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Abstract

A drawback of robust statistical techniques is the increased computational effort often
needed compared to non robust methods. Robust estimators possessing the exact fit prop-
erty, for example, are NP-hard to compute. This means that—under the widely believed
assumption that the computational complexity classes NP and P are not equal—there
is no hope to compute exact solutions for large high dimensional data sets. To tackle
this problem, search heuristics are used to compute NP-hard estimators in high dimen-
sions. Here, an evolutionary algorithm that is applicable to different robust estimators
is presented. Further, variants of this evolutionary algorithm for selected estimators—
most prominently least trimmed squares and least median of squares—are introduced
and shown to outperform existing popular search heuristics in difficult data situations.

The results increase the applicability of robust methods and underline the usefulness
of evolutionary computation for computational statistics.

Key words: Evolutionary algorithms, robust regression, least trimmed squares (LTS),
least median of squares (LMS), least quantile of squares (LQS), least quartile difference
(LQD)

1. Introduction

Since the works of Box (1953) and Tukey (1960) the need for robust methods is
apparent. The strong sensitivity of classical procedures to seemingly negligible deviations
from the distributional assumptions calls for robust alternatives. In linear regression,
positive-breakdown methods (Rousseeuw, 1997) are among the most important robust
techniques. Unfortunately, the computation of these estimators is quite hard. More
precisely, Bernholt (2005) shows that estimators with the exact fit property (whenever
a majority of the observations lies on a hyperplane, an estimator with the exact fit
property yields that hyperplane as the solution, see e.g. Rousseeuw, 1984) are NP-hard
to compute. When accepting the widely believed assumption that the complexity classes
NP and P are not equal (see e.g. Wegener, 2005 for an introduction to complexity theory),

IThe financial support of the Deutsche Forschungsgemeinschaft (SFB 475, Reduction of complexity
in multivariate data structures) is gratefully acknowledged.

Email addresses: robin.nunkesser@tu-dortmund.de (Robin Nunkesser),
morell@statistik.tu-dortmund.de (Oliver Morell)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46908731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


we therefore have no hope to compute exact solutions for large high dimensional data
sets.

A typical approach to tackle problems we cannot compute exactly is to use heuristics.
Evolutionary computation (see e.g. De Jong, 2006) is a well established search heuristic
in computer science and steadily gaining importance in computational statistics. Exam-
ples for the application of evolutionary computation in computational statistics include
evolutionary clustering (Hruschka et al., 2006), association studies (Nunkesser et al.,
2007), computation of robust estimators (Meyer, 2003; Morell et al., 2008), time series
modeling (Baragona et al., 2004), and many more. Actually, the evolutionary algorithm
presented by Morell et al. (2008) is the basis of the algorithm, we present here. We
extend this algorithm to a framework that is applicable to different estimators, like the
algorithm PROGRESS (Program for Robust Regression) (Rousseeuw and Leroy, 1987;
Rousseeuw and Hubert, 1997) which is based on using subsamples of the data. Here, we
concentrate on three robust estimators: least median of squares (LMS) (more precisely
its generalization least quantile of squares (LQS)) and least trimmed squares (LTS), both
proposed by Rousseeuw (1984) and as the third estimator least quartile difference (LQD)
by Croux et al. (1994). Section 2 describes these estimators.

Section 3 provides a basic introduction to evolutionary computation, which is the
basis of the algorithm presented in Section 4. In the final sections 5 and 6, we compare
our algorithm to existing popular search heuristic and draw conclusions.

2. The Estimators LQS, LTS, and LQD

We consider the linear multiple regression model

yi = β0 + β1xi1 + . . .+ βpxip + εi i = 1, . . . , n

where β0 is an intercept term and εi models statistical errors. The p-dimensional vectors
xi = (xi1, . . . , xip) contain the explanatory variables and yi the response. For estimated
regression coefficients β̂1, . . . , β̂p and an estimated intercept β̂0, we denote the residuals
as

ri

(
β̂0, . . . , β̂p

)
= yi −

(
β̂0 + β̂1xi1 + . . .+ β̂pxip

)
.

Further, let ui:n denote the i-th order statistic of n numbers u1, . . . , un. The estimators
we consider are defined as follows:

Definition 1 (Rousseeuw, 1984; Croux et al., 1994). Let ri be the ith residual de-
termined by a linear regression with parameters β̂0, . . . , β̂p and a given data set Z.

The least quantile of squares (LQS), least trimmed squares (LTS), and least quartile
difference (LQD) estimates are given by

LQS (Z) = argmin
β̂0,...,β̂p

{r21, . . . , r2n}hp:n

LTS (Z) = argmin
β̂0,...,β̂p

hp∑
i=1

{r21, . . . , r2n}i:n

LQD (Z) = argmin
β̂0,...,β̂p

{|ri − rj | ; i < j}(hp
2 ):(n

2)

where hp with 1 ≤ hp ≤ n is a parameter influencing the estimation.
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LQS generalizes the least median of squares (LMS), defined as

LMS (Z) = argmin
β̂0,...,β̂p

med{r21, . . . , r2n} .

Note also, that of course the least trimmed sum of absolute values (LTA) proposed by
Hössjer (1994) and defined as

LTA (Z) = argmin
β̂0,...,β̂p

hp∑
i=1

{|r1| , . . . , |rn|}i:n

may also be computed by our algorithm. All these estimators are high-breakdown meth-
ods, possessing the asymptotic breakdown point (Donoho and Huber, 1983) of 50% for
the appropriate choice of hp. This means that almost 50% of the observations may be
contaminated without having unbounded effect on the estimate. LQS and LMS have
the disadvantage of a low efficiency at Gaussian samples, which is asymptotically 0%
(Croux et al., 1994). Arguments for LQS/LMS used to be the easier computation of the
objective function compared to LTS and LQD—though the computation of the estima-
tors is still NP-hard—and the intuitive definition. LTS and LQD are alternatives with
higher asymptotic Gaussian efficiencies of 7.1% and 67.1%, respectively. An additional
advantage of LTS is its smooth objective function leading to a lower sensitivity to local
effects (Rousseeuw and Van Driessen, 2006).

Because of the above mentioned advantages and disadvantages, the considered esti-
mators are relevant for different data situations. Therefore, algorithms for them are of
high interest. We consider situations where exact algorithms are not feasible and concen-
trate on heuristics. The heuristics most commonly used are PROGRESS for LQS/LMS
and LTS (Rousseeuw and Leroy, 1987; Rousseeuw and Hubert, 1997) and FAST-LTS for
LTS (Rousseeuw and Van Driessen, 2006). LQD may be computed with LQS algorithms
with a quadratic blow up of computation time (Croux et al., 1994). Aside from the
best known heuristics, Hawkins and Olive (1999) propose a so called feasible solution
algorithm (FSA) for LQS/LMS and LTS. The FSA is based on sampling data subsets of
size hp and iterative swapping of data points in the sample with data points outside the
sample.

3. Evolutionary Computation

The idea of evolutionary computation is to mimic the Darwin–Wallace principle of
natural selection in order to obtain an efficient search heuristic. Evolution’s main prin-
ciple is that populations of individuals evolve through variational inheritance where a
concept of fitness reflects the ability to survive. Transfered to optimization, the popu-
lation of individuals is a collection of candidate solutions, where the fitness reflects the
goodness of the candidate solution, e.g. the objective value.

Individuals may be characterized by genotypes (the genetic makeup) or phenotypes
(observed qualities) or in algorithmic terms the computer representation of the candi-
date solution and its (mathematical) interpretation if not apparent. Essential modules
of evolutionary algorithms are therefore the fitness function that maps individuals to
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fitness values, the genotype search space and an optional mapping between genotype and
phenotype.

Further, selection schemes determining which individuals are selected for variation,
and concepts to modify individuals are needed (typically called mutation or recombina-
tion/crossover depending on whether one or more individuals are involved).

By nature, an evolutionary process is infinite. To obtain an algorithm that terminates,
we additionally need a stopping criterion.

The basic evolutionary process used by evolutionary algorithms is described in Algo-
rithm 1.

Algorithm 1 (Basic Evolutionary Algorithm).

1. Create an initial random population.
2. Perform the following steps on the current generation of individuals:

(a) Select individuals in the population based on a selection scheme.
(b) Adapt the selected individuals.
(c) Evaluate the fitness value of the adapted individuals.
(d) Select individuals for the next generation according to a selection scheme.

3. If the stopping criterion is fulfilled, then output the final population. Otherwise,
set the next generation as current and go to step 2.

Evolutionary computation is a very general and adaptive framework and ideas used in
evolutionary algorithms can also be found in existing algorithms for robust regression.
For example, the point interchange used by Hawkins (1993) in his feasible set algorithm
to compute LMS can be seen as a mutation operator.

4. Outline of the Algorithm

As a first step, we have to appoint the genotype of the individuals, we work on. In
order to have a limited number of candidate solutions, we restrict ourselves to candidate
solutions uniquely determined by a data subsample of fixed size. In the most common
algorithms PROGRESS and FAST-LTS the subsamples are for sound reasons of size
p. These reasons include the fact, that p linear independent points uniquely define a
hyperplane. Additionally, smaller subsamples decrease the possibility of having outliers in
the subsample. Although, strictly speaking, we are computing a different estimator when
using subsamples of size p, it remains being a high breakdown estimator (Rousseeuw and
Basset Jr., 1991). We will adopt this in letting for explanatory data Ze = {x1, . . . , xn} ⊂
Rp

G =

{
(g1, . . . , gn) ∈ {0, 1}n :

n∑
i=1

gi = p

}
be the genotype of our individuals that is mapped to its phenotype by the function
m : G→ {U ⊆ Rp : |U | = p} with

m ((g1, . . . , gn)) = {xi ∈ Ze; gi = 1} .

Thus, we obtain
(
n
p

)
different possible individuals. The determination of the fitness or

goodness of these individuals comprises two steps:
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1. Compute a unique candidate solution hyperplane H from the given individual.
2. Compute—depending on the estimator chosen—one of the three objective functions
{r21, . . . , r2n}hp:n,

∑hp

i=1{r21, . . . , r2n}i:n, or {|ri − rj | ; i < j}(hp
2 ):(n

2) (the residuals ri
are determined by H and the given data).

The algorithm we propose is the following:

Algorithm 2 (Evolutionary Algorithm for Robust Regression).

1. Select (g1, . . . , gn) ∈ G uniformly at random, constituting the initial population.
(a) Compute a unique hyperplane H from (g1, . . . , gn).
(b) Determine the objective value f for the chosen estimator.

2. Perform the following steps on the current individual (g1, . . . , gn):
(a) Conduct one of the following adaptions chosen uniformly at random:

i. Randomly select gi, gj ∈ (g1, . . . , gn) with gi 6= gj and exchange their
values to obtain (g′1, . . . , g

′
n).

ii. Randomly select k > p and compute the index set I defined by{
i ∈ {1, . . . , n}; r2i ∈ {r21, . . . , r2n}(k−p+1):n ∪ . . . ∪ {r21, . . . , r2n}k:n

}
where ri are residuals defined by H. Set g′i ∈ (g′1, . . . , g

′
n) to 1 iff i ∈ I.

iii. Select (g′1, . . . , g
′
n) ∈ G uniformly at random.

(b) Compute a unique hyperplane H ′ from (g′1, . . . , g
′
n).

(c) Determine the objective value f ′ for the chosen estimator.
(d) If f ′ < f set (g1, . . . , gn) = (g′1, . . . , g

′
n), H = H ′, and f = f ′.

3. If either
(a) the elapsed time,
(b) the number of adaptions conducted, or
(c) the number of adaptions without improved objective value
exceeds its predetermined maximum, stop and output the final individual. Other-
wise go to step 2.

The main difference to PROGRESS and FAST-LTS is that we have a continuous
process changing subsamples instead of drawing a fixed number of subsamples. Thus,
we are better able to use the information of good candidate solutions. Only using the
mutation 2(a)i would lead to staying in local optima. The adaption described in 2(a)ii
redeems this disadvantage in potentially moving far away from local optima, but still us-
ing information contained in the solution. Note, that the effect is similar to the adaption
“move” described by Morell et al. (2008), but the adaption proposed here is simpler to
compute. The adaption 2(a)iii introduces resampling to the algorithm.

The question how to compute a unique hyperplane from a subset of size p remains. As
a first step, we compute the hyperplane H through the subset of data points. If it does
not define a unique hyperplane, we try to add observations in fixed order (e.g. starting
with x1) until it does. The second step depends on the estimator and is described in
more detail in the following. A third optional step is to adjust the intercept of the unique
hyperplane by doing an LTS/LQS/LQD univariate estimate on the residuals defining the
objective value (Rousseeuw and Hubert, 1997). We include this step in our algorithm.
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4.1. Computing a Unique Hyperplane for LTS
Rousseeuw and Van Driessen (2006) show that the following procedure guarantees an

improvement in the objective value of the LTS estimateH:

1. Determine the hp points with the lowest squared residuals with regard to H.
2. Compute the least squares fit hyperplane H ′ on these hp points.

4.2. Computing a Unique Hyperplane for LQS
The situation for LQS is more complex. The following procedure also guarantees an

improvement in objective value (Stromberg, 1993):

1. Determine the hp points with the lowest squared residuals with regard to H.
2. Compute a minimax fit hyperplane H ′ on these hp points defined by

argmin
β̂0,...,β̂p

max{r21, . . . , r2hp
}

where r1, . . . , rhp
are the residuals of the chosen hp points.

One possibility to compute such a fit is based on computing least squares fits on all(
hp

p+1

)
possible subsamples of size p + 1 (Stromberg, 1993). For large hp or p this is

clearly prohibitive. A second possibility is to do a least squares fit on a subset of the
data uniquely defined by H. We propose to use least squares on the hp points with the
smallest squared residuals with regard to H. This often leads to an improved objective
value, but different to LTS regression the improvement is not guaranteed. Thus we only
choose H ′ instead of H as the unique hyperplane, if H ′ leads to a better objective value.
A third possibility to improve the objective value is to do weighted least squares on the
data points with the lowest squared residuals with regard to H and give higher weight
to the data points with higher residuals.

4.3. Computing a Unique Hyperplane for LQD
The similarity of LQD to LQS allows us to use the following procedure to obtain a

guaranteed better objective value:

1. Determine the set of points Z = {(xi − xj , yi − yj)} such that the corresponding
absolute residual differences |ri − rj | with regard to H are among the hp smallest.

2. Compute a minimax fit hyperplane H ′ on Z.

It is easy to see, that this procedure guarantees a better objective value, because Croux
and Rousseeuw (1992) showed that it is possible to compute the LQD by computing an
LQS on the data set of differences {(xi − xj , yi − yj) ; 1 ≤ i < j ≤}. This is however,
due to a typically larger hp than in LQS estimation, even more prohibitive than in case
of the LQS for large hp or p. Again, a good alternative is to use least squares fits on
subsets of the data (this time on the according data sets of differences).
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Figure 1: Example of simulated data for p = 1.

5. Comparison

We compare our algorithm with results from PROGRESS for LQS and results from
FAST-LTS for LTS. We omit the LQD, because—as we have seen—a transformation
to LQS exists and to our knowledge, no implementation of LQD algorithms for high
dimensional data exist. PROGRESS is implemented in the function lqs of the R (R
Development Core Team, 2008) package MASS (Venables and Ripley, 2002) and FAST-
LTS is implemented in the function ltsReg of the R package robustbase (Todorov et al.,
2007). Our own algorithms are implemented in the funtion robreg.evol of the R package
RFreak (Nunkesser, 2008).

To compare the algorithms, we simulate data with n = 500 data points for p =
1, . . . , 30 from two different models. In the first model, the independent regressors are
normally distributed. In the second model, they stem from a uniformly distributed
random design on the interval (0, 1). The first model is given by

yi = β0 + β1xi1 + . . .+ βpxip + εi i = 1, . . . , n

where β0 is an intercept term and εi ∼ N (0, 1) are statistical errors. The parameter β0

is set to 0, while β1, . . . βp equal 2. We add 40% outliers to the data in choosing two
disjunct samples of size 20%. We add 3 to the explanatory data in the first sample and
6 to the response in the second sample, generating additive outliers in the explanatory
and the response variables, respectively.

The second model contains a structural change. The parameter β1 is 1, while β2, . . . βp
are 0. Thus, the corresponding regressors add only noise to the problem. The structural
change is in the intercept, which is

β0 =
{

0, if xi1 ≤ {xj1; 1 ≤ j ≤ 500}300:500
10, if xi1 > {xj1; 1 ≤ j ≤ 500}300:500

.

A good robust estimate of β should give β0 close to 0 and the slopes as above. Figure 1
shows an example of two simulated data sets based on these models with p = 1.

To compare the algorithms fairly, we measure the runtime lqs and ltsReg, respec-
tively, need for the computation and give our algorithm exactly the same amount of time.
Figure 2 shows the results for LTS and Figure 3 shows the results for LMS.
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Figure 2: Comparison of robreg.evol with ltsReg.
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Figure 3: Comparison of robreg.evol with lqs.

In nearly all conducted runs, our algorithm achieves better results than the established
algorithms lqs and ltsReg. Another observation is, that the structural change in the
second data set affects the LTS estimation of ltsReg heavily for p ≥ 15 while the effect
on robreg.evol is far less. All in all, robreg.evol seems to be better suited for the
considered data situations.

6. Conclusion

Many high breakdown estimators are in all likelihood not computable exactly in high
dimensional regressor spaces. The common heuristics to compute solutions in these
cases work with subsample versions of the estimators. In demanding data situations
with a high percentage of contamination, the existing algorithms do not work well. The
algorithm we propose is able to handle a high percentage of contamination in a high
dimensional regressor space. In addition, it also provides superior results on data with less
contamination and lower dimension considered in this paper. It therefore is a considerable
alternative to the popular algorithms PROGRESS and FAST-LTS.
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