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Analysis of a memetic algorithm for global optimization in chemical
process synthesis

M. Urselmann, G. Sand and S. Engell,Process Dynamics and Operations Group, TU Dortmund

Abstract— Engineering optimization often deals with very
large search spaces which are highly constrained by nonlinear
equations that couple the continuous variables. In this con-
tribution the development of a memetic algorithm (MA) for
global optimization in the solution of a problem in the chemical
process engineering domain is described. The combination
of an evolutionary strategy and a local solver based on the
general reduced gradient method enables the exploitation of a
significant reduction in the search space and of the ability of
local mathematical programming solvers to efficiently handle
large continuous problems containing equality constraints. The
global performance of the MA is improved by the exclusion
of regions that are defined by approximations of the basins
of attraction of the local optima. The MA is compared to the
combination of a scatter search based multi-start heuristic using
OQNLP and the local solver CONOPT.

I. I NTRODUCTION

The optimal design of a reactive distillation column with
respect to an economic function is an example of real-world
problems in the chemical process engineering domain. Re-
active distillation columns are chemical plants that combine
chemical reaction with distillation (the separation of liquid
mixtures based on differences in their volatilities) within
a single processing unit [1]. The aim of the optimization
procedure is to find the optimal column design out of all
suitable alternatives with respect to the total annualizedcost.

The standard approach to handle such problems is to
formulate them as mixed-integer nonlinear programming
(MINLP) problems and to solve them by mathematical
programming methods. Such an MINLP can be stated as
follows:

min F = f(x, y) (1)

st. h(x, y) = 0 (2)

g(x, y) ≤ 0 (3)

x ∈ X, y ∈ N,

where F is the cost function,h(x, y) = 0 are the equations
that describe the behavior of the system (mass and heat
balances, geometry, etc.), andg(x, y) ≤ 0 are the inequali-
ties that define the specifications or constraints for feasible
choices [2]. The continuous variablesx denote the state
variables (in this paper denoted by the termmodel variables)
and the design variablessuch as the feed flows or the
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amounts of catalyst on each tray of a distillation comlumn.
The integer variablesy correspond to design variables, e.g.
the number of trays of a column.

By fixing the integer variables the problem can be divided
into several continuous subproblems (NLPs) of different
dimensions depending on the number of trays. These sub-
problems have dimensions of103−104 continuous variables,
equations and constraints and include nonlinear equations
that restrict the continuous variables, what makes them very
difficult to solve.

For the solution of these optimization problems, local
mathematical programming (MP) methods are available [3],
that can efficiently handle large problems and have been
applied - with some success - to reactive distillation pro-
cesses before ([4], [5]). Because of the non-convexity of the
problems, only local optima can be found by these methods.

It is possible to reduce the search space of the continuous
optimization problem to the space of the design variables (in
the following stated asd ∈ D), which comprises about 2%
of all variables. In this case, a computationally expensive
simulation is needed to determine the corresponding state
variables in order to evaluate the cost function and the con-
straints. The computation time needed for a single simulation
is nearly half of the time that an NLP solver needs for a local
search in the space of all variables.

In this contribution, the development, the application and
the analysis of a memetic algorithm for the global opti-
mization of a process design with fixed integer variables are
described.

Since evolutionary algorithms are devised to escape from
local optima and in order to exploit the ability of the
MP methods to efficiently solve large continuous problems
locally, a memetic algorithm was developed that combines an
evolutionary strategy (ES) [6] with a local NLP-solver based
on the general reduced gradient method (CONOPT [7]).
Within the memetic algorithm, the ES addresses the opti-
mization of the design variables and every individual of the
ES is improved by a local search of the MP solver. Thus
every feasible individual within the population of the ES
represents a local optimum of the problem at hand.

An ideal search strategy would utilize variation operators
that change the genes of the parent individuals in such a
way that every offspring is in the basin of attraction of
a different local optimum. In order to guide the search to
different local optima, regions are defined that approximate
the basins of attraction of each local optimum. The definition
of the regions is based on information on the starting point
of the local optimization and the resulting local optimum.



In the sequel these regions are calledtabu zones. After
its definition, a tabu zone is excluded from the subsequent
search procedure.

In Section II the case study considered here is introduced.
Then the structure of the memetic algorithm and the approx-
imation of the basins of attraction is explained in Section III.
The main results of the numerical tests and the analysis of the
MA are stated in Section IV. Finally, Section V comprises
the conclusion and the outlook.

II. T HE CASE STUDY

The case study considered here is the optimal design of
a reactive distillation column for the production of the anti-
knock product methyl tert-butyl ether (MTBE). In Figure 1
the schematic structure of a reactive distillation column is
shown. MTBE is synthesized from two feed streams with

Fig. 1. Structure of a reactive distillation column

a purity of at least99 mole-%. Feed stream one (F1) is
composed ofF sum

1 = 6.375 mole/s of methanol (MeOH);
feed stream two (F2) comprisesF sum

2 = 8.625 mole/s of a
mixture of isobutene (IB) and butane. The number of trays,
denoted byN , is fixed. The reboiler and the condenser of the
distillation column are modeled as trays and they are denoted
by tray numbersk = 1 and k = N . It is assumed that
fractions of both feed streams can enter the column on each
tray of the column including reboiler and condenser. The
chemical reaction is catalyzed heterogeneously. It is assumed
that there can be a certain amount of catalyst (Ecat) on each
tray of the column, restricted by the volume of a tray. No
reaction is taking place in the reboiler nor in the condenser.
The diameter of the column is denoted byDia.

The objective (1) is to minimize the annual cost which
is calculated by the annualized investment cost, annual
operating cost and annual cost for raw materials minus annual
revenues for the products. The investment cost are calculated
by heuristic functions for the column shell, the internals,the
catalyst, the condenser and the reboiler; the operating cost
are calculated by the heat loads for heating and cooling.

The model variables are related to the operating condition
inside the column, e.g. the pressure, the steam velocities or
the concentrations of the substances.

The set of design variablesd ∈ D consists of the amounts
of both feedsi = 1, 2 on each trayk = 1, ...N denoted by
Fi(k), the amounts of catalyst on each trayk = 2, ..., N − 1
denoted byEcat(k) and two variablesαtop and αbottom ∈
(0, 1) for the reflux ratio at the top and the ratio of the
evaporation rate to the product removal at the bottom of the
column.

The dimension of the model depends on the number of
trays. The cardinality of the set of design variables is|D| =
3N , whereas the cardinality of the set of model variablesM
is |M | = 149N + 14.

In Figure 2 the multi modality of the design problem at
hand is shown. Each of the points displayed represents one of

Fig. 2. Local optima of the column design problem in the spaceof the
cost (forN = 10, ...,60)

the local optima known so far for the column design problem
with fixed numbers of traysN = 10, ..., 60 in the space of
the cost and of the revenues. The plotted line identifies the
threshold between profit and loss. It can be recognized that
the quality of the local optima and the composition of the cost
and of the revenues of solutions which give approximately
the same profit are varying significantly. These variations
reflect the differences of the design and the model variables
at the local optima. The computation time for one local
optimization of the model withN = 60 trays, started from
a trivial starting point in the space of all variables, is about
30 min.

For a more detailed description of the design problem at
hand see [8] and [9].

A. NLP model

The optimization problem is modeled as an NLP opti-
mization problem. All variables (model variables and design
variables) are free decision variablesX = M∪D in the opti-
mization model (in the following denoted byMTBENLP ).
This model consists of a large number of algebraic equations
formulated in the modeling language GAMS [3]. These
equations correspond to the set of equations (2) for the
computation of the mass transfer and the reaction on each



tray of the column (the so calledmodel equations) and for
the computation of the annualized cost.

Furthermore it comprises a set of inequalities (3) to
• fulfill the required purity of the product and the required

throughputs and
• restrict operating conditions to feasible choices.

B. Simulation model

The simulation model comprises a subset of the equa-
tions (2) and the inequalities (3) of the optimization model.
The design variables were removed from the set of decision
variables, that isX = M . The equations and inequalities
that restrict the feasible values of the design variables were
also removed from the set of constraints (2) and (3).

One of the constraints couples the diameterDia with
the Ecat values and some model variables. To eliminate the
problem that the equations in the model cannot be fulfilled
for fixed design variables because of this constraint, the
diameter and the related constraint were removed from the
simulation model and are handled by the design optimization.

III. T HE MEMETIC ALGORITHM

The two main components of the memetic algorithm are
an evolutionary strategy as described in [6] and the local
NLP solver CONOPT [7]. In Figure 3 the structure of
the memetic algorithm is shown. At the beginning of each

Fig. 3. Structure of the memetic algorithm (MA)

optimization, the mathematical solver CONOPT is started
from a trivial initial point, where all variables have the
value 1. This first local search is necessary to find initial
values for the model variables within the simulation model,
because the initialization is crucial for the solution of the
model equations. The values of the model variables at the
first local optimum serve as initial values for the simulation
in the following search procedure.

Subsequently the ES is started. The starting population of
sizeµ is initialized randomly within the search space of the
design variables with respect to the constraints as described
in the next section.

To evaluate the individuals of the initial population, the
simulation model is solved for each individual. If the local
solver cannot fulfill the model equations, it aborts at an
infeasible point. An analysis revealed, that the violationof
the constraints at these points usually are so small, that these
points nonetheless can be used as starting points for the
subsequent local search. Then, the constraint coupling the
diameterDia, some of the model variables and theEcat

values which was removed from the simulation model before
(see Section II-B) is checked. In case that this constraint can
be satisfied,Dia is assigned to the minimal feasible value
of the diameter. Otherwise it is assigned to a random value
within its bounds.

The resulting points in the space of all variables are
passed to the MP solver in order to perform a local search.
According to the evolutionary model of Lamarck, the genes
of the individuals are replaced by the values of the design
variables of the corresponding local optima.

For each localized local optimum, a region is defined (a
tabu zone) to approximate the basin of attraction of this
optimum. These regions are excluded from the subsequent
search procedure.

To create theλ offspring,λ times one individual is chosen
randomly from the population. Each of these individuals is
mutated by a modified variant of the standard mutation op-
erator described in [10]. A self-adaptive step size introduced
by [6] is applied. The initial step size is denoted byς and
is chosen with respect to the size of the feasible domain
of the corresponding variable. A detailed description of the
mutation operator is given below.

Then the simulation is called for the resulting offspring
individuals, and the local searches are started from the
resulting values of the model variables. The genes of these
offspring individuals are replaced by the design variablesof
the corresponding local optimum. For each of these local
optima a tabu zone is defined and the list of tabu zones is
expanded.

If the termination criterion (here the computation time
limit or a maximal number of local solver calls) is not ful-
filled, the generation cycle is started again with the selection
of parent individuals for the next generation of offspring.A
(µ + λ) selection, which is advantageous in discrete search
spaces is chosen as introduced in [10]. (Each individual of
the population represents a local optimum and the set of
local optima is discrete and finite.) Theµ best individuals
with respect to the objective function among all individuals
that do not exceed a maximal ’life-span’ ofκ generations
are selected to form the population of the next generation.

A. Representation

To exploit the reduction in the size of the search space,
the design variables of the problem at hand are taken as
the representation of the individuals. They constitute the



genotype space. The genes of an individual are represented
by the vector of continuous variablesg:

g = (F1(1), ..., F1(N), F2(1), ..., F2(N), Ecat(2), ...,

Ecat(N − 1), αtop, αbottom)

with

0 ≤ F1(k) ≤ 6.375, ∀k,

0 ≤ F2(k) ≤ 8.625, ∀k,

0 ≤ Ecat(k), k = 2, ..., N − 1,

αtop, αbottom ∈ (0, 1)

The feasible domain of a variablex is denoted by[lbx, ubx],
where lbx and ubx are the lower and upper bounds of the
variable. There are two constraints with respect to the design
variables that have to be fulfilled in order to get a feasible
solution.

N∑

k=1

F1(k) = F sum
1 , (4)

N∑

k=1

F2(k) = F sum
2 , (5)

with F sum
1 = 6.375 and F sum

2 = 8.625. In order to create
and to maintain feasible individuals, these constraints are
taken into account within the initialization procedure andthe
mutation procedure, as explained in the next two sections.

B. Initialization

To create an initial population of feasible individuals
the constraints (4) and (5) have to be taken into account.
Therefore the variablesF1(k) andF2(k) are initialized in a
random sequence with random values, chosen from a uniform
distribution within the feasible domain of the variables and
with respect to the given values of their sumsF sum

i . The last
variables are assigned values that fulfill the given constraints.

All other variables are initialized randomly within their
bounds.

C. Mutation

To maintain the feasibility of the individuals, the mutation
also has to be performed respecting the constraints (4) and
(5). Hence the standard mutation is modified for the feed
stream variablesF1(k) andF2(k) and their step sizes. The
second aspect that has to be taken into account is the
existence of the tabu zones.

1) Mutation of the feed streams:Both feed streams are
mutated independently. One of theN indices k is chosen
randomly from a uniform distribution, and the value of the
corresponding streamFi(k) is changed by a normal dis-
tributed random number within its bounds[lbFi(k), ubFi(k)].
In order not to leave the feasible domain of the variable,
reflection is used at the bounds. Therefore the maximal step
size σmax is set toσmax = |ub − lb|/2 for each variable.
The resulting variables do not fulfill the constraints (4) or
(5) any more.

In order to meet the constraints, a repair procedure is
started until the difference of the sum of the amounts of all
feed streams andF sum

i , ∆F , equals zero again. One of the
remaining indices of the considered feed stream is chosen
randomly with a uniform distribution. The value of the
corresponding stream is changed, so that either∆F = 0 or
the value meets one of the boundslbFi(k) or ubFi(k). If ∆F =
0, the feasibility is obtained. Otherwise the repair procedure
is repeated for other untreated feed stream variables untilthe
repair is done successfully.

The mutation procedure described above changes only one
of the variables - that one chosen first - randomly. The other
variables are changed to maintain feasibility. Therefore the
vector of step sizes contains only one value for each feed
stream.

2) Respecting the tabu zones:In order to respect the tabu
zones, which are excluded from the search procedure, the
offspring are not allowed to be members of the zones.

Therefore each offspring that is generated by the described
mutation procedure which belongs to a forbidden zone is
mutated until it leaves the zones. If this is not possible within
3 ∗ |D| mutations of the object variables, the step size is
mutated and the mutation cycle of the object variables is
restarted. This procedure is repeated up to100 times. If each
offspring produced by the mutation is in a forbidden zone,
another parent individual is chosen randomly and the proce-
dure is started again up to10 times. If no offspring outside
the tabu zones can be generated, the overall optimization
procedure is stopped.

D. The tabu zones

In order to approximate the basins of attraction, tabu zones
of different forms and sizes and with different locations in
relation to the corresponding local optima were tested. Tabu
zones with two different forms (rectangular and spherical)
were examined. The locations of the starting points and of
the corresponding local optima define the locations of the
tabu zones. All examined zones are symmetric (for each
coordinate) around their centers. If the local optimum is
taken as the center, the tabu zones are calledsymmetric.
Their size is determined by the distance between the starting
point and the corresponding local optimum. If the midpoint
between the starting point and the optimum is taken as the
center, the zones are calledasymmetric. The four different
types of zones that were investigated are shown in Figure 4
schematically in a two-dimensional space. To vary the size of
the tabu zones, a scaling factorβ is defined. A scaling value
of β = 1 corresponds to the distance between the starting
point and the local optimum. Before the computation of the
radius of the spherical tabu zones, the values of the variables
were scaled by dividing them by a characteristic value. This
value is chosen to be either the value in the middle of the
feasible domain (for the bounded variables) or the result of
the first local optimization (for the unbounded variables).



Fig. 4. Schematic structure of the tabu zones

IV. EVALUATION

To test the memetic algorithm, a parameter tuning of the
strategy parameterssES = (µ, λ, κ) for the ES was done
(see Section IV-A). Furthermore the memetic algorithm was
tested using different tabu zones and different scaling factors
β (see Section IV-B).

In Section IV-C the results of test runs of the MA
optimizing more complex models with a time limit of 24
hours are discussed.

Finally, the memetic algorithm with the best settings was
compared to a reference algorithm (OQNLP/CONOPT) that
was used to solve the MINLP design-optimization problem
of the MTBE column before [8]. The reference algorithm
is described in Section IV-D.1 and the results are given in
Section IV-D.2.

In all of the following test runs, the initial step size is
chosen to beς = |ub − lb|/2 for each variable.

A. Strategy parameter tests

In order to find good strategy parameterssES = (µ, λ, κ)
for the ES, the MA was tested 10 times withN = 10 trays
using the symmetric rectangular tabuzone and a scaling factor
β = 1.5 for each of the following parameter settings:

{(5, 10, 5), (5, 20, 5), (5, 35, 5), (5, 20, 1),
(5, 20, 3), (7, 14, 5), (7, 30, 5), (7, 49, 5)}.

In Figure 5 the median progress curves of the MA using
different strategy parameters are shown. Table I comprises
the numbers of local optima found within one hour of
computation time (all four quartiles are listed).

It can be seen that the best overall progress and the largest
median number of local optima found was reached by using
the strategy parameterssES = (5, 10, 5). It is the only
parameter vector tested, where all known local optima were
found within the given time in the best run. The median

Fig. 5. Median progress curves of the MA using different strategy
parameters,sES = (µ, λ, κ)

TABLE I

RESULTS OF THE STRATEGY PARAMETER TESTS- NUMBERS OF THE

LOCAL OPTIMA FOUND WITHIN ONE COMPUTATION HOUR

best
1st

median
3rd

worst
sES quart. quart.

(5,10,5) 9 8 7.5 7 6
(5,20,5) 8 7.75 7 7 6
(5,35,5) 8 7 7 7 6
(5,20,1) 8 7 7 7 6
(5,20,3) 8 7 7 6.25 5
(7,14,5) 8 7.75 7 7 6
(7,30,5) 7 7 6.5 6 6
(7,49,5) 8 8 7 7 6

value of the time needed to find 7 local optima is30.5 CPU
min, that is 18% less than the second best result of using the
parameterssES = (5, 20, 5).

In the following, the strategy parameter vector is fixed to
sES = (5, 10, 5).

B. Evaluation of the tabu zones

The application of the four types of tabu zones as described
in Section III-D were tested with different scaling factors
β. The memetic algorithm was tested 10 times for each
tabu zone and each scaling factor, as well as the memetic
algorithm without the tabu zones.

The aim of the optimization of the problem at hand is to
find the global optimum. The first (and the most dominant)
criterion that is taken into account to choose the best scaling
factor is therefore the median value of the total number
of local optima found. Because of the complexity of the
problem at hand, the second criterion is the number of local
solver calls that is needed to find these median number of
local optima. And finally the best and the worst numbers of
local optima found should be as large as possible.

Figure 6 shows how the scaling factorβ influences the
best, median and worst values of the numbers of local optima



found within one hour of computation. 9 local optima are
known so far for the 10-trays model.β = 0 corresponds to
the results of the MA without any tabuzone.

Fig. 6. Influence of the scaling factorβ on the numbers of local optima
found, sES = (5, 10, 5)

The median values of the number of local solver calls
needed to find 7 optima is listed in Table II. The number in
brackets is the fraction of the test runs with less than 7 local
optima found.

TABLE II

RESULTS OF THE PARAMETER TESTS FOR THE DETERMINATION OF THE

BEST SCALING FACTORSβ FOR THE TABU ZONES- SOLVER CALLS AND

FRACTION OF RUNS WHERE LESS THAN7 OPTIMA WERE FOUND,

sES = (5, 10, 5)

without symmetric asymmetric
β tabu zones rectangular spherical rectangular spherical

0.5 - - 273 252
(20%) (30%)

1.0
229 209 308 224

(30%) (40%) (40%) (40%)

1.5 266 193 - 183 279
(30%) (15%) (100%) (10%) (10%)

2.0
336 - 260 166

(35%) (100%) (30%) (30%)

2.5 224 - - -(35%) (100%)

3.0 285 - - -
(40%) (100%)

For the symmetric rectangular tabu zones, the best scaling
factor is β = 1.5. By using this scaling factor the best
median number of local optima found was reached and the
lowest number of local solver calls was needed to find 7 local
optima. The fraction of runs, where less than 7 local optima
were found, was reduced to15%.

The best scaling factor for the asymmetric rectangular tabu
zones is alsoβ = 1.5. Although the best, median and worst
numbers of local optima found is equal by usingβ = 2.0,
the median number of solver calls needed to find 7 local
optima and the fraction of runs with less than 7 local optima
are significantly smaller by the use ofβ = 1.5.

The application of the symmetric spherical tabu zones
does only improve the optimization procedure by using a
scaling factor ofβ = 1.0. Scaling factors ofβ > 1 lead to
large tabu zones, that cover the whole feasible domain of
some of the variables, so that the optimization procedure is
aborted after one to four generations. That is attributed tothe
scaling procedure, because theEcat values are unbounded.
The characteristic value which is used to scale the variables
is a realistic value at a local optimum, but it is too small for
some of the starting values proposed by the ES.

For the asymmetric spherical tabu zone,β = 2.0 is the
factor that leads to the smallest medium number of solver
calls needed to find 7 local optima and to the largest median
number of local optima found. Although the fraction of runs,
where less than 7 optima were found is30% in comparison
to 10% by usingβ = 1.5, the significantly smaller number
of solver calls is the most dominant factor, because of its
influence on the progress curves of the MA over the time.

In comparison to the results of the MA without tabu zones,
the median value of the number of solver calls that is needed
to find 7 local optima was improved by the introduction
of the asymmetric rectangular tabu zones by32% and the
fraction of the optimizations with less than 7 located optima
is reduced by 2/3. In case of the asymmetric spherical tabu
zone the number of solver calls was improved by even38%,
but the fraction of the optimizations with less than 7 located
optima was not improved.

In order to compare the different types of tabu zones, the
median progress curves of the MA for each zone using the
best scaling factor is plotted in Figure 7. It shows the median
number of local optima found at each point of time of the
optimization.

Fig. 7. Median progress curves with the tabu zones using the best tested
scaling factorsβ, sES = (5, 10, 5)

The best median number of local optima found within the
given time limit is 7.5 and was reached by the application
of the symmetric rectangular tabu zones and by the applica-
tion of both spherical tabu zones. The optimization using
the spherical tabu zones show the fastest progress at the
beginning, but if the overall progress is taken into account,
the symmetric rectangular tabu zones approximate the basins



of attraction best.
A closer look at the progress curves reveals, that the

introduction of the symmetric rectangular tabu zone using
a scaling factorβ = 1.5 reduced the time to find 7 local
optima by29% and increased the median number of local
optima found within one hour of computation by5.5%. The
fraction of runs with less than 7 located optima was reduced
by 2/3.

C. Analysis of the MA

In order to study the behavior of the MA for difficult
problems, complex models withN = 40 and60 trays were
optimized using a time limit of 24 hours. The symmetric
rectangular tabu zones with a scaling factor ofβ = 1.5 and
the strategy parameter vectorsES = (5, 10, 5) were used.
Figure 8 shows the progress curves of the test runs. At the

Fig. 8. Progress curves of the MA for the 40-trays and 60-trays model,
sES = (5, 10, 5)

beginning of the optimization of the 40-trays model, a fast
progress can be observed. With proceeding time the progress
decreases and after 392 solver calls no new local optimum
can be found by the MA. Until this point of stagnation every
fifth to sixth local solver call on the average leads to a new
local optimum. The progress of the optimization of the 60-
trays model stagnates after 249 local solver calls. Up to this
call every fourth to fifth local solver call leads to a new local
optimum.

In order to find out why the progress stagnates, in Figures 9
and 10 the compositions of the parent populations of the
generations are displayed. Here all local optima known so
far were successively indexed ordered by the values of the
objective function.
Figures 9 and 10 reveal that there is a loss of diversity in the
population of the parents during the optimization process.
The parent populations of all generations consist of only 11

Fig. 9. Compositions of the parent populations of the MA for the 60-trays
model

different local optima (80 optima are known so far) in case of
the optimization of the 40-trays model and of only 5 optima
(out of 55 optima known so far) in case of the 60 trays-model.
For the 40-trays model each population of the generations 50
to 120 consist ofµ = 5 individuals that represent the same
local optimum. The selection of only the best individuals
for the next generation prevents that the parent populations
contain inferior individuals and it does not take into account
that several individuals in one population may represent
the same local optimum. Other selection procedures will be
tested in the future that accept inferior individuals and that
take the diversity into account.
In Figure 11 and 12 the compositions of the offspring
populations of the MA can be seen. Although there is a
severe loss of diversity in the parent populations, Figure 11
and Figure 12 show that the MA covers a big part of the
search space during the whole optimization procedure.

D. Comparison with the reference algorithm

The results of the MA were compared to the performance
of a reference algorithm that was used before to optimize the
overall MINLP problem of the case study at hand [8]. Both
algorithms were tested on a PC with 1.8 GHz and 1GB of
memory.20 runs of each algorithm were executed for the
MTBENLP model withN = 10, 15, 40 and60 trays.

1) The reference algorithm:OQNLP [11] is a scatter
search based multi-start heuristic, that generates different
starting points for a local MP solver in the space of all
variables. Each candidate point has to pass two different
filters (a merit filter and a distance filter) to be accepted
as a starting point for the local solver CONOPT [7]. As in
the MA, the solver optimizes in the space of all variables.

To allow a fair comparison of both algorithms, a parameter
tuning was done for the reference algorithm too (see [12]).

2) Comparison of results:Two criteria are used to mea-
sure the performance of the algorithms. The first criterion is
the quality of the starting points for the local search, proposed
by the MA and the multi-start heuristic OQNLP. This quality
is measured by the cpu seconds the local solver needs to
find a local optimum starting at the given point. The second
criterion is the performance of the global search, that is the
quality of the best local optimum found and the number of
localized optima.



Fig. 10. Compositions of the parent populations of the MA forthe 40-trays model

Fig. 11. Compositions of the offspring populations of the MAfor the 40-trays model

Fig. 12. Compositions of the offspring populations of the MAfor the 60-trays model



TABLE III

BEST, MEDIAN AND WORST VALUES OF COMPUTATION TIMES OF THE

LOCAL SOLVER CONOPTAND RATIOS OF INFEASIBLE ABORTS

(MTBENLP WITH N = 10, 15, 40AND 60 TRAYS)

N
OQNLP/CONOPT MA
time infeasible time infeasible
[s] aborts [%] [s] aborts [%]

10
min 23 7.3 4 15.8

median 34 14.2 9 18.5
max 50 21.2 17 22.0

15
min 58 2.3 13 11.2

median 85 16.5 20 30.6
max 128 27.3 34 61.1

40
min 609 9.1 58 0.0

median 737 33.3 116 0.0
max 915 69.2 223 3.6

60
min 1586 11.1 180 0.0

median 1896 31.7 291 2.2
max 2211 61.5 492 8.9

In Table III, the best, the median and the worst values
of the computation times of CONOPT and the ratio of the
local solver calls that were aborted without finding a feasible
solution to the total number of local solver calls are listed.
The times for the MA comprise the times for both CONOPT
calls, the simulation and the subsequent local optimization,
whereas the times for OQNLP/CONOPT are times of the
local search. The results show that the reduction of the search
space and the initialization of the simulation model could
improve the quality of the starting points considerably. The
computation time needed for the local search with starting
points proposed by OQNLP was reduced by more than75%
by the application of the MA. In the optimization runs of
the more complex models (N = 40, 60), the ratio of the
infeasible aborts of the local search to the total number of
all local solver calls was reduced to a value of less than3%
(median), even in the worst case it is less than10%. This
ratio is around30% for the application of OQNLP/CONOPT
and shows large fluctuations. The median ratio of30.6% of
the MA in comparison to16.5% of OQNLP/CONOPT for
the optimization of the model withN = 15 is a result of the
significantly greater number of solver calls of the MA within
the given time of60 cpu min for the optimization runs.

Figure 13 shows the best, the median and the worst
progress curves of the algorithms with regard to the best
objective found during the optimization for columns with15
and60 trays. The termination criterion for the optimization
was a time limit of 1 hour for the15-trays model and a limit
of 4 hours for the60-trays model.
For the model withN = 15 trays, the time to find the best
local optimum known so far was187 sec (median),99 sec
(best) and450 sec (worst) for the MA and419 sec (median),
164 sec (best) and1524 sec (worst) for OQNLP/CONOPT.
For the model withN = 60 trays, the MA found the best
local optimum known so far after94 min (median),36 min
(best). In only1 of the 20 runs this optimum was not found
within 4 hours. OQNLP/CONOPT needed125 min in the
best run and could not find the best optimum in14 of 20

runs within the given time limit.
In Figure 14, the best, the median and the worst numbers

of local optima found so far are plotted for each point in time
of the optimization runs. The results show that the maximal
number of localized optima during the optimization process
could be increased significantly by the MA in all cases. A
closer look at the results of the optimization of the60-trays
model reveals that even the worst run of the MA was much
better than the best optimization run of OQNLP/CONOPT.

V. CONCLUSION AND OUTLOOK

In this paper, the development and the analysis of a
memetic algorithm for the optimal design of chemical pro-
cesses was described. The application of an evolutionary
strategy in combination with a mathematical solver based
on the generalized reduced gradient method (CONOPT)
enabled the reduction of the search space to the set of design
variables. A good initialization procedure for the simulation
that is needed to compute the cost for given values of design
variables leads to a significant reduction of the computation
time for the following local search in comparison to the
reference algorithm OQNLP/CONOPT, which works in the
space of all variables. The introduction of tabu zones, which
approximate the basins of attraction of the local optima
found so far and their exclusion from the subsequent search
procedure improved the performance of the MA by29%.

The detailed analyses of the behavior of the MA showed
that there is a loss of diversity in the ES because of the
selection of only the best individuals to survive. Strategies to
maintain (or reinstall) the diversity of the population during
the search procedure will be examined in future work.

The development of a step size adaptation rule with respect
to the fact that all individuals represent local optima of the
problem will also be investigated. The self adaptation method
used here guides the search to promising areas in the search
space and it enables to adapt the step size depending on
the topology of the neighborhood. The new method should
respect the approximated basins of attraction and it should
guide the search to the unexplored regions of the search
space.

In future work, the model used here will be extended by
a restriction of the number of feed streams. In practice, only
a small number of feed streams is used. This restriction is
difficult to handle in an MINLP approach.
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