
UNIVERSITY OF DORTMUND

REIHE COMPUTATIONAL INTELLIGENCE

COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

When the plus strategy performs better
than the comma strategy - and when not

Jens Jägersküpper and Tobias Storch

No. CI-219/06

Technical Report ISSN 1433-3325 November 2006

Secretary of the SFB 531 · University of Dortmund · Dept. of Computer Science/XI
44221 Dortmund · Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence,” at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46908847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

When the plus strategy performs better
than the comma strategy—and when not?

Jens Jägersküpper and Tobias Storch
Department of Computer Science 2

University of Dortmund
44221 Dortmund, Germany

{jens.jaegerskuepper | tobias.storch}@cs.uni-dortmund.de

Abstract

Occasionally there have been long debates on whether to use elitist selection or not. In
the present paper the simple (1,λ) EA and (1+λ) EA operating on {0, 1}n are compared by
means of a rigorous runtime analysis. It turns out that only values for λ that are logarithmic
in n are interesting. An illustrative function is presented for which newly developed proof
methods show that the (1,λ) EA—where λ is logarithmic in n—outperforms the (1+λ) EA
for any λ. For smaller offspring populations the (1,λ) EA is inefficient on every function
with a unique optimum, whereas for larger λ the two randomized search heuristics behave
almost equivalently.

I. I
Evolutionary algorithms (EAs) belong to the broad class of general randomized

search heuristics. Their area of application is as huge as their variety and they
have been applied in numerous situations successfully. Among the best-known and
simplest EAs are the (µ+λ) EA and (µ,λ) EA [1]. The “µ” indicates that a parent
population of size µ is used, whereas “λ” denotes the application of an offspring
population of size λ. Whether the elements of the descendant population are selected
either from the parent and offspring population or from the offspring population only
is indicated by “+” and “,” respectively. Thus, for the comma strategy necessarily
λ ≥ µ (for λ = µ, there is actually no selection).

Runtime analysis started with very simple EAs such as the (1+1) EA on example
functions [2], [3]. Nowadays, one is able to analyze its runtime on practically relevant
problems such as the maximum matching problem [4]. However, for more complex
EAs and (typical) example functions, the effects of applying either a larger offspring
or a large parent population size were investigated theoretically [5], [6]. In this paper,
we aim at a systematic comparison of the plus and the comma strategy with respect
to the offspring population size. These investigations improve our ability to choose

? supported by the German Research Foundation (DFG) through the collaborative research center “Computa-
tional Intelligence” (SFB 531) resp. grant We 1066/11

2

an appropriate selection method, which has been debated a long time. Furthermore,
they contribute to the discussion on the effects of selection pressure in evolutionary
computation. In order to concentrate on these effects we consider simple EAs that
allow for a rigorous analysis, but avoid unnecessary complications due to the effects
of other EA components. Here we consider the maximization of pseudo-Boolean
objective (fitness) functions f : {0, 1}n → R, n ∈ N. We investigate the following
optimization heuristics, known as (1+λ) EA and (1,λ) EA, using a parent population
of size one and standard bit-mutation “mutate1/n(x)”, where each bit of x ∈ {0, 1}n is
flipped independently with probability 1/n, cf. [1], [5].

(1+λ) EA and (1,λ) EA
1) Set t := 1 and choose xt ∈ {0, 1}n uniformly at random.
2) Set t := t + 1 and let yt,1 := mutate1/n(xt−1), . . . , yt,λ := mutate1/n(xt−1).
3) Choose yt ∈ {yt,1, . . . , yt,λ} arbitrarily among all elements with largest f -value.

(1+λ) EA: If f (yt) ≥ f (xt−1), then set xt :=yt,
else set xt := xt−1.

(1,λ) EA: Set xt :=yt.
4) Goto 2.

The number of f -evaluations which are performed until the t(n)th step is completed,
equals 1 + λ · (t(n) − 1) for t(n) ≥ 1. In contrast to the (1+λ) EA, the (1,λ) EA
occasionally accepts an element that is worse than the previous one (unless the
function to be optimized is constant). This can avoid stagnation in local optima.
However, it may also cause a slow(er) movement towards global optima. It was often
argued that the difference between an elitist (1+λ) EA and a non-elitist (1,λ) EA is less
important in {0, 1}n, e.g. [5]. Here we will point out in detail when this is correct—but
we also demonstrate when this is definitely not the case. More precisely, in Section III
we show that a comparison of plus and comma strategy is interesting in particular
for offspring populations of size λ with ln(n)/14 < λ = O(ln n). Investigating
λ = 1 for the (1+λ) EA does make sense, but for the (1,λ) EA it does not: For
any λ ≤ ln(n)/14, the comma strategy indeed fails to optimize any function with a
unique global optimum. Furthermore, for λ = ω(ln n) (i.e., ln n/λ→ 0 as n→ ∞) it
is rather unlikely to observe any difference in the populations of the (1+λ) EA and
the (1,λ) EA in a polynomial number of steps. These observations are applied and
extended for a simple (unimodal) example function and (asymptotically) tight bounds
on the heuristics’ runtimes are obtained. In Section IV we extend the well-known
proof technique of f -based partitions such that it can be applied to (1+λ) EA and
(1,λ) EA. With the help of this method we demonstrate the algorithms’ different
strengths and weaknesses. Namely, for a simple (multimodal) example function
we apply the method and demonstrate the possible major disadvantage of the plus
strategy compared to the comma strategy. The runtime bounds to be presented are
again tight. We finish with a summary and some conclusions in Section V and
continue with some preliminaries in the following Section II.

3

II. P
The efficiency of a randomized algorithm is (usually) measured in the following

way. For ? ∈ {“ + ”; “, ”} let T?fn,λ(x) denote the random variable which corresponds
to the number of function evaluations—the runtime—of the (1?λ) EA to create an
optimum of fn : {0, 1}n → R, n ∈ N, for the first time, where the initial element is
x ∈ {0, 1}n. (We can ignore a stopping criterion and analyze an infinite stochastic
process.) If for a sequence of functions f = (f1, . . . , fn, . . .) the expected runtime of
the (1?λ) EA to optimize fn, namely

∑
x∈{0,1}n E[T?fn,λ(x)]/2n (since the initial element

x is chosen uniformly at random), is bounded by a polynomial in n, then we call the
(1?λ) EA efficient on f , whereas we call it totally inefficient if the probability that an
optimum is created remains exponentially small even after an exponential number
of steps. In this case, a polynomially bounded number of (parallel) independent
multistarts of the algorithm is still totally inefficient. For the notations on asymptotics
see [7].

III. S  L O P
A. Small Offspring Populations

We take a closer look at the smallest possible offspring population size. On the
one hand, the (1+1) EA (can reasonably be applied) optimizes any function in an
expected runtime O(nn), and functions are known where it needs an expected runtime
Θ(nn). On the other hand, the (1+1) EA optimizes any linear function in an expected
runtime O(n ln n), and it needs an expected runtime Θ(n ln n) if the linear function has
a unique global optimum [2]. In contrast, the (1,1) EA (cannot reasonably be applied)
optimizes any function in an expected runtime O(2n), but it also needs an expected
runtime Θ(2n) if the function has a unique global optimum [3]. This is because the
closer the search point xt of the (1,1) EA is to the unique optimum, the larger the
probability of xt+1 to be located farther away from the optimum. Let us consider the
(1,λ) EA with larger offspring populations, yet λ ≤ ln(n)/14. We demonstrate that a
strong drift away from the optimum still exists. Namely, if xt is reasonable close to
the optimum, then with a large probability all elements in the offspring population
are even farther away from the optimum. Since comma selection is applied, one of
these elements becomes xt+1. Thus, it is time-consuming to create the optimum.

Theorem 1 Given a function f : {0, 1}n → R with a unique global optimum x′ ∈
{0, 1}n and λ ≤ ε(n) ln(n)/7 with ε(n) ∈ [7/ ln n, 1/2], with probability 1 − 2−Ω(n1−ε(n))

the (1,λ) EA needs a runtime larger than 2n1−ε(n)
to optimize f .

With ε(n) := 7/ ln n we obtain for the (1,1) EA a lower bound on the runtime to
optimize f of 2Ω(n) which holds not only in expectation (cf. the result in [3]) yet
also with an overwhelming probability. Even the (1,bln(n)/14c) EA (i.e., we choose
ε(n) := 1/2) is still totally inefficient.

4

To prove Theorem 1, we recall a result on Markov processes (and drift). A Markov
process M on m < ∞ states, namely 0, . . . ,m− 1, is described by a stochastic m×m-
matrix P of transition probabilities (Pi, j, 0 ≤ i, j ≤ m − 1: probability to transit from
state i to state j) and a stochastic row vector p ∈ [0, 1]m of initialization probabilities
(pi, 0 ≤ i ≤ m − 1: probability to initialize in state i). The ith entry of the stochastic
row vector pPt−1 corresponds to the probability ofM being in state i after the tth step
for 0 ≤ i ≤ m − 1 and t ≥ 1. For more detailed investigations of Markov processes
see [7]. The following result was proven in [4] and goes back to a result in [8].

Lemma 2 Given a Markov process M on m states, a state ` ∈ {0, . . . ,m − 1}, and
α(`), β(`), γ(`) > 0, if
1)
∑m−1

j=0 pi, j · e−α(`)·(j−i) ≤ 1 − 1/β(`) ∀i ∈ {0, . . . , `},
2)
∑m−1

j=0 pi, j · e−α(`)·(j−`) ≤ 1 + γ(`) ∀i ∈ {`, . . . ,m−1},
then the 0th entry of the m-vector pPt−1 is bounded from above by

t · e−α(`)·` · β(`) · (1 + γ(`)) +
`−1∑
j=0

p j .

In the following we prove Theorem 1:
Proof: The runtime is larger than 1+λ·(t(n) − 1) ≥ t(n), if the unique optimum x′

is not created in the first t(n) steps. We assume that, once the (1,λ) EA has created x′,
afterwards x′ would be kept forever. Thus, we are interested in the event x

b2n1−ε(n)
c
= x′.

If its probability is 2−Ω(n1−ε(n)), then we obtain the claimed result.
We describe a Markov process M on n + 1 states with the following property. At

least with the same probability,M is in a state i, . . . , n after t(n) steps as the (1,λ) EA
generates an element xt(n) with Hamming distance H[xt(n), x′] ≥ i from the optimum
x′. If this holds for all i ∈ {0, . . . , n}, the (1,λ) EA generates the optimum at most
with the same probability as M reaches state 0 (in a given number of steps). With
pi :=

(
n
i

)
/2n, M has the desired property for t(n) = 1 (even equality holds). If M is

in state i after t(n) steps, with at least the same probability holds H[xt(n), x′] ≥ i for
the (1,λ) EA with xt(n). In this situation, assume that the probability of creating xt(n)+1

is bounded above by pi,≤ j, where H[xt(n)+1, x′] ≤ j. Ensuring pi,0 + · · ·+ pi, j ≥ pi,≤ j is
sufficient, so that M has the desired property also in the following step. For j < i
we set pi, j to (at least) the maximum of the probabilities that an xt(n) generates xt(n)+1

with H[xt(n)+1, x′] = j, so that the inequality holds for j < i. We set p0,0 := 1 and the
inequality holds for i = 0. We set pi,i+1 for i ≥ 1 to (at most) the minimum of the
probabilities that xt(n) generates xt(n)+1 with H[xt(n)+1, x′] ≥ i + 1. Moreover, pi, j := 0
for j ≥ i + 2 a well as pi,i := 1 − pi,i+1 −

∑i−1
j=0 pi, j, so that the inequality holds for

j ≥ i and i ≥ 1.
In order to apply Lemma 2 for M with ` := bn1−ε(n)c, α(`) := 6/5, β(`) := 32`,

and γ(`) := 1, we have to prove that the following two conditions are fulfilled.

5

1)
∑n

j=0 pi, j · e−(6/5)·(j−i) ≤ 1 − 1/(32bn1−ε(n)c) for all i ∈ {1, . . . , bn1−ε(n)c − 1}.
Firstly, we consider j < i and an element x with H[x, x′] = i + k, 0 ≤ k ≤ n − i.
In order to decrease the Hamming distance from the optimum to j, for at least
one of its λ offspring, i + k − j out of i + k specific bits must flip. Hence,

pi, j ≤ max{λ ·
(

i+k
i+k− j

)
/ni+k− j | k ∈ {0, . . . , n−i}} ≤ λ ·

(
i

i− j

)
/ni− j ,

since
(

i+k
i+k− j

)
=
(

i
i− j

)
·

(i+k)···(i+1)
(j+k)···(j+1) ≤

(
i

i− j

)
· nk. Furthermore, with

(
i

i− j

)
≤ ii− j it holds

λ ·
(

i
i− j

)
/ni− j ≤ λ · ii− j/ni− j ≤ λ · n(1−ε(n))(i− j)/ni− j = λ · n−ε(n)(i− j) .

Secondly, we consider j = i + 1 for i > 0 and an element x with H[x, x′] = i + k,
0 ≤ k ≤ n − i.
• For k = 0 it is sufficient that each of its λ offspring equals x except for

one bit which is flipped such that the Hamming distance to the optimum is
increased.

• For k ≥ 1 it is sufficient, that each of its λ offspring is a duplicate of x.
In these cases, the Hamming distance to the optimum is at least i + 1. Hence,

pi,i+1 ≥ min{
(

n−i
1

)
· 1

n

(
1 − 1

n

)n−1
,
(
1 − 1

n

)n
}λ ≥ (6/17)λ

because (1− 1/n)n ≥ 6/17 and (n− i)/n · (1− 1/n)n−1 ≥ (n− n1−7/ ln n)/(en) ≥ 6/17.
Furthermore, using the fact that ln(6/17) · 1/7 ≥ −1/6, we have

(6/17)λ ≥ (6/17)ε(n) ln(n)/7 ≥ n−ε(n)/6 .

It remains to prove that
∑i−1

j=0 λ ·n
−ε(n)(i− j)e(6/5)·(i− j)+ (1−n−ε(n)/6−

∑i−1
j=0 λ ·n

−ε(n)(i− j)) ·
e(6/5)·0 + n−ε(n)/6 · e(6/5)·(−1) ≤ 1 − n−(1−ε(n))/32 for 0 < i < bn1−ε(n)c. By an index
transformation and due to the convergence property of infinite geometric series

i∑
j=1

λ · n−ε(n) je
6 j
5 ≤ λ

∞∑
j=1

(n−ε(n)e
6
5) j =

λ

nε(n)e−
6
5 − 1

follows. Furthermore, with λ ≤ ε(n) ln(n)/7 it holds

λ

nε(n)e−6/5 − 1
≤
ε(n) ln(n)

7nε(n)e−6/5 − 7
≤

2n−ε(n)/6

3

since ε(n) ≥ 7/ ln n and furthermore, with e5ε(n) ln(n)/6 ≥ 1 + 5ε(n) ln(n)/6 it is

0 ≤ ε(n) ln(n) · (
14
3
·

5
6
· e−

6
5 − 1) +

14
3

(e−
6
5 − e−

7
6)

≤
14
3
· e−

6
5 · n

5ε(n)
6 −

14
3
· n−

ε(n)
6 − ε(n) ln(n)

=
2n−

ε(n)
6

3
· (7nε(n)e−

6
5 − 7) − ε(n) ln(n) .

6

Since

1 − n−ε(n)/6 −

i−1∑
j=1

λ · n−ε(n) j ≤ 1 − n−ε(n)/6 ,

the inequality mentioned above is fulfilled with 2n−ε(n)/6/3 + (1 − n−ε(n)/6) +
n−ε(n)/6e−6/5 ≤ 1 − n−ε(n)/6/32 ≤ 1 − n−(1−ε(n))/6/32 since ε(n) ≤ 1/2.

2)
∑n

j=0 pi, j · e−(6/5)·(j−bn1−ε(n)c) ≤ 2 for all i ∈ {bn1−ε(n)c, . . . , n}.
Similar to the proof that the first condition is met, we also have pi, j ≤ λ ·

n−ε(n)(bn1−ε(n)c− j) for j < i. Thus,
∑bn1−ε(n)c−1

j=0 λ · n−ε(n)(bn1−ε(n)c− j)e(6/5)·(bn1−ε(n)c− j)

+(1−
∑bn1−ε(n)c−1

j=0 λ ·n−ε(n)(bn1−ε(n)c− j)) ·e(6/5)·0 ≤ 2n−ε(n)/6/3+1 ≤ 2 for bn1−ε(n)c ≤ i ≤ n.
To apply Lemma 2 we must finally estimate

∑`−1
j=0 p j. Since ` ≤ bn1−ε(n)c ≤ bn/e7c

with ε(n) ≥ 7/ ln n,

`−1∑
j=0

(
n
j

)
/2n ≤

bn/e7c−1∑
j=0

(
n
j

)
/2n ≤ n ·

(
n

bn/e7c

)
/2n ≤ n ·

(en
n/e7

)n/e7

/2n = eln n+8n/e7−n ln 2 ≤ e−n/3 .

Now, applying Lemma 2 with t = b2n1−ε(n)
c leads to a probability of at most b2n1−ε(n)

c ·

e−(6/5)·bn1−ε(n)c · 32bn1−ε(n)c · (1+ 1)+ e−n/3 = 2−Ω(n1−ε(n)) that M reaches state 0 in the first
b2n1−ε(n)

c steps.

B. Large Offspring Populations
With an offspring population size λ of any appreciable size, the (1+λ) EA and the

(1,λ) EA will not differ significantly in the way they search {0, 1}n. This was claimed
in [5] since in this situation . . . the offspring population will almost surely contain
at least one exact copy of the parent. We extend this statement and make it more
precise in the following. Therefore, let f be a function and for t(n) ≥ 1 let

st(n) := x1, y2,1, . . . , y2,λ, y2, x2, y3,1, . . . , y3,λ, y3,

. . . , xt(n), yt(n)+1,1, . . . , yt(n)+1,λ, yt(n)+1

be a sequence of (λ + 2) · t(n) elements from {0, 1}n. The (1?λ) EA observes st(n)

(while optimizing f) if with positive probability the following holds: The elements
x1, . . . , xt(n) appear as the first t(n) parents and, for t ∈ {2, . . . , t(n)+ 1}, yt can appear
as the selected offspring out of the λ offspring yt,1, . . . , yt,λ of xt−1. We consider a
sequence st(n) observed by the (1?λ) EA. Recall that the (1?λ) EA and the (1?̄λ) EA
differ only in step 3, where ?̄ denotes the other of the two symbols {“ + ”; “, ”}.

If ∀ t ∈ {2, . . . , t(n)} : f (yt) ≥ f (xt−1), then the condition in step 3 is always
fulfilled. The (1?λ) EA and (1?̄λ) EA observe with equal probability: the same x1

and with the same parent xt−1 the same sequence of offspring yt,1, . . . , yt,λ and even
the selected offspring yt is determined identically. Thus, the (1?λ) EA and (1?̄λ) EA
observe the sequence st(n) with equal probability while optimizing f . The set of these
sequences is denoted by S +, , f ,t(n).

7

If ∃ t ∈ {2, . . . , t(n)} : f (yt) < f (xt−1), then the condition in step 3 is in step t
not fulfilled. In case f (yt) < f (xt−1) also yt , xt−1 and the (1?λ) EA and (1?̄λ) EA
surely select different elements to be xt. Thus, the sequence st(n) is not observed by
the (1?̄λ) EA while optimizing f . The set of these sequences is denoted by S ?, f ,t(n).

We bound the probability to observe a sequence of S +, , f ,t(n) by the (1+λ) EA and
(1,λ) EA. If at least one of the offspring yt,1, . . . , yt,λ is a duplicate of its parent
xt−1, then necessarily f (yt) ≥ f (xt−1). Its probability is bounded from below by
1−
(
1−(1−1/n)n)λ ≥ 1−

(
1−6/17)λ = 1−(11/17)λ for n large enough. With probability

at most (t(n) − 1) · (11/17)λ, this does not happen for at least one t ∈ {2, . . . , t(n)}.

Lemma 3 Given f : {0, 1}n → R and n large enough, with probability at least
1 − (t(n) − 1) · (11/17)λ the (1+λ) EA as well as the (1,λ) EA (with an arbitrary x1)
observe a sequence from S +, , f ,t(n) for t(n) ≥ 1.

This lemma helps to transfer success probabilities and even expectation values for
optimization from the (1+λ) EA to the (1,λ) EA and vice versa. In particular, when
the offspring population is large – with respect to the period considered.

We consider a runtime of `(n) with 1 ≤ `(n) ≤ 1+λ, i.e. at most two steps. For any
λ, the (1?λ) EA and (1?̄λ) EA optimize a function f within the first `(n) function
evaluations with equal probability in this case.

We consider a runtime `(n) with 2+λ ·(t(n)−1) ≤ `(n) ≤ 1+λ · t(n) for t(n) ≥ 2, i.e.
at most t(n) + 1 steps. Let E? be the event that the (1?λ) EA has not optimized the
function f in the first `(n) function evaluations. This event occurs iff the (1?λ) EA
observes a sequence st(n) where all `(n) elements x1,2,1 , . . . , y2,λ, y3,1, . . . , y3,λ, . . . ,
yt(n)+1,1, . . . , yt(n)+1,`(n)−λ·(t(n)−1)−1 are non-optimal. We decompose E? into two disjoint
events E?1 , that st(n) ∈ S +, , f ,t(n), and E?2 , that st(n) < S +, , f ,t(n), i.e., st(n) ∈ S ?, f ,t(n). As
we have seen, each sequence from S +, , f ,t(n) occurs with the same probability for
the (1?λ) EA and (1?̄λ) EA. Thus, Pr[E?1] = Pr[E?̄1] and hence, Pr[E?̄] = Pr[E?̄2] +
Pr[E?̄1] = Pr[E?̄2] + Pr[E?1] = Pr[E?̄2] + Pr[E?] − Pr[E?2].

Consider λ ≥ (5/2) · (1+ c(n)) · ln t(n), where c(n) ≥ 0. By Lemma 3 the (1?λ) EA
and (1?̄λ) EA observe a sequence from S +, , f ,t(n) with probability at least 1 − (t(n) −
1) · (11/17)λ ≥ 1 − t(n) · (11/17)(5/2)·(1+c(n))·ln t(n) ≥ 1 − t(n) · 1/t(n)1+c(n) = 1 − 1/t(n)c(n)

since ln(11/17) · (5/2) ≤ −1. So, a sequence of S ?, f ,t(n) is observed with probability
at most 1/t(n)c(n) by the (1?λ) EA. Since E?2 implies that the (1?λ) EA observes a
sequence from S ?, f ,t(n), 0 ≤ Pr[E?2] and Pr[E?̄2] ≤ 1/t(n)c(n), and hence, −1/t(n)c(n) ≤

Pr[E?̄2] − Pr[E?2] ≤ 1/t(n)c(n).

Theorem 4 Let f : {0, 1}n → R, x ∈ {0, 1}n and n large enough be given.
1) For 0 ≤ `(n) ≤ 1 + λ holds:

Pr[T ?̄f ,λ(x) > `(n)] = Pr[T?f ,λ(x) > `(n)]

8

2) For 2+λ·(t(n)−1) ≤ `(n) ≤ 1+λ·t(n), where t(n) ≥ 2 and λ ≥ (5/2)·(1+c(n))·ln t(n),
c(n) ≥ 0, holds:

Pr[T ?̄f ,λ(x) > `(n)] ≤ Pr[T?f ,λ(x) > `(n)] + 1/t(n)c(n)

Pr[T ?̄f ,λ(x) > `(n)] ≥ Pr[T?f ,λ(x) > `(n)] − 1/t(n)c(n)

The next section shows an exemplary application of this result.

C. Application to OM
Let us investigate one of the best-known functions, namely OM : {0, 1}n → R,

where
OM(x) := |x| .

Even its analogue in continuous search spaces is well-studied, e.g. in [9]. Part 1 of
the following theorem was proven in [5] (it even holds for the (1+λ) EA with an
arbitrarily fixed x1). Let us consider a phase of

d3 max{E[T+OM,λ(x)] | x ∈ {0, 1}n}/λ + 67e =: Eλ

steps, each creating λ offspring. By Markov’s inequality [7] the (1+λ) EA does not
create the optimum in such a phase with probability at most E[T+OM,λ(x)]/(λ ·Eλ) ≤
1/3 for every x. We observe, for λ ≥ 3 ln n holds (5/2) · (1 + 1/7) · ln Eλ ≤ λ since
Eλ ≤ cn for an appropriate large constant c. Hence, by Theorem 4.1, the (1,λ) EA does
not create the optimum in such a phase with probability at most 1/3+ 1/E1/7

λ ≤ 1/2,
i.e., with probability at least 1/2 it does. In the case of a failure we can repeat the
argumentation. The expected number of repetitions is upper bounded by 2 and we
obtain part 3 of the following theorem since 1 + 2 · λ · Eλ = O(max{E[T+OM,λ(x)] |
x ∈ {0, 1}n}). Finally, part 2 of the following theorem results by Theorem 1 since
OM has the unique optimum 1n.

Theorem 5
1) The expected runtime of the (1+λ) EA on OM is

• O(n ln n) if λ = O((ln n)(ln ln n)/ ln ln ln n), and
• O(λn) if λ = Ω(ln n).

2) If λ ≤ ε(n) ln(n)/7 for ε(n) ∈ [7/ ln n, 1/2], then with probability 1−2−Ω(n1−ε(n)) the
(1,λ) EA needs a runtime larger than 2n1−ε(n)

to optimize OM.
3) If λ ≥ 3 ln n, then the expected runtime of the (1,λ) EA on OM is

• O(n ln n) if λ = O((ln n)(ln ln n)/ ln ln ln n), and
• O(λn).

9

IV. O P   N L N S
We present two proof techniques – one for the (1+λ) EA and one for the (1,λ) EA –

which are inspired by the method of f -based partitions from [10]. They demonstrate
the different strengths and weaknesses of the two selection strategies. The original
method of f -based partitions helps to upper bound the expected runtime of the
(1+1) EA to optimize a particular function and is widely applied. Recently, this
method was successfully extended for a (µ+1) EA in [11].

Given f : {0, 1}n → R and A, B ⊆ {0, 1}n, A, B , ∅, the relation A < f B holds,
iff f (a) < f (b) for all a ∈ A, b ∈ B. We call A0, . . . , Am an f -based partition, iff
A0, . . . , Am is a partition of {0, 1}n, A0 < f · · · < f Am, and Am contains optima only,
i.e., f (a) = max{ f (b) | b ∈ {0, 1}n} for each a ∈ Am. Moreover, for i ∈ {0, . . . ,m − 1}
let p(a), a ∈ Ai, denote the probability that a mutation of a is in Ai+1 ∪ · · · ∪ Am and
p(Ai) := min{p(a) | a ∈ Ai}, i.e., p(Ai) is a lower bound on the probability to leave Ai

with a mutation.

A. (1+λ) EA
For the (1+λ) EA to leave Ai, i < m, once and for all, at least one of the λ offspring

must be in Ai+1 ∪ · · · ∪ Am.

Lemma 6 Given f : {0, 1}n → R and an f -based partition A0, . . . , Am, let

p+i := 1 − (1 − p(Ai))λ for i ∈ {0, . . . ,m − 1} .

The (1+λ) EA (with an arbitrarily initialized x1) optimizes f in an expected runtime
of at most

1 + λ ·
(1

p+0
+ · · · +

1
p+m−1

)
.

Proof: We describe a Markov process M on m + 1 states with the following
property. The probability that M is in a state i, . . . ,m after t(n) steps is at most the
probability that the (1+λ) EA generates an element xt(n) with xt(n) ∈ Ai ∪ · · · ∪ Am.
If this holds for all i ∈ {0, . . . ,m}, the (1+λ) EA generates at least with the same
probability an optimum as M reaches state m (in a given number of steps). We set
p0 := 1 and pi := 0 for i ≥ 1, so that M has the claimed property for t(n) = 1 and
arbitrary x1. If M is in state i after t(n) steps, with at least the same probability
xt(n) ∈ Ai ∪ · · · ∪ Am for the (1+λ) EA with xt(n). In this situation, it is impossible to
create an xt(n)+1 ∈ A0 ∪ · · · ∪ Ai−1. Moreover, p+i is a lower bound on the probability
to create xt(n)+1 ∈ Ai+1 ∪ · · · ∪ Am since it suffices that at least one of λ offspring is
therein. Thus, we set pi, j := 0 for 0 ≤ j < i ≤ m and i + 2 ≤ j ≤ m, pi,i+1 := p+i ,
and pi,i := 1 − p+i for 0 ≤ i < m, and pm,m := 1. This ensures that M has the desired
property also in the following step.

The expected number of steps to move from state i to state m equals Ei :=
1 + p+i · Ei+1 + (1 − p+i) · Ei = 1/p+i + Ei+1 for i ∈ {0, . . . ,m − 1}, and Em = 0. Thus,
E0 equals 1/p+0 + · · ·+ 1/p+m−1. With the initialization and the λ function evaluations

10

in each further step, the (1+λ) EA optimizes f in an expected runtime of at most
1 + λ · E0.

For λ = 1 we obtain the original result for the (1+1) EA presented in [10]. We
apply this method exemplarily to OM. We consider the partition A0, . . . , An with
Ai := {x | |x| = i}. Then p+i ≥ 1 −

(
1 − n−i

en

)λ
≥ 1 − e−

λ(n−i)
en ≥ 1 − 1

1+ λ(n−i)
en
=

en+λ(n−i)
λ(n−i) (cf.

[5]). Hence, by applying Lemma 6, the (1+λ) EA optimizes OM in an expected
runtime of at most 1 + λ

∑n−1
i=0

en+λ(n−i)
λ(n−i) = O(n ln n + λn). This already proves a major

part of Theorem 5.1.

B. (1,λ) EA
Theorem 4 enables us to easily transfer Lemma 6 to the (1,λ) EA. For steps

which do not create a duplicate, we may pessimistically assume that they lead to
a disadvantage, or we may optimistically assume that they lead to an advantage,
depending on whether we aim at an upper or at a lower bound on the (expected)
runtime.

Given f : {0, 1}n → R, let A0, . . . , Am be a (not necessarily f -based) partition of
{0, 1}n such that Am consists of optima only. Let the probability that a mutation of
a ∈ Ai generates some b
• in A0 ∪ · · · ∪ Ai−1 such that f (b) ≥ f (a) be denoted by p−(a),
• in Ai+1 ∪ · · · ∪ Am such that f (b) > f (a) be denoted by p+(a).

Thus, p−(Ai) := max{p−(a) | a ∈ Ai} is an upper bound on the probability that an
offspring is generated such that Ai is (possibly) left, but in the wrong direction
(namely A0 ∪ · · · ∪ Ai−1 is hit) – even if a duplicate of the parent is generated.
Moreover, p+(Ai) := min{p+(a) | a ∈ Ai} is a lower bound on the probability that an
offspring is generated such that Ai is left in the right direction, namely Ai+1∪· · ·∪Am

is hit.

Lemma 7 Given f : {0, 1}n→R and a partition A0, . . . , Am of {0, 1}n such that Am

consists of optima only, let for i ∈ {0, . . . ,m}

p+i := max{
(
1 − p−(Ai)

)λ
−
(
1 − p−(Ai) − p+(Ai)

)λ
, p(Ai)λ} and

p−i := 1 −
(
1 − p−(Ai)

)λ
+
(11

17 − p−(Ai) − p+(Ai)
)λ
.

The (1,λ) EA (with an arbitrarily initialized x1) optimizes f in an expected runtime
of at most

1 + λ ·
(1

p+0
+

1
p+1 + p−1

+ · · · +
1

p+m−1 + p−m−1

)
·

p+1 + p−1
p+1

· · ·
p+m−1 + p−m−1

p+m−1
.

Proof: Note that p+i is a lower bound on the probability that the (1,λ) EA with
xt(n) ∈ Ai generates an xt(n)+1 ∈ Ai+1 ∪ · · · ∪ Am, since – for this to happen – it is
sufficient that either
• at least one offspring in Ai+1 ∪ · · · ∪ Am with a larger function value than each

element of Ai and no offspring in A0 ∪ · · · ∪ Ai−1 with a function value at least

11

as large as the one of each element in Ai are created (the probability of this
event is bounded from below by

∑λ
j=1

(
λ
j

)
· p+(Ai) j ·

(
1 − p−(Ai) − p+(Ai)

)λ− j
=(

1 − p−(Ai)
)λ
−
(
1 − p−(Ai) − p+(Ai)

)λ), or
• all offspring are in Ai+1 ∪ · · · ∪ Am (the probability is bounded from below by

p(Ai)λ).
Moreover, p−i is an upper bound on the probability that the (1,λ) EA with xt(n) ∈ Ai

generates xt(n)+1 ∈ A0 ∪ · · · ∪ Ai−1, since for this not to happen it is sufficient that
• at least one offspring in Ai∪Ai+1∪· · ·∪Am with a function value at least as large

as the one of each element in Ai is generated but no offspring in A0 ∪ · · · ∪ Ai−1

with a function value at least as large as the function value of an element in
Ai. The probability for this is bounded from below by

∑λ
j=1

(
λ
j

)(
6/17 + p+(Ai)

) j
·(

1 − p−(Ai) − (6/17 + p+(Ai))
)λ− j
=
(
1 − p−(Ai)

)λ
−
(
11/17 − p−(Ai) − p+(Ai)

)λ
since the probability of generating a duplicate equals (1 − 1/n)n ≥ 6/17.

Let px,x′ denote the probability that the (1,λ) EA generates x′ as next parent when
x is mutated, and let Tx denote the expected number of steps until an element in Am

is generated (for the first time) when starting with x. Obviously, Tx = 0 if x ∈ Am.
For x ∈ Ai with i < m,

Tx = 1 +
∑

x′∈A0∪···∪Ai−1

px,x′Tx′ +
∑
x′∈Ai

px,x′Tx′ +
∑

x′∈Ai+1∪···∪Am

px,x′Tx′ .

Since Tx ≤ max{Tx | x ∈ Ai ∪ · · · ∪ Am} =: Ti (so that Ti ≥ Ti+1),

Tx ≤ 1 +
∑

x′∈A0∪···∪Ai−1

px,x′T0 +
∑
x′∈Ai

px,x′Ti +
∑

x′∈Ai+1∪···∪Am

px,x′Ti+1 .

As we have seen above,
∑

x′∈Ai+1∪···∪Am
px,x′ ≥ p+i and

∑
x′∈A0∪···∪Ai−1

px,x′ ≤ p−i . Hence,
for each x ∈ Ai

Tx ≤ 1 + p−i T0 + (1 − p−i − p+i)Ti + p+i Ti+1 .

Thus, max{Tx | x ∈ Ai} ≤ 1 + p−i T0 + (1 − p−i − p+i)Ti + p+i Ti+1 and with Ti+1 ≤

1 + p−i T0 + (1 − p−i − p+i)Ti + p+i Ti+1

Ti = max{max{Tx | x ∈ Ai},Ti+1} ≤ 1 + p−i T0 + (1 − p−i − p+i)Ti + p+i Ti+1 .

Since Tx ≤ T0 for all x ∈ {0, 1}n, we are interested in an upper bound on T0.
We consider the following Markov processM on m+1 states. For i ∈ {1, . . . ,m−1}

let pi,0 := p−i , pi,i+1 := p+i , pi,i := 1 − p−i − p+i , and p0,0 := 1 − p+0 , p0,1 := p+0 ,
pm,0 := p−m, pm,m := 1 − p−m. Moreover, let pi, j := 0 for i ∈ {1, . . . ,m−1} and j ∈
{1, . . . , i−1, i + 2, . . . ,m}.

For the expected number of steps Ei to move in M from state i to state m in fact
Ei ≥ Ti. We prove

E0 ≤
(1

p+0
+

1
p+1 + p−1

+ · · · +
1

p+i−1 + p−i−1

)
·

p+1 + p−1
p+1

· · ·
p+i−1 + p−i−1

p+i−1
+ Ei

12

for all i ∈ {0, . . . ,m} by induction over i. With the first step and the λ function
evaluations in each further step, and with i = m, the (1,λ) EA optimizes f in an
expected runtime at most 1+ λ · E0 since Em = 0. Obviously, E0 = E0, and for i = 1,
it is readily seen that E0 = E1/p+0 . Similarly, for the estimation of Ei+1 we utilize
that

Ei = 1 + p−i E0 + (1 − p−i − p+i)Ei + p+i Ei+1 =
1 + p−i E0 + p+i Ei+1

p+i + p−i
.

Now, since 1
p+i +p−i

≤ 1
p+i +p−i

·
p+1+p−1

p+1
· · ·

p+i−1+p−i−1
p+i−1

, using the estimate for Ei (induction)
yields

E0 · (1 −
p−i

p+i + p−i
) ≤

(1
p+0
+

1
p+1 + p−1

+ · · · +
1

p+i−1 + p−i−1
+

1
p+i + p−i

)
·
p+1 + p−1

p+1
· · ·

p+i−1 + p−i−1

p+i−1
+

p+i Ei+1

p+i + p−i
.

Finally, (1− p−i
p+i +p−i

) · p+i +p−i
p+i
= 1, so that the claimed inequality holds also for i+ 1.

We apply this lemma exemplary in the following section.

C. Application to C
A comparison of the (1+λ) EA and the (1,λ) EA for the optimization of a function

f with a unique optimum is interesting especially for λ = Θ(ln n): On the one hand,
for λ ≤ ln(n)/14, the (1,λ) EA cannot optimize f efficiently at all. On the other
hand, for λ = ω(ln n), it is impossible that the (1?λ) EA is efficient for f when the
(1?̄λ) EA is totally inefficient for f .

Let us investigate the function C : {0, 1}n → R with

C(x) :=

OM(x) − bn/3c if |x| ≥ n − bn/3c,
OM(x) if |x| < n − bn/3c.

Its analogue in continuous search spaces has been studied in [12]. Typically, the
(1+λ) EA waits for a long time at the cliff, which consists of all elements x with |x| <
n − bn/3c, whereas the (1,λ) EA approaches the border of the cliff and, after a short
while, jumps over the cliff and hardly ever drops back. The following theorem proves
that the (1,λ) EA is efficient with an offspring population size that is logarithmic in
n, whereas the (1+λ) EA is totally inefficient for any offspring population sizes. (The
opposite effect could also be illustrated.)

Theorem 8
1) With probability 1 − 2−Ω(n) the (1+λ) EA needs a runtime larger than nn/4 to

optimize C.
2) If λ ≤ ε(n) ln(n)/7 for ε(n) ∈ [7/ ln n, 1/2], with probability 1 − 2−Ω(n1−ε(n)) the

(1,λ) EA needs a runtime larger than 2n1−ε(n)
to optimize C.

13

3) If λ ≥ 5 ln n, the expected runtime of the (1,λ) EA on C is O(e5λ).
4) The expected runtime of the (1,λ) EA on C is larger than min{nn/4, eλ/4}/3.

Proof:
1) The (1+λ) EA with xt(n), where |xt(n)| < n−bn/3c, generates xt(n)+1, where |xt(n)+1| <

n− bn/3c (case 1) or |xt(n)+1| ≥ |xt(n)|+ bn/3c (case 2) only. For case 2 to occur, at
least any bn/3c bits have to flip. The probability that this happens at least once in
bnn/4c mutations is bounded from above by bnn/4c·1/bn/3c! ≤ nn/4 ·(e/bn/3c)bn/3c =
2−Ω(n ln n). As long as only case 1 occurs, the optimum is not generated. The proba-
bility that for x1 holds |x1| ≥ n−bn/3c is bounded from above by

∑n
i=n−bn/3c

(
n
i

)
/2n ≤

n ·
(

n
bn/3c

)
/2n. Furthermore, n ·

(
n
bn/3c

)
≤ n · n···(n−dn/6e+1)·(n−dn/6e)···(n−bn/3c+1)

(1/n)·bn/3+1c! ≤ n2 ·

ndn/6e·(5n/6)bn/3c−dn/6e

2
√

n/3·(n/(3e))bn/3c
, where Stirling’s formula is applied. Moreover, the former ex-

pression is bounded from above by n2 · 2bn/3c·(log2(5/6)/2+log2(3e)) ≤ 228n/29. Hence,∑n
i=n−bn/3c

(
n
i

)
/2n ≤ 228n/29/2n = 2−Ω(n) and with probability 1−2−Ω(n ln n)−2−Ω(n) the

(1+λ) EA has not optimized C in runtime nn/4 .
2) The result follows by Theorem 1 since C has a unique optimum, namely 1n.
3) For λ > n ln n the result follows since the optimum is generated with probability

at least 1/nn in each mutation as at most n bits have to flip. So, let λ ≤ n ln n
and ` := bln λ/ ln ln λc. In order to apply Lemma 7, we distinguish three classes
of partitions Ai and determine p+i and p−i in each case. Note that (11/17)λ ≤
(11/17)5 ln n ≤ 1/n2.
a) Ai := {x | |x| = i}, 0 ≤ i ≤ n − bn/3c − 1. Since p−(Ai) = 0 it holds

p−i ≤ 1/n2 for 0 ≤ i ≤ n − bn/3c − 1 .

Moreover, (1 − p−(Ai))λ − (1 − p−(Ai) − p+(Ai))λ ≥ 1 − (1 − p+(Ai)) ≥ bn/3c ·
(1/n)(1 − 1/n)n−1 ≥ 1/9, and hence, (movement towards the cliff)

p+i ≥ 1/9 for 0 ≤ i < n − bn/3c − 1

and (jump over the cliff)
p+n−bn/3c−1 ≥ 9−λ

since we obtain (similarly to above) p(An−bn/3c−1)λ ≥

(bn/3c · (1/n)(1 − 1/n)n−1)λ ≥ (1/9)λ.
b) An−bn/3c+i := {x | n − bn/3c + i` ≤ |x| < n − bn/3c + (i + 1)`},

0 ≤ i < bn/(12`)c. It holds

p+(An−bn/3c+i) ≥

(
bn/3c−(i+1)`

`

)
en`

since it is sufficient to flip exactly ` out of n − |x| ≥ bn/3c − (i + 1)` ≥ n/5
specific bits of x ∈ An−bn/3c+i. Hence,(

bn/3c−(i+1)`
`

)
en`

≥

(n/5
`

)`
en`

= e−` ln(`·5)−1 ≥ e−
ln λ

ln ln λ ·(ln ln λ−ln ln ln λ+ln 5)−1 ≥
1
λ

14

since (ln λ/ ln ln λ) · (ln ln ln λ− ln 5)−1 ≥ 0. Furthermore, we obtain (probable
return to the cliff)

p−n−bn/3c+i ≤ 1 − p+n−bn/3c+i for 0 ≤ i ≤ 1

and (improbable movement off the cliff)

p+n−bn/3c+i

≥
(
1 − p−(An−bn/3c+1)

)λ
−
(
1 − p−(An−bn/3c+1) − p+(An−bn/3c+1)

)λ
=

λ∑
j=1

(
λ
j

)
· p+(An−bn/3c+i) j ·

(
1 − p−(An−bn/3c+i) − p+(An−bn/3c+i)

)λ− j

≥ p+(An−bn/3c+i) ·
(
1 − p−(An−bn/3c+i) − p+(An−bn/3c+i)

)λ−1

≥ (6/17)λ/λ for 0 ≤ i ≤ 1

since p+(An−bn/3c+i) ≥ 1/λ and p−(An−bn/3c+i) + p+(An−bn/3c+i) ≤ 11/17. Hence,
we obtain

p−(An−bn/3c+i) ≤ 1/(`i)! ≤ (e/(`i))`i ≤ e−(1+ 3 ln ln λ
4)·(ln λ

ln ln λ−1)·i ≤ 1/λ3i/4 ,

for 2 ≤ i < bn/(12`)c since at least any `i bits have to flip, for the last but
one inequality holds e/(`i) ≤ 1/(e ln3/4 λ), and for the last inequality

−
ln λ

ln ln λ
+ 1 −

3 ln λ
4
+

3 ln ln λ
4

≤
−3 ln λ

4
.

Thus, (
1 − p−(An−bn/3c+i)

)λ
≥
(
1 − 1/λ3i/4)λ ≥ 1 − λ1−3i/4

and we obtain (improbable return to the cliff)

p−n−bn/3c+i ≤ λ
1−3i/4 + 1/n2 for 2 ≤ i < bn/(12`)c

as well as (probable movement off the cliff)

p+n−bn/3c+i ≥
(
1 − λ1−3i/4) − (1 − 1/λ

)λ
≥ 1/2 for 2 ≤ i < bn/(12`)c .

c) An−bn/3c+bn/(12`)c+i := {x | x = n − bn/3c + bn/(12`)c` + i},
0 ≤ i ≤ bn/3c − bn/(12`)c`. It holds(

1 − p−(An−bn/3c+bn/(12`)c+i)
)λ
≥ 1/2

≥
(
1 −

1
dn/13e!

)λ
≥ 1 − λ ·

(e
dn/13e

)dn/13e
≥ 1 − e−n

since at least any bn/(12`)c` ≥ dn/13e bits have to flip. We obtain (improbable
return to the cliff)

p−n−bn/3c+bn/(12`)c+i ≤ e−n + 1/n2 for 0 ≤ i ≤ bn/3c − bn/(12`)c`

15

and furthermore, since p+(An−bn/3c+bn/(12`)c+i) ≥ (1/n)(1 − 1/n)n−1 ≥ 1/(en) for
i < bn/3c − bn/(12`)c`, we have (probable movement off the cliff)

p+n−bn/3c+bn/(12`)c+i

≥
(
1 − p−(An−bn/3c+bn/(12`)c+i)

)λ
−
(
1 − p+(An−bn/3c+bn/(12`)c+i)

)λ
≥ (1 − e−n) −

(
1 − (1/n)(1 − 1/n)n−1)λ

≥ 1/(3n) for 0 ≤ i < bn/3c − bn/(12`)c` .

As argued, Lemma 7 implies for the (1,λ) EA an upper bound on the expected
runtime to optimize C of(

1 + λ ·
(n−bn/3c−2∑

i=0

9 + n2 + 1 + 1 +
bn/(12`)c−1∑

i=2

2 +
bn/3c−bn/(12`)c`∑

i=0

3n
))

(a) ·
n−bn/3c−2∏

i=0

(1
9 +

1
n2

1
9

)
·

1
9λ +

1
n2

1
9λ

(b) ·
1

(6/17)λ
λ

·
1

(6/17)λ
λ

·

bn/(12`)c−1∏
i=2

(1
2 + (λ1−3i/4 + 1

n2)
1
2

)
(c) ·

bn/3c−bn/(12`)c`∏
i=0

(1
3n + (1

en +
1
n2)

1
3n

)
.

The letters on the left identify the class of partition investigated. The expression
in the first line is bounded by O(n2λ), and (a) is bounded by O(1) · O(9λ/n2) =
O(e9λ/4/n2) since ln 9 ≤ 9/4. The expression (b) is bounded by (17/6)λλ·(17/6)λλ·
O(eλ/4/λ3) = O(e11λ/4/λ) since ln(17/6) ≤ 5/4 and
bn/(12`)c−1∏

i=2

1 + 2λ1−3i/4 + 2/n2 ≤

bln nc∏
i=2

2 ·
bn/(12`)c−1∏
i=bln nc+1

(1 + 3/n2) ≤ n · 2 = O(eλ/4/λ3) .

Finally, the expression (c) is bounded by O(1). Therefore, the (1,λ) EA optimizes
C in an expected runtime O(n2λ) · O(e9λ/4/n2) · O(e11λ/4/λ) · O(1) = O(e5λ).

4) By part 1), with probability 1 − 2−Ω(n) the (1+λ) EA needs a runtime larger than
min{nn/4, eλ/4} to optimize C.
If min{nn/4, eλ/4} ≤ 1 + λ, by Theorem 4.1, the (1,λ) EA needs a runtime larger
than min{nn/4, eλ/4} to optimize C with probability 1 − 2−Ω(n) ≥ 1/3, too.
If min{nn/4, eλ/4} > 1 + λ, by Theorem 4.2, where c(n) = 3/5, the (1,λ) EA needs
a runtime larger than min{nn/4, eλ/4} to optimize C with probability at least
(1 − 2−Ω(n)) − 1/23/5 ≥ 1/3 since 2 ≤ t(n) ≤ eλ/4 and λ ≥ (5/2) · (1 + 3/5) ln t(n).
Consequently, the (1,λ) EA needs an expected runtime larger than min{nn/4, eλ/4}/3
to optimize C.

16

It is worth to note that the proof of Theorem 8.3 implies the following: For λ ≥ 5 ln n,
the (1,λ) EA creates the optimum of C in runtime O(λn2) with probability Ω(e−5λ),
at least. Let us take a short look at the multistart variant/extension of EAs, where a
particular EA A is (independently) restarted after runtime `(n), denoted by A`(n). We
observe the following for λ ≥ 3 ln `(n) and polynomially bounded values of `(n). If
the (1+λ) EA`(n) is efficient, then also the (1,λ) EA`(n) is efficient. And as we have
seen, there exist functions where the (1,λ) EA`(n) is efficient, but the (1+λ) EA`(n) is
not. So, in this situation and in case of doubt, one should prefer the (1,λ) EA`(n).
In cases when λ ≤ ln(n)/14, however, one should definitely prefer the (1+λ) EA`(n).
Thus, we have obtained a somewhat general rule when to apply the comma or the
plus selection.

V. S  C
We have compared the (1,λ) EA and the (1+λ) EA operating on {0, 1}n, and it has

been pointed out why only the consideration of offspring populations of logarithmic
size in n are interesting. For smaller values of λ, the (1,λ) is totally inefficient on
every function with a unique optimum, whereas for larger values, the (1,λ) EA and
(1+λ) EA behave equivalently with a high probability. These investigations have
been exemplified by OM. For the example function C, we have analyzed
rigorously when and why the (1,λ) EA outperforms the (1+λ) EA. Therefore, a
simple but powerful proof method has been developed. However, our results support
– depending on the offspring population size – the importance of a correct choice
of the selection operator.

R
[1] H.-P. Schwefel, Evolution and Optimum Seeking. Wiley, 1995.
[2] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+1) evolutionary algorithm,” Theoretical

Computer Science, vol. 276, pp. 51–81, 2002.
[3] J. Garnier, L. Kallel, and M. Schoenauer, “Rigorous hitting times for binary mutations,” Evolutionary

Computation, vol. 7, pp. 173–203, 1999.
[4] O. Giel and I. Wegener, “Searching randomly for maximum matchings,” Electronic Colloquium on

Computational Complexity, vol. 76, 2004.
[5] T. Jansen, K. De Jong, and I. Wegener, “On the choice of the offspring population size in evolutionary

algorithms,” Evolutionary Computation, vol. 13, pp. 413–440, 2006.
[6] C. Witt, “Runtime analysis of the (µ+1) EA on simple pseudo-boolean functions,” Evolutionary Compu-

tation, vol. 14, pp. 65–86, 2006.
[7] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.
[8] J. He and X. Yao, “Drift analysis and average time complexity of evolutionary algorithms,” Artificial

Intelligence, vol. 127, pp. 57–85, 2001.
[9] J. Jägersküpper, “Analysis of a simple evolutionary algorithm for minimization in Euclidean spaces,” in

Proc. 30th International Colloquium on Automata, Languages, and Programming – ICALP 2003, 2003,
pp. 1068–1079.

[10] I. Wegener, “Methods for the analysis of evolutionary algorithms on pseudo-boolean functions,” in
Evolutionary Optimization, 2002, pp. 349–369.

[11] T. Storch, “On the choice of the population size,” in Proc. Genetic and Evolutionary Computation
Conference – GECCO 2004, LNCS 3102, 2004, pp. 748–760.

[12] J. Jägersküpper and T. Storch, “How comma selection helps with the escape from local optima,” in Proc.
International Conference on Parallel Problem Solving From Nature IX – PPSN 2006, 2006, pp. 52–61.

	CI21906.pdf
	ci-21906.pdf

