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Abstract. In this paper, a general framework of quantum-inspired multi-

objective evolutionary algorithms is proposed based on the basic principles of 

quantum computing and general schemes of multi-objective evolutionary 

algorithms. One of the sufficient convergence conditions to Pareto optimal set 

is presented and it is proved under partially order set theory. Moreover, two 

algorithms are given as examples meeting this convergence condition, in which 

two improved Q-gates are used. Their convergence properties are discussed. 

Additionally, one counterexample is also given. 

Keywords: Quantum computing, multi-objective evolutionary algorithms, 

Pareto optimal set, stochastic convergence. 

1   Introduction 

Many optimization problems in scientific and engineering fields involve 

simultaneously two or more objectives that are competing or in conflict with each 

other frequently. They are known as multi-objective optimization problems (MOP). 

Ordinary MOPs have a set of optimal solutions, which is called Pareto solutions set[1, 

2]. The plot of the objective functions whose vectors of the decision variables are in 

the Pareto solutions set is called the Pareto front[1, 2]. 

As the capability of searching simultaneously whole of solution spaces using a 

population of feasible solutions based on stochastic mechanisms, evolutionary 

algorithms have more advantage in dealing with discontinuous and concave Pareto 

fronts than traditional mathematical programming techniques. A large number of 

multi-objective evolutionary algorithms (MOEA) that employ some innovative 

mechanisms have been proposed during the last two decades, such as , MOGA[3], 

NPGA[4], NSGA[5], SPGA[6], NSGA2[7], SPEA2[8] etc. Some important 

theoretical work related to MOEA has been done. Rudolph has investigated 

convergence properties of some MOEAs under partially ordered finite set theory[9, 

10]. Hanne presented an evolutionary algorithm for approximating the efficient set of 

MOP [11]. 
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Meanwhile, the quantum mechanical computational theory is attracting serious 

attention since their remarkable superiority was demonstrated by several quantum 

algorithms during the last 15 years, such as Shor’s quantum factoring algorithm [12] 

and Grover’s database search algorithm [13]. Integrating the quantum computing 

mechanisms and classical evolutionary algorithms, some quantum-inspired 

evolutionary algorithms (QEA) were proposed in[14-18], which are characterized by 

some quantum mechanics such as uncertainty, superposition, interference etc. In last 

two years, some specific algorithms combining MOEA with QEA, which are called 

quantum-inspired multi-objective evolutionary algorithms (QMOEA) in this paper, 

were proposed to solve the multi-objective knapsack problem (MOKP)[19, 20]. Those 

experiments results show better proximity performance as well as diversity 

maintenance. The theoretical analysis, such as the convergence properties, may be 

significative to design and assess QMOEAs. However, few theoretical results on the 

QMOEA have been done. 

In this paper, we will propose a general framework of QMOEA, and discuss its 

sufficient convergence conditions to the Pareto optimal set and give several example 

algorithms. Therefore section 2 recalls some preliminary material on partially ordered 

set, section 3 presents a general framework of QMOEA, section 4 gives two 

convergent algorithms and a counterexample, their convergence properties are 

discussed in this section, section 5 presents a conclusion.  

2   Preliminaries 

MOP can be defined with a mathematical formulation as follows: 

optimum  f(x)=(f1(x), f2(x),…fd(x))T   s.t. x RS            (2.1) 

where f: S s Rd is a vector-valued objective function, x = [x1,x2,…,xk]
T is the vector 

of decision variables and the S is the feasible set, which is usually defined by some 

constraint functions, 

} ’qjpixhxgRxS ji

k ...2,1,...2,1;0)(,0)(: ???~Œ? .                 (2.2) 

Without loss of generality, let “optimum” mean “minimum” here. We say that a 

solution to a MOP is Pareto optimal if there exists no other feasible solution which 

would decrease some criteria without causing a simultaneous increase in at least one 

other criterion. The set comprising all of Pareto optimal solutions is just the Pareto 

optimal set, which is the goal of multi-objective optimization algorithms (MOA). 

Generally the image set of all feasible solutions in a MOP does not constitute a totally 

ordered set, instead a partially ordered set because of multi-criteria evaluation. The 

theoretical background on the partially ordered set in this paper roots in [9, 21]. Some 

of the basic definitions and theorem as are as follows.  

Let F be a set., we can define a partial order relation “ø” which is a reflexive, 

antsymmetric and transitive relation on F, and a strict partial order relation “<” as an 

antireflexive, asymmetric and transitive relation which may be obtained by the former 

relation by setting x < y := (x ø y) ^ (x Œ y). 

Definition 2.1 Let F be some set. If the partial order relation “ø” is valid on F then 

the pair (F, ø) is called a partially ordered set (or short: poset). If x < y for some x, 



yŒF then x is said to dominate y. Distinct points x, y ŒF are said to be comparable 

when x < y, y < x or x = y. Otherwise, x and y are incomparable which is denoted by 

x || y. If each pair of distinct points of a poset (F, ø) is comparable then (F, ø) is 

called a totally ordered set or a chain. Dually, if each pair of distinct points of a 

poset (F, ø) are incomparable then (F, ø) is termed an antichain. An element x*ŒF 

is called a minimal element of the poset (F, ø) if there is no xŒF such that x < x*. 

The set of all minimal elements, denoted M (F, ø), is said to be complete [9, 21] if for 

each xŒF there is at least one x*ŒM(F, ø) such that x* ø x.  

If the poset (F, ø) is finite then the completeness of M (F, ø) is guaranteed [9]. Let 

f: X s F be a mapping from some set X to the poset (F, ø). For some AØX the set Mf 

(A, ø) = {aŒA: f(a)ŒM( f(A), ø)} contains those elements from A whose images are 

minimal elements in the image space f(A) = {f(a): aŒA}. In order to clarify the notion 

of “stochastic convergence to the set of minimal elements” we need measures on the 

distances between finite point sets. Here the first measure is characterized as follows: 

If A and B are subset of a finite ground set X then d(A,B) = |A:B| - |A3B| is a metric 

on the power set of X. the second measure uses quantity hB(A) =|A| - |A3B| counting 

the number of elements that are in set A but not in set B. 

Definition 2.2 Let At be a solutions set of a MOA at iteration t œ0 and Ft = f(At) its 

associated image set, F* denotes the set of minimal elements. The algorithm is said to 

converge with probability 1 to the entire set of minimal elements if  

d(Ft, F
*) s 0 with probability 1 as t s ı.                 (2.3) 

And the algorithm is said to converge with probability 1 to the set of minimal 

elements if  

hF*(Ft) s 0 with probability 1 as t s ı.                    (2.4) 

Needless to say, d(Ft, F
*) s 0 implies hF*(Ft) s 0.  

3   The Basic Principles and the General Framework of Quantum-

inspired Multi-Objective Evolutionary Algorithms 

A few researchers have proposed some QMOEAs that are mainly based on a 

particular MOEAs, such as Kim, Kim and Han’s QMEA based on the NSGA2 in [20] 

and Meshoul, Mahdi and Batouche’s algorithm based on SPEA2 in [19]. Here we 

present a new general QMOEA framework, which is based on the basic principles of 

QEA and the general schemes of MOEA. 

3.1   The basic principles of quantum-inspired evolutionary algorithm 

A. Q-bits’ Chromosome Representation and Q-individual 

The individuals’ chromosomes in QEA utilize Q-bits representation which is a 

kind of probabilistic representation. Q-bit (or qubit) is abstraction of quantum bit. It is 

the smallest unit of information in QEA, which is defined with a pair of numbers (g, 



く) [22]. Consequently, an individual’s chromosome q can be defined as m Q-bits 

string 
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where miii ,...2,1,1
22 ??- dc . In this paper we call this kind of individual as 

Q-individual. This quantum representation mechanism has the advantage to represent 

a linear superposition of states. All possible combinations of decision variables values 

can be derived from a single Q-individual.  

In fact, there are other similar probabilistic chromosome presentations, such as  

* + mippppq im ,...2,1,10,...21 ?~~? . 

Here pi denotes the probability that the ith Q-bit is in ‘0’ state. However, here we 

use the former presentation because it accord with the Q-gates operators in better 

way. The Q-gates operators are developed from the Walsh-Hadamard transform and 

Hadamard gate used by the physical quantum computing theory [23]. 

B. Q-population and observing population 

For more diversity, QEA maintains a population of Q-individuals, called Q-

population in this paper, using Q(t)={q1
t,q2

t,…qn
t} at each generation t of the 

evolutionary iterative process where n is the size of population and qj
t is a Q-

individual defined as above text. 

A quantum operator called observing is applied in order to obtain feasible solutions 

in QEA. This operator makes a population of binary solutions, P(t)={x1
t,x2

t,…xn
t}, 

which is called observing population in the present paper. Each component xj
t , 

j=1,2,…n is a length m binary string which is formed by selecting either 0 or 1 for 

each bit by using the probability either 2

ic or 2

id , k=1,2,…m of qj
t, respectively.  

C.Uupdating Q-individual and Q-gate 

In QEA process Q-individuals can be updated by applying a variety of Q-gate 

operators, by which the updated Q-bit with a new pair of number (g’, く’) should 

satisfy the normalization condition, 1
2

'
2

' ?- dc . The rotation gate acting on a 

single Q-bit is the basic Q-gate in QEA as follows: 
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where 〉し is a rotation angle toward either 0 or 1 state depending on its objective 

sign. As the rotation gate is applied, a correlative binary individual to each Q-

individual, which is called an objective solution, is often appointed in advance. The 

objective sign to each bit of a Q-individual is defined as the corresponding bit of the 

correlative objective binary individual, respectively. After the rotation gate R(〉し) 

acting on a Q-bit (g, く), the updated Q-bit (g’, く’) satisfy * + * +TT
R dcsdc ,)(, '' ©F? . 

Here 〉し should be designed in compliance with the application problem and each Q-

bit possibly matches with different angles. Several rotation gate strategies can be 

referred in [15, 16, 24]. Here we give a simple 〉し strategy which roots in [24] as 

follows. 



Let the observing individual of qj
t be x = {x1x2…xm} and the objective individual of 

qj
t be b = {b1b2…bm}, where x and b are binary strings. If the xk = 0, bk = 1 and b 

dominates x then 〉し = し0. If the xk = 1, bk = 0 and b dominate x then 〉し = -し0. 

Otherwise, 〉し = 0. Here 0<〉し<0.25ヾ and the values from 0.001ヾ to 0.05ヾ are 

recommended for the magnitude of 〉し. 
Moreover NOT gate and Hi gate are other two operator. The function of the former 

is to exchange the probabilities of ‘0’ state and ‘1’ state in the Q-bit. It can be defined 

as a transformation matrix . The latter is extended from the rotation gate 

and was proposed by Han and Kim in [18]. If acted by H
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i gate, a Q-bit (g, く) would 

be updated as * + ),,(, '' sdcdc g F? H
T , where for * + * +TT

R dcsdc ,)(, '''' F?  

a) if gc ~
2

''  and gd /‡1
2

''  then * + * +TT
gdgcdc /©©? 1)sgn(,)sgn(, '''''' ; 

b) if gc /‡ 1
2

''  and gd ~
2

''  then * + * +TT gdgcdc ©/©? )sgn(,1)sgn(, '''''' ; 

c) otherwise . * + * TT '''''' ,, dcdc ? +
Here 10 >>> g . 

3.2   The General Framework of Quantum-inspired Multi-objective 

Evolutionary Algorithms 

The algorithms for MOP have two main goals in the iterative process: making current 

solutions as close as possible to the Pareto front and as diverse as possible. A number 

of good techniques have been used in order to improve MOEAs, some of them are so 

successful that they have become general schemes, such as nondominated rank 

sorting and selection, maintaining solutions diversity and reserving elitism solutions 

as an external population etc[25]. Integrating the basic principle of QEA and general 

schemes of MOEA, we propose a general framework of quantum-inspired multi-

objective evolutionary algorithms as follows: 

The Procedure of the QMOEAs’ Basic Framework 

Begin 

t q 0 

i)       Initialize Q(t) 

ii)       A(t) ={ }, C(t) = { } 

iii)      While (not termination condition) do 

t q t+1 

iv)     Make P(t) by observing the state of Q(t-1) 

v)             Evolve P(t)                       \\  Sometimes this step can be omitted.  

vi)            Make C(t) = Mf( P(t) C(t-1), ø )      \\ Normally this step is eliminated.  :
vii)    Rebuild the archive set A(t);  

\\ Here A(t)ØMf( P(t) A(t-1), ø ) and maximize the diversity of 

those chosen elements in A(t). 

:

viii)        Make Q(t) by updating Q(t-1) on Q-gates 

End 



End 

i) ~ ii) First the two external archive set A(t), C(t) and the Q-population Q(t) are 

initialized. Set A(0) = h , C(0) = h . Make Q(0) = {qj
0, j=1,2,…n}, where each 

Q-bit in qj
0 have the identical probability of ‘0’ state and ‘1’ state. In other word, 

each Q-bit of qj
0 can be presented as Õ

Ö

Ô
Ä
Å

Ã
2

1
,

2

1 .It means that one Q-individual qj
0 

represents the linear superposition of all possible states with the same 

probability. 

iii)  Until the termination condition is satisfied, the QMOEA is running in the while 

loop. 

iv)  Binary solutions in P(t) are formed by observing the state of Q(t) as above 

subsection.  

v)  P(t) can evolve by using some evolutionary operations, such as simple genetic 

algorithm, evolutionary strategy etc. In fact, this step is not indispensable; it 

may be omitted in some QMOEAs. 

vi)  According to the definition of C(t) = Mf(P(t) C(t-1)), C(t) consists of all 

nondominated solutions in: . Here some efficient techniques can be 

used, such as the fast nondominated sorting method which was proposed in 

NSGA2 [7]. The size of C(t) will continually grow along with the iteration 

cycles. Since the size may be too huge, this step usually is not adopted in 

practice.  

:
t

t
tP

1 1
1

)(
?

vii)  As A(t) MØ f( P(t) A(t-1), ø ), all elements of A(t) are the nondominated 

solutions in : . Unlike C(t), A(t) is the archive set, its size is usually 

changeless. In order to maximize its diversity, some techniques can be used such 

as crowding-distance [7], entropy [17], clustering [26] etc. 

:
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viii)  In this step, Q-individuals in Q(t) are updated by applying Q-gates, such as the 

rotation gate, NOT gate and Hi gate. When the rotation gate are applied, a 

correlative solution to each Q-individual, which is called a objective solution, is 

often selected from A(t). Then the objective sign to each bit of a Q-individual is 

defined as the corresponding bit of the correlative objective solution, 

respectively. 

4   On the Convergence Properties of QMOEA 

4.1   One of the Sufficient Convergence Conditions to QMOEA 

According to those definitions of MOP and partially ordered set in section 2, we look 

upon the image space of MOP, (f(S), ø), as a partially ordered set. The set M(f(S),ø), a 

subset of (f(S),ø), denotes the Pareto optimal set of the MOP. By the construction of 



the basic framework, A(t) is the archives solutions set. Thus we can define the concept 

on convergence to the Pareto optimal set as follows. 

Definition 4.1 Let F* = M(f(S),ø) and A(t) be the archives solutions set of QMOEA. 

The QMOEA is said to converge with probability 1 to the Pareto optimal set if  

hF*(f(A(t))) s 0 with probability 1 as t s ı.                    (4.1) 

Proposition 1 One of sufficient conditions by whose the QMOEA converges with 

probability 1 to its Pareto optimal set is that the set sequence {C(t)} satisfy 

       d(f(C(t)), F
*) s 0 with probability 1 as t s ı.               (4.2) 

where F* = M(f(S),ø) is the minimal elements set of the image set f(S). 

Proof:  Since 0)),1()(()( @/? ttCtPMtC f :  and h?)0(C , 

 and0)),1()(()( @/Ø ttAtPMtA f : h?)0(A , 

we can attain and further . )()( tCtA Ø ))(())(( tCftAf Ø
Let S0 = f(C(t)) – f(A(t)). We can conclude that 

*** ))(())(())),((( FtCfFtCfFtCfd 3: /?
 

**

0

* ))(())(())(( FtCfFSFtAftAf 3:3 /-/?  

**

0 ))(()))(((* FtCfFStAf
F

3: /-?f  

)))(((* tAf
F

f‡ . 

Since hF*(f(A(t))) ø d(f(C(t)), F*), it is clear that if d(f(C(t)), F*) s 0 with 

probability 1 as t s ı then hF*(f(A(t))) s 0 with probability 1 as t s ı. Considering 

the definition (4.1), we have proved this proposition.  ﾐ 

Proposition 2 Let S be a feasible solution set of MOP, sŒS be an arbitrary from 

feasible solution. If the probability P(sŒP(t)) is independent each other for different t 

and there exists a real number i0,0<i0<1, which satisfies P(sŒP(t)) œ i0 for all sŒS, 

all t > 0, then d(f(C(t)), F
*) s 0 with probability 1 as t s ı, where F* = M(f(S),ø) is 

the minimal elements set of the image set f(S). 

Proof: In one ‘while loop’ of the basic framework the P(t) maybe be changed in v) 

step. For avoiding the different understanding, the P(t) always denotes its final result 

in v) step in following text. 

First, we describe d(f(C(t)), F*) s 0 with probability 1 as t s ı with a 

mathematical limit language as follows: 

  , such that   for all t > 

N

10, 11 >>>Œ$ gg R NN Œ& 0 1

* 1)0))),(((( g/‡?FtCfdP

0 . 

Second, we consider the preconditions that can guarantee . The 

poset f(S) is complete since the feasible set S and its image poset f(S) are finite. Let x 

be an arbitrary element of f(S) – F*. There exists at least an element yŒF* and y 

dominate x. By the definitions of C(t), It is guaranteed that if y

0))),((( * ?FtCfd

Œ f(C(t0)) then x 

f(C(t)) is impossible for all t œ tŒ 0. Further, if F*Ø  f(C(t0)) implies that any element 

of f(S) – F* will not stay in f(C(t)) for all t œ t0. In other words, F*Ø  f(C(t0)) implies 

(f(S) - F*)yf(C(t))= h  for all t œ t0. Since f(C(t)) is a subset of f(S), we can affirm that 



if F*Ø  f(C(t0)) and (f(S) - F*)yf(C(t))= h  then F*= f(C(t)). Hence, it is clear that if 

F*Ø f(C(t0)) then 0))(())(())),((( *** ?/? FtCfFtCfFtCfd 3:  for all t œ t0. 

Third, we estimate the probability that all element of F* enter into f(C(t) in K×l 

iterations beginning from t0, * +))(( 0

* lKtCfFP ·-Ø , as follows. By construction of the 

basic QMOEA framework and those definitions of C(t), it is guaranteed the image set 

f(C(t)) is the minimal set of the union set : . As soon as an element of F* 

has entered f(P(t

t

t
tPf

1 1
1

))((
?

0)) then it will be saved in f(C(t0)) and then it will stay in f(C(t)), t œ 

t0, forever.  

Let K = |F*|. Without loss of generality, we can assume that all elements of |F*| are 

label as {s1, s2,…, sK}. Taking into account that the probability P(sRP(t)) is 

independent each other for different t, we can decompose these probability 

expressions in following inequations. Since there exists a real number i0,0<i0<1, 

which satisfies P(s RP(t)) œ i0 for all s RS, all t > 0, we can estimate the probability 

that an element sj, j = 1,2,…,K, enter into f(C(t)) in l iterations beginning from t0 as 

follows: 
* +))(())(( 00 tCfsltCfsP jj º-Œ  

* +))(())((1 00 tCfsltCfsP jj º-º/?  

)))2((()))1((()))((((1 000 -º-ºº/? tPfsandtPfsandtCfsP jjj
 

))))(((... 0 ltPfsandand j -º  

* + * + * +©-º©-º©º/? ))2(())1(())((1 000 tPfsPtPfsPtCfsP jjj
 * +))((... 0 ltPfsP j -º©  

l)1(1 0g//‡ , 

where l and t0 are arbitrary nature number. 

Further, we can estimate the probability that all element of F* enter into f(C(t) in 

K×l iterations beginning from t0 as follows: 
* +))(( 0

* lKtCfFP ·-Ø  

andltPsandltPsP ))2(())((( 0201 -Œ-Œ‡ )))((... 0 lKtPsand K ·-Œ  

* + * +©-º-Œ©º-Œ‡ ))())2())())( 02020101 ltPsltPsPtPsltPsP  

* +)))1(())(... 00 lKtPslKtPsP KK ·/-º·-Œ©  

Kl ))1(1( 0g//‡ , 

where l and t0 are arbitrary nature number. 

Finally, we can sum up the proof by a fit N0 for arbitrary i1 as follows. 

Let
K

N

1

1

0

)1(1

11 log
g

g
//

/? . , we set 10, 11 >>>Œ$ gg R 110 -©‡ NKN and NN Œ0
. Let t0 = 1 

and t > N0. With all the above conclusions we can conclude as follows: 
* +0)),((( * ?FtCfdP  

 * +)(( 10

* NKtCfFP ©-Ø‡
KN

))1(1( 1

0g//‡  

11 g/? . 

Summing up: 1,0,, 1010 >>>Œ$ gggg R ,  such that NN Œ& 0 * + 10 1)1(1
1 gg /‡//

Nt  for all t 

>N0, i.e. it is true that d(f(C(t)), F
*) s 0 with probability 1 as t s ı.   ﾐ 



Considering the proposition 1 and proposition 2, we can immediately conclude the 

theorem 1 as follows, whose proof is omitted. 

Theorem 1 (Sufficient Convergence Condition) Let S be a feasible solution set of 

MOP. One of the sufficient conditions by whose this QMOEA converges with 

probability 1 to its Pareto optimal set is that there exists a real number i0,0<i0<1, 

which satisfies P(s RP(t)) œ i0 for all s RS, t > 0 and P(s RP(t)) is independent from 

each other for different t. 

Remark 1 From theorem 1, we obtain a sufficient convergence condition of QMOEA 

to the Pareto optimal set. However, it is not indispensable. We can give an example 

which does not satisfy this sufficient condition but converge to its Pareto optimal set. 

Remark 2 By the framework’s construction, we know that would be true 

no matter what diversity preserving method. From the proof detail for proposition 1, 

theorem 1 would be true no matter what diversity preserving method to A(t). In other 

words, the different diversity preserving methods do not change the convergence 

properties. 

)()( tCtA Ø

4.2   On the Convergence Property of QMOEA with Hi Gate 

The first example algorithm meeting the convergence condition is the MOEA with Hi 

gate. The Hi gate is firstly proposed by Kim and Han in [18] and we have simply 

described it in subsection (3.1). The procedure of this algorithm is similar with that 

basic framework but the step v) and vi) are eliminated and the Hi gate is adopted in 

step viii) as follows. 

The Procedure of the QMOEA with Hi Gate 

Begin 

t q 0 

i)      Initialize Q(t) 

ii)       A(t) = {} 

iii)      While (not termination condition) do 

t q t+1 

iv)          Make P(t) by observing the state of Q(t-1) 

v)  Rebuild the archive set A(t);  

\\ Here A(t)ØMf( P(t) A(t-1), ø ) and maximize the diversity of 

those chosen elements in A(t). 

:

vi)      Make Q(t) by updating Q(t-1) on Hi gate 

End 

End 

Theorem 2 The QMOEA with Hi gate which is defined above converges with 

probability 1 to its Pareto optimal set. 

Proof: Taking into account the definition of Hi gate, we can conclude 



10 >>& g ,
)(

...

...

2

2

1

1
tQq

t

jm

t

jm

t

j

t

j

t

j

t

jt

j ŒÕ
Õ
Ö

Ô
Ä
Ä
Å

Ã
?$

d
c

d
c

d
c , gdcg /~~ 1,

22
t

jk

t

jk
 where 
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According to the observing operator, if we define the function observing(g, く) as 

one observing operator to Q-bit (g, く), it can only get either 1 or 0. We can estimate 

the probability of the observing result to a Q-bit * +t

jk

t

jk dc ,  as follows: 
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Let us now consider the probability P(sŒP(t)), s RS, t > 0. On the assumption that 

s is an arbitrary element in S, s can be expressed as a binary string {s1s2…sm }, where 

sk is either 0 or 1, k = 1,2,…,m. Further we can conclude the probability of the 

observing result to a Q-individual qj
t: 
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, j = 1,2,.. n, t > 0. Thus we 

can conclude that P(sŒP(t)) œ . mt

j sqobservingP g‡? )))((

Moreover, Considering the construction of the algorithm, it is guaranteed that 

P(sŒP(t)) is independent each other for different t. 

From the theorem 1, we can conclude the theorem 2.   ﾐ 

4.3   On the Convergence Property of QMOEA Rotation Gate and Ni Gate 

The second example is the MOEA with the rotation gate and the Ni gate. We have 

described the rotation gate and NOT gate in subsection (3.1). The Ni gate is a 

modified NOT gate which is proposed in this paper. In fact its function is to exchange 

Q-bit’s parameters with the probability i. Its transformation matrix can be defined as 

follows:  

Ni: Ni =  with probability i; N
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10 i =   with probability 1-i, where 

0<i<<1. 
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The simplified procedure of this algorithm is similar with that basic framework but 

the step v) and vi) are eliminated and the rotation gate and the Ni gate are adopted in 

step viii) as follows: 

The Procedure of the QMOEA with Rotation Gate and NOT Gate with 

Probability 

Begin 

t q 0 

i)        Initialize Q(t) 

ii)       A(t) = {} 

iii)      While (not termination condition) do 

t q t+1 

iv)          Make P(t) by observing the state of Q(t-1) 



v)  Rebuild the archive set A(t);  

\\ Here A(t)ØMf( P(t) A(t-1), ø ) and maximize the diversity of 

those chosen elements in A(t). 

:

vi)      Make Q(t) by updating Q(t-1) on rotation gate 

vii)      Update Q(t) on the Ni gate 

End 

End 

Theorem 3 The QMOEA with the rotation gate and the Ni gate which is defined 

above converges with probability 1 to its Pareto optimal set. 

Proof: First we let the Q(t) in vi) step of the algorithm above as follows:  

Q(t) = { qj
t, j = 1,2,…,n} and 
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Then let us consider the Ni gate. After updated by Ni gate, each Q-bit in qj
t has 

been exchanged its parameters with the probability i. According to the observing 

operator in iv) step of the algorithm, the probability of the observing result to kth Q-

bit qjk
t of qj

t can be expressed as follows: 
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Since 0<i<<1, we can conclude  

* + g‡? 0)( t

jkqobservingP   and  * + g‡? 1)( t

jkqobservingP , k = 1,2,…m. 

Let us now consider the probability P(sŒP(t)), sŒS, t > 0. On the assumption that 

s is an arbitrary element in S, s can be expressed as a binary string {s1s2…sm }, where 

sk is either 0 or 1, k = 1,2,…,m. Further we can conclude the probability of the 

observing result to a Q-individual qj
t: 
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, j = 1,2,.. n, t > 0.  

Thus we can conclude P(sŒP(t)) œ  . )))(( sqobservingP t
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Moreover, Considering the construction of the algorithm, it is guaranteed that 

P(sŒP(t)) is independent each other for different t. 

From the theorem 1, we can conclude the theorem 3.  ﾐ 

4.4   On the Convergence Property of QMOEA Rotation Gate and Ni Gate 

Now we give an algorithm accord with the basic framework, which does not satisfy 

the convergence condition in theorem 1. We show that it can not converge to the 

Pareto optimal set in a specific situation. Further, we can show that in another specific 

situation the algorithm converge to the Pareto optimal set whereas the f(C(t)) can not 

convergence to the entire Pareto optimal set.  

The procedure of this algorithm can be defined as similar with the algorithm with 

rotation gate and Ni gate in subsection (4.3) but the vii) step is eliminated. In this 

algorithm Q(t) is updated only by rotation gate, whose 〉し strategy is same as the 

description in subsection (3.1). By the 〉し strategy, the Q-bit will hold its state if the 



observing bit of the Q-bit equals to its objective sign. Let us assume that all solutions 

are presented by binary digit and the feasible space S = {0,1}4, the Pareto optimal set 

PS = {1111,1110} and 1111 dominate all elements of S - PS. In order to simplify the 

issue, we assume that Q(t) and P(t) are only one individual, i.e. n = 1. Then we give 

two specific situations as follows.  

In the first case, we show a specific situation where the algorithm can not converge 

to the Pareto optimal set. Let 
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d
c , A(t0)yPS =h  and all 

elements in A(t0) accord with schema ‘**0*’,where * denotes either 1 or 0. By the 

observing operator, it is clear that and  accord with schema 

‘**0*’ because the third Q-bit of is (1,0). Hence A(t

}{)1(
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0
0 -?- t

ptP
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0tq 0+1)yPS =h  and all elements 

in A(t0+1) accord with schema ‘**0*’ since A(t0+1) = Mf(A(t0)) : P(t0+1). As the 

objective solution b(t0+1)Œ A(t0+1), b(t0+1) accord with schema ‘**0*’, too. By 

updating operator with 〉し strategy of the rotation gate, we can conclude that 
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c . Now let t = t0 +1, we can repeat the deduction 

as above. Hence in this situation P(1111ŒP(t))= P(1110ŒP(t))=0, t > t0, so the 

convergence condition is not satisfied. Further, it can not converge to the Pareto 

optimal set forever because A(t)yPS =h , t > t0. Here it is an example that a QMOEA 

does not satisfy the convergence condition. 

Remark 4 From above text, we obtain an example which does not satisfy the 

convergence condition and does not converge to the Pareto optimal set. 

 In the second case, let 
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0+1) ={1111} and C(t0+1) ={1111} since A(t0+1) = 

Mf(A(t0) P(t: 0+1), C(t0+1) = Mf(C(t0): P(t0+1) and 1111 dominate all elements of S 

- PS. By the updating operator with 〉し strategy of the rotation gate, 
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as above. Hence in this situation P(1110RP(t))=0, t > t0, so the convergence 

condition is not satisfied. Further, C(t) can not converge to the entire set PS forever 

because 1110ºC(t), t > t0. But A(t) converge to PS because A(t) PS, t > tØ 0. So the 

convergence condition is sufficient but indispensable. 

Remark 5 From above text, we obtain an counterexample in which C(t) does not 

converge the entire Pareto optimal set but A(t) converge to the Pareto optimal set. 



5   Conclusions 

In this article we have presented a general framework for quantum-inspired 

multiobjective evolutionary algorithms. Roughly speaking, this is an integration of the 

basic principles of quantum computing and general schemes of MOEA, such as Q-bit 

individual presentation, observing operator, Q-gate updating operator, external 

archive set, nondominated sorting, diversity preserving etc. We give one of sufficient 

convergence conditions for the basic framework and its proof bases on the partial set 

theory and probability theory. Then we present two algorithms those satisfy this 

convergence condition. One is with Hi Gate and another is with the rotation gate and 

NOT gate with probability. These theoretical characters may be useful for designing 

QMOEAs. 

Despite of these strong theoretical features on convergence, we need numerical 

results with these QMOEAs. Furthermore, efficiency and diversity are also significant 

to multiobjective optimization algorithms besides the convergence. These issues 

should be subject of future work. 
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