
TECHNISCHE UNIVERSITÄT DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

Self-stablizing Cuts in Synchronous Networks

Thomas Sauerwald and Dirk Sudholt

No. CI-244/08

Technical Report ISSN 1433-3325 April 2008

Secretary of the SFB 531 · Technische Universität Dortmund · Faculty of Compu-

ter Science, LS 2 · 44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational

Intelligence,” at Dortmund University of Technology and was printed with financial

support of the Deutsche Forschungsgemeinschaft.

Self-stabilizing Cuts in Synchronous Networks

Thomas Sauerwald1⋆ and Dirk Sudholt2⋆⋆

1 Dept. of CS, University of Paderborn, Paderborn, Germany
sauerwal@upb.de

2 Dept. of CS, Dortmund University of Technology, Dortmund, Germany
dirk.sudholt@cs.uni-dortmund.de

Abstract. Consider a synchronized distributed system where each node
can only observe the state of its neighbors. Such a system is called self-
stabilizing if it reaches a stable global state in a finite number of rounds.
Allowing two different states for each node induces a cut in the net-
work graph. In each round, every node decides whether it is (locally)
satisfied with the current cut. Afterwards all unsatisfied nodes change
sides independently with a fixed probability p. Using different notions
of satisfaction enables the computation of maximal and minimal cuts,
respectively. We analyze the expected time until such cuts are reached
on several graph classes and consider the impact of the parameter p and
the initial cut.

1 Introduction

1.1 Motivation

In the language of distributed computing a system is called self-stabilizing
if it reaches a global state with some desired property in finite time, re-
gardless of the initialization. This implies that the system is able to sta-
bilize even in the presence of faults [2, 4]. Such self-stabilizing processes
have been investigated for various graph problems like maximal match-
ings [12, 16], independent sets [8], and domination [6]. A lot of research
effort has been spent on self-stabilizing vertex coloring algorithms [7, 9,
13–15], motivated by code assignment problems in wireless networks.

In this work we consider self-stabilizing algorithms for maximal and
minimal cuts in a synchronized distributed system. The network is given
by an undirected graph G = (V,E). As we do not make use of IDs for the
nodes, we assume that the network is anonymous. However, we assume
that there is a central clock synchronization. In each round every node

⋆ supported by the German Science Foundation (DFG) Research Training Group
GK-693 of the Paderborn Institute for Scientific Computation (PaSCo).

⋆⋆ supported by the German Science Foundation (DFG) as a part of the Collaborative
Research Center “Computational Intelligence” (SFB 531).

has one out of two possible states, which induces a cut of the network.
In every round every node decides whether it is satisfied with the current
cut, judging from a local perspective, i. e., the state of its neighbors.
Unsatisfied nodes strive to (locally) improve the cut by changing sides.
In order to break symmetries, we investigate a randomized algorithm
where in each round every unsatisfied node changes sides with a fixed
probability p.

By different notions of satisfaction different types of cuts can be pro-
duced. We say that a node is max-satisfied if at least half of its neighbors
are on the other side of the cut. If all nodes are max-satisfied, the current
cut cannot be increased by flipping a single node. Hence the current cut is
maximal, i. e., locally optimal w. r. t. the cut size (as opposed to maximum
cuts representing global optima). From a global perspective, the system
may be viewed as a self-stabilizing algorithm for maximal cuts.

The system may also be regarded from a local perspective. For ex-
ample, the problem can be seen as a relaxed code assignment problem
where nodes are forced to use different codes to communicate. In a cut
where all nodes are max-satisfied every node can communicate with a
majority of neighbors, even if only two codes are available. There are also
connections to game theory where the nodes represent players competing
for services. If some players asking for the same service are close to each
other (are connected by an edge), then the benefit of this service has to
be split among all these players.

On the other hand, a node is min-satisfied if at least half of its neigh-
bors are on the same side of the cut. This notion of satisfaction results
in minimal cuts (as opposed to minimum cuts). Finding a minimum cut
in a graph is an important task in computer science with applications
to clustering, chip design, and network reliability. In our distributed and
anonymous setting, however, we are content with minimal cuts.

Using the above-mentioned two notions of satisfaction, we show that
the system self-stabilizes and then focus on the expected time until a
stable cut is obtained. We prove for both satisfaction models that planar
graphs stabilize in linear time for appropriate constant values of p. The
choice of p is crucial since using constant p on dense graphs results in
exponential stabilization times for the max-satisfaction model, with high
probability. Finally, we investigate classes of sparse graphs like rings, torus
graphs, and hypercubes. On rings the expected stabilization time is log-
arithmic for constant p. For some torus graphs, the choice of the initial
cut decides between linear and logarithmic expected stabilization times.

1.2 Related Work

Our work is related to the design of distributed approximation algo-
rithms [5] since our algorithm approximates maximum and minimum
cuts. This is especially interesting as Elkin [5] concludes in his survey
that the distributed approximability of maximum and minimum cut is
still unsolved. However, the focus on this work is different; due to the
restrictions in our distributed model we only settle for maximal and min-
imal cuts, i. e., local optima.

Gradinariu and Tixeuil [9] investigated a self-stabilizing coloring al-
gorithms that is similar to our model. In their work, a node agrees with
its neighborhood if it is colored with the maximal color value that is not
used by any of its neighbors. In their distributed setting a node that dis-
agrees with its neighborhood changes its color with probability 1/2. It is
shown that this strategy stabilizes with a (B + 1)-coloring in expected
time O((B − 1) log n) where B is a bound on the maximal degree and n
is the number of nodes. This work loosely relates to our work as every
2-coloring represents a maximum cut. However, as typically B + 1 > 2
colors may be used, vertex coloring and cut problems are quite different.

1.3 Our Results

After presenting necessary definitions in Section 2, we start with general
upper bounds for the expected stabilization time in both min-satisfaction
and max-satisfaction models in Section 3. In particular, we derive an
upper bound O(n/p) for all planar graphs with n nodes if p ≤ 1/12.
This bound suggests to choose p large, but for dense graphs this may
lead to exponential stabilization times. Section 4 presents such examples
for the max-satisfaction process on the complete graph Kn and dense
random graphs in the G(n, 1/2)-model. On Kn the expected stabilization
time is exponential for p = 1/2, but polynomial if p = O((log n)/n)
(and p ≥ n−O(1)). For sparse graphs the choice of p is less important.
As shown in Section 5, rings stabilize in expected time O((log n)/p) if
p = 1−Ω(1). Moreover, the investigation of torus graphs shows that the
initialization can be crucial. With a worst-case initialization torus graphs
stabilize in expected time Ω(n/p), while random initialization yields a
bound of O((log n)/p2) on certain torus graphs. Section 6 finishes with
conclusions and remarks on future work.

2 Definitions

Let G = (V,E) be an undirected graph. For U,W ⊆ V let E(U,W) be
the set of all edges between U and W and E(U) = E(U,U). For v ∈ V
let deg(v) denote the degree of v. Let ∆(G) = maxv∈V deg(v) be the

maximum degree in G and a(G) = maxU⊆V,|U |>1

⌈

|E(U)|
|U |−1

⌉

be the (edge)

arboricity of G (see [1]). We use a(G) as a measure of local density in
the graph and observe that a(G) is small iff G is “nowhere dense.” The
number of nodes is always denoted by n.

At each point of time all nodes are either in state 0 or in state 1. In
round t let Vt(1) ⊆ V denote the set of nodes in state 1; Vt(0) = V \Vt(1)
is the corresponding complementing set. We synonymously use the term
coloring and say that a node v is c-colored if v ∈ Vt(c), c ∈ {0, 1}. In this
case we denote deg+

t (v) = |E({v}, Vt(1 − c))| and deg−t (v) = deg(v) −
deg+

t (v). We define two notions of satisfaction mentioned before.

Definition 1. A node v is max-satisfied at time t if deg+
t (v) ≥ deg−t (v).

A node v is min-satisfied at time t if deg+
t (v) ≤ deg−t (v).

Fixing one notion of satisfaction, let V sat
t denote the set of all nodes that

are satisfied at time t and V unsat
t := V \V sat

t denote the set of unsatisfied
nodes. Given 0 < p < 1, the self-stabilizing cut algorithm is formally
defined as follows.

Self-stabilizing cut algorithm

1: In round t execute the following rule simultaneously for all nodes v:
2: if v ∈ V unsat

t then
3: invert state of v for round t + 1 with probability p.

A cut where all nodes are satisfied is called stable. The stabilization
time is defined as the first round with a stable cut. We are interested
in the expected stabilization time, where the initial cut may be chosen
uniformly at random or by an adversary. In the latter case, we speak of
the worst-case expected stabilization time.

Observe that for bipartite graphs one can easily switch between the
two models of satisfaction. Given a bipartition V = U ∪ W of the graph
G = (V,E), flipping (inverting) all nodes in U turns every cut edge into
a non-cut edge and vice versa. Thereby, the meaning of deg+

t (v) and
deg−t (v) is exchanged and a node becomes min-satisfied iff it has been

max-satisfied before. In particular, a stable cut for one model becomes a
stable cut for the other model after this transformation.

More precise, let the function h on the state space {0, 1}n be such a
transformation, then the following holds. Consider the algorithm applied
to both models. If the max-satisfaction model starts in state x0 and the
min-satisfaction model starts in state y0 = h(x0), then at any point of
time t for any state xt the probability that the max-satisfaction model
is in state xt equals the probability that the min-satisfaction model is
in state yt = h(xt). This symmetrical behavior implies that the random
stabilization times for the two models have the same probability distri-
bution. It therefore suffices to focus on one model when dealing with
bipartite graphs.

In the max-satisfaction model, shortly max-model, a stable configu-
ration represents a maximal cut, i. e., a cut that cannot be enlarged by
changing a single node. This is because a local improvement implies an
unsatisfied node. The same holds for the min-model and minimal cuts.
In a non-distributed setting one may easily obtain maximal and minimal
cuts by local search, simply changing a single unsatisfied node in each
round. The number of cut edges is then strictly increasing over time, im-
plying that at most |E| iterations are needed in order to find a maximal
or minimal cut. The self-stabilizing cut algorithm can simulate an iter-
ation of local search if exactly one specific unsatisfied node is flipped,
which happens with probability p · (1 − p)|V

unsat
t |−1 > 0. Hence, there is

a positive probability that the algorithm simulates a whole run of local
search ending with a stable cut.

Proposition 1. In both the max-model and the min-model, the self-sta-
bilizing cut algorithm stabilizes in finite time with probability 1.

In the following, we will present more precise results, i. e., we prove bounds
between logarithmic, polynomial, and exponential orders for different
graph classes. As we are especially interested in the impact of the pa-
rameter p, we state our results w. r. t. n and p.

3 A General Upper Bound

In this section we derive general upper bounds for both the max-model
and the min-model. Thereby, we exploit that under certain conditions
there is a probabilistic tendency to increase the cut size in the max-model
and to decrease the cut size in the min-model, respectively.

Theorem 1. On any graph G = (V,E), if p ≤ 1/(4a(G)), the expected
stabilization time for both the max-model and the min-model is bounded
from above by 2|E|/p.

Proof. It suffices to consider the max-model as the arguments for the
min-model are symmetric. Let Pt = (Vt(0), Vt(1)) and let f(Pt) be the
number of cut edges in Pt. Consider one round of the algorithm and
let V flip

t be the set of nodes changing sides (flipping) in round t. If v is
the only node to be flipped in round t, this operation increases the cut
size by deg−t (v) − deg+

t (v) ≥ 1. If V flip
t is an independent set, the total

increase of the cut size is
∑

v∈V flip
t

(deg−t (v)−deg+
t (v)) ≥ |V flip

t |. However,

if two changing nodes share an edge, this edge is counted wrongly for
both nodes. This implies

f(Pt+1) − f(Pt) ≥
∑

v∈V flip
t

(deg−t (v) − deg+
t (v)) − 2|E(V flip

t)|

≥ |V flip
t | − 2|E(V flip

t)|.

The expected gain in cut size is at least

E (f(Pt+1) − f(Pt)) ≥ p|V unsat
t | − 2p2|E(V unsat

t)|.

Observe |E(V unsat
t)| ≤ a(G) · (|V unsat

t | − 1) < a(G) · |V unsat
t | by definition

of a(G). Along with the assumption p ≤ 1/(4a(G)), we arrive at

E (f(Pt+1) − f(Pt)) ≥ p|V unsat
t | − 2p2 · a(G) · |V unsat

t | ≥ p/2 · |V unsat
t |.

As long as the current cut is not stable, |V unsat
t | ≥ 1, hence the expected

increase in cut size is at least p/2.
We now use drift analysis arguments from He and Yao [11, Lemma 1].

Consider a Markov chain with states X0, X1, . . . for domain R
+
0 . Let

α, δ > 0 and assume we are interested in the first time until the Markov
chain first reaches a value at least α. If δ is a lower bound for the expected
increase in one step, i. e., E (Xt+1 − Xt | Xt) ≥ δ for Xt < α, the expected
first hitting time for a value at least α is at most α/δ. Symmetrically, if
E (Xt − Xt+1 | Xt) ≥ δ for Xt > 0, the expected time to reach value 0
starting with α is at most α/δ.

We apply these statements to the random cut size and finish our con-
siderations prematurely if a maximal cut is reached. Hence, the expected
time until a cut of size |E| is reached or a maximal cut is found beforehand
is bounded by |E|/(p/2) = 2|E|/p. �

Section 5 contains examples where this bound is asymptotically tight.
Note that the simple strategy of choosing p = 1/(2n) is oblivious of
the graph at hand and, nevertheless, yields a polynomial bound of 4|E|n
rounds. This also proves that the expected stabilization time can be poly-
nomial for any graph if the parameter p is chosen appropriately.

From Theorem 1 one can easily derive a handy upper bound for all
planar graphs. The arboricity of a planar graph is known to be at most 3.
A proof follows by contradiction. If there is a set U ⊆ V with |U | > 1

such that a(G) ≥ |E(U)|
|U |−1 > 3, this implies |E(U)| > 3|U | − 3. However,

this contradicts the fact that the number of edges in a planar graph with
k nodes is at most 3k − 6 (see, e. g., [3]). Therefore a(G) ≤ 3 holds if G
is planar.

Corollary 1. On any planar graph G = (V,E), if p ≤ 1/12, the expected
stabilization time for the max-model and the min-model is bounded by
2|E|/p ≤ 6n/p.

4 Dense Graphs

The upper bounds from the previous section grow with 1/p, suggesting
to always choose p large. In this section, however, we prove for the max-
model that in dense graphs large values for p may result in exponentially
large stabilization times. As the proofs for the following results are rather
technical, they are placed in the appendix.

The complete graph Kn is the simplest dense graph. For even n, a
cut is maximal (and maximum in this case) if |Vt(0)| = n/2. However,
if p is chosen too large, it may happen that too many nodes change
sides simultaneously and a majority of 0-nodes is turned into a similarly
large majority of 1-nodes, and so forth. This may result in a non-stable
equilibrium that is hard to overcome. The following result shows that for
large p the max-model needs exponential time to stabilize.

Theorem 2. Consider the complete graph Kn, n even, with n−1/3 ≤ p ≤
1/2 and an arbitrary, non-stable initialization. Then the stabilization time

of the max-model is at least 1
2 exp(np3

192) with probability 1 − o(1).

On the other hand, the effect of too many flipping nodes decreases with
decreasing p. The following result shows that if p = O((log n)/n) (and, of
course, p ≥ n−O(1)) the expected stabilization time is polynomial.

Theorem 3. Consider the complete graph Kn, n even, with an arbitrary
initialization. Then the expected stabilization time of the max-model is
bounded above by 1/p · (1 − p)−n/2.

Negative results for an unlucky initialization can also be shown for
random graphs of a probability space G(n, p′) defined as follows. The
random graph consists of n nodes and between any pair of nodes, an edge
occurs independently with probability p′. The case p′ = 1/2 is especially
interesting as G ∈ G(n, 1/2) is a uniform sample among all graphs with
n nodes.

Theorem 4. Consider a graph G in G(n, 1/2), n even, and assume that
initially 20

32n ≤ |V0(0)| ≤ 23
32n. Then the stabilization time of the max-

model with p = 1
2 is exp(Ω(n)) with probability 1 − exp(−Ω(n)) (w. r. t.

the randomized construction of G and the randomized self-stabilizing cut
algorithm).

5 Ring Graphs, Torus Graphs, and Hypercubes

We now consider commonly used network topologies like ring graphs (and
other graphs with maximum degree 2), torus graphs, and hypercubes.

5.1 Ring Graphs

Consider a graph G = (V,E) with maximum degree 2. Theorem 1 yields
an upper bound O(n/p) if p ≤ 1/8. We improve upon this result exploiting
that on these topologies satisfied nodes cannot become unsatisfied again.

Definition 2. A set of nodes S ⊆ V is called stable w. r. t. the current
cut Pt if all nodes in S are satisfied and will remain so in all future rounds
with probability 1. A node v is called stable if it is contained in a stable
set; otherwise, v is called unstable.

Isolated nodes are trivially stable, hence we assume that G does not
contain isolated nodes. Then in the max-model (min-model) a node v is
satisfied iff it has at least one neighbor w on the other side of the cut (on
the same side of the cut). This condition also implies that w is satisfied.
Even stronger, v and w will remain satisfied forever since the edge {v, w}
will never be touched again. Therefore, on graphs with maximum degree 2
all satisfied nodes are stable.

Theorem 5. The expected stabilization time for the max-model and the
min-model on a graph G = (V,E) with ∆(G) ≤ 2 is O((log n)/(p(1−p))).

Proof. Consider a node v that is unsatisfied in round t and the random
decision whether to flip v or not. At least one decision makes v satisfied in

round t + 1. The “right” random decision for v is made with probability
at least q := min{p, 1−p}. In expectation q|V unsat

t | nodes become satisfied
(and therefore stable), hence E

(

|V unsat
t+1 | | |V unsat

t |
)

≤ (1− q) · |V unsat
t | for

any V unsat
t ⊆ V . Using the law E

(

|V unsat
t+1 |

)

= E
(

E
(

|V unsat
t+1 |

)

| |V unsat
t |

)

and a trivial induction yields E
(

|V unsat
t |

)

≤ (1−q)t · |V unsat
0 | ≤ (1−q)t ·n.

Choosing T :=
⌈

log(1−q)
1
2n

⌉

yields E
(

|V unsat
T |

)

≤ 1/2. By Markov’s

inequality Pr
(

|V unsat
T | ≥ 1

)

≤ 1/2. Hence after T rounds all nodes are
satisfied with probability at least 1/2, regardless of the initial cut. If this
is not the case, we consider another period of T rounds and repeat the
argumentation. The expected number of periods is at most 2, hence the
expected stabilization time is bounded by

2T ≤ 2

(

log(1−q)

1

2n

)

+ 2 =
2 ln(2n)

ln
(

1
1−q

) + 2 ≤ 2 ln(2n)

q
+ 2 = O

(

log n

q

)

where the second inequality follows from 1/(1 − x) ≥ ex for x < 1. The
theorem follows since q = Θ(p(1 − p)). �

5.2 Torus Graphs

We denote by Gr×s = (V,E) for r, s ≥ 4 both even a two-dimensional
torus graph, defined by

V = {(x, y) | 0 ≤ x ≤ r − 1, 0 ≤ y ≤ s − 1} and

E = {(x1, y1), (x2, y2) | (x2 = x1 ∧ y2 = (y1 + 1) mod s) ∨
(x2 = (x1 + 1) mod r ∧ y2 = y1)}.

Gr×s thus consists of r rows and s columns (see Figure 1). Note that due
to the assumptions on r and s all torus graphs are bipartite and regular
as all nodes have degree 4. Recall that the max-model can be transferred
into an equivalent min-model by inverting states of all nodes in one set
of the bipartition. The visualization is easier for the min-model where
large monochromatic areas in the torus are “good.” Hence we will argue
with the min-model in the following; however, all results also hold for the
max-model.

In the min-model we can derive an intuitive characterization of stable
nodes, referring to states synonymously as colors. A sufficient condition
for a c-colored node v to be stable is that v belongs to a cycle of c-colored
nodes. Moreover, v is stable if it belongs to a path connecting two such
cycles. The following lemma shows that these two conditions are also
necessary for stability.

Lemma 1. Consider the min-model for Gr×s. A c-colored node v, c ∈
{0, 1}, is stable iff v belongs to a cycle of c-colored nodes or v is on a path
of c-colored nodes connecting two such cycles.

Proof. Consider the subgraph Gc = (Vc, Ec) induced by all c-colored
nodes. On a cycle C ⊆ Vc all u ∈ C are satisfied, hence they will remain
so forever. Consider a path P ⊆ Vc connecting two cycles C1, C2 ⊆ Vc. As
all nodes in C1 ∪ C2 remain satisfied, all u ∈ P remain satisfied as well.

On the other hand, if v is neither on a cycle nor on a path connect-
ing two cycles, then v cannot be stable. Assume that v is satisfied since
otherwise the claim is trivial. Let S be the union of all cycles in Vc, then
v ∈ Vc \ S. Let T be the connected component of Vc \ S that contains v.
As T does not contain cycles, T is a tree. Consider v as the root of T ,
then v has at least two subtrees in T since v is satisfied. As v does not lie
on a path connecting two cycles, at most one of v’s subtrees is connected
to S. In a subtree not connected to S every leaf is unsatisfied. If the next
subsequent rounds only flip leaves of T , all subtrees of v (except one, if
v is connected to S) are gradually eliminated, leaving v unsatisfied. We
conclude that v cannot be stable. �

Fig. 1. Torus graphs G8×8 (left) and G4×16 (right). The coloring shows worst-case ini-
tial cuts in the min-model, where only the end nodes of the black paths are unsatisfied.
All white nodes are stable by Lemma 1.

We first consider the worst-case expected stabilization time. It is easy
to see that we can color the nodes in Gr×s such that all 1-nodes form a
path of length Ω(n) where every 1-node is adjacent to at most two other
1-nodes and all 0-nodes are stable. Figure 1 gives two examples. In such
a cut only the two ends of the path are unsatisfied. As long as the path
has length at least 2, this property is preserved since flipping an end node

renders its neighbor on the path unsatisfied. The algorithm is thus forced
to flip the nodes on this path one after another, starting from both ends
simultaneously. It is then easy to prove the following lower bound.

Theorem 6. The worst-case expected stabilization time for both the max-
model and the min-model on Gr×s is Ω(n/p).

An upper bound can be shown using that unsatisfied nodes have a
good chance to become part of a cycle of equally colored nodes.

Lemma 2. Consider the torus graph Gr×s. If the current cut contains
an unsatisfied node v, the probability that v becomes stable within the next
two rounds is at least p2(1 − p)5.

Proof. W. l. o. g. v is 1-colored and we consider the min-model. We name
nodes around v according to their direction from v and identify nodes with
their corresponding colors. First consider the case deg+(v) = 0, implying
vN = vE = vS = vW = 0. If any node from {vNW , vNE , vSE , vSW } is
0-colored, say vNW , flipping v and not flipping vN , vW , and vNW creates
a cycle. As vNW is satisfied, the probability for such an event is at least
p(1 − p)2. Now, assume vNW = vNE = vSE = vSW = 1. Then flipping vN

and vE creates a cycle of 1-nodes. The probability for this to happen is
at least p2.

Let deg+(v) = 1 and w. l. o. g. assume that vN is 1-colored. If vSW or
vSE is 0-colored, a 0-cycle is created with probability at least p(1 − p)2.
Hence, assume vSW = vSE = 1. If vNW or vNE is 1-colored, say vNW , then
vW is unsatisfied and flipping it and not flipping vNW creates a 1-cycle,
with probability p(1 − p). The only remaining case is vNW = vNE = 0.
If the next round flips v and doesn’t flip vW , vNW , vE , and vNE , then vN

becomes unsatisfied in the following round. Flipping vN and not flipping
vNW creates a cycle. The probability for these two rounds to be successful
is at least p2(1 − p)5. �

The expected time to decrease the number of unstable nodes is at most
1/(p2(1 − p)5) = O(1/p2) if, say, p ≤ 1/2, hence the following theorem is
immediate.

Theorem 7. The worst-case expected stabilization time for both the max-
model and the min-model on Gr×s is O(n/p2) if p ≤ 1/2.

We believe that with random initialization the expected stabilization
time is much smaller. It is very unlikely that random initialization creates
long paths of unstable 1-nodes. However, such paths of length Θ(log n) are

still quite likely. Using the same arguments leading to Theorem 6, a lower
bound of Ω((log n)/p) can be shown. An upper bound is more difficult.
We present a bound that is of order O((log n)/p2) if the number of rows
(or, symmetrically, the number of columns) is constant (and p ≤ 1/2).

Theorem 8. After random initialization, the expected stabilization time
for both the max-model and the min-model on Gr×s is O((log n) · 2r/p2)
if p ≤ 1/2.

Proof. Let Li := {(x, i) | 0 ≤ x ≤ r − 1}, 1 ≤ i ≤ s, be the nodes in
the i-th column in the graph and note |Li| = r. The probability that all
nodes in Li are initialized zero (or initialized one) is exactly 2−r+1. In this
case, Li is a stable set. The probability that there is no stable set among
the consecutive columns Li, Li+1, . . . , Li+γ−1, where γ = 2 · 2r−1 · lnn for
a fixed i is

(

1 − 2−r+1
)γ

=
(

1 − 2−r+1
)2·2r−1·ln n ≤ n−2.

Dividing the torus into blocks containing γ consecutive columns each,
the probability that each block contains at least one stable column is
at least 1 − n−1. Assume that every block contains a stable column and
denote by S the set of stable nodes after initialization. Then G\S consists
of connected components, each of which consists of at most 2rγ nodes.
Consider one component C. If two subsequent rounds turn an unsatisfied
node in C into a stable node, we speak of a success. Unless C is stable,
there is at least one unsatisfied node in C and by Lemma 2 the success
probability in two rounds is at least q := p2(1 − p)5. We now argue
that with high probability C becomes stable within 2T rounds, T :=
4rγ/q. Imagine a sequence of coin flips where each coin shows heads with
probability q. By the Chernoff bound the probability that less than 2rγ
out of T coins show heads is at most

exp(−qT/8) = exp(−rγ/2) ≤ n−2

as r ≥ 2. As |C| ≤ 2rγ, the probability that C does not become stable
within 2T rounds is at most n−2. Taking the union bound over at most n
components, the whole graph is stable after 2T rounds with probability
at least 1 − n−1.

The unconditional probability that the bound 2T holds is at least
1 − 2n−1. In case there is a block without stable column or in case the sys-
tem has not stabilized after 2T rounds, we use the upper bound O(n/p2)
by Theorem 7 to estimate the remaining stabilization time. As this is only

necessary with probability at most 2n−1, the unconditional expected sta-
bilization time is bounded by 2T + O(1/p2) = O((log n) · 2r/p2). �

The bound from Theorem 8 depends crucially on r. However, we do
not believe that the stabilization time is significantly affected by the
aspect ratio of the torus. Instead, we conjecture that an upper bound
O((log n)k/pk) for some k = O(1) holds for all torus graphs.

5.3 Hypercubes

Recall that the node set of a d-dimensional hypercube is given by {0, 1}d

and edges are between nodes which differ in exactly one coordinate. We
are interested in the worst-case expected stabilization time on hypercubes.
For torus graphs we identified paths of unstable 1-nodes that delay the
stabilization process. As nodes in the d-dimensional hypercube have larger
degree if d > 4, we identify larger structures of unstable nodes.

Theorem 9. The worst-case expected stabilization time for both the max-
model and the min-model on a d-dimensional hypercube with n = 2d

nodes, d ≥ 4 even, is Ω(n1/2 + 1/p).

Proof. As the hypercube is bipartite, it suffices to argue for the min-
model. Given a graph G′ = (V ′, E′), a snake-in-box in G′ is a sequence
of connected nodes s′1, . . . , s

′
ℓ such that {s′i, s′j} ∈ E′ implies j = i ± 1

(identifying s′ℓ+1 with s′1 and s′0 with s′ℓ). It is known how to construct a

snake-in-box with length 5/24·2d−44 in the d-dimensional hypercube [17].
Let s1, . . . , sℓ be a snake-in-box in the (d/2)-dimensional hypercube with
ℓ ≥ 5/24 · 2d/2 − 44 and let S = {s1, . . . , sℓ−1}. Let v[i] ∈ {0, 1} denote
the value of the i-th coordinate of v and define an initial cut as follows:

v ∈ V0(1) ⇔ (v[1]v[2] . . . v[d/2] ∈ S) ∧ (v[d − 1]v[d] = 00).

Each 0-node with v[d − 1]v[d] = 00 is satisfied since flipping one of the
last d/2 bits results in a 0-neighbor. All other 0-nodes are satisfied since
flipping one of the first d−2 ≥ d/2 bits leads to a 0-neighbor. We conclude
that all 0-nodes are satisfied and, therefore, stable. Dividing all 1-nodes
into layers, layer i contains all 1-nodes v with v[1] . . . v[d/2] = si. For a
1-node v flipping a bit at position i ∈ {d/2 + 1, . . . , d − 2} results in a
1-neighbor. Due to the snake-in-box property of S, v has at most two
additional 1-neighbors obtained by flipping single bits among the first
d/2 positions. More precise, after initialization all 1-nodes in layers 1 and
ℓ−1 are unsatisfied with a 1-degree (i. e. number of 1-neighbors) of d/2−1

while every other 1-node has 1-degree d/2 and thus is satisfied. If such
an unsatisfied node flips, all its 1-neighbors with 1-degree d/2 become
unsatisfied.

A layer is called satisfied w. r. t. the current cut if it only contains
satisfied 1-nodes. Observe that in every round all satisfied layers are con-
nected in the subgraph of all 1-nodes. We focus on the outermost satisfied
layers and define as potential the minimum difference α − β for α ≤ β
such that for every satisfied layer i we have α < i < β. Layers α and β
therefore “surround” all satisfied layers. The initial potential equals ℓ− 2
and a potential of 0 is necessary for a stable cut. Layers α and β both con-
tain unsatisfied 1-nodes and a round flipping one of these nodes decreases
β or −α by 1, respectively. The probability of decreasing the potential by
1 or 2 in one round is at most δ := min{1, 2d/2−1 · p}, taking the union
bound over at most 2d/2−1 unsatisfied 1-nodes in layers α and β. The
expected waiting time for such an event is bounded below by 1/δ, hence
the expected time until the potential has decreased to 0 is bounded below
by 1/δ · (ℓ − 2)/2 = Ω(n1/2 + 1/p). �

6 Conclusions and Future Work

We investigated a self-stabilizing algorithm for maximal and minimal cuts
in a restricted distributed environment. The time until the system stabi-
lizes depends on the model of satisfaction, the underlying network, the pa-
rameter p, and the initial cut. Surprisingly, the expected stabilization time
can range from logarithmic to exponential values. While sparse graphs
such as planar graphs, rings, and torus graphs stabilize in expected time
O(n/pO(1)) (or even in logarithmic time) for max- and min-models, on
many dense graphs the stabilization time for the max-model is exponen-
tial with high probability if p is constant. Moreover, we have seen for
certain torus graphs that there is an exponential gap between random
and worst-case initialization.

Several open questions remain, for example a tight bound on the ex-
pected stabilization time for all torus graphs and hypercubes with random
initialization. Our models use a fixed probability p for flipping unsatisfied
nodes. One may also think of other, local strategies, for example flip-
ping an unsatisfied node v with probability proportional to 1/ deg(v) or
depending on the degrees of v’s neighbors.

Acknowledgment. We would like to thank Martin Gairing for helpful
comments on an earlier version of this paper.

References

1. B. Chen, M. Matsumoto, J. Wang, Z. Zhang, and J. Zhang. A short proof of
Nash-Williams’ theorem for the arboricity of a graph. Graphs and Combinatorics,
10(1):27–28, 1994.

2. A. Dasgupta, S. Ghosh, and S. Tixeuil. Selfish stabilization. In Stabilization,
Safety, and Security of Distributed Systems, 2006.

3. R. Diestel. Graph Theory. Springer, 2005.
4. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communi-

cations of the ACM, 17(11):643–644, 1974.
5. M. Elkin. Distributed approximation: a survey. SIGACT News, 35(4):40–57, 2004.
6. M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, and A. A. McRae.

Distance-two information in self-stabilizing algorithms. Parallel Processing Letters,
14(3-4):387–398, 2004.

7. S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar
graphs. Distributed Computing, 7(1):55–59, 1993.

8. W. Goddard, S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Self-stabilizing
protocols for maximal matching and maximal independent sets for ad hoc networks.
In 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), page 162. IEEE Computer Society, 2003.

9. M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloration and arbitrary
graphs. In Procedings of the 4th International Conference on Principles of Dis-
tributed Systems, OPODIS 2000, pages 55–70, 2000.

10. J. He and X. Yao. Drift analysis and average time complexity of evolutionary
algorithms. Artificial Intelligence, 127(1):57–85, 2001.

11. J. He and X. Yao. A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

12. S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Maximal matching stabilizes
in time O(m). Information Processing Letters, 80(5):221–223, 2001.

13. S. T. Hedetniemi, D. P. Jacobs, and P. K. Srimani. Linear time self-stabilizing
colorings. Information Processing Letters, 87(5):251–255, 2003.

14. S.-T. Huang, S.-S. Hung, and C.-H. Tzeng. Self-stabilizing coloration in anonymous
planar networks. Information Processing Letters, 95(1):307–312, 2005.

15. A. Kosowski and L. Kuszner. Self-stabilizing algorithms for graph coloring with
improved performance guarantees. In Artificial Intelligence and Soft Computing,
ICAISC 2006, pages 1150–1159, 2006.

16. F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil. A new self-stabilizing maximal
matching algorithm. In Structural Information and Communication Complexity,
SIROCCO 2007, pages 96–108, 2007.

17. C. A. Tovey. Local improvement on discrete structures. In Local search in com-
binatorial optimization, pages 57–89. Princeton University Press, Princeton, NJ,
1997.

A Appendix

We present full proofs for the results from Section 4. First, we prove the
following technical lemma. Here, Bin(x, p) refers to the binomial distribu-
tion with x trials and success probability p.

Lemma 3. Pr
(

Bin(x, p) = n
2

)

= o(1), if n
2 ≤ x ≤ n, n−1/3 ≤ p ≤ 1

2 .

Proof. Recall that Var[Bin(x, p)] = xp(1−p). Define an auxiliary random

variable Z := Bin(x,p)−xp√
xp(1−p)

. By the central limit theorem, Z converges to the

standard normal distribution (p.79, Theorem 2.2 in Ross, Introduction to
Probability Models, Academic Press, 2003), i. e.,

lim
x→∞

Pr (Z ≤ a) =
1√
2π

∫ a

−∞
e−

y2

2 dy

for all a ∈ R. Now,

Pr
(∣

∣

∣
Bin(x, p) − n

2

∣

∣

∣
< 1
)

⇔ Pr
(∣

∣

∣
Z ·
√

xp(1 − p) + xp − n

2

∣

∣

∣
< 1
)

= Pr

(

−xp + n
2 − 1

√

xp(1 − p)
< Z <

−xp + n
2 + 1

√

xp(1 − p)

)

≤ 1√
2π

∫

−xp+ n
2 +1√

xp(1−p)

−xp+ n
2 −1√

xp(1−p)

e−
y2

2 dy + o(1),

using e−
y2

2 ≤ 1 yields

Pr
(∣

∣

∣
Bin(x, p) − n

2

∣

∣

∣
< 1
)

≤ 1√
2π

· 2
√

xp(1 − p)
+ o(1)

≤ 1√
2π

· 2
√

n
2 · n−1/3 · 1

2

+ o(1) = o(1),

and the claim follows. �

Proof of Theorem 2. Due to the symmetry of the complete graph,
V unsat

t ∈ {∅, Vt(0), Vt(1)}. If V unsat
t 6= ∅, then it follows that |V unsat

t | =
max{|Vt(0)|, |Vt(1)|}. We will reduce the analysis to a simple Markov
chain M which consists of only four different states A,B, C and D defined
below.

The point behind the definition of these four states is as follows. Disre-
garding transitions with probabilities exponential small in n, the following
holds. If M is in state A, it will not go to D. If M is in state B, there is a
probability of o(1) to hit the stable state D, however, in all other cases,
M will go to C with very high probability. If M is in state C, M will stay
in C with very high probability (see Figure 2 for an illustration). The
states are defined in the following table.

state |V unsat
t | ∈

A [n
2 + 4np+2np2+8

8−8p−2p2 + 1, n]

B [n
2 + np

2 + np2

8 + p + p2

4 , n
2 + 4np+2np2+8

8−8p−2p2]

C [n
2 + 1, n

2 + np
2 + np2

8 + p + p2

4 − 1]
D {n

2 }

C B AD

n/2 n

A

B C

D

Fig. 2. Left-hand side: division of the domain of |V unsat
t | into the four states. Right-

hand side: overview on the transitions between the four states. The dashed line repre-
sents a transition which occurs with probability o(1), all other transitions (solid lines)
may occur with higher probability. Transitions between states with inverse exponential
probability are not drawn.

Straightforward calculations show that n
2 + 4np+2np2+8

8−8p−2p2 > n
2 + np

2 +
np2

8 + p + p2

4 , if n is large enough and p ≤ 1
2 . (Note that if p is close to 1

2 ,
then state A may be empty.) Hence the states are well-defined.

In order to analyze M, we shall lower- and upper-bound the number
of nodes which flip in one round. Recall that V flip

t is the set of changing

nodes in step t. We call a step t good, if
(

1 − p
4

)

p|V unsat
t | ≤ |V flip

t | ≤
(

1 + p
4

)

p|V unsat
t | holds. Using the Chernoff bound

Pr
(

(1 − δ)µ ≤ |V flip
t | ≤ (1 + δ)µ

)

≤ 2 exp

(

−δ2µ

3

)

with δ = p
4 and µ = |V unsat

t | · p yields

Pr
((

1 − p

4

)

p|V unsat
t | ≤ |V flip

t | ≤
(

1 +
p

4

)

p|V unsat
t |

)

≤ 2 exp

(

−|V unsat
t |p3

3 · 16

)

≤ 2 exp

(

−np3

96

)

.

By the union bound, the probability that the first 1
2 exp(np3

192) steps are
all good is at least

1 − 1

2
exp

(

np3

192

)

· 2 exp

(

−np3

96

)

= 1 − exp

(

−np3

192

)

.

In all following calculations we only consider good steps. Assume w. l. o. g.
that for some good step t, |Vt(0)| > |Vt(1)| holds (the case |Vt(1)| > |Vt(0)|
is done in exactly the same way). Since Vt+1(0) = Vt(0)\V flip

t , we have

|Vt+1(0)| ≤ |Vt(0)| −
(

1 − p

4

)

· p · |Vt(0)| = |Vt(0)| ·
(

1 − p +
p2

4

)

and

|Vt+1(0)| ≥ |Vt(0)| −
(

1 +
p

4

)

· p · |Vt(0)| = |Vt(0)| ·
(

1 − p − p2

4

)

.

First, we will show that the Markov chain M will stay in state C, if
it is located in C.

|Vt+1(0)| ≤ |Vt(0)| ·
(

1 − p +
p2

4

)

≤
(

n

2
+

np

2
+

np2

8
+ p +

p2

4
− 1

)

·
(

1 − p +
p2

4

)

=
n

2
− np2

4
+ 2p − p2 +

np4

32
+

p4

16
− 1 ≤ n

2
− 1,

for large enough n. On the other hand we have

|Vt+1(0)| ≥
(

1 − p − p2

4

)

· |Vt(0)|

≥
(

1 − p − p2

4

)

·
(n

2
+ 1
)

=
n

2
− np

2
− np2

8
+ 1 − p − p2

4
.

Hence n
2 + 1 ≤ |Vt+1(1)| ≤ n

2 + np
2 + np2

8 + p + p2

4 − 1, and M stays in C.
Next, we show that in good rounds it is not possible to reach D from A:

|Vt+1(0)| ≥
(

1 − p − p2

4

)

· |Vt(0)|

≥
(

1 − p − p2

4

)

·
(

n

2
+

4np + 2np2 + 8

8 − 8p − 2p2

)

=
n

2
+

np2

8
+ 1 >

n

2
.

Furthermore, from state B we reach either the state C or D in a good
step. As we have shown that from state C we stay in C, it is sufficient to
show that it is not possible for M to stay inside B:

|Vt+1(0)| ≤
(

1 − p +
p2

4

)

· |Vt(0)|

≤
(

1 − p +
p2

4

)

·
(

n

2
+

4np + 2np2 + 8

8 − 8p − 2p2

)

.

Rearranging yields:

|Vt+1(0)| −
(

n

2
+

np

2
+

np2

8
+ p +

p2

4
− 1

)

≤ −2np + 3np2 + np3/2 + np4/4 + 8 − 12p + 3p2 + 2p3 + p4/4

4 − 4p − p2
,

and using the assumption p ≤ 1
2 gives

≤ −2np + 3np/2 + np/8 + np/32 + 8 − 12p + 3p2 + 2p3 + p4/4

4 − 4p − p2

≤ −11/32 · np + O(1)

4 − 4p − p2
< 0

if n large enough, using np ≥ n2/3 and 4 − 4p − p2 > 0 due to n−1/3 ≤
p ≤ 1

2 . Hence, either state C or D is reached. Using Lemma 3, D is only
reached with probability at most o(1) (in good steps). Consequently, M

will go to state C from B and will stay in state C for the next 1
2 exp(np3

192)

steps with probability 1−o(1)−exp(−np3

192) = 1−o(1). The claim follows.
�

Proof of Theorem 3. Obviously, every cut with |Vt(0)| = n/2 is stable.
As long as the system has not yet stabilized, there is a unique majority of

either 0- or 1-nodes. The minority nodes are satisfied, while all majority
nodes are unsatisfied. As long as the majority does not change from 0
to 1 or vice versa, the number of majority nodes is decreasing. W. l. o. g.
we start with a majority of 0-nodes, |V0(0)| ≥ n/2. If at time t the 0-
nodes form a majority, the expected decrease in the number of 0-nodes is
p|Vt(0)| ≥ pn/2. By drift arguments (cf. proof of Theorem 1 and Lemma 1
in [10]), the expected time until a cut with at most n/2 0-nodes is obtained
is bounded by n/2 · 2/(pn) = 1/p.

Let t + 1 be the first round where |Vt+1(0)| ≤ n/2. We investigate the
random decisions in round t in more detail. The unconditional probability
that in this round a stable cut is reached equals

Pr (|Vt+1(0)| = n/2) =

(|Vt(0)|
n/2

)

p|Vt(0)|−n/2(1 − p)n/2.

On the other hand,

Pr (|Vt+1(0)| ≤ n/2) ≤
(|Vt(0)|

n/2

)

p|Vt(0)|−n/2.

This implies for the conditional probability of hitting a stable cut, pro-
vided |Vt+1(0)| ≤ n/2,

Pr (|Vt+1(0)| | |Vt+1(0)| ≤ n/2) =
Pr (|Vt+1(0)| = n/2)

Pr (|Vt+1(0)| ≤ n/2)
≥ (1 − p)n/2.

If |Vt+1(0)| = n/2, we are done. Otherwise |Vt+1(0)| < n/2 and we repeat
the argumentation with symmetric roles for Vt(0) and Vt(1). The number
of such trials needed to find a stable cut can be estimated by a geometric
distribution with parameter (1 − p)n/2, hence the expected number of
trials is (1 − p)−n/2 and the total expected stabilization time is at most
1/p · (1 − p)−n/2. �

In order to prove Theorem 4, we require the following combinatorial
lemma. This lemma says that if the size of one side is by a constant
factor larger than the size of the other one, then almost every node of
the majority will be unsatisfied, while every node in the minority will
be satisfied. Recall that for any subset A ⊆ V, degA(v) is the number of
neighbors of v in A.

Lemma 4. Consider a graph of G(n, 1
2). Then, with probability 1−e−Ω(n)

it holds for every A ⊆ V, |A| ≥ (1
2 + ǫ) · (n − 1), where ǫ > 0 is an

arbitrary constant, that for every node a ∈ A (except at most log n),
degA(a) > degAc(a) and for every node a′ ∈ Ac (except at most log n),
degA(a′) < degAc(a′).

Proof. Consider such an arbitrary but fixed subset A ⊆ V of size at
least (1

2 + ǫ) · (n − 1). We only prove the first statement of the lemma
concerning nodes a ∈ A, as the other statement concerning nodes a′ ∈ Ac

can be shown in the same way.
We first consider degA(a) for one fixed node a ∈ A. By linearity of

expectations, E (degA(a)) =
(

1
2 + ǫ

)

· (n−1) · 1
2 − 1

2 . Hence, by a Chernoff

bound we obtain that Pr
(

degA(a) ≥
(

1 − ǫ
2

)

· E (degA(a))
)

≥ 1−e−Ω(n).
Again, by linearity of expectations E (degAc(a)) =

(

1
2 − ǫ

)

· (n − 1) · 1
2 ,

and the Chernoff bound implies Pr
(

degAc(a) ≤
(

1 + ǫ
2

)

· E (degAc(a))
)

≥
1−e−Ω(n). By the union bound, we have with probability 1−e−Ω(n) that

degAc(a) ≤
(

1 +
ǫ

2

)

· E (degAc(a))

=
(

1 +
ǫ

2

)

·
(

1

2
− ǫ

)

· (n − 1) · 1

2

=

(

1

2
+

ǫ

4
− ǫ − ǫ2

2

)

· (n − 1) · 1

2

≤
(

1

2
− ǫ

4
+ ǫ − ǫ2

2

)

· (n − 1) · 1

2
−
(

1 − ǫ

2

)

· 1

2

<
(

1 − ǫ

2

)

·
((

1

2
+ ǫ

)

· (n − 1) · 1

2
− 1

2

)

≤ degA(a).

Call a node a ∈ A bad if degA a ≤ degAc a. Even if we know that log n
bad nodes exist, the probability for another node a′ to be bad is still
e−Ω(n). Let Xa be the event indicating whether a is bad. We can bound
the probability for having at least log n bad nodes by

∑

a1,...,alog n∈A bad

Pr
(

Xa1 ∧ Xa2 ∧ . . . ∧ Xalog n

)

≤
(

n

log n

) log n
∏

k=1

Pr
(

Xak
| Xak−1

∧ . . . ∧ Xa1

)

≤
(

n

log n

)

·
(

e−Ω(n)
)log n

≤ e−Ω(n·log n).

As the number of possible subsets for A is bounded by 2n, the claim
follows. �

Proof of Theorem 4. Call a graph G of G(n, 1/2) good, if the condition
of Lemma 4 holds. As shown before, such a graph G is good with proba-
bility 1 − e−Ω(n). Consider now some round t where 20

32n ≤ |Vt(0)| ≤ 23
32n

(the symmetric case 20
32n ≤ |Vt(1)| ≤ 23

32n is done in the same way). Since
G is good, at least |Vt(0)| − log n ≥ n

2 nodes are unsatisfied. Call round t
good if a portion of at least 31

64 and at most 33
64 of the unsatisfied nodes

flips. Using a Chernoff bound, we conclude that round t is good with
conditional probability 1 − e−Ω(n). In case of a good round we have

|Vt+1(0)| ≤ |Vt(0)| −
(

31

64
· (|Vt(0)| − log n)

)

=
33

64
|Vt(0)| + 31

64
log n

≤ 33

64
· 23

32
n +

31

64
log n ≤ 12

32
n,

for large enough n. On the other hand we have

|Vt+1(0)| ≥ |Vt(0)| −
(

33

64
· (|Vt(0)| + log n)

)

=
31

64
|Vt(0)| − 33

64
log n

≥ 31

64
· 20

32
n − 33

64
log n ≥ 9

32
n.

Hence, 20
32n ≤ |Vt+1(1)| ≤ 23

32n. By the union bound, the first exp(cn)
consecutive steps, c > 0 a sufficiently small constant, are all good with
probability 1 − exp(−Ω(n)) and the claim follows. �

