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MEHLER HEMIGROUPS AND EMBEDDING OF DISCRETE
SKEW CONVOLUTION SEMIGROUPS ON SIMPLY CONNECTED
NILPOTENT LIE GROUPS

PETER BECKER-KERN AND WILFRIED HAZOD

ABSTRACT. It is shown how discrete skew convolution semigroups of probability
measures on a simply connected nilpotent Lie group can be embedded into Lipschitz
continuous semistable hemigroups by means of their generating functionals. These
hemigroups are the distributions of increments of additive semi-selfsimilar pro-
cesses. Considering these on an enlarged space-time group, we obtain Mehler hemi-
groups corresponding to periodically stationary processes of Ornstein-Uhlenbeck
type, driven by certain additive processes with periodically stationary increments.
The background driving processes are further represented by generalized Lie-Trotter
formulas for convolutions, corresponding to a random integral approach known for
finite-dimensional vector spaces.

1. INTRODUCTION

In the last decades there has been considerable interest in selfsimilar stochastic
processes obeying certain space-time scaling properties. These processes are useful to
model a wide variety of scaling phenomenas in diverse fields. Our focus is on additive
processes, additionally assuming independent increments. In this case the family of
distributions of the increments builds a stable hemigroup of probability measures.
By Lamperti’s [17] transformation the processes are closely connected with station-
ary Ornstein-Uhlenbeck type processes. On R? a selfsimilar additive process can
be represented by random integrals with respect to a background driving Lévy pro-
cess and this representation extends to the Ornstein-Uhlenbeck process; see [14]. On
groups such integral representations are not available, but there exist weak represen-
tations by Lie-Trotter formulas for convolutions on an enlarged space-time group; see
8, 9]. The resulting objects on groups are a convolution semigroup corresponding to
the background driving Lévy process and a Mehler semigroup corresponding to the
Ornstein-Uhlenbeck process. There has also been drawn attention to Mehler semi-
groups as Markovian transition operators on infinite dimensional vector spaces and
its interplay to Ornstein-Uhlenbeck processes and skew convolution semigroups; see
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2 PETER BECKER-KERN AND WILFRIED HAZOD

3,4, 5,7, 18, 22]. A skew convolution semigroup arises as the family of cofactors for
the selfdecomposable one-dimensional marginal distributions of a selfsimilar additive
process. A random integral representation for operator-selfdecomposable measures
has already been obtained by Jurek and Vervaat [15]. Conversely, given a skew con-
volution semigroup it is possible to reconstruct the stable hemigroup and thus all
other distributional families mentioned above; see [8].

Our aim is to generalize these results for additive processes with the weaker scaling
property of semi-selfsimilarity on a discrete scale. We focus on the question of recon-
structing a semi-stable hemigroup (distributions of the increments) and other objects
from a discrete skew convolution semigroup on a locally compact group G. To moti-
vate our studies, we first survey on results in this respect for operator-semi-selfsimilar
processes on R

Let {X;}/>0 be an additive stochastic process on R? ie. Xy = 0, t — Py,
is weakly continuous and {X;};>o has independent increments. Let Q € GL(R?) be
such that e™@ — 0 as t — oo. The additive process {X;};>o is called operator-
semi-selfsimilar with exponent @ if {c?X;};50 = { Xt }iso for some ¢ > 1 in the
sense of equality of all finite-dimensional distributions. Due to the construction of
random integrals in [15] the processes {Y;(Jr)}tzo and {Yt(f)}tzo defined by

et 1
Y = / s9dX, and Y, = / s9 dX,
1 e

—t

. i . . . : (+) ) .
are 1.1.d. additive processes with log c-stationary increments, i.e. Y, (o . — Y is

equal in distribution to Yt(i) — Ys(i) for all 0 < s < t, and with a certain finite
logarithmic moment condition, from which the operator-semi-selfsimilar process can
be almost surely pathwise recovered by

/ e*@dy ) if0<t<l,
(11) Xt: ~log? logt
X1+/ eLay™ ift > 1.
0

The process {Yt(i)}tzo is called the background driving additive periodic pro-
cess. For details see [2, 20]. Conversely, any additive process with log c-stationary
increments and with certain finite logarithmic moment defines an additive operator-
semi-selfsimilar process in this way. The random integral representation (1.1) eas-
ily carries over to Ornstein-Uhlenbeck type processes {Ut(ﬂ = ¢ 9 X }450 and
(U™ = e!? X+ }4>0 given by Lamperti’s [17] transformation. These processes are pe-
riodically stationary Markov processes with period logc, i.e. { Ut(-:}-tlz)gc}tEO = {Ut(i)}tzo
again in the sense of equality of all finite-dimensional distributions. Their Markov
transition operators Ps(f)(z) = E(f(Ut(i))|Us(i) = z) for 0 < s < ¢ and bounded
measurable f : R — R can easily be shown to be log c-periodic Feller hemigroups,
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ie for 0 < s <r<twehave P, P = Py, Pittogeitioge = Pss, and Py (f) € Cp(R?)
for every f € Cy(R%), which we call Mehler hemigroups in analogy to Mehler semi-
groups for stationary Ornstein-Uhlenbeck processes.

Turning back to the operator-semi-selfsimilar additive process {X;}:>o, the family of
distributions of the increments (us+ = Px,—x, )o<s<t builds a continuous semistable
convolution hemigroup, ie. for 0 < s < r < ¢ we have s, * [l = sy,
Pligs = Heser, and (s,) +— p,, is weakly continuous. Especially, p = po; is
operator-semi-selfdecomposable, i.e. for n € N we have y = ¢ "9y * v, for some
cofactors (V,)neny € M (R?), namely v, = p.n,. The cofactors build a discrete
skew convoluton semigroup, i.e. v, = v, * ¢ "?u,, for all n,m € N, and we fur-
ther have v, — p weakly. For the details we refer to [19]. Conversely, let (1, )nen be
a discrete skew convolution semigroup with infinitely divisible v = v; € M*(R?) and
assume that v, — p weakly (equivalently, v possesses a finite logarithmic moment).
Then g is operator-semi-selfdecomposable and there exists a continuous semistable
hemigroup (ftst)o<s<t With po1 = p and v, = pe—n 1. The following construction is
due to [1, 19]. For s > 0 let ny = |log.s| € Z and r; = s/c™ € [1,¢). With vy = €
we define

< .
(et DQPIBe o0 g Qs et D@ploge e if s

(1.2) floy = { D@y lose if ny = ng

@y x )@y loge e ifs=0

It is a straightforward calculation that (us:)o<s<: is indeed a continuous semistable
hemigroup with the desired properties. Note that for the above construction the
assumption that v is infinitely divisible is essential. In contrast to stable hemigroups,
Theorem 1.1 in [21] shows the existence of an infinitely divisible semi-selfdecomposable
1 with cofactor v = v not being infinitely divisible. Hence infinite divisibility of v is a
sufficient but not necessary condition for embeddability into a continuous semistable
hemigroup.

Instead of using the embedding hemigroup (1.2) known from [1], it is advantageous
to use an additive rather than a multiplicative parametrization. We will use the
(additive) semistable hemigroup (As: = fie—t s )o<s<t With v, = pe—n1 = Ao — 1
weakly. One can easily show that (1.2) carries over to the simpler form

clslQyt=s if [s| = [t]
(1.3) Asit = C_WQ/\OJ_M * c‘Quw_l xvI7 if0<s<1<t
C_LSJQ)\S,LSJ’t,LSJ else

In the following we extend and generalize these results to locally compact groups
G. In fact, for investigations of (semi-)selfdecomposability the assumption that the
norming operators act contracting is essential. Furthermore the existence of con-
tinuous one-parameter groups of automorphisms implies connectedness. Therefore,
without loss of generality, we assume G to be connected and contractible, hence a
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homogeneous group; cf. [9], 3.1.5 and Theorem 2.1.12. We first focus on the question
of embeddability of a discrete skew convolution semigroup into a Lipschitz contin-
uous semistable hemigroup in Section 2. As in the case of a stable hemigroup, the
space-time enlargement enables us in Section 3 to obtain a Mehler hemigroup as a
weak representation of the periodically stationary Ornstein-Uhlenbeck type process,
and further a periodic hemigroup as a weak representation of the background driving
additive periodic process. Finally, we show in Section 4 how to obtain weak ana-
logues of random integral representations on R¢ by generalized Lie-Trotter formulas
for convolutions on G.

2. HEMIGROUP EMBEDDING

A close look at the embedding semistable hemigroup (1.3) on R¢ shows that due
to infinite divisibility of v = 1, we fill the gaps left by the discrete skew convolution
semigroup (v, )neny with the help of the semigroup (¢*);59. On non-Abelian groups G
the assumption that v is embeddable into a convolution semigroup is too restrictive
and we rather prefer a more general hemigroup embedding. Recall that now we use
additive parametrization and thus on G the objects under use have slightly different
definitions below than given in the Introduction. In the following let G denote a
homogeneous group, i.e. a contractible simply connected nilpotent Lie group. Let
throughout 7 € Aut(G) and let (73)cr be a continuous one-parameter group in

Aut(G).

Definition 2.1. (a) A family (vs;)o<s<t € M'(G) is called a continuous hemi-
group if (s,t) — v, is weakly continuous, v,, = ¢, for all s > 0 and we have
Usy * Upy = Ugy for all 0 < s < r < ¢. The hemigroup is called 7-semistable if
T(Vst) = Vsy1441 for all 0 < s <.
(b) A discrete hemigroup is a family {v(k,n)}o<p<n € MY(G) with k,n € Z, sat-
isfying v(k, k) = e, and v(k,m)*v(m,n) = v(k,n) for all 0 < k < m < n. Obviously,
in this case v(k,n) = *_,,,v(j — 1,j), hence any sequence {v; = v(j — 1,j)}jez,
generates a discrete hemigroup. The discrete hemigroup is called 7-semistable if
T(v(k,n)) =v(k+1,n+1) forall 0 < k <mn.
Definition 2.2. (a) A weakly continuous family (4)ier, € M'(G) is called a skew
convolution semigroup with respect to (7;)ier (or M-semigroup in Hazod [8]) if
Vst = Vs x Tg(1y) for all s, > 0.
(b) A sequence {v(k)}rez, € M (G) is called a discrete skew convolution semi-
group with respect to 7 € Aut(G) if v(0) = &, and v(k +n) = v(k) * 78(v(n)) for all
k,neZ,.

As in the continuous case, discrete semistable hemigroups and discrete skew convo-
lution semigroups are closely related. One immediately verifies the following relations.

Proposition 2.3. (a) {v(k)}iez, is a discrete skew convolution semigroup iff v(0) =
ge and v(k) = *leijl(V) for all k € N with v = v(1).
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(b) {v(k,n)}o<k<n s a discrete T-semistable hemigroup iff v(k,k) = €. and v(k,n) =
*?:kHTj’l(V) for all 0 < k <n with v =v(0,1).
(c) {v(k)}iez, is a discrete skew convolution semigroup with respect to 7 iff {v(k,n) =

™ (v(n — k) Yo<k<n s a discrete T-semistable hemigroup.

Remark 2.4. According to Proposition 2.3 any v € M!(G) may be embedded into a
discrete skew convolution semigroup, respectively a discrete 7-semistable hemigroup.
Therefore we first concentrate on the problem under which conditions a discrete 7-
semistable hemigroup may be embedded into a continuous 7-semistable hemigroup.
We call v € M!(G) embeddable into a hemigroup (for short: h-embeddable) if
there exists a continuous hemigroup (pis+)o<s<t<1 With po1 = v.

Note that h-embeddable laws v = 41 with a commuting hemigroup, i.e. fis¢ * fly ., =
P * fse for (s,t] N (u,v] = O, are infinitely divisible as limits of commuting in-
finitesimal triangular arrays, and hence embeddable into a continuous convolution
semigroup; cf. Shah [23], Theorem 1.1.

A hemigroup (vs;)o<s<t is called 1-periodic if vgiq441 = s, for all 0 < s < t.
Obviously, any h-embeddable law v is embeddable into a 1-periodic hemigroup. If
v is embeddable into a continuous convolution semigroup (pt)i>0 with p; = v then
(Vst = pr—s)o<s<t is obviously 1-periodic.

Proposition 2.5. (a) Embedding of a discrete hemigroup {v(k,n)}o<k<n into a con-
tinuous hemigroup is possible iff all v; = v(j —1,7) are h-embeddable.

(b) Embedding of a discrete semistable hemigroup {v(k,n)}o<k<n into a continuous
semistable hemigroup is possible iff v = v(0, 1) is h-embeddable.

Proof. The proof of (a) is obvious. To prove (b) first observe that if (As:)o<s<t 18
a semistable hemigroup with A, = v(k,n) for all k,n € Z,, k < n, then (us; =
Asit)o<s<i<1 is a continuous hemigroup with po; = A1 = v(0,1) = v. Conversely,
let v be h-embeddable with v = po; and v(k,n) = *;_, 77/~ (v) for all k,n € Z,
k < n. Define

T (s 5) 1)) if [s] = [t]
(2.1) Aog =8 psa x (1, [H])) x 7 (g ypyy) L if0<s<1<t
TLSJ (/\S—LSJvt—LSJ) s else.

As easily verified, (Ast)o<s<¢ is a continuous hemigroup with A, = v(k,n) for all
k,n € Z., k <n,and we have 7(\s;) = As1,41 by construction. O

Note that (2.1) coincides with the semistable hemigroup (1.3) on G = R? if we set
7=c%and st = V7% in case v is infinitely divisible.

Now, according to Siebert [24], let (X;)%, be a basis of the Lie algebra & of G,
and let (§)%, be a local coordinate system, i.e. & € C®(G) with [&] < 1, &(e) = 0,
&(a™h) = =¢&(z) and X;(§;) = 0;. Furthermore choose a Hunt function ¢ = ¢g
with ¢ = Z?:1 &2 on a compact neighbourhood Uy of e such that 0 < ¢ < 1 and
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1 —¢ € C*(G). Let A(G) denote the cone of generating functionals of continuous
convolution semigroups. For the background of probabilities on groups and Lévy-
Khintchine formulas see e.g. [11, 9].

Definition 2.6. (a) For u € M (G) we define q(u) = S0, [(, &) + (1, ) called
the ¢-functional. Similarly, for a generating functional A € A(G) we define
JA = 20, €A, )] + (A, ) and hence for the Poisson generator A = p — e, we
may write q(u) = [[A]l = [ln — |-

(b) A hemigroup (ps+)o<s<t is called Lipschitz continuous on [0, R] if q(pus:) <
C(t—s) for all 0 < s <t < R, where C' > 0 depends on the hemigroup and on R. We
simply call the hemigroup Lipschitz continuous if this condition is fulfilled for every
R > 0.

(c) A hemigroup (fs:)o<s<t is called of bounded variation on [0, R] if for all de-
compositions 0 =r; <7y < -+ <71, < Ty = R we have >0 q(r;r,,,) < 7y, where
~v > 0 depends on the hemigroup and on R. We simply call the hemigroup of bounded
variation if this condition is fulfilled for every R > 0.

Remark 2.7. (a) As mentioned in 2.5 of Siebert [24], ||A]| is equivalent to |A|s and
|A]5’, the norms of the functional A on the spaces of twice differentiable functions
Co(G), respectively C5(G). Therefore it easily follows that for 7" € Aut(G) there
exists C(T) > 0 such that ¢(T(n)) = |[T(n — eo)|| < C(T)q(p) for p € MYG)
and ||T(A)|] < C(T)||Al| for A € A(G). Hence, according to Proposition 2.5, the
semistable hemigroup (As:)o<s<: is Lipschitz continuous on any interval [0, R] iff
(st = Ast)o<s<t<i is Lipschitz continuous.

(b) Lipschitz continuous hemigroups are almost surely differentiable by Siebert [24],
Theorem 4.3 and Lemma 2.8. This fact will be important in Section 3 for the construc-
tion of the background driving process. For continuously differentiable hemigroups a
different approach is given by Kunita [16].

Theorem 2.8. Let v € MY(G) be h-embeddable with v = g1 for some contin-
uous hemigroup (pst)o<s<t<1. Then there exists a Lipschitz continuous hemigroup

! . / J— —
(Ms,t)ogsgtgl with Mo =V = Ho,1-

Proof. Step 1: We first show that there exists a continuous hemigroup of bounded
variation (fis)o<s<t<1 With fig1 = v.

The continuous hemigroup (fs:)o<s<t<1 may be represented as the family of dis-
tributions of the increments X;'X; of a stochastically continuous additive process
(Xt)iep,1) with Xy = e almost surely. According to Feinsilver [6], Section 3e), there
exists a decomposition X; = Z; - m;, where t — m; € G is continuous and (Zt)te[o,l]
is an additive process with Zy = e almost surely such that the Lévy-Khintchine char-
acteristics of the corresponding generating functionals are of bounded variation. In
fact, (Z¢)iepo,1) is characterized by the property that t — f(Z;) — fot f(Zs) L(ds) is a
martingale for every f € C(G), where L is given by the covariance function and
the Lévy-measure function. For details cf. Feinsilver [6]. Let (vs;)o<s<t<1 denote
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the family of distributions of the increments of (Z;)co1]- Since the generating func-
tionals of (v4;)o<s<i<1 are of bounded variation, the hemigroup itself is of bounded
variation in the sense of Definiton 2.6(c), cf. Heyer and Pap[12], Theorems 6 and 7.
For 0 <5 <t <1 wehave X 'X; =m'Z'Z;-m; and hence ji,y = €, -1 % Vsy * €,
especially po1 = 191 * €p,, since my = e. Now choose a continuous one-parameter

group (u(t))ier € G with u(1) = my and define

Vos ot ,ingsgtS%
flst = Suai—s)) s if3<s<t<1
figi*fy, LiH0<s<5<t<1

Obviously, by construction (fis)o<s<t<1 is a continuous hemigroup of bounded varia-
tion with fig1 = vo1 * €y = o1 = V.

Step 2: There exists a Lipschitz continuous hemigroup (4 ;)o<s<i<1 With 1o, = fig1 =
v. This follows from Siebert [24], 7.4, with pf , = fiy-1(s),u-1( for a suitable function
U:[0,1] — [0,1]. OJ

We now turn to the behaviour at infinity which is closely related to semi-
selfdecomposability. Essentially, in the following we will need 7 to be contracting,
ie. t"(x) — e for all z € G.

Definition 2.9. A probability measure u© € M!YG) is called 7-semi-
selfdecomposable if there exists a 7T-semistable hemigroup (As;)o<s<: such that
Aot — p weakly as ¢ — oo.

Obviously, for n € N and ¢ > n we get
Aot = Aon ¥ Ang = v(n) * 7" (Nog—n) — v(n) * 7" (1) = p

weakly as ¢ — 00, coinciding with the usual definition of semi-selfdecomposability.
Since Ay, = rlt (Xojt—|)) — €e by contractivity, due to the above hemigroup embed-
ding we obtain that p is 7-semi-selfdecomposable iff there exists an h-embeddable law
v such that v(n) = *}_,7"(v) — p weakly. According to [10], v(n) converges weakly
iff v possesses a finite logarithmic moment, i.e. [, log(1+|/z||) dv(z) < co, where || - ||
is a norm on the homogeneous group. On G = R? this coincides with the assumption
of a finite logarithmic moment in [2, 20].

3. SPACE-TIME ENLARGEMENT AND MEHLER HEMIGROUPS

According to Proposition 2.5(b) and Theorem 2.8, in the sequel we assume with-
out loss of generality that for h-embeddable laws the underlying semistable hemi-
group is Lipschitz continuous, in particular the semistable hemigroup constructed
in (2.1). Moreover, for 7 € Aut(G) there exists a continuous one-parameter group
(T})ter C Aut(G) such that 7% = Ty for some k € N; cf. [9], Proposition 2.8.14. If 7
is contracting then also (7});cr is contracting. Hence in the sequel we further assume
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without loss of generality 7 to be embedded into a continuous one-parameter group
(E)tER with 7 = Tl-

Following an idea of Hofmann and Jurek [13], let H = G xR denote the space-time
group, where the semidirect product is defined by the action (7})cr as

(,8) - (y,t) = (x-Ts(y),s+t) forallz,y € G and s,t € R,

cf.e.g., [9], §2.14 III. Let ML(H) = {p® e, : p € MYG), u € R} be the closed,
convex subsemigroup of M?!(H) with convolution given by

(W®e)*(v@e) = (u*To(v),es¢) for p,v € M(G) and s,t € R.

Let (Asy)o<s<t € M (G) be a continuous hemigroup and define

)‘;,t = T—SO‘s,t) - MI(G)

As,t = /\;,t ®er_s © M}((H)
then one can easily verify that (As¢)o<s<¢ is a continuous hemigroup. Conversely, let
(AL, = N, ®€p(st))o<s<t © M (H) be a continuous hemigroup. Then for 0 < s <r <
t we have ¢(s,7) 4+ ¢(r,t) = ¢(s,t) and hence, with ¥(t) = p(0,t) we get (s, t) =
¥(t) —(s). Furthermore )\’S’T *T¢(T)—¢(s)(A;7t) = Xs,t and thus ()‘/sl,t = Tw(s)(Als’t))OSSSt

is a continuous hemigroup in M*(G).
For bounded measurable functions g : H — R we obtain the convolutions

Am*g@%ﬂ=i/QG%U)%%TDdAm@ﬂU

H

:/Gg(y-Tt_s(x),t—S—i-T) dAs 4 (y)

:/Gg(T_S(y~Tt(x)),t—S+T’) At (y)-

Thus for the space component we may define a family (P;;)o<s<: of bounded linear
operators as

RAM@zAj@Ayﬂwnﬁﬁw

for bounded measurable functions f : G — R. As easily verified we have the following
properties.

Lemma 3.1. For a 7-semistable hemigroup (Ast)o<s<t the above family (Ps)o<s<t 1S
a 1-periodic Feller hemigroup, 1.e.

P P, =P, forall0<s<r<t.

Ps+1,t+1 = Ps,t fO?” all 0 S S S t.

P,(f) € CG(G)  for every f € Co(G) and 0 < s < t.
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In analogy to Mehler semigroups for stable hemigroups, we call (Ps;)o<s<: a Mehler
hemigroup of linear operators. These operators are closely related to the background
driving process, which will be of our interest in the sequel.

Proposition 3.2. (a) The hemigroup (Ass)o<s<t © MY (G) is Lipschitz continuous
iff (Asit)o<s<t € My (H) shares this property. This is the case iff the function (s,t) —
A, € MYG) is Lipschitz continuous.

(b) The hemigroup (Asy)o<s<t 1S T-semistable iff (Ast)o<s<t is 1-periodic. This is the
case iff the function (s,t) — A3, € MY(G) is 1-periodic.

Proof. As in Definition 2.6, let (§;)%_; be a local coordinate system on G and let ¢g be
a Hunt function. Further let £;,1 be a local coordinate function on R, e.g. £;.1(t) =
74z~ Then (&)H) with &(z,t) = &() for 1 < i < d and Eg41(x,t) = €441 (t) defines
a local coordinate system on H and ¢m(z,t) = ¢g(z) + £3,,(t) is a Hunt function
on H. The g¢-functional on the space-time group is then given by gg(p ® ) =
qc (1) + [€ar1 (t)| + €541 (t). Together with Remark 2.7 this proves (a), and (b) is easily

verified by direct calculation. O

According to Siebert [24], Theorem 4.3 and Lemma 2.8, the Lipschitz continuous
semistable hemigroup (As+)o<s<¢ constructed in (2.1) is almost surely differentiable.
For 0 < s <1let C(s) = %us,thzs € A(G). Then, by the construction in (2.1), for
5 > 0 we obtain

ot ot
Als) = Fohd| = Ty (Gpetere-tal|_ ) = Tl (Cs = [s))).

The almost everywhere defined mapping s — A(s) € A(G) is admissible in the sense
of Siebert [24], 2.6, and we have

Bls.t) = B(t) — B(s) :/ Alu) du:/ Ty (Clu — |u))) du € A(G),

S

>\s,t

t=s t=s

where ¢t — B(t) = B(0,t) is increasing and Lipschitz continuous. On the other
hand, again by Siebert [24], Theorem 4.3 and Lemma 2.8, and by Proposition 3.2(a),
(Asit)o<s<t is almost surely differentiable, hence in particular, (Af;)o<s<; is almost
surely differentiable. Put A(s) = %ASJ‘ ., € A(H) then for the space component we
obtain
ot \
A. - o
(S> 8t s,t ¢

As above, we further define the generating functionals

=T A(s) = T 15)(Cls = [5])

B(s,t) = B(t) — B(s) = /t A(u)du € A(H)  with B(t) = B(0,t)

B*(s,t) = B*(t) — B*(s) = / t A*(u)du € A(G)  with B*(t) = B*(0, )

and we easily obtain the following relations.



10 PETER BECKER-KERN AND WILFRIED HAZOD

Proposition 3.3. 7-semistability, respectively 1-periodicity of the hemigroups imply
forall0 < s <t

A(s+1)=1(A(s)) and B(s+1,t+1)=r71(B(s,t)),

A(s+1)=A(s) and B(s+1,t+1)= B(s,t),
A*(s+1)=A%s) and B*(s+1,t+1)=B"(s,t).

Now we are ready to prove

Theorem 3.4. There erists a bijection between Lipschitz continuous T-semistable
hemigroups (Ast)o<s<t and Lipschitz continuous 1-periodic hemigroups (Ast)o<s<t on
MY(G) given by their families of generating functionals (B(s,t))o<s<t, Tepectively

(B'(S, t))OSsgt-

Remark 3.5. In analogy to background driving Lévy processes for stable hemigroups,

we call (Ag)o<s<¢ the (family of distributions of the increments of the) background
driving additive periodic process.

Proof. According to Proposition 3.2 we have a 1-1-correspondence between Lipschitz
continuous 7-semistable hemigroups (A ;)o<s<; € M?!(G) and Lipschitz continuous
1-periodic hemigroups (Ag;)o<s<: € M!(H). According to Siebert [24], Section 4,
these hemigroups are uniquely determined by the families of generating function-

als (B(s,t))o<s<t, repectively (B(s,t))o<s<t, or the corresponding admissible families
(A(w))us0 € A(G), respectively (A(u)),>0 C A(H), satisfying the evolution equations
(EE2) (Siebert [24], 4.3), respectively condition (E) (Siebert [24], 3.6). As easily seen,
since A,; € ML(H), (B(t))i>o satisfies (E), respectively (A(u)),>o satisfies (EE2) iff
(B*(t))i>0, respectively (A®(u)),>0 satisfy these conditions. Therefore, by Siebert
[24], 5.7 or 5.10, there exists a uniquely determined Lipschitz continuous hemigroup
(Ast)o<s<t With generating functionals (B*(s,t) = B*(t) — B*(s))o<s<t, i.6. A%(s) =
%j\s,t} ., almost everywhere. By Proposition 3.3 we conclude A®(s +1) = A*(s) and
B*(s+ 1,t + 1) = B*(s,t) for all 0 < s < t. Furthermore (cf. Siebert [24], 6.1), for
R > 0 and a sequence of decompositions 0 = ) < ¢{” < -+ < | < Y = R with

max;<i<, | — ™| — 0, we have

(1)
(3.1) Mg =lim  *  Exp (B*(c", ),

i
=00 =, (s)+1

where (Exp(tU));>o denotes the convolution semigroup generated by U € A(G) and
ro(u) = k iff c,gn) < u < ", Therefore, 1-periodicity of (B*(s,t))o<s<t implies 1-

k k1
periodicity of (Ast)o<s<t as asserted.
The converse is proved analogously. Given A®(s) = %Xs,t‘ ., we define A(s) =
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Ts(A*(s)) and B(s,t) = fst A(u) du. Then, observing (again by Siebert [24], 6.1)

rn(t)

Aoy = lim % Exp (B, ™))

(2
n—oo

i=rn(s)+1
and noting that periodicity B*(s+1,t+1) = B*(s,t) yields B(s+1,t+1) = 7(B(s, 1)),
we conclude semistability 7(Ast) = Asi1441- O

4. REPRESENTATIONS BY GENERALIZED LIE-TROTTER FORMULAS

For vector spaces G = R? the additive periodic driving process can be represented
by pathwise random integrals; cf. [2, 20]. For stable hemigroups on homogeneous
groups the background driving process is a Lévy process and a weak version of random
integrals is obtained by the Lie-Trotter formula for convolution semigroups, see [8, 9.
In order to obtain similar results for semistable hemigroups on homogeneous groups
G we have to analyze Section 3 of Siebert [24]. There the hemigroups are represented
as limits of row-products of infinitesimal arrays ps; = lim,,_o % ,Eztﬂns 410k Crucial

are the following conditions (S’) and (T) in Siebert [24]

(4.1) Z q(onk) <7 for somey >0 and all n € N.
k=1

For every € > 0 there exists a compact K. C G such that
(4.2) Z o.k(CK.) <e forallneN.
k=1

Here, in place of o, , for k,n € N we consider the arrays given by

,U(n> k) = Akt and H.(n7 k) = A’@;l g =Tha (u(n, k))?

k
" —

which obviously are infinitesimal.

Proposition 4.1. The arrays {p(n, k) }inen and {p®(n, k) binen fulfill conditions
(4.1) and (4.2) (conditions (S’) and (T) in Siebert [24]).

Proof. Since (Agt)o<s<t is Lipschitz continuous, the array {u(n, k) }rnen satisfies con-
dition (4.1); cf. Siebert [24], 5.3 and 5.4. Therefore, also {u®(n,k)}knen satisfies
condition (4.1) by Remark 2.7. To prove the tightness condition (4.2) we switch to
the space-time hemigroup (As;)o<s<:- Let ¢ and ¢y be Hunt functions as in the
proof of Proposition 3.2, and let 7 denote the Lévy-measure of B(0,1) = B(1). Put

[nt]
K(nk) =AM x — o) and  Ku(s,t) = Y k(n k).

k=|ns]+1
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Then for all 0 < s < t we have k,(s,t) — B(s,t) by Siebert [24], Theorem 3.6, hence
for nonnegative f € Co(H) with f(e,0) = 0 we get

B0.) = fim (Swiob).5) = i (S ) 20 1)

Especially, for f = ¢m = ¢g + &3,, we have

(B(1), px) = Jim <Zu n.k),¢c ).

n—oo

since £2,;(n~') — 0. Furthermore, since A;; € M!(H), the Lévy-measure 7 of B(1)
is concentrated on G x {0} C H, and for nonnegative g € Co(H) with g(e,0) = 0 we
have (B(1),g9-¢m) = (1,9 vu). Therefore, for g = h® 1g with h € Co(G), we obtain

(43)  (n.9-om) = lm <iw<n7 B).h- o) = lim <¢G-iu°<n, £).h).

where g - ¢ denotes the measure v with Radon-Nikodym derlvatlve = pg. Now
for any neighbourhood V' of e we have QDG‘CV > § for some § > 0. Therefore (4.3)
yields weak convergence of the bounded measures >, u®(n, k>‘8v — 77‘8\/ and by

Prohorov’s theorem the sequence {>";_, pu*(n, k) ‘UV} is uniformly tight. Whence,
(4.2) follows. O

Now we are ready to prove the announced generalized Lie-Trotter formulas that
can be seen as weak random integral representations.

Theorem 4.2. With the above notations we have
- |nt] [nt]
)\s,t = lim >|< Tib(AICfl E) = lim >|< Al;l

0 k=|ns|+1 " k=|ns|+1 "

3=

n n

and conversely
Lnt]

Asg = lim )k T (Niy
T k=|ns]+1 " "
Proof. According to Siebert [24], 3.6, the conditions (4.1) and (4.2) imply that
{/\ s,t) = *Lntﬂnsﬁl/\;;l’% neN0<s < t} is uniformly tight, hence weakly
relatively compact. Let (n') denote a universal net such that A, (s,t) — A\*(s,t) along
(n') for all 0 < s < t. Then, by Siebert [24], 3.6, (A\*(s,t))o<s<t iS a Lipschitz continu-

ous hemigroup with generating functionals B*(s,t) = lim, Zk ns| +1 (A x —2e).

).

3=

Hence B*(s,t) = B*(s,t) for all 0 < s <t and, since the hemigroup is uniquely de-
termined by the generating functionals (cf. Siebert [24], 5.7), we have A*(s,t) = Ag .
The converse limit representation simply follows by Aj, =T A ;. O
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