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Abstract. This paper proposes a comprehensive modeling architecture
for workloads on parallel computers using Markov chains in combination
with state dependent empirical distribution functions. This hybrid ap-
proach is based on the requirements of scheduling algorithms: the model
considers the four essential job attributes submission time, number of
required processors, estimated processing time, and actual processing
time. To assess the goodness-of-fit of a workload model the similarity
of sequences of real jobs and jobs generated from the model needs to
be captured. We propose to reduce the complexity of this task and to
evaluate the model by comparing the results of a widely-used scheduling
algorithm instead. This approach is demonstrated with commonly used
scheduling objectives like the Average Weighted Response Time and to-
tal Utilization. We compare their outcomes on the simulated workload
traces from our model with those of an original workload trace from a
real Massively Parallel Processing system installation. To verify this new
evaluation technique, standard criteria for assessing the goodness-of-fit
for workload models are additionally applied.

1 Introduction

During the last years, parallel computers have been put into service in vari-
ous places. They provide on-the-spot support for high performance computing
power. Such Massively Parallel Processing (MPP) Systems typically consist of
multiple processing nodes or processors parallelly connected via a high speed
network.
In order to facilitate the beneficial operation of such extensively shared MPP
installations, the scheduling system plays a most decisive role as it allocates pro-
cessors to the jobs [13].
Improving scheduling algorithms requires an extensive knowledge on user be-
havior and insight into the structure of job submissions. Ideally, consequences of



hypothetical situations like doubling the scale of an MPP could be anticipated
in advance. But formalizing the dynamics and complexity of parallel computing
environments is a challenging task. A first step in understanding user behavior
is to abstract observed behavior expressed in workload traces into mathematical
models. In Section 2 we provide an overview of existing concepts and efforts
made so far in workload modeling.
Furthermore, developing upgraded scheduling algorithms necessitate an ade-
quate evaluation method to determine the quality of the proposed approach.
Most research on practical scheduling algorithms relies on the analysis of very
few available real workload traces, i.e. recordings of job submissions that serve as
example data. Commonly, simulation experiments based on real workload traces
are conducted to enlarge this data base and hence allow for an appropriate qual-
ity assessment of scheduling algorithms.
Most simulation based scheduling algorithm design processes rely on the as-
sumption that the workload in the future does not differ much from the current
workload [12] which implies a ”stationary submission” pattern. This means that,
after a certain period of time, the MPP system operates in a saturated state,
where scheduling decisions lead to similar response times for submitted jobs. As
users or user communities are aware of the performance of their MPP system,
they tend to submit jobs that are adapted to the system load in a sort of feedback
behavior. On short time scales big fluctuations in submissions may occur, as the
user community keeps changing continuously. In practice, however, users exer-
cise self-regulation on the long run and reduce their job-submittal rate when the
system becomes overloaded. Therefore, we assume a settled and self-regulated
user community after a sufficient operation period.
In this paper, we propose a comprehensive model concept for the workload on
parallel computers. It contains the four essential job attributes as given above to
meet the typical requirements in scheduling algorithm design. At the core of the
model, a Markov chain for the number of required processors of consecutive jobs
is used. It is combined with state dependent empirical distribution functions for
the remaining job parameters. In Section 4 we present the model itself and the
way unknown parameters are estimated in detail.
To assess the goodness-of-fit of a workload model, the similarity of sequences of
real jobs and jobs generated from the model needs to be captured. We propose
to reduce the complexity of this task and to evaluate the model by comparing
the results of approved scheduling algorithms instead. We argue that a good
workload model does not only excel in matching statistical aspects like cumu-
lative distribution functions. Rather, simulated workload traces from a model
should yield scheduling results similar to those from real workload traces. In
Section 5 the general problem of assessing a model’s quality is discussed and
the proposed alternative is illustrated. As an example, we apply this evaluation
design using scheduling objectives like the Average Weighted Response Time
and overall Utilization and variants thereof obtained by EASY Backfilling in
Section 6. Afterwards, we compare their outcomes on simulated workload traces
from our model with those on an original workload trace from a real MPP in-
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stallation. To verify this new evaluation technique standard statistical properties
are applied as well. The paper ends with a conclusion and an outlook for further
enhancements.

2 Background

Modeling the workload of parallel computers has been subject to research for a
long time and has therefore been extensively discussed in the literature. Most of
the existing approaches are based on distributional assumptions on modeling the
workload characteristics. Sampling from these distributions results in simulated
synthetic data [7]. In such approaches, all job attributes are treated individually
ignoring known dependencies between them. However, correlations between at
least the most important job attributes cannot be neglected and must be taken
into account to achieve realistic models. For example, Lo et al. [21] demonstrate
the influence of different correlation strengths between job size and runtime
on the scheduling performance. Also Li et al. [20] focus on modeling workload
attributes that include both marginal distributions and autocorrelation func-
tion. In their tow-staged approach they combine Gaussians model with a local-
ized sampling algorithm. However, the resulting model considers run times and
memory only and must be supplemented by additional models, such as their job
arrival model [19], to derive a comprehensive workload model. Jann et al. [16] di-
vide the job sizes into subranges and suggest separate models for the inter arrival
time in each range. Lublin and Feitelson [22] introduce a two-stage hyper-gamma
distribution to model the runtime of jobs and consider additionally the known
and important power-of-two characteristic in the degree of parallelism [2].
Depicting the users’ runtime estimates is essential for the application of backfill-
ing algorithms. Even though these estimates are barely reliable in most workload
traces [18] the users’ overestimation tendency must be considered as inaccuracies
of estimates that have great impact on the schedule quality. Song et al. [27] use
Beta-, and Gamma-distributions for fitting the users’ runtime estimates while
jobs are grouped by their runtime. A similar attempt has been made by Tsafrir
et al. [31] considering modality of estimates. They view the estimates’ distri-
bution as a sequence of modes and investigate their main characteristics. Both
studies show that there is a close relation between a job’s runtime and the user’s
runtime estimate.
It is shown by Feitelson [5] that users tend to submit jobs with characteris-
tics similar to their predecessors. Hence, incorporating self similarity or auto-
correlations within the sequence of job submissions in workload models is nec-
essary. Among other, a promising technique is the use of Markov chains first
applied to workload modeling by Song et al. [28]. In their work, Markov chains
are constructed for runtime and degree of parallelism while those chains are
combined using their correlation values. This model describes sequential depen-
dencies between runtime and number of required processors accurately. However,
it lacks the inclusion of release times as well as runtime estimates.
Summarizing, no coherent workload model has been proposed so far for the
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important job attributes submission time, runtime, number of processors, and
runtime estimates. For the practical design of scheduling algorithms at least
those four job attributes are indispensable. To point this out, we briefly intro-
duce the problem of scheduling parallel jobs on MPP systems and introduce the
formal description and notation. We describe the data used in this work as well
as the standard scheduling algorithm which is utilized for evaluation purpose.

3 Parallel Job Scheduling

In the following, we denote random variables by capital letters and their corre-
sponding observations by lower case letters. Each job j is part of a job system
τ that contains all submitted jobs. The subset ξ(t) ⊆ τ contains all jobs that
have finished their execution at time t. For the scheduling problem on MPP sys-
tems we assume rigid parallel batch jobs that are submitted over time. Each job
j ∈ τ is characterized by its number of required processors Mj , its processing
time Pj , and additional criteria. During the execution phase, job j requires the
concurrent and exclusive access to Mj ≤ m processors with m being the total
number of available processors on the MPP system. The number of required
processors Mj is available at the release date Rj of job j and does not change
during the execution.
Scheduling on MPP systems is an online problem as neither the real processing
time Pj of job j nor its release time Rj are known in advance. The users only
provide estimates P̃j of the processing time at release time. In practice, these
estimates are used to cancel jobs, if pj > p̃j to prevent infinite execution of faulty
tasks.
The completion time of job j within schedule S, meaning the allocation of jobs
to processors, is denoted by Cj(S). As preferential treatment [25] of jobs is not
allowed every job runs to completion.

3.1 EASY Backfilling Algorithm

There exist many algorithms for scheduling on MPP system but only a few are
applied in practice nowadays. Due to its increasing acceptance and widespread
application we refer to the Extensible Argonne Scheduling sYstem (EASY), also
called aggressive backfilling [10] as a standard scheduling algorithm. Besides the
number of required processors, this algorithm also requires the users’ runtime
estimates.
All jobs that are submitted to the MPP system are stacked in a waiting queue.
The EASY Backfilling algorithm tries to successively start the jobs at the head of
the queue first. If they cannot be started immediately the backfilling procedure
will be executed: the algorithm searches the queue top down trying to find a
backfillable job. Such a job must not require more than the currently unoccupied
processors and must additionally satisfy one of two conditions which ensure that
the first job in the queue is not delayed: either it will terminate before the time
the first job is expected to commence (based on the users’ runtime estimates)
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or it will use only those processors anyway available after having allocated the
first job.

3.2 Data Source

Benchmarks for workload models are recordings of real job submissions to ex-
isting MPP installations which are available at the Parallel Workload Archive
maintained by Feitelson [8]. However, real workload traces exhibit commonly ob-
served phenomena like submission patterns [30], correlations between job param-
eters and their frequencies [22] as well as anomalies like rare or unique submission
events, see Feitelson and Tsafrir [9], that might trigger the risk of optimizing a
scheduling algorithm for an anomalous workload. Furthermore, a settling phase
is observed in almost every workload which does not mirror the usual opera-
tion of a steady user community. For scheduling algorithm design input data
reflecting submissions from a constant and settled user community would be
more desirable. Nevertheless, real workload traces are the only available source
of information on user behavior and submission structure.
Throughout this work we use an example trace to clarify our approach. In partic-
ular, we examine a trace from the Cornell Theory Center (CTC) which has been
comprehensively described by Hotovy [15]. It was recorded from 06-26-1996 until
05-31-1997 on a 430 processor IBM/SP2 machine. The trace consists of 77201
jobs after omission of all erroneous entries (e.g. processing time of zero or jobs
that require more than the maximum available processors) and includes also the
original users’ runtime estimates.

4 A Hybrid Markov Chain Architecture

In most existing models for the workload on MPP systems the four most impor-
tant job attributes inter arrival time, runtime, estimated runtime, and number of
required processors are treated separately. The known correlation, see Section 3,
between those attributes is usually disregarded. We suggest a comprehensive
model incorporating all these variables as well as their dependencies. This model
allows for conclusions on the correlation structure in real workload traces and
by this provides insight into user behavior. Generated workload traces from this
model can also be used to evaluate scheduling algorithms in a realistic setting.
To mirror autocorrelations in real workload traces, we propose a Markov chain
{Xt ∈ N0} with state space E = {e0, ..., ek} which forms the core of our model.
Markov chains are stochastic processes that fulfill the Markov property

P (Xt = i|X0 = h0, X1 = h1, ..., Xt−1 = h) =
P (Xt = i|Xt−1 = h) for all i, h0, h1, . . . , h ∈ E. (1)

This means that a transition to state i only depends on the previous state of the
chain h. We focus on homogeneous Markov chains to describe submissions from
a steady user community as described in Section 1. In this setting, transitions
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take place according to a transition probability matrix Π which does not change
over time. Its entries Πhi := P (Xt = i|Xt−1 = h) denote the probabilities of
moving from state h to i, h, i ∈ E, with

Πhi ≥ 0 ∀ h, i ∈ E, and
∑
i∈E

Πhi = 1 ∀ h ∈ E.

The key point for the construction of a Markov chain is to identify a preferably
small set of relevant states. In the context of workload modeling, we select a
job attribute that can be described by a minimum number of states without
oversimplifying the problem. As the range of all time related attributes is very
wide (e.g. even the inter arrival times vary in the range of [0,≈ 105]), they are
not appropriate for building the Markov states. This would either result in lots
of states or in an imprecise representation. However, the number of required
processors does not range widely. Consequently, this attribute is well suited to
define Markov states and the power-of-two dominance of processor requirements,
see Figure 1, can be utilized to apply an intuitive discretization scheme. It is
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Fig. 1. Bar chart of the number of required processors in the CTC workload trace.

known from literature [28, 2] that limiting processor requirements to power-of-
two still reflects properties of real traces appropriately. So we define a state in
the Markov chain that represents the number of required processors Mj by

M∗j := 2blog2(Mj)c (2)
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with observations mj and m∗j . The respective transition probabilities are esti-
mated by the empirical relative frequencies of the corresponding transitions. For
a given state space E each entry Π̂hi can be computed as follows: divide the
number of state transitions from h to i (assuming the current state as state h)
by the absolute frequency of state h. For details about Markov chains and esti-
mation of a transition matrix we refer to Sorensen and Gianola [29]. The rounded
estimated transition matrix for the CTC is given by

Π̂ =



0.67 0.05 0.09 0.07 0.07 0.03 0.02 0.01 0.00
0.22 0.43 0.18 0.07 0.05 0.03 0.02 0.01 0.00
0.24 0.06 0.41 0.16 0.07 0.03 0.02 0.01 0.00
0.23 0.05 0.10 0.42 0.14 0.03 0.02 0.01 0.00
0.25 0.06 0.10 0.10 0.35 0.10 0.03 0.01 0.00
0.23 0.04 0.08 0.08 0.09 0.39 0.06 0.01 0.00
0.28 0.05 0.10 0.08 0.10 0.06 0.25 0.05 0.00
0.27 0.05 0.12 0.09 0.08 0.07 0.06 0.22 0.02
0.36 0.06 0.10 0.11 0.07 0.07 0.05 0.03 0.16


,

with the state space

E = {20, 21, 22, 23, 24, 25, 26, 27, 28}.

The probabilities within this transition matrix can be interpreted with respect to
properties of the number of required processors. High values in the main diagonal
of Π̂ reflect that users tend to submit jobs similar to their predecessor. Further,
the high probabilities in the first column imply that small jobs with one or two
required processors are more likely to be submitted than larger jobs. This is in
line with Figure 1 and findings for other workload traces, see Song et al. [28].
We generate a Markov chain according to the estimated transition matrix Π̂. As
an example, assume that the chain is currently in state 20. In the next step, the
chain stays in 20 with probability 0.67 and moves to, say, 21 with probability
0.05.

As discussed in Section 1, we aim to include further essential job attributes
to our model. Therefor, we first estimate the conditional distribution function of
the processing time Pj and the inter arrival time ∆Rj = Rj −Rj−1 using the
Bayes’ formula [24]. In the next step, we assign these variables to the states of
the Markov chain according to the corresponding conditional distribution func-
tion. The known dependencies between real and estimated runtimes P̃j and the
users’ tendency to overestimation is reflected by the estimated runtime difference
∆P̃j = P̃j - Pj . It is also incorporated in the model by its empirical conditional
distribution function.
This approach is supposed to reliably reflect correlations and dependencies among
the job attributes in real workload traces and include them in the model. An
overview of the proposed hybrid architecture is depicted in Figure 2.

The long-term behavior of the generated Markov chain, meaning the proba-
bility distribution after n transitions, with n→∞, is important for our further
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Fig. 2. Schematic representation of the Markov chain for processors (M∗
j ) and the

associated conditional distribution functions for inter arrival times (F∆R), processing
times (FP ), and estimated runtime differences (F∆P̃ ).

analysis. We do not analyze the users’ long-term behavior but assess the use-
fulness of our Markov model. In particular, simulations from this model yield
reasonable results iff the chain converges to a unique stationary distribution.
The evolution of the Markov chain is then completely defined by the transition
matrix Π and the stationary distribution. This requires that limα→∞Πα = Π∞

converges to an invariant matrix with identical rows. The generated finite state
Markov chain has to fulfill several requirements, such as aperiodicity (P (Xt =
h|X0 = h) and P (Xt+1 = h|X0 = h) > 0, h ∈ E, t ≥ 0) and irreducibility
(P (Xt+r = h|Xr = h) > 0, h ∈ E, r ≥ 0) to ensure that it exhibits a station-
ary distribution, see Sorensen and Gianola [29]. For our model the estimated
transition probabilities given in Π̂ converge to

Π̂∞ =


0.42 0.08 0.14 0.13 0.11 0.07 0.03 0.01 0
...

...
...

...
...

...
...

...
...

0.42 0.08 0.14 0.13 0.11 0.07 0.03 0.01 0

 .

The row vector of Π̂∞, for simplicity also denoted by Π̂∞, is the estimated
stationary distribution of the generated Markov chain iff Π̂∞ · 1 = 1 and Π̂∞ ·
Π̂ = Π̂∞.
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5 Model Quality

Finding reasonable goodness-of-fit tests or quality measures for models is a
challenging task. Therefore, various attempts have been proposed to quantify
a model’s quality. Within this section, we review most common attempts and
describe an alternative method based on complexity compression that is applied
within this paper.

5.1 Assessing a model’s quality

Most of the workload models that are based on fitting statistical distributions
to real data are evaluated by a comparison of the empirical and the theoreti-
cal cumulative distribution functions (CDF). The equality of these distribution
functions can, under some assumptions, be tested for example by a Kolmogorov-
Smirnov (KS) test with its test statistic based on the maximum distance between
two CDF curves. However, it is questionable to apply a KS-test to correlated
data as the distribution of its test statistic relies on independent random sam-
ples [17]. Moreover, when explicitly modeling correlations in workload traces
CDF comparisons for single job attribute can only reveal whether their frequency
is reflected appropriately. They give no information on whether the correlations
are satisfactorily modeled. The same applies to the χ2- test [17], a commonly
used alternative for workload model evaluation. These goodness-of-fit tests can
be interpreted descriptively, understanding the test decision just as a hint that
the considered model fits or does not fit in the restricted sense of job character-
istic frequencies.
Eggar [3] gives a brief overview for assessing the goodness-of-fit of a Markov
chain model to the data. He points out that classical goodness-of-fit tests such
as given by Bartlett [1] analyze the order of the Markov chain, rather than
the adequacy of the approach itself. Bartlett proves that frequency counts in
discrete Markov chains are asymptotically normally distributed. Assuming that
the transition probabilities are known, he constructs a likelihood ratio test to ex-
amine the order of the considered autocorrelation of the Markov chain. Hoel [14]
extends this approach for an unknown transition matrix. Given a sequence of
data, Eggar [3] suggests a test to analyze whether a first-order Markov chain
fits the given data adequately. These tests are, however, inappropriate for our
applications since we focus on evaluating scheduling algorithms. Hence, we are
interested in the goodness-of-fit concerning real and simulated scheduling results
instead of comparing the considered model with real data. We propose to reduce
the complexity of quality assessment by evaluating workload models with the
help of scheduling results measured by performance objectives. Performance ob-
jectives for parallel job schedulers have been widely discussed in former research,
see for example Majumdar and Parsons [23]. Different performance objectives
have been analyzed in detail and are well understood in terms of their behav-
ior. Furthermore, it is known that the choice of workload model considerably
influences the performance evaluation [7]. We utilize this relation in an inverse
fashion and evaluate the workload model on the basis of the desired or expected
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performance objectives’ behavior.
This concept has been first applied by Lo et al. [21] who compare different syn-
thetic and real workload traces on the basis of multiple scheduling algorithms
and their performance ranking. Ernemann et al. [4] propose a similar approach
where the objective results of common scheduling algorithms serve as ”goodness-
of-fit test” for the parameters in a workload scaling procedure. In their work two
workload traces are assumed to be similar when the scheduling results are ap-
proximately equal. The comparison by this concept is also used by Franke et
al. [11]. They utilize a single workload optimized scheduling algorithm which is
applied to other workload traces and show that the scheduling results can serve
as indicator for the workload similarity.

In the following, we concentrate on performance objectives for scheduling
algorithms such as the Average Weighted Response Time (AWRT) and the Uti-
lization (U) that are described in Section 5.2. We expect that these objectives
exhibit the same characteristics for the real and the simulated data using the
same scheduling algorithm, see Figure 3. In particular, when the chain reaches

Fig. 3. Concept for workload model comparison based on scheduling algorithm results.

the unique stationary distribution we expect a minor variability in the simulated
objectives with comparable values to the observed. Therefore, we propose to com-
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pare and choose workload models which are designed for evaluating scheduling
algorithms by these characteristics.

5.2 Scheduling Performance Objectives

In order to measure the schedule quality and the overall system performance,
several objectives have been proposed and discussed in the literature [6]. Here,
the objectives are described including a time dependency and the use of averag-
ing.
From a users point of view the schedule quality can be measured by the Average
Weighted Response Time at a given time t relative to all jobs j ∈ ξ(t) that have
finished their execution:

AWRT(t) =

∑
j∈ξ(t)

Pj ·Mj · (Cj(S)−Rj)∑
j∈ξ(t)

Pj ·Mj
. (3)

Remember that ξ(t) contains all jobs that have accomplished their execution
at a time t. A short AWRT reflects that on average users do not wait long for
their jobs to be completed. According to Schwiegelshohn et al. [26], we use the
resource consumption (Pj ·Mj) of each job j as weight. This ensures that neither
splitting nor combination of jobs influences the objective function in a beneficial
way. As second objective we define the overall Utilization U(t) at time t. It
is measured from the start of the schedule S, that is minj∈ξ(t){Cj(S) − Pj}
as the earliest job start time, up to its latest job completion time Cmax,t =
maxj∈ξ(t){Cj(S)}. Thus, U(t) describes the ratio between overall resource usage
and available resources after the completion of all jobs j ∈ ξ(t) up to a certain
time t, see Equation (4):

U(t) =

∑
j∈ξ(t)

Pj ·Mj

m ·
(
Cmax,t − min

j∈ξ(t)
{Cj(S)− Pj}

) . (4)

U(t) reflects the usage efficiency of the available processors. Therefore, it often
serves as schedule quality objective from the MPP administrator’s point of view.
Due to the Central Limit Theorem these mean value or average characteristics
show by itself a convergent behavior. Thus, we additionally measure both objec-
tives in a moving window (moving average filter) to avoid the forced convergence
of the objectives after a sufficient large number of jobs. We will denote those ob-
jectives by an subscript κ that specifies the window size (i.e. the number of
averaged jobs).
The development of AWRT over time should vary in a bounded range as it can be
observed in the original trace, see Figure 4(a). Even if a moving average is used,
as depicted in Figure 4(c), the values show a bounded variation characteristic.
Submissions from a settled user community usually result in a converging utiliza-
tion U(t), see Figure 4(b). After the settling phase, a nearly constant utilization
is identifiable even with the moving average filter, see Figure 4(d).
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Fig. 4. AWRT(t) and U(t) as result of the EASY Backfilling algorithm applied to
the CTC workload trace. The objective values are given as cumulative averages in
Figures (a) and (b) as well as for moving averages with a window size of κ = 10, 000
in Figures (c) and (d).

6 Evaluation

In this section we first specify the setup of the simulation study. As an example,
we evaluate the model by comparing the results of the EASY scheduling algo-
rithm on the real and simulated data by the AWRT and U and their moving
window variants. Afterwards, we verify this new evaluation technique by further
criteria for assessing the goodness-of-fit for workload models.

6.1 Design of Simulation Study

The simulation is performed in consecutive steps. For the required processors Mj

a Markov chain is generated using the estimated transition probabilities given
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in Section 4. Then, we sample 77201 realizations from the Markov chain as this
number equals the length of the original CTC trace. The sampling scheme is
inspired by Markov chain Monte Carlo (MCMC) simulations, used in statistics
to sample from a distribution of interest, see Sorensen and Gianola [29]. To
avoid an impact of the starting value, the first 100,000 simulated values are dis-
carded. Subsequently, every 10th value is kept in the simulated workload trace.
This sampling approach is frequently applied to MCMC methods to draw an
independent sample of the Markov chain. The sampled states exhibit the same
dependence structure than the original chain.
Given the transition in the simulated workload trace, the remaining job at-
tributes p, ∆p̃, and ∆r are sampled from their empirical conditional distribution
functions. To compute the jobs’ submission times from their inter arrival times,
we initially set r1 = ∆r1 and determine recursively rj = rj−1 + ∆rj for j =
2, 3, . . . n. Analogously, the runtime estimates p̃j are computed as p̃j = pj +∆p̃j .
The random sampling from the corresponding conditional distribution functions
leads to negative simulated values p̃j if ∆p̃j < −pj . We discard p̃j if p̃j ≤ 0 and
replace it by a new simulated value.
In total, 100 workload traces are simulated this way and run through the EASY
algorithm, for the overall procedure see Figure 3. Every simulated workload trace
and its scheduling are characterized by performance objectives in the same way
a real workload and its scheduling quality would be analyzed. Figure 4 illustrates
the scheduling quality measured by AWRT(t) and U(t) for the CTC workload
when scheduled with the EASY algorithm. Simulated workload traces should
lead to similarly shaped graphs, if they originate from a suitable model. This
implies that we gain information concerning the adequacy of a workload model
by comparing the distribution of performance objectives for the simulated work-
load traces with those of real workload traces. Hence, we plot the 5%, 10%, 90%
and 95% quantiles pointwise against the averaged Cj(S) to summarize the objec-
tives’ distributions. The graphical representation allows us to compare simulated
with real scheduling objectives and to analyze their behavior.

6.2 Scheduling Objective Results

The summarized objectives’ distributions of 100 simulated workload traces are
visualized in Figures 5 and 6 (AWRT(t) and U(t)) for the averaged objective
values. Further, Figures 7 and 8 (AWRTκ(t) and Uκ(t)) show results for the
moving averaged values with κ = 10.000. The distributions of AWRT(t) and
U(t) indicate that the objectives converge as desired. The model thus mirrors
submissions from a steady user community and so meets an essential requirement
in scheduling design. Further, the achieved objectives’ values for the simulated
workload traces lie in the same range as those of the original CTC trace, see
Figures 4 and 5. This means that the modeled submission pattern resembles
the submission pattern from the user community that submitted to the CTC in
terms of used capacities of the machine.
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Fig. 5. Pointwise quantiles of the AWRT(t) objectives over averaged completion times
of 100 generated workload traces.

The comparison of Figures 4 and 5 also reveals a difference in the shape of
the startup phase of the scheduling. The reference curves from the real CTC
workload exhibit a settling phase that can not be found in the curves from
the simulated workload traces. Explanations for this fact are twofold: First, the
proposed model is constructed to generate a homogeneous job sequence which
means that no settling phase is intended. Second, the objectives are based on
cumulative means. Consequently, as long as only a few jobs have been submitted
the objectives are sensitive to extreme values that might cause overshoots. Thus,
our model obviously approximates the original data well on the long run but lacks
a representation of the settling phenomena. As these phenomena are of minor
importance when designing new scheduling algorithms, this does not reduce the
applicability of the model for the designated purpose.

The convergence seen in the graphics so far might have been a necessary
consequence of cumulatively averaging the scheduling objectives (Central Limit
Theorem). To conclude that this convergence is due to submissions from a steady
user community we additionally apply the scheduling objectives in their moving
window variant. The scheduling results for AWRTκ(t) and Uκ(t) on simulated
workload traces are displayed in Figures 7 and 8. Both objectives AWRTκ(t) and
Uκ(t) reach a steady phase quickly and they only vary slightly within a small
range which indicates that a constant user demand is indeed reflected appropri-
ately by our model.
As expected, the reference curves in Figures 4(c) and 4(d) are less flat than the
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Fig. 6. Pointwise quantiles of the U(t) objectives over averaged completion times of
100 generated workload traces.

curves resulting from the commonly used objectives without windowed averaging
(Figures 4(a) and 4(b)). Anyway, the achieved objectives from simulated work-
load traces again lie in about the same range as those from the reference. Hence,
the simulated job sequences resemble the actually submitted job sequence on the
CTC machine in terms of capacity usage. The difference in the startup phase of
the scheduling remains unchanged when applying the windowed versions of the
scheduling objectives.
Summarizing, simulated jobs from the proposed Markov model and the original
workload sequence scheduled by the same algorithm leads to similar behavior
of scheduling quality objectives. Yielding convergent AWRT(t), U(t) values and
their moving window variants the model also reflects the desired properties of
submissions from a static user community. Keeping the application in mind, dif-
ferences between the settling phase in real and simulated traces are acceptable.
Therefore, the simulated workload traces are suitable for designing and testing
new scheduling algorithms.

6.3 Further Evaluation Criteria

In this work, we focus on model evaluation by a scheduling algorithm in order to
determine the quality of the model. However, this method is based on graphical
comparisons and as such hardly quantifiable. Thus, we additionally provide some
traditional and commonly accepted performance criteria to show the adequacy
of the proposed workload model as well as the proposed evaluation scheme via
scheduling objectives.
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Fig. 7. Pointwise quantiles of the moving averaged AWRTκ(t) objective over averaged
completion times of 100 generated workload traces with a window size κ = 10, 000 jobs.

The empirical cumulative distribution functions (empirical CDF’s) of job at-
tributes are often used to evaluate workload models. The empirical CDF’s of the
two job attributes runtime Pj and number of required processors Mj for the CTC
and the simulated workload traces are depicted in Figure 9. The frequencies of
the number of required nodes in the simulated traces and in the CTC workload
almost coincide. This results from the fact that the original data are used for
estimating the transition matrix of the Markov model. The slight differences are
due to the discretization scheme which captures the main structure of processor
requirements concerning their frequencies, see Figure 9(a). The simplification
induced by discretizing still closely matches the original data.
Figure 9(b) displays the empirical CDF’s of the real and simulated runtimes Pj
in comparison. Within this plot the frequencies of both original and simulated
runtimes are indistinguishable. At first sight, this seems not to be a surprise
as the simulated runtimes have been generated by sampling from the observed
CTC runtimes. But in fact this sampling is linked to the Markov chain by re-
stricting it to the conditional empirical distribution function given the transition
of the chain. If the Markov chain was not appropriate, we would expect the real
and simulated frequencies to match considerably less. This indicates that the
proposed Markov model is a suitable fit to the CTC data. We omit to present
the remaining job attributes here as all of them show similar characteristics. As
a second evaluation criterion we consider the frequency of underestimated job
runtimes. It is known from the literature that users tend to overestimate the
runtime of their jobs, see Lee et al. [18] as they otherwise run the risk of job
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Fig. 8. Pointwise quantiles of the moving averaged Uκ(t) objective over averaged com-
pletion times of 100 generated workload traces with a window size κ = 10, 000 jobs.

cancellation. However, there exist a remarkable amount of such jobs in the orig-
inal trace. In the CTC workload trace we observe 7180 jobs that are canceled by
the system as the users underestimated their jobs’ runtimes, i.e. approximately
9.3% of all jobs. Underestimation of job runtimes highly affects the performance
of backfilling algorithms as they require accurate runtime imformation to yield
high quality schedules, see Feitelson and Weil [10]. We incorporate this aspect
implicitly into our model as underestimations in the CTC trace result in negative
values of the difference ∆P̃j . Figure 10 confirms that the number of underesti-
mated jobs is appropriately reflected by the proposed workload model as the
mean number of underestimated jobs is 7092 or approximately 9.27% over 100
simulated traces. This is satisfactorily close to the observed 7180 understimated
jobs or 9.3% in the CTC workload trace and emphasizes the advantage of the
hybrid use of Markov chains and empirical conditional distribution function sam-
pling.
The last model evaluation criterion we consider aims at correlations between
different job attributes. The existence of correlations is well known and models
are often evaluated with respect to correlations by means of the Bravais-Pearson
correlation coefficient rxy, see Kotz et al. [17]. This coefficient provides informa-
tion if there is a linear relationship between two variable X and Y . Absolute
rxy values close to 1 indicate a linear dependence between X and Y whereas
absolute rxy values close to 0 suggest no linear dependence. Other relationships,
however, might well be possible but remain undetected. Commonly, it is con-
cluded that the model mirrors the correlations in the real workload trace well if
simulations from the model lead to comparable rxy values to the real rxy values.
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Fig. 9. Cumulative distribution functions (CDF) of the number of required proces-
sors (Mj) and runtime (Pj) respectively for the proposed model compared to the cor-
respondents of the original CTC trace.

The Bravais-Pearson correlation coefficient is calculated for the pairs processing
time and required processors, processing time and estimated processing time, in-
ter arrival times and required processors, and inter arrival times and processing
times, see Table 1. For all these pairs we obtain comparable conclusions from the
Bravais-Pearson correlation coefficient in the CTC and in our simulated work-
load traces which seems to support the choice of our model. According to the
Bravais-Pearson correlation coefficient only processing time and estimated pro-
cessing time are linearly connected. This is also supported by the corresponding
scatterplot, see Figure 12. As a representative for a non-linear correlation we
present the scatterplot for the number of required processors and processing
time, see Figure 11. Note that we get no further information concerning the ac-
tual nature of relationship between the job parameters. Although the proposed
model performs well in meeting the rxy values of the CTC workload, we sug-
gest that other criteria might be necessary to reliably judge the adequacy of the
incorporated correlations.

rxy CTC Markov Model

pj/mj -0.0341 -0.0320

pj/p̃j 0.699 0.7233

∆rj/mj 0.0399 0.0494

∆rj/pj 0.0327 0.0026

Table 1. Bravais-Pearson correlation coefficient rxy for pairs of job attributes given
for the original CTC trace and 100 · 77201 generated jobs.
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Fig. 10. Bar chart of the number of jobs with underestimated runtime (pj > p̃j) over
all 100 generated workload traces.

7 Conclusion

The design of scheduling algorithms requires a deep understanding of MPP users’
behavior and their submission practice as well as broad data bases of workload
traces. Deducing models from observed workload on MPP systems permits in-
sight in those complex structures and, as the data source is usually limited,
allows to simulate realistic workload traces. In this paper, we proposed a hy-
brid modeling architecture for workload on parallel computers. We developed
a comprehensive Markov model incorporating the four essential job attributes
submission time, number of required processors, estimated processing time, and
real processing time in combination with state dependent empirical distribu-
tion functions. As job submissions from a steady user community are desired
for scheduling algorithm design, the model was built to meet this requirement.
To judge the model’s adequacy we developed a new evaluation scheme using a
scheduling algorithm as quality and performance measure. By this, the complex
problem of assessing the model’s quality was simplified and solved. To validate
this evaluation scheme also standard evaluation criteria for workload models
were applied.
We considered Average Weighted Response Time (AWRT) and Utilization (U)
to measure the schedule quality and the overall system performance. These ob-
jectives were computed for the real CTC and workload traces generated from our
model using the EASY Backfilling algorithm. The scheduling results for AWRT
and U on generated workload traces were displayed graphically. Comparing their
shapes with the reference curves we observed convergence in both cases. Hence,
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Fig. 11. Scatterplots of Mj versus Pj for one generated and the original CTC workload
trace.

we conjecture that the generated job submissions match those from a steady
user community.
Due to the design of our model, it performs well with respect to standard evalu-
ation criteria. The empirical distribution functions of real and simulated number
of required processors and processing times agree approximately. The small dis-
crepancies that can be observed for the number of required processors result from
the discretization step that generates the states of our Markov chain. Further,
the number of jobs with underestimated runtimes as well as properties expressed
by Bravais-Pearson correlation coefficients are reasonably reflected.

The modular character of the proposed model allows to incorporate other job
attributes such as requested and used memory easily. Another important aspect
of job submissions is time dependency. Especially the diurnal cycle might have a
major impact on scheduling. Therefore, extensions of the suggested model with
respect to time dependencies could be worthwhile. An inhomogeneous Markov
chain is a promising technique for this purpose. Moreover, it seems reasonable to
include characteristics of different user groups into the model extending it e.g.
to a Hidden Markov model (HMM). A HMM consists of a bivariate process. One
subprocess is a Markov chain with not observable, hidden states, for instance
the user groups. The observable job attributes are generated in a second process
conditional on the hidden state.
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Fig. 12. Scatterplots of Pj versus P̃j for one generated and the original CTC workload
trace.
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