
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes

and Systems by means of Computational Intelligence Methods

General Lower Bounds for Randomized Direct
Search with Isotropic Sampling

Jens Jägersküpper

No. CI-233/07

Technical Report ISSN 1433-3325 July 2007

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/LS 2
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46908861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

General Lower Bounds for Randomized Direct Search with Isotropic Sampling

Jens Jägersküpper 1

Universität Dortmund, Informatik 2, 44221 Dortmund, Germany

Abstract

The focus is on a certain class of randomized direct-search methods for optimization in (high-dimensional) Euclidean space,

namely for minimization of a function f : Rn → R, where f is given by an oracle, i. e. a black box for f -evaluations. The

iterative methods under consideration generate a sequence of candidate solutions, where potential candidate solutions are

generated by adding an isotropically distributed vector to the current candidate solution (possibly several times, to then choose

one of these samples to become the next in the sequence of candidate solutions). This class of randomized direct-search

methods covers in particular several evolutionary algorithms.

Lower bounds on the number of samples (i. e. queries to the f -oracle) are proved which are necessary to enable such

a method to reduce the approximation error in the search space. The lower bounds to be presented do not only hold in

expectation, but they are such that runtimes below these bounds are observed only with an exponentially small probability

(in the search space dimension n). To derive such strong bounds, an appealingly simple, but nevertheless powerful method

is applied: We think of the guided/directed random search as a selected fragment of a purely/obliviously random search.

Interestingly, the lower bounds so obtained turn out to be tight (up to an absolute constant).

Key words: heuristic optimization, direct search, random search, probabilistic analysis, theory

1. Introduction

Finding an optimum of a given function f : S → R

is one of the fundamental problems—in theory as well

as in practice. The search space S can be discrete or

continuous, like N or R, or it may also be a mixture (if

S has more than one dimension). Here the optimization

in “high-dimensional” Euclidean space is considered,

i. e., the search space is R
n . What “high-dimensional”

means is usually anything but well defined. A particu-

lar 10-dimensional problem in practice may already be

considered “high-dimensional” by the one who tries to

solve it. Here the crucial aspect is how the optimiza-

Email address: JJ@Ls2.cs.uni-dortmund.de

(Jens Jägersküpper).
1 supported by the German Research Foundation (DFG) through

the collaborative research center “Computational Intelligence”

(SFB 531)

tion time scales with the dimensionality of the search

space R
n , i. e., we consider the optimization time as a

function of n. In other words, here we are interested

in what happens when the dimensionality of the search

space gets higher and higher. This viewpoint is typical

for analyses in computer science. It seems that opti-

mization in continuous search spaces is not one of the

core topics in computer science, though. In the domain

of operations research and mathematical programming,

however, focusing on how the optimization time scales

with the search space’s dimension seems rather uncom-

mon. Usually, the performance of an iterative optimiza-

tion method is described by means of convergence the-

ory. As an example, let us take a closer look at “Q-linear

convergence” (we drop the “Q” in the following): Let

x∗ denote the optimum search point of a unimodal func-

tion and x[k] the approximate solution after i iterations.

Then we have

Preprint submitted

dist(x∗, x[i+1])

dist(x∗, x[i])
→ r ∈ R<1 as i → ∞

where dist(·, ·) denotes some distance measure, most

commonly the Euclidean distance between two points

(when considering convergence towards x∗ in the search

space R
n , as we do here), or the absolute difference in

function value (when considering convergence towards

the optimum function value in the objective space). Ap-

parently, there seems to be no connection to n, the di-

mension of the search space. Yet only if r is an absolute

constant, there is actual independence of n. In general,

however, the convergence rate r depends on n. When

we are interested in, say, the number of iterations nec-

essary to halve the approximation error (given by the

Euclidean distance from x∗), the order of this number

with respect to n precisely depends on how r depends

on n. For instance, if r = 1 − 0.5/n, we need 2(n)

steps; if r = 1 − 0.5/n2, we need 2(n2) steps, and if

r = 1−2−n, we need 22(n) steps. For any fixed dimen-

sion, however, in any of the three cases we actually have

linear convergence. So, (in case of linear convergence)

we want to know how the convergence rate depends on

the dimensionality of the search space.

Methods for solving optimization problems in contin-

uous domains, essentially S =R
n , are usually classified

into first-order, second-order, and zeroth-order methods,

depending on whether they utilize the gradient of the ob-

jective function, the gradient and the Hessian, or neither

of both. A zeroth-order method is also called derivative-

free or direct-search method. Newton’s method is a

classical second-order method; first-order methods can

be (sub)classified into Quasi-Newton, steepest descent,

and conjugate gradient methods. Classical zeroth-order

methods try to approximate the gradient and to then plug

this estimate into a first-order method. Finally, amongst

the modern zeroth-order methods, direct-search heuris-

tics like simulated annealing, (randomized) local search,

tabu search, and evolutionary algorithms come into play,

which are supposed general-purpose search heuristics.

When information about the gradient is not avail-

able, for instance if f relates to a property of some

workpiece and is given by computer simulations or

even by real-world experiments, then direct-search

methods are the only option (unless the computer

simulations allow for automatic/algorithmic differen-

tiation). As the approximation of the gradient usually

(i. e. forward or symmetric finite differences) involves

n or even 2n f -evaluations, a single optimization step

of a classical zeroth order-method is computationally

expensive, in particular if f is given implicitly by

simulations/experiments. In practical optimization this

is often the case, and randomized search heuristics that

abandon gradient approximation are becoming more

and more popular. However, the enthusiasm in practi-

cal optimization heuristics has led to an unclear variety

of very sophisticated and problem-specific algorithms.

Unfortunately, from a theoretical point of view, the

development of such algorithms is solely driven by

practical success, whereas the aspect of a theoretical

analysis is neglected.

In such situations f is given to the optimization al-

gorithm as an oracle for f -evaluations (zeroth-order or-

acle) and the cost of the optimization (the runtime) is

defined as the number of queries to this oracle, and we

are in the so-called black-box optimization scenario. Ne-

mirovsky and Yudin (1983, p. 333) state in their book

Problem Complexity and Method Efficiency in Opti-

mization: “From a practical point of view this situation

would seem to be more typical. At the same time it is

objectively more complicated and it has been studied

in a far less extend than the one [with first-order ora-

cles/methods] considered earlier.” After more than two

decades there still seems to be some truth in their state-

ment, though to a smaller extent.

For discrete black-box optimization, a complexity

theory has been successfully started, cf. Droste, Jansen,

and Wegener (2006). Lower bounds on the number

of f -evaluations (the black-box complexity) are proved

with respect to classes of functions when an arbitrary(!)

optimization heuristic knows about the class F of func-

tions to which f belongs, but nothing about f itself.

The benefits of such results are obvious: They can prove

that an allegedly poor performance of an apparently

simple black-box algorithm on f is due to F ’s inherent

black-box complexity rather than not due to the algo-

rithm’s simpleness. As mentioned above, the situation

for heuristic optimization in continuous search spaces is

different, especially with respect to randomized meth-

ods. The results to be presented here contribute to this

emerging field of optimization theory.

2. The Framework for the Randomized Methods

As already noted above, classical zeroth-order meth-

ods (i. e. black-box optimizers) for continuous search

spaces usually try to approximate the gradient of the

2

function f to be minimized at the current search point x.

Subsequently, a line search along gradient direction

is performed to find the next search point, which re-

places x. Usually, the line search aims at locating the

best (with respect to the f -value) point on the line

through x, and various strategies for how to do the

line search exist (Armijo/Goldstein, Powell/Wolfe, etc.;

cf. Nocedal and Wright (2006, Ch. 3) for instance).

As the approximation of the gradient usually costs at

least n f -evaluations, and as the (approximate) gradi-

ent’s direction may significantly differ from the direc-

tion pointing directly to the optimum x∗ anyway (cf. ill-

conditioned quadratics), more and more direct-search

heuristics have been proposed which abandon gradi-

ent approximation. Among the first and most promi-

nent ones are the pattern search by Hooke and Jeeves

(1961) and the (downhill) simplex method by Nelder

and Mead (1965); cf. Kolda, Lewis, and Torczon (2004)

for a comprehensive review. Surprisingly, also already

in the 1950s/60s randomized search methods were pro-

posed, for instance the so-called evolution strategy by

Rechenberg (1965) and Schwefel (1965). In these early

days, however, the focus was on whether or not (and,

if so, under which conditions) a search heuristic would

converge to a global optimum, cf. Rastrigin (1963) for

instance. Here we are interested in how fast (w. r. t. the

number of f -evaluations) a heuristic can approach the

optimum point in the search space in principle, which

can be considered a best-case scenario. Mainly, we want

to answer this question: How many f -evaluations are

necessary to halve the approximation error in the search

space, i. e. to halve the Euclidean distance from the

optimum point. As we consider randomized heuristics,

this number is actually a random variable, and its distri-

bution depends on various factors. Therefore, we con-

sider the following framework of search heuristics: For

a given initialization of the candidate solution x ∈ R
n ,

the number λ of samples per iteration, and the step-

length parameter σ ∈ R>0, the following loop is per-

formed until stopping is requested (externally):

(i) FOR k := 1 TO λ DO

Create a new search point y[k] := x + m ∈ R
n ,

where the displacement vector m is drawn over

R
n according to an isotropic distribution that de-

pends only on σ .

(ii) Evaluate f (y[1]), . . . , f (y[λ]) and decide which

point x′ ∈ {x, y[1], . . . , y[λ]} becomes the next

candidate solution; set x := x′.

(iii) Decide whether to increase, or to decrease, or to

keep σ unchanged; adapt σ accordingly.

(iv) GOTO (i).

We are interested in how fast x can approach the opti-

mum point x∗. Therefore, we let “x[i]” denote the can-

didate solution after the i th iteration of the loop (so that

“x[0]” denotes the initial search point). “σ [i]” denotes

the step-length parameter that is used in the i th iteration.

Concerning the generation of the samples in instruc-

tion (i), we formally need a mapping from R>0 into the

set of isotropic distributions which tells us (given a spe-

cific σ) which isotropic distribution is to be used for the

generation of the displacement vector m. This mapping

is fixed – just as λ, the number of samples per step. Note

that a distribution over R
n is isotropic if it is invari-

ant w. r. t. orthonormal transformations, i. e., a vector m

is isotropically distributed over Rn if (and only if) for

any fixed orthogonal matrix R ∈R
n×n , Rm follows the

same distribution as m, in short notation: Rm ∼ m.

The selection of the next candidate solution x′ in in-

struction (ii) may depend on the complete history of

the optimization process, namely, in the i th iteration on

the sequence (x[0], f (x[0])), . . . , (x[i−1], f (x[i−1])) asso-

ciated with the trajectory of candidate solutions and also

on all the discarded samples (including their f -values).

Concerning the adaptation of σ in instruction (iii), the

decision (whether to increase, or to decrease, or to keep

σ unchanged) may depend on the complete history of

the optimization process as well. The decision, how-

ever, must result in one of the following three outcomes:

“increase”, “decrease”, or “keep.” Depending solely on

this outcome, σ is updated—possibly in a randomized

manner. For instance, the σ -adaptation may be such

that, if “increase” is the outcome, then σ is multiplied

by a factor which is uniformly chosen from the inter-

val [1,2]. Naturally, the σ -adaptation need not neces-

sarily be adaptive to the course of the optimization. It

could follow a fixed schedule; σ could be kept fixed,

or it could be multiplied by 1 − 0.1/n after each itera-

tion, just for instance. Changing σ adaptively to the op-

timization process seems to make sense, though. How

to do the σ -adaptation does obviously (also) depend

on the family of isotropic distributions (parameterized

in σ) which is used to randomly generate the displace-

ment vector m. In the original evolution strategy by

Rechenberg/Schwefel, for instance, each component of

m is i. i. d. according to a zero-mean normal distribu-

tion with variance σ 2. (It is easily checked that this

3

results in m being isotropically distributed.) Actually,

sampling λ search points in each iteration i according

to a normal distribution with mean x[i−1] was already

proposed by Brooks (1958)—without being specific

about how to choose/adapt the variance. Rechenberg

and Schwefel focused on how to update σ adaptively

to the course of the optimization (1/5-success-rule resp.

so-called σ -self-adaptation).

Also maintaining a set of µ candidate solutions

(rather than only one), each with an associated σ , was

proposed. Then, at the beginning of each iteration be-

fore instruction (i), one element (x,σ) is chosen from

the set of µ candidate solutions according to some

rule; for instance uniformly at random. Moreover, in

instruction (ii) µ candidate solutions must be chosen

for the next iteration from the µ+λ search points (each

with its associated σ). This overall selection makes

it different from µ parallel/independent runs (which

can also be realized by an appropriate rule). Before

this modification will be discussed and analyzed, we

focus on the framework given above in which a single

candidate solution is iteratively optimized.

3. General Lower Bound

The aim is to prove a lower bound on the number of

function evaluations (which equals λ times the number

of iterations) which are necessary to reduce the approx-

imation error in the search space, i. e. the Euclidean dis-

tance from the optimum search point x∗ (unique by as-

sumption). Namely, we will focus on how long it takes

to halve the approximation error—even and in partic-

ular in the best case. In other words, the lower bound

must hold for any algorithm that fits our framework as

well as for any function to be optimized (with a unique

optimum).

Obviously, the way how the sampling is done is cru-

cial for a lower bound. Therefore, we consider isotropic

sampling, and we will focus on some interesting facts

about isotropic distributions in the following.

Proposition 1 Let u be uniformly distributed over the

unit hyper-sphere. A vector x is isotropically distributed

overRn if and only if there exists a non-negative random

variable L, independent of u, such that x ∼ L · u.

A proof can be found, e. g., in Fang, Kotz, and Ng (1990,

Sec. 2.1). The independence of the length distribution

and the direction is crucial. It enables us to assume that

the length of m is picked before m’s (uniformly dis-

tributed) direction is picked (or vice versa), which will

be very useful in the analysis. Obviously, adding two in-

dependently isotropically distributed vectors results in

an isotropically distributed vector. Moreover:

Lemma 2 Given isotropically distributed vectors

m[k] ∼ L[k] · u[k] such that the directions u[k] are inde-

pendent (i. e., the lengths L[k] need not necessarily be

independent). Then
∑

k m[k] is isotropically distributed.

PROOF. We consider two such vectors. Let R denote

an arbitrary but fixed orthogonal matrix. Then

R(L[1]u[1] + L[2]u[2]) ∼ R(L[1]u[1]) + R(L[2]u[2])

(just because matrix multiplication is distributive).

Since L[i] and u[i] are independent, respectively, and

since Ru[1] ∼ u[1] independently of Ru[2] ∼ u[2] (be-

cause the u[i] are independently uniformly distributed

over the unit hyper-sphere, respectively), we have

R(L[1]u[1]) + R(L[2]u[2]) ∼ L[1] Ru[1] + L[2] Ru[2]

∼ L[1]u[1] + L[2]u[2].

All in all, R(L[1]u[1] + L[2]u[2]) ∼ L[1]u[1] + L[2]u[2],

precisely matching the definition of isotropy. 2

In particular, the best-case distribution of |m| will be

interesting—in dependence on the current candidate so-

lution x and the location of the optimum x∗, of course.

Actually, due to the uniformity of the samples’ direc-

tions, we can restrict ourselves to the distance d [i] be-

tween x[i] and x∗ after each iteration i . So, we are inter-

ested in how long it necessarily takes until d [i] ≤ d [0]/2

(for the first time). Naturally, one might ask for the

chance to halve the approximation error with a single

isotropic sample. Therefore consider the hyper-plane H

containing the current candidate solution x (6= x∗) that

is orthogonal to the line passing through x and x∗. As-

sume that the isotropically distributed vector m happens

to have the positive length ℓ. Then y := x + m is uni-

formly distributed upon the hyper-sphere centered at x

with radius ℓ. Now consider the random variable

Gℓ(y) :=

dist(y, H) if y lies in the half-space

w. r. t. H containing x∗

−dist(y, H) otherwise

which corresponds to the signed distance of the sam-

ple x + m from the hyper-plane H (given |m| = ℓ).

Obviously, the support of Gℓ is [−ℓ,ℓ]. For n ≥ 4 the

density at g equals (1 − (g/ℓ)2)(n−3)/2/(ℓ · 9), where

4

9 =
∫ 1
−1(1− x2)(n−3)/2 dx (normalization), cf., e. g., Jä-

gersküpper (2007a). Actually, for a distance of d :=
dist(x, x∗) from the optimum we are interested in the

random variable

1d ,ℓ(y) := d − dist(y, x∗)

which corresponds to spatial gain towards the opti-

mum x∗ (given |m| = ℓ). The support of the random

variable 1 is [−ℓ,min{ℓ,2d − ℓ}].

H

1 G

xx∗

y

Simple geometry reveals (for any y with distance ℓ

from x∗) the interrelation

Gℓ(y) = 1d ,ℓ(y) +
ℓ2 − (1d ,ℓ(y))2

2d
.

For halving the approximation error, i. e., 1d ,ℓ = d/2,

we obtain a corresponding distance from H of γ :=
d ·3/8+ℓ2/(2d), where necessarily ℓ ∈ [d/2,d·3/2] be-

cause for ℓ < d/2 as well as for ℓ > d · 3/2 a spatial

gain of d/2 towards x∗ is precluded. For such ℓ we

thus have P
{

1d ,ℓ ≥ d/2
}

= P{Gℓ ≥ γ }, and the ques-

tion is for which ℓ this probability is actually maximum.

Since P{Gℓ ≥ γ } =
∫ 1
γ /ℓ

(1 − x2)(n−3)/2 dx
/

9 , we are

interested in the ℓ for which γ /ℓ = 3d
8ℓ

+ ℓ
2d

is mini-

mum. It is easily checked that this is actually the case

for ℓ∗ = d
√

3/4. For this optimal length ℓ∗, the neces-

sary signed distance from H solves to γ ∗ := d ·3/4, so

that γ ∗/ℓ∗ =
√

3/4. Hence, (for n ≥ 4)

max
ℓ

P
{

1d ,ℓ ≥ d/2
}

= P
{

Gℓ∗ ≥ γ ∗}

=
∫ 1

√
3/4

(1 − x2)(n−3)/2 dx
/

9

< (1 −
√

3/4) · (1 − 3/4)(n−3)/2/9

< 0.134 ·2−(n−3)/9

< 2−n ·0.43
√

n − 1

since 9 =
√

π · Ŵ((n − 1)/2)/Ŵ(n/2) ≥
√

π2/(n − 1),

where Ŵ denotes the well-known gamma function. Since

this upper bound on the success probability holds when

|m| is concentrated on the optimal length ℓ∗, it actually

holds for any isotropic distribution of m so that we

obtain the following result.

Lemma 3 Let x∗ ∈ R
n and x ∈ R

n \ {x∗}. Let m be

(arbitrarily) isotropically distributed over R
n . Then

P{dist(x + m, x∗) ≤ dist(x, x∗)/2} < 2−n · 0.43
√

n − 1

for n ≥ 4.

Though it is no surprise that the chance of halving

the approximation error with a single isotropic sample

drops when the dimensionality increases, we now know

a concrete (exponentially small) upper bound on that

probability. And indeed, this upper bound will enable us

to also obtain an upper bound on the success probability

within multiple iterations of an optimization heuristic

that fits our framework.

The idea behind this bound is the “curse of dimen-

sionality” in R
n . Therefore, consider for a moment k

independent samples, for each of which even the op-

timal isotropic distribution may be assumed. Then for

k := e0.69n, the probability that at least one of these sam-

ples halves the approximation error is bounded above

by k · 2−n · 0.43
√

n−1 = e0.69n ·e−n·ln2 ·0.43
√

n−1 <

e−0.003n+ln
√

n = e−�(n). In other words, even an expo-

nential number of e0.69n samples (with optimal isotropic

distribution) result in an exponentially small success

probability of e−�(n).

Naturally, a reasonable heuristic does not sample

around the initial candidate solution x[0] all the time,

but tries to iteratively approach the optimum using the

information gathered by evaluating the function f to be

optimized at the sampled points and selecting the most

promising one of the 1 + λ points in each iteration.

Thus, the search is guided by the selection in instruction

(ii) (unless f is a. e. constant). This selection, how-

ever, merely means that search paths that do not seem

promising are no longer followed (pruned). One may

easily imagine that also these search paths would be

followed (in addition to the promising ones, of course).

In the following, we modify the search algorithm

such that we end up with a search procedure which

is independent of the function to be optimized. Con-

sider the original algorithm after initialization, i. e., an

initial search point x[0] and an initial σ [0] are given.

In the first step, λ points are sampled, each by adding

an isotropically distributed vector (the distribution of

which depends solely on σ [0]) to x[0]. In the modi-

fied algorithm, we now do not select one of the 1 +λ

5

points, yet keep all 1 +λ search points in the set P [1],

where P[0] := {(x[0],σ [0])}. At the end of the first iter-

ation σ may be up- or down-scaled—depending on the

f -values of x[0] and the λ samples. Thus, to also get rid

of this f -dependency, in the second step of the modi-

fied algorithm for each of the 1+λ points in P [1] three

samples a drawn: one without changing σ , one with an

up-scaled σ , and one with a down-scaled σ . Again we

keep all (1+λ) ·3λ newly generated points (each asso-

ciated with the σ that was used to sample this search

point). Consequently, we have (1 +λ) + (1 +λ) ·3λ =
(1 +λ)(1 + 3λ) search points after the second step in

the set P[2]. Repeating this procedure, after i iterations

the set P[i] is generated containing

(1 +λ)(1 + 3λ)i−1 ≤ (1 + 3λ)i = ei·ln(1+3λ)

search points (each with an associated σ). The crucial

point is that P[i] is built without any dependency on the

function f to be optimized, and that any trajectory of the

original algorithm emerges at least as probable in this

modified search procedure. More formally: Let S ⊂R
n

denote an arbitrary Borel set. Then the probability that

P[i] hits S (i. e., S ∩ P[i] 6= ∅) is an upper bound on the

probability that the search point x[i] generated within

i iterations by the original algorithm is in S, namely,

∀i ∈N : P
{

x[i] ∈ S
}

≤ P
{

P[i] ∩ S 6= ∅
}

. This is readily

proved by induction on the number of steps; it is crucial

that the initialization is done in the same way for both

search procedures, of course.

Since each search point x ∈ P[i] is generated by suc-

cessively adding i isotropically distributed vectors to

the initial search point, Lemma 2 tells us that x is in-

deed isotropically distributed around the initial search

point x[0]. We do not know the (distribution of the) dis-

tance between x and x[0], yet this does not matter—as

we may assume the best case.

We choose the target set S as the hyper-ball contain-

ing all search points with a distance of at most half

the initial distance from x∗. Since P{x ∈ S} < 2−n
√

n

for each x ∈ P[i] according to Lemma 3, by the union

bound

P

{

P[i] ∩ S 6= ∅
}

< #P[i] ·2−n
√

n

≤ eln(1+3λ)·i−n ln2+ln
√

n

for n ≥ 4. Then choosing i := 0.69n/ ln(1 + 3λ) fi-

nally yields an upper bound of e−0.003n+ln
√

n = e−�(n)

on the probability that after 0.69n/ ln(1 + 3λ) steps

P[i] contains a search point that lies in S (note that

P[i] ⊃ P[i−1] ⊃ ·· · ⊃ P[0]). In other words, more than

0.69n/ ln(1 + 3λ) steps are necessary with probabil-

ity 1 − e−�(n) to halve the approximation error. Since

adding up a polynomial number of error probabilities

each of which is e−�(n) results in a total error probabil-

ity that is still e−�(n) (union bound again), we obtain

the following lower-bound result:

Theorem 4 Let a heuristic that fits our framework

optimize some function f : Rn → R, and let x∗ ∈ R
n

be some fixed point (for instance the/an optimum).

Let b : N → N such that b(n) = poly(n). Then, for

n ≥ 4 and given that d := dist(x[0], x∗) > 0, with prob-

ability 1 − e−�(n) the number i of iterations until

dist(x[i], x∗) ≤ d/2b(n) (for the first time) is larger than

b(n) ·0.69n/ ln(1 + 3λ).

Since 2−b = ε for b = ln(1/ε)/ ln(2), we directly obtain:

Corollary 5 In the setting of the preceding theorem,

more than λ ·0.99n · ln(1/ε)/ ln(1+3λ) samples are nec-

essary with probability 1− e−�(n) until the approxima-

tion error is at most an ε-fraction of the initial one,

where 2 ≤ 1/ε = 2poly(n).

Note that, since 1 − e−�(n) = �(1), this directly im-

plies a lower bound of �(n ·λ/ ln(1+λ)) on the expected

number of samples necessary to halve the approxima-

tion error. Further note that the λ samples in an iteration

are a. s. mutually distinct if |m| > 0 a. s., so that a. s. λ

f -evaluations are indeed necessary. (A setting in which

P{|m| = 0} > 0 does not make much sense.)

Optimizing a Set of µ Candidate Solutions

We now turn our attention to the modification of the

framework described in the last paragraph of Section

2: A set of µ candidate solutions is maintained (each

with an associated σ), where µ = poly(n) may depend

on the search space dimension n but is kept fixed dur-

ing a run (just as the number λ of samples per itera-

tion). In each iteration one of the µ candidate solutions

is chosen as the basis for the λ samples. Let p denote

an a priori upper bound (as small as possible, though)

on the probability that a particular candidate solution of

the µ is selected (when disregarding the other µ − 1)

to become the basis. For instance, if (in each iteration)

one of the µ candidate solutions is picked uniformly

at random, we can choose p := 1/µ, and if it is cho-

sen rank-proportionally at random, we can choose p :=
µ/

∑µ

r=1 r = 2/(µ+1). If the one with the best f -value

6

is chosen, however, we must choose p := 1 (as for any

deterministic rule). Note that necessarily p ≥ 1/µ.

Again we analyze a modified algorithm in which

we keep all sampled points (each associated with the

σ used for its sampling). In each iteration i , a subset

of κ [i] := ⌈p ·#P[i−1]⌉ elements is chosen uniformly at

random from P[i−1], where P[0] consists of the µ ini-

tial candidate solutions of the original algorithm. In the

modified algorithm, for each of these κ search points,

3λ samples are drawn in the same way as for the op-

timization of a single candidate solution (cf. above).

For each element in P[i−1] the a priori probability to

become a basis of sampling in the i th iteration equals

κ [i]/#P[i−1] = ⌈p ·#P[i−1]⌉/#P[i−1] ≥ p. Recall that p

is an upper bound for original process on the a priori

probability that a particular of the µ candidate solutions

is chosen as the basis in an iteration. Thus, the size of P

grows as follows: #P[i] = #P[i−1] + 3λ · ⌈p ·#P[i−1]⌉.

In other words, (for the modified algorithm) in itera-

tion i the number of elements in P grows by the factor

1 + 3λ ·
⌈p ·#P[i−1]⌉

#P[i−1]
< 1 + 3λ · (p+ 1/#P [i−1])

≤ 1 + 3λ ·2 p

since p ≥ 1/µ anyway and #P[i−1] ≥ µ. Consequently,

#P[i] ≤ µ · (1 + 6λp)i = ei·ln(1+6λp)+lnµ. Again by in-

duction on the number of iterations, we readily see that

any trajectory of search points emerges in the modi-

fied algorithm as least as probable as in the original

algorithm. For any Borel set S ⊂ R
n and any i ∈ N,

the probability that the original algorithm generates a

point in S within i iterations is at most P
{

P[i] ∩ S 6= ∅
}

(given the same initialization, of course). Moreover,

any point in P[i] is isotropically distributed around one

of the µ initial search points. As a consequence, the

success probability of halving the approximation er-

ror within i iterations (i. e., min{dist(x, x∗) | x ∈ P[i]} ≤
min{dist(x, x∗) | x ∈ P[0]}/2) is bounded above by

#P[i] ·2−n
√

n ≤ ei·ln(1+6λp)+lnµ−n ln2+ln
√

n .

Choosing i := 0.69n/ ln(1+6λp) yields a success prob-

ability of less than e−0.003n+lnµ+ln
√

n = e−�(n) since

µ = poly(n). All in all, we have proved the following

result:

Theorem 6 Let a heuristic that fits our modified

framework (with a set of µ candidate solutions) opti-

mize some function f : Rn → R, and let x∗ ∈ R
n be

some fixed point (for instance the/an optimum). Let

b : N → N such that b(n) = poly(n). Then, for n ≥ 4

and given that each initial candidate solution has dis-

tance at least d from x∗, with probability 1 − e−�(n)

more than b(n) · 0.69n/ ln(1 + 6 pλ) iterations are nec-

essary until a search point with a distance of at most

d/2b(n) from x∗ is generated (for the first time), where

p is an upper bound on the a priori probability that in

an iteration a particular of the µ candidate solutions

is selected.

Since ln(1+ x) ≤ x (i. e., 1/ ln(1+ x) ≥ 1/x) for x > 0,

we directly obtain the following.

Corollary 7 The lower bound in the preceding theo-

rem implies that more than b(n) · 0.115n/(pλ) samples

are necessary; for uniform selection, namely p = 1/µ,

more than b(n) · 0.115n · µ/λ samples, and for rank-

proportional selection, namely p = 2/(µ + 1), more

than b(n) ·0.057n ·µ/λ samples are necessary.

Thus, in cases when p = O(1/µ) as n grows, the lower

bound on the number of samples necessary to halve the

approximation error is �(n ·µ/λ) as n grows. To put it

more concise: The (lower bound on the) number of sam-

ples necessary to halve the approximation error grows

linearly in the number of candidate solutions which are

maintained (in such cases). Since “ln(1 + x) ≤ x” is a

good estimate only for small x , the lower bounds from

the preceding corollary are good in particular when λ,

µ, and the randomization of the selection rule are such

that λp → 0 as n grows, implying that λ = o(µ) as n

grows, which implies that µ grows with n.

4. Discussion and Conclusion

The lower bound of 0.69n/ ln(1+3λ) on the number

of iterations necessary to halve the approximation error

from Theorem 4 holds independently of how the next

candidate solution x′ is chosen in instruction (ii), and for

λ := 1, this lower bound becomes 0.497n. For instance,

the search point with the best f -value could be chosen

as the next candidate solution, yet also a Metropolis-like

selection which accepts a worse sample with a proba-

bility of, say, 5% would also be covered. The reason for

this is simple: In the modified search procedure, which

is used in the analysis, all samples that are ever gener-

ated are kept in the (exponentially growing) set P any-

way. As a consequence, also a simulated annealing-like

selection, where the probability of accepting a worse

sample as the next candidate solution depends on how

much worse it is, would be covered. So, the selection

7

of the next candidate solution does not influence our

lower bound. The adaptation of σ , however, is more

critical in this respect. In the proof of the lower bound

we used that at the end of each iteration there are ex-

actly three alternatives for the adaptation, which may

be called “increase”, “keep”, “decrease.” We could al-

low more alternatives, though. If there were, say, five

alternatives for the σ -adaptation, the lower bound on

the number of iterations to halve the approximation er-

ror in the search space would become 0.69n/ ln(1+5λ),

and, when maintaining a set of µ candidate solutions,

0.69n/ ln(1 + (2 · 5)pλ), where p is an a priori bound

on the probability that a particular of the µ is chosen in

an iteration as the basis for the λ samples.

The lower bounds presented cover a very large class

of randomized direct search methods—which use

isotropic sampling. As, moreover, the analysis uses an

exponentially growing set of samples, one may question

the quality of the lower bounds presented. Actually, the

lower bound from Theorem 4 is tight (up to a constant

factor), and the one from Theorem 6 is tight (up to a

constant factor) for λ := 1 and random selection (i. e.,

p = 1/µ) at least.

Therefore, consider the scenario in which the function

f is defined as the Euclidean distance from a fixed point

x∗ ∈ R
n , the unique global minimum. As mentioned in

the introduction, in the so-called (1+1) evolution strat-

egy by Rechenberg, in the i th iteration a single search

point y is sampled according to a multivariate normal

distribution with variance σ 2 and mean x[i−1] ∈ R
n . If

f (y) ≤ f (x[i−1]), then y becomes the next candidate

solution, otherwise x[i] := x[i−1]. As shown by Jägers-

küpper (2007a), when the so-called 1/5-success-rule

proposed by Rechenberg is used for the σ -adaptation,

then O(b · n) iterations/samples/ f -evaluations suffice

with a very high probability of 1 − e−�(n1/3) to reduce

the approximation error below a 2−b-fraction of the

initial one—given an appropriate initialization of σ [0],

of course. Jägersküpper (2007b, Ch. 5) generalizes this

upper bound result: When λ i. i. d. such samples are

drawn per iteration, O(b ·n/ ln(1+λ)) iterations suffice

w. v. h. p. when a slightly modified σ -adaptation is used.

Moreover, a so-called (µ+1) evolution strategy is in-

vestigated, which uses random selection among the µ

candidate solutions, and indeed O(b · µ · n) iterations

suffice w. v. h. p.

Thus, at least in the cases mentioned above, the

lower bounds presented here are tight up to a constant

factor. In particular, the lower bounds are such that

fewer iterations/samples suffice only with an exponen-

tially small (in n) probability. As we have seen, we

trivially obtain lower bounds on the expected number

of iterations/samples of the same order. Interestingly,

the method by which we obtained these strong lower

bounds seems quite simple. We thought of the di-

rected/guided random search as a selected fragment of a

non-guided/oblivious random search to bound the suc-

cess probability from above. This idea may also work

in other randomized optimization scenarios, possibly

also in randomized combinatorial optimization.

References

Brooks, S. H. (1958): A discussion of random methods for seeking

maxima. Operations Research, 6(2):244–251.

Droste, S., Jansen, T., Wegener, I. (2006): Upper and lower

bounds for randomized search heuristics in black-box opti-

mization. Theory of Computing Systems, 39(4):525–544.

Fang, K.-T., Kotz, S., Ng, K.-W. (1990): Symmetric multivariate

and related distributions, vol. 36 of Monographs on statistics

and applied probability. Chapman & Hall, London.

Hooke, R., Jeeves, T. A. (1961): “Direct search” solution of

numerical and statistical problems. Journal of the ACM,

8(2):212–229.

Jägersküpper, J. (2007a): Algorithmic analysis of a basic evo-

lutionary algorithm for continuous optimization. Theoretical

Computer Science, 379(3):329–347.

Jägersküpper, J. (2007b): Probabilistic analysis of Evolution

Strategies using isotropic mutations. Dissertation, Universität

Dortmund, Germany.

Kolda, T. G., Lewis, R. M., Torczon, V. (2004): Optimization by

direct search: New perspectives on some classical and modern

methods. SIAM Review, 45(3):385–482.

Nelder, J. A., Mead, R. (1965): A simplex method for function

minimization. The Computer Journal, 7:308–313.

Nemirovsky, A. S., Yudin, D. B. (1983): Problem Complexity and

Method Efficiency in Optimization. Wiley, New York.

Nocedal, J., Wright, S. (2006): Numerical Optimization. Springer,

2nd edn.

Rastrigin, L. A. (1963): The convergence of the random search

method in extremal control of a many-parameter system. Au-

tomation and Remote Control, 24:1337–42.

Rechenberg, I. (1965): Cybernetic solution path of an experimen-

tal problem. Royal Aircraft Establishment.

Schwefel, H.-P. (1965): Kybernetische Evolution als Strategie der

experimentellen Forschung in der Strömungstechnik. Diploma

thesis, Technische Universität Berlin.

8

