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Lower bounds for hit-and-run optimizationJens Jägersküpper⋆Universität Dortmund, Informatik 2, 44221 Dortmund, GermanyJJ�Ls2.
s.uni-dortmund.deAbstra
t. �Hit-and-run is fast and fun� to generate a random point ina high dimensional 
onvex set K (Lovász/Vempala, MSR-TR-2003-05).More pre
isely, the hit-and-run random walk mixes fast independentlyof where it is started inside the 
onvex set (as opposed to the ball-walk,whi
h requires a warm start). To hit-and-run from a point x ∈ R
n, a line

L through x is randomly 
hosen (uniformly over all dire
tions). Subse-quently, the walk's next point is sampled from L∩K using a membershipora
le whi
h tells us whether a point lies in K or not.Here the fo
us is on bla
k-box optimization, however, where the fun
-tion f : Rn
→ R to be minimized is given as an ora
le, namely a bla
k boxfor f-evaluations. We obtain in an obvious way a dire
t-sear
h methodwhen we substitute the f-ora
le for the K-membership ora
le to do a linesear
h over L, and we are interested in how fast su
h a hit-and-run sear
hheuristi
 
onverges to the optimum point x∗ in the sear
h spa
e R

n.We prove that, even under the assumption of perfe
t line sear
h, thesear
h 
onverges (at best) linearly at an expe
ted rate whi
h is largerthan 1−1/n. This implies a lower bound of 0.5 n on the expe
ted numberof line sear
hes ne
essary to halve the approximation error. Moreover,we show that 0.4 n line sear
hes su�
e to halve the approximation erroronly with an exponentially small probability of exp(−Ω(n1/3)). Sin
eea
h line sear
h requires at least one query to the f-ora
le, the lowerbounds obtained hold also for the number of f-evaluations.1 Introdu
tionFinding an optimum of a given fun
tion f : S → R is one of the fundamentalproblems�in theory as well as in pra
ti
e. The sear
h spa
e S 
an be dis
reteor 
ontinuous, like N or R. If S has more than one dimension, it may also be amixture, like it is the 
ase for optimization tasks that are so-
alled mixed-integerprograms. Here the optimization in �high-dimensional� Eu
lidean spa
e is 
on-sidered, i. e., the sear
h spa
e is Rn. What �high-dimensional� means is usuallyanything but well de�ned. A parti
ular 10-dimensional problem in pra
ti
e mayalready be 
onsidered �high-dimensional� by the one who tries to solve it. Herethe 
ru
ial aspe
t is how the optimization time s
ales with the dimensionality ofthe sear
h spa
e R
n, i. e., we 
onsider the optimization time as a fun
tion of n.In other words, here we are interested in what happens when the dimensionality
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2of the sear
h spa
e gets higher and higher. This viewpoint is typi
al for analy-ses in 
omputer s
ien
e. Unfortunately, it seems that optimization in 
ontinuoussear
h spa
es is not one of the 
ore topi
s in 
omputer s
ien
e. Rather it liesin the domain of operations resear
h and mathemati
al programming. There,however, fo
using on how the optimization time s
ales with the sear
h spa
e'sdimension seems rather un
ommon. Usually, the performan
e of an optimiza-tion method is des
ribed by means of 
onvergen
e theory. As an example, let ustake a 
loser look at �Q-linear 
onvergen
e� (we drop the �Q� in the following):Let x∗ denote the optimum sear
h point of a unimodal fun
tion and x[k] theapproximate solution after k optimization steps. Then we have
dist(x∗, x[k+1])

dist(x∗, x[k])
→ r ∈ R<1 as k → ∞where dist(·, ·) denotes some distan
e measure, most 
ommonly the Eu
lideandistan
e between two points (when 
onsidering 
onvergen
e towards x∗ in thesear
h spa
e R

n, as we do here), or the absolute di�eren
e in fun
tion value(when 
onsidering 
onvergen
e towards the optimum fun
tion value in the ob-je
tive spa
e). Apparently, there seems to be no 
onne
tion to n, the dimensionof the sear
h spa
e. Yet only if r is an absolute 
onstant, there is a
tual indepen-den
e of n. In general, however, the 
onvergen
e rate r depends on n. When weare interested in, say, the number of steps ne
essary to halve the approximationerror (given by the distan
e from x∗), the order of this number with respe
t to npre
isely depends on how r depends on n. For instan
e, if r = 1 − 0.5/n, weneed Θ(n) steps; if r = 1 − 0.5/n2, we need Θ(n2) steps, and if r = 1 − 2−n, weneed 2Θ(n) steps. For any �xed dimension, however, in any of the three 
ases wea
tually have linear 
onvergen
e. Thus, the order of 
onvergen
e tells us some-thing about the �speed� of the optimization, but in general nothing about the
n-dependen
e of the number of steps ne
essary to ensure a 
ertain approximationerror (unless r is an absolute 
onstant, then it takes a 
onstant number of stepsto halve the distan
e from x∗ independently of n). So, in 
ase of linear 
onver-gen
e, we want to know how the 
onvergen
e rate depends on the dimensionalityof the sear
h spa
e.Methods for solving optimization problems in 
ontinuous domains, essentially
S = R

n, are usually 
lassi�ed into �rst-order, se
ond-order, and zeroth-ordermethods, depending on whether they utilize the gradient (the �rst derivative)of the obje
tive fun
tion, the gradient and the Hessian (the se
ond derivative),or neither of both. A zeroth-order method is also 
alled derivative-free or dire
tsear
h method. Newton's method is a 
lassi
al se
ond-order method; �rst-ordermethods 
an be (sub)
lassi�ed into Quasi-Newton, steepest des
ent, and 
on-jugate gradient methods. Classi
al zeroth-order methods try to approximatethe gradient and to then plug this estimate into a �rst-order method. Finally,amongst the modern zeroth-order methods, randomized sear
h heuristi
s likesimulated annealing and evolutionary algorithms 
ome into play, whi
h are sup-posed general-purpose sear
h heuristi
s.When information about the gradient is not available, for instan
e if f relatesto a property of some workpie
e and is given by 
omputer simulations or even



3by real-world experiments, then �rst-order (and also se
ond-order) methods just
annot by applied. As the approximation of the gradient usually involves Ω(n)
f -evaluations, a single optimization step of a 
lassi
al zeroth order-method is
omputationally expensive, in parti
ular if f is given impli
itly by simulations.In pra
ti
al optimization, espe
ially in me
hani
al engineering, this is often the
ase, and parti
ularly in this �eld randomized sear
h heuristi
s (espe
ially evolu-tionary algorithms) are be
oming more and more popular. However, the enthu-siasm in pra
ti
al optimization heuristi
s has led to an un
lear variety of verysophisti
ated and problem-spe
i�
 algorithms. Unfortunately, from a theoreti
alpoint of view, the development of su
h algorithms is solely driven by pra
ti
alsu

ess, whereas the aspe
t of a theoreti
al analysis is left aside.In su
h situations f is given to the optimization algorithm as an ora
le for
f -evaluations (zeroth-order ora
le) and the 
ost of the optimization (the run-time) is de�ned as the number of queries to this ora
le, and we are in theso-
alled bla
k-box optimization s
enario. Nemirovsky and Yudin (1983, p. 333)state (w. r. t. optimization in 
ontinuous sear
h spa
es) in their book ProblemComplexity and Method E�
ien
y in Optimization: �From a pra
ti
al point ofview this situation would seem to be more typi
al. At the same time it is ob-je
tively more 
ompli
ated and it has been studied in a far less extend than theone [with �rst-order ora
les/methods℄ 
onsidered earlier.� After more than twode
ades there still seems to be some truth in their statement, though to a smallerextent. For dis
rete bla
k-box optimization, a 
omplexity theory has been su
-
essfully started, 
f. Droste, Jansen, and Wegener (2006). Lower bounds on thenumber of f -evaluations (the bla
k-box 
omplexity) are proved with respe
t to
lasses of fun
tions when an arbitrary(!) optimization heuristi
 knows about the
lass F of fun
tions to whi
h f belongs, but nothing about f itself. The bene�tsof su
h results are obvious: They 
an prove that an allegedly poor performan
eof an apparently simple bla
k-box algorithm on f is not due to the algorithm'ssimpleness, but due to F 's inherent bla
k-box 
omplexity. As mentioned above,the situation for heuristi
 optimization in 
ontinuous sear
h spa
es is di�erent,espe
ially with respe
t to randomized/sto
hasti
 methods. The results to be pre-sented here 
ontribute to this less-developed but emerging �eld of optimizationtheory.2 The Framework for the Randomized Methods underConsiderationAs already noted above, 
lassi
al zeroth-order methods (i. e. bla
k-box optimiz-ers) for 
ontinuous sear
h spa
es usually try to approximate the gradient of thefun
tion f to be minimized at the 
urrent sear
h point x. Subsequently, a linesear
h along gradient dire
tion is performed to �nd the next sear
h point, whi
hrepla
es x. Usually, the line sear
h aims at lo
ating the best (with respe
t to the
f -value) point on the line through x, and various strategies for how to do the linesear
h exist (Armijo/Goldstein, Powell/Wolfe, et
.). As the approximation of thegradient usually involves Ω(n) f -evaluations, and as the (approximate) gradi-ent's dire
tion may signi�
antly di�er from the dire
tion pointing dire
tly to the



4optimum x∗ anyway (
f. ill-
onditioned quadrati
s), more and more dire
t sear
hheuristi
s have been proposed whi
h abandon gradient approximation. Amongthe �rst and most prominent ones are the pattern sear
h by Hooke and Jeeves(1961) and the (downhill) simplex method by Nelder and Mead (1965); 
f. Kolda,Lewis, and Tor
zon (2004) for a 
omprehensive review. Surprisingly, also alreadyin the 1960s a randomized dire
t sear
h method was proposed, namely the so-
alled evolution strategy by Re
henberg (1965) and S
hwefel (1965). For someobs
ure reason, however, there has been resentment against randomized algo-rithms in these early years. This started to 
hange with the randomization ofqui
ksort and randomized testing for primality. At the latest by the time whenDyer, Frieze, and Kannan (1989) 
ame up with a randomized approximation al-gorithm for the 
omputation of the volume of a 
onvex body in high dimensionalspa
e, the (possible) bene�ts of randomization has won re
ognition. Though thepolynomial expe
ted runtime of this algorithm was not very pra
ti
al, it showedin prin
iple the power of randomization sin
e for any deterministi
 algorithmthere is a 
onvex set for whi
h the relative error is nΩ(n) after any polyno-mial number of steps. At the 
ore of this algorithm was a random walk on a(su�
iently �ne) latti
e. This algorithm was further improved, in parti
ular bysubstituting the so-
alled ball walk for the original latti
e walk. One step of thisball walk 
onsists in uniformly 
hoosing a point from the hyper-ball of radius δaround the 
urrent point. If this point lies in the 
onvex set, then it be
omesthe next point of the walk. Apparently, one has to 
hoose the parameter δ ap-propriately. Moreover, when the ball walk is started very 
lose to the 
orner ofa hyper
ube, just for instan
e, it may need an exponential number of steps toleave this 
orner, making a so-
alled warm start ne
essary (i. e. a prepro
essing).As re
ently shown by Lovász and Vempala (2006), using the hit-and-run walk in-stead of the ball walk avoids these two issues. Hit-and-run mixes fast even whenstarted 
lose to the boundary of the 
onvex set, and moreover, no �step size�needs to be appropriately prede�ned. Also an optimization algorithm based onrandom walks in 
ovex sets has been proposed (Bertsimas and Vempala, 2004).As already noted in the abstra
t, to hit-and-run from a point x ∈ R
n withina 
onvex set K ⊂ R

n, a line L through x is randomly 
hosen (uniformly over alldire
tions). Subsequently, the next point (to repla
e x) is sampled from L ∩ K(as uniformly as possible) using a membership ora
le whi
h tells us whether asample from L lies in K or not. As also already noted in the abstra
t, we obtainin an obvious way a hit-and-run dire
t-sear
h method for bla
k-box optimizationof f : Rn → R when we substitute the f -ora
le for the K-membership ora
le.Thus, the framework of the heuristi
s for bla
k-box optimization we 
onsider isas follows: For a given initialization of x ∈ R
n the following loop is performed:1. Randomly 
hoose a line L through x (uniformly over all dire
tions).2. By some kind of a line sear
h (using the f -ora
le), �nd a point x′ ∈ L.3. Set x := x′ and GOTO 1 (unless stopping is requested; then output x).Naturally, we are interested in how fast su
h a heuristi
 
onverges to the optimumpoint x∗ ∈ R

n (we assume that there is a unique global optimum), in parti
ular:



5How fast 
an it 
onverge in prin
iple? That is, we are interested in a generallower bound whi
h is universal for the 
lass of hit-and-run heuristi
s.Note that there are no assumptions on how the line sear
h is performed.In parti
ular, for the line sear
h in the ith iteration, the algorithm may use allthe information gathered from all the samples drawn during the pre
eding i − 1line sear
hes. Naturally, in ea
h step the 
hoi
e of how to do the line sear
hmay depend on the a
tual dire
tion of L. All in all, a large variety of adaptivestrategies for bla
k-box optimization with unlimited memory is 
overed by ourframework.3 General Lower BoundSin
e any reasonable line-sear
h strategy implies at least one query to the f -ora
le, in our s
enario the number of f -evaluations is bounded below by thenumber of line sear
hes. Thus, we fo
us on the number of line sear
hes in thefollowing and aim at a general lower bound. Therefore, we need an upper boundon the gain of a single line sear
h. We 
onsider the best 
ase: When we wantthe heuristi
 to approa
h the unique optimum point x∗ as fast as possible, wemay optimisti
ally assume that x′ was 
hosen from the line L su
h that distan
ebetween x′ and x∗ is minimum. Call this a perfe
t line sear
h. The situation isdepi
ted in the �gure below.
g

d

x∗

L∗

d′
ℓ

x

x′′x′

L

α

α

HIt is well known that the distan
e between x∗ and x′ is minimum when
x′ ∈ L ⊃ {x} is su
h that the line passing through x′ and x∗ is perpendi
ularto the line L (given that x∗ /∈ L, whi
h is the 
ase with probability one, unlikealready x 
oin
ides with the optimum point x∗, be
ause L's dire
tion is 
hosenuniformly over all dire
tions).Let d := dist(x, x∗) denote the 
urrent approximation error in the sear
hspa
e and let d′ := dist(x′, x∗). Furthermore, let L∗ denote the line through xand x∗. Now 
onsider the hyper-plane H whi
h 
ontains x and is perpendi
u-lar to L∗. Let x′′ := arg miny∈H dist(x′, y) denote the unique point in H withsmallest distan
e from x′. Then the angle α between L and L∗ equals the anglebetween L and the line through x′ and x′′ (whi
h is parallel to L∗ sin
e it isperpendi
ular to H just as L∗). Consequently, we have

d′ = d · sin α and dist(x′, H) = dist(x′, x) · cosα.



6Let g := dist(x′, x′′) denote the distan
e of x′ from H , and ℓ := dist(x′, x) sothat we have g/ℓ = cosα (= ℓ/d ). Sin
e d′/d = sin α =
√

1 − (cosα)2, we obtain
d′

d
=

√

1 − (g/ℓ)2, (1)whi
h ranges in [0, 1] sin
e g ∈ [0, ℓ]. Thus, instead of fo
using on the distributionof sin α when L is 
hosen uniformly over all dire
tions, we 
an fo
us on the ratio
g/ℓ and 
on
entrate on the distribution of this relative distan
e of x′ from thehyper-plane H (namely, relative to the distan
e of x′ from x). (It will shortlybe
ome 
lear why this makes sense.)In two dimensions, like in the �gure above, for any �xed d′ ∈ (0, d) thereare exa
tly two (di�erent) lines through x with distan
e d′ from the optimumpoint x∗. (Note that by �xing d′ we also �xed ℓ and g.) In three or moredimensions, however, there is an in�nite number of su
h lines. In three di-mensions they form a double 
one with its apex at x, and all points of this
one with an a
tual distan
e of d′ from x∗ (namely all x′) form a 
ir
le. This
ir
le lies in a plane whi
h is parallel to H (a plane in three dimensions).In general, i. e. in n ≥ 3 dimensions, the potential points x′ form the set
S := {x′ ∈ R

n | dist(x′, x∗) = d′ and dist(x′, x) = ℓ}, whi
h is an (n−1)-spheresin
e S is the interse
tion of two hyper-spheres, namely of the hyper-spherewith radius d′ 
entered at x∗ and the hyper-sphere with radius ℓ 
entered at x.Moreover, S lies in the hyper-plane H ′ whi
h is parallel to H su
h that it hasdistan
e g from H and distan
e d− g from x∗. The situation is depi
ted below,where the left sphere 
onsists of all points with distan
e d′ from the optimumpoint x∗, and the right sphere 
onsists of all points with distan
e ℓ from our
urrent approximate solution x.
H ′

xx∗

H

L∗

Re
all that we �xed d′ ∈ (0, d) for the above dis
ussion, and that this implies�xed values for ℓ and g = dist(H ′, H). Now 
onsider a randomly 
hosen line
L through x (uniform over all dire
tions). A

ording to our 
onstru
tion, if Lpenetrates the (n−1)-sphere S ⊂ H ′, then the perfe
t line sear
h on L yields apoint with a distan
e of exa
tly d′ from x∗. Now, if L lies inside the double 
one,i. e., L penetrates the open (n−1)-ball the missing boundary of whi
h is S, thenthe perfe
t line sear
h yields a point with a distan
e smaller than d′ from x∗. If



7
L lies outside the double 
one (ex
ept for passing through the apex x, of 
ourse),then the perfe
t line sear
h yields a point with a distan
e larger than d′ from x∗.Thus, we are interested in the probability p that L is 
hosen su
h that it liesinside the 
one. Namely, p is the probability that the perfe
t line sear
h yieldsa point with a distan
e of less than d′ from x∗.Now, how 
an we a
tually pi
k a line through x su
h that its dire
tion isuniformly random? We pi
k uniformly at random a point y from/over the unithyper-sphere 
entered at x and 
hoose L as the line through y and x. From thispoint of view, the perfe
t line sear
h yields a point with a distan
e of exa
tly d′from x∗ if y's distan
e from H is exa
tly g/ℓ; a point with a distan
e smallerthan d′ from x∗ if y's distan
e from H is larger than g/ℓ; and a point with adistan
e larger than d′ from x∗ if y's distan
e from H is smaller than g/ℓ.In other words, we 
an 
onsider the random variable R := d′/d as a fun
-tion of the random variable G de�ned as y's distan
e from the hyper-plane H ,where the point y, is 
hosen uniformly over the unit hyper-sphere 
entered at x.Namely, we have R =

√
1 − G2, 
f. Equation 1 on the fa
ing page. (Note that thedistribution of y over Rn is spheri
ally symmetri
; more pre
isely, it is isotropi
,i. e. invariant w. r. t. orthonormal transformations.) For n ≥ 4 the density fun
-tion of G's distribution over [0, 1] is given by (1 − x2)(n−3)/2/Ψ (Jägersküpper,2003), where Ψ =

∫ 1

0 (1 − x2)(n−3)/2 dx (normalization) and the value of thisintegral is Ψ =
√

π/4 · Γ (n/2 − 1/2)/Γ (n/2) =
√

π/n/2 + Θ(n−3/2), where�Γ � denotes the well-known gamma fun
tion. Consequently, y's expe
ted dis-tan
e from H equals ∫ 1

0
x · (1− x2)(n−3)/2 dx

/

Ψ = (n− 1)−1/Ψ whi
h turns outto be √

2/π /
√

n + Θ(n−3/2). That is, y's expe
ted distan
e from H is about
0.8/

√
n. This might appear bewildering (at �rst) sin
e this implies that, as thesear
h spa
e's dimensionality in
reases, the expe
ted distan
e from H tendsto zero�although y's distan
e form x is �xed to one and H is hit with zeroprobability. However, noting that H is an a�ne subspa
e with dimension n−1(i. e. 
odimension 1), it may be
ome more plausible that getting far away from

H be
omes less and less probable as n in
reases. It might help even more tore
all that an n-hyper
ube with unit diameter (longest diagonal) has edges oflength 1/
√

n.So, what does this help? Naturally, E[G] does not tell us mu
h about E[R] =
E
[√

1 − G2
], the expe
tation in whi
h we are a
tually interested. We 
an easily
ompute it, though:

E[R] =

∫ 1

0

√

1 − x2 · (1 − x2)(n−3)/2
/

Ψ dx =

∫ 1

0

(1 − x2)n/2−1 dx
/

Ψ.Sin
e ∫ 1

0
(1 − x2)n/2−1 dx =

√

π/4 · Γ (n/2)/Γ (n/2 + 1/2), we obtain
E[R] =

√

π/4 · Γ (n/2)/Γ (n/2 + 1/2)
√

π/4 · Γ (n/2 − 1/2)/Γ (n/2)
=

Γ (n/2) · Γ (n/2)

Γ (n/2 − 1/2) · Γ (n/2 + 1/2)
. (2)Using Γ (n/2 + 1/2) = Γ (n/2 − 1/2) · (n/2 − 1/2), we have

E[R] =
n − 1

2
·
(

Γ (n/2)

Γ (n/2 + 1/2)

)2

,



8and sin
e Γ (n/2 + 1/2)/Γ (n/2) <
√

n/2, we obtain the following lower boundon the expe
ted fa
tor by whi
h the approximation error is redu
ed in ea
h step:
E[R] >

n − 1

2
· 2

n
= 1 − 1

n
.This lower bound holds for perfe
t line sear
h and, as a 
onsequen
e, also forany other line-sear
h strategy. Thus this bound is universal for the 
lass of hit-and-run dire
t-sear
h methods.To see how good this general lower bound on E[R] a
tually is, an upperbound on E[R] under the assumption of perfe
t line sear
h would be ni
e. Usingthat Γ (n) = (n − 1)!, Γ (n/2) = (n − 2)!! · √π/2(n−1)/2, and Γ (k + 1/2) =

(2k−1)!!·√π/2k (where k!! is de�ned as 2·4·6 · · ·k for even k, and as 3·5 · · ·k forodd k), the right-hand side of Equation 2 on the previous page 
an be estimatedas follows:
E[R] <

2n− 1

2n
= 1 − 1

2n
.In other words, for perfe
t line sear
h, the expe
ted fa
tor by whi
h the approx-imation error is redu
ed (in ea
h step) is smaller than 1−0.5/n. This shows thatour general lower bound of 1 − 1/n on E[R] is a
tually pretty tight. All in all,we have proved the following result:Theorem 1. Consider the optimization of a fun
tion f : Rn → R with a uniqueoptimum point x∗. Then we have for n ≥ 4:The (hypotheti
al) hit-and-run dire
t-sear
h method whi
h performs a perfe
tline sear
h in ea
h step 
onverges linearly to x∗ at an expe
ted rate of 1 − β/n,where 0.5 < β < 1 (and β may depend on n).Independently of how a hit-and-run dire
t-sear
h method performs the linesear
hes, the expe
ted fa
tor by whi
h the approximation error (i. e. the distan
efrom x∗) is redu
ed is larger than 1 − 1/n in ea
h step. That is, if (at all) ahit-and-run dire
t-sear
h method 
onverges towards x∗, then at best linearly atan expe
ted rate larger than 1 − 1/n.The result on the (expe
ted) fa
tor by whi
h the approximation error is redu
eddire
tly implies a bound on the (expe
ted) spatial gain towards the optimumpoint x∗. Therefore, let d[i] denote the approximation error (i. e. the distan
efrom x∗) after the ith step, and let d[0] denote the initial approximation error.For a �xed d[i−1], let ∆[i] := d[i] − d[i−1] be de�ned as the random variable
orresponding to the spatial gain towards x∗ in the ith step. Then the abovetheorem says that in general, i. e. for any hit-and-run dire
t-sear
h method,

E
[

∆[i]
]

< d[i−i]/n in ea
h step i. Moreover, for perfe
t line sear
h, in ea
h step
E
[

∆[i]
]

= β(n) · d[i−1]/n for some fun
tion β : N → (0.5, 1).Let us sti
k with perfe
t line sear
h in the following. Then the approxima-tion error is non-in
reasing, i. e., d[0] ≥ d[1] ≥ d[2] . . . (a
tually, d[i+1] < d[i] withprobability one, sin
e the randomly 
hosen line lies in H with zero probabil-ity). Thus, in ea
h step ∆[i] < d[i−1]/n ≤ d[0]/n, and 
onsequently, the numberof steps ne
essary for an expe
ted total gain of at least d[0]/2 is larger than
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(d[0]/2)/(d[0]/n) = n/2. However, in general, maximizing the expe
ted total gainof a �xed number of steps need not ne
essarily result in minimizing the expe
tednumber of steps to realize a spe
i�ed gain (for instan
e, to halve the approxima-tion error). Nevertheless, n/2 will turn out to be a lower bound on the expe
tednumber of steps whi
h are ne
essary to halve the approximation error. The proofis a straight-forward appli
ation of the following lemma, whi
h is a modi�
ationof Wald's equation.Lemma 2. Let X1, X2, . . . denote random variables with bounded range and Sthe random variable de�ned by S = min{ t | X1 + · · · + Xt ≥ g} for a given
g > 0. Given that S is a stopping time (i. e., the event {S = t} depends only on
X1, . . . , Xt), if E[S] < ∞ and E[Xi | S ≥ i] ≤ u 6= 0 for i ∈ N, then E[S] ≥ g/u.(A proof 
an be found, e. g., in Jägersküpper, 2007.) We let Xi denote ∆[i]and 
hoose g := d[0]/2. As we have just seen, 0 ≤ ∆[i] ≤ d[0], and sin
e inour s
enario �S ≥ i � merely means that the approximation error has not beenhalved in the �rst i−1 steps, a
tually E

[

∆[i] | S ≥ i
]

< d[0]/n =: u. Finally, wenote that S is in fa
t a stopping time so that g/u = n/2 is indeed a lower boundon the expe
ted number of steps to halve the approximation error (unless E[S]was in�nite, in whi
h 
ase we would not need to prove a lower bound anyway).Due to the linearity of expe
tation, the expe
ted number of steps to halve theapproximation error b ∈ N times is lower bounded by (n/2)+ (b− 1) · (n/2− 1),where the rightmost �−1� emerges be
ause the last step within a halving-phaseis also (and must be 
ounted as) the �rst step of the following halving-phase.Thus, we have just proved the following result.Theorem 3. Let a hit-and-run dire
t-sear
h method optimize a fun
tion in R
n,

n ≥ 4, with a unique optimum. Let b : N → N. For perfe
t line sear
h the expe
tednumber of steps until the approximation error in the sear
h spa
e is less than a
2−b(n)-fra
tion of the initial one is lower bounded by b(n) · n/2 − b(n) + 1.Now that we know that at least n/2 steps are ne
essary in expe
tation to halvethe approximation error, we would like to know whether there is a good 
han
eof getting by with 
onsiderably fewer steps. In fa
t, we want to show that thereis almost no 
han
e of getting by with a little fewer steps. A
tually, we aregoing to prove that 0.4 n steps su�
e to halve the approximation error onlywith an exponentially small probability. Therefore re
all the following notionsand notations, where X and Y denote random variables:� X sto
hasti
ally dominates Y , in short �X ≻ Y,� if (and only if) ∀a ∈ R:

P{X ≤ a} ≤ P{Y ≤ a}.� If X ≻ Y as well as Y ≻ X , i. e., ∀a ∈ R : P{X ≤ a} = P{Y ≤ a}, then Xand Y are equidistributed and we write �X ∼ Y .�Obviously, sto
hasti
 dominan
e is a transitive relation, and it is readily seenthat, if X ≻ Y and E[X ] exists, then E[Y ] ≤ E[X ].



10Theorem 4. Let a hit-and-run dire
t-sear
h method optimize a fun
tion in R
nwith a unique optimum. Let b : N → N su
h that b(n) = poly(n). For perfe
t linesear
h, with a very high probability of 1 − exp(−Ω(n1/3)) more than b(n) · 0.4 nsteps are ne
essary until the approximation error is less than a 2−b(n)-fra
tionof the initial one.Proof. Assume that x[0] 6= x∗. Be
ause in ea
h step perfe
t line sear
h is per-formed, ∆[i]/d[i−1] ∼ ∆[j]/d[j−1] for i, j ∈ N (s
ale invarian
e) . Sin
e moreover

d[0] ≥ d[1] ≥ d[2] . . . , we have ∆[1] ≻ ∆[2] ≻ . . . for the single-step gains. Let
X1, X2, X3, . . . denote independent instan
es of the random variable ∆[1]. Then
∀i ∈ N : Xi ≻ ∆[i], and hen
e ∑k

i=1 ∆[i] ≺ Sk :=
∑k

i=1 Xi. In less formal words:Adding up k independent instan
es of the random variable whi
h 
orrespondsthe spatial gain in the �rst step results in a random variable (namely Sk) whi
hsto
hasti
ally dominates the random variable given by the total gain of the �rst
k steps. The advantage of 
onsidering Sk instead of the �true� total gain of thesesteps is the following: Sk is the sum of independent random variables so that we
an apply Hoe�ding's bound. Namely, Hoe�ding (1963, Theorem 2) tells us:Let X1, . . . , Xk denote independent random variables, ea
h with boundedrange so that ai ≤ Xi ≤ bi with ai < bi for i ∈ {1, . . . , k}. Let

S := X1 + · · · + Xk. Then P{S ≥ E[S] + x} ≤ exp(−2x2/
∑k

i=1(bi−ai)
2)for any x > 0.If the support of ea
h random variable Xi is 
ontained in [a, b] ⊂ R, the upperbound be
omes exp

(

−2 · (x/(b − a))2/k
). So, let k := 0.4n and S := Sk. Then

E[S] = 0.4n · E
[

∆[1]
]

≤ 0.4d[0], and for the appli
ation of Hoe�ding's bound we
hoose x := 0.1d[0], whi
h yields an upper bound of exp(−0.05(d[0]/(b− a))2/n)on the probability that the approximation error is halved in 0.4n steps. We 
an
hoose a := 0 so that we obtain P
{

X1 + · · · + Xk ≥ d[0]/2 | X1, . . . , Xk ≤ b
}

≤
exp(−0.05(d[0]/b)2/n), where b is an upper bound on the gain towards the op-timum point x∗ in a step. Unfortunately, when substituting the trivial upperbound of d[0] for b, the upper bound on the probability be
omes exp(−0.05/n),whi
h tends to one as n grows. For b := d[0]/n2/3, however, we obtain (re
allthat k was 
hosen as 0.4n)

P

{

X1 + · · · + Xk ≥ d[0]/2 | X1, . . . , Xk ≤ d[0]/n2/3
}

≤ e−0.05 n1/3

.Thus, if we 
an show that P
{

Xi > d[0]/n2/3
}

= e−Ω(n1/3) in ea
h of the 0.4nsteps, we obtain (by an appli
ation of the union bound)
P

{

X1 + · · · + Xk ≥ d[0]/2
}

≤ e−0.05 n1/3

+ 0.4n · e−Ω(n1/3) = e−Ω(n1/3).Finally, by another appli
ation of the union bound, we obtain the theorem be-
ause b(n) = poly(n) implies b(n) · e−Ω(n1/3) = e−Ω(n1/3).In other words, it remains to be shown that P
{

∆[0] > d[0]/n2/3
} is a
tuallybounded above by e−Ω(n1/3). Therefore, re
all Equation 1 on page 6. It tells



11us that d − d′ = d · (1 −
√

1 − (g/ℓ)2). As a 
onsequen
e, P
{

∆ > d/n2/3
} isequal to P

{

1 −
√

1 − G2 > 1/n2/3
}

. Solving 1 −
√

1 − G2 > 1/n2/3 for G yields
G >

√

2/n2/3 + 1/n4/3 so that that ∆ > d/n2/3 a
tually implies G >
√

2/n1/3.Sin
e G's density is a non-in
reasing fun
tion in [0, 1],
P

{

G >
√

2/n1/3
}

=

∫ 1

√
2/n1/3

(1 − x2)(n−3)/2 dx <

(

1 − 2

n2/3

)(n−3)/2

.Sin
e (1−t/k)k < e−t for 0 < t < k > 1, we have (1 − 2/n2/3)n2/3

< e−2, so that�nally P
{

∆ > d/n2/3
}

< P
{

G >
√

2/n1/3
}

< e−2·((n−3)/2)/n2/3

= e−n1/3+3/n2/3 .
⊓⊔4 Dis
ussion and Con
lusionEven though it is 
lear from intuition that the lower bounds presented in the twopre
eding theorems do not only hold for perfe
t line sear
h but for any line-sear
hstrategy, they are formally proved only for perfe
t line sear
h. Interestingly, we
an easily show that our theorems hold independently of how the line sear
hing isa
tually done: By indu
tion over the number of steps i we show that the randomvariable whi
h 
orresponds to the approximation error after i steps for a givenline-sear
h strategy sto
hasti
ally dominates the random variable d[i] for perfe
tline sear
h, whi
h we 
onsidered in the proofs.So, hit-and-run dire
t-sear
h methods 
onverge (at best and if at all) linearlywith an expe
ted rate larger than 1 − 1/n. In simple words, the reason forthis is that in high dimensions the randomly 
hosen dire
tion is with a highprobability �almost perpendi
ular� to the dire
tion pointing dire
tly towards theoptimum point x∗. For the further dis
ussion, 
onsider the simple toy problemof minimizing a quadrati
 form x 7→ x⊤Qx, where the n×n-matrix Q is positivede�nite. For this simple s
enario, steepest des
ent 
onverges at least linearly ata rate whi
h is independent of the dimension n but whi
h gets worse when the
ondition number of Q in
reases�when assuming a worst-
ase starting point.In the best 
ase, however, steepest des
ent needs a single (perfe
t) line sear
h todetermine the optimum. Thus, for ill-
onditioned quadrati
s, the performan
eof steepest de
ent heavily depends on the starting point. This is one reasonwhy usually pre
onditioning is applied. Hypotheti
ally assume for a moment theextreme of perfe
t pre
onditioning, so that x⊤Ix = |x|2 is to be minimized.Interestingly, the original evolution strategy from 1965 by Re
henberg/S
hwefel(
f. the introdu
tion), a very simple randomized dire
t-sear
h method whi
hbelongs to the 
lass of hit-and-run methods, needs O(n) f -evaluations with veryhigh probability to halve the approximation error in this s
enario (Jägersküpper,2003), showing that the very general lower bound obtained here 
an be met atleast up to a 
onstant fa
tor. However, in this ideal s
enario steepest des
entneeds a single (perfe
t) line sear
h to �nd the optimum independently of thestarting point. Now, as we 
onsider bla
k-box optimization, steepest des
entmust approximate the gradient. Even though the approximation of the gradient



12may 
ost Θ(n) f -evaluations, a single line sear
h in this approximate dire
tionmay yield a signi�
antly larger gain towards the optimum�whereas a hit-and-run method needs at least 0.5n f -evaluations to halve the approximation error inany 
ase (in expe
tation; 0.4n with very high probability). Thus, with a passablepre
onditioning, the approximation of the gradient should pay o��even thoughit 
osts a linear (in n) number of f -evaluations per step�so that it will likelybe superior to hit-and-run into a random dire
tion.As it should have be
ome 
lear from the dis
ussion above, hit-and-run 
annotbe supposed to 
ompete with methods whi
h learn (and then utilize) se
ond-order information like the well-known BFGS method or generalized 
onjugategradient methods. Clearly, hit-and-run 
an make sense in real-world optimiza-tion when 
lassi
al dire
t-sear
h methods have turned out to fail, for instan
e,when the fun
tion to be optimized is highly multimodal su
h that gradient ap-proximation is de
eptive. However, as we have proved here, we should not expe
tsu
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