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MEHLER HEMIGROUPS AND EMBEDDING OF DISCRETE
SKEW CONVOLUTION SEMIGROUPS ON SIMPLY CONNECTED

NILPOTENT LIE GROUPS

PETER BECKER-KERN AND WILFRIED HAZOD

Abstract. It is shown how discrete skew convolution semigroups of probability
measures on a simply connected nilpotent Lie group can be embedded into Lipschitz
continuous semistable hemigroups by means of their generating functionals. These
hemigroups are the distributions of increments of additive semi-selfsimilar pro-
cesses. Considering these on an enlarged space-time group, we obtain Mehler hemi-
groups corresponding to periodically stationary processes of Ornstein-Uhlenbeck
type, driven by certain additive processes with periodically stationary increments.
The background driving processes are further represented by generalized Lie-Trotter
formulas for convolutions, corresponding to a random integral approach known for
finite-dimensional vector spaces.

1. Introduction

In the last decades there has been considerable interest in selfsimilar stochastic
processes obeying certain space-time scaling properties. These processes are useful to
model a wide variety of scaling phenomenas in diverse fields. Our focus is on additive
processes, additionally assuming independent increments. In this case the family of
distributions of the increments builds a stable hemigroup of probability measures.
By Lamperti’s [17] transformation the processes are closely connected with station-
ary Ornstein-Uhlenbeck type processes. On Rd a selfsimilar additive process can
be represented by random integrals with respect to a background driving Lévy pro-
cess and this representation extends to the Ornstein-Uhlenbeck process; see [14]. On
groups such integral representations are not available, but there exist weak represen-
tations by Lie-Trotter formulas for convolutions on an enlarged space-time group; see
[8, 9]. The resulting objects on groups are a convolution semigroup corresponding to
the background driving Lévy process and a Mehler semigroup corresponding to the
Ornstein-Uhlenbeck process. There has also been drawn attention to Mehler semi-
groups as Markovian transition operators on infinite dimensional vector spaces and
its interplay to Ornstein-Uhlenbeck processes and skew convolution semigroups; see
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[3, 4, 5, 7, 18, 22]. A skew convolution semigroup arises as the family of cofactors for
the selfdecomposable one-dimensional marginal distributions of a selfsimilar additive
process. A random integral representation for operator-selfdecomposable measures
has already been obtained by Jurek and Vervaat [15]. Conversely, given a skew con-
volution semigroup it is possible to reconstruct the stable hemigroup and thus all
other distributional families mentioned above; see [8].

Our aim is to generalize these results for additive processes with the weaker scaling
property of semi-selfsimilarity on a discrete scale. We focus on the question of recon-
structing a semi-stable hemigroup (distributions of the increments) and other objects
from a discrete skew convolution semigroup on a locally compact group G. To moti-
vate our studies, we first survey on results in this respect for operator-semi-selfsimilar
processes on Rd.

Let {Xt}t≥0 be an additive stochastic process on Rd, i.e. X0 = 0, t 7→ PXt

is weakly continuous and {Xt}t≥0 has independent increments. Let Q ∈ GL(Rd) be
such that e−tQ → 0 as t → ∞. The additive process {Xt}t≥0 is called operator-
semi-selfsimilar with exponent Q if {cQXt}t≥0 = {Xct}t≥0 for some c > 1 in the
sense of equality of all finite-dimensional distributions. Due to the construction of

random integrals in [15] the processes {Y (+)
t }t≥0 and {Y (−)

t }t≥0 defined by

Y
(+)
t =

∫ et

1

s−Q dXs and Y
(−)
t =

∫ 1

e−t

sQ dXs

are i.i.d. additive processes with log c-stationary increments, i.e. Y
(±)
t+log c − Y

(±)
s+log c is

equal in distribution to Y
(±)
t − Y

(±)
s for all 0 ≤ s ≤ t, and with a certain finite

logarithmic moment condition, from which the operator-semi-selfsimilar process can
be almost surely pathwise recovered by

(1.1) Xt =


∫ ∞
− log t

e−sQ dY (−)
s if 0 ≤ t ≤ 1,

X1 +

∫ log t

0

esQ dY (+)
s if t > 1.

The process {Y (±)
t }t≥0 is called the background driving additive periodic pro-

cess. For details see [2, 20]. Conversely, any additive process with log c-stationary
increments and with certain finite logarithmic moment defines an additive operator-
semi-selfsimilar process in this way. The random integral representation (1.1) eas-

ily carries over to Ornstein-Uhlenbeck type processes {U (+)
t = e−tQXet}t≥0 and

{U (−)
t = etQXe−t}t≥0 given by Lamperti’s [17] transformation. These processes are pe-

riodically stationary Markov processes with period log c, i.e. {U (±)
t+log c}t≥0 = {U (±)

t }t≥0

again in the sense of equality of all finite-dimensional distributions. Their Markov

transition operators Ps,t(f)(x) = E(f(U
(±)
t )|U (±)

s = x) for 0 ≤ s ≤ t and bounded
measurable f : Rd → R can easily be shown to be log c-periodic Feller hemigroups,
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i.e. for 0 ≤ s ≤ r ≤ t we have Ps,rPr,t = Ps,t, Ps+log c,t+log c = Ps,t, and Ps,t(f) ∈ Cb(Rd)
for every f ∈ Cb(Rd), which we call Mehler hemigroups in analogy to Mehler semi-
groups for stationary Ornstein-Uhlenbeck processes.
Turning back to the operator-semi-selfsimilar additive process {Xt}t≥0, the family of
distributions of the increments (µs,t = PXt−Xs)0≤s≤t builds a continuous semistable
convolution hemigroup, i.e. for 0 ≤ s ≤ r ≤ t we have µs,r ∗ µr,t = µs,t,
cQµs,t = µcs,ct, and (s, t) 7→ µs,t is weakly continuous. Especially, µ = µ0,1 is
operator-semi-selfdecomposable, i.e. for n ∈ N we have µ = c−nQµ ∗ νn for some
cofactors (νn)n∈N ⊆ M1(Rd), namely νn = µc−n,1. The cofactors build a discrete
skew convoluton semigroup, i.e. νn+m = νn ∗ c−nQνm for all n,m ∈ N, and we fur-
ther have νn → µ weakly. For the details we refer to [19]. Conversely, let (νn)n∈N be
a discrete skew convolution semigroup with infinitely divisible ν = ν1 ∈M1(Rd) and
assume that νn → µ weakly (equivalently, ν possesses a finite logarithmic moment).
Then µ is operator-semi-selfdecomposable and there exists a continuous semistable
hemigroup (µs,t)0≤s≤t with µ0,1 = µ and νn = µc−n,1. The following construction is
due to [1, 19]. For s > 0 let ns = blogc sc ∈ Z and rs = s/cns ∈ [1, c). With ν0 = ε0

we define

(1.2) µs,t =


c(ns+1)Qν logc

c
rs ∗ cntQνnt−ns−1 ∗ c(nt+1)Qν logc rt if nt > ns

c(nt+1)Qν logc
rt
rs if nt = ns

cntQµ ∗ c(nt+1)Qν logc rt if s = 0

It is a straightforward calculation that (µs,t)0≤s≤t is indeed a continuous semistable
hemigroup with the desired properties. Note that for the above construction the
assumption that ν is infinitely divisible is essential. In contrast to stable hemigroups,
Theorem 1.1 in [21] shows the existence of an infinitely divisible semi-selfdecomposable
µ with cofactor ν = ν1 not being infinitely divisible. Hence infinite divisibility of ν is a
sufficient but not necessary condition for embeddability into a continuous semistable
hemigroup.
Instead of using the embedding hemigroup (1.2) known from [1], it is advantageous
to use an additive rather than a multiplicative parametrization. We will use the
(additive) semistable hemigroup (λs,t = µc−t,c−s)0≤s≤t with νn = µc−n,1 = λ0,n → µ
weakly. One can easily show that (1.2) carries over to the simpler form

(1.3) λs,t =


c−bscQνt−s if bsc = btc
c−btcQλ0,t−btc ∗ c−Qνbtc−1 ∗ ν1−s if 0 ≤ s ≤ 1 ≤ t

c−bscQλs−bsc,t−bsc else

In the following we extend and generalize these results to locally compact groups
G. In fact, for investigations of (semi-)selfdecomposability the assumption that the
norming operators act contracting is essential. Furthermore the existence of con-
tinuous one-parameter groups of automorphisms implies connectedness. Therefore,
without loss of generality, we assume G to be connected and contractible, hence a
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homogeneous group; cf. [9], 3.1.5 and Theorem 2.1.12. We first focus on the question
of embeddability of a discrete skew convolution semigroup into a Lipschitz contin-
uous semistable hemigroup in Section 2. As in the case of a stable hemigroup, the
space-time enlargement enables us in Section 3 to obtain a Mehler hemigroup as a
weak representation of the periodically stationary Ornstein-Uhlenbeck type process,
and further a periodic hemigroup as a weak representation of the background driving
additive periodic process. Finally, we show in Section 4 how to obtain weak ana-
logues of random integral representations on Rd by generalized Lie-Trotter formulas
for convolutions on G.

2. Hemigroup embedding

A close look at the embedding semistable hemigroup (1.3) on Rd shows that due
to infinite divisibility of ν = ν1 we fill the gaps left by the discrete skew convolution
semigroup (νn)n∈N with the help of the semigroup (νt)t≥0. On non-Abelian groups G
the assumption that ν is embeddable into a convolution semigroup is too restrictive
and we rather prefer a more general hemigroup embedding. Recall that now we use
additive parametrization and thus on G the objects under use have slightly different
definitions below than given in the Introduction. In the following let G denote a
homogeneous group, i.e. a contractible simply connected nilpotent Lie group. Let
throughout τ ∈ Aut(G) and let (Tt)t∈R be a continuous one-parameter group in
Aut(G).

Definition 2.1. (a) A family (νs,t)0≤s≤t ⊆ M1(G) is called a continuous hemi-
group if (s, t) 7→ νs,t is weakly continuous, νs,s = εe for all s ≥ 0 and we have
νs,r ∗ νr,t = νs,t for all 0 ≤ s ≤ r ≤ t. The hemigroup is called τ-semistable if
τ(νs,t) = νs+1,t+1 for all 0 ≤ s ≤ t.
(b) A discrete hemigroup is a family {ν(k, n)}0≤k≤n ⊆M1(G) with k, n ∈ Z+ sat-
isfying ν(k, k) = εe and ν(k,m)∗ν(m,n) = ν(k, n) for all 0 ≤ k ≤ m ≤ n. Obviously,
in this case ν(k, n) = ∗nj=k+1ν(j − 1, j), hence any sequence {νj = ν(j − 1, j)}j∈Z+

generates a discrete hemigroup. The discrete hemigroup is called τ-semistable if
τ(ν(k, n)) = ν(k + 1, n+ 1) for all 0 ≤ k ≤ n.

Definition 2.2. (a) A weakly continuous family (νt)t∈R+ ⊆M1(G) is called a skew
convolution semigroup with respect to (Tt)t∈R (or M-semigroup in Hazod [8]) if
νs+t = νs ∗ Ts(νt) for all s, t ≥ 0.
(b) A sequence {ν(k)}k∈Z+ ⊆M1(G) is called a discrete skew convolution semi-
group with respect to τ ∈ Aut(G) if ν(0) = εe and ν(k+ n) = ν(k) ∗ τ k(ν(n)) for all
k, n ∈ Z+.

As in the continuous case, discrete semistable hemigroups and discrete skew convo-
lution semigroups are closely related. One immediately verifies the following relations.

Proposition 2.3. (a) {ν(k)}k∈Z+ is a discrete skew convolution semigroup iff ν(0) =

εe and ν(k) = ∗kj=1τ
j−1(ν) for all k ∈ N with ν = ν(1).
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(b) {ν(k, n)}0≤k≤n is a discrete τ -semistable hemigroup iff ν(k, k) = εe and ν(k, n) =

∗nj=k+1τ
j−1(ν) for all 0 ≤ k < n with ν = ν(0, 1).

(c) {ν(k)}k∈Z+ is a discrete skew convolution semigroup with respect to τ iff {ν(k, n) =
τ k(ν(n− k))}0≤k≤n is a discrete τ -semistable hemigroup.

Remark 2.4. According to Proposition 2.3 any ν ∈ M1(G) may be embedded into a
discrete skew convolution semigroup, respectively a discrete τ -semistable hemigroup.
Therefore we first concentrate on the problem under which conditions a discrete τ -
semistable hemigroup may be embedded into a continuous τ -semistable hemigroup.
We call ν ∈ M1(G) embeddable into a hemigroup (for short: h-embeddable) if
there exists a continuous hemigroup (µs,t)0≤s≤t≤1 with µ0,1 = ν.
Note that h-embeddable laws ν = µ0,1 with a commuting hemigroup, i.e. µs,t ∗µu,v =
µu,v ∗ µs,t for (s, t] ∩ (u, v] = ∅, are infinitely divisible as limits of commuting in-
finitesimal triangular arrays, and hence embeddable into a continuous convolution
semigroup; cf. Shah [23], Theorem 1.1.
A hemigroup (νs,t)0≤s≤t is called 1-periodic if νs+1,t+1 = νs,t for all 0 ≤ s ≤ t.
Obviously, any h-embeddable law ν is embeddable into a 1-periodic hemigroup. If
ν is embeddable into a continuous convolution semigroup (ρt)t≥0 with ρ1 = ν then
(νs,t = ρt−s)0≤s≤t is obviously 1-periodic.

Proposition 2.5. (a) Embedding of a discrete hemigroup {ν(k, n)}0≤k≤n into a con-
tinuous hemigroup is possible iff all νj = ν(j − 1, j) are h-embeddable.
(b) Embedding of a discrete semistable hemigroup {ν(k, n)}0≤k≤n into a continuous
semistable hemigroup is possible iff ν = ν(0, 1) is h-embeddable.

Proof. The proof of (a) is obvious. To prove (b) first observe that if (λs,t)0≤s≤t is
a semistable hemigroup with λk,n = ν(k, n) for all k, n ∈ Z+, k ≤ n, then (µs,t =
λs,t)0≤s≤t≤1 is a continuous hemigroup with µ0,1 = λ0,1 = ν(0, 1) = ν. Conversely,
let ν be h-embeddable with ν = µ0,1 and ν(k, n) = ∗nj=k+1τ

j−1(ν) for all k, n ∈ Z+,
k < n. Define

(2.1) λs,t =


τ bsc(µs−bsc,t−bsc) , if bsc = btc
µs,1 ∗ ν(1, btc) ∗ τ btc(µ0,t−btc) , if 0 ≤ s ≤ 1 ≤ t

τ bsc(λs−bsc,t−bsc) , else.

As easily verified, (λs,t)0≤s≤t is a continuous hemigroup with λk,n = ν(k, n) for all
k, n ∈ Z+, k ≤ n, and we have τ(λs,t) = λs+1,t+1 by construction. �

Note that (2.1) coincides with the semistable hemigroup (1.3) on G = Rd if we set
τ = c−Q and µs,t = νt−s in case ν is infinitely divisible.

Now, according to Siebert [24], let (Xi)
d
i=1 be a basis of the Lie algebra G of G,

and let (ξi)
d
i=1 be a local coordinate system, i.e. ξi ∈ C∞c (G) with |ξi| ≤ 1, ξi(e) = 0,

ξi(x
−1) = −ξi(x) and Xi(ξj) = δij. Furthermore choose a Hunt function ϕ = ϕG

with ϕ =
∑d

i=1 ξ
2
i on a compact neighbourhood U0 of e such that 0 ≤ ϕ ≤ 1 and
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1 − ϕ ∈ C∞c (G). Let A(G) denote the cone of generating functionals of continuous
convolution semigroups. For the background of probabilities on groups and Lévy-
Khintchine formulas see e.g. [11, 9].

Definition 2.6. (a) For µ ∈ M1(G) we define q(µ) =
∑d

i=1 |〈µ, ξi〉| + 〈µ, ϕ〉 called
the q-functional. Similarly, for a generating functional A ∈ A(G) we define

‖A‖ =
∑d

i=1 |〈A, ξi〉| + 〈A,ϕ〉 and hence for the Poisson generator A = µ − εe we
may write q(µ) = ‖A‖ = ‖µ− εe‖.
(b) A hemigroup (µs,t)0≤s≤t is called Lipschitz continuous on [0, R] if q(µs,t) ≤
C(t−s) for all 0 ≤ s ≤ t ≤ R, where C > 0 depends on the hemigroup and on R. We
simply call the hemigroup Lipschitz continuous if this condition is fulfilled for every
R > 0.
(c) A hemigroup (µs,t)0≤s≤t is called of bounded variation on [0, R] if for all de-
compositions 0 = r1 < r2 < · · · < rn < rn+1 = R we have

∑n
i=1 q(µri,ri+1

) ≤ γ, where
γ > 0 depends on the hemigroup and on R. We simply call the hemigroup of bounded
variation if this condition is fulfilled for every R > 0.

Remark 2.7. (a) As mentioned in 2.5 of Siebert [24], ‖A‖ is equivalent to |A|2 and
|A|∼2 , the norms of the functional A on the spaces of twice differentiable functions
C2(G), respectively C∼2 (G). Therefore it easily follows that for T ∈ Aut(G) there
exists C(T ) > 0 such that q(T (µ)) = ‖T (µ − εe)‖ ≤ C(T )q(µ) for µ ∈ M1(G)
and ‖T (A)‖ ≤ C(T )‖A‖ for A ∈ A(G). Hence, according to Proposition 2.5, the
semistable hemigroup (λs,t)0≤s≤t is Lipschitz continuous on any interval [0, R] iff
(µs,t = λs,t)0≤s≤t≤1 is Lipschitz continuous.
(b) Lipschitz continuous hemigroups are almost surely differentiable by Siebert [24],
Theorem 4.3 and Lemma 2.8. This fact will be important in Section 3 for the construc-
tion of the background driving process. For continuously differentiable hemigroups a
different approach is given by Kunita [16].

Theorem 2.8. Let ν ∈ M1(G) be h-embeddable with ν = µ0,1 for some contin-
uous hemigroup (µs,t)0≤s≤t≤1. Then there exists a Lipschitz continuous hemigroup
(µ′s,t)0≤s≤t≤1 with µ′0,1 = ν = µ0,1.

Proof. Step 1: We first show that there exists a continuous hemigroup of bounded
variation (µ̄s,t)0≤s≤t≤1 with µ̄0,1 = ν.
The continuous hemigroup (µs,t)0≤s≤t≤1 may be represented as the family of dis-
tributions of the increments X−1

s Xt of a stochastically continuous additive process
(Xt)t∈[0,1] with X0 = e almost surely. According to Feinsilver [6], Section 3e), there
exists a decomposition Xt = Zt ·mt, where t 7→ mt ∈ G is continuous and (Zt)t∈[0,1]

is an additive process with Z0 = e almost surely such that the Lévy-Khintchine char-
acteristics of the corresponding generating functionals are of bounded variation. In
fact, (Zt)t∈[0,1] is characterized by the property that t 7→ f(Zt) −

∫ t
0
f(Zs)L(ds) is a

martingale for every f ∈ C∞c (G), where L is given by the covariance function and
the Lévy-measure function. For details cf. Feinsilver [6]. Let (νs,t)0≤s≤t≤1 denote
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the family of distributions of the increments of (Zt)t∈[0,1]. Since the generating func-
tionals of (νs,t)0≤s≤t≤1 are of bounded variation, the hemigroup itself is of bounded
variation in the sense of Definiton 2.6(c), cf. Heyer and Pap[12], Theorems 6 and 7.
For 0 ≤ s ≤ t ≤ 1 we have X−1

s Xt = m−1
s Z−1

s Zt ·mt and hence µs,t = εm−1
s
∗ νs,t ∗ εmt ,

especially µ0,1 = ν0,1 ∗ εm1 , since m0 = e. Now choose a continuous one-parameter
group (u(t))t∈R ⊆ G with u(1) = m1 and define

µ̄s,t =


ν2s,2t , if 0 ≤ s ≤ t ≤ 1

2

εu(2(t−s)) , if 1
2
≤ s ≤ t ≤ 1

µ̄s, 1
2
∗ µ̄ 1

2
,t , if 0 ≤ s ≤ 1

2
≤ t ≤ 1.

Obviously, by construction (µ̄s,t)0≤s≤t≤1 is a continuous hemigroup of bounded varia-
tion with µ̄0,1 = ν0,1 ∗ εm1 = µ0,1 = ν.
Step 2: There exists a Lipschitz continuous hemigroup (µ′s,t)0≤s≤t≤1 with µ′0,1 = µ̄0,1 =
ν. This follows from Siebert [24], 7.4, with µ′s,t = µ̄U−1(s),U−1(t) for a suitable function
U : [0, 1]→ [0, 1]. �

We now turn to the behaviour at infinity which is closely related to semi-
selfdecomposability. Essentially, in the following we will need τ to be contracting,
i.e. τn(x)→ e for all x ∈ G.

Definition 2.9. A probability measure µ ∈ M1(G) is called τ-semi-
selfdecomposable if there exists a τ -semistable hemigroup (λs,t)0≤s≤t such that
λ0,t → µ weakly as t→∞.

Obviously, for n ∈ N and t > n we get

λ0,t = λ0,n ∗ λn,t = ν(n) ∗ τn(λ0,t−n)→ ν(n) ∗ τn(µ) = µ

weakly as t → ∞, coinciding with the usual definition of semi-selfdecomposability.
Since λbtc,t = τ btc(λ0,t−btc)→ εe by contractivity, due to the above hemigroup embed-
ding we obtain that µ is τ -semi-selfdecomposable iff there exists an h-embeddable law
ν such that ν(n) = ∗n−1

k=0τ
k(ν)→ µ weakly. According to [10], ν(n) converges weakly

iff ν possesses a finite logarithmic moment, i.e.
∫

G log(1 +‖x‖) dν(x) <∞, where ‖ · ‖
is a norm on the homogeneous group. On G = Rd this coincides with the assumption
of a finite logarithmic moment in [2, 20].

3. Space-time enlargement and Mehler hemigroups

According to Proposition 2.5(b) and Theorem 2.8, in the sequel we assume with-
out loss of generality that for h-embeddable laws the underlying semistable hemi-
group is Lipschitz continuous, in particular the semistable hemigroup constructed
in (2.1). Moreover, for τ ∈ Aut(G) there exists a continuous one-parameter group
(Tt)t∈R ⊆ Aut(G) such that τ k = T1 for some k ∈ N; cf. [9], Proposition 2.8.14. If τ
is contracting then also (Tt)t∈R is contracting. Hence in the sequel we further assume
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without loss of generality τ to be embedded into a continuous one-parameter group
(Tt)t∈R with τ = T1.

Following an idea of Hofmann and Jurek [13], let H = GoR denote the space-time
group, where the semidirect product is defined by the action (Tt)t∈R as

(x, s) · (y, t) = (x · Ts(y), s+ t) for all x, y ∈ G and s, t ∈ R,

cf.,e.g., [9], §2.14 III. Let M1
?(H) = {µ ⊗ εu : µ ∈ M1(G), u ∈ R} be the closed,

convex subsemigroup of M1(H) with convolution given by

(µ⊗ εs) ? (ν ⊗ εt) = (µ ∗ Ts(ν), εs+t) for µ, ν ∈M1(G) and s, t ∈ R.

Let (λs,t)0≤s≤t ⊆M1(G) be a continuous hemigroup and define

λ•s,t = T−s(λs,t) ⊆M1(G)

Λs,t = λ•s,t ⊗ εt−s ⊆M1
?(H)

then one can easily verify that (Λs,t)0≤s≤t is a continuous hemigroup. Conversely, let
(Λ′s,t = λ′s,t⊗εϕ(s,t))0≤s≤t ⊆M1

?(H) be a continuous hemigroup. Then for 0 ≤ s ≤ r ≤
t we have ϕ(s, r) + ϕ(r, t) = ϕ(s, t) and hence, with ψ(t) = ϕ(0, t) we get ϕ(s, t) =
ψ(t)−ψ(s). Furthermore λ′s,r ∗Tψ(r)−ψ(s)(λ

′
r,t) = λ′s,t and thus (λ′′s,t = Tψ(s)(λ

′
s,t))0≤s≤t

is a continuous hemigroup in M1(G).
For bounded measurable functions g : H→ R we obtain the convolutions

Λs,t ? g(x, r) =

∫
H
g
(
(y, u) · (x, r)

)
dΛs,t(y, u)

=

∫
G
g
(
y · Tt−s(x), t− s+ r

)
dλ•s,t(y)

=

∫
G
g
(
T−s(y · Tt(x)), t− s+ r

)
dλs,t(y).

Thus for the space component we may define a family (Ps,t)0≤s≤t of bounded linear
operators as

Ps,t(f)(x) =

∫
G
f
(
T−s(y · Tt(x))

)
dλs,t(y)

for bounded measurable functions f : G→ R. As easily verified we have the following
properties.

Lemma 3.1. For a τ -semistable hemigroup (λs,t)0≤s≤t the above family (Ps,t)0≤s≤t is
a 1-periodic Feller hemigroup, i.e.

Pr,tPs,r = Ps,t for all 0 ≤ s ≤ r ≤ t.

Ps+1,t+1 = Ps,t for all 0 ≤ s ≤ t.

Ps,t(f) ∈ Cb(G) for every f ∈ Cb(G) and 0 ≤ s ≤ t.
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In analogy to Mehler semigroups for stable hemigroups, we call (Ps,t)0≤s≤t a Mehler
hemigroup of linear operators. These operators are closely related to the background
driving process, which will be of our interest in the sequel.

Proposition 3.2. (a) The hemigroup (λs,t)0≤s≤t ⊆ M1(G) is Lipschitz continuous
iff (Λs,t)0≤s≤t ⊆M1

?(H) shares this property. This is the case iff the function (s, t) 7→
λ•s,t ∈M1(G) is Lipschitz continuous.
(b) The hemigroup (λs,t)0≤s≤t is τ -semistable iff (Λs,t)0≤s≤t is 1-periodic. This is the
case iff the function (s, t) 7→ λ•s,t ∈M1(G) is 1-periodic.

Proof. As in Definition 2.6, let (ξi)
d
i=1 be a local coordinate system on G and let ϕG be

a Hunt function. Further let ξd+1 be a local coordinate function on R, e.g. ξd+1(t) =
t

1+t2
. Then (ξ̄i)

d+1
i=1 with ξ̄i(x, t) = ξi(x) for 1 ≤ i ≤ d and ξ̄d+1(x, t) = ξd+1(t) defines

a local coordinate system on H and ϕH(x, t) = ϕG(x) + ξ2
d+1(t) is a Hunt function

on H. The q-functional on the space-time group is then given by qH(µ ⊗ εt) =
qG(µ)+ |ξd+1(t)|+ξ2

d+1(t). Together with Remark 2.7 this proves (a), and (b) is easily
verified by direct calculation. �

According to Siebert [24], Theorem 4.3 and Lemma 2.8, the Lipschitz continuous
semistable hemigroup (λs,t)0≤s≤t constructed in (2.1) is almost surely differentiable.

For 0 ≤ s ≤ 1 let C(s) = ∂+

∂t
µs,t
∣∣
t=s
∈ A(G). Then, by the construction in (2.1), for

s > 0 we obtain

A(s) =
∂+

∂t
λs,t

∣∣∣
t=s

= Tbsc

(∂+

∂t
µs−bsc,t−bsc

∣∣∣
t=s

)
= Tbsc(C(s− bsc)).

The almost everywhere defined mapping s 7→ A(s) ∈ A(G) is admissible in the sense
of Siebert [24], 2.6, and we have

B(s, t) = B(t)−B(s) =

∫ t

s

A(u) du =

∫ t

s

Tbuc(C(u− buc)) du ∈ A(G),

where t 7→ B(t) = B(0, t) is increasing and Lipschitz continuous. On the other
hand, again by Siebert [24], Theorem 4.3 and Lemma 2.8, and by Proposition 3.2(a),
(Λs,t)0≤s≤t is almost surely differentiable, hence in particular, (λ•s,t)0≤s≤t is almost

surely differentiable. Put A(s) = ∂+

∂t
Λs,t

∣∣
t=s
∈ A(H) then for the space component we

obtain

A•(s) =
∂+

∂t
λ•s,t

∣∣∣
t=s

= T−sA(s) = T−(s−bsc)(C(s− bsc)).
As above, we further define the generating functionals

B(s, t) = B(t)−B(s) =

∫ t

s

A(u) du ∈ A(H) with B(t) = B(0, t)

B•(s, t) = B•(t)−B•(s) =

∫ t

s

A•(u) du ∈ A(G) with B•(t) = B•(0, t)

and we easily obtain the following relations.
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Proposition 3.3. τ -semistability, respectively 1-periodicity of the hemigroups imply
for all 0 ≤ s ≤ t

A(s+ 1) = τ(A(s)) and B(s+ 1, t+ 1) = τ(B(s, t)),

A(s+ 1) = A(s) and B(s+ 1, t+ 1) = B(s, t),

A•(s+ 1) = A•(s) and B•(s+ 1, t+ 1) = B•(s, t).

Now we are ready to prove

Theorem 3.4. There exists a bijection between Lipschitz continuous τ -semistable
hemigroups (λs,t)0≤s≤t and Lipschitz continuous 1-periodic hemigroups (λ̄s,t)0≤s≤t on
M1(G) given by their families of generating functionals (B(s, t))0≤s≤t, repectively
(B•(s, t))0≤s≤t.

Remark 3.5. In analogy to background driving Lévy processes for stable hemigroups,
we call (λ̄s,t)0≤s≤t the (family of distributions of the increments of the) background
driving additive periodic process.

Proof. According to Proposition 3.2 we have a 1-1-correspondence between Lipschitz
continuous τ -semistable hemigroups (λs,t)0≤s≤t ⊆ M1(G) and Lipschitz continuous
1-periodic hemigroups (Λs,t)0≤s≤t ⊆ M1(H). According to Siebert [24], Section 4,
these hemigroups are uniquely determined by the families of generating function-
als (B(s, t))0≤s≤t, repectively (B(s, t))0≤s≤t, or the corresponding admissible families
(A(u))u≥0 ⊆ A(G), respectively (A(u))u≥0 ⊆ A(H), satisfying the evolution equations
(EE2) (Siebert [24], 4.3), respectively condition (E) (Siebert [24], 3.6). As easily seen,
since Λs,t ∈ M1

?(H), (B(t))t≥0 satisfies (E), respectively (A(u))u≥0 satisfies (EE2) iff
(B•(t))t≥0, respectively (A•(u))u≥0 satisfy these conditions. Therefore, by Siebert
[24], 5.7 or 5.10, there exists a uniquely determined Lipschitz continuous hemigroup
(λ̄s,t)0≤s≤t with generating functionals (B•(s, t) = B•(t) − B•(s))0≤s≤t, i.e. A•(s) =
∂+

∂t
λ̄s,t
∣∣
t=s

almost everywhere. By Proposition 3.3 we conclude A•(s+ 1) = A•(s) and
B•(s + 1, t + 1) = B•(s, t) for all 0 ≤ s ≤ t. Furthermore (cf. Siebert [24], 6.1), for

R > 0 and a sequence of decompositions 0 = c
(n)
0 < c

(n)
1 < · · · < c

(n)
n−1 < c

(n)
n = R with

max1≤i≤n |c(n)
i − c

(n)
i−1| → 0, we have

(3.1) λ̄s,t = lim
n→∞

rn(t)

∗
i=rn(s)+1

Exp
(
B•(c

(n)
i , c

(n)
i+1)
)
,

where (Exp(tU))t≥0 denotes the convolution semigroup generated by U ∈ A(G) and

rn(u) = k iff c
(n)
k ≤ u < c

(n)
k+1. Therefore, 1-periodicity of (B•(s, t))0≤s≤t implies 1-

periodicity of (λ̄s,t)0≤s≤t as asserted.

The converse is proved analogously. Given A•(s) = ∂+

∂t
λ̄s,t
∣∣
t=s

we define A(s) =
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Ts(A
•(s)) and B(s, t) =

∫ t
s
A(u) du. Then, observing (again by Siebert [24], 6.1)

λs,t = lim
n→∞

rn(t)

∗
i=rn(s)+1

Exp
(
B(c

(n)
i , c

(n)
i+1)
)

and noting that periodicity B•(s+1, t+1) = B•(s, t) yields B(s+1, t+1) = τ(B(s, t)),
we conclude semistability τ(λs,t) = λs+1,t+1. �

4. Representations by generalized Lie-Trotter formulas

For vector spaces G = Rd the additive periodic driving process can be represented
by pathwise random integrals; cf. [2, 20]. For stable hemigroups on homogeneous
groups the background driving process is a Lévy process and a weak version of random
integrals is obtained by the Lie-Trotter formula for convolution semigroups, see [8, 9].
In order to obtain similar results for semistable hemigroups on homogeneous groups
G we have to analyze Section 3 of Siebert [24]. There the hemigroups are represented

as limits of row-products of infinitesimal arrays µs,t = limn→∞∗bntck=bnsc+1σn,k. Crucial

are the following conditions (S’) and (T) in Siebert [24]

(4.1)
n∑
k=1

q(σn,k) ≤ γ for some γ > 0 and all n ∈ N.

For every ε > 0 there exists a compact Kε ⊆ G such that

(4.2)
n∑
k=1

σn,k({Kε) < ε for all n ∈ N.

Here, in place of σn,k, for k, n ∈ N we consider the arrays given by

µ(n, k) = λ k−1
n
, k
n

and µ•(n, k) = λ•k−1
n
, k
n

= T k−1
n

(µ(n, k)),

which obviously are infinitesimal.

Proposition 4.1. The arrays {µ(n, k)}k,n∈N and {µ•(n, k)}k,n∈N fulfill conditions
(4.1) and (4.2) (conditions (S’) and (T) in Siebert [24]).

Proof. Since (λs,t)0≤s≤t is Lipschitz continuous, the array {µ(n, k)}k,n∈N satisfies con-
dition (4.1); cf. Siebert [24], 5.3 and 5.4. Therefore, also {µ•(n, k)}k,n∈N satisfies
condition (4.1) by Remark 2.7. To prove the tightness condition (4.2) we switch to
the space-time hemigroup (Λs,t)0≤s≤t. Let ϕG and ϕH be Hunt functions as in the
proof of Proposition 3.2, and let η denote the Lévy-measure of B(0, 1) = B(1). Put

κ(n, k) = Λ k−1
n
, k
n
− ε(e,0) and κn(s, t) =

bntc∑
k=bnsc+1

κ(n, k).
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Then for all 0 ≤ s ≤ t we have κn(s, t)→ B(s, t) by Siebert [24], Theorem 3.6, hence
for nonnegative f ∈ C2(H) with f(e, 0) = 0 we get

〈B(1), f〉 = lim
n→∞

〈 n∑
k=1

κ(n, k), f
〉

= lim
n→∞

〈 n∑
k=1

µ•(n, k)⊗ εn−1 , f
〉
.

Especially, for f = ϕH = ϕG + ξ2
d+1 we have

〈B(1), ϕH〉 = lim
n→∞

〈 n∑
k=1

µ•(n, k), ϕG

〉
,

since ξ2
d+1(n

−1) → 0. Furthermore, since Λs,t ∈ M1
?(H), the Lévy-measure η of B(1)

is concentrated on G× {0} ⊆ H, and for nonnegative g ∈ C2(H) with g(e, 0) = 0 we
have 〈B(1), g ·ϕH〉 = 〈η, g ·ϕH〉. Therefore, for g = h⊗ 1R with h ∈ C2(G), we obtain

(4.3) 〈η, g · ϕH〉 = lim
n→∞

〈 n∑
k=1

µ•(n, k), h · ϕG

〉
= lim

n→∞

〈
ϕG ·

n∑
k=1

µ•(n, k), h
〉
,

where ϕG · µ denotes the measure ν with Radon-Nikodym derivative dν
dµ

= ϕG. Now

for any neighbourhood V of e we have ϕG
∣∣
{V
≥ δ for some δ > 0. Therefore (4.3)

yields weak convergence of the bounded measures
∑n

k=1 µ
•(n, k)

∣∣
{V
→ η

∣∣
{V

and by

Prohorov’s theorem the sequence {
∑n

k=1 µ
•(n, k)

∣∣
{V
} is uniformly tight. Whence,

(4.2) follows. �

Now we are ready to prove the announced generalized Lie-Trotter formulas that
can be seen as weak random integral representations.

Theorem 4.2. With the above notations we have

λ̄s,t = lim
n→∞

bntc

∗
k=bnsc+1

T− k−1
n

(λ k−1
n
, k
n
) = lim

n→∞

bntc

∗
k=bnsc+1

λ•k−1
n
, k
n

and conversely

λs,t = lim
n→∞

bntc

∗
k=bnsc+1

T k−1
n

(λ•k−1
n
, k
n

).

Proof. According to Siebert [24], 3.6, the conditions (4.1) and (4.2) imply that{
λn(s, t) = ∗bntck=bnsc+1λ

•
k−1

n
, k
n

: n ∈ N, 0 ≤ s ≤ t
}

is uniformly tight, hence weakly

relatively compact. Let (n′) denote a universal net such that λn(s, t)→ λ∗(s, t) along
(n′) for all 0 ≤ s ≤ t. Then, by Siebert [24], 3.6, (λ∗(s, t))0≤s≤t is a Lipschitz continu-

ous hemigroup with generating functionals B∗(s, t) = lim(n′)

∑bntc
k=bnsc+1

(
λ•k−1

n
, k
n

− εe
)
.

Hence B∗(s, t) = B•(s, t) for all 0 ≤ s ≤ t and, since the hemigroup is uniquely de-
termined by the generating functionals (cf. Siebert [24], 5.7), we have λ∗(s, t) = λ̄s,t.
The converse limit representation simply follows by λ•s,t = T−sλs,t. �
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