sdt team 2
3 2 1 0 1 0

4 0 16.8 21.4 61.8 100 0
8 100 0 0 0 0 100
12 100 0 0 0 100 0

towers (same values as in experiment 1 and 2). The second
one is a single but stronger defensive tower featuring a high
combat strength with 13000 HP. The distance between the two
positions is big enough so that their influences do not overlap
each other. The group is the same as in scenario 1 plus an
additional archmage, resulting in 7 units. Both parties win this
combat with roughly the same probability. SEW is set to any
of {4, 8, 12} and each configuration is repeated 500 times.
Results/Visualization: Table II gives the percentage of games
in which a certain number of units reached the target point.
Table III depicts equivalent values for the two groups of
defensive towers. Sdt team 1 stands for the three towers,
whereas sdt team 2 refers to the stronger stand-alone tower.
Observations: Table II shows that all attacking units survive
with SEW set to 12. Noteably, for SEW = 8, exactly 2 units
are killed in each game. All towers survive if SEW = 12.
When SEW = 8, only the second tower is destroyed in every
game, while the three weaker towers survive. SEW value 4
results in the stand-alone tower surviving every game again.
Note that in about 60% of the games, the group of towers is
completely destroyed by the attacking units.
Discussion: Depending on the three SEW values, three dif-
ferent situations occur. A high SEW causes a more defensive
group behavior, which is reflected in all attacking units as well
as all towers surviving. The main aim here is to get to the
target point and not to attack any enemy position. The high
SEW provides significant compensation for the cumulated
group power. However, the high SEW does not guarantee
a complete defensive behavior. An extremely powerful group
might still decide to attack.

When SEW is set to 8, the group does not attack the first
strong enemy position, because its own cumulated power is
still underestimated. Instead, it carefully passes around the

X

Starting Point Defensive TowerXTarget Point

Fig. 5. Sketch of the map for the third scenario.

TABLE IV
DAMAGE MULTIPLIERS OF ATTACK TYPES AGAINST ARMOR TYPES IN THE

BALANCED FACTIONS.

Armor 1 Armor 2 Armor 3

Attack 1 0.5 5.0 0.5
Attack 2 0.5 0.5 5.0
Attack 3 5.0 0.5 0.5

strong position, and attacks the single turret, which has a
higher HP but is not assisted by other towers. The observation
of exactly two units being killed in all games can be explained
with the preference of the towers for attacking the units with
lesser HP, which refers to the two battlemages here.

The group with a SEW value of 4 attacks the first em-
placement directly. Its synergy effect is strong enough to let
the group act aggressively. The results show that at least one
out of three towers is destroyed by the group (cf. Tab. III).
Nevertheless, a big variance remains caused by the diversity
of the damage. All possibilities—between two towers and four
attacking units survive—occur.

Summarizing, it is clear that the intended behavior can be
achieved by varying the SEW parameter, from defensive (12)
to normal (8) to aggressive (4).

Experiment 3: Proof-of-principle; does the SOM generate the
‘right’ results in a simplified scenario?
Preexperimental planning: According to the intransitive
superiority principle, we designed a simplified scenario (bal-
anced factions) with only three unit types employing the
damage multipliers given in tab. IV. In-game experimentation
confirmed that this leads to the desired behavior. For each
of the three unit types, there is one favored counterpart
performing best.
Task: By applying a full factorial design over the SOM
parameters, a good SOM configuration shall be determined,
accompanied by a parameter effect estimation. A parameter
is only considered as important if the result set for one level
significantly (p < 0.05) differs from the set for the other level
in a Wilcoxon rank sum test (also U-test), likewise for the
two-parameter interactions. For a well configured SOM, we
require an average BMU fraction of at least 90%, compared
to the optimal answer (homogeneous test cases with only one
unit type).
Setup: We perform a full factorial design over extreme
parameter values for the number of nodes on each axis of the
SOM (dimension), the number of learning steps (iterations),
the allowed unit number (unit), the number of learning patterns
(always 3 in the homogeneous case), and the attacker group
type, according to tab. V. Note that high unit numbers primar-
ily increase the accuracy of the SOM, as it only uses fractions
internally. For each configuration, the SOM is repeatedly
trained 10 times and the resulting substitute objective function
value is averaged over all (3) homogeneous and all (3) 2-
unit equally shared mixed attacking groups. The BMU test
is performed over four configurations. The largest SOM (di-
mension 16) is repeatedly (5 times) trained for 1000 iterations
with 30 units and 100 mixed patterns and also homogeneous

8

TABLE V
PARAMETER VALUES FOR THE FULL FACTORIAL DESIGN

Parameter dim. iterations units patterns attacker

Low value 2 100 10 100 homogeneous
High value 16 1000 30 1000 mixed

factor level

m
ai

n
ef

fe
ct

 m
ea

ns

0.97

0.98

0.99

1.00

1.01

1.02

1.03

low high

●

●

dimension 2

dimension 16

iterations 100

iterations 1000

patterns 100

patterns 1000

units 10

units 30

pstructure hom

pstructure mix

main effects, balanced scenario

Fig. 6. Main effect estimations of parameters for the balanced scenario. All
parameters except the number of patterns have a significant effect.

attacker groups, respectively. The smallest SOM (dimension
2) is trained under the same conditions, but only for 100
iterations and 10 units. The BMU fraction is computed from
the averaged fraction of ‘right’ answers (archers for swordmen,
swordmen for horsemen, and horsemen for archers) over the
3 homogeneous test patterns.
Results/Visualization: Main effects and 2-factor interactions
are estimated via the Design of Experiments (DoE) standard
procedure. We show all main effects in fig. 6 and omit the
interactions as they do not provide additional insight. The
BMU detection frequencies are given in tab. VI.
Observations: It is no surprise that increasing the SOM
size and the numbers of iterations and units leads to better
performance. However, the number of patterns seems to play
no role at all (or 100 is already sufficient), and strangely
enough, training with only homogeneous patterns is better
than with mixed patterns. The interactions behave as expected,
all combinations of the important factors also produce strong
interactions. Overall, the effects are not very strong (about
6% maximum difference between best and worst). The BMU
detection frequencies are all relatively high, even for the small
SOMs with less training iterations. However, here the variance
is quite large, being much smaller for large SOMs with more
training iterations.
Discussion: The balanced scenario is easy to learn, and even
the small SOMs cope with it acceptably (note that a SOM
size of 2 × 2 is minimal as we have 3 unit types). We can

TABLE VI
BMU DETECTION FREQUENCY FOR EXTREMELY CONFIGURED SOMS

Dim. iter. units patterns attacker average std.

2 100 10 (3) homogeneous 84.09% 1.968%
2 100 10 100 mixed 84.68% 7.685%
16 1000 30 (3) homogeneous 98.97% 0.080%
16 1000 30 1000 mixed 99.02% 0.251%

only speculate why the performance with homogeneous test
patterns is better than with mixed ones. A possible reason
could be the reduced level of randomness: Homogeneous
patterns may provide clear and stable guidelines, whether
mixed patterns vary a lot. Deterministic training data seems
to support learning here.

Concerning the BMU detection frequencies, the weaker re-
sults for small SOMs presumably stem from conflicts between
neighboring nodes. The small SOMs often learn only two
of the three optima. Additionally, large SOMs—initialized
randomly—also have a head start because it is much more
likely that already near optimal defense unit vectors can be
found in 256 trials than in 4.

Overall, both results show that the SOM is reliable and easy
to handle: It can be successfully trained with (few) homo-
geneous patterns, and even if the important parameters (size,
iterations, and units) are set badly, performance decreases only
gradually.

Experiment 4: Does the substitute objective function properly
represent simulation results on the real game?
Preexperimental planning: Different variants of the objec-
tive function as presented in §III-D had been tried, and of the
ones that intuitively gave the impression of performing well,
we chose the simplest one.
Task: We apply Kendall’s rank correlation test to paired
samples of simulation and substitute function results (H0 is
that both data sources are indistinguishable) and expect a p-
value of at most 5%. The computed correlation value should
be positive and in the order of 0.5 or larger. Additionally, we
expect that SOMs that have been trained with the substitute
function give similar results as those trained with simulation.
Setup: We do not test with completely random attacking
groups, as this situation would almost never occur in a concrete
game (at least not while playing against humans). Instead, we
generate only homogeneous or 2-type mixed attacking groups
of size 10 each. The defending group is drawn randomly from
all unit types, also containing 10 units (allowing randomness
here makes sense as the composition of the defending group
is the search space of the SOM). Much larger group sizes
are infeasible for simulation as simulation time grows super
linearly in unit numbers. We restrict our tests to tech level 3 (9
types; see exp. 3) which provides the largest search space for
the SOM. When succeeding here, we assume that tech level 1
and 2 can also be modeled by the substitute objective function.
Results/Visualization: Table VII provides correlation esti-
mates and the associated p-values of the tests, fig. 7 gives a
visualization.

TABLE VII
KENDALL’S RANK CORRELATIONS AND TEST P-VALUES BETWEEN

SIMULATION AND SUBSTITUTE OBJECTIVE FUNCTION

Attacker samples p-Value rank correl.

Homogeneous groups 360 < 10−15 0.4234
Mixed groups 360 < 10−15 0.4238
Homogeneous+mixed groups 720 < 10−15 0.4298

Table VIII shows a comparison of BMUs of SOMs that

9

were differently trained for 10 iterations. We use homogeneous
groups as test inputs here. The highest weighted units in the
BMU for the actual input are shown in the table.

function values

si
m

ul
at

io
n

va
lu

es

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

−60 −40 −20 0 20 40 60 80

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

tech3−homogenous
tech3−mix

●

Fig. 7. Correlation plot: Simulation result over substitute objective function,
360 random samples of defenders against homogeneous and mixed attacker
groups, respectively. Theoretical minima are −1.0 for the simulation and
−100 for the objective function.

Observations: Both objective functions lead to SOMs that
favor air units. While the imbalance is greater in the SOMs
with substitute objective function, we cannot distinguish after
10 training iterations if training is only slower with simulation
or if simulation is indeed less prone to favor air units.

The rank correlation values (tab. VII) hardly show any
difference between homogeneous and mixed samples, which is
unexpected. Figure 7 largely adheres to our expectations. Still,
it reveals some interesting details. At first, the simulation min-
imum (−1.0) is nearly reached, but objective function values
stay far from −100, its minimum. Obviously, the objective
function is more accurate for small values, so that simulation
results can already be nearly optimal even if the optimal
unit composition—according to the objective function—is not
yet reached. Secondly, very good objective function values
possess a very low variance in simulation values—this seems
to support the previous observation. Thirdly, the -/- quadrant
is very dense, meaning that there are many more good than
bad (randomly drawn) defending unit compositions.
Discussion: The missing difference in rank correlation values

TABLE VIII
SUGGESTIONS OF DIFFERENTLY TRAINED SOMS

Input Group Substitute function Simulation

Airship Ornithopter Ornithopter
Archer Ornithopter Swordman
Armored Swordman Airship Ornithopter
Battle Machine Airship Archer
Catapult Ornithopter Ornithopter
Horseman Airship Catapult
Ornithopter Ornithopter Ornithopter
Swordman Ornithopter Armored Swordman
Technician Ornithopter Ornithopter

between mixed and homogeneous samples points to another
source of variation with a stronger influence. Most likely,
this is the inherent randomness of the simulation (damage
values are partly random). We may interpret that as a quality
indicator of the substitute objective function. Despite the noise
in simulation data, the correlation is approximately on the
required level. Applying other rank correlation metrics (e.g.
Spearman) even leads to slightly higher values. The test values
clearly state that the null hypothesis (no correlation) should
be rejected. We deduce that the substitute objective function
is sufficient for SOM training, and that due to its deterministic
nature, it may be even better to use this function than to
learn via simulations. Another interesting revealed fact is that
there are very many good answers to a specific attacker group.
Obviously, it pays off to send different troops into combat than
used by the aggressor.

Experiment 5: Do the SOMs perform well in a more compli-
cated real game setting?
Preexperimental planning: Our first experiments with the
full unit set resulted in SOMs clearly favoring air units.
Thus, we partitioned the units from standard Glest into three
levels. Tech-Level 1 is similar to our balanced faction from
experiment 1 plus the armored swordman (but with the original
damage multipliers). It consists of archer, armored swordman,
horseman and swordman. Tech-Level 2 adds battle machine,
catapult and the technician to Level 1 whereas the air units
airship and ornithopter are added in Level 3. This is consistent
with the game flow, as these are the 3 sequential phases usually
experienced in Glest. We thus not only get three levels of
difficulty as test cases for the SOM, but also 3 different types
of SOMs which may each assist a GlestAI in the sequential
game phases and be switched as new units become available.
Task: Again, we strive for finding the significant main and
interaction effects of the SOM configuration as in exp 1. We
aim for obtaining information about the robustness of the
parameter settings in exp. 1. For being robust, we demand
that the parameter recommendations from exp. 1 are suitable
for exp. 3 also, or vice versa, so that at least one robust
parameter setting exists. Additionally, we measure the SOMs
performance by comparing its suggested defense group against
the precalculated, optimal solutions obtained from total enu-
meration. The SOM, if properly configured, should reach at
least 90% of the optimal score on average.
Setup: In order to obtain reference values for comparing
the SOM performances on the substitute objective function,
we enumerated the search space for each tech-level to obtain
optimal defending groups for homogeneous as well as for
2-type-mixed attacking groups of size ten. For these more
complicated game situations, we have no means to otherwise
obtain the optimal answer of the SOMs as by optimization. For
exp. 1, the scenario had been constructed in a way that the
optimal answer was obvious. As the worst substitute objective
function values—0 stands for a draw—are around 100 (see
fig. 7, smaller is better), we compute the relative quality of a
SOM answer after formula 3. We perform 31 repeats for each
SOM configuration to get an impression of the underlying
distributions. The overall setup for the SOMs is the same full

10

factor level

m
ai

n
ef

fe
ct

 m
ea

ns

0.98

1.00

1.02

low high

●

●

dimension 2

dimension 16

iterations 100

iterations 1000

patterns 100

patterns 1000

units 10

units 30

pstructure hom

pstructure mix

main effects, tech level 1

factor level

m
ai

n
ef

fe
ct

 m
ea

ns

0.96

0.98

1.00

1.02

1.04

low high

●

●

dimension 2

dimension 16

iterations 100

iterations 1000

patterns 100

patterns 1000
units 10

units 30

pstructure hom

pstructure mix

main effects, tech level 2

factor level

m
ai

n
ef

fe
ct

 m
ea

ns

0.90

0.95

1.00

1.05

1.10

low high

●

●

dimension 2

dimension 16

iterations 100

iterations 1000

patterns 100
patterns 1000

units 10

units 30

pstructure hom

pstructure mix

main effects, tech level 3

Fig. 8. Main effect estimations of parameters for the tech level 1 scenario (4 units, left) and tech level 2 (7 units, middle). All effects are significant, except
pattern number and unit size. In the tech level 3 scenario (9 units, right), all except pattern size and pattern structure are significant.

factorial design as in exp. 1.

qrel =
fsubst(som)− 100
optimum− 100

(3)

Results/Visualization: Figure 8 documents the measured
main effects for tech levels 1 to 3. The obtained 2-factor
interaction effects are rather weak and thus omitted. Table IX
shows the average relative answer qualities of 2 different
SOMs for tech level 3, before and after training. The SOMs
are tested on all 9 homogeneous and all 36 2-unit equally
shared mixed attacker groups.
Observations: In tech level 1, the pattern structure effect
is remarkably strong, which is interesting as the level is not
much different to the balanced scenario, where the effect is of
minor importance. The other effects are slightly weaker than
for the balanced case. In level 2, the SOM size and iterations
effects take over again, and the overall effect sizes increase to
a difference of about 10% between best and worst. For tech
level 3, the SOM size and iterations effects are already very
dominant and their absolute values are very high, leading to a
20% relative difference between best and worst configurations.

The well trained large SOMs approximate the optimum
nearly perfectly, whereas the smaller SOMs barely reach 80%
of the optimal substitute objective function value. Interest-
ingly, the random (untrained) SOMs also reach relatively
high qualities, although they stay well below the trained
SOMs. Training—in our context equivalent to applying an
optimization—undoubtedly has an effect.
Discussion: Regarding to the sought good and robust
parametrization of the learning process, we can state that the
parameter effects are nearly never contradictory, only their

TABLE IX
RELATIVE ANSWER QUALITY OF WELL AND BADLY CONFIGURED
TRAINED AND RANDOMLY ESTABLISHED SOMS (ITERATIONS=0)

COMPARED TO THE OPTIMAL VALUES FOR TECH LEVEL 3

Dim. iter. units patterns attacker average std.

16 1000 10 (9) homogeneous 94.32% 8.52%
16 0 10 (9) homogeneous 77.15% 11.04%
2 100 10 (9) homogeneous 81.68% 9.85%
2 0 10 (9) homogeneous 65.32% 11.14%

strength varies. For the more demanding scenarios with more
unit types, a larger SOM clearly is an advantage, accompanied
by a larger number of training iterations. Applying only homo-
geneous training patterns is better for the simpler scenarios,
whereas it loses its importance for the more complex ones.
Summarizing, one may always set the SOM size, iteration
and unit numbers to high values, and train only with the
homogeneous patterns. The low effect of the training patterns
for tech level 3 could be interpreted as difficulty to produce
meaningful mixtures with many unit types, too many of the
randomly created patterns may be unreasonable and can thus
not support the learning process. The comparison of the
relative quality reached by different SOMs over the whole
spectrum of 45 test cases for tech level 3 indicate that the large,
trained SOM is clearly superior to its small and untrained
counterparts, and shows little variance, making it very reliable.
In some cases, the optimal defending group has not been
attained. Here the EA based optimization may not be strong
enough and may be developed further. However, the big picture
is that the given answer is quite close to the optimal one.

To clarify what the SOM actually learns in terms of sug-
gested defense unit groups, we additionally plot the highest
rated unit type for each SOM node in three subsequent learning
states for a well configured SOM on tech level 3 in fig. 9. Only
few (highest rated) unit types remain after 1,000 iterations,
and most nodes favor air units (ornithopters and airships).
The domination of these air units for tech level 3 could have
several reasons. Firstly, it may of course be intentional as the
more advanced units shall be stronger. Adding to this, we com-
pletely neglect cost and speed and many other unit attributes
in our substitute objective function, which may compensate
for unbalanced attack strengths in the game. Secondly, the
majority of unit types has only short-range attack skills, which
reflects in the training patterns. Air units have the advantage
that they cannot be attacked by short-range units. So, ensuring
that skills and features are uniformly distributed in the training
patterns might help. Another alternative would be to record
group constellations from playing humans and to use this data
as training input.

11

highest weighted units in SOM nodes

SOM node position x

S
O

M
 n

od
e

po
si

tio
n

y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

unit types
airship

archer

arm−sword

battle−mach

catapult

horseman

ornithopter

swordman

technician

highest weighted units in SOM nodes

SOM node position x

S
O

M
 n

od
e

po
si

tio
n

y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

unit types
airship

archer

arm−sword

battle−mach

catapult

horseman

ornithopter

swordman

technician

highest weighted units in SOM nodes

SOM node position x

S
O

M
 n

od
e

po
si

tio
n

y

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1 2 3 4 5 6 7 8 9 10111213141516

unit types
airship

archer

arm−sword

battle−mach

catapult

horseman

ornithopter

swordman

technician

Fig. 9. Evolution of a Glest tech level 3 SOM (16× 16, 30 units, 9 homogeneous patterns) during the training process. From left to right: After 10, 100,
and 1000 iterations, respectively. Learning ends with a clear domination of air units.

Experiment 6: Do all techniques work well together?
Preexperimental planning: From the experiences of the
previous experiments, we designed a scenario that enables the
attacking team to win if all techniques are successfully used
(Flocking+IM and SOM selection). This scenario is depicted
in fig. 10 and is balanced so that if the best matching units are
sent as flock along the right path to either of the two defending
groups, the game is nearly always won by the attacker.

X1

X2
Starting Point Defensive TowerXTarget Point

Fig. 10. Underlying map for the combined scenario.

Task: We want to reject the hypothesis that with Flocking+IM
switched on, SOM selection does entail a large change in
results.
Setup: The allowed units comprise the three types from the
balanced scenario, in which swordmen beat horsemen, these
beat archers, and archers in turn beat swordmen. We put 10
towers in the middle of the scenario (fig. 10) which have to
be bypassed. At X1, 7 Horsemen und 3 Swordmen await the
attackers, and at X2, 7 Archer und 3 Horsemen are placed.
The SOM gets free choice of 10 units to send against X1, and
again 10 units to send to X2 (the reasoning here is to strike
at both targets at roughly the same time). We run 500 games
with the chosen units and then reverse the attacking groups,
thereby sending them at the wrong targets, or simulating a
wrong SOM group selection.
Results/Visualization: Figure 11 shows the distribution of
surviving units of attackers and defenders under SOM group
selection and under reversed group selection.
Observations: The SOM selects 10 swordmen to capture X1,
and 10 horsemen to X2. All resulting games are won by the
attacker, and the defenders of X2 are always annihilated. At
X1, in 150 (≈ 31%) of the games, some of the defenders
survive, but these are always outnumbered by the surviving
attackers. Visual observation of some games suggests that
sometimes, the attackers stop fighting as they cannot locate

Fig. 11. Surviving attackers (blue) and defenders (red) of 20 units,
respectively, in case of SOM group selection (top) and with reversed group
selection (bottom) over 500 games each.

all defending units, or the battle is just not finished when
automatically terminated.

If the attacking groups are reversed, (10 horsemen to X1
and 10 swordmen to X2), the attacker always loses, and retains
some (few) units only in 84 games. This seems to be due to
the same effect of localizing the opponent group as above.
Note that the defense towers in the middle are never attacked
but circumvented by the attackers.
Discussion: We can clearly state that the SOM selection
leads to a huge change in results and thereby reject the
hypothesis. Indeed, we have shown that all three techniques
(Flocking, IM, and SOM) can work well together. If observed
by a human player, the obtained group behavior may even be
called ”intelligent”. We regard the reported problems (some
defending units are not found) as minor and of technical
nature; they refer to implementation details depending on the
used game.

12

V. CONCLUSION AND OUTLOOK

We have shown by thorough experimental analysis that the
two major proposed approaches, flocking with influence maps
and SOM group selection, can straightforwardly be applied
in an RTS and decidedly improve the previously experienced
behavior of groups.

SOMs support a structured, content-addressable storage of
information. They can be trained offline during the production
of a game and remain static while playing. Given that a
substitute objective function for the suitability of a group
when combatting another can be found, training a SOM is
a matter of a few minutes even for the largest investigated
configurations. Creating such a function was very easy at least
in our game context, and it may also be regarded as possible
way for the game designer to include subjective preferences
(which is not explored here). Training by means of the game
itself as evaluation function is also possible but may be very
computationally expensive, easily increasing training times
from minutes to the order of days. However, the obtained
results do not seem to differ that much, so that this approach
may be unreasonable. The SOMs are also easily extendable:
If different conditions like new unit types or upgrades occur
within a played game, matching SOMs for these can be pre-
produced and game AI just has to switch between them.

Flocking in combination with IM path-finding improves
group performances in every of the game situations investi-
gated here and tackles the shortcomings detected for either
technique alone. It seems to be quite robust, makes group
movement look more natural, and is flexible: By setting the
SEW parameter, the AI or also a human player can change
the level of aggressiveness of a group within a wide range.

As well as either approach (flocking+IM and SOM) works
well on its own, they are also complementary and team
up very well. The SOM decides which group has to move
where, and the flocking+IM accomplishes that. In addition to
measurably good group performance, the resulting behaviour
also looks ”intelligent” for human observers, thereby resolving
a nuisance experienced by many players of RTS games. Of
course, the two approaches are not restricted to AI use. Human
players may also benefit from having their groups moved in a
reasonable way once they order them to go somewhere. Given
that a currently unattended human player base is attacked, it
could be left up to a SOM to decide how to distribute available
defenders, but even with the player overlooking the current
battle, he could be provided help by the SOM when grouping
defenders or even building more.

There are several possible directions for extending this
work. For example, the influence calculation may be improved
by employing more unit and game mechanic characteristics.
The SOMs could be combined with rule-based systems, which
still prevail in commercial games; and their inherent use of
an evolutionary algorithm may also be investigated, possibly
resulting in further training speedup. Last but not least, what
we have shown is just a proof-of-concept, and it will be an
important next step to replicate the observed behavior within
another RTS game.

ACKNOWLEDGMENT

This work was kindly supported by the Deutsche Forschungs-
gemeinschaft (DFG) and the Federal Ministry of Economics and
Technology (BMWi). We thank the student project group 511 for
developing the basics of this work.

REFERENCES

[1] D. Livingstone, “Turing’s test and believable ai in games,” Comput.
Entertain., vol. 4, no. 1, p. 6, 2006.

[2] M. Deloura, Game Programming Gems. Boston, MA: Charles River
Media, 2000.

[3] S. J. Louis and J. McDonnell, “Learning with case-injected genetic
algorithms.” IEEE Trans. Evolutionary Computation, vol. 8, no. 4, pp.
316–328, 2004.

[4] S. J. Louis and C. Miles, “Case-injection improves response time for
a real-time strategy game.” in IEEE Symposium on Computational
Intelligence and Games (CIG 2005), G. Kendall and S. Lucas, Eds.
Piscataway, NJ: IEEE Press, 2005.

[5] F. Schadd, S. Bakkes, and P. Spronck, “Opponent modeling in real-time
strategy games,” in AI and Simulation in Games (GAME-ON 2007),
M. Roccetti, Ed. Ostend, Belgium: EUROSIS, 2007, pp. 61–68.

[6] M. J. V. Ponsen, P. Spronck, H. Muñoz-Avila, and D. W. Aha, “Knowl-
edge acquisition for adaptive game ai,” Sci. Comput. Program., vol. 67,
no. 1, pp. 59–75, 2007.

[7] H. Danielsiek, R. Stüer, A. Thom, N. Beume, B. Naujoks, and M. Preuss,
“Intelligent Moving of Groups in Real-Time Strategy Games,” in IEEE
Symposium on Computational Intelligence and Games (CIG 2008).
IEEE Press, Piscataway NJ, 2008, (in print).

[8] N. Beume, T. Hein, B. Naujoks, N. Piatkowski, M. Preuss, and S. Wess-
ing, “Intelligent Anti-Grouping in Real-Time Strategy Games,” in IEEE
Symposium on Computational Intelligence and Games (CIG 2008).
Piscataway, NJ: IEEE Press, 2008, (in print).

[9] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in Computer graphics and interactive techniques (SIGGRAPH
1987). New York,: ACM Press, 1987, pp. 25–34.

[10] P. Tozour, “Influence mapping.” in Game Programming Gems 2, M. De-
Loura, Ed. Boston, MA: Charles River Media, 2001, pp. 287–297.

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions on Systems
Science and Cybernetics SSC4, pp. 100–107, 1968.

[12] M. Figueroa, J. González, T. Fernández, F. Menéndez, and M. Caruncho,
“Glest, a free 3d real time strategy game,” 2007, december 16, 2007.
[Online]. Available: http://www.glest.org

[13] GNU Software Foundation, “Gnu general public license, version
2,” June 2001, november 18, 2007. [Online]. Available:
http://www.gnu.org/licenses/gpl-2.0.html

[14] Z. Shen and S. Zhou, “Behavior representation and simulation for
military operations on urbanized terrain,” Simulation, vol. 82, no. 9,
pp. 593–607, 2006.

[15] A. Davison, Killer Game Programming in Java. Cambridge, MA:
O’Reilly Media, 2005.

[16] A. Kirmse, Ed., Game Programming Gems 4. Boston, MA: Charles
River Media, 2004.

[17] J. Flensbak, “Flock behavior based on influence maps,” Department
of Computer Science, University of Copenhagen (DIKU), Denmark,
Bachelor thesis, 2007.

[18] C. Miles and S. J. Louis, “Towards the co-evolution of influence
map tree based strategy game players,” in 2006 IEEE Symposium on
Computational Intelligence and Games (CIG 2006). Piscataway, NJ:
IEEE Press, 2006, pp. 75–82.

[19] ——, “Co-evolving real-time strategy game playing influence map trees
with genetic algorithms.” in Congress on Evolutionary Computation
(CEC 2006). Piscataway, NJ: IEEE Press, 2006.

[20] T. Kohonen, Self-Organizing Maps. Berlin: Springer, 2001.
[21] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies - a comprehensive

introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.
[22] T. Kohonen, “Fast evolutionary learning with batch-type self-organizing

maps,” Neural Processing Letters, vol. 9, no. 2, pp. 153–162, 1999.
[23] M. Preuss, “Reporting on experiments in evolutionary

computation,” Dortmund University, Tech. Rep. Reihe CI
221/07, SFB 531, 2007. [Online]. Available: sfbci.uni-
dortmund.de/Publications/Reference/Downloads/22107.pdf

	CI25508.pdf
	25508.pdf

