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Abstract. We study the generation of surface waves on water as a bifurcation phenomenon.
For a critical wind-speed there appear traveling wave solutions. While linear waves do not transport
mass (in the mean), nonlinear effects create a shear-flow and result in a net mass transport in the
direction of the wind. We derive an asymptotic formula for the average tangential velocity along the
free surface. Numerical investigations confirm the appearance of the shear-flow and yield results on
the bifurcation picture.
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1. Introduction. We investigate the generation of surface waves by wind. The
dynamics of the water are described with the incompressible Navier–Stokes equations.
The effect of wind is modelled by pressure differences between backward- and forward-
pointing faces of the wave. For a critical wind-speed the system undergoes a Hopf
bifurcation, and there appear traveling wave solutions [12]. In the study at hand we
are interested in the effect of the nonlinearity that is given by the convective term
and by the changes of the domain. We show that for low viscosity the wave exhibits
a tangential net flow in the direction of the wave propagation. The quantitative
result is given in Theorem 4.3: An asymptotic formula relates the average tangential
flow on the surface to the square of the wave-height. All other quantities are purely
geometrical. We present numerical results that confirm the formula. Additionally,
they yield the bifurcation picture, that is, the dependence of the height of the wave
on the strength of the wind.

Before describing our method we compare this article with existing literature.
There are extensive studies on the case of an inviscid fluid. Traveling wave solutions
without external forcing are constructed in [1], [2], [5], and others, and waves in
inviscid fluids with an external force are studied, e.g., in [6]. In contrast to these
studies, we are interested in the Navier–Stokes equations; that is, we include a small
viscosity. Therefore, in our case, energy is dissipated, and traveling waves can exist
only if an exterior force supports the system with energy. This source of energy is
the wind. Another source of energy is studied by Longuet-Higgins in [9], [10]: The
capillary waves are perturbations of a larger gravity wave; the latter supports the
capillary waves with energy (“parasitic waves”).

The starting point for our analysis is a model for wind. Wind can support the
system with energy in two ways: It can create pressure distributions along the surface,
and it can exert tangential forces. If we suppose that air is inviscid, then we are bound
to work only with pressure distributions. (A study of the coupled system is found
in [13].) As in [12] we consider a simplified model in which wind creates a pressure
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distribution proportional to the slope of the free surface. This assumption is justified
by measurements reported in [3].

Regarding the physics, our results can be interpreted as follows. In our model
the wind exerts only normal forces on the water surface but nevertheless creates a
tangential momentum in the water. This means that no tangential forces are needed
to explain the tangential movement of water particles with the wind. The quantitative
result of Theorem 4.3 makes it possible to verify this statement.

This paper is organized as follows. In section 2 we analyze the linear problem.
For critical values of the wind-speed γ and the wave-velocity c we find traveling wave
solutions. We derive explicit formulas for the bifurcation parameters (γ, c) and the
profiles of the corresponding eigenfunctions with the classical methods of [7]. The
explicit expressions are needed later to evaluate the nonlinear terms. In section 3 we
transform the free boundary problem to a reference domain. We find an equivalent
set of equations that is posed on a fixed domain. The deformation of the domain is
expressed in the form of additional nonlinear terms.

Section 4 is devoted to the study of the bifurcating branch. In the linear case,
the parameters γ and c and the velocity profiles do not depend on the height of the
wave. What is the dependence in the nonlinear case? For a partial answer to this
question it is sufficient to insert the linear profiles into the nonlinear terms. We can
show that the velocity profiles change: A tangential velocity appears along the free
boundary. This shear-flow grows quadratically with the height of the wave. We can
derive an asymptotic formula for the limit of small viscosities.

The dependence of the parameters on the height of the wave (i.e., the bifurca-
tion picture) can only be calculated numerically; sections 6 and 7 are devoted to the
numerical analysis of this problem. In section 6 we describe the choice of a discretiza-
tion in a finite element setting. We describe the Newton method that can be used to
calculate the bifurcation parameters numerically. In section 7 we present numerical re-
sults. They confirm the appearance of the boundary shear-flow. They further indicate
that the bifurcation is super-critical for physical quantities corresponding to water.
That is, the wave-velocity c and the wind-speed γ both depend in a monotonically
increasing way on the height of the wave.

In order to control the reliability of these results, we derive in section 5 various
relations that are satisfied by the continuous solutions along the bifurcation branch.
We monitor the discrete versions of these relations and find a reliable agreement with
the continuous quantities.

This article studies equations that describe a traveling wave in a free boundary
problem. For a wave velocity c we choose the frame of reference of the wave. We pose
periodicity conditions on the left and right boundaries. The (unknown) domain Ω is
written as Ω = {(x, y)|x ∈ S1, H < y < h(x)} with a constant depth H = −h0 < 0.
For evaluating integrals we write x ∈ (0, L) = (0, 1). The Navier–Stokes equations
are posed on Ω. In the moving frame of coordinates they read

c ∂xv − ν∆v + (v · ∇)v +∇p = 0,(1.1)

∇ · v = 0,(1.2)

and the boundary conditions on Γ = graph(h) are

c ∂xh− v2 + h′v1 = 0,(1.3)

∂nvτ + ∂τvn = 0,(1.4)

p− 2ν∂nvn + βH(h) = −γ∂xh.(1.5)
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Here H(h) is the mean curvature of the curve given by h, and β is the physical
parameter for the surface tension. The last two equations are the balance of forces
along the free boundary. The stress tensor for a viscous fluid reads T (v, p) = −pI2 +
ν(∇v + (∇v)T ), and the model assumptions are first, that the wind does not exert
tangential forces (therefore τ · T (v, p) · n = 0 in (1.4)), and second, that the normal
force is balanced by surface tension and the outer pressure distribution as generated
by the wind in (1.5). In our model the outer pressure distribution is given by −γ∂xh,
and the strength of the wind is measured by the parameter γ. Concerning the physical
derivation of the balance equations, compare, e.g., [11]. The equations are completed
with a no-slip boundary condition

(v1, v2) = 0(1.6)

on the bottom line {y = H}. We finally have to impose a volume constraint, for

which we choose
∫ L

0
h = 0.

The linearized equations define an operator A(γ,c), and we can write them as

A(γ,c)(v, p, h) = 0.(1.7)

In the time-dependent free boundary problem a Hopf bifurcation occurs. (For abstract
results on Hopf bifurcation, see, e.g., [8].) We collect the results of [12] in the following
theorem.

Theorem 1.1. There exists a critical force γ = γ0 and a wave-speed c = c0 such
that the operator A(γ0,c0) has two conjugate complex imaginary eigenvalues λ1,2(γ0) =
±iω. They transversely cross the imaginary axes from the stable into the unstable
region. If a nonresonance condition is satisfied, then the nonlinear equations possess
a 1-d family of periodic solutions to the time-dependent problem.

On the basis of this theorem we will assume in the following that we are given a
differentiable branch of nontrivial solutions

(−ε0,+ε0) 
 ε �→ (vε, pε, hε, γε, cε)

of the nonlinear equations (1.1)–(1.6). By symmetry we can additionally assume

∂εγε|ε=0 = ∂ελε|ε=0 = 0.

2. The linear equations. If we linearize the above equations we find equations
on the fixed domain R = S1 × (−h0, 0). We denote the horizontal and vertical
coordinates by x and y, respectively. The equations thus read

c ∂xv − ν∆v +∇p = 0,(2.1)

∇ · v = 0;(2.2)

in R and on Γ = S1 × {0} they become
c ∂xh− v2 = 0,(2.3)

∂xv2 + ∂yv1 = 0,(2.4)

p− 2ν∂yv2 + β∆xh = −γ∂xh.(2.5)

We observe that explicit solutions to these linear equations can be given in the pe-
riodic setting. We normalize the height function h and introduce the stream function
ψ,

h = eikx, v = ∇⊥ψ = (−∂y, ∂x)ψ.
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Equation (2.2) is solved and the curl of (2.1) gives

c∂x∆ψ − ν∆2ψ = 0.(2.6)

We solve this equation with the Ansatz

ψ(x, y) = a1e
kyeikx + a2e

−kyeikx + b1e
µyeikx + b2e

−µyeikx.(2.7)

Equation (2.6) is satisfied if

ikc− ν(µ2 − k2) = 0(2.8)

holds. We choose the solution µ with Re(µ) > 0. The numbers a1, a2, b1, b2 ∈ C are
determined by the boundary conditions on Γ = S1 × {0} and Γ0 = S1 × {H}:

∂xψ = ikceikx on Γ,(2.9)

∂xψ = 0 on Γ0,(2.10)

(∂2
x − ∂2

y)ψ = 0 on Γ,(2.11)

∂yψ = 0 on Γ0.(2.12)

Inserting the Ansatz (2.7), the above is equivalent to

a1 + a2 + b1 + b2 = c,(2.13)

a1e
kH + a2e

−kH + b1e
µH + b2e

−µH = 0,(2.14)

−2k2(a1 + a2)− (k2 + µ2)(b1 + b2) = 0,(2.15)

ka1e
kH − ka2e

−kH + µb1e
µH − µb2e

−µH = 0.(2.16)

This set of equations uniquely determines a1, a2, b1, b2, and therefore ψ. We turn to
the calculation of the pressure function p. Equation (2.1) reads

−∇p = c ∂xv − ν∆v = ikc∇⊥(a1e
kyeikx + a2e

−kyeikx)

= ikc(−k, ik)a1e
kyeikx + ikc(k, ik)a2e

−kyeikx.

We find

p = kca1e
kyeikx − kca2e

−kyeikx.(2.17)

This can be inserted into the boundary condition (2.5). We then find the following
complex relation between c, γ, and the material constant β:

kca1 − kca2 − 2νki(ka1 − ka2 + µb1 − µb2)− βk2 = −ikγ.(2.18)

Lemma 2.1. In the limit H → −∞ there holds a2 → 0, b2 → 0, and

a1 → c− 2νki, b1 → 2νki.

Furthermore, γ and c are determined by

kc2 − βk2 = −(2νk)2(Re(µ)− k),(2.19)

γk − 2 · 2νk2c = −(2νk)2Im(µ).(2.20)
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Proof. From (2.14) and (2.16) we conclude that a2 and b2 are vanishing at an
exponential rate for H → −∞. Then (2.13) and (2.15) imply

a1 + b1 → c, a1 + b1 ·
(
1 +

ic

2kν

)
→ 0,

and therefore the result. Equation (2.18) reduces to

a1kc− 2νkia1k − 2νkib1µ− βk2 + iγk → 0.(2.21)

Taking separately the real part and the imaginary parts of the above equation yields
the result.

We are in particular interested in the behavior of the coefficients a1, . . . , b2 for
ν → 0. This is the focus of the following lemma.

Lemma 2.2. Let h0 = |H| and κ := ekH < 1 be fixed. We assume that c remains
finite. We are interested in the solution (a1, a2, b1, b2) of (2.13)–(2.16) in the limit
ν → 0. For some C0 > 0 there holds Re(µ) ≥ C0√

ν
and

b2 = |e2µH |O(|b1|),(2.22)

b1 = 2νik +O(ν2),(2.23)

a1 + a2 = c− 2νik +O(ν2),(2.24)

κa1

(
1 +

k

µ

)
+ κ−1a2

(
1− k

µ

)
= o(|eµH |).(2.25)

Proof. The asymptotic behavior of µ follows from (2.8).
Relation (2.15) implies that |a1 + a2| = O(ν−1 · |b1 + b2|), and (2.13) then yields

a1 + a2 = c+O(ν) and b1 + b2 = O(ν).
We claim that both a1 and a2 remain finite. Assume the contrary. Since a1 + a2

remains finite, a1 and a2 tend to infinity at the same rate. Then also |b1eµH+b2e−µH |
and |µ| · |b1eµH − b2e

−µH | tend to infinity at equal rates. This is possible only if
there are cancellations in |b1eµH − b2e

−µH |; then b1/b2 tends to infinity. Recalling
b1+ b2 = O(ν), we conclude that b1 is of order ν. Then b2 = O(νe2µH), and by (2.13)
and (2.14) both a1 and a2 remain finite. This is a contradiction.

Since a1 and a2 remain finite, (2.14) and (2.16) together imply (2.22). From
(2.13) and (2.15) we see that for any K ∈ N

−2k2(c− b1) = (k2 + µ2)b1 +O(νK) =

(
2k2 +

ikc

ν

)
b1 +O(νK),

and we conclude (2.23). Now (2.24) follows immediately from (2.13). We combine
(2.14) and (2.16) to find

κa1

(
1 +

k

µ

)
+ κ−1a2

(
1− k

µ

)
= o(|eµH |).

This is (2.25).
We draw a conclusion concerning the asymptotics of µ and γ in the following.
Lemma 2.3. There hold

1

µ
=
1− i√
2kc

√
ν +O(ν3/2),(2.26)

γ = −2c Im(a1) + 2νkc

(
2κ2

1− κ2

)
+ o(ν).(2.27)
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Proof. We start from the formula for µ:

νµ2 = ikc+ k2ν.

We take the square root on both sides and do a Taylor expansion for the right-hand
side. We find

√
νµ =

1 + i√
2

√
kc+O(ν).

Taking the inverse we find the result for µ.
To find an asymptotic expression for γ we take the imaginary part of (2.18):

kγ + ck Im(a1 − a2)− 2νk2Re(a1 − a2) = o(ν).

Using Im(a1 − a2) = Im(2a1 + b1) + o(ν) and, following from (2.24), (2.25), Re(a1 −
a2) = c 1+κ2

1−κ2 +O(
√
ν), we find

γ + 2c Im(a1) + c Im(b1)− 2νkc

(
1 + κ2

1− κ2

)
= o(ν).

Inserting expression (2.23) for b1, we have proved the claim.

3. The domain transformation. In what follows we consider real functions
(v, p, h) describing the velocity, pressure, and height of the wave. Our aim is to study
the effect of the nonlinear contributions in the bifurcation problem. In this way we
can get a better understanding of the bifurcation picture and find properties of the
solutions that are not present in the linearized model. Several nonlinearities play a
role; one of them is the dependence of the domain on the solution. We deal with
this nonlinearity by transforming the equations onto a reference domain, here the
rectangle R. Finding nonlinear equations for the new quantities is the aim of this
section.

We start the analysis with the weak form of the nonlinear equations. We write
ṽ and p̃ for the physical quantities and use the symmetrized first derivatives Du :=
1
2 (∇u+ (∇u)T ). Thus we obtain

∫
Ω

c ∂xṽΦ̃ + 2ν

∫
Ω

Dṽ : DΦ̃−
∫

Ω

ṽ ⊗ ṽ : ∇Φ̃(3.1)

+

∫
Γ

(ṽ · n)ṽ · Φ̃−
∫

Ω

p̃ ∇ · Φ̃ +
∫

Γ

t(h)n · Φ̃ = 0 ∀Φ̃,
∫

Ω

∇ · ṽΨ̃ = 0 ∀Ψ̃,(3.2)

t(h) = −βH(h)− γh′.(3.3)

Next we want the unknown functions to be defined on the reference domain R. We
introduce the domain transformation

Θ : Ω→ R, (x, y) �→
(
x,

(
h0 + y

h0 + h(x)

)
h0 − h0

)
.

We can now set

ṽ = v ◦Θ, p̃ = p ◦Θ,
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with v : R → R
2 and p : R → R. We define Φ and Ψ analogously. Our next aim is to

find nonlinear equations for the functions (v, p), to which end we introduce

J := |det(DΘ)|−1 =
h0 + h(x)

h0
, ϑ̃ := ∂xΘ2 · J = −

(
y + h0

h0 + h(x)

)
∂xh.

We can now transform the above equation term by term. The first yields

∫
Ω

c ∂xṽΦ̃ = c

∫
R

(∂xv · 1 + ∂yv · ∂xΘ2)Φ|det(DΘ)|−1

= c

∫
R

∂xvΦJ + c

∫
R

∂yvΦϑ̃.

We proceed in this way with all the terms. We simplify the system by collecting
only quadratic terms in (v, p, h), and we use ϑ = −(y + h0)h

−1
0 ∂xh(x) instead of ϑ̃.

Furthermore, we neglect quadratic contributions that involve a factor ν. This is in
accordance with the analysis of the next section, where we consider the limit ν → 0.
The new equations read

∫
R

c ∂xv ΦJ +

∫
R

c ∂yv Φϑ+ 2ν

∫
R

Dv : DΦ−
∫
R

v ⊗ v : ∇Φ

+

∫ L

0

(v · e2)v · Φ−
∫
R

p (J∂xΦ1 + ϑ∂yΦ1 + ∂yΦ2)

+

∫ L

0

t(h)(−h′, 1) · Φ = 0 ∀Φ,

(3.4)

∫
R

(J∂xv1 + ϑ∂yv1 + J∂yv2)Ψ = 0 ∀Ψ.(3.5)

Since the mean-curvature operator coincides with ∆x up to cubic terms in h, the
above equations are complemented by

t(h) = −β∆xh− γh′,(3.6)

c∂xh = v2 − h′ v1.(3.7)

We consider (3.4)–(3.7) in what follows.

4. Bifurcation analysis. We introduce λε = (cε, γε) and uε = (vε, pε, hε). The
equations can be written in the form

F (λε, uε) = 0,(4.1)

with

u0 = 0, ∂εuε|ε=0 = u, ∂2
εuε|ε=0 = ū.

Differentiating (4.1) twice with respect to ε yields, with the notation

Lũ = ∂F

∂u
· ũ,(4.2)

N (ũ) =
1

2

(
∂2F

∂u2

)
〈ũ, ũ〉,(4.3)
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the equation

∂L
∂λ

· u ∂λε
∂ε

+ L · ū+N (u) = 0.(4.4)

We assume that we are in the generic situation ∂λε

∂ε |ε=0 = 0; this simplifies the above
equation. We now calculate (4.4) in our case by inserting uε = εu + ε2ū and λε =
λ+ε2λ̄ into (3.4)–(3.7). Here (u, λ) is the solution to the linear problem. We calculate
the set of equations for ū by comparing terms of order ε2. For all smooth Φ : R → R

2

and Ψ : R → R there hold

∫
R

c ∂xv̄ Φ+ 2ν

∫
R

Dv̄ : DΦ−
∫
R

p̄ div (Φ)− β

∫ L

0

∆xh̄Φ2 − γ

∫ L

0

h̄′ · Φ2

+

∫
R

c ∂xv Φ hh−1
0 −

∫
R

c ∂yv Φh
′
(
y + h0

h0

)
−
∫
R

v ⊗ v : ∇Φ+
∫ L

0

(v · e2)v · Φ

−
∫
R

p

(
h∂xΦ1 − h′ ∂yΦ1

y + h0

h0

)
+

∫ L

0

(β∆xh+ γh′) h′ Φ1 = 0,(4.5) ∫
R

(∂xv̄1 + ∂y v̄2)Ψ−
∫
R

h′ y ∂yv1 Ψ = 0.(4.6)

These equations are complemented by

ch̄′ − v̄2 = −h′ v1.(4.7)

So far the system has no normalizing condition. We use the orthogonal projection π1

onto a subspace Ψ1 and impose π1hε = π1(εh) on the bifurcating branch. Then we
find the normalizing condition

h̄ ⊥Ψ1 := {a sin(kx) + b cos(kx)|a, b ∈ R} .(4.8)

Equations (4.5)–(4.8) form a complete set of equations and determine (v̄, p̄, h̄). The
velocity field v̄ that is induced by the nonlinearity satisfies the following identity.

Proposition 4.1. There holds

ν

∫ L

0

v̄1 + h0γ‖h′‖2 =

∫
R

v1

(
v2 − ch′

(
y + h0

h0

))
−
∫
R

ph′
(
y + h0

h0

)
.(4.9)

The right-hand side is bounded for h0 → ∞. Therefore for deep canals (h0 large)
there appears to be an average flow to the left.

Proof. We multiply (4.5) with the test-function Φ(x, y) = (h0 + y) e1 that repre-
sents parallel shear-flows to the right. The only terms remaining are

2ν

∫
R

Dv̄ : D(Φ) +

∫
R

c ∂xv1 Φ1hh
−1
0 −

∫
R

c ∂yv1 Φ1h
′
(
y + h0

h0

)
−
∫
R

v1v2∂yΦ1

+

∫ L

0

v2v1 Φ1(., 0) +

∫
R

p h′
(
y + h0

h0

)
∂yΦ1 +

∫ L

0

γh′ h′ h0 = 0.

We now evaluate

2ν

∫
R

Dv̄ : D(Φ) = ν

∫
R

Dv̄ :

[
0 1
1 0

]
= ν

∫
R

∂y v̄1.
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With one integration by parts and using ch′ = v2 on the upper boundary we calculate∫
R

c ∂xv1 (y + h0)hh
−1
0 −

∫
R

c ∂yv1 (y + h0)
2h′ h−1

0

+

∫ L

0

v2v1 h0 =

∫
R

ch′ v1

(
y + h0

h0

)
.

This proves the claim (4.9).
The next step in our analysis is to evaluate the integrals on the right-hand side

of (4.9). We evaluate terms up to order O(ν).
Lemma 4.2. The three terms on the right-hand side of (4.9) satisfy

2

∫
R

v1v2 = 2k2h0(Re(a1)Im(a2)− Im(a1)Re(a2))

− kIm(b1)Re(a1 + a2) + o(ν),

(4.10)

−2
∫
R

v1ch
′
(
y + h0

h0

)
= − c

h0
Im(a1)(1− ekH)

+
c

h0
Im(a2)(1− e−kH) + o(ν),

(4.11)

−2
∫
R

ph′
(
y + h0

h0

)
= −ck Im(a1 + a2)

+
c

h0
Im(a1)(1− ekH)− c

h0
Im(a2)(1− e−kH) + o(ν).

(4.12)

Proof. The proof is a direct calculation. We use the linear solution v =
Re((−∂y, ∂x)ψ), h = Re(eikx), and obtain

2

∫
R

v1 · v2 = Re

∫
R

(−∂2ψ̄) · (∂1ψ) = kIm

∫
R

∂2ψ̄ ψ

= kIm

∫ 0

H

(kā1e
ky − kā2e

−ky + µ̄b̄1e
µ̄y) · (a1e

ky + a2e
−ky + b1e

µy) dy + o(ν)

= kIm

∫ 0

H

k|a1|2e2ky + ā1a2 k − ā2a1 k − k|a2|2e−2ky dy

+ kIm

∫ 0

H

(kā1e
ky − kā2e

−ky + µ̄b̄1e
µ̄y)b1e

µy dy

+ kIm

∫ 0

H

µ̄b̄1e
µ̄y(a1e

ky + a2e
−ky) dy + o(ν)

= 2h0k
2Imā1a2 + o(ν)− kIm(b̄1(a1 + a2)).

We used the fact that ∫ 0

H

(kā1e
ky − kā2e

−ky)b1e
µy dy = o(ν)

and ∫ 0

H

µ̄b̄1e
µ̄y(a1e

ky + a2e
−ky) dy = b̄1(a1 + a2)

−
∫ 0

H

b̄1e
µ̄yk(a1e

ky − a2e
−ky) dy = b̄1(a1 + a2) + o(ν).
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Thus (4.10) is shown.
We turn to the proof of (4.11).

2

∫
R

v1h
′ · (y + h0) = Re

∫
R

(−∂2ψ̄) · h′ · (y + h0)

= −Re
∫
R

(kā1e
ky − kā2e

−ky + µ̄b̄1e
µ̄y) · e−ikxikeikx(y + h0) + o(ν)

= k Im

∫ 0

H

(kā1e
ky − kā2e

−ky + µ̄b̄1e
µ̄y) (y + h0) dy + o(ν)

= h0k Im(ā1 + ā2 + b̄1) + k Im

∫ 0

H

(−ā1e
ky − ā2e

−ky − b̄1e
µ̄y) + o(ν)

= Im(a1)(1− ekH)− Im(a2)(1− e−kH) + o(ν).

We turn next to the proof of (4.12). From the expression for p we read off

−2
∫
R

ph′
(
y + h0

h0

)
= − c

h0
Re

∫
R

k (ā1e
ky − ā2e

−ky)e−ikxikeikx(y + h0).

Up to the factor c
h0

and the term containing Im(b1) this coincides with the second
line of the previous calculation. We thus conclude (4.12).

Theorem 4.3. In the limit ν → 0 there holds

∫ L

0

v̄1 = −2k3h0c

(
1 + κ2

1− κ2

)
+ o(1).(4.13)

We recall that κ = e−kh0 . Note that for h0 → 0 the above expression tends
to −4k2c �= 0. The tangential flow on a wave of height ε has the average velocity

−2ε2k3h0c
1+κ2

1−κ2 .
Proof. From Proposition 4.1 and Lemma 4.2 we conclude that

ν

∫ L

0

v̄1 + h0γ‖h′‖2 = k2h0(Re(a1)Im(a2)− Im(a1)Re(a2))

−1
2
kIm(b1)Re(a1 + a2) +

1

2
ckIm(b1) + o(ν).

From the asymptotic expressions for a1, a2, and b1 we now insert the relations

Im(a2) = −Im(a1)− Im(b1) + o(ν), Re(a1 + a2) = c+ o(ν).

The last two terms in the above expression cancel and we find

ν

∫ L

0

v̄1 + h0γ‖h′‖2 = k2h0(Re(a1)Im(a2)− Im(a1)Re(a2)) + o(ν)

= k2h0(Re(a1)(−Im(a1)− Im(b1))− Im(a1)Re(a2)) + o(ν)

= −k2h0(Im(a1)Re(a1 + a2)− Re(a1)Im(b1)) + o(ν)

= −k2h0c Im(a1)− Im(b1) k
2h0Re(a1) + o(ν)

= −k2h0c Im(a1)− 2νk3h0

(
c

1− κ2

)
+ o(ν).
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We used (2.23) in order to evaluate Im(b1) and (2.25) to find the expression Re(a1) =
c

1−κ2 + o(ν). We finally insert the asymptotic expression for γ:

h0γ‖h′‖2 = −h0
k2

2
2cIm(a1) + h0

k2

2
· 2νkc

(
2κ2

1− κ2

)
+ o(ν).

We find

ν

∫ L

0

v̄1 = −νk3h0c

(
2κ2

1− κ2

)
− 2νk3h0

(
c

1− κ2

)
+ o(ν)

= −2νk3h0c

(
1 + κ2

1− κ2

)
+ o(ν).

This is the result.

5. Further equations for nontrivial solutions. In this section we derive some
relations that are satisfied by the traveling wave solutions. Later on we will use these
relations to check the quality of numerical results. We again use the scalar fields

J = h0+h(x)
h0

and ϑ = −y+h0

h0
∂xh to derive relations for the following quantities:

〈Av, v〉 :=
∫
R

Dv : Dv, 〈Uv, v〉 :=
∫

Ω

(v · ∇)v v,

〈Cv, v〉 :=
∫
R

∂xv v · J +
∫
R

∂yv v · ϑ,

〈J1h, v1〉 :=
∫ L

0

(∂xh)
2v1 dx, 〈J2h, v1〉 :=

∫ L

0

∂xh v2 dx,

〈T1h, v1〉 :=
∫ L

0

∆xh (−∂xh)v1 dx,

〈T2h, v2〉 :=
∫ L

0

∆xh v2 dx.

Lemma 5.1. For a solution (vε, pε, hε) of the bifurcation equations (3.4)–(3.7)
the following relations are satisfied:

〈Uvε, vε〉+ c〈Cvε, vε〉 = 0,(5.1)

〈T1h
ε, vε1〉+ 〈T2h

ε, vε2〉 = 0,(5.2)

2ν〈Avε, vε〉+ γ〈J1h
ε, vε1〉+ γ〈J1h

ε, vε1〉 = 0.(5.3)

Proof. We omit the superscript ε in the calculation. The convective term is

〈Uv, v〉 =
∫
R

vi∇ivj vj =

∫ L

0

v2
1

2
|v|2,

and the frame-speed term is

〈Cv, v〉 =
∫
R

(
h0 + h

h0

)
∂xv · v −

∫
R

h′
(
y + h0

h0

)
∂yv · v

= −
∫
R

h′/h0
1

2
|v|2 +

∫
R

h′/h0
1

2
|v|2 −

∫ L

0

h′
1

2
|v|2

= −
∫ L

0

h′
1

2
|v|2.
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This implies (5.1). The surface-tension term (5.2) is

〈T1h, v1〉+ 〈T2h, v2〉 =
∫ L

0

∆xh (v2 − h′v1)

= c

∫ L

0

∆xh h′ = 0.

Equality (5.3) follows from the fact that the sum vanishes over all terms :

2ν〈Av, v〉+ γ〈Jh, v〉+ 〈Uv, v〉
+ c〈Cv, v〉+ β〈Th, v〉 = 0.

This is a consequence of (3.4).

6. Discretization. We follow the standard approach of finite-element discretiza-
tion as outlined, e.g., in [4]. We solve for the primary physical quantities velocity
v ∈ V , pressure p ∈ W , and the height function of the free boundary h ∈ X. The
function spaces are

V = H1(Ω), W = L2(Ω), X = H1(Γ),

with Ω = [0, 1] × [−h0, 0] and Γ = [0, 1] ≡ [0, 1] × {0} ⊂ Ω, both equipped with
periodicity conditions in the horizontal end-points. We approximate the above spaces
with finite element basis functions

Φi ∈ V, Ψk ∈ W, ϕl ∈ X.

We have chosen a rectangular grid on Ω. The finite element (FE)-functions Φi are
piecewise biquadratic polynomials, Ψk are piecewise bilinear polynomials, and ϕl are
piecewise quadratic polynomials. Note that, in our calculation, velocities and pressure
are defined on a fixed domain. To take into account the domain transformation we
introduce nonlinear quadratic forms in what follows.

The FE-discretization yields divergence matrices B̃1 and B̃2. The stiffness matrix
Ã discretizes the product of the symmetrized gradients

〈DΦi, DΦj〉L2(Ω) −→ Ã :=

[
A11 A12

A21 A22

]
.

We need matrices that describe coupling between volume forces and boundary
forces. They are defined as follows:

(R0)il := ((Φi · e2)|Γ, ϕl)L2(Γ),

(R1)il := (∂x(Φi · e2)|Γ, ϕl)L2(Γ),

(R2)il := (∂x(Φi · e2)|Γ, ∂xϕl)L2(Γ).

The eigenfunctions of imaginary eigenvalues correspond to traveling waves. In
the numerical scheme we do not calculate eigenvalues but rather follow the lines of
the continuous considerations and do all calculations in a moving coordinate system.
In order to do so, we define matrices that correspond to x-derivatives:

H̃lm := (∂xϕl, ϕm)L2(Γ),

C̃ij := (∂xφi, φj)L2(Ω).
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Our aim is to calculate real factors γ (wind-speed) and c (wave-speed) such that
the system has a nontrivial solution. The numerical scheme implements a Newton
method to find this solution. In every step the matrix T below is calculated from the
approximate solution. T depends on the approximate solution in two ways: 1) the fac-
tors γ and c are taken from the last approximation, and 2) the matrices C, B, T , etc.
discretize the nonlinear operators of (3.4), corresponding to C̃, B̃, T̃ , etc. This cap-
tures the effects of the domain transformation. The operators have to be constructed
using the approximate height function of the last step. The transport operator U dis-
cretizes the operator (v ·∇) and has to be constructed using the approximate velocity
profiles:

T :=



2νA11 + U + c C 2νA12 Bt

1 βT1 + γJ1

2νA21 2νA22 + U + c C Bt
2 βT2 + γJ2

B1 B2 0 0
K1 K2 0 c H


 .

Here K2 = R0, J2 = R1, and T2 = R2. Note that for every (γ, c) the matrix T is
singular since the vector (v, p, h) = (0, 0, const) is mapped to zero. This corresponds
to the fact that we have to pose a volume condition such as

∫
h = 0. We do so by

adding the volume equation to one row of the matrixH. After this change, still, for the
solution parameters γ = γ0 and c = c0, the matrix T(c,γ) has a two-dimensional kernel,
corresponding to two eigenvectors with h ∼ sin(x) and h ∼ cos(x). We normalize the
solutions with the two additional rows

rsin · h := 〈sin(.), h(.)〉L2(Γ) =
1

2
hmax,

rcos · h := 〈cos(.), h(.)〉L2(Γ) = 0.

In every step of the Newton method we have to solve a system of the form


T

J1 · h C · v1
J2 · h C · v2
0 0
0 H · h

0 0 0 rsin
0 0 0 rcos

0 0
0 0



·




ṽ1
ṽ2
p̃

h̃
γ̃
c̃



= f.

We perform an LU-decomposition of this matrix for the linear equation. To solve
the nonlinear system we implement a fixed point iteration, using the linear LU-
decomposition as a preconditioner. For every small amplitude hmax ∈ R we find
solutions (v, p, h, γ, c) of the nonlinear system.

7. Numerical results. All calculations are done in the cgs-system of units.
We have chosen the viscosity and surface tension for a water-air interface, that is,
ν = 0.01, β = 74. The domain is a box of length 1 and height h0 = 0.33; the
according wave number is k = 2π. The grid is shown in Figure 1.

The maximal height of the wave is set to be hmax = 0.01. The Newton iteration
yields a solution corresponding to every wave-height ‖h‖, together with the values for
c and γ. Figure 2 shows the profile of the wave: it is close to the sinusoidal shape of the
linear solution. The parameter γ quantifies the wind force—it is therefore appropriate
to call Figure 3 the bifurcation diagram. It shows the dependence of the wave-height
on the force. Figure 4 shows the dependence of the height on the wave-speed c. All
units are in the cgs-system.
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Fig. 1. The grid.
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Fig. 3. The bifurcation diagram.

Table 1
Numerical values of the control parameters.

Bilinear form Value
∑

Rel. error

〈Uv, v〉 0.229034
c〈Cv, v〉 -0.225985 0.003 1.3 %
〈T1h, v1〉 -0.014579
〈T2h, v2〉 0.014578 0.000 < 0.1 %
2ν〈Av, v〉 0.972864
γ〈J1h, v1〉 -0.055459
γ〈J2h, v2〉 -0.920452 -0.003 0.3 %
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Fig. 4. The wave-speed on the bifurcating branch.

Table 2
Tangential speed for ν = 0.01 and hmax = 0.01.

‖h‖ Stheory Sdiscrete Rel. error
0.0019 0.0525 0.0495 5.7 %
0.0038 0.2111 0.1986 5.9 %
0.0057 0.4789 0.4483 6.4 %
0.0076 0.8617 0.8008 7.1 %
0.0095 1.3673 1.2592 7.9 %

To have an indication of the precision of the calculation we evaluate the control
parameters that were derived in section 5; they are listed in Table 1. We know from
Lemma 5.1 that two or three consecutive lines, respectively, should add up to zero.

We next check the accuracy of formula (4.13) describing the appearance of the
shear-flow. Table 2 shows, for different values of the height, the limiting value

Stheory = 2k3h0c

(
1 + κ2

1− κ2

)
‖h‖2

of (4.13) (calculated with the numerical value for c) and the discrete evaluation of the

quantity Sdiscrete = − ∫ L

0
v̄1. Figure 5 illustrates the table: We plot Sdiscrete versus

Stheory. The diagonal corresponds to exact coincidence of theoretical (asymptotic)
value and discrete results. We find that the measured points lie below the diagonal.

Figure 6 gives an idea of the velocity field of the nonlinear traveling wave solution
propagating to the left; the corresponding height-function is shown in Figure 2. As
a result of the tangential surface-flow to the left, the velocity at the boundary points
x = 0 and x = 0.5 has a component to the left. This is in contrast with the linear
situation, in which the velocity is oriented in the vertical direction at these two points.
The pressure distribution is indicated with gray-scale isolines in Figure 6. While in
the linear situation the pressure is proportional to sin(x), in our case it is no longer
symmetric, but ranges from −60.0 to 47.4.

8. Conclusions and outlook. We have presented a study on the generation of
water waves by wind. Our approach was to consider the phenomenon as a bifurcation
problem—this is only possible if viscosity is included. We were able to derive integral
identities for the solution. In order to evaluate these identities we had to consider the
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Fig. 5. The average tangential speed: Prediction by theory vs. numerical observation.

Fig. 6. The numerical solution.

limit of vanishing viscosity. In this limit we could show that wind generates a drift,
and we could give the quantitative result with (4.13). The numerical findings are in
good agreement.

The observed phenomenon has similarities to the Stokes drift for inviscid fluids.
A clear distinction is the behavior in deep canals. While the Stokes drift remains
finite, the effect studied here can generate an arbitrarily large drift: For large depth
the fluid behaves as if it were exposed to a tangential force on the boundary.

We found that the numerical values for the drift are always below the theoretical
values. We have to keep in mind that the numerical data are bound to discretization
errors. On the other hand, the theoretical formula was derived in the limit of vanishing
viscosity. Our interpretation (based on the fact that small discretization errors appear
in Table 1) is that a finite viscosity diminishes the drift.

In its present form the numerical scheme allows only for relatively small values
of the wave-elevation (‖h‖ = 0.01). It is desirable to calculate a continuation of the
bifurcating branch. Nevertheless we are already far from the linearized situation: In
the upper left corner of Figure 6 we see that the vertical speed (which is as in a linear
solution) has the same magnitude as the horizontal speed (which is absent in the
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linear solution). Linear and nonlinear effects are already of the same order.
Another open question concerns the observed wave length. Given a wave number

we calculated properties of solution branches, but we did not touch the question of
which wave number bifurcates first. This question requires a further analysis of the
effect of wind: the dependence of the wind force γ on the wave number must be
investigated.
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