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No. CI-229/07

Technical Report ISSN 1433-3325 April 2007

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/LS 2
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46908857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Lower bounds for hit-and-run optimizationJens Jägersküpper⋆Universität Dortmund, Informatik 2, 44221 Dortmund, GermanyJJ�Ls2.s.uni-dortmund.deAbstrat. �Hit-and-run is fast and fun� to generate a random point ina high dimensional onvex set K (Lovász/Vempala, MSR-TR-2003-05).More preisely, the hit-and-run random walk mixes fast independentlyof where it is started inside the onvex set (as opposed to the ball-walk,whih requires a warm start). To hit-and-run from a point x ∈ R
n, a line

L through x is randomly hosen (uniformly over all diretions). Subse-quently, the walk's next point is sampled from L∩K using a membershiporale whih tells us whether a point lies in K or not.Here the fous is on blak-box optimization, however, where the fun-tion f : Rn
→ R to be minimized is given as an orale, namely a blak boxfor f-evaluations. We obtain in an obvious way a diret-searh methodwhen we substitute the f-orale for the K-membership orale to do a linesearh over L, and we are interested in how fast suh a hit-and-run searhheuristi onverges to the optimum point x∗ in the searh spae R

n.We prove that, even under the assumption of perfet line searh, thesearh onverges (at best) linearly at an expeted rate whih is largerthan 1−1/n. This implies a lower bound of 0.5 n on the expeted numberof line searhes neessary to halve the approximation error. Moreover,we show that 0.4 n line searhes su�e to halve the approximation erroronly with an exponentially small probability of exp(−Ω(n1/3)). Sineeah line searh requires at least one query to the f-orale, the lowerbounds obtained hold also for the number of f-evaluations.1 IntrodutionFinding an optimum of a given funtion f : S → R is one of the fundamentalproblems�in theory as well as in pratie. The searh spae S an be disreteor ontinuous, like N or R. If S has more than one dimension, it may also be amixture, like it is the ase for optimization tasks that are so-alled mixed-integerprograms. Here the optimization in �high-dimensional� Eulidean spae is on-sidered, i. e., the searh spae is Rn. What �high-dimensional� means is usuallyanything but well de�ned. A partiular 10-dimensional problem in pratie mayalready be onsidered �high-dimensional� by the one who tries to solve it. Herethe ruial aspet is how the optimization time sales with the dimensionality ofthe searh spae R
n, i. e., we onsider the optimization time as a funtion of n.In other words, here we are interested in what happens when the dimensionality
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2of the searh spae gets higher and higher. This viewpoint is typial for analy-ses in omputer siene. Unfortunately, it seems that optimization in ontinuoussearh spaes is not one of the ore topis in omputer siene. Rather it liesin the domain of operations researh and mathematial programming. There,however, fousing on how the optimization time sales with the searh spae'sdimension seems rather unommon. Usually, the performane of an optimiza-tion method is desribed by means of onvergene theory. As an example, let ustake a loser look at �Q-linear onvergene� (we drop the �Q� in the following):Let x∗ denote the optimum searh point of a unimodal funtion and x[k] theapproximate solution after k optimization steps. Then we have
dist(x∗, x[k+1])

dist(x∗, x[k])
→ r ∈ R<1 as k → ∞where dist(·, ·) denotes some distane measure, most ommonly the Eulideandistane between two points (when onsidering onvergene towards x∗ in thesearh spae R

n, as we do here), or the absolute di�erene in funtion value(when onsidering onvergene towards the optimum funtion value in the ob-jetive spae). Apparently, there seems to be no onnetion to n, the dimensionof the searh spae. Yet only if r is an absolute onstant, there is atual indepen-dene of n. In general, however, the onvergene rate r depends on n. When weare interested in, say, the number of steps neessary to halve the approximationerror (given by the distane from x∗), the order of this number with respet to npreisely depends on how r depends on n. For instane, if r = 1 − 0.5/n, weneed Θ(n) steps; if r = 1 − 0.5/n2, we need Θ(n2) steps, and if r = 1 − 2−n, weneed 2Θ(n) steps. For any �xed dimension, however, in any of the three ases weatually have linear onvergene. Thus, the order of onvergene tells us some-thing about the �speed� of the optimization, but in general nothing about the
n-dependene of the number of steps neessary to ensure a ertain approximationerror (unless r is an absolute onstant, then it takes a onstant number of stepsto halve the distane from x∗ independently of n). So, in ase of linear onver-gene, we want to know how the onvergene rate depends on the dimensionalityof the searh spae.Methods for solving optimization problems in ontinuous domains, essentially
S = R

n, are usually lassi�ed into �rst-order, seond-order, and zeroth-ordermethods, depending on whether they utilize the gradient (the �rst derivative)of the objetive funtion, the gradient and the Hessian (the seond derivative),or neither of both. A zeroth-order method is also alled derivative-free or diretsearh method. Newton's method is a lassial seond-order method; �rst-ordermethods an be (sub)lassi�ed into Quasi-Newton, steepest desent, and on-jugate gradient methods. Classial zeroth-order methods try to approximatethe gradient and to then plug this estimate into a �rst-order method. Finally,amongst the modern zeroth-order methods, randomized searh heuristis likesimulated annealing and evolutionary algorithms ome into play, whih are sup-posed general-purpose searh heuristis.When information about the gradient is not available, for instane if f relatesto a property of some workpiee and is given by omputer simulations or even



3by real-world experiments, then �rst-order (and also seond-order) methods justannot by applied. As the approximation of the gradient usually involves Ω(n)
f -evaluations, a single optimization step of a lassial zeroth order-method isomputationally expensive, in partiular if f is given impliitly by simulations.In pratial optimization, espeially in mehanial engineering, this is often thease, and partiularly in this �eld randomized searh heuristis (espeially evolu-tionary algorithms) are beoming more and more popular. However, the enthu-siasm in pratial optimization heuristis has led to an unlear variety of verysophistiated and problem-spei� algorithms. Unfortunately, from a theoretialpoint of view, the development of suh algorithms is solely driven by pratialsuess, whereas the aspet of a theoretial analysis is left aside.In suh situations f is given to the optimization algorithm as an orale for
f -evaluations (zeroth-order orale) and the ost of the optimization (the run-time) is de�ned as the number of queries to this orale, and we are in theso-alled blak-box optimization senario. Nemirovsky and Yudin (1983, p. 333)state (w. r. t. optimization in ontinuous searh spaes) in their book ProblemComplexity and Method E�ieny in Optimization: �From a pratial point ofview this situation would seem to be more typial. At the same time it is ob-jetively more ompliated and it has been studied in a far less extend than theone [with �rst-order orales/methods℄ onsidered earlier.� After more than twodeades there still seems to be some truth in their statement, though to a smallerextent. For disrete blak-box optimization, a omplexity theory has been su-essfully started, f. Droste, Jansen, and Wegener (2006). Lower bounds on thenumber of f -evaluations (the blak-box omplexity) are proved with respet tolasses of funtions when an arbitrary(!) optimization heuristi knows about thelass F of funtions to whih f belongs, but nothing about f itself. The bene�tsof suh results are obvious: They an prove that an allegedly poor performaneof an apparently simple blak-box algorithm on f is not due to the algorithm'ssimpleness, but due to F 's inherent blak-box omplexity. As mentioned above,the situation for heuristi optimization in ontinuous searh spaes is di�erent,espeially with respet to randomized/stohasti methods. The results to be pre-sented here ontribute to this less-developed but emerging �eld of optimizationtheory.2 The Framework for the Randomized Methods underConsiderationAs already noted above, lassial zeroth-order methods (i. e. blak-box optimiz-ers) for ontinuous searh spaes usually try to approximate the gradient of thefuntion f to be minimized at the urrent searh point x. Subsequently, a linesearh along gradient diretion is performed to �nd the next searh point, whihreplaes x. Usually, the line searh aims at loating the best (with respet to the
f -value) point on the line through x, and various strategies for how to do the linesearh exist (Armijo/Goldstein, Powell/Wolfe, et.). As the approximation of thegradient usually involves Ω(n) f -evaluations, and as the (approximate) gradi-ent's diretion may signi�antly di�er from the diretion pointing diretly to the



4optimum x∗ anyway (f. ill-onditioned quadratis), more and more diret searhheuristis have been proposed whih abandon gradient approximation. Amongthe �rst and most prominent ones are the pattern searh by Hooke and Jeeves(1961) and the (downhill) simplex method by Nelder and Mead (1965); f. Kolda,Lewis, and Torzon (2004) for a omprehensive review. Surprisingly, also alreadyin the 1960s a randomized diret searh method was proposed, namely the so-alled evolution strategy by Rehenberg (1965) and Shwefel (1965). For someobsure reason, however, there has been resentment against randomized algo-rithms in these early years. This started to hange with the randomization ofquiksort and randomized testing for primality. At the latest by the time whenDyer, Frieze, and Kannan (1989) ame up with a randomized approximation al-gorithm for the omputation of the volume of a onvex body in high dimensionalspae, the (possible) bene�ts of randomization has won reognition. Though thepolynomial expeted runtime of this algorithm was not very pratial, it showedin priniple the power of randomization sine for any deterministi algorithmthere is a onvex set for whih the relative error is nΩ(n) after any polyno-mial number of steps. At the ore of this algorithm was a random walk on a(su�iently �ne) lattie. This algorithm was further improved, in partiular bysubstituting the so-alled ball walk for the original lattie walk. One step of thisball walk onsists in uniformly hoosing a point from the hyper-ball of radius δaround the urrent point. If this point lies in the onvex set, then it beomesthe next point of the walk. Apparently, one has to hoose the parameter δ ap-propriately. Moreover, when the ball walk is started very lose to the orner ofa hyperube, just for instane, it may need an exponential number of steps toleave this orner, making a so-alled warm start neessary (i. e. a preproessing).As reently shown by Lovász and Vempala (2006), using the hit-and-run walk in-stead of the ball walk avoids these two issues. Hit-and-run mixes fast even whenstarted lose to the boundary of the onvex set, and moreover, no �step size�needs to be appropriately prede�ned. Also an optimization algorithm based onrandom walks in ovex sets has been proposed (Bertsimas and Vempala, 2004).As already noted in the abstrat, to hit-and-run from a point x ∈ R
n withina onvex set K ⊂ R

n, a line L through x is randomly hosen (uniformly over alldiretions). Subsequently, the next point (to replae x) is sampled from L ∩ K(as uniformly as possible) using a membership orale whih tells us whether asample from L lies in K or not. As also already noted in the abstrat, we obtainin an obvious way a hit-and-run diret-searh method for blak-box optimizationof f : Rn → R when we substitute the f -orale for the K-membership orale.Thus, the framework of the heuristis for blak-box optimization we onsider isas follows: For a given initialization of x ∈ R
n the following loop is performed:1. Randomly hoose a line L through x (uniformly over all diretions).2. By some kind of a line searh (using the f -orale), �nd a point x′ ∈ L.3. Set x := x′ and GOTO 1 (unless stopping is requested; then output x).Naturally, we are interested in how fast suh a heuristi onverges to the optimumpoint x∗ ∈ R

n (we assume that there is a unique global optimum), in partiular:



5How fast an it onverge in priniple? That is, we are interested in a generallower bound whih is universal for the lass of hit-and-run heuristis.Note that there are no assumptions on how the line searh is performed.In partiular, for the line searh in the ith iteration, the algorithm may use allthe information gathered from all the samples drawn during the preeding i − 1line searhes. Naturally, in eah step the hoie of how to do the line searhmay depend on the atual diretion of L. All in all, a large variety of adaptivestrategies for blak-box optimization with unlimited memory is overed by ourframework.3 General Lower BoundSine any reasonable line-searh strategy implies at least one query to the f -orale, in our senario the number of f -evaluations is bounded below by thenumber of line searhes. Thus, we fous on the number of line searhes in thefollowing and aim at a general lower bound. Therefore, we need an upper boundon the gain of a single line searh. We onsider the best ase: When we wantthe heuristi to approah the unique optimum point x∗ as fast as possible, wemay optimistially assume that x′ was hosen from the line L suh that distanebetween x′ and x∗ is minimum. Call this a perfet line searh. The situation isdepited in the �gure below.
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d

x∗

L∗

d′
ℓ

x

x′′x′

L

α

α

HIt is well known that the distane between x∗ and x′ is minimum when
x′ ∈ L ⊃ {x} is suh that the line passing through x′ and x∗ is perpendiularto the line L (given that x∗ /∈ L, whih is the ase with probability one, unlikealready x oinides with the optimum point x∗, beause L's diretion is hosenuniformly over all diretions).Let d := dist(x, x∗) denote the urrent approximation error in the searhspae and let d′ := dist(x′, x∗). Furthermore, let L∗ denote the line through xand x∗. Now onsider the hyper-plane H whih ontains x and is perpendiu-lar to L∗. Let x′′ := arg miny∈H dist(x′, y) denote the unique point in H withsmallest distane from x′. Then the angle α between L and L∗ equals the anglebetween L and the line through x′ and x′′ (whih is parallel to L∗ sine it isperpendiular to H just as L∗). Consequently, we have

d′ = d · sin α and dist(x′, H) = dist(x′, x) · cosα.



6Let g := dist(x′, x′′) denote the distane of x′ from H , and ℓ := dist(x′, x) sothat we have g/ℓ = cosα (= ℓ/d ). Sine d′/d = sin α =
√

1 − (cosα)2, we obtain
d′

d
=

√

1 − (g/ℓ)2, (1)whih ranges in [0, 1] sine g ∈ [0, ℓ]. Thus, instead of fousing on the distributionof sin α when L is hosen uniformly over all diretions, we an fous on the ratio
g/ℓ and onentrate on the distribution of this relative distane of x′ from thehyper-plane H (namely, relative to the distane of x′ from x). (It will shortlybeome lear why this makes sense.)In two dimensions, like in the �gure above, for any �xed d′ ∈ (0, d) thereare exatly two (di�erent) lines through x with distane d′ from the optimumpoint x∗. (Note that by �xing d′ we also �xed ℓ and g.) In three or moredimensions, however, there is an in�nite number of suh lines. In three di-mensions they form a double one with its apex at x, and all points of thisone with an atual distane of d′ from x∗ (namely all x′) form a irle. Thisirle lies in a plane whih is parallel to H (a plane in three dimensions).In general, i. e. in n ≥ 3 dimensions, the potential points x′ form the set
S := {x′ ∈ R

n | dist(x′, x∗) = d′ and dist(x′, x) = ℓ}, whih is an (n−1)-spheresine S is the intersetion of two hyper-spheres, namely of the hyper-spherewith radius d′ entered at x∗ and the hyper-sphere with radius ℓ entered at x.Moreover, S lies in the hyper-plane H ′ whih is parallel to H suh that it hasdistane g from H and distane d− g from x∗. The situation is depited below,where the left sphere onsists of all points with distane d′ from the optimumpoint x∗, and the right sphere onsists of all points with distane ℓ from oururrent approximate solution x.
H ′

xx∗

H

L∗

Reall that we �xed d′ ∈ (0, d) for the above disussion, and that this implies�xed values for ℓ and g = dist(H ′, H). Now onsider a randomly hosen line
L through x (uniform over all diretions). Aording to our onstrution, if Lpenetrates the (n−1)-sphere S ⊂ H ′, then the perfet line searh on L yields apoint with a distane of exatly d′ from x∗. Now, if L lies inside the double one,i. e., L penetrates the open (n−1)-ball the missing boundary of whih is S, thenthe perfet line searh yields a point with a distane smaller than d′ from x∗. If



7
L lies outside the double one (exept for passing through the apex x, of ourse),then the perfet line searh yields a point with a distane larger than d′ from x∗.Thus, we are interested in the probability p that L is hosen suh that it liesinside the one. Namely, p is the probability that the perfet line searh yieldsa point with a distane of less than d′ from x∗.Now, how an we atually pik a line through x suh that its diretion isuniformly random? We pik uniformly at random a point y from/over the unithyper-sphere entered at x and hoose L as the line through y and x. From thispoint of view, the perfet line searh yields a point with a distane of exatly d′from x∗ if y's distane from H is exatly g/ℓ; a point with a distane smallerthan d′ from x∗ if y's distane from H is larger than g/ℓ; and a point with adistane larger than d′ from x∗ if y's distane from H is smaller than g/ℓ.In other words, we an onsider the random variable R := d′/d as a fun-tion of the random variable G de�ned as y's distane from the hyper-plane H ,where the point y, is hosen uniformly over the unit hyper-sphere entered at x.Namely, we have R =

√
1 − G2, f. Equation 1 on the faing page. (Note that thedistribution of y over Rn is spherially symmetri; more preisely, it is isotropi,i. e. invariant w. r. t. orthonormal transformations.) For n ≥ 4 the density fun-tion of G's distribution over [0, 1] is given by (1 − x2)(n−3)/2/Ψ (Jägersküpper,2003), where Ψ =

∫ 1

0 (1 − x2)(n−3)/2 dx (normalization) and the value of thisintegral is Ψ =
√

π/4 · Γ (n/2 − 1/2)/Γ (n/2) =
√

π/n/2 + Θ(n−3/2), where�Γ � denotes the well-known gamma funtion. Consequently, y's expeted dis-tane from H equals ∫ 1

0
x · (1− x2)(n−3)/2 dx

/

Ψ = (n− 1)−1/Ψ whih turns outto be √

2/π /
√

n + Θ(n−3/2). That is, y's expeted distane from H is about
0.8/

√
n. This might appear bewildering (at �rst) sine this implies that, as thesearh spae's dimensionality inreases, the expeted distane from H tendsto zero�although y's distane form x is �xed to one and H is hit with zeroprobability. However, noting that H is an a�ne subspae with dimension n−1(i. e. odimension 1), it may beome more plausible that getting far away from

H beomes less and less probable as n inreases. It might help even more toreall that an n-hyperube with unit diameter (longest diagonal) has edges oflength 1/
√

n.So, what does this help? Naturally, E[G] does not tell us muh about E[R] =
E
[√

1 − G2
], the expetation in whih we are atually interested. We an easilyompute it, though:

E[R] =

∫ 1

0

√

1 − x2 · (1 − x2)(n−3)/2
/

Ψ dx =

∫ 1

0

(1 − x2)n/2−1 dx
/

Ψ.Sine ∫ 1

0
(1 − x2)n/2−1 dx =

√

π/4 · Γ (n/2)/Γ (n/2 + 1/2), we obtain
E[R] =

√

π/4 · Γ (n/2)/Γ (n/2 + 1/2)
√

π/4 · Γ (n/2 − 1/2)/Γ (n/2)
=

Γ (n/2) · Γ (n/2)

Γ (n/2 − 1/2) · Γ (n/2 + 1/2)
. (2)Using Γ (n/2 + 1/2) = Γ (n/2 − 1/2) · (n/2 − 1/2), we have

E[R] =
n − 1

2
·
(

Γ (n/2)

Γ (n/2 + 1/2)

)2

,



8and sine Γ (n/2 + 1/2)/Γ (n/2) <
√

n/2, we obtain the following lower boundon the expeted fator by whih the approximation error is redued in eah step:
E[R] >

n − 1

2
· 2

n
= 1 − 1

n
.This lower bound holds for perfet line searh and, as a onsequene, also forany other line-searh strategy. Thus this bound is universal for the lass of hit-and-run diret-searh methods.To see how good this general lower bound on E[R] atually is, an upperbound on E[R] under the assumption of perfet line searh would be nie. Usingthat Γ (n) = (n − 1)!, Γ (n/2) = (n − 2)!! · √π/2(n−1)/2, and Γ (k + 1/2) =

(2k−1)!!·√π/2k (where k!! is de�ned as 2·4·6 · · ·k for even k, and as 3·5 · · ·k forodd k), the right-hand side of Equation 2 on the previous page an be estimatedas follows:
E[R] <

2n− 1

2n
= 1 − 1

2n
.In other words, for perfet line searh, the expeted fator by whih the approx-imation error is redued (in eah step) is smaller than 1−0.5/n. This shows thatour general lower bound of 1 − 1/n on E[R] is atually pretty tight. All in all,we have proved the following result:Theorem 1. Consider the optimization of a funtion f : Rn → R with a uniqueoptimum point x∗. Then we have for n ≥ 4:The (hypothetial) hit-and-run diret-searh method whih performs a perfetline searh in eah step onverges linearly to x∗ at an expeted rate of 1 − β/n,where 0.5 < β < 1 (and β may depend on n).Independently of how a hit-and-run diret-searh method performs the linesearhes, the expeted fator by whih the approximation error (i. e. the distanefrom x∗) is redued is larger than 1 − 1/n in eah step. That is, if (at all) ahit-and-run diret-searh method onverges towards x∗, then at best linearly atan expeted rate larger than 1 − 1/n.The result on the (expeted) fator by whih the approximation error is redueddiretly implies a bound on the (expeted) spatial gain towards the optimumpoint x∗. Therefore, let d[i] denote the approximation error (i. e. the distanefrom x∗) after the ith step, and let d[0] denote the initial approximation error.For a �xed d[i−1], let ∆[i] := d[i] − d[i−1] be de�ned as the random variableorresponding to the spatial gain towards x∗ in the ith step. Then the abovetheorem says that in general, i. e. for any hit-and-run diret-searh method,

E
[

∆[i]
]

< d[i−i]/n in eah step i. Moreover, for perfet line searh, in eah step
E
[

∆[i]
]

= β(n) · d[i−1]/n for some funtion β : N → (0.5, 1).Let us stik with perfet line searh in the following. Then the approxima-tion error is non-inreasing, i. e., d[0] ≥ d[1] ≥ d[2] . . . (atually, d[i+1] < d[i] withprobability one, sine the randomly hosen line lies in H with zero probabil-ity). Thus, in eah step ∆[i] < d[i−1]/n ≤ d[0]/n, and onsequently, the numberof steps neessary for an expeted total gain of at least d[0]/2 is larger than



9
(d[0]/2)/(d[0]/n) = n/2. However, in general, maximizing the expeted total gainof a �xed number of steps need not neessarily result in minimizing the expetednumber of steps to realize a spei�ed gain (for instane, to halve the approxima-tion error). Nevertheless, n/2 will turn out to be a lower bound on the expetednumber of steps whih are neessary to halve the approximation error. The proofis a straight-forward appliation of the following lemma, whih is a modi�ationof Wald's equation.Lemma 2. Let X1, X2, . . . denote random variables with bounded range and Sthe random variable de�ned by S = min{ t | X1 + · · · + Xt ≥ g} for a given
g > 0. Given that S is a stopping time (i. e., the event {S = t} depends only on
X1, . . . , Xt), if E[S] < ∞ and E[Xi | S ≥ i] ≤ u 6= 0 for i ∈ N, then E[S] ≥ g/u.(A proof an be found, e. g., in Jägersküpper, 2007.) We let Xi denote ∆[i]and hoose g := d[0]/2. As we have just seen, 0 ≤ ∆[i] ≤ d[0], and sine inour senario �S ≥ i � merely means that the approximation error has not beenhalved in the �rst i−1 steps, atually E

[

∆[i] | S ≥ i
]

< d[0]/n =: u. Finally, wenote that S is in fat a stopping time so that g/u = n/2 is indeed a lower boundon the expeted number of steps to halve the approximation error (unless E[S]was in�nite, in whih ase we would not need to prove a lower bound anyway).Due to the linearity of expetation, the expeted number of steps to halve theapproximation error b ∈ N times is lower bounded by (n/2)+ (b− 1) · (n/2− 1),where the rightmost �−1� emerges beause the last step within a halving-phaseis also (and must be ounted as) the �rst step of the following halving-phase.Thus, we have just proved the following result.Theorem 3. Let a hit-and-run diret-searh method optimize a funtion in R
n,

n ≥ 4, with a unique optimum. Let b : N → N. For perfet line searh the expetednumber of steps until the approximation error in the searh spae is less than a
2−b(n)-fration of the initial one is lower bounded by b(n) · n/2 − b(n) + 1.Now that we know that at least n/2 steps are neessary in expetation to halvethe approximation error, we would like to know whether there is a good haneof getting by with onsiderably fewer steps. In fat, we want to show that thereis almost no hane of getting by with a little fewer steps. Atually, we aregoing to prove that 0.4 n steps su�e to halve the approximation error onlywith an exponentially small probability. Therefore reall the following notionsand notations, where X and Y denote random variables:� X stohastially dominates Y , in short �X ≻ Y,� if (and only if) ∀a ∈ R:

P{X ≤ a} ≤ P{Y ≤ a}.� If X ≻ Y as well as Y ≻ X , i. e., ∀a ∈ R : P{X ≤ a} = P{Y ≤ a}, then Xand Y are equidistributed and we write �X ∼ Y .�Obviously, stohasti dominane is a transitive relation, and it is readily seenthat, if X ≻ Y and E[X ] exists, then E[Y ] ≤ E[X ].



10Theorem 4. Let a hit-and-run diret-searh method optimize a funtion in R
nwith a unique optimum. Let b : N → N suh that b(n) = poly(n). For perfet linesearh, with a very high probability of 1 − exp(−Ω(n1/3)) more than b(n) · 0.4 nsteps are neessary until the approximation error is less than a 2−b(n)-frationof the initial one.Proof. Assume that x[0] 6= x∗. Beause in eah step perfet line searh is per-formed, ∆[i]/d[i−1] ∼ ∆[j]/d[j−1] for i, j ∈ N (sale invariane) . Sine moreover

d[0] ≥ d[1] ≥ d[2] . . . , we have ∆[1] ≻ ∆[2] ≻ . . . for the single-step gains. Let
X1, X2, X3, . . . denote independent instanes of the random variable ∆[1]. Then
∀i ∈ N : Xi ≻ ∆[i], and hene ∑k

i=1 ∆[i] ≺ Sk :=
∑k

i=1 Xi. In less formal words:Adding up k independent instanes of the random variable whih orrespondsthe spatial gain in the �rst step results in a random variable (namely Sk) whihstohastially dominates the random variable given by the total gain of the �rst
k steps. The advantage of onsidering Sk instead of the �true� total gain of thesesteps is the following: Sk is the sum of independent random variables so that wean apply Hoe�ding's bound. Namely, Hoe�ding (1963, Theorem 2) tells us:Let X1, . . . , Xk denote independent random variables, eah with boundedrange so that ai ≤ Xi ≤ bi with ai < bi for i ∈ {1, . . . , k}. Let

S := X1 + · · · + Xk. Then P{S ≥ E[S] + x} ≤ exp(−2x2/
∑k

i=1(bi−ai)
2)for any x > 0.If the support of eah random variable Xi is ontained in [a, b] ⊂ R, the upperbound beomes exp

(

−2 · (x/(b − a))2/k
). So, let k := 0.4n and S := Sk. Then

E[S] = 0.4n · E
[

∆[1]
]

≤ 0.4d[0], and for the appliation of Hoe�ding's bound wehoose x := 0.1d[0], whih yields an upper bound of exp(−0.05(d[0]/(b− a))2/n)on the probability that the approximation error is halved in 0.4n steps. We anhoose a := 0 so that we obtain P
{

X1 + · · · + Xk ≥ d[0]/2 | X1, . . . , Xk ≤ b
}

≤
exp(−0.05(d[0]/b)2/n), where b is an upper bound on the gain towards the op-timum point x∗ in a step. Unfortunately, when substituting the trivial upperbound of d[0] for b, the upper bound on the probability beomes exp(−0.05/n),whih tends to one as n grows. For b := d[0]/n2/3, however, we obtain (reallthat k was hosen as 0.4n)

P

{

X1 + · · · + Xk ≥ d[0]/2 | X1, . . . , Xk ≤ d[0]/n2/3
}

≤ e−0.05 n1/3

.Thus, if we an show that P
{

Xi > d[0]/n2/3
}

= e−Ω(n1/3) in eah of the 0.4nsteps, we obtain (by an appliation of the union bound)
P

{

X1 + · · · + Xk ≥ d[0]/2
}

≤ e−0.05 n1/3

+ 0.4n · e−Ω(n1/3) = e−Ω(n1/3).Finally, by another appliation of the union bound, we obtain the theorem be-ause b(n) = poly(n) implies b(n) · e−Ω(n1/3) = e−Ω(n1/3).In other words, it remains to be shown that P
{

∆[0] > d[0]/n2/3
} is atuallybounded above by e−Ω(n1/3). Therefore, reall Equation 1 on page 6. It tells



11us that d − d′ = d · (1 −
√

1 − (g/ℓ)2). As a onsequene, P
{

∆ > d/n2/3
} isequal to P

{

1 −
√

1 − G2 > 1/n2/3
}

. Solving 1 −
√

1 − G2 > 1/n2/3 for G yields
G >

√

2/n2/3 + 1/n4/3 so that that ∆ > d/n2/3 atually implies G >
√

2/n1/3.Sine G's density is a non-inreasing funtion in [0, 1],
P

{

G >
√

2/n1/3
}

=

∫ 1

√
2/n1/3

(1 − x2)(n−3)/2 dx <

(

1 − 2

n2/3

)(n−3)/2

.Sine (1−t/k)k < e−t for 0 < t < k > 1, we have (1 − 2/n2/3)n2/3

< e−2, so that�nally P
{

∆ > d/n2/3
}

< P
{

G >
√

2/n1/3
}

< e−2·((n−3)/2)/n2/3

= e−n1/3+3/n2/3 .
⊓⊔4 Disussion and ConlusionEven though it is lear from intuition that the lower bounds presented in the twopreeding theorems do not only hold for perfet line searh but for any line-searhstrategy, they are formally proved only for perfet line searh. Interestingly, wean easily show that our theorems hold independently of how the line searhing isatually done: By indution over the number of steps i we show that the randomvariable whih orresponds to the approximation error after i steps for a givenline-searh strategy stohastially dominates the random variable d[i] for perfetline searh, whih we onsidered in the proofs.So, hit-and-run diret-searh methods onverge (at best and if at all) linearlywith an expeted rate larger than 1 − 1/n. In simple words, the reason forthis is that in high dimensions the randomly hosen diretion is with a highprobability �almost perpendiular� to the diretion pointing diretly towards theoptimum point x∗. For the further disussion, onsider the simple toy problemof minimizing a quadrati form x 7→ x⊤Qx, where the n×n-matrix Q is positivede�nite. For this simple senario, steepest desent onverges at least linearly ata rate whih is independent of the dimension n but whih gets worse when theondition number of Q inreases�when assuming a worst-ase starting point.In the best ase, however, steepest desent needs a single (perfet) line searh todetermine the optimum. Thus, for ill-onditioned quadratis, the performaneof steepest deent heavily depends on the starting point. This is one reasonwhy usually preonditioning is applied. Hypothetially assume for a moment theextreme of perfet preonditioning, so that x⊤Ix = |x|2 is to be minimized.Interestingly, the original evolution strategy from 1965 by Rehenberg/Shwefel(f. the introdution), a very simple randomized diret-searh method whihbelongs to the lass of hit-and-run methods, needs O(n) f -evaluations with veryhigh probability to halve the approximation error in this senario (Jägersküpper,2003), showing that the very general lower bound obtained here an be met atleast up to a onstant fator. However, in this ideal senario steepest desentneeds a single (perfet) line searh to �nd the optimum independently of thestarting point. Now, as we onsider blak-box optimization, steepest desentmust approximate the gradient. Even though the approximation of the gradient
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