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Homogenization of Maxwell’s equations

with split rings

Guy Bouchitté1 and Ben Schweizer2

06.07.2008

Abstract: We analyze the time harmonic Maxwell’s equations
in a complex geometry. The scatterer Ω ⊂ R3 contains a periodic
pattern of small wire structures of high conductivity, the single
element has the shape of a split ring. We rigorously derive ef-
fective equations for the scatterer and provide formulas for the
effective permittivity and permeability. The latter turns out to
be frequency dependent and has a negative real part for appropri-
ate parameter values. This magnetic activity is the key feature
of a left-handed meta-material.

1 Introduction

In recent years, applied sciences developed a profound interest in meta-materials,
with the aim of understanding their astonishing properties, exploring their poten-
tial, and optimizing their design. A meta-material can be defined as an artificial
periodic structure constituted by assemblies of elementary components of differ-
ent kinds such as metallic wires or resonators. The microscopic design of such
a heterogeneous complex micro-structure leads to an effective behavior of the
assembly, which is different to the one of each single homogeneous component.

In the context of diffraction phenomena, the main topic is to construct meta-
materials with unusual electromagnetic properties, if possible in a large range of
wavelengths. In particular, building a light-transmitting medium with negative
refraction index has become a very popular task. Such facinating materials were
discussed in the seminal paper by Veselago in 1967 [25], but there did not exist
a substance of that kind. Only in 1997 scientists managed to construct periodic
assemblies of wire sub-structures, which act like a medium with negative effective
permittivity [20] (see also [14]). The break-through regarding negative effective
permeability was made in 2002 with a construction of O’Brien and Pendry [18]
for metallic photonic crystals. For an excellent review and further references we
refer to [24].
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With the contribution at hand we present a rigorous derivation of the effective
properties of a meta-material containing split rings. We thereby determine the
scaling properties of various geometric quantities regarding the size of the ring
and the slit. Furthermore, our analysis provides formulas for the effective material
parameters in terms of microscopic cell problems. We study the time-harmonic
Maxwell equations with frequency ω in a complex geometry. A three-dimensional
scatterer Ω ⊂ R3 contains small split rings of typical size η > 0. The rings are
distributed along a grid with grid-size η. Two materials are used, both have the
same positive permeability µ0. Instead, the conductivity of the two materials is
different, it vanishes outside the rings, while we assume that the rings have a
large conductivity ση ∼ η−2.

We derive the homogenized equations for this complex geometry. The av-
eraged equations are again Maxwell equations, but the effective parameters are
frequency dependent due to local resonance effects. The main issue is the result-
ing artificial magnetic tensor µ(ω), which depends on the microscopic geometry
and on the frequency. We show that, for an appropriate choice of the parameters,
the effective permeability tensor can have eigenvalues with negative real part, the
crucial feature of a left-handed material. We emphasize that this magnetic effect
is solely a consequence of an inhomogeneous permittivity εη. A mathematical
justification of this effect was given in [6] in a very particular case that allowed
to reduce the Maxwell system to a Helmholtz type 2D scalar equation (polarized
magnetic field). On the basis of a more complex two-dimensional model, Kohn
and Shipman were able to derive the predicted form of the effective parameters in
[16]. To our knowledge, the present article contains the first mathematical justi-
fication of the “negative µ”-effect for general electromagnetic waves and bounded
3D diffraction obstacles.

Further Literature. The physics of meta-materials that produce left-handed-
media were discussed in [25] and [19]. Effective media with negative permittivity
are studied in [29], where an accurate analysis of the plasma frequency is pro-
posed. Magnetic resonators in the form of cylinders and in the form of two
concentric split rings were discussed in [20, 15, 8, 7], and explicit formulas for
effective quantities are presented. Another method to find effective parameters
is the use of the numerical scheme of [21]. We mention [26] for a more physical
approach to homogenization and [28] for an analysis of spectra of operators in
homogenization problems. A two-step homogenization approach is proposed in
[13] for a situation where slabs with negative permittivity or permeability are
stacked alternatively in order to obtain a composite with negative index.

Parallel to the physical literature we find mathematical contributions that
are aiming at rigorous results on effective quantities in the spirit of [4]. A rig-
orous homogenization for the Maxwell equations is carried out in [23], [27]. As
in our contribution, the method of two-scale convergence of [1] is employed to
derive an effective permeability and permittivity. But in their case the coeffi-
cients are bounded and non-degenerate and therefore the effective tensors keep
all their eigenvalues with positive real part. Degenerate coefficients appear in [12]
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where a quasi-static limit approach is performed (cp. [22] for other interesting
homogenization effects in degenerate equations). In contrast, there exist very
few contributions in the case of high conductivity metallic inclusions for the ho-
mogenization of the Maxwell system. In the context of heat equation and linear
elasticity, it is well known that non local effective behaviors may appear [2, 3, 5].
Closer to our work are [6] and [14], where unbounded coefficients are studied in
a two-dimensional setting. In [9], the microscopically relevant geometry is two-
dimensional, but three-dimensional macroscopic effects are determined. While
the above mentioned works are related to long wires inside the scatterer, we now
extend the methods to work in the split ring geometry.

We note that an important feature of [9] is the three-scale nature of the
problem: the periodicity cell contains a substructure which vanishes in the limit.
This is also an important feature in the present contribution, with the slit as the
thin substructure. In a different context such a substructure was analyzed in [17].

Mathematical problem. Throughout this article we study the system

curl Eη = iωµ0Hη, (1.1)

curl Hη = −iωεηε0Eη. (1.2)

Here ω is the angular frequency, ε0, µ0 are the permittivity and the permeability
in vacuum. The wave number is given by k0 :=

√
ε0µ0ω. The rings are assumed

to have a large conductivity ση = η−2ωε0κ, where η > 0 is the (non-dimensional)
relative size of the rings and κ > 0 is a conductivity parameter. The relative
permittivity εη is related to the conductivity through εη = 1 + i ση

ωε0
. Denoting

the complex domain occupied by the rings as Ση ⊂ Ω, we therefore have

εη =

1 + i
κ

η2
in Ση,

1 in R3 \ Ση.
(1.3)

We consider a domain Ση with the split rings arranged regularly along a three
dimensional array. In Figure 1 one layer is sketched. Two neighboring ring
centers have distance η, the diameter of each ring is of order η, and the circular
cross section of each ring has radius βη. On their upper part the rings are not
connected but rather have a thin slit of size αη3.

Synopsis of the main result. Let Ω ⊂ R3 be a bounded domain, the scat-
terer, that contains a family of split rings Ση ⊂ Ω of orientation e3 as described
above, and additionally families of rings in the other two orientations e1 and e2
without intersections. We study the diffraction of an incoming incident wave of
angular frequency ω and study the resulting electromagnetic field (Eη, Hη), which
is determined as the solution of (1.1)–(1.2) in R3 with a suitable radiation condi-
tion at infinity. Due to the complex geometry of the scatterer, (Eη, Hη) oscillates
at scale η. It is therefore a nontrivial task to identify the averaged field (E,H)
which is given as a weak limit, (Eη, Hη) ⇀ (E,H) in L2

loc as η → 0.
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Figure 1: Sketch of the geometry, showing one layer of rings. The macroscopic
domain Ω ⊂ R3 contains O(η−3) thin split rings of diameter O(η). The union of
the rings is the complex domain of high conductivity; it is denoted by Ση.

Our results imply that, outside the scatterer Ω, the averaged field (E,H)
agrees with the unique solution (Ê, Ĥ) of a new effective diffraction problem on
R3 of the form

curl Ê = iωµ0 µ̂Ĥ,

curl Ĥ = −iωε0 ε̂Ê.

Here, the relative parameters are µ̂(x) = ε̂(x) = 1 in R3 \ Ω, whereas for x ∈ Ω

ε̂(x) = εeff , µ̂(x) = µeff(ω).

In other words: asymptotically, as η ↘ 0, the complex structure in Ω looks from
the outside like a homogeneous medium, characterized by the effective permittiv-
ity and permeability tensors εeff and µeff(ω). The two parameters depend on the
geometrical characteristics of the rings and on the conductivity parameter κ. In
contrast to εeff which is real, positive, and frequency independent, µeff(ω) turns
out to be frequency dependent. The eigenvalues of the effective permeability ten-
sor can have a positive and a negative real part; we obtain a formula for µeff(ω)
which is quite similar to the heuristic one proposed by O’Brien and Pendry in
[18]. Moreover, we are able to perform a limit analysis as the conductivity pa-
rameter κ increases to infinity. In that case, µeff(ω) becomes real with large
negative eigenvalues within some range of frequencies. The effective medium is
not dissipative any more and there appears a band gap.

Let us point out that a very simple model of a meta-material with negative
µeff(ω) has been proposed in [6, 7, 8, 15]. It consists of arrays of infinitely long
parallel fibers. However, for such a structure, the resonance effect has been
evidenced only in a polarized setting (the magnetic field was assumed to be
parallel to the fibers), and assuming a finite conductivity parameter κ.
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Figure 2: Illustration of the homogenization process. The multi-ring geometry
is replaced by a homogeneous meta-material. The solution (Eη, Hη) in the left
geometry is characterized by a highly oscillatory permittivity εη. The solution

(Ê, Ĥ) on the right by effective parameters µeff and εeff , where µeff can have a
negative real part.

This paper is organized as follows. Our main results and related discussions
are presented in Section 2. The proof of the key convergence result of Theo-
rem 1 is developed in Sections 3–4. In these sections we deal with L2

loc-weakly
convergent sequences of vector fields (Eη, Hη) that satisfy (1.1) and (1.2). The
energy estimates that allow to deduce the convergence to the effective diffraction
problems (Theorems 2 and 3) are established in Section 5.

2 Main homogenization results

We begin with a precise definition of Ση, starting from an open domain Ω ⊂ R3

that contains the rings, and the unit cell Y = (−1/2, 1/2)3. The geometry of the
rings is determined by the relative first radius ρ ∈ (0, 1/2) of the ring, a number
α ∈ (0, 1) related to the size of the slit, and a number β ∈ (0, ρ) with ρ+β < 1/2
for the thickness of the ring. We set Σ0

Y = {(y1, y2, 0) ∈ Y : y2
1 + y2

2 = ρ2} to
define the central curve of the ring. The ring is represented by the open subset
ΣY = Bβ(Σ0

Y ) ⊂ Y , the three-dimensional β-ball around Σ0
Y . The split ring in

the single unit cell is denoted by Ση
Y ⊂ Y ,

Ση
Y := ΣY \

{
(y1, y2, y3) : |y1| ≤ αη2y2

ρ
, y2 > 0

}
.

We note that, for small η, the two sides of the slit are like two parallel disks of
radius β at distance αη2. We finally define

Ση :=
⋃

j∈Z3 with η(j+Y )⊂Ω

η(j + Ση
Y ). (2.1)

The volume fraction of Ση is of order 1; in dependence of the geometrical param-
eters it is approximately 2ρπ2β2. As a notation for geometrical objects we follow
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the convention that a lower index Y marks subsets of the unit cube Y , an upper
index η recalls a possible dependence on η. A lower index η denotes subsets of Ω
which are created by a periodic repetition of a subset of the unit cube.

Notation. The canonical basis vectors of R3 are e1, e2, e3, normal vectors on
surfaces are denoted by n. The characteristic function of a set A is denoted by 1A.
For the third order Levi-Civita tensor we write εklm; it is totally anti-symmetric
with εklm ∈ {−1, 0,+1} and the sign convention that ε1,2,3 = +1. The wedge-
product is u ∧ v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) = (

∑
l,m εklmulvm)k,

and the rotation is defined as curlu = ∇∧ u = (∂2u3 − ∂3u2, ∂3u1 − ∂1u3, ∂1u2 −
∂2u1) = (

∑
l,m εklm∂lum)k. Geometry dependent constants in R, C or C3 have

lower indices, cell solutions have upper indices. For any complex number z ∈ C,
we denote by <(z) , =(z) the real and imaginary parts.

2.1 The key convergence result

In the following, we make use of two matrices N ∈ R3×3 and Mλ ∈ C3×3. Due
to the symmetries in our geometry, both matrices are diagonal,

N := diag(n1,n2,n3) , Mλ := diag(m1,m2,m3 + λm0) . (2.2)

They are determined through the unit cell problems described in Section
3. The coefficients n1,n2,n3 are deduced from (3.5)–(3.6). They are real and
independent of κ and ω. Instead, the complex coefficients mk(ω, κ) defined in
(3.24) and (3.25) for k ∈ {0, 1, 2, 3} do depend on conductivity κ and frequency
ω. However as κ→∞, the mk remain bounded and converge to real coefficients
which are still independent of ω. The complex function λ(ω, κ) accounts for
resonance phenomena: its real part can be very large and negative for suitable
values of ω. It takes the form

λ(ω, κ) :=
ε0µ0ω

2 D3(ω, κ)

−ε0µ0ω2 D0(ω, κ)− α (πρ)−1 + iκ−1
, (2.3)

where the complex numbers Dk are flux parameters defined in (3.30). As the mk,
they become real and independent of ω in the limit κ→∞ (see Subsection 4.3).

Theorem 1. Let Ση ⊂ Ω ⊂ R3 be a split ring scatterer as described above,
where the rings are perpendicular to e3. Let (Eη, Hη) be a sequence of solutions
of (1.1)–(1.2) with the relative permittivity given by

εη(x) =

1 + i
κ

η2
if x ∈ Ση

1 otherwise.
(2.4)

Let Q be a bounded domain containing Ω and assume that (Eη, Hη) satisfies the
bound ∫

Q

|Eη|2 + |Hη|2 ≤ C, (2.5)
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such that, up to a subsequence, Eη ⇀ E, Hη ⇀ H in L2(Q,C3). Then the weak
limit (E,H) satisfies in the distributional sense on Q

curl E = iωµ0H, (2.6)

curl (M̂ ·H) = −iωε0N̂E. (2.7)

Here, the coefficient matrices N̂ : Q→ R3×3 and M̂ : Q→ C3×3 are given by

N̂(x) =

{
N x ∈ Ω

1 x 6∈ Ω
M̂(x) =

{
Mλ x ∈ Ω

1 x 6∈ Ω

For every frequency ω there exist parameters α and κ such that < (m3+λm0) < 0.

Outline of the proof. In the effective system, equation (2.6) follows immedi-
ately by passing to the distributional limit in (1.1). In contrast, the derivation
of (2.7) requires a fine analysis of the interactions between the oscillations of the
electromagnetic field and the geometry of the split rings. It is performed in two
steps in Sections 3 and 4, making use of the notion of two-scale convergence as
introduced in [1].

As a preparation to the proof, in Subsection 3.1, we improve (2.5) to∫
Q

|εη| |Eη|2 + |Hη|2 ≤ C. (2.8)

Step 1. In Section 3 we derive the equations that are satisfied by the two-scale
limits E0(x, y), H0(x, y) of a subsequence Eη, Hη. It turns out to be useful to
consider a third quantity, the rescaled displacement field Jη = ηεηEη with the
two scale limit J0(x, y). This field concentrates in the rings and circulates in
the rings with a local flux intensity j(x). We obtain a highly complex sytem for
(H0, J0) and determine the solution space. The key result of Section 3 is that
the averages

∫
Y
E0(x, y) dy = E(x) and

∫
Y
H0(x, y) dy = H(x) together with the

scalar factor j(x) determine E0, H0, and J0 uniquely.
As expected, the microscopic behavior of the electric field is purely electro-

static: E0(x, ·) is determined by 3 periodic shape vector functions Ek(y) with
average ek, defining the positive definite real tensor N = diag(n1,n2,n3). The
behavior of H0 is much more intricate. It involves 3 periodic vector fields Hk(y)
with average ek, and, additionally, a field H0(y) with zero average that describes
a circulation through the ring. Starting from these shape functions we introduce
circulation vectors Mk = mkek and M0 = m0e3 as line integrals and flux intensity
constants Dk as area integrals. All these parameters are complex and frequency
dependent (except in the limit κ→∞).

Step 2. The main result of Section 4 is the relation j(x) = λ(ω, κ)H3(x) of (4.1).
It is the result of a microscopic analysis of the electric field in the slit (note that
the slit geometry is not exploited in Section 3). The linear relation between the
macroscopic strength of the local currents j and the strength of the magnetic field
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allows us to close the cell problem: the macroscopic fields E(x), H(x) determine
uniquely the two-scale limits E0(x, y), H0(x, y), J0(x, y).

The remaining procedure is straightforward. Using suitable test functions for
(1.2), exploiting the tensorN , the circulation vectorsMk, and the flux coefficients
Dk, we derive the effective equation (2.7). Subsection 4.3 contains a limit analysis
for κ → ∞. The results imply that, for appropriate geometries and large κ,
λ(ω, κ) has a negative real part with large absolute value.

2.2 Effective diffraction problem

We consider the diffraction of a given monochromatic incident electromagnetic
field (Ein, H in) with angular frequency ω by the η-periodic split ring structure
placed in Ω. In the limit η → 0 we obtain an effective problem that can be
interpreted as the diffraction of (Ein, H in) by an homogeneous medium placed
in Ω. The permittivity and permeability tensors of the effective medium can be
specified in terms of the matrices N and Mλ of Theorem 1.

This remarkable and unexpected simplification of the statement of Theorem
1 is obtained by introducing a new effective magnetic field Ĥ. At first sight, this
procedure looks artificial, since Ĥ differs from the weak limit H = limη Hη inside

the scattering body Ω. However, there holds Ĥ = H outside Ω, and Ĥ satisfies
the expected continuity conditions across the boundary ∂Ω. As a result, in the
limit as η → 0, the obstacle will look from outside exactly like an homogeneous
material with new effective characteristic tensors (depending on ω).

To make the idea precise, we define

Ĥ(x) := M̂(x)H(x). (2.9)

For homogeneity of notations we set Ê := E. We can define the effective tensors
as

ε̂(x) = N̂(x), µ̂(x) = (M̂(x))−1,

so that µ̂(x) = ε̂(x) = 1 and Ĥ(x) = H(x) in R3 \ Ω, whereas, for x ∈ Ω,

ε̂(x) = εeff := N , µ̂(x) = µeff(ω, κ) := (Mλ)
−1 . (2.10)

The effective equations (2.6)–(2.7) can be then rewritten in the form announced
in the introduction:

curl Ê = iωµ0 µ̂ Ĥ, (2.11)

curl Ĥ = −iωε0 ε̂ Ê. (2.12)

In the following theorem we consider the diffraction by the ring structure of a fixed
incident wave (Ein, H in). Such a wave is bounded and satisfies the homogeneous
Maxwell equations curlEin = iωµ0H

in and curlH in = −iωε0E
in on R3. For

each value of η, the resulting total field (Eη, Hη) is then completely determined
by solving (1.1)–(1.2) with the additional requirement that the diffracted fields
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(Ed
η , H

d
η ) = (Eη, Hη)− (Ein, H in) satisfy the Silver-Müller radiation condition at

infinity given below.

(Ed
η , H

d
η ) = O

(
1

|x|

)
, ωε0

(
x

|x|
∧ Ed

η

)
− k0H

d
η = o

(
1

|x|

)
, (2.13)

for |x| → ∞ and with k0 = ω
√
ε0µ0. The proof for existence and uniqueness

for this problem is classical and can be found e.g. in [10]. With regard to the
uniqueness for limit problem as η → 0, we will always assume for simplicity that
the diagonal tensor Mλ given by (2.2) is invertible and that the imaginary part
of its inverse satisfies

=
(
M−1

λ

)
= =(µeff) is positive or negative definite. (2.14)

We will show in Section 3 (see Lemma 2) that the first two eigenvalues m1,m2 of
Mλ are equal with strictly negative imaginary part for every ω and κ. Thus (2.14)
amounts to check that the imaginary part of the third eigenvalue m3 +λ(ω, κ)m0

is negative.

We are now in position to state the homogenization result for diffraction by
the split ring structure. It is proved in Section 5 as a consequence of Theorem 1.

Theorem 2 (Effective diffraction problem). Let the geometry Ση ⊂ Ω ⊂ R3 and
the relative permittivity εη be as in Theorem 1. Let (Ein, H in) be an incident wave,
and let (Eη, Hη) be the unique solution to (1.1)–(1.2) satisfying the radiation
condition (2.13). Then, under condition (2.14), the limit problem (2.6)–(2.7),
(2.13) has a unique solution (E,H) and there holds Eη ⇀ E and Hη ⇀ H in
L2

loc(R3,C3).
Furthermore we have (E,H) = (Ê, Ĥ) on R3 \Ω, where (Ê, Ĥ) is determined

as the solution of the effective diffraction problem (2.11)–(2.12), (2.13).

Interpretation of the result. We may consider Ĥ as the physically visible
magnetic field. It coincides with the average field outside the scatter Ω and enjoys
the usual continuity property of the tangential component across the boundary
of Ω. This property is encoded in the above theorem by equation (2.12): curl Ĥ
belongs to L2

loc(R3,C3) and has therefore no singular part on ∂Ω.
At the same time, Ĥ has an interpretation as an averaged Hη-field, averaged

over lines that do not cross the rings. This follows from the definition of Mk in
(3.23). This procedure coincides with that of [16] and we refer to that work for
further discussions of this point.

2.3 The case of three ring orientations

Our aim now is to study the case where each cell contains three rings with different
orientations. To be precise, we assume that for two constants 0 < q < 1/4,
0 < ρ < q the following central curves for the three rings. Σ0,1 := {(y1, y2, y3) :
y1 = 0, |(y2, y3)− (q, q)| = ρ}, Σ0,2 := {(y1, y2, y3) : y2 = 0, |(y1, y3)− (q, q)| = ρ},
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and Σ0,3 := {(y1, y2, y3) : y3 = 0, |(y1, y2) − (q, q)| = ρ}. Starting from these
central curves, the three rings and the complex medium in Ω ⊂ R3 are constructed
as in the case of a single ring.

The cell problems of Section 3 are changed accordingly, Σ is substituted with
the union of three pairwise disjoint connected rings Σ1∪Σ2∪Σ3. The cell-problem
for the electric field can be handled as before and gives a 3 dimensional space of
solutions spanned by fields E1, E2, E3. By symmetry, the associated tensor N is
diagonal with identical positive eigenvalues, hence Nkl = n δkl for some positive
real constant n.

As regards the cell problem for the magnetic field, we find now a 6 dimensional
space of solutions spanned by fields Hk, k = 1, 2, 3, with average ek, and the three
special fields H0,1, H0,2, H0,3 with zero average and passing through Σ1,Σ2,Σ3

with a prescribed circulation. As in Subsection 3.4, we may associate 6 circulation
vectors Mk,M

0
k and 18 flux parameters Dkl, D

0
kl (representing an averaged flux

of Hk or H0,k through the ring Σl). By symmetry arguments, it is easy to show
that

Mk = m ek , M
0
k = m0 ek , Dkl = D δkl , D

0
kl = D0 δkl ,

for suitable scalar functions m(ω, κ), m0(ω, κ), D(ω, κ), and D0(ω, κ).
Eventually, if Hk(x) denotes the local strength of Hk(y) and jk(x) denotes

the local strength of H0,k(y) in the two-scale expansion, we can use the same
strategy as in Subsection 4.1 in order to establish linear relations between Hk(x)
and jl(x) for k, l ∈ {1, 2, 3}. Still for symmetry reasons, we obtain:

jk(x) = λ(ω, κ)Hk(x),

where the function λ(ω, κ) is given by (2.3), substituting D3 with D.
Eventually, the limit problem associated with this new geometry will involve

piecewise constant scalar tensors n̂ and m̂ with n̂ = m̂ = 1 in R3 \ Ω and n̂ = n,
m̂ = m + λ(ω, κ)m0 in Ω. The constant n is real, positive, and independent of
ω and κ. Instead, m,m0 and λ(ω, κ) are complex parameters that do depend on
ω and κ. The dissipativity condition (2.14) becomes

= (m + λ(ω, κ)m0) 6= 0 . (2.15)

Reproducing with minor modifications the arguments in the proof of Theorem
1 and 2, we obtain the following result.

Theorem 3 (Effective diffraction problem for three ring orientations). Let Ση ⊂
Ω ⊂ R3 be given by the three ring geometry in Ω ⊂ R3 defined above and consider
the relative permittivity εη given by (2.4). Let (Ein, H in) be an incident wave,
and let (Eη, Hη) be the unique solution to (1.1)–(1.2) and (2.13).

Then, under condition (2.15), the limit problem

curl E = iωµ0H, (2.16)

curl (m̂H) = −iωε0n̂E, (2.17)

with the outgoing wave condition (2.13) has a unique solution (E,H) and there
holds

Eη ⇀ E and Hη ⇀ H in L2
loc(R3,C3).
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Interpretation with scalar effective coefficients. Following the strategy
of Subsection 2.2, we may define the effective fields Ĥ(x) := m̂(x)H(x) and
Ê(x) := E(x) to transform (2.16)–(2.17) into system (2.11)–(2.12), with effective
parameters

εeff = n , µeff(ω, κ) = (m + λm0)
−1. (2.18)

In this case, the limit problem of Theorem 3 can be interpreted as the diffraction
system for a homogeneous medium with a scalar effective permittivity εeff and a
scalar effective permeability µeff . In other words, the unique solution (Ê, Ĥ) to
(2.11)–(2.12) and (2.13) agrees with the limit pair (E,H) outside of obstacle Ω.

We observe that the real part of µeff(ω, κ) can be negative. This follows in
the next paragraph from formula (2.20) for µeff(ω, κ) and its counterpart (2.22)
as κ increases to infinity.

Comparison with the O’Brien-Pendry formula. In [18] the authors dis-
cuss structured photonic crystals similar to ours. They provide the effective
permeability in the form

µBP
eff = 1− fω2

ω2 − ω2
0 + iΓω

=
(1− f)ω2 − ω2

0 + iΓω

ω2 − ω2
0 + iΓω

, (2.19)

where f is the filling ratio of the structure and Γ a measure of electric resistance
that vanishes for high conductivities (see also [20]). To compare our results with
the formula of O’Brien-Pendry, we consider the symmetric three ring geometry
of Theorem 3 and exploit expressions (2.18) and (2.3). We obtain

µeff(ω, κ) =
1

m

(1− f ∗)ω2 − ω∗0
2 + iΓ∗ω

ω2 − ω∗0
2 + iΓ∗ω

, (2.20)

where we have set, with D0 = −τD and m0 = σ0 m,

f ∗ :=
σ0

τ + σ0

, ω∗0 :=

[
α

πρε0µ0(τ + σ0)D

]1/2

, Γ∗ :=
1

κ(τ + σ0)ε0µ0ωD
. (2.21)

We emphasize that the coefficients m0,m,D0,D3, characterized in Subsection
3.4 in terms of magnetic shape functions, are complex and do depend of ω and κ.
In fact, examining the cell problem of Section 3.3, it turns out that they are all
functions of the factor κω2. The asymptotic analysis as κ→∞ (or, equivalently,
κω2 → ∞) has been performed in Subsection 4.3 in the case of a single ring
orientation, but it can easily be extended to the case of the 3 ring geometry. It
provides that, in this limit, all coefficients become real with

m0 > 0, m ≥ 1

1− f
, D3 > 0, D0 < 0,

where, like in (2.19), f denotes the filling ratio of metallic inclusions. In partic-
ular, the coefficients τ and σ0 in (2.21) are positive and 0 < f ∗ < 1. Accordingly
we get the following high frequency limit

lim
κω2→∞

µeff(ω, κ) =
1

m
(1− f ∗) < 1− f,

11



which is below the one predicted through (2.19). On the other hand, from (2.20),
we deduce the high conductivity limit

lim
κ→∞

µeff(ω, κ) =
1

m

(1− f ∗)ω2 − ω∗0
2

ω2 − ω∗0
2 , (2.22)

with real positive coefficients f ∗ and ω∗0. In conclusion, we confirm asymptotically
the existence of a band gap in the range ω ∈ [ω∗0, ω

∗
0(1− f ∗)−1/2].

3 Two-scale limits and unit cell problems

This section and the next are devoted to the proof of Theorem 1. We start from
a sequence (Eη, Hη) of solutions of (1.1)–(1.2) on Q, which satisfies the a priori
bound (2.5). For notational convenience we assume that the reference Q ⊂ R3 is
large enough such that, for an appropriate radius R > 0, we have the inclusions
Ω ⊂ BR(0) ⊂ B̄R+1(0) ⊂ Q.

3.1 Two-scale limits

Improved a priori estimate. As announced, we start with the observation
that the L2-estimate (2.5) can be improved to the energy estimate (2.8). Multi-
plication of (1.2) with iω−1Ēη and integration over a ball B = Br containing Ω
yields

ε0ω

∫
Br

εη|Eη|2 = i

∫
Br

curlHηĒη = i

∫
Br

Hηcurl Ēη + i

∫
∂Br

n ∧Hη · Ēη,

and therefore by (1.1)

ε0

∫
Br

εη|Eη|2 = µ0

∫
Br

|Hη|2 + iω−1

∫
∂Br

n ∧Hη · Ēη. (3.1)

An integration with respect to r ∈ (R,R+1) provides a bounded right hand side
by the uniform L2-bound for (Eη, Hη). By (1.3), the imaginary part of the left
hand member of (3.1) is independent of r, and estimate (2.8) follows.

The two-scale limit triple (E0, H0, J0). Since Eη and Hη are bounded in
L2(Q) we can, after extraction of a subsequence, consider the two-scale limits for
η → 0

Eη(x) ⇀ E0(x, y) weakly in two scales,

Hη(x) ⇀ H0(x, y) weakly in two scales,

for some limit functions E0, H0 ∈ L2(Q × Y,C3). In the limit η → 0, the slit of
the rings vanishes and the geometrically relevant domains are the unit cell Y and
the closed ring Σ := ΣY ⊂ Y . For brevity we denote the boundary of the closed
ring by T := ∂Σ, the letter recalls that this is a two-dimensional torus. By n

12



we denote the normal vector to T , to make a choice, we take n as the outward
normal to Σ.

We additionally consider a third quantity, namely the rescaled dielectric field

Jη := ηεηEη : Q→ C3. (3.2)

To leading order, in the rings, this field coincides with κiη−1Eη. The L2-norm is
finite, since by (2.8)∫

Q

|ηεηEη|2 ≤ sup(η2|εη|)
∫

Q

|εη||Eη|2 ≤ C .

We can therefore additionally consider the two-scale limit

Jη(x) ⇀ J0(x, y) weakly in two scales, with J0 ∈ L2(Q× Y,C3).

Sobolev spaces of periodic functions. In the following, W 1,2
per(Y ) will denote

the Hilbert space of complex valued Y -periodic functions which are elements of
W 1,2

loc (R3). It is well known (see for instance [10]) that W 1,2
per(Y ; C3) coincides with

the set of Y -periodic functions u : R3 → C3 such that div u and curlu (in the
distributional sense) belong to L2

loc. Furthermore, as an equivalent scalar product,
we may consider

(u|v) :=

∫
Y

(uv̄ + curlu · curl v̄ + div u div v̄) dy .

The elements of W 1,2
per(Y ; C3) have well defined traces. For brevity of notation

we write
∫

T
u for integrals over traces looking from the side of Σ. For integrals

over traces from Y \ Σ we write
∫

T+
u. In the appendix we collect some useful

integration by parts formulae.

3.2 Cell-problem for E0 and the tensor N
The weak limit of Eη in L2(Q) is recovered by E(x) =

∫
Y
E0(x, y) dy. For x 6∈ Ω

we have E0(x, y) = E(x). Indeed, Eη satisfies the Helmoltz equation ∆Eη +
k2

0Eη = 0 on Q\Ω, and therefore the convergence Eη → E is uniform on compact
subsets of Q \ Ω (this fact is well known for general hypo-elliptic operators with
constant coefficients).

In contrast, for x ∈ Ω, E0(x, .) is not constant. It is determined in terms of
its average E(x) by the following equations on the unit cell Y .

curly E0 = 0 in Y,

divy E0 = 0 in Y \ Σ̄,

E0 = 0 in Σ,

E0 is periodic in Y.

(3.3)

Here, the first two equations are derived in a standard way by using equations
(1.1)–(1.2) and oscillating test functions of the kind ηψ(x)θ(x/η), where ψ is

13



a smooth scalar function and θ is periodic (and vanishes on Σ when (1.2) is
concerned). The third equation is an immediate consequence of the energy
estimate (2.8) because of |εη| → ∞ in Ση. The first equation implies that
E0(x, .) = E(x) +∇yφ(x, .), where φ is a scalar periodic potential in W 1,2

per(Y,C)
and E(x) denotes the average of E0(x, ·) on the unit cell, see (A.2). The sec-
ond equation implies that φ is harmonic in Y \ Σ̄, the third equation yields that
φ(y)+E(x) ·y constant on the connected subset Σ. Therefore, for a given average
electric field E(x), φ is determined uniquely (up to constants) by affine boundary
values on ∂Σ. It follows that the microscopic electric field E0(x, .) can be written
as a linear combination

E0(x, y) =
3∑

k=1

Ek(x)E
k(y), (3.4)

where the real valued shape functions Ek := ek +∇φk are determined in terms of
φk, the unique solution in W 1,2

per(Y ) of

∆φk = 0 on Y \ Σ̄ , φk = −yk on Σ. (3.5)

The symmetric tensor N . By construction, the fields {E1, E2, E3} satisfy∫
Y
Ek · el = δkl and form a basis of the space of solutions for the E0-cell problem.

However, they are not orthonormal with respect to the usual scalar product in
L2(Y ). We define the tensor N := Nkl through

Nkl :=

∫
Y

Ek · El = δkl +

∫
T+

Ek · n yl . (3.6)

The last equality is obtained with an integration by parts∫
Y

Ek · El =

∫
Y \Σ

Ek · (el +∇φl) = δkl −
∫

∂Σ

Ek · n φl = δkl +

∫
T+

Ek · n yl,

where we have used Ek = 0 on Σ and divEk = 0 on Y \ Σ. In particular, the
normal trace is well defined, since the divergence is in L2(Y \ Σ).

Remark 1. The previous analysis works in fact for any inclusion Σ such that
Σ ⊂ Y . If we start with a ring configuration which is is invariant by rotation
along the e3-axis, the tensor N will be diagonal with positive elements n1,n2,n3

such that n1 = n2. If, alternatively, we consider a three rings configuration as
depicted in Subsection 2.3, we will end up with a scalar matrix, i.e. n1 = n2 = n3.
We emphasize that in all cases the real symmetric positive tensor N does not
depend on material parameters or frequency.

3.3 Cell-problem for the pair (H0, J0)

Outside the scatterer, i.e. for x ∈ Q \ Ω, we find H0(x, y) = H(x) with the
weak limit H of Hη like for the electric field. For x ∈ Ω, two of the equations
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for the periodic vector field H0(x, .) are derived just as for E0(x, ·): there holds
curly H0(x, .) = 0 in Y \ Σ̄ and divy H0(x, .) = 0 in Y . However, the situtation is
drastically different as H0(x, .) does not vanish inside Σ. Moreover, the curl-free
condition on Y \Σ which is not simply connected does not ensure that H0(x, .) is
a gradient of a suitable potential on Y \ Σ; circular fields pointing through the
ring are possible.

In order to understand the magnetic activity generated at the scale η, we will
couple the equations for H0 with the two-scale limit J0 of Jη, which we analyze
now. We observe that the field Jη has a vanishing contribution outside Ση since∫

Q\Ση

|Jη|2 =

∫
Q\Ση

|ηεηEη|2 ≤ sup
Q\Ση

(η2|εη|)
∫

Q

|εη||Eη|2 ≤ Cη2 → 0. (3.7)

Hence the support of J0 is contained in Q × Σ̄ and (3.14) below follows. Since
Jη := ηεηEη is a curl, we have div Jη = 0 on Q for all η and divy J0 = 0 in Q×Y ,
i.e. (3.13). The relation

η curlxHη = η(−iωεηε0)Eη = −iωε0Jη

yields, in the two-scale limit, (3.9). It remains to verify (3.12), which will follow
from

η curlx Jη = iκ1Ση curlxEη + η2 curlxEη − η2[εη]n ∧ Eη H2b∂Ση, (3.8)

where [εη] = iκη−2 denotes the absolute value of the jump of εη. We take the
two-scale limit and find

curlyJ0(x, .) = −κωµ0H0(x, .) in Σ \ SY ,

where SY = Σ ∩ {y1 = 0, y2 > 0} denotes the limiting position of the slit. But
(3.8) implies more: For a test function of the form Φ(x) = ψ(x)ϕ(x/η) with
ψ ∈ C∞

0 (Q) and ϕ ∈ C∞
0 (Σ), the two slit contributions of the jump part in

(3.8) cancel out in the limit. To make this precise, we calculate for the slit
Sη

Y := {(y1, y2, y3) ∈ Σ : |y1| < αη2y2/ρ} and the collection of slits Sη

lim
η→0

∫
Q

Φη2[εη]n ∧ Eη dH2b∂Ση = lim
η→0

iκ

∫
∂Ση

Φ · n ∧ Eη

= lim
η→0

iκ

∫
Sη

{−curl Φ · Eη + Φ · curl Eη} = 0,

the limits are consequences of the L2-bounds for Eη and Hη and the vanishing
volume of Sη. This yields the equation on all of Σ, i.e. (3.12).

We summarize the cell problem for (H0, J0). The magnetic field H0(x, .)
satisfies

curly H0 + iωε0J0 = 0 in Y, (3.9)

divy H0 = 0 in Y, (3.10)

H0 is periodic in Y, (3.11)
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while the displacement field J0(x, .) satisfies

curly J0 + κωµ0H0 = 0 in Σ, (3.12)

divy J0 = 0 in Y, (3.13)

J0 = 0 in Y \ Σ̄. (3.14)

Special vector fields. In order to evaluate the circulation of the rescaled elec-
tric field along the ring, we introduce the following vector fields in τa, χa : Σ → R3.

τa(y) :=
1

|(y1, y2)|

−y2

y1

0

 , χa(y) :=
1

|(y1, y2)|
τa.

The weight factor in χa has been chosen so that curlχa = 0 and divχa = 0
in Σ. The traces of these functions on the torus T are denoted by the same
symbols. While τa and χa point “along the ring”, we additionally need vector
fields pointing “through the ring”. We emphasize that we define τb, χb : T → R3

only on T ,

τb := n ∧ τa, χb(y) :=
1

|(y1, y2)|
τb.

We refer to Figure 3 for a sketch regarding the sign convention.
We observe that the extension of χa by zero outside Σ (and periodized to all

R3) is still divergence free. We will use the same symbol to denote this extension.
In contrast, due to the tangential jump −n∧χa across T , the distribution curlχa

has a singular part −χb δT where δT = H2bT denotes the surface integral on T .
In particular, by (3.9) and (A.1), we have:∫

Y

curlH0 · χa =

∫
T

(H0 ∧ χa) · n = −
∫

T

H0 · χb = −iωε0

∫
Σ

J0 · χa .

We are now in position to state the main result of this section

Proposition 1. The solution space to the cell problem (3.9)–(3.14) is four-
dimensional. It is spanned by shape functions (Hk(y), Jk(y)), k = 0, 1, 2, 3, which
are uniquely determined as the solutions of (3.9)–(3.14) with the normalization∫

Y

Hk = ek,

∫
T

Hk · χb =

∫
Σ

Jk · χa = 0 for k ∈ {1, 2, 3}, (3.15)∫
Y

H0 = 0,

∫
T

H0 · χb = iωε0

∫
Σ

J0 · χa = 1. (3.16)

Our aim is to construct solutions Hk in the function space W 1,2
per(Y,C3). Be-

cause of (3.9) and (3.14), we may as well search for the solution in the closed
subspace

X =
{
u ∈ W 1,2

per(Y,C3) : curlu = 0 on Y \ Σ̄
}
.
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Figure 3: Sketch regarding the signs of different fields on the torus. We show the
normal vector n, the tangential field χa which is parallel to τa, and the tangential
field χb which is parallel to τb = n ∧ τa.

We will employ the Lax-Milgram Theorem to find solutions. To this end we
endow X with the sesquilinear form (k2

0 = ε0µ0ω
2)

b(u, v) :=
1

κ

∫
Σ

curlu · curl v̄ +

∫
Y

div u div v̄ − ik2
0

∫
Y

u · v̄ .

The form b is continuous on X ×X and coercive (upon a rotation), since

< [(1− i)b(u, u)] =

∫
Y

{
1

κ
|curlu|2 + |div u|2 + k2

0 |u|2
}

is equivalent to the squared norm in W 1,2
per(Y,C3). We conclude that the equation

b(u, v) = 〈f, v〉∀v ∈ X has a unique solution u for every element f in X∗, the
anti-dual of X, i.e. the space of sesqui-linear continuous forms X → C.

Later on, we will provide four special distributions f = fk ∈ W 1,2
per(Y,C3)∗

(hence f ∈ X∗), and consider the corresponding solutions u = Uk of the problem
b(u, .) = 〈f, .〉. Up to a normalization, the Uk are the desired functions. More
specifically, we will choose all fk in the subspace

FΣ := {f ∈ W 1,2
per(Y,C3)∗ : div f = 0 on Y, f = 0 on Σ}. (3.17)

We have the following lemma, where we write
∫

Y
f for 〈f, 1〉.

Lemma 1. Let f ∈ FΣ and let u ∈ X be the unique solution of the variational
equation b(u, v) = 〈f, v〉 ∀v ∈ X. Then

(i) solution property: The pair (H0, J0) = (u, i
ωε0

curlu) solves equations (3.9)–

(3.14) and there holds −ik2
0

∫
Y
H0 =

∫
Y
f .

(ii) uniqueness: Assume that u satisfies
∫

Y
u = 0 and

∫
T
u · χb = 0. Then u

vanishes identically.
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Proof. (i) We first prove (3.10), i.e. w := div u = 0. We choose the curl-free test
function v = ∇ψ, where ψ is the unique solution in W 1,2

per(Y ) of ∆ψ + ik2
0ψ = w.

Then, as v is a gradient and f is divergence free, we have 〈f, v〉 = 0. Therefore

0 = b(u, v) =

∫
Y

w∆ψ̄ + ik2
0

∫
Y

wψ̄ =

∫
Y

|w|2 .

We now consider a test function v which is smooth and compactly supported
in Σ, such that, again, 〈f, v〉 = 0. The variational equation and div u = 0 imply
that curl (curlu) − ik2

0κu = 0 holds in the distributional sense on Σ. Therefore
J0 := i

ωε0
curlu satisfies (3.12). Furthermore, J0 satisfies (3.13) as a curl, and

(3.14) by definition of the space X. The last condition in (i) follows by choosing
v constant.

(ii) By the relation b(u, u) = 〈f, u〉 and the coercivity of (1− i)b, it is enough
to check that 〈f, u〉 = 0 holds.

Inserting constant functions v, we note that the integral of f vanishes when
the integral of u vanishes. Since f has additionally a vanishing divergence, it can
be written as f = curl Φ for some Φ ∈ L2

per(Y,C3). As the vector function Φ(y) is
curl-free on the open set Σ where f vanishes, adding a constant to Φ if necessary,
by (see A.4) there exists a scalar function ρ ∈ W 1,2(Σ,C) and a complex constant
µ such that

Φ(y) = ∇ρ(y) + µχa(y) for y ∈ Σ. (3.18)

For u ∈ X we therefore have

〈f, u〉 =

∫
Y

curl Φ · ū =

∫
Y

Φ · curlu =

∫
Σ

Φ · curlu =

∫
Σ

(∇ρ+ µχa) curlu.

It remains to integrate by parts and to exploit div curlu = 0 and curlχa = 0
on Σ. Regarding boundary integrals, we note that curlu is divergence free on
Y , hence its normal trace on T has no jump. Since curlu vanishes in Y \ Σ its

normal trace on T vanishes as an element of W− 1
2
,2(T ). We therefore obtain∫

Σ

∇ρ · curlu =

∫
T

ρ (curlu · n) = 0,∫
Σ

χa · curlu =

∫
T

n ∧ χa · ū =

∫
T

χb · ū = 0.

Thus 〈f, u〉 = 0, which concludes the proof of Lemma 1.

Proof of Proposition 1. Let V ⊂ X be the subspace of all u ∈ X such that
(u, i

ωε0
curlu) solves (3.9)–(3.14). The first statement of the proposition can be

rephrased by saying that the linear map

L : V 3 u 7→
(∫

Y

u · e1,
∫

Y

u · e2,
∫

Y

u · e3,
∫

T

u · χb

)
∈ C4

is one to one.
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Step 1. Injectivity. We prove that L is injective such that dim(V) ≤ 4. Let
u ∈ V be a solution with

∫
Y
u = 0 and

∫
T
u·χb. Given u, we define the distribution

f through 〈f, v〉 = b(u, v)∀v ∈ X. The second assertion of Lemma 1 yields u ≡ 0
as soon as we show f ∈ FΣ.

Let v = ∇ϕ be a gradient. Then b(u, v) = 0 because of curl∇ϕ = 0 and
div u = 0. This shows div f = 0.

Let now v be supported on Σ. Then b(u, v) = 0 because of div u = 0 and
κ−1curl curlu = −ik2

0 u. This proves that f vanishes on Σ. We apply Lemma 1
and find the result.

Step 2. Surjectivity. In a second step we prove that V contains at least four
linearly independent solutions which yields dim(V) = 4 and the surjectivity of L.
To that aim we apply the first statement of Lemma 1 choosing special elements
f0, f1, f2, f3 in FΣ. For k ∈ {1, 2, 3}, we take 〈fk, v〉 = −i k2

0

∫
Y
gk · v̄ where gk is

any divergence-free L2 function vanishing in Σ such that
∫

Y
gk = ek. For instance,

for k ∈ {1, 2, 3}, we may take gk to be compactly supported in a small cylinder
with principal axis Γl and constant in the direction ek where, with R = 1/2 − δ
close to 1/2 and J = (−1/2, 1/2),

Γ1 = J × {R} × {R}, Γ2 = {R} × J × {R}, Γ2 = {R} × {R} × J . (3.19)

being δ so small that Γl ∩ Σ̄ = ∅.

By Lemma 1, the equation b(u, .) = 〈fk, .〉 has a solution u = Uk in V which
satisfies the integral condition

∫
Y
Uk = ik−2

0 〈fk, 1〉 =
∫

Y
gk = ek. We observe that

the vector fields gk constructed above does not circulate around he ring.

In contrast, we choose now for f0 the distribution 〈f0, v〉 := −
∫

T
χb · v̄ =∫

Y
curlχa · v̄. By definition, f0 vanishes on Σ, an integration by parts shows that

f0 has vanishing divergence. We can therefore solve b(u, .) = 〈f0, .〉 and find a
solution u = U0 in V with

∫
Y
U0 = ik−2

0

∫
Y
f0 = 0. Clearly if U0 does not vanish

identically, by the integral average conditions, {U0, U1, U2, U3} will be a system
of four linearly independent solutions in V . To check this last point, we consider
a potential vector Φa for the divergence-free function χa, curl Φa = χa. As χa has
zero mean value, Φa can be chosen in W 1,2

per(Y,C3) and thus in X (in fact we can
explicit Φa = pa e3 being pa the weight function introduced in (3.32)). Taking
v = Φa as test function in the variational equation, we get

b(U0,Φa) = 〈f0,Φa〉 =

∫
Y

curlχa · Φ̄a =

∫
Σ

|χa|2 > 0 ,

showing that U0 cannot vanish identically. The proof of Proposition 1 is achieved.

The results of the two previous Subsections can be summarized as follows.
With the cell solutions Ek(y), k = 1, 2, 3, for the electric field and the cell solu-
tions (Hk(y), Jk(y)), k = 0, 1, 2, 3, of Proposition 1, the two-scale limits can be
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written for x ∈ Ω as

E0(x, y) =
3∑

k=1

Ek(x)E
k(y), (3.20)

H0(x, y) = j(x)H0(y) +
3∑

k=1

Hk(x)H
k(y), (3.21)

J0(x, y) = j(x)J0(y) +
3∑

k=1

Jk(x)J
k(y). (3.22)

In this expression, the number j(x) ∈ C is a measure for the strength of the
electric field in the ring. Recall that for x ∈ Q \ Ω, one has E0(x, y) = E(x) and
H0(x, y) = H(x).

3.4 Circulation tensor and flux parameters

In the homogenization process, besides the tensor N defined in (3.6), several
quantities depending on ω, κ and the geometry, will appear to be crucial. They
are by-products of the shape functions Hk obtained through the H0-cell problem.

The circulation vectors Mk. Recalling definition (3.19) of the reference line
segments Γl for l ∈ {1, 2, 3}, we introduce the vectors Mk ∈ C3 for k ∈ {0, 1, 2, 3},

Mk · el :=

∫
Γl

Hk(y) · el dH1(y) , l ∈ {1, 2, 3} . (3.23)

The vector Mk is the average strength of the shape vector field Hk(y) in direction
el along the curve Γl (in agreement with the considerations in [16]).

Let D0
Y denote the two-dimensional disk spanning the curve Σ0, i.e. D0

Y =
{(y1, y2, 0) ∈ Y : |(y1, y2)| < ρ}. It is important to notice that Z := Y \(Σ∪D0

Y ) is
a simply connected domain on which the periodic field Hk is curl-free. Therefore
in the definition (3.23), the segment Γl can be substituted with any oriented
curve in Z joining two points a, b on opposite faces of Y such that b− a = el. In
particular, if we consider the el-parallel vector flux gl introduced in the proof of
Proposition 1, we obtain that Mk · el =

∫
Y
Hk · gl.

Concerning the vectors Mk, we will exploit the following remarkable charac-
terization of averages of the generalized Poynting vectors Hk ∧ El.

Lemma 2. There holds, for every k ∈ {0, 1, 2, 3} and l ∈ {1, 2, 3}∫
Y

Hk(y) ∧ El(y) dy = Mk ∧ el ∈ C3 . (3.24)

Furthermore, there exist complex coefficients mk = m′
k +im′′

k (depending on ω, κ)
such that

Mk = mk(ω, κ)ek for k ∈ {1, 2, 3}, M0 = m0(ω, κ)e3, (3.25)

m′
k > 0, m′′

k < 0 for k ∈ {1, 2, 3}, m1 = m2 . (3.26)
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The characterization of (3.25)–(3.26) is a consequence of the symmetries of
our particular geometry, whereas (3.24) is a consequence of the fact that Z is
simply connected.

Proof. Step 1. We substitute El with a periodic vector field pl that satisfies

pl = El on ∂Y , curl pl = 0, supp pl ⊂ Z,

∫
Y

pl = el . (3.27)

To that aim we recall the representation El = el +∇φl with φl from (3.5), and
set pl = el + ∇(θφl), where θ is any periodic and smooth cut-off function such
that θ = 1 in a neighborhood of ∂Y and θ = 0 on Σ ∪D0

Y . Then, since the field
w = El− pl is curl-free, vanishes on ∂Y , and agrees with El on Σ, integration by
parts implies, for any m ∈ {1, 2, 3},∫

Y

(Hk(y) ∧ w(y)) · em dy = −
∫

Y

ym div (Hk(y) ∧ w(y)) dy

= −
∫

Y

ym curlHk · w = −
∫

Σ

ym curlHk · El = 0 ,

where in the last line we used curlHk = 0 on Y \ Σ and w = El = 0 on Σ.
Therefore ∫

Y

(Hk(y) ∧ El(y)) · em dy =

∫
Y

(Hk(y) ∧ pl(y)) · em dy.

Now we exploit that the periodic vector field Hk(y)−Mk is curl-free on Z, thus
of the form ∇ψk for a suitable scalar potential ψk. By construction, averages of
Hk(y)−Mk vanish along any curve in Z joining two points a, b on opposite faces
of the cube. Therefore ψk is periodic. This allows to integrate by parts without
boundary integrals and to conclude∫

Y

(Hk(y) ∧ pl(y)) · em dy =

∫
Y

(Mk ∧ pl) · em +

∫
Y \Σ

∇ψk · (pl ∧ em)

= (Mk ∧ el) · em .

This provides (3.24).

Step 2. Consider the reflection R3 : (y1, y2, y3) 7→ (y1, y2,−y3). One checks
easily that, for all k ∈ {0, 1, 2, 3}, R3H

kR3 solves the H0-cell problem. Addition-
ally, for k ∈ {1, 2}, it satisfies the integral conditions

∫
Y
R3H

kR3 = R3ek = ek

and
∫

T
(R3H

kR3) · χb = 0. By the uniqueness result of Proposition 1, we deduce
R3H

kR3 = Hk. By the same uniqueness and symmetry arguments using also the
relections R1 : (y1, y2, y3) 7→ (−y1, y2, y3) and R2 : (y1, y2, y3) 7→ (y1,−y2, y3), we
obtain RlH

kRl = Hk for k ∈ {1, 2, 3} and l 6= k and, for k = 0, RlH
0Rl = H0

for l 6= 3. Recalling definition (3.23), we derive that

Mk · el =

∫
Γl

Hk · el =

∫
Γl

RlH
kRl · el = −

∫
Γl

Hk · el = 0
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whenever l 6= k if k > 0 or l 6= 3 if k = 0. This proves (3.25).
By the invariance of all equations with respect to the rotation y 7→ e3 ∧ y, we

similarly obtain that M1 · e1 = M2 · e2. Thus m1 = m2.

Step 3. Let us now prove that all coefficients mk = m′
k + im′′

k have a positive
real part and a negative imaginary part. By Proposition 1 and Lemma 1, Hk is
characterized for k ≥ 1 by the equation

b(Hk, v) = −i k2
0

1

|Tk|

∫
Tk

ek · v̄, ∀v ∈ X ,

where Tk is a small cylinder in Y along the axis Γk (see (3.19)). Taking v = Hk

we derive∫
Y

1

κ
|curlHk|2 − ik2

0

∫
Y

|Hk|2 = −i k2
0

1

|Tk|

∫
Tk

ek ·Hk = −i k2
0 mk .

Thus we are led to

m′
k =

∫
Y

|Hk|2 dy > 0 , m′′
k = − 1

κ k2
0

∫
Y

|curlHk|2 dy < 0. (3.28)

The magnetic flux parameters Dk. The remaining relevant quantity is the
flux of H0(x, ·) through the ring. Since we should define the quantities as an
integral over three-dimensional domains, some care should be employed.

We introduce a parameter z in the disk

U = Uβ,ρ := {z = (r, t) ∈ R2 : (r − ρ)2 + t2 ≤ β2}, (3.29)

such that the set {(r, 0, t) ∈ R3 : (r, t) ∈ U} represents a cross section of
the ring. For every z = (r, t) ∈ U , we denote by Γz

Σ the circle {(y1, y2, y3) :
y2

1 +y2
2 = r2 , y3 = t} passing through the position (r, 0, t). We can now introduce

Dz
Σ = conv(Γz

Σ), the two-dimensional disk spanned by Γz
Σ. The union of such

disks coincides with the convex hull conv(Σ) of Σ. We finally introduce, for
k ∈ {0, 1, 2, 3}, the weighted magnetic flux as the complex number

Dk(ω, κ) :=

∫
U

1

r

(∫
Dr,t

Σ

Hk(y) · e3 dH2(y)

)
dr dt . (3.30)

This number can be rewritten as a bulk integral with respect to a weight function
pa, which is compactly supported in conv(Σ),

Dk(ω, κ) =

∫
Y

pa(y) (Hk ·e3) dy , (3.31)

if we set

pa(y) :=

log

(
ρ+
√
β2−y2

3

max{ρ−
√
β2−y2

3,
√
y2

1 + y2
2

)
if y ∈ conv(Σ),

0 otherwise.

(3.32)
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Furthermore, noticing that χa(y) = 1
r
τa(y) holds for every y ∈ Γr,t

Σ , and using
the Kelvin-Stokes Theorem on each disk Dz

Σ, we may write alternatively Dk(ω, κ)
in terms of a potential vector ψk(y) of the divergence free field Hk,

Dk(ω, κ) =

∫
U

1

r

(∫
Dr,t

Σ

curlψk(y) · e3 dH2(y)

)
drdt

=

∫
U

(∫
Γr,t

Σ

ψk · χa dH1(y)

)
drdt =

∫
Σ

ψk · χa dy.

(3.33)

We observe that this formula can be recovered by noticing that χa = curl (pa e3).
Using the symmetry arguments of Lemma 2, it is easy to check that

D1(ω, κ) = D2(ω, κ) = 0. (3.34)

4 Macroscopic constitutive laws

4.1 Relation law between j(x) and H(x)

In this section we establish a linear relation between the third component of the
averaged magnetic field, and the averaged strength of the electric field in the ring,
namely

j(x) = λ(ω, κ)H3(x). (4.1)

The explicit expression of the dimensionless factor λ(ω, κ) appeared already in
(2.3). The limit of an infinite conductivity κ→∞ will be studied in Subsection
4.3. We recall that the real part of λ(ω, κ) can have both signs.

Showing (4.1) is a delicate task which requires a careful analysis of the elec-
tric field in the ring and in the slit. Lemma 3 below makes the following loose
statement precise: The field Jη = ηεηEη has values of order O(1) in the ring
and in the slit. As a consequence, typical values of Eη are of order O(η) in the
ring, and of order O(η−1) in the slit. We make use of the special vector field
χη

a(x) := χa(x/η) where χa is the periodic function, supported on Σ, which was
introduced in Subsection 3.3. The set of all slits Sη is defined by

Sη :=
⋃
j

{η(j + Sη
Y )} , where Sη

Y := {y ∈ Σ : |y1| < αη2y2/ρ}.

Here and in the following, the index j runs over {j ∈ Z3 : η(j+Y ) ⊂ Ω}. We have
therefore a partioning of the set of closed rings

⋃
η(j+ Σ) into the split-rings Ση

and the slits Sη. We notice that the volumes are |Ση| = O(1) and |Sη| = O(η2).

Lemma 3. For every function ψ ∈ D(Ω), there holds

lim
η→0

κ

η

∫
Ση

Eη(x) · χη
a(x)ψ(x) dx = − 1

ε0ω

∫
Ω

j(x)ψ(x) dx , (4.2)

lim
η→0

πρ

αη

∫
Sη

Eη(x) · χη
a(x)ψ(x) dx = − i

ε0ω

∫
Ω

j(x)ψ(x) dx . (4.3)
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Thus, in the distributional sense in Ω, we have

ωε0

η
Eη · χη

a
∗
⇀ −

(
1

κ
+ i

α

πρ

)
j(x) . (4.4)

Let us show (4.1), admitting for the moment Lemma 3. The main trick
consists in slicing the bulk integral of 1

η
Eη · χη

a in line integrals along the circles

Γz
η =

⋃
j η(j + Γz

Y ), where the circles Γz
Y for z ∈ U = Uβ,ρ ⊂ R2 were introduced

in Subsection 3.4. In a similar way as for deriving (3.33), we transform the
line integrals over Γr,t

η into area integrals over the disks Dr,t
η =

⋃
j η(j + Dr,t

Y ).
Recalling that r χη

a represents the unit oriented tangent vector to Γr,t
η , for any

smooth function ψ ∈ D(Ω) we have∫
Ω

1

η
Eη · χη

a ψ dx =

∫
U

η

(∫
Γr,t

η

ψ(x)Eη(x) · χη
a(x) dH1(x)

)
dr dt

=

∫
U

1

r

(∫
Dr,t

η

curlx (ψEη) · e3 dH2(x)

)
dr dt

=

∫
Ω

pa(x/η) [iωµ0 ψHη · e3 + (∇ψ ∧ Eη) · e3] dL3

where in the last line pa stands for the periodic extension of the weight func-
tion appearing in (3.32). Note that in the line (or area) integrals above, the
parametrization of Γz

η or Dz
η with respect to z = (r, t) ∈ Uβ,ρ induces by change

of variables a factor η2 (or η). We may pass now to the limit in the last integral
by using the two-scale convergence of (Eη, Hη). Recalling that E0(x, ·) vanishes
on Σ where pa is supported, we derive

lim
η→0

∫
Ω

1

η
Eη · χη

a ψ dx = iωµ0

∫
Ω

(∫
Σ

pa(y)H0(x, y) · e3 dy
)
ψ(x) dx .

The left hand side limit above can be identified by means of (4.4), while the right
hand side can be computed by using (3.21) and (3.31). Since ψ was arbitrary, we
can localize in x and conclude, for almost all x ∈ Ω,

− 1

ωε0

(
1

κ
+ i

α

πρ

)
j(x) = iωµ0

(
D0(ω, κ)j(x) +

3∑
k=1

Dk(ω, κ)Hk(x)

)
.

Taking into account (3.34), we are led to (4.1) with

λ(ω, κ) =
−ε0µ0ω

2D3(ω, κ)

α(πρ)−1 + ε0µ0ω2D0(ω, κ) − iκ−1
.

At this point, we have a complete description of the microscopic behavior of
the magnetic field, using only the averaged magnetic field as an input. Indeed,
from (3.21) and (4.1),

H0(x, y) = H1(x)H
1(y) + H2(x)H

2(y) + H3(x)
(
H3(y)+λ(ω, κ)H0(y)

)
. (4.5)

It remains to prove Lemma 3.
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Proof of Lemma 3. Relation (4.4) is a direct consequence of (4.2) and (4.3). In
the course of the proof we will use the following fact: for every smooth Y -periodic
function ξ(y) and every ψ ∈ D(Ω), we have

lim
η→0

κ

∫
Ση

1

η
Eη · χη

a(x)ψ(x) ξ(x/η) dx = −i
∫

Ω

∫
Y

J0(x, y) · χa(y)ψ(x) ξ(y) dy dx.

(4.6)

Indeed, as −i (εη − 1) =
κ

η2
1Ση , recalling (3.2),

κ

∫
Ση

1

η
Eη · χη

a(x)ψ(x) ξ(x/η) dx = −iη
∫

Ω

(εη − 1)Eη · χη
a(x)ψ(x) ξ(x/η) dx

= −i
∫

Ω

Jη · χη
a(x)ψ(x) ξ(x/η) dx + i η

∫
Ω

Eη · χη
a(x)ψ(x) ξ(x/η) dx .

The L2 bound for Eη implies that the last integral vanishes for η → 0. The other
integral can be evaluated thanks to the two-scale convergence of Jη to J0 and we
are led to (4.6).

Proof of (4.2). It is enough to apply (4.6) with ξ ≡ 1, exploiting (3.22) and
the normalizations (3.15) and (3.16).

Proof of (4.3). We are going to construct a special η-periodic test-function
that coincides with χη

a on Ση. To that aim, we define, for δ > 0 sufficiently small
two subsets of Y ,

Σδ
Y := Bβ+δ(Σ0) (larger ring), Rη

Y :=
{
y ∈ Y : |y1| ≤ αη2y2/ρ

}
(wedge),

such that the slit can also be written as Sη
Y = Σ \ Rη

Y . The parameter δ <
min(β, 1/2 − β) will be sent to 0 later on. We use a smooth cut-off function
ξδ : Y 7→ [0, 1], compactly supported in Σδ

Y with ξδ = 1 on Σ.
Finally, we introduce a piecewise affine function gη : [0, 2π] 7→ [0, 2π] as

follows. We denote by θη := αη2/ρ the number related to the angle of the wedge.
The function gη is defined as the affine interpolation of the four values gη(0) = π,
gη(θη) = θη, gη(2π − θη) = 2π − θη, and gη(2π) = π. Then, using the polar
coordinates y1 = −r sin θ, y2 = r cos θ with θ ∈ [0, 2π[ for y = (y1, y2, y3) ∈ Y , we
set

ϕη(y) := gη(θ) for all y ∈ Σδ
Y .

By construction, ϕη is Lipschitz from Σ to [0, 2π] and satisfies

∇ϕη = χa in Σδ
Y \R

η
Y , ∇ϕη = − πρ

αη2
χa in Σδ

Y ∩R
η
Y (4.7)

|∇ϕη| ≤ C in Σδ
Y \R

η
Y , |∇ϕη| ≤ C

1

η2
in Rη

Y ∩ Σδ
Y , (4.8)

where C is a suitable constant independent of η and δ.
With the above functions we can now perform the limit analysis. Exploiting

that Jη = η εη Eη is divergence free, we find that for ψ ∈ D(Ω) holds

fη := div(η Jη ξδ(x/η)ψ(x) = Jη · [(∇y ξδ)(x/η)ψ(x) + η ξδ(x/η)∇ψ(x)] .
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Observing that ∇yξδ(x/η) is bounded and vanishes on Ση, we obtain

|Jη · ∇y ξδ(x/η)ψ(x)| ≤ Cη|Eη|, |Jη · η ξδ(x/η)∇ψ| ≤ Cη|Jη| .

As we know that Eη, Jη are uniformly bounded in L2(Ω), we infer that fη → 0
strongly in L2(Ω). We apply fη to our special test function ϕη and calculate with
an integration by parts

0 = lim
η→0

∫
Ω

fη ϕ
η

(
x

η

)
dx = lim

η→0

∫
Ω

Jη · ∇y ϕ
η(x/η) ξδ(x/η)ψ(x) dx

= lim
η→0

(I1
δ + I2

δ + I3
δ + I4

δ ) , (4.9)

where the Im
δ ’s are related to the integration over the four elements of the partition

Ω = Ση ∪ Sη ∪ [Rη \ Sη] ∪ [Ω \ (Ση ∪Rη)], with the meanwhile standard notation
for the union of the wedges Rη := Ω ∩ ∪jη(j + Rη

Y ). Thanks to (4.7) and since
Jη = ηEη in Ω \ Ση,

I1
δ =

∫
Ση

Jη · χη
a(x)ψ(x) dx

I2
δ = −πρ

α

∫
Sη

Eη

η
· χη

a(x)ψ(x) dx

I3
δ =

∫
Ω\(Ση∪Rη)

η Eη · ∇y ϕ
η(x/η) ξδ(x/η)ψ(x) dx

I4
δ =

∫
Rη\Sη

η Eη · ∇y ϕ
η(x/η) ξδ(x/η)ψ(x) dx

Thanks to (4.8), recalling that ξδ and ψ are bounded, we find for I3
δ and I4

δ

|I3
δ | ≤ Cη

∫
Ω\(Ση∪Rη)

|Eη| ξδ(x/η) dx ≤ C η
√
|Ω| ‖Eη‖L2(Ω)

|I4
δ | ≤

C

η

∫
Rη\Sη

|Eη| ξδ(x/η) dx ≤
C

η
‖Eη‖L2(Ω)

(∫
Rη\Sη

|ξδ|2(x/η) dx

)1/2

≤ C
√
δ ‖Eη‖L2(Ω) ,

where C is a generic constant, independent of η and δ, and where in the last line
we used the fact that the periodic function ξδ is compactly supported in Σδ

Y so
that∫

Rη\Sη

|ξδ|2(x/η) dx ≤ C

∫
Rη

Y \S
η
Y

|ξδ|2(y) dy ≤ C
∣∣Rη

Y ∩ (Σδ
Y \ Σ)

∣∣ ≤ C δ η2 .

Summarizing, we are led to

lim sup
η→0

|I3
δ + I4

δ | ≤ C
√
δ .

26



Sending δ → 0 and taking into account (4.9), it follows that

lim
η→0

πρ

α

∫
Sη

Eη

η
· χη

a(x)ψ(x) dx = lim
η→0

∫
Ση

Jη · χη
a(x)ψ(x) dx

=

∫
Ω

∫
Y

J0(x, y) · χa ψ(x) dxdy =
1

iωε0

∫
Ω

j(x)ψ(x) dx.

This concludes the proof of Lemma 3.

4.2 Homogenized equations for (E(x), H(x))

We are now in position to establish the homogenized equation (2.7). We recall
that (2.6) followed immediately taking weak limits.

For arbitrary ψ ∈ D(Q,R) we use ψ(x)El(x/η) as a test function in equation
(1.2). Since El is curl-free and vanishes on Ση, integrating by parts in Q we
obtain

−iωε0

∫
Q

Eη(x) · El(x/η)ψ(x) dx =

∫
Q

curlHη(x) · El(x/η)ψ(x) dx

=

∫
Q

Hη(x) ·
(
∇ψ(x) ∧ El(x/η)

)
dx .

We may pass to the limit as η → 0 by using the two-scale convergence of (Eη, Hη),

iωε0

∫
Q

∫
Y

E0(x, y) · El(y)ψ(x) dy dx =

∫
Q

∫
Y

∇ψ(x) · (H0(x, y) ∧ El(y)) dy dx .

Since ψ was arbitrary, we deduce the following equation which holds, for every
l ∈ {1, 2, 3}, in the distributional sense on Q.

divx

(∫
Y

(H0(x, y) ∧ El(y) dy

)
= −iωε0

∫
Y

E0(x, y) · El(y) dy . (4.10)

Using the expansions of E0 in (3.20) and the tensor N of (3.6) (recalling that El

is real and N is symmetric), we find

∫
Y

E0(x, y) · El(y) dy =


3∑

k=1

NklEk(x) if x ∈ Ω

El(x) if x /∈ Ω.

For H0 we use the expansion (4.5) containing λ = λ(ω, κ), and (3.24) which
related generalized Poynting vectors with Mk.

∫
Y

H0(x, y) ∧ El(y) dy =


3∑

k=1

Hk(x)Mk ∧ el + λH3(x)M0 ∧ el if x ∈ Ω

H(x) ∧ el if x /∈ Ω.
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We recall that Mλ denotes the 3×3 complex matrix with colomns M1, M2, M3 +
λM0, see (2.2) and (3.25). Having M̂(x) and N̂(x) defined as in the statement
of Theorem 1, in particular as Mλ and N inside Ω, we may rewrite the equation
(4.10) as

div ((M̂(x) ·H(x)) ∧ el) = −iωε0(N̂(x)E(x)) · el .

Since the left hand side can also be written as curl (M̂ ·H) · el, we arrive at the
homogenized equation (2.7).

4.3 The high conductivity limit κ→∞
In this Subsection we study the case of a large conductivity parameter κ in the
rings. Our interest is to find simplified expressions for the coefficients Dk and mk

that enter the effective permeability of the medium. In particular, we will verify
sign conditions that guarantee that, indeed, the effective permeability can have
a negative real part.

Limit cell problem. As a counterpart of (3.9)-(3.14), the limit sytem of equa-
tions characterizing the shape functions Hk = H ∈ W 1,2

per(Y,R3) reads

curly H = 0 on Y \ Σ̄, (4.11)

divy H = 0 on Y, (4.12)

H = 0 on Σ. (4.13)

Lemma 4 (Large conductivity limit process). We study H ∈ W 1,2
per(Y,R3) solving

(4.11)–(4.13).

(i) existence and uniqueness: There exist four solutions Hk with the nor-
malization

∫
Y
Hk = ek for k = 1, 2, 3,

∫
Y
H0 = 0, and, for the traces

from Y \Σ, with
∫

∂Σ
Hk · χb = δk0. The normalization determines the four

solutions uniquely.

(ii) convergence: In the limit process κ→∞, the fields Hk
κ defined in Proposi-

tion 1 satisfy Hk
κ ⇀ Hk weakly in L2(Y,C3).

We emphasize that the Hk are real and independent of the frequency ω.

Proof. (i) Existence of Hk. Setting δ = κ−1, let us denote by Hk
δ the vector fields

of Proposition 1. We recall that these where obtained by solving the variational
equation bδ(u, v) = 〈fk, v〉 for special choices of fk ∈ FΣ of (3.17), where

bδ(u, v) := δ

∫
Σ

curlu · curl v̄ +

∫
Y

div u div v̄ − ik2
0

∫
Y

u · v̄ ,

on X = W 1,2
per(Y,C3)∩{curlu = 0 on Y \ Σ̄}. Here, we study the limit δ → 0 and

therefore define

b0(u, v) :=

∫
Y

div u div v̄ − ik2
0

∫
Y

u · v̄ ,
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now on the larger Hilbert space

X0 :=
{
u ∈ L2

per(Y,C3) : div u ∈ L2
per , curlu = 0 on Y \ Σ̄

}
which we endow with the scalar product (u, v)0 =

∫
Y
(u · v̄+div u div v̄) . It is easy

to check that X0 is a dense subspace. The form b0 is (up to a rotation) coercive
on X0. For every distribution f ∈ FΣ we find u ∈ X0 with b0(u, .) = 〈f, .〉. As
in the proof of Lemma 1 one verifies that u solves (4.11)–(4.13). Inserting the
special distributions fk of Proposition 1 yields the existence of the four fields
Hk(y).

For the uniqueness argument we study a solution u of (4.11)–(4.13) and note
that u satisfies b0(u, .) = 〈f, .〉 for 〈f, v〉 := −ik2

0

∫
Y
u · v̄. It is clear that this

distribution vanishes on Σ and has vanishing divergence, hence it is contained
in FΣ. It remains to show that solutions of b0(u, .) = 〈f, .〉 with f ∈ FΣ vanish
identically if only their normalization averages vanish. This fact follows exactly
as in the uniqueness part of Lemma 1.

(ii) Convergence for δ = κ−1 → 0. We consider a fixed distribution f ∈ FΣ

and a sequence uδ ∈ X with bδ(uδ, .) = 〈f, .〉 on X. We assume uδ ⇀ u0

weakly in L2(Y ) for some function u0 and note that every normalization of uδ

implies the same normalization of u0. Our aim is to show that u0 ∈ X0 satisfies
b0(u, .) = 〈f, .〉 on X0. Once this is shown, the uniqueness property of the limit
problem implies (ii).

Since uδ has vanishing divergence on Y and vanishing curl on Y \ Σ̄, these
properties remain valid for the weak limit, hence u0 ∈ X0. With the test function
v = uδ we find bδ(uδ, uδ) = 〈f, uδ〉, which implies the upper bound

δ

∫
Σ

|curluδ|2 +

∫
Y

|uδ|2 ≤ C

for a suitable constant C. In particular, δ curluδ → 0 in L2, hence u0 satisfies

〈f, v〉 = lim
δ→0

bδ(uδ, v) = b0(u, v) ∀v ∈ X .

The space X is dense in X0, hence b0(u, v) = 〈f, v〉 remains valid for all v ∈ X0.
This shows the claim and concludes the proof.

Lemma 4 implies that the complex coefficients mk(ω, κ) and Dk(ω, κ) intro-
duced in Subsection 3.4 converge to real and frequency independent coefficients mk

and Dk as κ→∞. Indeed, the convergence Hk
κ ⇀ Hk allows to pass to the limit

in equations (3.23), (3.30), and (3.24). In particular, we find for k ∈ {0, 1, 2, 3}
the real limits

mk := lim
κ→∞

mk(ω, κ) =

∫
Γk

Hk(y) · ek dH1(y) (4.14)

Dk := lim
κ→∞

Dk(ω, κ) =

∫
U

1

r

(∫
Dr,t

Y

Hk(y) · e3 dH2(y)

)
dr dt (4.15)

m1 = m2, D1 = D2 = 0.
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Special functions and sign conditions. In this paragraph, our aim is to give
a more precise characterization of the real constants mk and Dk defined in (4.15)
and (4.14). We do so by relating the fields Hk to gradients ∇uk for four special
scalar potentials uk.

For k ∈ {1, 2, 3}, we introduce the solutions uk ∈ W 1,2
per(Y \Σ) of the Neumann

problem

∆u = 0 on Y \ Σ,
∂u

∂n
= −ek · n on ∂Σ. (4.16)

We set

bkl :=

∫
Y \Σ

(ek +∇uk) · (el +∇ul) . (4.17)

As is well known (see for instance [11]), the positive definite symmetric matrix
B = (bkl) is associated to the homogenized equation for the Neumann problem
with holes. The related quadratic form can be expressed in term of an infimum
problem on the unit cell,

Bz · z = inf
w∈W 1,2

per(Y \Σ)

∫
Y \Σ

|z +∇w|2 .

By taking w = 0 as a competitor, we derive in particular the inequality

Bz · z ≥ (1− f) |z|2 with f := |Σ| = 2π2 ρ β2, (4.18)

the volume fraction of the rings in Ω. Thus B is invertible with real eigenvalues
greater than 1. By the symmetries, it is also easy to check that B is diagonal.
Our results are collected as

bk := bkk ≥ 1− f for k ∈ {1, 2, 3}, bkl = 0 for k 6= l . (4.19)

For k = 0, the special periodic function u0 must be defined in a slightly
different way. We construct a periodic function u0 : Z → R, where Z = Y \ (Σ∪
D0

Y ) is the exterior domain without the central disk. We obtain u0 by solving the
minimization problem

min

{∫
Z

|∇ϕ|2 : ϕ(y1, y2, 0± 0) = ∓1 for |(y1, y2)| ≤ ρ− β

}
.

This problem has a unique solution u0 ∈ W 1,2
per(Z) which, by the symmetry with

respect to {y3 = 0}, satisfies u0(y1, y2,−y3) = −u0(y1, y2, y3). Therefore it satis-
fies the following equations on the half periodic cell,

∆u0 = 0 on Y − \ Σ, u0 = 1 on D0
Y \ Σ,

∂nu
0 = 0 on ∂Σ ∩ Y −, u0 = 0 on Γ0,

where Y − := Y ∩ {y3 < 0} and Γ0 = {y3 = −1/2} ∪ {y3 = 0} \ (Σ ∪D0
Y ).
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Figure 4: Sketch of the auxiliary function u0 and the vector field h0 which has a
net flux through the ring.

The jump [u0] of u0 across D0
Y in the e3 direction is constant and equal to

−2, whereas on both sides the gradient ∇u0 has the same trace pointing in the
direction of e3. We set

h0 := − 1

4π
∇u0 on Y \ Σ, h0 := 0 on Σ . (4.20)

By construction, h0 satisfies (4.11)–(4.13). Since χb is divergence free on T , an
integration by parts over T yields∫

T

h0 · χb =
1

4π

∫
Γρ−β,0

Σ

(−[u0])χb · e3 = 1.

The uniqueness property of Lemma 4 allows us to identify the shape function H0,

H0 = h0 + σ0H
3, where σ0 := −

∫
Y

h0 · e3 dt > 0 . (4.21)

Here, the positivity of the scalar σ0 can be checked by writing alternatively

σ0 =
1

2π

∫
Y −\Σ

∇u0 · e3 =
1

2π

(∫
∂Σ∩Y −

u0 (−n) · e3 + π(ρ− β)2

)
,

where we used symmetry with respect to y3 and integration by parts. Clearly,
by the maximum principle, there holds 0 ≤ u0 ≤ 1 on Y −, whereas the exterior
normal n to Σ satisfies (−n)·e3 ≥ 0 on ∂Σ∩Y −. Eventually we need the following
constant associated with the set Uρ,β (see (3.29)),

γ :=

∫
Uρ,β

1

r
dr dt.

We are now in position to identify the sign of all real constants mk, D0 and D3

which appear in the limit as κ → ∞ in (4.14), (4.15), and in the expression of
µeff(ω) in (2.22).

Lemma 5 (Constants in the limit κ → ∞). We consider the limiting magnetic
fields Hk of (4.11)–(4.13).
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(i) The vector fields Hk are orthogonal in L2(Y ; R3). Furthermore,

∀k ≥ 1 :

∫
Y

|Hk|2 dy = mk =
1

bk

≥ 1

1− f
, m0 = σ0 m3, (4.22)

where f is the volume fraction in (4.18), σ0 > 0 is defined by (4.21) and
b1,b2,b3 are the diagonal elements of the Neumann tensor B in (4.19).

(ii) The flux constants satisfy D1 = D2 = 0 whereas

D0 = −2πγ

∫
Y

|H0|2 dy, D3 = 2πγ σ0

∫
Y

|H3|2 dy = 2π γ σ0m3. (4.23)

Proof. (i). The real valued shape functions Hk obtained in Lemma 4 can be
related to the solutions uk of the Neumann problem (4.16). We claim that, for
k ≥ 1,

Hk(y) =


1

bk
(ek +∇uk(y)) if y ∈ Y \ Σ

0 if y ∈ Σ
(4.24)

Indeed, ek +∇uk is periodic, divergence free in Y \Σ and has a vanishing normal
trace on T . Thus its extension by zero over Σ is divergence free. It is also curl-
free in Y \ Σ̄ and, by (4.17) and (4.19), it satisfies

∫
Y \Σ(ek + ∇uk) · el = bk δkl.

By the uniqueness of the solution of (4.11)–(4.13) with a given integral average
on Y , we deduce (4.24). Clearly the associated circulation vector Mk (see (3.23)
and (4.14)) satisfies Mk = 1

bk
ek, thus mk = 1

bk
for k ≥ 1. Let now l ∈ {0, 1, 2, 3}.

As H l is divergence free and vanishes in Σ, an integration by parts provides∫
Y

Hk ·H l =
1

bk

∫
Y \Σ

(ek +∇uk) ·H l =

{
1
bk

if k = l

0 else.

which implies the orthogonality conditions. Subsequently we obtain (4.22) by
taking l = k with the help of (4.19). The last relation for m0 is a consequence of
(4.21) and of the fact that the circulation tensor of h0 vanishes by the periodicity
of u0.

(ii). We compute Dk from (4.15). We observe that, since Hk is divergence-
free, the flux of Hk(y) across the disks Dr,t

Y is independent of (r, t) ∈ U = Uη,ρ.
Recalling that Hk vanishes in Σ, for every k ≥ 0 we find

Dk =

∫
U

1

r

(∫
Dr,t

Y

Hk(y) · e3 dH2(y)

)
= γ

∫
D0

Y

Hk(y) · e3 dH2(y) .

This averaged flux can be generated also from a different expression. Exploiting
(4.20), as the jump of u0 across D0

Y is 2, an integration by parts leads to∫
Y

Hk · h0 = − 1

4π

∫
Y \D0

Y

Hk · ∇u0 = − 1

2π

∫
D0

Y

Hk(y) · e3 dH2(y) = − 1

2πγ
Dk .

32



The relations in (4.23) are then deduced by taking k ∈ {0, 3} and by observing
that due to the orthogonality conditions and (4.21) we have∫

Y

H0 · h0 =

∫
Y

|H0|2,
∫

Y

H3 · h0 = −σ0

∫
Y

|H3|2 .

This concludes the proof.

5 Proof of Theorem 2

Uniqueness. By linearity, we are reduced to show that (E,H) vanishes when-
ever it solves (2.6)–(2.7) and (2.13) with a vanishing incoming field. As M̂ = N̂ =
1 outside Ω, the real part of the outgoing flux of the Poynting vector through the
boundary of a ball BR such that Ω ⊂ BR is independent of R. Thus, exploiting
(2.13) with (Ei, H i) = (0, 0), we deduce that

<
(∫

∂Q

(E ∧ H̄) · n(x)

)
= lim

R→∞
<
(∫

∂BR

(E ∧ H̄) · n(x)

)
= 0 . (5.1)

On the other hand, (Ê, Ĥ) agrees with (E,H) on ∂Q and satisfies (2.11)–(2.12).
Integrating by parts over Q we obtain

<
(∫

∂Q

(E ∧ H̄) · n(x)

)
= <

(∫
Q

curlÊ · Ĥ − curlÊ · Ĥ
)

= −ω=
(∫

Q

{
µ0µ̂(x)Ĥ · Ĥ + ε0ε̂(x)Ê · Ê

})
= −ωµ0

∫
Q

=(µeff)H · H̄ ,

where in the last line we used the fact that the function ε̂(x) is real whereas =(µeff)
vanishes outside Ω. Thus from (5.1) and condition (2.14), we get H = Ĥ = 0 on
Ω. It is then standard to deduce that (E,H) vanishes everywhere on R3.

Assuming the energy bound (2.5). In this case Theorem 1 is applicable
and Theorem 2 follows provided we show that the convergence of (Eη, Hη) can
be extended to all R3 and that in addition the limit (E,H) still satisfies the
radiation condition (2.13). To that aim we apply Lemma 2.1 of [9], which is
based the fact that all components of (Eη, Hη) solve the homogeneous Helmoltz
equation ∆u + k2

0u = 0 in R3 \ Ω. This yields, by hypoellipticity, the uniform
convergence for (Eη, Hη) as well as of all derivatives on compact subsets of R3\Ω.
The stability of the condition (2.13) is then deduced by passing to the limit in
the so called Stratton-Chu integral indentities.
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Proving the energy bound. We now prove that if (2.5) is not true then
we are led to a contradiction. Possibly after extracting a subsequence, we may
assume that

tη :=

(∫
Q

|Eη|2 + |Hη|2
)1/2

→∞.

We normalize the fields and define

Ẽη :=
1

tη
Eη, H̃η :=

1

tη
Hη, with

∫
Q

|Ẽη|2 + |H̃η|2 = 1. (5.2)

Choosing a subsequence η → 0 we may assume that Ẽη ⇀ Ẽ and H̃η ⇀ H̃ in

L2(Q). Applying the previous step, substituting (Ei, H i) with (Ei

tη
, Hi

tη
), we obtain

that (Ẽ, H̃) solves the effective diffraction problem (2.11)–(2.12) with a vanishing
incident wave in relation (2.13). The uniqueness argument proved before shows
then that Ẽ = H̃ = 0. Furthermore, the convergence of (Ẽη, H̃η) to zero holds
uniformly on compacts subsets of R3 \Ω, in particular on ∂Q. Thus by (3.1) and
the normalization (5.2)∫

Ση

1

η2
|Ẽη|2 → 0, ε0 lim

η

∫
Q

|Ẽη|2 = µ0 lim
η

∫
Q

|H̃η|2 =
µ0ε0

µ0 + ε0

(5.3)

The desired contradiction arises when applying compensated compactness and
the following

Claim: There holds

1

η2
Ẽη 1Ση → 0 strongly in H−1(Q). (5.4)

Indeed, assuming the claim we have

curl H̃η = −iωε0

(
1 +

iκ

η2
1Ση

)
Ẽη → 0 strongly in H−1(Q), div H̃η = 0,

and therefore
∫

Q
|H̃η|2 → 0 which is uncompatible with (5.3).

Proof of Claim (5.4). We omit the tilde symbol in this proof. We define the
index set I = Iη ⊂ Z3 by j ∈ Iη ⇐⇒ η(j + Y ) ⊂ Ω, and denote the connected
component of Ση contained in cell Y j

η = η(j+Y ) as Ση
j . For an arbitrary function

ϕ ∈ H1(Q) we write

aη(ϕ) :=

∫
Ση

1

η2
Eηϕ =

∑
j∈I

∫
Σj

η

1

η2
Eη(ϕ− ϕj) +

∑
j∈I

ϕj

∫
Σj

η

1

η2
Eη, (5.5)

where ϕj = 1
η3

∫
Y j

η
ϕ is the average of ϕ on cell j. For the first sum we use the

Poincaré inequality for functions with vanishing average to find

∑
j∈I

∫
Σj

η

1

η2
Eη(ϕ− ϕj) ≤

∑
j∈I

(∫
Σj

η

∣∣∣∣1ηEη

∣∣∣∣2
)1/2(∫

Σj
η

∣∣∣∣1η (ϕ− ϕj)

∣∣∣∣2
)1/2

≤ ‖η−1Eη‖L2(Ση)‖∇ϕ‖L2(Q) = o(1).
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In order to find a uniform bound for the second sum in (5.5), we must control,
for k = 1, 2, 3, the averages∫

Σj
η

1

η2
Eη · ek =

∫
Σj

η

1

η2
Eη · (∇xk) dL3(x) =

∫
∂Σj

η

1

η2
E−

η · n xk dH2(x),

where we wrote E−
η for the trace of Eη on the boundary ∂Σj

η if we take the trace
from the interior of Σj

η. Instead, we write E+
η for the trace from the opposite

side. We can exploit the fact that εηEη has vanishing divergence, hence

1

η2
E−

η · n =
1

iκ

(
E+

η − E−
η

)
· n.

We choose a function θk ∈ C1
0(Y,R) with θk(y) = yk on ∂Σ and set θη

k(η(j+y)) =
ηθk(y). With this function we calculate∫

∂Σj
η

1

η2
E−

η · n xk dH2(x) =

∫
∂Σj

η

1

iκ

(
E+

η − E−
η

)
· n θη

k =

∫
Y j

η

1

iκ
Eη · ∇θη

k.

Since ∇θη
k is bounded, we can put together the pieces to find

aη(ϕ) = o(1) +
∑
j∈I

3∑
k=1

(ϕj · ek)

∫
Σj

η

1

η2
Eη · ek

= o(1) +
∑
j∈I

3∑
k=1

(ϕj · ek)

∫
Y j

η

1

iκ
Eη · ∇θη

k.

If we introduce ϕ̄η, Ē
k
η on Ω as the cell-wise constant functions with

ϕ̄η(x) = ϕj, Ē
k
η (x) =

∫
Y j

η

Eη · ∇θη
k for all x ∈ Y j

η ,

the expression simplifies to

aη(ϕ) = o(1) +
1

iκ

3∑
k=1

∫
Ω

(ϕ̄η · ek)Ē
k
η .

We can now analyze the expression aη(ϕη) for an arbitrary sequence of func-
tions ϕη ⇀ ϕ in H1(Q). We construct ϕ̄η, Ē

k
η as above and find the following.

The convergence ϕη ⇀ ϕ in H1(Q) implies ϕη → ϕ in L2(Q) and therefore also
ϕ̄η → ϕ in L2(Q) by Jensens inequality. The two-scale convergence Eη ⇀ 0
implies, for ψ ∈ C1

0(Q),∫
Q

Ēk
η (x)ψ(x) =

∫
Q

Eη(x) · ∇θη
k(x) ψ(x) + o(1) → 0,

and therefore Ēk
η ⇀ 0. We conclude aη(ϕη) → 0 and hence the result.
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A Existence of potentials

Integration by parts. Let G ⊂ R3 be an open subset with Lipschitz boundary
and outer unit normal n. Then the relation div(U ∧ V ) = curlU · V − curlU · V
implies for U, V ∈ W 1,p(G) the formula∫

G

(curlU · V − curlU · V ) =

∫
∂G

(U ∧ V ) · n =

∫
∂G

(n ∧ U) · V . (A.1)

Potentials in Y . Every field u ∈ L2(Y ; C3) with curlu = 0 is a gradient of a
periodic function (up to constants). There exists ϕ ∈ W 1,2

per(Y ) such that

u = z +∇ϕ, z =

∫
Y

u . (A.2)

Furthermore, every field u ∈ L2(Y ; C3) with div u = 0 is a curl of a periodic
function (up to constants). There exists ψ ∈ W 1,2

per(Y ) such that

u = z + curlψ, z =

∫
Y

u . (A.3)

In addition, ψ can be chosen so that divψ = 0. The potentials ϕ and ψ can be
found with the help of appropriate Poisson problems.

Potentials in Σ. With the full torus Σ, the nontrivial topology changes the
above situation. The special field χa : Σ → R3 has a vanishing curl, but it is not
a gradient. Since the torus has genus 1, there is only one such function (up to
factors). In this work we exploited the following fact:

For every field u ∈ L2(Σ,C3) with curlu = 0, there exists µ ∈ C, ρ ∈
W 1,2(Σ,C), and z ∈ C3 such that

u = ∇ρ+ µχa + z. (A.4)
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[13] A. I. Căbuz, D. Felbacq, and D. Cassagne. Homogenization of negative-index
composite metamaterials: A two-step approach. Physical Review Letters,
98(3):037403, 2007.
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