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Summary

In this thesis, an analysis of self-adaptative evolution strategies (ESpu&pd. Evolution strate-
gies are population-based search heuristics usually applied in contiseach spaces which ultilize
the evolutionary principles of recombination, mutation, and selection. Selptation in evolution
strategies usually aims at steering the mutation process. The mutation prepesdsion several pa-
rameters, most notably, on the mutation strength. In a sense, this paranmtelsabe spread of the
population due to random mutation. The mutation strength has to be varied theiogtimization
process: A mutation strength that was advantageous in the beginning einthi®r instance, when
the ES was far away from the optimizer, may become unsuitable when the ESadaloptimizer.

Self-Adaptation is one of the means applied to this end. In short, self-didaptacans that the
adaptation of the mutation strength is left to the ES itself. The mutation strengtimbs@part of
an individual’s genome and is also subject to recombination and mutatiorid®dabhat the resulting
offspring has a sufficiently “good” fitness, it is selected into the pareptifation.

Two types of evolution strategies are considered in this thesis: ITH@-ES with one parent and
A offspring and [/, A)-ES with a parental population with parents. The latter ES-type applies
intermediate recombination in the creation of the offspring. Furthermore,nthlgsis is restricted
to two types of fitness functions: the sphere model and ridge functions.tiEsis uses a dynamic
systems approach, the evolution equations first introduced by HangrB8eger, and analyzes the
mean value dynamics of the ES.
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List of Symbols and Abbreviations

O¢

ES with one parenp offspring

ES withy parents\ offspring using intermediate recombination
Parameter of the two-point distribution

Offspring number

Centroid or mean; usually of the parent population

Normal (Gaussian) distribution with
meany and variancer

Parent number
Quality change normalized w.iX, i.e., AQ* = AQN

Quality change. Expected change of the fithess during one generation. |
the case of intermediate ES, the quality change gives the expected change
of the fitness of the centroids.

Cumulative distribution function of standard normal distribution, Né(0, 1)
Mixing number: Number of recombinants

Abbr. for (¢(9))

Mutation strength

Normalized mutation strength w.rk and NV,
ie.,oc* =0 N/R

Normalized mutation strength w.riv,
i.e.,c* =oN

Noise strength: The standard deviation of the noise term in the standard
noise model using a normally distributed random variable with zero mean

Learning rate
parameter of the log-normal distribution

kth order progress rate

Normalized progress rate w.rk and N,
ie.,p*=¢p N/R



©* Normalized progress rate w.ril,
i.e.,o* =N
YR Progress rate

sphere model: progress towards the optimizer
ridge functions: progress towards the axis

P Progress rate
ridge functions: progress parallel to axis

s9) Mutation strength

CrU) Set of functionsf : U — R with f ktimes continuously differentiable and
U an open subset "

g Generation number

N Search space dimensionality

R Abbreviation forr(9)

R Sphere model: distance to the optimizer

ridge functions: distance to the ridge in generaton

cdf cumulative distribution function

CMA Covariance matrix adaptation

CSA Cumulative search step adaptation

pdf probability density function, density function
Truncation ratio Ratio of the parent and offspring number, i.e.A
w.l.0.g. Without loss of generality ...

wW.r.t With respect to ...
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1 Introduction

Evolution strategies (ES) are one of the main variants of evolutionary algwi(EA) invented in
1963 by Bienert, Rechenberg, and Schwefel at the Technical tditivéBerlin. These population-
based search heuristics move through the search space by meanstaryare., mutation and re-
combination, and selection. A population consists of several individualsh Edividual represents
possible solution which is coded in the object parameters.

The performance of ES strongly depends on the choice of so-callédgstiearameters. In ES,
the strategy parameter equals usually the mutation strength. This paraméteisabe spread of the
population due to mutation. Sometimes the mutation strength is also referred to teptises in an
analogy to classic optimization and numerics. During an optimization run, the musatgmyth must
be adapted continuously to allow the ES to travel with sufficient speed. Tenbdisseveral methods
have been developed — e.g., Rechenberg’s well-knby@th-rule [81], self-adaptation [81, 88], or
the cumulative step-size adaptation (CSA) and covariance matrix adaptatibi) (of Ostermeier,
Gawelczyk, and Hansen, e.g., [78, 53].

Following [23, p. 8], Figure 1.1 illustrates the basic mechanism of a multi-péugp, \)-ES with
o-self-adaptation. The self-adaptation mechanism will be introduced in mta# itethe following
chapter. In short, in a self-adaptive ES the tuning of the mutation strehgghégt to the evolution
strategy itself. Each individual has its own distinct set of strategy parasne®emilar to the object
parameters, the strategy parameters are subject to variation. If arirgffspselected into the parent
population, it also has a chance to bequest its strategy parameters tasgrengffjeneration. That is,
self-adaptation assumes a statistic/probabilistic connection between stratagyepers and “good”
fitness values.

As Fig.[1.1 shows, ai{/p, A\)-ES maintains a populatioﬁ,gg) of 1 candidate solutions in gen-
erationg — with the strategy parameters used in their creation. Based on that papargmon, A
offspring are created via variation. The variation process usually deegrecombination and muta-
tion.

The offspring are created as follows: For each offspringf the . parents are chosen for recom-
bination leading to the s&®,. The selection of the parents may be deterministic or probabilistic (see,

First, the strategy parameters are changed. The strategy parameterhbserp parents are
recombined and the result is mutated afterwards. The change of the phjanteters occurs in the
next step. Again, the parameters are first recombined and then mutaedeWly created strategy
parametep; is used in the mutation process. Afterwards, the fitness of the offspriradcslated.

After the offspring population oA individuals is created, thg-best individuals with respect to
their fitness values are chosen as the next parental populﬁﬁ’cﬂ). Two selection schemes are
generally distinguished: “comma” and “plus”-selection. In the former csskection is restricted to
the offspring population. In the latter, members of old parent populatiorirenaiffspring population
may be selected into the succeeding parent population.



2 1. Introduction

BEGIN
9:=0;
INITIALIZATION (P\” := {(y'?, o, F(y'9))});
REPEAT

FOR EACH OF THE\ OFFSPRING DO
P,:=REPRODUCTIONP)
o, :=RECOMB,(P,);
o :=MUTATE,(0;);
y} :=RECOMB, (P,);
y1 :=MUTATE (y;, 01);
F = F(y1);
END
PO ={(y1.01. ) };
CASE “/-SELECTION: P¢ ™) :=SELECTP);
CASE “+"-SELECTION: P\ "V:=SELECTP ,P\?);
g:=g+1
UNTIL stop;
END

Figure 1.1: Theg/p, \)-cSA-ES (cf. [23, p. 8]).

The ES considered in this thesis are intermed{atg:;, A)-ES with self-adaptation of a single mu-
tation strength. The ternmtermediatedenotes the manner of recombination. Using intermediate
recombination for both, the object parameters and the mutation strengthfsiveng are generated
according to:

1. Compute the meafr) = i P _, om of the mutation strengths,, of the, individuals of the
parent population.

2. Compute the centroity) = % r 1 ym Of the object vectory,, of they individuals of the
parent population.

3. For all offspringl € {1,...,A}:

(a) To derive the new mutation strength: Mutate the m@graccording tar; = (0)¢ where
¢ is a random variable which should fulflll[¢] =~ 1 (see [29] for a discussion of this and
further requirements). Typical choices@s$ distribution include the log-normal distribu-
tion, derivatives of normal distributions, or a two-point distribution [16].

(b) Generate the object vectpr according tay; = (y;) + ouN'(0, 1) wherey; is the vector’'s
ith component and/ (0, 1) stands for a standard normally distributed random variable.

Afterwards, theu best offspring are chosen — according to their fitness. They (alonghgthmuta-
tion strengths) become the parents of the next generation.

The thesis focuses on an analysis of the self-adaptation mechanism in tgs fgtnvironments:
the sphere model and ridge functions. The first function class compuisetions f,,;, : R¥ — R of
the form

fson(y) = g(lly =3I (1.1)



with g : R — R monotonically in- or decreasing agde R” the optimizer off,,n. The self-adaptive
behavior of ES on the sphere model is addressed in Chapter 4. Theldéoess environment are
ridge functionsf,,; : RY — R given by

frialy) = yl—d<4 iyf)a- (1.2)
=2

The parametety, « > 0, denotes the degree of the ridge wherdad > 0, gives in a sense the
“sharpness” of the isofitness lines of the ridge. The larger the valde tfe narrower the isofitness
lines nestle to the axis. Ridge functions are described in more detail in Chapter 5

The thesis is organized as follows: In Chapter 2, an overview over tteeddtine present research
in self-adaptation is given. The focus is entirely on mutative self-adaptatioerefore, the extensive
work for ES using thé /5th rule as, e.g., [62, 85] or the cumulative step-size adaptation, e.g.1[d}, 5,
is omitted.

Afterwards in Chapter|3, the analysis approach of this thesis, the evokgigations first intro-
duced by Beyer [21], is described in greater length. The approausidars the stochastic process
induced by the ES as a (stochastic) dynamic system. After introducing theaamppused, the anal-
ysis is started with intermediate ES on the undisturbed sphere model in Cha@eesbf the aims
is to provide an explanation for the experimental findings bur@rand Beyer [51] that ES using
intermediate recombination do not show the same robustnesd ak)eHS towards the choice of the
learning rate. Afterwards, self-adaptive ES on the noisy spherebasdered.

In Chapter 5, ridge functions are considered. The behavior of dalftave ES on two represen-
tatives of this function class is analyzed: The sharp ridge with 1 and the parabolic ridge with
a = 2. Again, the undisturbed functions are treated first before the analysimisiued with noisy
ridge functions in the following sections. As said, the thesis uses a dynawstiensy approach to
analyze self-adaptive ES. Other approaches include runtime analyssesdomized algorithms for
example. In continuous search spacaggeiskipper was the first to provide a runtime analysis of evo-
lutionary algorithms [61]. He considered several types of BAy (\)-ES, (1, A\)-ES, and (¢ + 1)-ES
[62]. Instead of self-adaptation, the focus was onith&h-rule as adaptation mechanism. The work
aimed at and succeeded in deriving lower and upper bounds on thetedpantime. Many of his
results were obtained for the sphere model or for the more generalvpa$gtiinite quadratic forms.
Among the results obtained are the following

e “The (1 + 1)-ES performs with overwhelming probabilit9 (V) steps to halve the
approximation error in the search space.

e The (1+)\)-ES aswell as thél, \)-ES getalong wittO(NN/+/In(1 + X)) steps with
overwhelming probability — when the/5-rule bases on the number of successful
mutations.

e The (1 + A)-ES using a modified/5-rule, which bases on the number of successful
steps, is proved to be indeed capable of getting along@{tN//In(1 + X)) steps
with overwhelming probability, which is asymptotically optimal.

e The (u+ 1)-ES using Gaussian mutations adapted byltfierule performsO(uN)
steps with overwhelming probabil@yo halve the approximation error in the search
space, which is also asymptotically optimal.” [62]

1An event occurs with overwhelming probability w.ril if the probability of nonoccurrence is exponentially small in
N (seel[62, p.15].



4 1. Introduction

Runtime analyses of randomized algorithms aim at deriving upper and lauedb for the expected
runtime. One of the tasks is to find the relationship between the expected runtirtieessearch space
dimensionality. The aim is on the one hand to provide the lower bounds ane othir to give exact
proofs of the results.

The dynamic systems approach follows a different direction and aims deeedif type of results.
As stated in [30], one of the aims is to provide analytical formulas of the melmdynamics. The
dynamic systems approach relies on asymptotical simplifications and on appatiaxs. In a sense
it considers a model of the actual algorithm. The analytical formulas dkde@ be used on the
one hand to give recommendations for the parameter setting and to provgtesrato the working
mechanism of ES on the other.

In this thesis, the dynamic systems approach is applied to derive the followahigds:

Self-Adaptation on the Sphere Model

Self-Adaptation and Intermediate Recombination, Section 4.1

1. An explanation of the experimental finding byi®r and Beyer [51] that intermediate recombi-
native ES are sensitive to the choice of the learning rate can be provided.

2. Main reason of the sensitivity of the progress rate: The sensitivityrtsahe choice of the
learning rate is due to the self-adaptation mechanism, itself. Due to the gensic eé&
fect, ES with intermediate recombination may operate with higher mutation strendgth. T
self-adaptation mechanism cannot take this into account.

3. Intermediate recombination and progress: While intermediate ES in coiatrdst\)-ES are
sensitive to the choice of the learning rate they may perform superiorly, £9-€S. Further-
more, they may reach their specific optimal progress.

4. Optimal learning rate: Provided that the search space dimensionality emdittber of off-
spring are large, it is shown that choosing the learning rate proportionah/2N is approx-
imately optimal — as long as the parent number is neither close to one nor clogentontiver
of offspring. Especially, this includes the parent-offspring ratio usualtpmmended.

Self-Adaptation and Noise, Sections 4.2 and 4.3

1. (1, \)-ES suffer from a loss of step size control if the noise strength is too (9ghtion 4.2).
Instead of reaching a stationary state, the mutation strength shows a neatily leehavior.
Using the assumption that selection in the high noise regime is random, it caowe #fat
the mutation strength performs a random walk. Larger mutation strengthsh(wioigld de-
crease the influence of the noise) are punished, however, becaysadly lead more often to
worse candidates. As result, the ES is biased towards smaller mutation strandtshows an
irregular behavior.

2. Intermediate /s, \)-ES are biased towards an increase of the mutation strength. This bias
safeguards against a loss of step size control (Section 4.2).

3. Concerning the residual location errpr, A-ratios around /2 are optimal. Evolution strategies
with v : A € [0.2 — 0.7] achieve similar location errors. This enables to follow the usual
recommendation to chooge: A around0.27. This allows not only nearly optimal progress in
the initial optimization phase but nearly minimal residual location errors (Se4t®)n



4. The residual location error is higher than a (hypothetic) minimal errorase of intermediate
ES, this deviation occurs because of the non-zero stationary mutatiogtetrddut again the
deviation of the residual location error from the minimal possible error is sinallis suffi-
ciently high and even improves more if one of the ugual\-ratio is chosen. Recombinative
ES achieve nearly optimal location errors (Section 4.3).

Self-Adaptation on the Ridge Function Class

The Sharp Ridge, Sections 5.1.1 and 5.2.1

1. It has been shown in experiments [56] that self-adaptive ES on #rp skdge may converge
prematurely. It is shown in Section 5.1.1 that the size of the congtantt. the population
parameterg. and A is the critical parameter. Largévalues cause premature convergence of
the evolution strategies (Section 5.1.1). To a minor extend this can be remgdisctdasing
A. Using recombination with the usual parent offspring ratio enhancegtioden: Premature
convergence occurs for even lower values of

2. If d is small, the ES progresses with a positive quality change. It can be shawthéhusual
recommendation of choosing the truncation ratio A =~ 0.27 does not apply — unless the
learning rate is small, of course. Instead, it can be shown that a/ixedue aroun® — 5 is a
good choice.

3. Provided, thatl is small, an increase of the learning rate increases the performance, i.e., the
quality change. The optimizer is unattainable for finite learning rates, thollgbrefore, no
recommendation of how to choosecan be given.

4. The sharp ridge is an example for a positive side effect of noisy $iteesluations. First of all,
the size of thel-constant must be sufficiently high so that the axis is approached in thesing.
Additive noise stops the ES from realizing the subgoal of optimizing the engloesjthere: The
higher this “residual location error” to the axis, the higher the progréssléadaptive ES. As
result, recombination using the usual truncation ratio is not recommendedmReation is
necessary, though, sincé g A\)-ES looses step-size control.

5. The behavior of ES, i.e., the stationary normalized mutation and noise thtremgthe noisy
sharp ridge is very similar to that on the noisy sphere. The mutation strerayits tiewards
changes of the distance to the axis but not towards changedinection, i.e., towards changes
parallel to the direction of the axis.

The Parabolic Ridge, Sections 5.112 and 5.2.2

1. On the parabolic ridge, no premature convergence occurs. ThesEBes a stationary distance
to the axis and progresses then with a constant mutation strength (oneverag mutation
strength only reflects the distance to the axis but not the position on the &dsRination has
disadvantages: The progress rate decreases when switching froto . > 1 (see Section
5.1.2).

2. Noise has only positive effects if the size of the parent populatioreetsdealf of the size of the
offspring population. Ifu < /2, noise degrades the performance (see Section 5.2.2).
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3. For small noise strengths, recombination with a truncation rati06.2f cannot be recom-
mended. To safeguard against a loss of step-size control, recombihasdre used, though.
The performance loss due to recombination only holds for small noise #igenif the noise
increases, the progress rates of intermediate ESwith1 andu ¢ A converge to nearly the
same progress rate:(1/(4d)).

1.1 Underlying Publications
This thesis is based in part on the following publications

1. S. Meyer-Nieberg, H.-G. Beyer: Mutative Self-Adaptation on the ghad Parabolic Ridge,
in Stephens, C. et al., editors, Proceedings obthdnternational Workshop on Foundations of
Evolutionary Algorithms (FOGA-IX), pages 70-96, 2007 [75]

2. S. Meyer-Nieberg, H.-G. Beyer: Self-Adaptation in Evolutionary Aldions in F. Lobo, C. Lima,
and Z. Michaelewicz: Parameter Settings in Evolutionary Algorithms, pag&$43%pringer,
2007 [76]

3. H.-G. Beyer, S. Meyer-Nieberg: Self-Adaptation on the Ridge Fundiilass: First Results
for the Sharp Ridge, in T.P. Runarsson et al., editors, Parallel Prolérm& from Nature 9,
pages 71-80, Springer, 2006 [28]

4. H.-G. Beyer, S. Meyer-Nieberg: Self-Adaptation of Evolution Striggegnder Noisy Fitness
Evaluations. Genetic Programming and Evolvable Machifigs, 295-328, 2006 [27]

5. S. Meyer-Nieberg, H.-G. Beyer. On the Analysis of Self-Adaptivel&tion Strategies: First
Results, in McKay, B. et al., editors, Proc. of the CEC’05, Edinburgk, hhges 2341-2348,
Piscataway, NJ, 2005, IEEE [74]

The contribution of the author of this thesis is at lea@%. Chapter 2 is based on a revised and
extended version of [76]. Results from [74] and [27] are preseint&actions 4.1 and 4.2 of Chapter
‘4. Chapter 5, i.e., Section 5.1, is based in parts on [28] and [75].



2 Self-Adaptation in Evolutionary Algorithms

Evolutionary algorithms (EA) operate on basis of populations of individuBieir performance de-
pends on the characteristics of the population’s distribution. Self-Adaptatins at biasing the dis-
tribution towards appropriate regions of the search space — keepingffigiesit diversity among
individuals in order to enable further evolvability.

Generally, this is achieved by adjusting the setting of control parametenstodCparameters can
be of various forms — for instance mutation rates, recombination probabibti¢ise population size
(see, e.g., [16]).

The goal is not only to find suitable adjustments but to do this efficiently. Thedawven further
complicated: The EA faces a dynamic problem since a parameter setting thaipivaal at the
beginning of an EA-run may become unsuitable during the evolutionaryegsocFor this reason,
there is generally a need for a steady modification or adaptation of the patemeters during the
run of an EA.

This chapter considers the principle of self-adaptation which is explicitlg ursevolutionary
programming (EP) [47, 48] and evolution strategies (ES) [81, 87] whileriirisly used in genetic
algorithms (GA) [58, 59]. The areas of evolutionary algorithms differ inrtterminology to some
extent: For instance, the term crossover is used more often in the fielchefigalgorithms and
generally denotes recombination of two parents. Also, the mutation strengtfeised to as the
mutation rate in GA.

Individuals of a population represent possible solutions. These desldép a set of object param-
eters that can be interpreted as the genome of the individual. The basaf elgdicit self-adaptation
consists in incorporating control parameters into the genome and evolvimgatiomgside with the
object parameters.

In this chapter, an overview over the self-adaptative behavior of t#gnhry algorithms is pro-
vided. First, a short overview over the historical development of ataptenechanisms in evolu-
tionary computation is given in Section 2.1. In the following part, i.e., in Sectionc2a8sification
schemes for grouping the various approaches are presented. &fisgelf-adaptative mechanisms
are considered. The overview is started by some examples — introdutfiaglaptation of the strat-
egy parameter and of the crossover operator. Several authorpbined out that the concept of
self-adaptation transcends explicit self-adaptation. Section 2.3.2 is dewatach ideas. The mech-
anism of self-adaptation has been examined in various areas in order eméiners to the question
under which conditions self-adaptation works and when it could fail. dfoee, the chapter closes
with a short overview over some of the research done in this field.

2.1 A Short History of Adaptation in Evolutionary Algorithms

This section sketches shortly the historic development of adaptation metisarie first pro-
posals to adjust the control parameters of a computation automatically dateoliaekearly days of
evolutionary computation.

In 1967, Reed, Toombs, and Barricelli [83] experimented with the evolafiprobabilistic strate-
gies playing a simplified poker game. Half of a player's genome consistathtégy parameters de-
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termining, e.g., the probabilities for mutation or the probabilities for crossoithrather strategies.
These strategy parameters were subject to random variation. Intelgstingas shown for a play
with a known optimal strategy that the evolutionary simulation realized nearly dtlanas.

Also in 1967, Rosenberg [84] proposed to adapt crossover pitittesand Bagley [18] suggested
incorporating the control parameters into the representation of an indNidGA. Although Bagley’s
suggestion is one of the earliest proposals of applying classical ssitiagl methods, self-adaptation
as usually used in ES appeared relatively late in genetic algorithms. In $8Baffer and Morishima
[86] introduced the self-adaptiyinctuated crossova@dapting the number and location of crossover
points. Some years later in 1992, a first method to self-adapt the mutaticat@paas suggested by
Back [14, 13]. He proposed a self-adaptive mutation rate in genetic algarisimilar to evolution
strategies.

The idea of using a meta-GA can be found quite early. Here, an upparddvtries to tune the
control parameters of a lower-level algorithm which in turn tries to solve tiggnal problem. The
first suggestion stems from Weinberg [102] in 1970 and gave rise to tHehydMercer and Sampson
[73].

Concerning evolution strategies, the need to adapt the mutation strengtre(wtlss) appropri-
ately during the evolutionary process was recognized 1973 in Redfggsbeminal boolEvolutions-
strategie[81].

He proposed the well-knowh/5th rule, which was originally developed fot ¢ 1)-ES. It relies
on counting the successful and unsuccessful mutations for a certaipenwf generations. If more
than 1/5th of mutations leads to an improvement the mutation strength is increased ardsgetr
otherwise. The aim was to stay in the so-cake@lution windowwhich guarantees nearly optimal
progress.

In addition to thel /5th rule, Rechenberg [81] also proposed to couple the evolution of thegjra
parameters with that of the object parameters. Both parameter sets wadwentpichanged. The idea
of (explicit) self-adaptation was born. To compare the performance ofeiging populationwith
that of an ES using the/5th rule, Rechenberg conducted some experiments on the sphere addrcorr
model. The learning population exhibited a higher convergence speeevandnore important it
proved to be applicable in cases where it is improper to usd thth rule. Self-adaptation thus
appeared as a more universally usable method.

Since then various methods for adapting control parameters in evolutialganjthms have been
developed - ranging from adapting crossover probabilities in genetidthigs to a direct adaptation
of the distribution [36].

In 1974, Schwefel [87, 89] introduced a self-adaptive method fanging the strategy parameters
in evolution strategies which is today commonly associated with the term selfaéidap In its most
general form, the full covariance matrix of a general multidimensional nladistibution is adapted.
A similar method of adapting the strategy parameters was offered by Foalel[é6] in the area of
evolutionary programming — the so-called meta-EP operator for changimgutagion strength.

A more recent technique, the cumulative path-length control, stems frommn@sés, Hansen,
and Gawelczyk [78]. One of the aims is to derandomize the adaptation of #tegstiparameters.
The methods developed, the cumulative step-size adaptation (CSA) aswledl @ovariance matrix

adaptation (CMA) [53], make use of @volution pathp(¥*1) = (1 — c)p@ + \/c(2 — €)z'%™,

sel
which cumulates the selected mutation steps. The varnsblaives the path at generatigrwhereas
zggl) denotes the selected mutation steps, i.e., in the cage/ pf ()\)-ESzggl) equals the centroid of the
mutation vectors of tha best offspring. The basic working mechanism can be illustrated by a simple

example. Consider an evolution path with purely random selection (see Ridice the mutations
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are normally distributed, the cumulated evolution path is given®y = >"7_, oA (¥)(0,1), where
N(0,1) is a random vector with identically independent§(0, 1) normally distributed components
with zero mean and variance one. Therefore, the length(®fis y-distributed with expectation
u = ox. Fithess based selection changes the situation: If the mutation steps arg¢ooraverage,
smaller mutations will be selected. Thus, the path-length is smallertlad the step size should be
decreased. Otherwise if the path-length is larger than the expedteelstep-size should be increased.
The cumulative step-size adaptation is also used in the CMA-algorithm. Hoveelditionally CMA
adapts the whole covariance matrix [53] and as such it represents thefsthgsart in real-coded
evolutionary optimization algorithms.

2.2 A Taxonomy of Adaptation

As the previous section showed, various methods for changing antiraglepntrol parameters of
evolutionary algorithms exist and adaptation can take place on differezislev

Mainly, two taxonomy schemes were proposed — the elder by Angeline [2p9% &nd the
younger by Eiben, Hinterding, and Michaelewicz [42] in 1999. Thebems®es group adaptive com-
putations into distinct classes — distinguishing evolutionary algorithms by theofygaptation, i.e.,
how the parameter is changed, and by the level of adaptation, i.e., whextesihges occur.

Let us start with Angeline’s classification [2]. Considering the type opéataon, adaptive evolu-
tionary computations are divided into algorithms watfisolute update ruleand into algorithms with
empirical update rules

If an absolute update rules applied, a statistic is computed. This may be done by sampling over
several generations or by sampling the population. Based on the resulieitided by means of a
deterministic and fixed rule if and how the operator is to be changed. Reetwysi /5th-rule [81] is
one well-known example of this group.

In contrast to this, evolutionary algorithms wigmpirical update rulegontrol the values of the
strategy parameters themselves. The strategy operator may be intergratetheorporated part of
the individual’s genome, thus being subject to “genetic variations” [2{.alse the strategy parameter
variation leads to an individual with a sufficiently good fitness, it is seleated'survives”. Individ-
uals with appropriate strategy parameters should — on average — havéitgess values and thus a
higher chance of survival than those with badly tuned parameters. ésu#i,rthe EA should be able
to self-control the parameter change.

As Smith [92] points out, the difference between these two types of algorithmiltbe nature
of the transition function. The transition function maps the set of operatayereeratiory on that
att + 1. In the case of absolute update rules, it is defined externally. In theofasdf-adaptive
algorithms, the transition function is a result of the operators and is definrgktalgorithm itself.

Both classes of adaptive evolutionary algorithms can be further sulediidsed on the level
the adaptive parameters operate on. Angeline distinguished bepopetation, individual, and
component-leveddaptive parameters.

Population-leveldaptive parameters are changed globally for the whole population. Eesarp
for instance the mutation strength and the covariance matrix adaptation in GSBN#A evolution
strategies [53]. Adaptation on thiedividual levelchanges the control parameters of an individual
and these changes only affect that individual. The probability forsonaer in GA is for instance
adapted in [86] on the level of individuals. Finallygpmponent-leveadaptive methods affect each
component of an individual separately. Self-Adaptation in ES with cdg@lautations (see Section
2.3.1) belongs to this adaptation type.

Angeline’s classification was extended and broadened by Eiben, Himjemhd Michaelewicz
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[42]: Adaptation schemes are again classified firstly by the type of adaptatibsecondly — as in[2]
— by the level of adaptation. Considering the different levels of adaptatfoarth level.environment
level adaptationwas introduced to take non static responses of the environment intors.ccou

Concerning the adaptation type, the algorithms are dividedstdtc i.e., no changes of the
parameters occur, ardynamicalgorithms. The term “dynamic adaptation” is used to classify any
algorithm that changes the strategy parameters and is doing so withouttamaécontrol. Based on
the mechanism of adaptatiathree subclasses are distinguishddterministi¢c adaptive and finally
self-adaptivealgorithms. The latter classes comprise the same groups of algorithms as iimalsge
classification [2].

A deterministic adaptation is used if the control parameter is changed aagtodirdeterministic
rule withouttaking into account any present information by the evolutionary algorithdf. iSgam-
ples of this adaptation class are the time-dependent change of the mutatigorogiesed by Holland
[59] and the cooling schedule in simulated annealing like selection schemes.

Algorithms with an adaptive dynamic adaptation rule take feedback from théseh into ac-
count and change the control parameters accordingly. Again, a waNrkmember of this class
is Rechenberg's /5th-rule. Further examples include Davis’ adaptive operator fithessai3&Jul-
strom’s adaptive mechanism [63]. The former relates the usage probabiléproduction operators
to their success. The latter takes the performance of crossover and mei@sidasis to tune their
application ratio.

2.3 Self-Adaptation: The Principles

This section sketches the principles of self-adaptation. First, some exaanglgisen to illustrate
the use of self-adaptation. Self-Adaptation can be seen in a broadexkctiran given by the original
definition. This concept ajeneralized self-adaptatiaa pointed out in the following subsection. The
section ends with general demands for self-adaptive operators.

2.3.1 Self-Adapted Parameters: Some Examples

In this subsection some examples are presented in order to illustrate the basiplg. The
subsection starts with self-adaptation of strategy parameters which isbpraba best known form
before addressing self-adaptation of recombination operators.

Self-Adaptation of Strategy Parameters

The technique most commonly associated with the term self-adaptation wasioeddaly Rechen-
berg [82] and Schwefel [87, 88] in the area of evolution strategiesraiebendently by Fogel [45] for
evolutionary programming. The control parameters considered helsetagppe mutation process and
parameterize the mutation distribution. The mutation is usually given by a normatijpdied ran-
dom vector, i.e.Z ~ N(0, C). The entries;; of the covariance matri€ are given byt;; = var(Z;)
or by c;; = cov(Z;, Z;) if j # i. The density function reads

e 3Z"CT'Z
pz(Z1,...,2ZN) = ; (2.1)
( ) V (27)Ndet(C)
whereN is the dimensionality of the search space. The basic step in the self-adaptatbanism
consists of a mutation of the mutation parameters themselves. In contrast talitieeathange of
the object variables, the mutation of the mutation strengths (i.e., the standétiates /c;; in (2.1))
is realized by a multiplication with a random variable. The resulting mutation paresrete then
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applied in the variation of the object parameters. It should be mentionethia¢mncerning evolution
strategies, the concept of self-adaptation was originally developedferatombinative 1, \)-ES.
After multi-parent strategies were proposed, self-adaptation was adapterdingly. The reader is
referred to Sectian| 1 for a description of a multi-parentq, \)-ES witho-self-adaptation. Depending
on the form ofC, different mutation distributions have to be taken into account. Considerang th
simplest cas& = o/ (0, 1), the mutation ofr is given by

o = oe’" (2.2)
and using the new’, the mutation of the object parameters reads
r, = x+dN(0,1). (2.3)
Theein Eg. (2.2) is a random number, often chosen as
e ~ N(0,1), (2.4)

thus, producing log-normally distributed variants. This way of choosingis also referred to as the
“log-normal mutation rule”. Equation (2.2) contains a new strategy spedcif@rpeter — théearning
rate 7 to be fixed. The general recommendation based on experimental finditmgsheoser
1/+v/N. Later on this recommendation was shown to be optimal with respect to thergence
speed of {, \)-ES on the sphere [23, p. 303].

If different mutation strengths are used for each dimension 4;e5 o,V (0, 1), the update rule

= o;exp(T'N(0,1) + 7N;(0,1)) (2.5)
= xz; +oN(0,1) (2.6)

a

8
S

has been proposed. It is recommended to choose the learning’rately/v/2N andr oc 1/v/2vV N
[16].

The approach can also be extended to allow for correlated mutationsH&62, rotation angles
«; need to be taken into account leading to the update rule

ol o exp(T'N(0,1) + T7N;(0,1)) (2.7)
ol =+ NGO, ) (2.8)
" = x+N(0,C(c",)) (2.9)

whereC is the covariance matrix [16]. The parameteis usually chosen as0873 [88].
In EP, a different mutation operator, callegtta-EP[45], is used

o)

- Ui(l—i—aN‘(O,l)) (2.10)
= z; +oN(0,1). (2.11)

SN Sl

xT

Both operators lead to similar results — provided that the parametaid« are sufficiently small.
The log-normal operator, Egs. (2.2), (2.3), and the meta-EP operdtodilced above are not

the only possibilities. Self-Adaptation seems to be relatively robust to theebbite distribution.

Another possible operator is given lay= +4, where+|J| and —|J| are generated with the same
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probability of 1/2. That is, the resulting cumulative density function (cdf)éobelongs to a two-
point distribution giving rise to the so-called two-point rule. It is usually impleted usingd =
1/71In(1 + B3), thus, leading with (2/2) to

!/

B oi(1+p5) ifu<0.5
%7 U e/(1+B) ifu>05 "

with « uniformly distributed random variable a6, 1].

A further variant was proposed by Yao and Liu [105]: They substittiednormal distribution
of the meta-EP operator with a Cauchy-distribution. Their new algorithm, ctdistdevolutionary
programming performed well on a set of seperable test functions and appearegteferable in the
case of multi-modal functions. The Cauchy-distribution is similar to the normilaiton but has a
far heavier tail. Its moments are undefined.

In [68], Lee and Yao introduced yet another alternative. They sstgdaising a &vy-distribution.
Investigating several seperable test functions, they argued that usgingdistributions instead of
normal distributions may lead to higher variations and a greater diversitpp@eed to the Cauchy-
distribution, Levy-distributions allow for a greater flexibility since the Cauchy-distributiopesars as
a special case ofévy-distributions.

(2.12)

Self-Adaptation of Recombination Operators

Crossover is traditionally regarded as the main search mechanism in gegetithens and most
efforts to self-adapt this operator stem from this area. In evolution giestéhe term recombination
is usually used instead of crossover.

Schaffer and Morishima [86] proposed tenctuated crossovevhich adapts the positions where
crossover occurs. An individual's genome is augmented with a bitstringatidiccrossover points. A
position in this crossover map is changed in the same manner as its couritetipadriginal genome.
Schaffer and Morishima reported that punctuated crossover perddyeter than one-point crossover.
Spears [98] points out, however, that the improvement of the perfoenaight not necessarily be
due to self-adaptation but to the generic advantage of crossover withtharene crossover point
over one-point crossover.

Spears|[98] self-adapted the form of the crossover operator usiragditional bit to decide
whether two-point or uniform crossover should be used for creatieg@ftispring. Again, it should
be noted that Spears attributes the improved performance not to the gefiitmaprocess itself but
rather to the increased diversity that is offered to the algorithm.

Smith and Fogarty [95] introduced the so-called LEGO-algorithm, a linkagéieg genetic
algorithm. The objects which are adapted blecks i.e., linked neighboring genes. Each gene has
two additional bits which indicate whether it is linked to its neighbor on the righdrothe left.
These additional bits are also subject to mutation. Two neighboring geae¢kaar calledinked if
the respective bits are set. More than two parents may contribute in the nreb#in offspring. The
positions of an offspring are filled successively by a competition betwassngal blocks. The blocks
have to be eligible, i.e., they have to start at the position currently considéitesl fittest block is
copied as a whole and then the process starts anew.

2.3.2 A Generalized Concept of Self-Adaptation

In [16], Back identified two key features of self-adaptation: Self-adaptation aimssing the
population distribution to more appropriate regions of the search spacekiggnese of an indirect
link between good strategy parameter or recombination operator valuegoaddobject variables.



2.3 Self-Adaptation: The Principles 13

Furthermore, self-adaptation relies on a population’s diversity. While dagtation of the opera-
tor ensures a good convergence speed, the degree of diversityithete the convergence reliability.
More generally speaking, self-adaptation controls the relationship betwagent and offspring pop-
ulation, i.e., the transmission function (see, e.g., Altenberg [1]). The darandbe direct by manipu-
lating control parameters in the genome or more implicit. In the following, we séedlisadaptation
can be put into a broader context.

Igel and Toussaint [60] addressed the question of neutral genptyg®otype mapping. They
point out that neutral genome parts give an algorithm the ability to “varyahech space distribution
independent of the phenotypic variation” [60]. This may be regardexhasf the main benefits of
neutrality. While neutrality induces a redundancy in the relationship betweeotygpe-phenotype,
the mapping from the genome to the population distribution has to be taken intordctmn. The
latter mapping cannot be viewed as redundant in general. This usetddlitgus termedgeneralized
self-adaptation|t also comprises the classical form of self-adaptation since the strategyneters it
adapts belong to the neutral part of the genome.

More formally, generalized self-adaptation is defined as “adaptation acéxpleration distribu-
tion Pg) by exploiting neutrality — i.e., independent of changing phenotypes in thelgapy of
external control, and of changing the genotype-phenotype mappifg”Ifgel and Toussaint showed
additionally that neutrality cannot be seen generally as a disadvantagetissnenlargement of the
search space does not necessarily lead to a significant degradattiepefrformance.

In [49], Glickman and Sycara referred to anplicit self-adaptationcaused by a non-injective
genotype-phenotype mapping. Again there are variations of the genotrapthat alter the fitness
value but influence the transmission function which induces a similar effect.

Beyer and Deb [38] pointed out that in well-designed real-coded GApahnent offspring trans-
mission function is controlled by the characteristics of the parent populdtlurs, the GA performs
an implicit form of self-adaptation. In contrast to the explicit self-adaptatioBS, an individual's
genome does not contain any control parameters. Deb and Beyexp]reed the dynamic behav-
ior of real-coded genetic algorithm (RCGA) that apply simulated binarysenas (SBX) [37, 41]. In
SBX, two parents:! andz? create two offspring' andy? according to

yi = 1/2<(1 — Bi)a + (1+ ﬁz‘)ﬁ)
vt = 1/2((1+ el + (1 - B)ad). (2.13)
The random variablg has the density

_ 1/2(n+1)p"7 f0<p<1
p(f) = {1/2(17+1)ﬂ’72 if 3>1

The authors pointed out that these algorithms show self-adaptive beladthiough an individual’s
genome does not contain any control parameters. Well-designed weosgerators create offspring
depending on the difference in parent solutions. The spread of ahisdrdetions is in proportion to
the spread of the parent solutions. Solutions near the parent solut®nsoae likely to be created
as children solutions than more distant solutions [40]. In this manner, tleesidivin the parental
population controls that of the offspring population.

Self-adaptation in evolution strategies has similar properties. In both caf$gw;ing closer to
the parents have a higher probability to be created than individuals fatber. While the implicit
self-adaptability of real-coded crossover operators is well undetgtmtay, it is interesting to point
out that even the standard onekepoint crossover operators operating on binary strings do have this

(2.14)
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property: Due to the mechanics of these operators, bit positions whiatoammon in both parents
are transferred to the offspring. However, the other positions adonaly filled. From this point of

view, crossover can be seen asedf-adaptive mutation operatowhich is in contrast to the building
block hypothesis [50] usually offered to explain the working of crossav binary GA.

2.3.3 Demands on the Operators: Real-coded Algorithms

Several postulates and guidelines have been devised that should bedfll§i self-adaptative
evolutionary algorithms. Many of them address the mutation operators6)i2& 29] several rules
for the design of mutation operators were introduced that stem from &sadysmplementations and
theoretical considerations in evolution strategies:

1. reachability every finite state must be reachable,
2. scalability. the mutation operator must be tunable in order to adapt to the fithness laadandp
3. unbiasednesst must not introduce a bias on the population.

A detailed discussion can be found in [29], for example. The necessthedirst two requirements
can be immediately discerned. The demand of unbiasedness is explainedaltotiizng. It should
be noted that unbiasedness is also required in the case of the recombapstiaior [26, 65]. The
demand of unbiasedness becomes clear when considering that the easjusearch behavior of
an EA can be divided into two phases: Exploitation of the search spacgldsting good solutions
(reproduction) and exploration of the search space by means of vari@idy the former generally
makes use of fithess information, whereas the latter should ideally rely ochssgzace information
of the population alone. Thus, under a variation operator, the expeopdapion mean should re-
main unchanged, i.e., the variation operators should not bias the populatiarequirement, first
made explicit in [26], may be regarded as a basic design principle forticari@perators in EA. The
basic work|[26] additionally proposed design principles with respect tahlaaging behavior of the
population variance. Generally, selection changes the population varidnoorder to avoid pre-
mature convergence, the variation operator must counteract that effféwe reproduction phase to
some extent. General rules how to do this are, of course, nearly impossile but someninimal
requirements can be proposed concerning the behavior on certais fanescapes [26].

For instance, Deb and Beyer [26] postulated that the population varsmedd increase expo-
nentially with the generation number on flat or linear fitness functions. Asgmbout by Hansen [52]
this demand might not be sufficient. He proposed a linear increase offileetation of the logarithm
of the variance instead. Based on the desired behavior in flat fithesscéges, Beyer and Deb [26]
advocated applying variation operators that also increase the populatianae in the general case
of unimodal fitness functions. While the variance should be decreasesl jiojulation brackets the
optimum, this should not be done by the variation operator. Instead, thishiasldsbe left to the
selection operator.

In the case of crossover operators in real-coded genetic algorithmSARGimilar guidelines
have been proposed by Kita and Yamamura [65]. They supposed thdisthbution of the parent
population indicates an appropriate region for further search. Asdyefee first guideline states that
the statistics of the population should be preserved: Both, the mean as tihagiance-covariance
matrix, should be retained. Additionally, the crossover operator shouldtéteas much diversity in
the offspring population as possible. The first guideline may be violatedgthince the selection
operator typically reduces the variance. Therefore, it may be negdssacrease the present search
region.
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2.4 Self-Adaptation in EAs: Theoretical and Empirical Results

In this section, empirical and theoretical research is reviewed that aimsletsianding the work-
ing of self-adaptive EA and at evaluating their performance. First,tgealgorithms are addressed
before research approaches of self-adaptation in evolution strategiesvolutionary programming
are described.

2.4.1 Genetic Algorithms

In genetic algorithms, self-adaptation is applied to the crossover operatéo ¢he mutation rate.
First, a review of self-adaptation of the crossover operator is giveardéhe question of adaptation
of the mutation rate is addressed.

Self-Adaptation of the Crossover Operator: Real-Coded Genetic Alg orithms in Flat
Fitness Landscapes

Beyer and Deb [39] analyzed three crossover operators commontdyiniseal-coded genetic
algorithms, i.e., the simulated binary crossover (SBX) by Deb and Agra®@]athe blend crossover
operator (BLX) of Eshelman and Schaffer [44], and finezy recombinationf Voigt et al. [101]. All
crossover operators use the following recombination operator

Yl = %((1 — Br)zir + (1 + ﬁk)lec)
Yok = %((1 + Br)x1p + (1 — ﬁk)@,k) (2.15)

with z; ;, andz, drawn independently from the parent population @hda random variable (see
[39]). The crossover operators differ in the distribution of the randanable,..

The analysis was aimed at ascertaining if and under which conditions thdgies proposed in
Section 2.3.3 are fulfilled [39]. To this end, expressions for the mean angatiance of the offspring
population in relation to the parent population were derived. The fitheg®aments considered were
flat fitness landscapes and the sphere. As mentioned before in Sect®@ns2l8adaptation should
not change the population mean in the search space, i.e., it should notiggradbias, but it should
— since a flat fitness function is considered — increase the populatiomea@ad this exponentially
fast.

It was shown in [39] that the crossover operator leaves the populatian orehanged regardless
of the chosen distribution of the random variable Concerning the population variance, an exponen-
tial change can be asserted. Whether the variance expands or todépends on the population size
and on the second moment of the random variable. Thus, a relationshipdvetiae population size
and the distribution parameters of the random variables can be derivel sisures an expanding
population.

A further investigation of self-adaptation of the crossover operatoroffased by Kita [64]. He
analyzed real-coded genetic algorithms using UNDX-crossover (uninmadiaal distribution) and
performed a comparison with evolution strategies. Based on empirical r¢mufisinted out that both
appear to work reasonably well although naturally some differencesiinbibleavior was observed.
The ES for example widens the search space faster if the system is fafrawaan optimum. But
the RCGA appears to have a computational advantage in high-dimensianeth spaces compared
to an ES which adapts the rotation angles of the covariance matrix accordtgg t§2.7)1(2.9). Kita
used a 15, 100)-ES with the usual recommendations for setting the learning rates.
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Self-Adaptation of the Mutation Rate in Genetic Algorithms

Traditionally, the crossover (recombination) operator is seen as the madatiama operator in
genetic algorithms, whereas the mutation operator was originally propose#iagd of background
operator endowing the algorithm with the potential ability to explore the wholelssaace. Actually,
there are good reasons to consider this as a reasonable recommendggoetin algorithms with
genotype-phenotype mapping frdki — R’. As has been shown in [26], standard crossover of the
genotypes does not introduce a bias on the population mean in the phespfgee Interestingly,
this doesnot hold for bit-flip mutations. That is, mutations in the genotype space result in acias
phenotypic population mean — thus violating the postulates formulated in [26th@®ather hand,
over the course of the years it was observed that for genetic algorithifpseudo) boolean functions
(i.e., the problem specific search space isEhethe mutation operator might also be an important
variation operator to explore the search space (see, e.g., [99]). Auitioit was found that the
optimal mutation rate or mutation probability does not only depend on the functioe ¢ptimized
but also on the search space dimensionality and the current state of titie (se®, e.g., [15]).

A mechanism to self-adapt the mutation rate was proposedaok BL3, 14] for GA using the
standard ES approach. The mutation rate is encoded as a bit-string antsquart of the individual’s
genome. As it is common practice, the mutation rate is mutated first which requideiading to
[0, 1]. The decoded mutation rate is used to mutate the positions in the bit-string of the muatgio
itself. The mutated version of the mutation probability is then decoded again én trde used in
the mutation of the object variables.

Several investigations have been devoted to the mechanism of self-adajnagjenetic algo-
rithms. Most of the work is concentrated on empirical studies. These tee difected to possible
designs of mutation operators trying to identify potential benefits and dickgba

Back [14] investigated the asymptotic behavior of the encoded mutation ratglectieg the
effects of recombination and selection. The evolution of the mutation ratksr@sa Markov chaih.
The absorbing state of this chain is zero which shows the convergetioe simplified algorithm.

The author showed empirically that an GA with an extinctive selection Séﬁﬁﬂeself-adaptation
performs better than a reference GA without adaptation [14]. For the @asop, three high-dimen-
sional test functions (two unimodal, one multimodal) were used.

In [13], a self-adaptive GA optimizing the bit-counting function was examin@dmparing its
performance with a GA that applies an optimal deterministic schedule to tune théamwtiaength,
it was shown that the self-adaptive algorithm realizes nearly optimal mutaties.r

The representation of the mutation rate as a bit-string may hamper its fine-tyréetf-adaptation.
To overcome this problem, the genome is extended with a real-coded mutatignafitel [ in [17].
Using a real-coded mutation rate in GA, however, necessitates sevgualeraents: The expected
change op should be zero and small changes should occur with a higher probabilityetfige ones.
Also, it is required that a change by a factdnas the same probability as byc. The authors used
a logistic change function with parameter The algorithm was compared with a GA without any
adaptation and with a GA using a deterministic time-dependent schedule. Thétisihe determin-
istic time-dependent schedule performed best on the test-problems chibseself-adaptive GA was
ranked in second place. Unfortunately, the learning vat&s found to have a high impact.

Considering the originally proposed algorithm [14], Smith [94] demonstihi@dt may get stuck
in suboptima with prematurely reduced mutation strength. He showed that thrératgbecomes

1A Markov chain is a stochastic process which possesses the Markperpyrai.e., the future behavior depends on the
present state but not on the past.
2A selection scheme is extinctive iff at least one individual is not selesieel[(L4]).
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more robust by using a fixed learning rate for the bitwise mutation of the mutatemgsr.

In 1996, Smith and Fogarty [96] examined empirically a self-adaptive stetady (. + 1)-GA
finding that self-adaptation may improve the performance of a GA. The mutatierwas encoded
again as a hit-string and several encoding methods were applied. Adtititmaimpact of crossover
in combination with a self-adaptive mutation rate was investigated. The sqifrael&A appeared to
be relatively robust with respect to changes of the encoding or cresso

In [97], the authors examined the effect of self-adaptation when thesgver operator and the
mutation rate are both simultaneously adapted. It appeared that at leastfiingks functions con-
sidered synergistic effects between the two variation operators come igto pla

To investigate the behavior of self-adaptive genetic algorithms more cl&alth [93] developed
a model to predict the mean fitness of the population. In the model, severdifisatipns are made.
Most importantly, the mutation rate is only allowed to assunuifferent values. Because of this,
Smith also introduced a new scheme for mutating the mutation rate. The probabdhgmging the
mutation rate is given by, = z(¢ — 1)/q, wherez is the so-callednnovation rate

In [100], Stone and Smith compared a self-adaptive GA using the log-hopeeator with a GA
with discrete self-adaptation, i.e., a GA implementing the model proposed inTé3his end, they
evaluated the performance of a self-adaptive GA with continuous sefitation and the performance
of their model on a set of five test functions. Stone and Smith found that Aheit discrete self-
adaptation behaves more reliably whereas the GA with continuous seliatidapmay get stuck in
local optima. They attributed this behavior to the fact that the mutation rate tifiggzrobability of
bitwise mutation. As a result, smaller differences between mutation strengtlosteaad more or less
the same amount of genes are changed. The variety the log-normaicogevides in continuous
search spaces cannot be carried over to the genome effectivelyealikktihood of large changes is
small. In addition, they argued that concerning the discrete self-adapéatimovation rate of one is
connected with an explorative behavior of the algorithm. This appears sndgseble for multimodal
problems whereas smaller innovation rates are preferable for unimautids.

2.4.2 Evolution Strategies and Evolutionary Programming

Research on self-adaptation in evolution strategies has a long traditiofirsSEtigeoretic in-depth
analysis has been presented by Beyer [21]. It focused on the caorgditimler which a convergence of
the self-adaptive algorithm can be ensured. Furthermore, it also pibweid estimate of the conver-
gence order.

The evolutionary algorithm leads to a stochastic process or more exactly &okaWichain [77].
The random variables chosen to characterize the system’s behawvioe atgect vector (or its distance
to the optimizer, respectively) and the mutation strength.

There are several approaches to analyze the Markov chain. Thi@1ir42] considers the chain
directly whereas the second [90, 91, 55] analyzes induced supergadesn The third [23, 38] uses a
model of the Markov chain in order to determine the dynamic behavior.

Convergence Results using Markov Chains

Bienveriie and Francois [31] examined the global convergence of adapiivesalf-adaptive
(1, A)-evolution strategies on spherical functions. To this end, they invedtigfadenduced stochastic
processy; = ||x¢||/o:. The parametes; denotes the mutation strength, whereastands for the
object parameter vector.

They showed thatz;) is a homogeneous Markov chain, i.e.,only depends on;_;. This also
confirms an early result obtained in [21] that the evolution of the mutationgttrean be decoupled
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from the evolution of|z,||. Furthermore, they showed that;) converges or diverges log-linearly —
provided that the chaifx;) is Harris-recurreﬁ{

Auger [12] followed their line of research focusing dn X)-ES optimizing the sphere model. She
analyzed a general model of i §)-ES with

Tyl = argmin {f(ﬂCt + Cfmtlftl)a e af('rt + Utﬁf\ftk)}
Ot+1 = Utﬁ*(ﬂft), 77* given by x4 y1 = x4 + Utﬁ*(xt)f*($t)7 (2-16)

i.e., o1 IS the mutation strength which accompanies the best offspring. The furfcigotine sphere
andn and¢ are random variables. Auger proved that the Markov chain given byz, /o is Harris-
recurrent and positive if some additional assumptions on the distributienmetrand the offspring
number\ is chosen appropriately. As a result, a law of large numbers can be apptiédt In(||x¢||)

and 1/t In(oy) converge almost surélyto the same quantity — the convergence rate. This ensures
either log-linearly convergence or divergence of the ES — dependirigeosign of the limit. Auger
further showed that the Markov chain;) is also geometrically ergodic (see, e.g., [77]) so that the
Central Limit Theorem can be applied. As a result, it is possible to derivnfidence interval for
the convergence rate. This is a necessary ingredient, because lymsastdl relies on Monte-Carlo
simulations in order to obtain the convergence rate (along with its confidetereal) numerically
for the real(1, \)-ES.

In order to perform the analysis, it is required that the random varigidesymmetric and that
both random variableg andn must be absolutely continuous with respect to the Lebesgue-measure.
Furthermore, the density is assumed to be continuous almost everywheres L>°(R), and zero
has to be in the interior of the support of the deﬁsit;e.,o € supp pe. Additionally, it is assumed
that1 € supp p, and thatE[|In(n)|] < oo holds. The requirements above are met by the distribution
functions normally used in practice, i.e., the log-normal distribution (mutationging and normal
distribution (object variable). In order to show the Harris-recurretieepositivity, and the geometric
ergodicity, so-called Forster-Lyapunov drift conditions need to beiddg 77, 12]. To this end, new
random variables are to be introduced

ANEN) = min {n'el. e ], (2.17)

They denote the minimal change of the object variable. For the drift congitiommbet is required.
Firstly, o has to ensure that the expectatidiig|“] and E[(1/7)%] are finite. Provided that also
E[|1/5(X)|%] < 1, « can be used to give a drift conditidn. More generally statedy has to decrease
the reduction velocity of the mutation strength associated with the best ofjsgritrials sufficiently.
Thus, additional conditions concerningand the offspring numbex are introduced leading to the
definition of the sets

I'o = {v>0:E[1/n]"] <occand E[|{|"] < oo} (2.18)
and
A= U= PeN:ER/mNT <1} (2.19)
a€ely a€lp

3Let N4 be the number of passages in the4eThe setd is called Harris-recurrent i, (N4 = co) = 1forz € A. Or
in other words: If the process starting franvisits A infinitely often with probability one. A procegs;) is Harris-recurrent
if a measure) exists such thatz: ) is y-irreducible and for alld with /(A) > 0, A is Harris-recurrent (see, e.g., [77]).

“A sequence of random variables defined on the probability spa¢€, .4, P) converges almost surely to a random
variablez if P({w € Q|lim;—. z:(w) = z(w)}) = 1. Therefore, events for which the sequence does not converge hav
probability zero.

5The support of a density is the closure of the set of all non-zero pointsfof
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Finally, the almost sure convergencelgt In(||z;||) and1/tIn(o;) can be shown for alh € A. Itis

not straightforward to give expressions foor A, in the general case althoudl, can be numerically
obtained for a giverv. Only if the densities ofy and{ have bounded support, it can be shown that
A, is of the formA, = {\ : A > Ao}

Convergence Theory with Supermartingales

Several authors [90, 91, 55] use the concept of martingales orream'ngalt—:@ to show the
convergence of an ES or to give an estimate of the convergence veldatypefore, the random
variables most authors are interested in are the object variable and the mategimyth.

Semenov [90] and Semenov and Terkel [91] examined the convergedcthe convergence ve-
locity of evolution strategies. To this end, they considered the stochastmubhga functionV; of a
stochastic procesk;. By showing the convergence of the Lyapunov function, the converyef the
original stochastic process follows under certain conditions.

From the viewpoint of probability theory, the functidh may be regarded as a supermartingale.
Therefore, a more general framework in terms of convergence efsugstingales can be developed.
The analysis performed in [91] consists of two independent parts. Tétefincerns the conditions
that imply almost surely convergence of supermartingales to a limit set. Thadgart (see also
[90]) proposes demands on supermartingales which allow for an estinmhte afnvergence velocity.
Indirectly, this also gives an independent convergence proof.

The adaptation of the general framework developed for supermartingatbe situation of evo-
lution strategies requires the construction of an appropriate stochaspangafunction. Because of
the complicated nature of the underlying stochastic process, the autharstdidcceed in the rigor-
ous mathematical treatment of the stochastic process. Similar to the Harnisereddarkov chain
approach, the authors had to resort to Monte-Carlo simulations in ordboto that the necessary
conditions are fulfilled.

In and [91], (., \)-ES are considered where the offspring are generated according to

oyl = eVt
Ty = mp+ oGy (2.20)
and the task is to optimiz¢(z) = —|z|. The random variable8, ; and(; ; are uniformly distributed

with ¥, ; assuming values if-2, 2] whereas(;; is defined on—1,1]. For this problem, it can be
shown that the object variable and the mutation strength converge almebt &urero — provided
that there are at least three offspring. Additionally, the convergesloeity of the mutation strength
and the distance to the optimizer is bounded from above by a function of timecfq (—at) which
holds asymptotically almost surely.

Hart, DeLaurentis, and Ferguson [55] also used supermartingalesiiragipgoach. They con-
sidered a simplified]1(; \)-ES where the mutations are modeled by discrete random variables. This
applies to the mutations of the object variables as well as to those of the mutagiogtkt. Offspring
are generated according to

oy = oD

)

Tl = l’t+0't7lB. (221)

The random variablé® may assume three valu¢s, 1,7} with v < 1 < n. The random variablé
takes a value of either1 or —1 with probability 1/2 each. Under certain assumptions, the strategy

A random procesg is called a supermartingale if|E;|] < co and EX,11|F:] < X, whereF; is, e.g., ther-field
that is induced byX;.
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converges almost surely to the minimurhof a functionf : R — R which is assumed to be strictly
monotonically increasing far > x* and strictly monotonically decreasing for< z*.

As a second result, the authors proved that their algorithm fails to locatdabal @ptimum of
a specific multimodal function with probability one. We will return to this aspec¢heir analysis in
Section 2.5.

Instead of using a Lyapunov function as Semenov and Terkel, they irtedda random variable
that is derived from the (random) object variable and the mutation strehgtn be shown that this
random variable is a nonnegative supermartingale if certain requirenrentseé In that case, the ES
converges almost surely to the optimal solution if the offspring number is®uftly high.

The techniques introduced in [55] can be applied to the multi-dimensionaj&#serovided that
the fitness function is separable, i.g(x) = ch\[:o gr(zx), and thegy fulfill the conditions for f.
The authors considered an ES-variant where only one coordinatangeti in each iteration. The
coordinatek is chosen uniformly at random. Léf{ , and>} , denote the stochastic processes that

result from the algorithm. It can be shown th¥f ,, ..., X! ,, are independent of each other. This
also holds fon2} ,, ..., ¥} y . Therefore, the results of the one-dimensional analysis can be directly
transferred.

Although the analysis in [55, 54] provides an interesting alternative, itsisicged to very spe-
cial cases: Due to the kind of mutations used, the convergence resulss, ip4pare, however, not
practically relevant if the number of offspring exceeds six.

Dynamic Systems Approach: The Evolution Equations

In 1996, Beyer [21] was the first to provide a theoretical frameworktiie analysis of self-
adaptive EAs. He used approximate equations to describe the dynamie-aflaptive evolution
strategies. Let the random variablé) = || X (9) — X || denote the distance of the present search point
to the optimizer and(¥) the mutation strength. The dynamics of an ES can be interpreted as a Markov
process as we have already seen. But generally, the transition kiemels

(9) (g+1)

T T

< ) > - ( c(a+1) > (2.22)
cannot be analytically determined. One way to analyze the system is tleetefapply a step by
step approach extracting the important features of the dynamic proakfsusderiving approximate
equations.

The change of the random variables can be divided into two parts. Whilérshelenotes the
expected change, the second covers the stochastic fluctuations

rat) = @) o9 (9 4 ep(r9) (9
o) — (@) (1 n w(r(g)g(g))> F e, (r9) @), (2.23)

The expected changesands) of the variables are termgaogress ratdf the distance is considered
andself-adaptation response the case of the mutation strength.

The distributions of the fluctuation terms are approximated using Gram-Chseties’ (or Edge-
worth series’), usually cut off after the first term: The stochastic terrpgs@&imated using a normal
distribution. The variance remains to be determined which can be done usimydhution equa-
tions, themselves. In short, this requires the calculations of the second itsoamehleads to the
corresponding second-order progress rate and to the secosidseffiadaptation response.
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To analyze the self-adaptation behavior of the system, expressiong f@sjbective progress rate
and self-adaptation response have to be found. Generally, no closlgtical solution can be derived.
Up to now, only results forl(, 2)-ES using two-point mutations could be obtained [23, p. 283f][21].
Therefore, several simplifications have to be introduced. For insté#rbe, log-normal operator is
examined, the most important simplification is to considex. 1. The so derived expressions are
then verified by experiments.

Self-Adaptation on the Sphere Model It is shown in P3, p. 306] that anl(, \)-ES with self-
adaptation convergences to the optimum log-linearly. Also the usually reconati@mmdf choosing
the learning rate proportionally tb/v/N, where N is the search space dimensionality, is indeed
approximately optimal. In the case df,Q)-ES, the dependency of the progress on the learning rate
is weak provided that > ¢/+/N with a constant: holds. As a result, it is not strictly necessary to
have N-dependent learning parameters.

As has been shown in [23, p. 305], the time to adapt an ill-fitted mutation strémgjtle fithess
landscape is proportionally t/72. Adhering to the scaling rule oc 1/+/N results in an adaptation
time that linearly increases with the search space dimensionality. Thergfereecommended to
work with ageneration-dependent constant learning rate respectively, ifN is large.

The maximal progress rate that can be obtained in experiments is alwaysrdimatig¢he the-
oretical maximum predicted by the progress rate theory (without considgrinstochastic process
dynamics). The reason for this is that the fluctuations of the mutation streegthde the perfor-
mance. The average progress rate is deteriorated by a loss part steromnié variance of the
strategy parameter. The theory developed in [23] is able to predict teist effialitatively.

If recombination is introduced in the algorithm the behavior of the ES changd#atively. Beyer
and Giinz [51] showed that multi-recombinative ES that use intermediate or dommgworhbination
do not exhibit the same robustness with respect to the choice of the leeatgras (, \)-ES. Instead
their progress in the stationary state has a clearly defined optimum and optimhal progress is
only attainable for a relatively narrow range of the learning ratH the learning rate is chosen sub-
optimally, the performance of the ES degrades but the ES still convergdisdagly to the optimum.
The reason for this behavior [74] is due to the different effects reauatibn has on the distance to
the optimizer (i.e., on the progress rate) and on the mutation strength. An intatenestombination
of the object variables reduces the harmful parts of the mutation vectoredsoed to as “genetic
repair effect”. Thus, it reduces the loss part of the progress rdiis. ehables the algorithm to work
with higher mutation strengths. However, since the strategy parameteescassarily selected before
recombination takes place, the self-adaptation response cannottiedlafier selection genetic repair
effect and remains relatively inert to the effect of recombination.

Flat and Linear Fitness Landscapes In [26], the behavior of multi-recombinative ES on flat
and linear fitness landscapes was analyzed. Accepting the variartatapessproposed in [26] (see
Section 2.3.8) the question arises whether the standard ES variation operatply with these pos-
tulates, i.e., whether the strategies are able to increase the populationeamiflatand linear fitness
landscapes. Several common recombination operators and mutation cpeet® examined such as
intermediate/dominant recombination of the object variables and intermediateftyeorecombina-
tion of the strategy parameters. The mutation rules applied for changing theangizength are the
log-normal and the two-point distribution.

The analysis started with considering flat fitness landscapes whichlecé@@neutral. Thus, the
evolution of the mutation strength and the evolution of the object variables ednlli decoupled
and the population variance can be easily computed. Beyer and Debdcslioatdf intermediate
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recombination is used for the object variables, the ES is generally able tag®the population
variance exponentially. The same holds for dominant recombination. Howeere is a memory of
the old population variances that gradually vanishes. Whether this is &idieneffect has not been
investigated up to now.

In the case of linear fitness functions, only the behaviod oA)-ES has been examined so far. It
has been shown that the results obtained in [23] for the sphere modeédeansferred to the linear
case ifo* := o(N/R) — 0 is considered because the sphere degrades to a hyperplane. Af,a res
it can be shown that the expectation of the mutation strength increaseseaxipdiv if log-normal or
two-point operators are used.

Beyond the Sphere Model: Ridge Functions

The self-adaptive behavior of evolution strategies on the ridge functass ¢(y) = y; —
(Zfl 9 yf)(a/ 2) was only addressed recently. Many analyses, e.g.,[5, 9] focus onnhaative path
length adaption rather than self-adaptation.

Lunacek and Whitley [72] presented an investigation of self-adaptivedit) the two-point rule
for creating new mutation strength. They focused db\J-ES on two ridge function classes and
provided experimental evidence for the conjecture

“The global step-size of a self-adaptive §)-ES will stabilize when the selection of
is unbiased toward larger or smaller values. If the ridge bias cannotnbevesl, self-
adaptation will continue to decreaseby selecting smaller step-sizes” [72].

To support this conjecture, they rafo trials of a(1, 60)-ES. In the experiments, differedtvalues,
d > 1, were examined.

Very recently, Arnold and MacLeod [11] presented a comparison\araéadaptation methods
for ES analyzing the influence of noisy fithess evaluations. The seffti#de&ES investigated used the
two-point rule to update the mutation strength. Furthermore, the mutation stsemgté recombined
using

o — O‘( ﬁ g(m‘)‘))‘}” (2.24)
m=1

instead of the arithmetic recombination introduced in Section 1. The paramiteised to dampen
the change of the mutation strength. Under some assumptions similar to the ondadett by
Lunacek and Whitley, they succeeded in deriving equations giving thiersday distance, mutation
strength, and progress parallel to the axis direction. Among the resulisettare the following:
Self-Adaptive ES fail in the creation of useful mutation strengths # /2 [11]. In addition, non—
recombinative1, \)-ES are superior to recombinative ES. Compared to other adaptation reeans,
CSA-ES, self-adaptation was found to perform worst of all.

2.5 Problems and Limitations of Self-Adaptation

Most of the research done so far seems to be centered on the effeettadapting the mutation
strengths. Some of the problems that were reported refer to divergexceremature convergence
of the algorithm (see, e.g., Kursawe [67]). Premature convergenc®ocay if the mutation strength
and the population variance are decreased too fast. This generallg infaiconvergence towards a
suboptimal solution. While the problem is well-known, it appears that onlyvalieoretical investi-
gations have been done. However, premature convergence is restificsproblem of self-adaptation.
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Rudolph [85] analyzed afi +1)-ES applying Rechenberglg 5th-rule. He showed for a test problem
that the ES'’s transition to the global optimum cannot be ensured when tharfsSas a local optimum
and if the step-sizes are decreased too fast.

Stone and Smith [100] investigated the behavior of GA on multimodal functigplgiag Smith’s
discrete self-adaptation algorithm. Premature convergence was ab$eri@wv innovation rates and
high selection pressure since this combination causes a low diversity obplkagion. Diversity can
be increased by using high innovation rates. Stone and Smith additionally foptadscheme that
passes through the present value of the strategy parameter while stilluicitigddifferent choices
thus providing a suitable relation between exploration and exploitation.

Liang et al. [69, 70] considered the problem of a prematurely reducedtiom strength. They
started with an empirical investigation on the loss of step size control for ERv@rbenchmark
functions|[69]. The EP used a population sizg.cf 100 and a tournament size gf= 10. Stagnation
of the search occurred even for the sphere model. As they arguedyighis be due to the selection
of an individual with a mutation strength far too small but with a high fitness valiés individual
bequests its ill-adapted mutation strength to all descendants and, thetieédasearch stagnates.

In [70], Liang et al. examined the probability of loosing the step size conffolsimplify the
calculations, al + 1)-EP was considered. Therefore, the mutation strength changes wehene
successful mutation happens. A loss of step size control occurs if théomaaength is smaller than
an arbitrarily small positive numberafter » successful mutations. The probability of such an event
can be computed. It depends on the initialization of the mutation strength, tiénkpgarameter,
on the number of successful mutations, and:0As the authors showed, the probability of loosing
control of the step size increases with the number of successful mutations.

A reduction of the mutation strength should occur if the EP is already close toptiraum.
However, if the reduction of the distance to the optimizer cannot keep pitcehat of the mutation
strength, the search stagnates. This raises the question whether th®igpesed in this EP imple-
mentation comply with the design principles postulated in [39] (compare Sectid).24h analysis
of the EP behavior in flat or linear fithess landscapes might reveal tlyereason for this failure.
It should be noted also that similar premature convergence behavioetf-@idaptive ES are rarely
observed. A way to circumvent such behavior is to introduce a lowerdtanthe step size. Fixed
lower bounds are considered in [69]. While this surely prevents premaanvergence of the EP, it
does not take into account the fact that the ideal lower bound of the mugitesrgth depends on the
actual state of the search.

In [70], two schemes are considered proposing a dynamic lower bddin) (of the mutation
strength. The first is based on the success rate reminiscent of Redtyerili5th-rule. The lower
bound is adapted on the population level. A high success rate leads to eas@af the lower bound,
a small success decreases it. The second DLB-scheme is called “mutati@izsetdased” since it
uses the median of the mutation strengths of all successful offspring asxh&®wer bound. These
two schemes appear to work well on most fitness functions of the benclsoitgk On functions with
many local optima, however, both methods experience difficulties.

As mentioned before, Hart, Delaurentis, and Ferguson analyzed arniemary algorithm with
discrete random variables on a multi-modal function [55]. They showeextstence of a bimodal
function for which the algorithm fails to converge to the global optimizer withbptolity one if it
starts close to the local optimal solution.

Won and Lee [104] addressed a similar problem although in contrast to Biglraurentis, and
Ferguson they proved sufficient conditions for premature conveegavoidance of &l + 1)-ES on
a one-dimensional bimodal function. The mutations were modeled using Edistlibuted random
variables and the two-point operator was used to change the mutationtilsgrémgmselves.
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Glickman and Sycara [49] identified possible causes for prematuretiedlaf the mutation
strength. They investigated the evolutionary search behavioriaf, a{0)-EA without any crossover
on a complex problem arising from the training of neural networks withrreaticonnections.

What they have calledowl effectmay occur if the EA is close to a local minimum. Provided that
the mutation strength is below a threshold, the EA is confined in a local attraxctaraanot find any
better solution. As a result, small mutation strengths will be preferred.

A second cause is attributed to the selection strength. Glickman and Syspecsthat if the
selection strength is high, high mutation rates have a better chance ofawempared to using
low selection strength: A high mutation rate increases the variance. Thisalyusonnected with a
higher chance of degradation as compared to smaller mutation rates. Bubipesvement occurs
it is likely to be considerably larger than those achievable with small mutation datsly a small
percentage of the offspring is accepted, there is a chance that higl&tianistrengths “survive”.
Thus, using a high selection strength might be useful in safeguardimgsageemature stagnation. In
their experiments, though, Glickman and Sycara could not observe acaguidiffect. They attributed
this in part to the fact that the search is only effective for a narrow regighe selection strength.

Recently, Hansen [52] resumed the investigation of the self-adaptiavioelof multiparent evo-
lution strategies on linear fitness functions started in [39]. Hansen'ssiaddyaimed at revealing the
causes why self-adaptation usually works adequately on linear fitnestodins. He offered condi-
tions under which the control mechanism of self-adaptation fails, i.e., th&Ah#oes not increase
the step size as postulated in [39]. The expectation of the mutation strengtimieasured directly.
Instead, a functior is introduced the expectation of which is unbiased under the variationtopera
The question that now remains to be answered is whether the selection wathgacthe expectation
of h(o). In other words, is the effect of an increase of the expectation a goaeee of selection (and
therefore due to the link between good object vectors and good straakgsy or is it due to a bias
introduced by the recombination/mutation-operators chosen?

Hansen proposes two properties an EA should fulfill: First, the desoésidéoject vectors should
be point-symmetrically distributed after mutation and recombination. Additionallyigtebution of
the strategy parameters given the object vectors after recombination antbmbts to be identical
for all symmetry pairs around the point-symmetric center. Evolution strategfiesniermediate mul-
tirecombination fulfill this symmetry assumption. Their descendents’ distributipairg-symmetric
around the recombination centroid.

Secondly, Hansen offers a so-calleestationarity assumptianit postulates the existence of a
monotonically increasing functioh whose expectation is left unbiased by recombination and mu-

Hansen showed that if an EA fulfills the assumptions made above, self-adagtaes not change
the expectation ofi(o) provided that the offspring number is twice the number of parents.

The theoretical analysis was supplemented by an empirical investigation eélfra@daptation
behavior of some evolution strategies examining the effect of seve@hi@nation schemes on the
object variables and on the strategy parameter. It was shown that amiEls applies intermediate
recombination to the object variables and to the mutation strength increasepéutagion oflog(o)
for all choices of the parent population size. On the other hand, evolstiategies that fulfill the
symmetry and the stationarity assumption, increase the expectatiog(ef) if A\ < 1/2, keep it
constant for\ = 1/2 and decrease it fox > /2.

Intermediate recombination of the mutation strengths results in an increaseraitéitgon strength.
This is beneficial in the case of linear problems and usually works as désipeactice. However, as
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Hansen states the presence of a bias may entail “the danger of divem@eoremature convergence”

[52].
2.6 Conclusions

Self-adaptation usually refers to an adaptation of control parameterk atédncorporated into
an individual's genome. These are subject to variation and selectionlwvirgydogether with the
object parameters. Stating it more generally: A self-adaptive algorithriraterthe transmission
function between parent and offspring population by itself without argraal influence. For this
reason the concept can be broadened to include algorithms wherertssamation of an individual is
augmented with genetic information that does not code information regardiffigntbss but influences
the transmission function instead. Interestingly, real-coded genetic algsritlinere the diversity of
the parent population controls that of the offspring may be regardedliaadaptive. Surprisingly,
even binary genetic algorithms with crossover operatorsillik@int or k-point crossover share this
property to a certain extent.

Self-Adaptation is common in the area of evolutionary programming and evolstiategies.
Here, generally the mutation strength or the full covariance matrix is adajtedyses conducted so
far focus mainly on the convergence to the optimal solution. Nearly all aemlyse either a simplified
model of the algorithm or have to resort to numerical calculations in their sittdyresults obtained
are similar: On simple fitness functions, conditions can be derived thatesti@iconvergence of the
EA to local optimal solutions. The convergence is usually log-linear.

The explicit use of self-adaptation techniques is rarely found in genetizitdg and if at all
mainly used to adopt the mutation rate. Most of the studies found are directiedliag suitable
ways to introduce self-adaptive behavior in GA. As we have pointed outgver, crossover in binary
standard GA does provide a rudimentary form of self-adaptive behaerefore, the mutation rate
can be often kept at a low level provided that the population size is reblolarge. However, unlike
the clear goals in real-coded search spaces, it is by no means obviaustddte desired behaviors
the self-adaptation should realize in binary search spaces. This dbappip to some real-coded
genetic algorithms where it can be shown mathematically that they can exhikaidsgdfive behavior
in simple fitness landscapes.

It should be noted that self-adaptation techniques are not the meansdéaf@daptation prob-
lems in evolutionary algorithms. Concerning evolution strategies, multi-recothrszIf-adaptation
strategies are sensitive to the choice of the external learning.réte a result, an optimal or a nearly
optimal mutation strength is not always realized.

More problematic appears a divergence or a premature convergeaseahoptimal solution. The
latter is attributed to a too fast reduction of the mutation strength. Severahse&s that behavior
have been proposed although not rigorously investigated up to nowew¢owirom our own research
we have found that the main reason for a possible failure is due to thetopstic way how self-
adaptation uses the selection information obtained from just one gener@élfiradaptation rewards
short-term gains. In its current form, it cannot look ahead. As a rasaigy exhibit the convergence
problems mentioned above.

Regardless of the problems mentioned, self-adaptation is a state-of-tdaptation technique
with a high degree of robustness, especially in real-coded searchsspad in environments with
uncertain or noisy fitness information. It also bears a large potentialifdrer developments both in
practical applications and in theoretical as well as empirical evolutionanpatation research.
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3 Analyzing Self-Adaptive Evolution Strategies

In this chapter, the evolution equations — the approach used in the andl\y&§-adaptive ES in
this thesis — are described in greater detail. The approach was firstuogtwdn [21]. Before the
dynamics of evolution strategies can be analyzed, the variables thatEhiathe system must be
determined. In other words, the state variables need to be given. CongidS, one might be
interested in monitoring the fitness values, the distance to the optimizer (deperdihe fithess
model), and, since self-adaptation is considered, the mutation strengthappheach then aims at
modeling and analyzing the evolution of these state variables over time. Inliheifg, the sphere
model is used for further explanations. Since the sphere model conkitsotions of the form
f=g(ly — ¥l) = g(R), the state variables are chosen as the distance to the optiRfizer=
|y@ — 3| and the mutation strength?) at generatiory. The dynamics ofy/p7, \)-ES generate a

stochastic process
R R(g+1)
<g<g> ) - <g<g+1> > 3-1)

As mentioned in Chapter 2, up to now no closed solution for the transitionlkeroeld be derived in
general. The only exception is(&, 2)-ES using the two-point rule for the mutation of the mutation
strength (see [21] of [23, p. 287].

In this thesis, therefore, the step-by-step approach introduced ing2dlJowed. The approach
relies on the evolution equations. These are stochastic difference etuatiderative maps, respec-
tively, used to describe the change of the state variables during oneagiene The change of the
random variables can be divided into two parts: The first denotes thecexpchange. The sec-
ond part covers the random fluctuations and is denotegklyr ¢,. In their most general form, the
evolution equations read

Rt = RO _E[RY — RUTDIRY) 5] 4 cp(RY ¢9) (3.2)
(9+1) _ (9)
dot) = (@ (1 B %, R 59 ) + ey (R, ). (3.3)
S

In (3.2), a well known progress measure appears: the progresg gat€he progress rate measures
the expected change of the distance in one generation

ch(g(g),R(g)) - E[R(g) _ R(g+1)|§(g),R(g)]_ (3.4)

The progress rate is an example for a so-called local performance meedsgal because it depends
on the present state of the system.

In the case of the evolution of the mutation strength, a different progreasureeis used. Note,
since the mutation of the mutation strength is generally realized by a multiplication wéthdam
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variable, the equation in (3.3) gives the relative change. The progreasure is called the (first-
order) self-adaptation response (SAR)The SAR gives the expected relative change of the mutation
strength in one generation

(g+1) _ (9)
H(c@, R9) = E %k(g)’}g(g) _ (3.5)

Let us now address the fluctuation terms. Their distribution is not knowmarsd be approxi-
mated using a reference density. Note, given pagfandp,, it is possible to relatg; to p; in general
(see, e.g., [66, 32]). Common approaches comprise an expansion indora@harlier or Edgeworth
series. The reference distribution is usually (but not necessarilygechto be the normal distribu-
tion. In order to expand an unknown distribution at all, it must be possibletierighine some of its
moments or cumulants.

First of all, the fluctuation terms are standardized using the expected valistaandard deviation.
Clearly, the conditional expectation ef andey is zero. Therefore, only the standard deviation
remains to be determined.

The main points of the derivation are explained considering the casg.ofThe case of the
mutation strength may be treated analogously. Dgtdenote the standard deviation. Therefore the
standardized random pad}, is related taeg by e = D,€},. The standard deviation can be derived
via (3.2) since its square equals the second conditional momept of

Di(g(g),R(g)) — E[62R|<(9),R(9)]
_ E[( RO _ RO 4 (@), R<g>))2‘<<g>, R(g)}
_ EK Rle+1) _ R(g))2 _ 2( R@ _ R<g+1>>¢R(g<g>7 R)
(<9, R9)[9), R(g)}

2
— EK Rg+1) _ R(g)) (@), R(g)} ~ 2 (9 RO, (3.6)

The distribution ok, is expanded into an Edgeworth series. For the analysis, the expansidrofs ¢
after the first term (cf. [23, p.265]). That is to say, it is supposedttimtieviations from the normal
distribution are negligible in the analysis scenario the equations will be appliedhe random
variablecr reads

er = Dy(9, RIIN(O,1) +... (3.7)

The expectatioft[(R9+Y) — R(9))2|c(9) R(9)] appearing in (3.)6) is called the second-order progress
rate

2
P D (@ R©) = E[(R<g+1>— R(g)) @), R(g)] (3.8)

The random variable, is obtained similarly. As in the case of the distance, a first-order approach
(i.e., the first term of the series expansion) is used

6 = Dy ROWN(O,1) +.... (3.9)
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The derivation of the standard deviation is exactly the same as previouslyaVé
D%(s¥,R¥) = E[&[, R(g)]
= B[(s0+) - 0 — oy, §9))’|c), RO
= B[(sb+ - g<g>> — 200 (o) — c0)) (@), R9)

(@, RO ), R(g)}

r 2
- E <g(9+1)_g(g)> ~ (9242 (c@ R9))|c@) R(g)] (3.10)
(cf.13.3). Again, this introduces a new measure, the second-order SAR
(g+1) _ (9)\2
@) (9 Ry .— ST TSNV @ ple)
b (9 RO .= E[( =0 )|< R } (3.11)

Using the results obtained so far, the evolution equations can be rewritten to

RO — RO — op(c®, RO + D, (s, ROIN(0,1) + ... (3.12)
ot — (o) (1 + w(g(g)jR(g))) + Dw(g(g),R(g))N(O, 1)+
_ (1 + (<@, RO) + DI, (@, ROIN(0,1) + .. ) (3.13)

with D!, = Dy, /<)
The Deterministic Evolution Equations

In this thesis, the fluctuation parts are neglected in most cases with the erogfpBection 4.4.
The evolution equations without perturbation parts are generally termeuinileitstic evolution equa-
tions [23]. This approach —though rather crude— serves well to é&ttageneral characteristics of
self-adaptive evolution strategies. The deterministic evolution equatiods rea

R+ — R(g)_E[R(g)_R(9+1)] (3.14)
(g+1) _ (9)

(g+1) — (9 Ak Yeid

o = O (e ). (3.4

An equilibrium (steady state, or stationary state) is characterizétity) = R ands(9t1) = ¢(@),
Note, demanding stationarity of the(9)-evolution equals a complete standstill of the ES in most
cases. Often more interesting is the evolution equation of the normalized muﬂmﬂ'ngtbc*(g) =

<@ (N/RW)

cHlot) _ (g <1+¢( ¢*, R )) (3.16)

* (s *((1) ,R(9))
L

with ph=0r(N/RW) ands* ) =¢le+1)(N/R+1) since it allows for a stationary state without
requiring a stationary state of thi¢9)-evolution. The assumption of the existence of a stationary state
is motivated by findings that it is optimal in many cases for the mutation strengtlake with the
distance to the optimizer. Optimal in this case refers to a local progress regasyrto a maximal
expected gain during one generation.
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Including the Fluctuations

If the perturbation parts are included in the analysis, the situation becomesammiplicated.
Equations|(3.12) and (3.13) describe a Markov process, the transéiwitigsp,,. of which have to
be determined. The variablég9™, R, ¢(9+1) and<(@ are now all random variables. Assuming
that the distribution of each has a density, the density of the distamateyeneratiory is denoted
with p(R¥)) and the density of the mutation strength witlt(9)). As pointed out in[23, p. 313],
it generally suffices not to determine the complete distribution but to conterdrasome of the
moments, generally the expectation of course. The expectations read

R — /°° RO+ p(RO+D) dR(+D
0

_ / / / (R(m_@R(R(g),g(g)))
0 0 0

xpr(RYTD|@) RO p(c9)p(R9) dcl9tD) dR) dRHD)
— / / (g)_ij R, (9)))p(§(9))p(R(9))dR(9) ac® (3.17)

D — / (@D (94D gela+D)

L[

ctp(lo )) (R(g))dg( ) dR@ qcloth)
/ / (g 1+¢ (<9, g))) (cD)p(RW) dc® R, (3.18)

As can be inferred from (3.17) and (3.18), the transition densities dneesaled if only the expecta-
tions are to be determined.

An equilibrium of a stochastic process is then characterized by a caneegf the densities
to an equilibrium distribution, i.elim, .. p(s\+!)=limy .o p(s9)= pu(s). Note, again it is
normally the normalized mutation strength which converges towards an equilibgdong as the ES
progresses still. If a stationary state is reached, the invariant densigsgbly eigenvalue equation

Pools) = = /0 " pir(sl0)poc(0) do (3.19)

with ¢ = 1 andp,, the transition density. In general, the equilibrium distributignis unknown. As
pointed out in/[23, p. 318], it is possible to determing numerically or even analytically. The re-
sults, however, tend to be quite complicated and do not allow for furthéytara treatment. Instead
of trying to obtain the distribution itself, the expected value is obtained analyizirsgthe mean value
dynamics of the system. Unfortunately, the form of the evolution equatiomerfsra direct deter-
mination of the expectation since in general lower order moments depend loar loigler moments
leading to a non-ending recursion.

Therefore, a so-called ansatz is used [23, p. 319]: Instead ofhdietag the solution of{(3.19),
the equilibrium distribution is set to a known (similar) distribution. This appraagkminiscent of
the Edgeworth or Gram-Charlier expansion. The ansatz distribution tagdabe of the baseline
density and the expansion is cut off after the very first term.

Generally, the equations obtained are non-linear and can be solveduionéyioally. Special cases
may exist, though, which allow for an analytical treatment.
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In the following chapters, the evolution equations are applied to self-adaps in two fithess
environments: the sphere model and ridge functions. In both casesydhysia is divided into two
parts. First, the undisturbed fitness function is analyzed before noisgdivaluations are taken into
account.
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4 Self-Adaptation on the Sphere Model

The investigation of self-adaptive ES is started with the sphere model.

Definition 1. A function f : RY — R is called a sphere (model) if

fly) = g(ly—vl) (4.1)

with ¢ : R — R a monotonously in- or decreasing functioh,the optimizer off, and ||x|| =

\/@the Euclidean norm oR” . O

The sphere only depends on the distance to the optimizer. It generalsserynodel more
general fitness functions in the vicinity of the optimum.

The analysis presented here can be seen as an extension of the diratysisried out in [21]
broadening the subject of the analysis from non-recombinative evoktiiategies to evolution strate-
gies using intermediate recombination on the one hand and to noisy fithesatevedwn the other.

4.1 Self-Adaptation and Intermediate Recombination

Self-Adaptation was originally proposed for non-recombinafive\)-evolution strategies as a
means to adapt the mutation strength. Recall, the mutation strength is treated in arsiamfear
as the object parameters. Therefore, it is subject to variation and seledti® random change is
realized by a multiplication with a random variable. Common choices of distributinatibns for
this random variable include, e.g., the log-normal distribution. Here giverpénental:, the new
mutation strengtlr’ of an offspring is generated according to

o = 0_67'/\/(0,1) (4_2)

as mentioned in Chapter 2. The parametes referred to as the learning rate. Another common
choice is the symmetric two-point distribution with

;o o(l+p06) ifu<0.b

7 = { o/(1+p) ifu>05 " (4.3)

The random variable follows a uniform distribution or{0, 1]. Both distributions — the log-normal
and the two-point distribution — depend on one free parameter. The dfdide parameter influences
the performance of ES. Therefore, one of the first questions to leel &skowr (or 3) is to be chosen
so that the ES progresses with optimal speed. (Fok)-ES on the sphere model, this question is
already answered: It is optimal to choasex 1/+v/N [21]. Apart from this condition, self-adaptation
in (1, A\)-ES is remarkably robust with regard to the learning rate. Interestinglydtigs not hold
anymore once recombination comes into play [51]. The reasons for thizvioelare investigated in
this section.
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4.1.1 Modeling the Self-Adaptive ES

To analyze the ES variables are needed to characterize the behavierti&iisphere is considered,
the fitness functions are of the forfity) = ¢(|ly — y||), with optimizery. Therefore, two variables
suffice for the analysis: the distance to the optimizer, i#9) = ||(y(9)) — y|| and the mutation
strength(c(9)) at generatiory. The evolution equations introduced in Chapter 3 are used to describe
the change of these state variables from one generation to the next. Remnibmlbbange is divided
into an expected change and into a random perturbation part. Using theaiatdesR(@ for the
distance of the centroid of the parental population to the optimizer(a‘ﬁb} for the mean of the
mutation strengths at generatignthe evolution of the ES can be described by

Rlg+1) R9) — op((<9)), RW) + 6%) »
<<g<g+1)>> =\ ) (14 (), R9)) + & (4.4)

The deterministic changes of the variables are given by the progress rate
or((c9), RW) = E [ R — R+ |9y, R(g)] (4.5)

in the case of the distance and in the case of the mutation strength by theagaHitamh response
function (SAR)

(clot1)y — (c(9))
<g(9)>

zb((g(g)),R(g)) — E [ ](g(9)>,R(9) (4.6)

wherea&%) ande?’ denote the random fluctuations.

To start the analysis, the perturbation parts/of|(4.4) are neglected. fuodfee the notations
are simplified. Unless the dependence on the generation number is expligsded) letR :=
RY, r := RUtD ando := (<19)). Finally, the usual normalizations are introduced to eliminate
the R-dependency of the equations wiifi := o (N/R), (¢*9FD) .= (¢t (N/r), andy}, =
©r (N/R).

From this point, the normalized system

r R(1— ¢5(c*)/N
<<§*(g+1)>) - (U*(<1JipR(a*)> )) (4.7)

I—pg(c*)/N

of the deterministic evolution equations serves as the starting point of dysen@efore continuing,
the progress raté (4.5) and the self-adaptation response furictioméeé)to be determined. The
progress rate}, = (N/R)E[R — r| is given forr = 0 andN — oo by

0.*2

20
The derivation of{(4.8) can be found in Appendix B.1.2 with= 0 or in [23]. The self-adaptation
response (SAR) is obtained in Appendix C.1.1. Ror— oo andr < 1 itis given by

(o) = 72 (1/2 + ei’,l)\ — cu/#)\a*). (4.9)

@*R(U*) = cu/,u,)\g*_ (4.8)

The coefficients,;,  and ebk are special cases of the so-called generalized progress coefficients

[23, p. 172]e0 % (A.24).
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The approximation errors made by using (4.8) and (4.9) diminish for inci@a5and decreasing
7. Therefore, the analysis is restricted to ES operating in high-dimensieaasspaces and to small
learning rates-.

Before continuing, it is important to note a result first obtained in [21]:

“The evolution of the mutation strength can be decoupled from that of thendesta

Why this is the case can immediately be inferred from the form of (4.7)| (4r&),(4.9): There is

no direct influence o on the evolution of the normalized mutation strength. The evolution of the
mutation strength can be considered and analyzed isolated. This doeddfuirtthe evolution ofR
which is directly influenced by *.

4.1.2 Analyzing the Stationary Points

Considering| (4.7), the behavior of the ES is described by deterministicatiffe equations or by
an iterated map. Using the theory of dynamic systems [103], one of the digstigns to be raised
is whether the system admits stationary points. The analysis of stationary pagen additional
justification: The ES should strive to operate with the best mutation strength #ataeve. The size
of the mutation strength obviously depends on the position in the search spaamn the distance to
the optimizer in the case of the sphere.

Definition 2. Let f : RV — RM . Stationary points or fixed points (fix-points, equilibrium solutions,
stationary solutionsy s of the difference equation (or iterated magjt") = f(y*) are given by

ys = f(¥s). O

Stationary points are time-invariant solutions of the dynamic system. If thensysteches a fixed
point, it comes to a halt and no movement occurs — unless the system is pdrtérd can be seen
easily and will be shown below, system (4.7) as a whole does not admit statipnints unless very
specific situations occur. Seen isolated, the evolution equations for the musatemgth and the
distance admit stationary points, though.

Let us start with the mutation strength and consider system (4.7) and[E§$.(f{fbgress rate)
and (4.9) (SAR). Stationary points of taé-evolution of (4.7) that is points for which

*(g+1)\ _ _* * L+9 —_
(s y=0" & o' = 0\/ e 1
- N
* * 0*2 2 1,1 *
& o :OVCM/IMJ ~ o =—N71 (1/2—1—6%)\—6”/”,)\0) (4.10)

holds (see (4.8) and (4.9)) are givenddy,,, = 0 or by

) 1/2 4 el
Sutaty = pupx | (1= N77)+ | (1= N72)2 + 2NT2C2—“’ . (4.11)
HCu/un

The detailed derivation of the stationary points can be found in Appendid DGtationary points
are characterized by either a loss of step-size control or by a mutatiogttnehich is a function of
the learning rate- (if the other parameters are considered to be fixed). Therefore, thengaate
can be used to calibrate the value of the non-zero stationary mutation strength
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The stationary points of thB-evolution remain to be addressed. To this end, system (4.7) and Eq.
(4.8) have to be considered. Fixed points of thevolution, i.e., points for which

0*2

r=R & R:O\/go}‘%:cu/u,)\a*— 2 =0 (4.12)

holds, are then given byR, c*)™ = (0,¢)", (R,0*)" = (¢,0)" with ¢ € R,¢ > 0 or by (R, g:;RO)T
with R > 0 and

g:’RO = 20Cu/p (4.13)
Stationary solutions of system (4.7) are thus characterized as follows:
1. Aloss of step-size control occurs in an arbitrary distance to the optimizer
2. the optimum is reached, or

3. the second stationary solution of the&-evolution (4.11) and the second stationary point of the
R-evolution (4.13) match.

The question remain whether these possibilities actually occur and|if (4.7) atientswhether they
are stable solutions.

It is easy to show that the first possibility: a loss of step-size control leads instable fixed
point. In other words, if the system is in the fixed paifj,,, = 0 and small perturbations occur, it
will move away from it. Let us first recall the definition of asymptotic stability.

Definition 3. Let f : RV — RN andys € RY a fixed point ofy(+1) = f(y®). The fixed
point is called (locally) asymptotically stable if arn> 0 exists so that for alA(®) with [|A©)]| < ¢,
AD — 30y

lim A® = ﬁmym—ygzo (4.14)

t—o00

holds. In other words: After a perturbation, the system returns to thiéierqum provided that the
perturbation is sufficiently small. O

A well established means to show the locally asymptotic stability is via the linear>dption
using the Taylor series (see, e.g., [103, 71]).

Lemma 1. Let f : RV — RM be a twice continuously differentiable function. Then it follows
AU = D (y)ly—ys (AY) + OADTAD). (4.15)
O

Provided that the fixed point is hyperbolic (i.e., no eigenvalue has a agbp+t1) the stability
of the fixed point can be established considering the linear system. To thishenJacobian matrix
Df(ys) atys must be obtained and analyzed.

Lemma 2. Consider an iterated map. A hyperbolic fixed pgyatis stable if the absolute value of
the real part of all eigenvalues is smaller than one. It is instable if the labs@alue of the real part
of one eigenvalue is greater than one (see, e.g., [108]).
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It is easy to see that the stationary solutign,, = 0 is an unstable fixed point of the evolu-
tion equation of the mutation strength in (4.7): To this end, the first derivafido*) = o*[(1 +
¥(0*))/(1 — ¢%/N)] must be determined. First of all, note thais C?(U) for a ballU(0) The
derivative is easily obtained as

1+4(07) LACA) (L+ ¥ (a")¢R (0*) /N
f(o* — 4 . . . (416
@) = e T e ey ) 49
Inserting the fixed pointf’(c*)|y«—o = 1 + 72(1/2 + 6,1[,1A) is obtained, which is greater than one as
long asr > 0. The fixed point};,,, = 0 is therefore unstable.

The last possibility — an intersection of the second stationary solution ef*teolution (4.11)
with the second stationary solution of tiieevolution (4.13) does not occur for finite As already
noted in [23, p. 300] forX, A\)-ES and also revealed by (4.10), theparameter steers the stationary
point (4.12) between the zero of the SAR

1/2+ e}
S = V2t (4.17)
Cu/pA
and the second zero (4/13) of the progress rate:NFot — oo, (4.12) goes td (4.17), whereas for
N72 — 0, (4.12) approaches the zero of the progress rate (4.13). It cdmobay case inspection,
that
1/2 4+ el
* 1A *

g, = —2 < g = 2uc (4.18)

Yo Cufpn Ry 1 1A
expect foru ~ A. That is, the zero of the SAR is smaller than the zero of the progress rate.

The stationary mutation strength (4.11), p/ 35,

1/2 + e
Stats = M/ | (1= N7%) 4 [ (1= N72)2 4 2NT2<27W)
FCu A

remains as the only (possibly) stable fixed point of¢h@volution in (4.7). It can be shown that it is
indeed stable provided that eithers sufficiently small orV is sufficiently large.

Since the calculations are rather lengthy, they can be found in Appendid, p.1195.

The stationary mutation strengtfy,,,, (4.11), is the only (locally) stable invariant solution of
(4.7). It is associated with a positive progress;,, (7) < 2puc,/,  for everyr < oo with
limr 0S5z, (T)=2uc, 2. That is, self-adaptation works in the sense that it is always associated
with a positive expected progress. The system thus moves towards the mpfonwaverage) — re-
gardless of the choice of the learning rate. The stationary progresissedfecan be determined by
inserting the mutation strength (4.11) into the progressirate (4.8)

2 1,1 9
e 1/2+e
ot = —“2/“* (1 - (NT2 - J (1— N72)2 ronr Y40 : ’“) ) (4.19)

HCu/un

As the stationary mutation strength (4.11), (4.19) is a function of the learateg Before discussing
the dependency on this parameter, the results obtained so far are cdmjtarthe results of experi-
ments.
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4.1.3 Comparison with Experiments

Figure 4.1 compares the stationary mutation strength (4.11) with the resufterfieents for two
search space dimensionalitiés,= 100 and N = 10,000. While there are large deviations for the
lower dimensional search space, the prediction quality improved fer 10, 000.

The predictions off (4.19) are compared with the results of experiments in[&igsand 4.3 for
two multi-recombinative ES, al(/10;,60)- and a 20/20;, 60)-ES. Also depicted are the results of
a numerical calculation of the stationary progress rate usingvtfieependent progress rate formula
[23, p. 216f]

*2

v % /o (1 + 2UMN) o*? 1
p(0") = - ——N(1+ 52 - 1) + 0(—=) (4.20)
a* ag* N N
\/ 1+ W\/ 1+ 25 p v
in the derivation. As representative of sphere functiofi;) = ||y||> was used. The sampling

process was started once a stationary normalized mutation strength wasdread kept up as long
asr(@ > 107, Inthe case of nearly optimal learning rates ahd- 30, the stationary phase consists
of only 2,000 - 3,000 generations. Therefore, the experiments were repeated until eachailatta
represents the average of at |est000 experiments.

Since(4.19) has been derived using fiendependent progress rate formula (4.8), the agreement
with the experiments for low-dimensional search spaces is rather poaevdq its general tendency
as a function of- is similar. Furthermore, the agreements improves for larger valuesidie quality
of the prediction off(4.19) increases steadily with the search space dimalisigsee Fig. 4.3).

If the N-dependent progress rate (4.20) is used, the agreement with thénssmsrimproves.
Although there are still relatively large deviations as long &ssmall, the curves of the predicted and
the observed-values are closer together.

The experiments, thé&/-dependent progress rate, and (4.19) show a strong dependeribg o
choice ofr. In all cases, the progress increases witlmtil a maximum is reached and the progress
deteriorates. In the experiments and if tNedependent progress rate is used, this behavior is more
pronounced in high-dimensional than in low-dimensional search spdbtesmaximal progress de-
pends on the search space dimensionality. The position of the maximum, i.e tithal égarning rate
depends in all three cases on the search space dimension — decrattsingre@asingN. Generally,
using [(4.19) leads to an underestimate of the measured optimalimproves ifV growths.

The results of the experiments are in accordance with the results repoffddivhere the perfor-
mance of 1/ i1, A\)-ES was investigated experimentally. The most astonishing observatomeen
that work was that the performance of the ES sensitively depends ohdie ©f learning parameter.
Therefore, the adjustment of the mutation strength is only nearly optimal ir@wasrange leading
to a deterioration of the performance of the ES otherwise.

4.1.4 Self-Adaptation and Optimal Progress

As the revealed by the experiments and as predicted by (4.19), intermeelifateiaptive ES
exhibit a positive progress rate for a wide choicerefalues. But the ES are sensitive to the choice
of the learning rate. Nearly optimal progress in high-dimensional sepeates can only be achieved
in a relatively narrow range of learning rates in the vicinity of an optimum. Tpisal learning rate
is easily obtained. To this end, maximizer of the progress rate (4.8) is neAdeated in [23], the
optimal progress rate and mutation strength are given by

*2 02
o ) = HCu

2u 2

Phop = MAX(Cu/u 20" = and (4.21)
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Figure 4.1: The stationary mutation strength as a function of the learningSfatsvn are the results
for (10/107, 60), 20/20;, 60), and 0/30;, 60)-ES. The data points denote the results of experiments,

whereas the solid lines depict (4111).
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Figure 4.2: The stationary progress rate as a function of the learniagipéer-. Shown are from left
to right the results folV = 100 and N = 30. The results of (4.19) are presented by the blue curves,
whereas the red depict the results of usinghelependent progress rate (4.20). The points indicate

the results of experiments.

*
PRopt

Argmax P (0") = pCu/u

(4.22)

Let us now consider the stationary mutation strength (4.11). Recall, bytingrig, (4.11) can be

varied between the zero of the SA@.lQb

*
Sery

, and the second zero of the progress rate (4.13),
The optimal mutation strength (4.22) is reachable since it lies inside the admissiste

vall, [g;/jo,g;Ro [. Equation[(4.22) can be used to determine an optimal learning rate by requirin

thatc,,, (1) = Q;;z )

= 2uc,/, » and solving the equation far,,; (see Appendix D.1/2). After a

short calculation, the optimal learning ratg; is given by
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Figure 4.3: The stationary progress rate as a function of the learniagnpéerr. Shown are from
left to right the results forV = 10,000 and N = 1,000. The results ofl (4.19) are presented as the
blue curves, whereas the red curves depict the results of using-thependent progress rate (4.20).
The points indicate the results of experiments.

2
1 HCu/u
/ 2 1,1
A PCuun — 1/2 = €

(4.23)

Topt

As (4.23) shows, the optimal learning rate scales wjth'2N. Equation|(4.23) can be rewritten to

(4.24)

Provided thajuc,,/, > (1/2 + e};&)/cu/w holds, the optimal learning rate is closeltoy/2N. This
requires sufficiently large offspring populations and choosing nejihgr 1 nor i1 % \. Figure 4.4
shows exemplary the dependency of the optimal learning rate on the pareber. for A = 10 and
A = 60. Provided that is not small, it can be seen that the optimal learning rate is closgW@N
for a relatively wide range ofi. That is, choosing ~ 1/v/2N may be a good approximate for the
optimal learning rate for typical truncation ratios in the intef@al 25, 0.8].

Having derived an optimal learning rate, the question remains why ES witimatkate recombi-
nation suffer more severe performance losses thax){ES from a non-optimal choice of the learning
rate.

4.1.5 Investigating the 7-Sensitivity of Intermediate ES

The performance sensitivity of.{.;, A)-ES on the choice of the learning rate is in pronounced
contrast to the€1, \)-ES. A (1, \)-ES has a nearly optimal performance on the sphere test function
for a wide range of--values. But what are the reasons for these different respomseisid section,
the underlying causes are investigated more closely.
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Figure 4.4: The optimal learning rate (4.23) as a function of the parent ewmtor (x/1.7, 10)-ES
and (u/pr, 60)-ES.

Deviations from the optimal learning rate

Let us start with some exemplary results fér= 100. Figure 4.5 depicts the stationary progress
rate for some (/ur, \)-ES. The transition fromu = 1 to 4 > 1 leads to a qualitative different
behavior: If there is only one parent, the stationary progress rate séghdiza nearly optimal level
for a relatively wide range of > 7,,. If  increases, this is not the case anymore. The stationary
progress rates show sharper peaks and the region with nearly optinoned eecomes narrower.

*
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/
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(u/pr,60)-ES,N = 100

Figure 4.5: The stationary progress rate as a function of the learniagnpserr for p = 1, u = 2,
andu = 10 bottom to top. The dashed curves represent the results of (4.19)eage solid lines
depict the results obtained using thedependent progress rate. The points indicate the results of
experiments.
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Deviating from 7,,;: The Stationary Mutation Strength

But why does the stationary progress rate behave in this manner? Terdhanguestion, consider
first the stationary mutation strength (4.11). As stated, it depends ohhe stationary mutation
strength is furthermore determined and influenced by the progress r@teafl the self-adaptation
response (4.9). Recall, the progress (48)0*) = cujpro* — o*2/(2u), reaches its optimum
Ot = Mci/w/z (4.21), at}, , = pcuyun, (4.22) and is positive fab < o* < 2pc,,),, 1. The SAR

(4.9),¢(c*) = 72(1/2 + e;’i\ — ¢u/u0"), IS @ monotonously decreasing function with zero (4.17),
o = (/24 €30/ ¢

It will be shown in the following that the relation between the zero of the SAR/A/o the optimal
mutation strength (4.22) that is the sizenof= (1/2 + e;lﬂlk)/(“ci/u,A) is a decisive parameter.

First of all note that any deviation with, A > 0 from the optimal learning rate cannot have
a significant effect if the limit of the stationary mutation strength is close to the optimtation
strength, i.e., if

1,1
1/2 4+ €,

C},L//J,,)\ ng g@opt 'LLC/J//NHA ( )

Th_{glo Sstato (T) =

As can be verified by case inspection, this is only the caselfoY){ES but not for (1/p;, A)-ES.
Non-recombinative ES with only one parent can be expected to be rabastst choices of larger
learning rates. This also translates to the progress rate (see Fig. 4.5).

As can be seen, intermediate ES do have a potential problem in the sendigethéditnit for
N7? — oo is smaller than the optimizer. For too large learning rates, problems occuresthtion-
ary mutation strength deviates far from the optimizer. This is amplified if the paffspring ratio is
chosen around.27 which is recommended as optimal in the case of the sphere: The zero of fhe SA
is significantly smaller than the optimal mutation strength. In the case/ef;( 60)-ES for example,
the ratio drops te< 0.2 for i € (5, 55) with a minimal value ot 0.023.

This is not the only problem, though. If the decline in the performance waugl, the difference
between limit and optimal value would not be so decisive. The question renvelres are the effects
of smaller deviations from the optimaf

In the following part, this question is answered by taking a closer look at thesirce of a de-
viation on the stationary progress rate (4.19) and stationary mutation sti@gth. But first, the
equations are simplified. A straightforward comparison;p)L and the zero of the SAR), =

(1/2 4+ elu’l/\)/c“/lu (4.17) with the stationary mutation strength (4.11) shows that (4.11) can be re
expressed by a very simple equation

o= ((1 s an)
= S f (@) (4.26)
with a = (1/2 + ei’i)/(uci/# ,) andz = N2, Considering the optimal progress in the stationary

state, one would like to havg(z) = 1 so that the optimal mutation strength is assumed. This (cf.
(4.23)) equals the condition

Topt = \/(1 — Zopt)? + 20T opt

1
o . 4.27
7 Topt 21— a) (4.21)
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Equation [(4.27) is well-defined for all € (0,1). The casex = 0 cannot occur. la > 1, i.e.,
o Spopt? the ES is unable to work with the optimal progress rate at any rate.

In the following, only the functionf is addressed that is the results obtained are relative to the
optimal mutation strength and do not depend on its height. Let the deviationdrelghA, A > 0.
Assuming smallness of the deviatiornscan be expanded into its Taylor series aroung. The

Taylor series off (z) =1 — x4+ /(1 — )% + 2ax aroundz,,; = 1/(2(1 — a))is given by

1
Ti(zopt + A) = f(opt) + ' (Topt) A + f(f;"pt)AQ + O(A?). (4.28)
The first derivative off is given by
! T — (1 - a)
= -1 4.29
@) (1—2)%+ 2ax (4.29)
whereas the second reads
1 (z — (1 —a))?

@) =

(4.30)

First, note the following:
1. The functionf approaches for x — oc.
2. Foralla € [0,1), f'(x) <0Oforallz > 0.
3. Foralla € [0,1), f(z) > 0forallz > 0.

In other words, the first derivative is negative but monotonously asing. Using the mean value
theorem, the absolute value of the deviatiory o$

[ (opt + A) = f(ope)| = |f'(0)]A

forad with 0 < 8 < A. Therefore,

|f(~750pt + A) - f(xopt)| S |f/($opt)|A
=2(1-a)’A (4.31)

follows. ForA — 0, the inequality becomes=". Assuming thatA is small enough so that the="-
sign roughly holds, the effect of the deviation depends on the parameter, the quotient;o/gzopt.

The effect of a deviation is enhanced for all choicesiafith a < 1/\@. The question remains
though, whether this translates to the stationary optimal progress.
Deviating from 7,,;: The Stationary Progress Rate

The stationary progress rate can similarly be written as

G = e2f@n -1

opt 9(T) (4.32)

which can be seen by plugging (4.26) into (4.8). The question remainsa®) (responds to devi-
ations fromz,,;. This is analyzed in this section. Note that sincg; leads to a global maximum
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g (zopt) = 0 holds. The quantity of interest is the rate by which the optimum is left. Thexglietrus
consider the first derivative. The Taylor-Serieg/béroundz,, is given by

T;(xopt +A) = ¢ (wopt) + " (wopt) A + g’”(:L'Opt)/2A2 + (’)(A3). (4.33)

The first derivative is given by’ (x) = 2f/'(z)(1 — f(z)) and the second by’(z) = 2f"(z)(1 —
f(x)) — 2(f'(x))%. The rate by which the optimum is left can be given by

|g/(:copt +A) - g/(xopt)\ = 4(1 - a)4A + O(AZ). (4.34)

Thus, the behavior of the stationary mutation strength and therefore ofati@enary progress rate

can be traced back over = (1/2 +¢,})/(uc?,, ) to the SAR and the progress rate. Only if
a=(1/2+ e;&) / (,u,ci T ,) = 1 the stationary progress rate can be expected to be robust against all
choices ofr > 7,,;. Otherwise ifa = (1/2 +e¢,7)/(uc?,, ) < 1 which equals;;, < <%, the
system eventually deviates from the actual optimum sigice approaches;zo for N72 — co. The

rate by which the optimal progress rate (relative to the optimum, of coursd) &de depends on this
ratio. The smallex; is in comparison ta; ., the sooner the optimal progress rate is left and the
stronger the limit progress rate deviates frof),.

It remains to investigate the effects of recombination on the SAR and thegsogate. Keeping
constant, the mutation strength) = = p.c,,/,,.» is a function ofu. Its plot (see Fig. 4.6) is symmetrical
around the maximum = \/2. The freeu factor stems actually from the loss term of the progress rate
which is dampened by recombination. Considering the derivation of thegeegate [23, p. 210f]
or(B.1.2 this loss term results from the perpendicylas)-component of[(B.20). Recombination
actually leads to genetic repaireffect because these harmful components are statistically averaged
out.

The zero of the SAR defines the mutation strength for which no change veifecetoR()
is expected. That is, the non-normalizeéd“*1)) equals(<*¥)) and any change fronk*) to
(¢*9+1)y is a result ofp* /N # 0. As the parental number increases, the zex, decreases first.
Oncey is closer to), it assumes larger values until it gets greater tqpog and finally even greater
thancy, .

In contrast to the progress rate, the SAR is not directly influenced byettmmbination of the
object parameters: Here, the average is taken over the mutation stremgttie a&election only con-
siders the fitness values, i.e., the resulting distances to the optimum. The reabombai the object
parameters from which the progress rate benefits occurs afterwatdsies cannot play a role in the
case of the self-adaptation response. The SAR is a linear function of ttaiomustrength with no
free u-term and is influenced by the parental number over the progresscoema$i

As a result, the effect of changingis somewhat more damped — compared to thag(gp; which
can be seenin Fig. 4.6.

4.2 Self-Adaptation and Noisy Fitness Evaluations: (1, \)-ES

In this section, the analysis is extended to self-adaptation under noisysfgmakiations. The
noise term is represented by the standard noise model, that is, by an additimally distributed
noise term with zero mean and standard deviation or noise strength

Definition 4. The noisy sphere model with the standard noise model is given by

fly) = g(ly =3I) +e (4.35)
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Figure 4.6: Comparison between the optimal point of the progress rate (dyimmeve), Spopt =

1¢,/u0, @nd the zero of the SAR; = (1/2 + eu A)/Cu/u A I.e., the limit of stationary mutation
strength forN 2 — oc.

with e ~ N (0,0), g : R — R a monotonously in- or decreasing function, gnthe optimizer of
g- O

In the following, only the case of quadratic sphere functions is explicitelgicered, i.e.g(R) =
+R2. The equations can be easily adapted to include the general case. i$@smengthr, can be
used to model several situations. This section focuses on the most comemamisc The strength
of the noise is independent of the position of the ES in the search spaeencide strengtlr, is
assumed to be a constant valae,= c. This causes the influence of the noise to change through
the search space. Dependent on the distdgce y||, it may have high influence if the value gf]
is small or it may be negligible for large|-values. Note, this noise model actually prevents the ES
(recombinative or non-recombinative) to converge to the optjnes was shown in various papers by
Beyer and Arnold (see, e.g., [24,/25, 4]). In the following the evolutibthe ES under this type of
noise is referred to asvolution under permanent noise.

4.2.1 Modeling the Evolution Strategy

To model the evolution strategies, again the evolution equations
ROt = RO _ ,p(9) R(g) co) +er(c9, RY o,) (4.36)
Jotl) g(g)< +(c9 RO )) ter(s9 R9 5 (4.37)

are used. The term$; ande,, cover the perturbations whereas the progressgaatend self-adaptation
response) stand for the expected changes. In the following, the usual normalizatienstroduced
— settinge™ := (N/R)s®), % = (N/R)¢g, ando? := [N/(2R?)]c!?. As before,R := R is
used in order to shorten the notation. The last normalization

. N
O¢ = nggg). (438)
gives raise to a third evolution equation
1
(g+1) _ T * * * * *
R R(1 = 5@h(0", R,07)) + €hlo”, R,o0)) ) (4.39)
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1 * * * * *
§*(g+1) _ 0_*( —f—lwia 7R705>+60(*U 7R’U€)) ) (440)
1 - NQOR(U*7R7 U:) + 6R(0'*7]%7 Uék))

o2t — T . (4.41)
(1= Fon(e" B.o?) + (s, B, o))

The progress rate is derived in Appendix B.1. Bor— co andr = 0

*2 *2
oh(o*, R, 0¥ C“\/a*(;?:? -% (4.42)

is obtained. The derivation of the SAR (cf. C.1.1, Eq. (C.36)) gives
0o = (@2~ Dy — ern ) @.43)

for N — oo and7 < 1. The progress coefﬁmemtg A in (4.43) is a special case of the progress
coefficients and is defined by

af) = — /
1,)\ 27_[_

([23, p. 119)). Noted1 A 1l= 1/2 + e1 A holds. The evolution of theSA-ES is fully described

by the system of stochastic evolution equatlm(4 39), (4.40), and (D4#)to the stochasticity, the
general solution would be given by a time-dependentgfc*, o*)(9) to be obtained by solving the
corresponding Chapman-Kolmogorov-Equations. In this section, it tsialesl from trying to solve
these equations by means of analytical approximations in general. Instépdhe stationary state
(also referred to as steady state) is considered which is observedstdfiaently large generation
time g, i.e., in the limitg — oo. Furthermore, we will not search for the steady state pdf, but rather
for its first moment assuming that the fluctuating parts in the evolution equatd®)(|(4.40), and
(4.41) can be neglected. This is a rather crude approximation, theiiefoie be compared with
simulations.

tFe *7(1) A ae (4.44)

4.2.2 The Stationary State

As already mentioned, the stochastic perturbation parts of the evolutiotictpi@t.39),((4.40),
and|(4.41) are neglected. Applying thus a deterministic approach, théagusimplify to

R(g+1) - R (1 o %@*(g*(g), 0-:(9))) (445)

clort) _ e LS9, 07 (4.46)
(g)

A Te _ (4.47)

(1 o %(p*(g*(g)’ 0-2‘(9)))2

As (4.45) to((4.47)] (4.42), and (4.43) show, tReevolution, Eq./(4.45), is governed by the evolution
of the mutation and the noise strength, Equations (4.46)/and (4.47). Howéws) and((4.47) do
notdepend on (4.45). That is why only the system (4.46) and (4.47) hasctorisédered whereas the
R-dynamics is fully controlled by the solution of (4.46) and (4.47).
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Evolution under Permanent Noise o,

Let us now consider the case of a constant noise strengthiThe normalized noise strength
defined in[(4.38)¢*9) = o [N/(2(R¥)?)], gradually increases during the course of the evolution
until no progress is possible anymore and the evolution offfécomes to a halt (on average).

Three phases can be distinguished: As long as the system is far awayhfeooptimum, the
influence of the normalized noise strength can be neglected. The situat@nbies the undisturbed
sphere. As a consequence, the steady state formula

o= an(l— N7 +4/E (1 - N72)2 + Nr2(2d3) — 1), (4.48)

)

obtained in [23], holds. Considering the maximizér= ¢; , of the noise-free progress rate, the

optimal learning rate reads= Cl,A/\/N(QC%,,\ +1-— Qdf)).

As the ES progresses and the normalized noise strength increases;; , does not fulfill the
steady state condition anymore. The former steady state is lost. The ingreage strengthj(g)
influences the equations more and more and leads to a continuously chamgatgn strength.

Finally, theR- ands*-dynamics converge to a stationary state which is characterizeg by, o)
=0andy(c*,0}) = 0.

The focus of this section lies on the stationary state behavior. Before aogjrthe zero points
of the progress rate and SAR have to be determined. Let us start withodpeegs rate. There are two
qualitatively different zeros oy, (4.42),¢;,,, = 0 (associated ideally with? = 2¢; ) and

Sopa = /4l \ — 0 (4.49)

Demanding stationarity of the*-evolution, i.e.,2b) = 0, the latter condition (4.49) can be used to
determine a stationary mutation strengthand thus the corresponding noise strengjty. Setting

P(ck) = 0 gives

€1, (QZ&)Q

(s5t) @)
0 = -+~ —5(d\— 1)
2 ()? + (0F)? A ()2 + (U:st)2
(2 2
1 *2d1>\—1—261A
=0 = S (4.50)
The so obtained stationary mutation strength
1
Sot = 2C1 (4.51)

V22, +1-d3)

can be used together with (4.49) to determine the stationary noise strength

1
olg = 2c1n,[1— (4.52)
! \/ 2263, +1—d3)
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and usingr*9) = o [N/(2(R¥)?)] to obtain a residual location error

2
R, = o | 204, +1-di) i
dein\ 2022, +1-d®)) -1

defined for2et , +1 — dﬂ > 1/2.

Discussion of the Stationary State

As explained above, thR-evolution is governed by the evolutions of the mutation strength and the
noise strength. Therefore, it suffices to consider the evolution eqsdtionhe latter. Taking (4.46)
and (4.47) into account, there are two different pairs of equilibrium paifitise evolution equations
The first withe; = (0, w)™ with w € R and ideallyw = 2¢; , and the second & = (s2, w2)™ with
s9 given by (4.51) andvs by (4.52). The question arises which of these pairs is locally stable, i.e.,
stable w.r.t. small disturbances.

To this end, a linear approximation in the vicinity of the fixed point or equilibriwstutson,
respectively, is used again. The first equlibrium soluten= (0,w)", is not stable since it admits
an unstable local manifold (see D.2.1). The stability of the second equilibraim @.51) and (4.52)
is determined numerically since the expression obtained is rather clumsy. pendjx D.2.1, it is
shown that the second stationary solution is stable via the linear approximation f— at least for
the sphere. Figure 4.7 illustrates the behavior of the equilibrium points if sisalrbdances occur.

Interestingly, the distancZ, = {/o.N/(4c; ) obtained as an ideal case for a vanishing mutation
strength and for a noise strength,, = 2¢; ) does not differ much from (4.53) (see Fig. 4.8). If the
size of the offspring population is sufficiently large, the difference idigigde. This means in turn
that any mutation strength between zero and (4.51) leads to similar residaiibtoerrors.

Simulations: Comparison with Experiments

In this section, the predicted stationary mutation strength (4.51) and the akkdation error
(4.53) are compared with the results of experiments. The quadratic spaghosen as test function
in all experiments.

Figurel 4.8 compares the predicted expediedalue at the steady state with simulations of real
ES runs depending on the number of offspring individuals. As one eantse predictive quality of
(4.53) is rather good, however, one observes some randomly appearail deviations of some data
points from the curve. There is a deeper reason for this behavior whictbe traced back to the
o*-evolution.

Figure 4.9 a) presents the long-tesr-dynamics of a typical run of afl, 100)-ES on a sphere
with constant noise strength. After approaching the vicinity of the steaty (stéthin a few hundred
generations if the learning rate is chosen appropriately) the initial steamyistast again. Unlike
the prediction of theleterministicapproximation, the ES is generally not able to regain the predicted
steady state* (4.51). Sometimes short nearly stationary phases exist, but they appgaporad-
ically. The only observable tendency seems to be a general prefevesp®ll mutation strengths.
That is, the predicted stationary mutation strength (4.51) cannot be els&fter reaching the vicin-
ity of Rs;. However, the resulting effect on the finally observed steady $taserather small: Since
any mutation strength between zero and (4.51) leads to nearly the samalrésidtion error, both
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Figure 4.7: Behavior of the evolution equations (4.46) and (4.47) closeetéixdd points. As pa-
rameters\ = 100, N = 100, and7 = 0.1 were chosen. The dashed lines represent the steady state
mutation strength (4.51) and the noise strength (4.52), respectively.

estimates (4.53) an&Z = {/(0.N)/(4c1,,) serve relatively well as predictors of the firal; which
can be seen in Fig. 4.8.

Interestingly, it can be seen in Fig. 4.9 that the non-existence of a fitiarstey state of the muta-
tion strength seems to occur only in the caseloA}-ES. If intermediate recombinative (7, A\)-ES
are used, the behavior changes qualitatively: The mutation strength flctueatestably around a
stationary value. This interesting phenomenon is discussed in the nexhsectio

On the Erratic Behavior of the (1, \)-ES and a Possible Remedy

In order to discuss the steady state behavior of the ES, it should be dateitehe ES is operating
in the large-noise regime. After having reached the vicinitiggf the noise with strength. = const.
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Figure 4.8: Final residual location errors as obtained [by (4.53) (uppeve) and RZ =
Y oeN/(4cern). The parameters were set 0 = 100, 7 = 0.1, ando. = 1. The points denote
the results of {, \)-ES runs. Each data point was obtained by averaging 8&000 generations.
Figure b) shows the relative deviation of (4.53) frdtf.

is so large that it totally overshadows the actual fithess information. Thasselection process
becomes nearly random, i.e., th&-evolution is basically driven by random samples from a log-
normal distribution with parameter. Under this condition, the probability of an in- or decrease of
the mutation strength equalg2

In(c* *(g)\\2
(@) e_( (s é:2 )

pr (+etD) < #(0) _/ dc*
O

2

0 e 22 1
= / dt = &y 2(0) = . (4.54)
oo TV 2m ’ 2

Put it another way, the*-evolution of the(1, A\)-cSA-ES performs a biased random walk: It prob-
abilistically accepts any*-decrease, however, it punishes latgevalues due to their selective dis-
advantage. As a result, ttié, A\)-cSA-ES has a slight tendency towards smaller mutation strengths.
This is a clear disadvantage of the standard versidn,of)-c SA-ES. A possible remedy would be to
increase the probability af*-increases slightly. This idea will be taken up again.

But before let us consider recombinative strategies. The questios aiigerecombinative strate-
gies exhibit a qualitatively different behavior. For sake of simplicity, theeoaf an infinite number
of parents is considered. Without loss of generalityg’ré‘{) = 1. Since the mutation strengths of
the 1, parents are independently identically distributed random variables with mearexp(72/2)
and variance? = exp(7?)[exp(7?) — 1], the suml/u "%, Y; converges to a normally distributed
random variableS ~ N(m,s?/u). If p is sufficiently large, the probability that the mutation
strength decreases can be estimated using the cdf of the normal distrib@itienprobability of
(1/p) >, Y; < 1 becomes

2
1 & l—e7
Pri->) V;<1] — & h——— (4.55)
(M 2" ) MV ey
which is smaller thari/2 if = > 0. Actually, this preference fos*-increases can also be shown
for the smallest parental population size= 2. Therefore, an intermediate recombinative strategy
possesses a natural tendency to provide more increases than éecreas
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Figure 4.9: Thes*-evolution of some typicalu/ur, 100)-ES runs (V. = 100) on the quadratic
sphere. Shown are the results foe= 0.01 (topmost curve); = 0.1, andT = 0.9 (lowest curve).
The duration of the initial steady state fg19) depends or and thus on the convergence velocity of
the R-variable towards the final steady state.

As to the(1, A\)-ES, this suggests the introduction of a slight preferencerfeincreases in the
mutation operator by using a log-normal distribution

x ) K\ 3)2
PyeTI") = —— e (—“““ [0 ) (4.50

272

with a biasg > 0. The question remains how to chog$eOn the one hand, it has to be sufficiently
large to induce a trend towards larger mutation strengths. One the othectsidering the change
o1 = o9)¢, theE[¢] ~ 1 condition still has to be fulfilled.

Figure 4.10 shows the results of some ES-runs with different choicés Biie effect of the bias
[ also depends on the learning raterlis relatively large, the ES tends towards smaller values and
shows irregular patterns. An increasesafhanges the behavior. Larger learning rates seem to require
larger biases in turn. Otherwise, a learning rate that is too small may leacergeint behavior.

In order to investigate this behavior theoretically, one can apply the teamidpyveloped in this
section. In what follows, only a short sketch of the derivations is pextidntroducings > 0 changes
the raw moments of the log-normal distributionctd = (¢*(9))*exp(k)exp(k272/2). Thus, if 3 is
chosen sufficiently small, approximations with Taylor series as used in Appénl are still valid.
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Figure 4.10: Dynamics of the normalized mutation strengthloAY-ES. Shown are the results of
typical ES runs on the quadratic sphere. The dimension of the seamispa = 100 and the noise

strength is

setto, = 1.
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Therefore, the derivation of the SAR remains the same. The only chamgsoin the last step
of the calculations leading from (C.21), p. 143, over (C.22) to (C.23)abse the expectations of
[(¢* — 0*)/c*]F in (C.21) w.rt. the log-normal density with bigs= 0 must be replaced. Finally
SAR (C.23) becomes

1
v o= 7 +e/(d? - 1)

ol 5 PGl | (4.57)

(022 + (%) V(002 + (07)2

€

Now the stationary points, i.e., the solutions@f = 0 and+y = 0 using (4.42) and (4.57) are
determined. The conditiop* = 0 gives(c*\9))? + (¢79))2 = 4¢c? , . Inserting this intol (4.57) leads
to the stationary mutation strength

1 * 2 eﬁc * 2
1 50 Sat B LASat
0 = g el 1)0*2 +6x? a2 L x2
€ st st O¢ st + Sst
)
1 (diy—1) 1
_ g2 A
jo“2+e@<%@‘z>
B8
2 )
= = CLAS . (4.58)

gives an estimate of the

. . . e
Finally, the associated noise stren = 2c 1-—
Y e = 2017 s, )

residual location error

ocN 1

2 -
4617)\ 1 _ #(2)
2(26%,,\"‘1_d1,x)

RS - (4.59)

As can be shown numerically (see Fig. 4.11), as long @&ssufficiently small, the estimates (4/58)
and (4.59) do not differ significantly from (4.51) and (4.53) obtained3fe- 0.

Several caveats must be added here. It seems to be difficult to findeaafafuthat on the one
hand raises the mutation strength sufficiently and on the other hand dolesdab a deterioration
of the residual location error. In addition, the estimates only hold for $eiffily small 5-values
and they do not account for the interplay with the learning paramet&onsidering the results of
the experiments (see Fig. 4.12), one finds that in the case of ldrgelues, i.e., here already for
B > 0.01, the predicted mutation strength (4.58) is lower than the experimentally oblsenee
Also, the ES shows a significant greater sensitivity to the choigetbéin predicted by (4.58). These
deviations clearly indicate the limits of the deterministic analysis presented.

4.3 Intermediate ES on the Noisy Sphere

In this section, the analysis of evolution strategies on the noisy sphere redegtéo ES with
intermediate recombination. The approach mirrors that of Selction 4.2 cloBetyefore, this sec-
tion is kept short — only pointing out the differences between intermedigte;(\)-ES and non-
recombinative 1, \)-ES.
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Figure 4.11: Comparison of the predictions of the stationary mutation strendttina residual loca-
tion error. Figure a) shows the prediction obtainedity (4.53) andet (4.59). Figure b) compares
the mutation strengths (4.58) and (4.51). The dimensid¥ is 100 and the noise strength = 1.
The gray lines indicate the results for= 100 whereas the black stand far= 10.

The Evolution Equations for Intermediate Evolution Strategies

As in the case ofl(; \)-ES, two variables are initially used to describe the system: The distance
of the centroid to the optimizeR9) = ||(y(¥)) — §|| and the mean of the mutation strengtf?)). To
simplify the notations, the usual normalizations are introduced Rite= R9), o* := (N/R)(s(9)),

o} :=[N/(2R?)]o., andy} := (N/R)pr. After normalizing, the normalized noise strength appears
as an additional time-dependent variable. Using the same arguments as ieviogip section, the
analysis can be restricted to the study of the evolution of the noise and the mstagingth. Starting
point of the analysis are therefore the deterministic evolution equations

<§*(g+1)> —_ O'*<1 +¢(0—*7O—:>>

1— @E(U*’U:)
N

groth e . (4.60)

The progress ratg}, and SARy are obtained as

0_*2 0_*2
Lo 0f) = —m——— - — 4.61
¢r(0",07) \/mcu/#)\ 24 ( )
for N — oo andr = 0 (see Appendix B.1) and
1 0.*2 0,*2
* % 2 1,1,
lb(O' ,O'€> = T (5 + me%)\ - \/WCM/M)\> (462)

for N — oo andr < 1 (see Appendix C.1.1).
4.3.1 The Evolution of Intermediate Evolution Strategies unde r Noise

Let us assume that the ES starts far away from the optimizer. Again, thesephban be distin-
guished:
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Figure 4.12: Comparison of the predictions of the stationary mutation streh§8) @nd the residual
location error[(4.59) with the results of experiments on the sphere funaiosofne choices of.
The search space dimensionNs= 100, the noise was set t@. = 1, andr = 0.1 was chosen as
the learning parameter. Each data point was averaged500e000 generations. The vertical bars
indicate the measured standard deviations.

1. Aninitial stationary phase: As long as the ES is far away from the optimunmftbence of the
noise is negligible. The ES behaves in a similar manner as in the undisturleednthseaches
a temporary stationary point of the normalized(?))-evolution.

2. A transitional phase: Since the ES progresses towards the optimum jsbkdaran gains more
and more influence. This results in a loss of the stationary state and a reaotjcanovement
until the progress towards the optimum stops entirely (on average).

3. A final stationary phase: This is due to the fact that uniform additiisenbinders the ES
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from approaching the optimum. Instead a new stationary state is reached evidistAnceR
fluctuating around a positive value. The same holds for the mutation strength.

In the following, the different stationary states are characterized anidftbence of recombination
on the behavior is discussed.

The Initial Stationary State and the Influence of Recombination

Recall from Section 4/1, that the initial stationary state (after a transient tiraest&ionary state
of the (¢*())-evolution only. IfR >> 1, the influence of* is negligible and the results obtained in
Sec! 4.1 apply:

1. The stationary state (4.11) reads

1,1
1/2—|—eu7/\
2

o= peun | (A= N7+ | (1— N72)2 4+ N72
HCu N

2. The stationary mutation strength and progress rate depend strongly cortlct choice of the
learning rate (4.23)

2
1 HCu/uA
2 1
V2N ,uc“/M’A—l/Q—eu)\

Topt

Otherwise, the progress may degrade significantly.

3. Nevertheless, recombination is beneficial since the maximal possiblegsodepends on the
w : A-ratio and is highest for ~ 0.27\.

As mentioned, this steady state is lost eventually. But choosing thé ratio and the learning rate
accordingly ensures that the progress of the ES is nearly optimal asdding stationary state persists.

The Final Stationary State

The influence of recombination on the final stationary state needs to beskstut was claimed
in the previous section that recombination of the mutation strengths is bensiingalit introduces a
bias. In contrast to non-recombinative ES, no loss of mutation strengtfotoocurs. For an analysis,
the respective stationary mutation strength and distance for recombin§tiveds to be obtained. The
approach followed mirrors the one taken in the previous section. The stgtiomutation strength
reads

. 200€C,, /)
& = e (4.63)
\/4“%/#«\ —2€e,)
and is connected with the stationary noise strength
4pc? T 261’1>\ —1

2 b
4’“’Cu/u,>\ —2e.)
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and the residual location error

UeN 4 4:,“0/%/‘“")\ - 26111'7;‘
Ry = |1~ . = (4.65)
,u “/“’A\ Sl 2 L

A derivation can be found in Appendix D.2.2. Note, in the case of the usua\l—ratiosmci/# \ >

e;& holds and the stationary mutation strength (4.63) scales wjin- provided that\ is large.
Therefore, recombination increases the normalized mutation strength.

The normalized noise strength (4.64) and residual location error| (4:€%)ieen as a product of
two factors: The first stems from demanding stationarity of lkevolution and therefore}, = 0
which leads to the condition*? + % = 4p*c, . Settings™ = 0 leads to the first factor in (4.64)
and (4.65). The second factor gives the deviation due to the non-iongry mutation strength
(4.63). But the normalized noise strength (4.64) does not deviate fartlie maximally possible
noise strengtRuc,,,, » if the offspring population is large.

A similar result holds for the location error. First of all, the minimal location egiven by
\/aEN/(AlucH/M) is symmetric around its minimum fqr : A = 0.5. The region around the min-

imum is relatively flat and nearly optimal distances are obtainable foi € [0.2 — 0.7]. The ES

with (4.65) deviates from this optimal value, though, which is due to the nom+matation strength.
However, this deviation is small. Recombination may lower (4.65), so that it gets @oser to
the minimal location error: For relatively largevalues and ifu is neither close to one or ty, the

following approximate steady state values hold

s 2ue
S = . .
app o
app VTR

To summarize, recombination on the noisy sphere is beneficial: Recombinftiienabject variables
enables a closer approach to the actual optimum. Recombination of the mutatimthstrenforces
a positive stationary mutation strength and does not result in a loss ofizéepesitrol. In addition,
the deviations from the minimal location error are small and improve.for\-ratios in the interval
usually recommended.

Simulations

It remains to compare the predictions by (4.63), (4.64), and (4.65) witlethdts of experiments.
In the experiments,{/ 11, 60)-ES were used. The mutation strength and distance were aggregated
over 400,000 generations in the steady state regime for= 100 and N = 30. The experiments
were conducted using the log-normal distribution. Figure 4.13 compargsréidéctions with the
experimental results. Figure 4/13 also depicts the approximated statiortaryadtees| (4.66) (dashed
gray line). These estimates serve well to predict the experimental requitarent numbers between
i = 10 andp = 40. As it can be seen, the agreement between experiment and predicticrdis go
in general. Note, though, the mutation strength is overestimated as a rule. @s liecseen, the
dependency of the prediction quality on the search space dimensionalitatisely weak. Even
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for N = 30 good estimates can be obtained. Only in the case of the noise strength, ges@of
the dimensionality leads to a better prediction quality. The mutation strength ancctimitoerror
are predicted well even foN = 30. However, the standard deviations are smaller in the higher

dimensional search space.
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Figure 4.13: Comparison of the predictions of the residual local erré6)4noise strength (4.64), and
mutation strength (4.63) with the results of experiments. The dotted gray linetedbée approximate
stationary state values (4/66). All data points are sampledi®@e000 generations in the steady state.
The error bars indicate the size of the standard deviations. The s@eacdimensionality was set to
N =100 andN = 30. The noise strength was setdp= 1.
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4.4 Including the Fluctuation Part: A Second Order Approach

In this section, the analysis is extended to evolution equations comprisingrtiiebp¢ion parts.
The aim is to provide a better estimate of the mean value dynamics and stationarpetavior
of self-adaptive ES. As introduced in Chaptér 3, the unknown distributfdhe perturbation parts
is approximated using an Edgeworth series expansion. The expansionaf after the first term
assuming that higher order cumulants do not have a significant influetice stenario under inves-
tigation. That is to say, the distribution is assumed to be sufficiently Gaussidatsihe deviations
from the normal distribution do not have significant effects in the mean \éhioamics of evolution
strategies.

4.4.1 The Evolution Equations

The analysis is started considering the evolution equations

R+ — R—SD’;V@—ER(R,U) (4.67)
(@)Y — a(1+¢(a))+eg(R,a). (4.68)

First of all, the usual normalizations are introduced with:= N/Ryg, 0* := N/Ro, €} := €, /0*,
ande}, := er/R. Equations (4.67) and (4.68) change to

¢r(0")
R+ — R(l— RN +e (Ra)) (4.69)

U(l—H/JU)—i- ))

<§*(g+1)>
1 ](\7 ) +6R(R o*)

(4.70)

Recall, the perturbation terms are modeled with

[ @ _ o
ey = ZZN(0,1)+... _MN(OJ)JF...

>

S
R R
1
- N\/wg — P52N(0,1) + (4.71)
& = SN(O 1) 4= @ —2N(0,1) + ... (4.72)

The inclusion of the perturbation parts changes the equations. Whereas sufficient in the deter-
ministic approach just to calculate the progress rate (4.8),

0.*2

2p

QP*R(O-*) = Cu/;t,)\a*_

)

and the SAR/(4.9),
b = (124 e~ cuunc),
the second order approach requires the second order progires%?%? and the second order SAR

12, Both are obtained in the appendix (see Appendices B.1.3 and C.5). Ndiltveng: The
second order progress rate and the square of the progress natgeawat. Thus fori(/ 1, \)-ES the
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evolution equation with the perturbation part approximated with a normal distibdegrades to the
deterministic case. This does not occur in the case of the evolution of the musagmgth. In this
case the variance must be determined. The influence of the square oftloeder SAR is of order
O(7*) and only the second order SAR (C.159), p. 186,

p@ = — (4.73)

will be taken into account leading finally to a linear termrin
4.4.2 The Mean Value Dynamics of the Mutation Strength

Before starting, let us simplify the notations settiffg= <g*(9+1)>. As said before, the moments
of the distributionp(¢*) starting with the expectation have to be obtained. At this moment the tran-
sition densities are not needed. Before starting with the calculations, theiemaequation/(4.70) is
simplified which requires some assumptions. First: Assumingghak N for all ¢* with positive
measure, the functioh/(1 — ¢%/N) is expanded into

1 _ Pr(c") 1 _ ©R(0™) SACHN
1 _ ¢rl@) =N (1_¢ya*)>—1+ N O ( N ) . (474
N N
Equation|(4.70) changes to
= g . 2) _ 42 PRr(07)
s 0" (14 (0" + /¥ — 2N (0,1) (1+ ZE22). (4.75)

Under the further conditions thaty}, < N and that the realizations af /(2) — 2\ (0, 1)¢7%, are
generally smaller thaiv

¢ = o (1 +9(0*) + /9@ — 2N (0,1) + 901*](\7)) (4.76)
is obtained. Using théV-independent variants, the progress rate and the self-adaptatiomsesgre
given by Egs.[(4.8) and (4.9). The expectation of (4.76)

_ 1 — 1 o3
. 2 1,1 2 2
E[¢*] = o* <1 +7 (2 +6M7/\>) — 0*2¢, /AT (1 - N7'2) -7 2N T2 4.77)

depends on the past values through higher order moments. As a reselp#mations of*? and
¢*3 are needed. It will be shown that they in turn depend on the past thtugbér order terms. The
expectation of the square is given by

2

— I — 1y —r? 1
Bl? = o (14 721+ 200 + ;}) — 207372, (1 - —N72> - 0*4%7]%2. (4.78)

The expectatiofit[¢*3] can be approximated with

2 2 2
*3 " T T 2 1 1,1 T 2 " 1
E[g ] = 0 3(1+3M+3<1+M>T <2+€#7)‘>) —3<1+;>T Cu/uy)\a' 4(1—7]\77—2)
2 *5
T 9 O
—3(1+;)T et (4.79)
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4.4.3 The ES in the Stationary State

Let us now address the stationary state behavior. As the rég§ufl, = E[0*] = E[o% ] holds.
Equations((4.77)| (4.78), and (4.79) lead to the non-linear equations

—(1_ 1 x 2 1 0%’
0 = o5 (2 —I—e%/\) — 05 Cu/un <1 — N72> — 2/;%72 (4.80)
— U R — 1y — 1
0 = ox2(1+2e)+ ;) — 20250 (1= 55 — o (4.81)
—(1 Y2 SRR 72 . 1
0 = o (u )G ew)) = (14 2 )ewmaos (1= 572)
7.2 o* 5
~(1+0) 2= 4.82
( * w/ 2uNT? (4.82)

which could be solved if the invariant density®f, were known. Instead of determining the invariant
density, a so-callednsatzis used. The ansatz consists in using a specific distribution to model the
behavior of the mutation strength in the stationary state. In this section, a tagghdistribution in

the stationary state is assumed, i.e., the moments are of the generatférm S exp(k*t?/2). The
constantsS andt have to be determined which is done in the next paragraph.

A Log-Normal Distribution in the Stationary State

Pluggings* ¥ = S exp(k2t2/2) into Eqs. [(4.80)-(4.82) leads to

1 1,1 §t2 ]. 2 At2 1
O = 5 + e,u,)\ - 562 C/‘/Nv)‘ <1 — ]\77’2> — S (] 2MN72 (483)
IR 242 1 2 62 1
0 = 1 + 26“’)\ + ; — Se2 CU/N7)\2(1 — W) — S<e W (484)

1 N/l 4 T2\ L 14 1
0 = ;"‘(1"‘;)(54‘6“7)\)—(14';)562 Cﬂ/%)\ 1—W

2
T 2 1
—(1 )SQ 8t
( + 1 ¢ 2uNT?

(4.85)

with unknown parameterS andt. Note that the equations above lead to a nonlinear system the general
solution of which cannot be provided analytically. It is possible, thougbbtain numerical solutions.
To this end, MATHEMATICA was used to determine the solutions of the firsteguaations.

Comparison with Experiments  Figure 4.14 shows histogram plots of somé (;, 60)-ES for
the search space dimensionality = 100. The relative frequencies were sampled ove®, 000
generations in the stationary state regime. Due to the fast convergenae BSthhe learning rate
was set tor = 0.01. Also depicted are the pdfs of a Gaussian and a log-normal distributiog usin
the sample mean and variance. As can be seen, the log-normal distributies sdatively well as
reference function for the unknown steady state distributions.

Figure 4.15 shows the stationary mutation strength obtained using (4.85) iradsorpwith the
stationary mutation strength observed in experiments. The mutation strengglidedeas a function
of the learning rate. The experiments were conducted using a;, 60)-c SA-ES. Each data point
was sampled over at leas0, 000 generations in the stationary state. It should be mentioned here
that since the convergence velocity depends on the learning rate, tteodwf the stationary phase
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may be short due to the fast reduction of the distance to the optimizer to zerib.cAn be seen in
Fig.[4.15, the quality of the prediction depends strongly on the searck sipaensionality which is
due to using theV-independent formulae in the derivations.

In addition to the mutation strength, Fig. 4.15 compares the predicted statiomanegs rate
with the result of experiments. The predicted stationary progress ratebtased by inserting the
moments of the stationary mutation strength into|(4.8). Again, there are catsieldeviations in the
smaller dimensional search space, but the prediction quality improves witintleaslonality.

The Influence of Fluctuations in the Second-Order Approach In the following, a closer
look is taken at the obtained stationary mutation strength. Similarly to [23], Ed33)(to [(4.85) are
rewritten in terms of*_ := S ¢!*/2

0 = % + ei’i — szoeﬁcﬂ/u’)\ <1 — ]\717'2) — S?;OQegt2 2M]1V7'2 (4.86)
0 = 142+ ; - S’goe2t2cu/u7>\2(1 - #) - s;2e5t2m\1772 (4.87)
0 = ; + (1 + T:) (% + e}fA) — 55 (1 - #) (1 + j)
2
—21;;\[:2 55 267 (4.88)

Equation|(4.86) can be used to give the stationary mutation strength atiarfiunfct

+ el

LA 9 Nr2et? ). (4.89)
,uc2/ A

1/

1
2

Y= mue (L= N7+ | (- N2+

The equation obtained is analogous to the casé,0f)(ES [21]. The mutation strength differs from
the mutation strength (4.11)

1 1,1
a0t = Mcu/u,x((l — N7+ | (1 - N72)? + %2]\772)

TSN
obtained by using the deterministic approach in two terms: One inside the roatthttrea general
multiplier. It is easy to see that the general influence of the multiplipt —2¢2) outweighs the effect
by the addendxp(t?). For this reason, Eq. (4.89) leads to lower mutation strengths than (4.11)
As Beyer pointed out forl( \)-ES, experimentally observed mutation strengths are lower than the
deterministic estimates. This can be traced back to the neglected influencelatthations during
the derivation of the estimate (see [21] or [23, p. 315f.]). Equation [4&8@ects the estimate.

The progress rate remains to be considered. The expected prageessgiven by

§*2

(4.90)

) = s

Sinces*” =+ 2= Var[¢*] + ?*2, an additional loss term, the variance, lowers the expected progress
rate [21]

(4.91)
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Therefore, the theoretical maximal progress L&t%/u /2 is not attainable [21]. The question that re-
mains is the following: How can the fluctuations be reduced so that the ESwappcoximately with
its optimal progress rate? In [23] several possible means were dekcfibe remainder of the section
is devoted to the question how recombination of the object vectors and mutiéogths influences
the fluctuations. The analysis makes use of the aforementioned ansatmjraga log-normal distri-
bution of the mutation strength in the stationary state. It should be noted tatbéttion does not
only influence the variance but of course the expectatiarf ahd the progress rate.
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Figure 4.14: Relative frequencies of the normalized mutation strength in thensty state. The
search space dimensionality\s = 100. The experiments were conducted usipg;, 60)-ES and
a learning rate 06.01. The lines indicate the density functions of log-normal distributions (black)
and normal distributions (gray). The density function were obtained lgrting the experimentally

found moments.
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*

c* %)
40

30

20F

10+

=30 "

i
. T L) . . . . ! n
0.10 0.12 0.14 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0 I I I I
0.00 0.02 0.04 0.06 0.08

a) N = 100, mutation strength bV = 100, progress rate

w =30

0 . . . . . T 0 . . . . )
0.00C 0.00z 0.004 0.00€ 0.00€ 0.01C 0.00C 0.002 0.004 0.00€ 0.00¢ 0.01¢

c) N = 10000, mutation strength dN = 10000, progress rate

Figure 4.15: Stationary normalized mutation strength and progress rateuast@mii of - for some
(11/ 1, 60)-ES.

Fluctuations and Recombination Before starting, consider some results obtained numerically
for two choices of the learning rate. Figure 4.16 shows how far the refsaits the second-order
approach deviate from the those obtained using the deterministic approethsurprisingly, the
deviations increase with the learning rate. As Fig. 4.16 reveals using r@tatioh causes a better
agreement between the two approaches. For the smaller learning ratejitdiffaeence is between

no recombination and recombination, the higher learning rate indicates arainidrere the relative
deviations of the first-order from the second-order approach gm@=imately minimal. The interval

for (u/ur,60)-ES lies roughly betweep = 12 andp = 20, giving ap : A-ratio of approximately

0.2 — 1/3. In the following, two special cases are considered which allow for alyfical treatment.

Limit Case of N72 — oo  Let us first consider the limit case &fr — oo. Starting from Egs.

(4.86) and((4.87), i.e.,

I 41 . 42 1 w232 1
0 = 5 +e%A —5..€ C#/M,A<1 — NTQ) — s e SN T2

1,1 1 N 2 1 252 1
0 = a2+ - 5 et CW,AQQ - W> s 20t e (4.92)
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Deviation factor Deviation factor
20 30 70 H 10 20 30 40 50 ©
0. 9998 \5‘7\ 0.98
0.9996 0.96
0.9994 0.94
0. 9992 0 .92
0. 999 09
a)T = 0.1/VN b)r =5/VN

Figure 4.16: The deviation from the deterministic prediction as a function gpdinent numbey:.
The results were obtained numerically from Eqs. (4.83) and (4.84) fochwies ofr. The search
space dimensionality i& = 10, 000.

it will be shown that the system can be easily solved¥or* — oo. Computing the limit gives

L oan . g2
0 = 3 + eu’)\ - sooet CufuA
1
0 = 1425+ i 552 2¢, - (4.93)
Thus, two equations describing, can be obtained
1 1,1
5 te)
Sh, = 2t (4.94)
Cu/pA
1 1,1
= _.I_ e 4 1
s = o2 [ 2 _mA : (4.95)
CufpA 210/ \

They can be used to determine the valuexqf(—t?)

1,1
1/24 € 2#(1/2 + ew> +1
- P2
Cu/p,A 210/

21(1/2 + et
- e_t2 _ /’1’( / u,)\) (496)

1 :
2u(1/2+¢€,,) +1

o042
e?t

In the following it is shown that recombination, i.e., switching frare= 1 to . > 1, may increase the
factor (4.96). First of all, the function that appears in (4.96) is of theeg@orm f(z) = z/(1 + z)
which is a strictly increasing function witli(0) = 0 andlim, ., f(z) = 1. That f is strictly
increasing can be shown using the first derivative

1 x 1 (1+:c T ) 1

f'x) = - l+z 1+z) 14z (4.97)

l+z (1+2)? I+a

While the progress coefficiera’lfA decreases with, the increase o2y outweighs that decrease as
long asy. does not increase too far. Note, the coefficié)pi passes zero fqi = 0.5\. As numerical
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comparisons show, the minimizer of (4/96) lies roughly in the regiom &f0.2 — 1/3\. As a resullt,
for N2 — oo, the prediction obtained using the second-order approach does\natedtar from
(1/2+ ei’&)/cy/w —the deterministic result. Let us shortly consider the stationary mutation strength

and the progress rate. Using (4.94) and (4.96) the stationary mutatiogttien N72 — oo is
obtained as

e =

1/24+ et /7 2u(1/2 + el
/ M:A( nu(1/ u)\) ) (4.98)

Cufur \2p(1/2 + elll’})\ +1)

As stated, first factor in (4.98) equals the deterministic result, i.e., the zehe SAR, whereas the
second factor constitutes a correction factor due to taking the fluctuatimnadoount. Plugging the
mutation strength (4.98) and the inversel of (4.96) into the progress ra#)(B:2<*) = ¢,/ s" —
¢*2/(2u), leads to the stationary progress ratefor> — oo

(S* )2et2

9020 = c,u/,u,)\scto = o;u
1,1 1l
L1/2+e) 2u(1/2+¢€,))
= ¥ ( ) 1,1 : (4.99)
Cuu/uA 2u(1/2 + eu,)\) +1

The deterministic prediction of the progress rate is reduced by the samedadte prediction of the
mutation strength.
The variancé&/ar[¢*], which reduces the progress rate, can be easily obtained as

[ee] oo oo

9 2 2
Var[¢*] = ¢*2 —¢*° = s 2ot _gr 2= " 2<et - 1)

<1/2+e};§>2< 2u(1/2+¢,}) >2<2/~L(1/2+€,1L’,1A)+1_ )

Cpa/uA 2u(1/2+¢,3) +17 N 2u(1/2+¢,)
12452 2u(1/2+¢,3)
_ ( ) — 5. (4.100)
Coa/p\ (2u(1/2+e€,73) +1)

The variance depends of course on the siz&af The absolute size of the variance reduces consid-
erably once recombination comes into play. As Fig. 4.17a) shows, thisteetitecbehavior of*_ to
some extent. The expectatief), drops sharply when switching from = 1 to 4 > 1. Consider-

ing the relative variance instead reveals that there is a minimizer between0 andp = 20 (see
Fig.[4.17b)). Therefore, the deviation of the progress rate is minimal.farcombinations that are
normally recommended. Of course, again, this effect of reducing thenearis shown foN 72 — oo,
only.

The Case of N72 = 1 Let us now consider the special caseMf? = 1. Again, analytical
solutions are easily obtained. SettiNg? = 1, Equations(4.86) 1 (4.88) describing, change to
I

Lo a2 1
0= 3 +ey — sho e 5 (4.101)
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Var([¢*] Var[s*]/s5,”
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Figure 4.17: The variance af (4.100) in the stationary state as a functionuofor N72 — oo.

Figure b) shows the variance w.ist, ? (4.98).

1 2 2 ].
0 = 1+25h 1= g% 26572
mA T T
2
1 2\ /1 1+ 7
0 = ; + (]. -+ ;) (5 + 6}21}\) — 72#/# SZOQGWZ.

(4.102)

(4.103)

Only the first two equations are needed to determjpeRewriting Eq.|(4.101) and (4.102) gives

1
8202 = 2u<2+ei’i\>e_3t2

1
s"(;oz = <2,u(2 + ei’i\) + 1) e

Thus, s’ can be obtained by

1,1
ot 2u(1/2+e,))
2u(1/2+e,)) + 1

and

*

st = \/2,“(1/2"‘6,1[,1)\)9_%#

1,1
11 2u(1/2+€,;)
= 2u(1/2 + %,A)( 1
2p(1/2+¢€,,) +1
1,1
_ " det( 2)“’(1/24_6#,)\) >i
T \u(1/2+ ) + 1

with

x det 1,1
Sstat « = 2“(1/2 + eu,)\)

)Z

(4.104)

(4.105)

(4.106)

(4.107)
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(seel(4.11), p. 35). Again, the resulting mutation strength can be giviregsoduct of the result
ka2 (obtained using the deterministic evolution equations) and a deviation term r3tradim can

be verified easily by inserting/72 = 1 into the stationary mutation strength (4.11). The correction
factor in (4.107) is a strictly increasing continuous function of the deviation testained in/(4.98)
and therefore the same conclusions apply. Again, recombination with tléusw-ratios reduces
the deviation from the deterministic result. Similarly to (4.99), the progressoaf§£? = 1 can be
obtained as

s* 2et?
* * (ee)
Poo = Cu/pASoo — %
2u(1/2 + el |3
_ w*( 2u(1/2 + e;ﬁ))( w1/ . 1“) )4. (4.108)
’ 2u(1/2+¢€,,) +1
Let us now address the variance. Por? = 1, the variance reads
Var[s*] = o272 (et2 - 1)
Lo 2u(1/20e) N2, 2u/2 el )+ 1
_ 2/1(1/24—6”’7/\)( b ) ( b - 1).(4.109)

2u(1/2+€,3) +1

1,1

Figure[ 4.18 shows the variance (4.109) as a function.ofs[4.18 a) indicates, recombination in-
creases the absolute size of the variance. In contraltto— oo, the dependence of the absolute
size of the variance is relatively weak. Figure 4.18 a) indicates two local minfithe @ariance. One
for the single point strategy, the other in the regiopet 45. If the relative variance is considered, the
situation changes. Figure 4.18 b) reveals the same region of minimal relatieases as found for
N7% — oo which is not surprising regarding the similarity of both functions. Disreigarthe case
of u =~ A, nearly optimal combinations @f and can be found again in an interval of approximately
p=0.25\t0 = 0.35.

Var[¢®] Var[¢*]/s* 2
0.7 0.12
0.6 0.1
0.5 — 0.08
0.4
0. 06
0.3
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10 20 30 40 50 60 K 10 20 30 40 50 60 H
a) Variance b) Relative variance w.fst; >

Figure 4.18: The variance of in the stationary state (4.109) as a functionudbr N72 = 1. Figure
b) depicts the variance w.r4: 2, (4.107).
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A Normal Distribution in the Stationary State

As it can be seen in Fig. 4.15, deviations between predicted and measiued exist. This
concerns the higher parental numbgrs- 20 andp = 30. Here, the experimental values for small
7 values are smaller than those calculated using (4.95). In the case of ther gyaadietal number
wu = 10 there is a better agreement between experiment and ansatz. As was poinited?23] the
assumption of a log-normal distribution might not be valid for smaller learnitegrdn an alternative
attempt, the normal distributiaV'(m, s?) was used as an alternative to model the distribution of the
stationary mutation strength. Let us reconsider Equations (4.80) - (4e82)iling the stationary
state

* 3

0 = ox(1/2+¢) o leuun(1- N172> = 2;’;72 (4.110)
0 = ox2(1+2e)+ ;) — 75320, (1~ zx%?) - uglff.il? (4.111)
o = (G () Gred) - (1 a1 5a)

_ (1 n ;2) 2%2 (4.112)

Using the normal distribution, ~ N (m, s?) leads to

1 m(m? + 3s?)
_ 1,1 2, 2
0 = m(1/2+ep}) = (P +mIen(l- 1) - = (4.113)
1 1
2 2 1,1 2 2
0 = (s°+m )(1 + 2, + ;) —m(3s*+m )20“/“7,\<1 — 7]\77'2)
3s* 4+ 6s2m? + m*
- N (4.114)
1 2\ /1 14
0 = m(m?+3s?) <u - (1 - ;) (5 + e@))
<1+72) (35 + 652m?2 + 4)(1 ! )
— — | C S s m m —
1 B/ A N2
72\ m(15s + 10s?m + m?)
—(1 7) . 4.115
( + m 2uNT2 ( )

Again, the solutions are obtained numerically using MATHEMATICA. To thid,e¢he solutions of the
first two equations were determined. Interestingly, the results do not diffaificantly from those
using the log-normal distribution. The complete discussion can be found pergix D.3.3. The
deviations between experiment and prediction are obviously not due ® aisikkewed distribution.

4.5 Conclusions

In this chapter, the self-adaptive behavior of ES on the sphere modelvedyzed. First, ES using
intermediate recombination for the object variables and the mutation strengiltaresidered. After-
wards, self-adaptive ES on the noisy sphere were analyzed. Finallgntlysis was extended to the
second-order approach for intermediate ES on the undisturbed sphaearly all cases, the progress
measures obtained fd&¥ — oo were used. Therefore, the predicted and the results of experiments
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deviate. It remains a point for future research to includeXhdependent versions of the progress
measures into the analyses. The analysis on the sphere was mainly cdndiiletethe deterministic
evolution equations. The main drawback of this approach is revealedisydening (, \)-ES on the
noisy sphere: This approach cannot predict the irregular behaf/tbeanutation strength since no
perturbation parts are taken into account. The modeling assumption thattindaton parts can be
neglected is violated.

As mentioned, deviations of the predicted stationary mutation strengths froexgegiments
could be observed in high-dimensional search spaces for some chbitesparent numbers in the
noise free case. This only occurs for comparatively small values of dineitey rate. While the devia-
tions are not high, they indicate a point for further research. On fgkt,dhree possible explanations
come to mind:

e The neglectation of higher-order moments(@f — o*)/o*]* and higher-order powers of in
the derivation of the SAR.

e The distribution for the stationary state used in the ansatz followed.
e Using a normal distribution to model the perturbation terms.

The occurrence for small values of the learning rate indicate that thetidevig probably not due to
neglecting the higher-order terms ofin the derivation. A remaining cause may be that the ansatz
used is not the best approximation for the stationary state distribution. féhera normal distribution
for the stationary state was investigated, but the results obtained coulde rdistinguished from
the results using the log-normal distribution. Finding a better distribution renoai@f the tasks
for the future. Also, it might be interesting to investigate the effects of usiggen order Gram-
Charlier/Edgeworth series’ to model the the distribution of the perturbatids.pho the following,
the main results of this chapter are summarized.

In Section 4.1, a first analysis of the steady state behavior of self-addpti;.;, A)-ES on the
sphere model using the log-normal rule for mutating the mutation strength esaned.

The evolution of an ES can be described by the change of the distanceatitinézer and by the
change of the mutation strength. Therefore, the progress rate andfthdaggtation response function
had to be determined for the analysis. Both progress measures givepibetezk one-generation
change of the respective parameter (which is a relative change in thefdde mutation strength).

Neglecting the stochastic perturbation parts, equations describing théi@valfithe distance to
the optimizer and the evolution of the normalized mutation strength were obtaihede Equations
can be used to characterize the system in the stationary state of the normalitagbn strength.
Note, this does not entail a stationarity of tReevolution. The formulae used are generally asymp-
totically correct, i.e., they hold foN — oo. Therefore, the results are only approximate for low-
dimensional search spaces.

In experiments, multi-recombinative evolution strategies have been fourttbto & strong de-
pendency of the stationary progress rate on the learning paramefhis sensitivity depends on the
parental number and is in contrast to the behavior of the single parénh)-ES which operates on
a nearly optimal level for a wider range of the learning parameter.

An explanation for this behavior can be provided by a closer look at thatems describing
the stationary mutation strength and the stationary progress rate. Bothatietig of the learning
parameter coupled with the search space dimension.

The stationary mutation strength also depends on the maximizer of the progjeeasd the ratio
between the zero of the self-adaptation response and that maximum point.rigjniika stationary
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progress rate is a function of the maximal progress rate and the same fdlie.zero of the SAR
is relatively close to the maximizer of the progress rate, the stationary psogate is robust against
changes of the optimal learning rate. This is the case if there is only onatpadet while the
recombination of the object parameters strongly influences the maximum ptiietarogress rate, the
influence on the zero of the self-adaptation response is more muted (theeSétR to the aggregated
fitness). Furthermore, increasipgdecreases the zero of the SAR at first. As a result, only if the
parental number is close to one or close to the number of offspring, a mloustrbehavior can be
expected. In the latter case, though, the ES tends to divergent behavior

In addition, there exists an optimal normalized mutation strength and an optingaépsarate for
each {1/, \)-ES. Comparing these maximally achievable progress rates, one findsg depen-
dency on the relation between the number of offspringnd the number of parents As it could
be shown numerically [23, p. 226], f&¥ — oo and A sufficiently large, a relatiom/\ of approx-
imately 0.27 leads to nearly maximal progress rates. Therefore, evolution strategteadihere to
this principle can exhibit high progress rates, if the mutation strength adappatioess works nearly
optimal.

The performance of the ES depends on the learning paramefer optimal+ choice exists even
if the zero of the self-adaptation responrge = (1/2 + ei’,&)/cu/u,k and the maximum point of the
progress ratey, . = /1¢;/.n differ significantly. ForN > 1, 7,,,; is given by

2
1 HCu/un
2 1,1 °
V2N ,ucu/u,)\—l/Z—eu’)\

(4.116)

Topt =—

The optimal leamning rate scales ithiv/2N. If c,,n < (1/2 4 €,})/¢/pn0 the value of the
second square root is close to one. This is, e.g., the case for truncatimsof approximately.27
provided that\ is relatively large. This ratio is thg : A-ratio recommended on the sphere [7],
allowing to usel /v/2N and ensuring nearly optimal progress.

Problems arise if the learning parameter is not optimal since this may lead t@gsagtes that
are far smaller than the possible maximum. Of course, this does not mean tiselftadaptation
does not work in this case. For a wide range of the learning parametenutiadion strengths realized
will lead towards positive progress — albeit not with maximal possible speed.

Having said that, the question may be raised whether an intermediate recombafdatie muta-
tion strength exactly mirroring the recombination of the object variables mighiebetter replaced
by a different method.

Actually, an intermediate recombination of the mutation strengths seems to beessamcfor the
fithess environment considered here. This must be taken with a graiit,affssourse, since only a
deterministic approximation of the evolution equations was used and the formetaederived for
T < 1orr =0, respectively, andi — oo. Nevertheless, switching off the recombination totally and
just taking the mutation strength of the best offspring is not expected to leaddterioration of the
performance in the non-noisy case. The optimal mutation strength remaah&bda, since the zero
of the progress rate is still approached }r? — oco. In addition, the zero of the SAR as the limit of
the stationary progress rate fir> — oo is at least higher as it would be if recombination were used.
The improvement might not be really significant but it indicates that for tundied sphere functions
there appears to be no detectable positive effects stemming from the intelemed@nbination of the
mutation strengths. This of course, might not hold and is not expected tarhible case of different
fithess functions.

In Section 4.2, the self-adaptation df, )-ES on the noisy sphere model was investigated. To
this end, the evolution of the ES over time was described by the evolution englafist of all, the
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progress measures, the self-adaptation response and the praggéssito be obtained. Afterwards, a
deterministic approach was applied, i.e., the stochastic parts of the evolutiatices were neglected.

In the case of a constant noise strength three different phases of the evolution have been
identified. As long as the system is still far away from the optimum, the influefitemoise can be
neglected. As a result, the ES reaches a similar stationary mutation strengtihesaise free case
and the same recommendations for choosing the learning parameter apply.

Approaching the optimum, however, changes the situation. Due to the imgyeammalized
noise, the steady state of the mutation strength is lost. The progress ésaratisthe ES cannot get
any closer to the optimizer on average. The progress rate become$ aisroan be used to determine
the residual location error. There are two estimates that can be obtainedirst is associated with
a vanishing mutation strength, the other demands stationarity of the mutationtistesotution as
well — requiring the SAR to be zero. Interestingly, both estimates are very sigsiteecially if large
offspring population sizes are considered.

A remarkable observation is that thg, £)-ES is not able to stabilize the mutation strength al-
though the deterministic approach predicts a locally stable non-zero mutagmgtstr Instead its
behavior resembles a random walk where the mutation strength fluctuateehetve non-zero mu-
tation strength[ (4.51) and zero. A general preference of small vahrede observed. Since any
mutation strength between these two extremes leads nearly to the same residtiah lerror, the
estimates that were obtained lead to good predictions.

The reason for the behavior of,(\)-ES cannot be explained by considering the deterministic
approximation. Comparing the behavior of §)-ES with that of intermediate«/ 1.7, A)-ES, one finds
that the latter show a second stationary phase of the mutation strength osgstédm has reached the
vicinity of the residual localization error. The difference in the behaviatéarly due to the missing
recombination of the mutation strength. If the normalized mutation strength is eoalsig smaller
than the normalized noise strength, the ES is virtually unable to choose therajfen basis of the
actual fitness values. Instead — concerning the mutation strength — thisoselesimilar to a random
sampling of log-normally distributed variables.

Using intermediate recombination introduces a probabilistic preferencedsvear increase of
the mutation strength whereas an X)-ES de- and increases the mutation strength with the same
probability. Thus, /1, A)-ES will tend to increase a small mutation strength until it is sufficiently
large so that the information obtained by the fitness function is taken into atcodsifar as the con-
stant noise scenario is considered, this “bias” can be regarded agabtke property of intermediate
recombination.

The (1, A\)-ES on the sphere model has a slight bias towards a decrease of the msitaigth.
This explains the wandering behavior of the mutation strength. Introdudlighda counteracting bias
in the o mutation operator remedies the loss of step-size control to a certain extent.

While first insights into the mechanism of self-adaptation of ES on the noissrephere pro-
vided, the investigations are far from being complete. First, the considesalid not take into ac-
count the stochasticity of the evolutionary process explicitly. Especially ifatiye noise regime, the
deterministic approximation leads to predictions which are not fully consamviimthe observed dy-
namics. Therefore, incorporating fluctuations and solving the comelipg Chapman-Kolmogorov-
Equations remains as a task for the future.

In Section 4.3, the behavior of intermediat€ (.7, \)-evolution strategies on the noisy sphere was
investigated. To this end, the deterministic evolution equations were applieskefsin Section 4.2,
(n/nr, A)-ES have a slight preference for an increase of the mutation strength vghdue to the
intermediate recombination of the mutation strength. This bias leads to the exisfemestationary
state in the case of uniform noise on the sphere which can be describhgdhesdeterministic variant
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of evolution equations.

Let us sum up our findings: Intermediate recombination of the object Vasiand the mutation
strength introduces a strong dependency on the learning idieing the first phase of the optimiza-
tion process. Here, the ES can be assumed to be far away from the optmdutheanfluence of the
noise can be neglected. While the sensitivity with respect to the learning eatleasvback in compar-
ison with the robustness of ()\)-ES, recombination of the object variables enables higher progress
rates and a faster convergence. The learning rate can be chosepraiply, so that the ES adapts
an optimal normalized mutation strength.

In the last phase, noise overshadows the information of the fitness fanttivhis case, recom-
bination is the cause of two effects: Recombination of the object variablegsaimaller residual
location errors, whereas recombination of the mutation strengths leadsftwestly stable station-
ary mutation strength in contrast tb, \)-ES.

The usual recommendation of choosing: A ~ 0.27 still applies — regardless whether self-
adaptation in the noise-free case or in the case of permanent noise ideceds While this ratio
results in a high sensitivity towards the sizergfthe achievable progress is optimal. Additionally
in the noise scenario, this truncation ratio leads to a nearly optimal location arterestingly, the
predicted residual location error does not deviate far from a hypo#hatimimal value obtained for
a zero mutation strength. Recombination improves the deviation even more.

The analysis presented here is not complete. In Section 4.3, the effeatditée uniform noise
were investigated. Other noise models remain to be considered — for insietoe¢or noise where
the noise is not added to the fitness function but to the coordinates of tha eb@tor. Furthermore,
the effects of non Gaussian noise distributions would be interesting.

The progress rate and the SAR used were obtainef¥ fes co. In order to capture the evolution
more exactly, théV-dependent variants will have to be applied. Also, an inclusion of the nbation
parts in the evolution equations and an extension of the analysis similar to.[389pstill remain.
For the undisturbed sphere, Section (4.4) presented a first analysis.

In Section 4.4, the fluctuation parts were included in the analysis — approxgthgrunknown
distribution with a normal distribution. To proceed, the variances had to teneldl. In the case
of the R-evolution, the variance equals zero in the present analysis frameWeskations from the
deterministic approach only stem from th&-evolution.

The task of obtaining the mean value dynamics leads to recursive equatiarécim the raw
lower order moments depend on higher-order moments. Thereforesatzdras to be used setting
the distribution of the stationary mutation strength equal to a reference distnb his was done
for two distributions: the log-normal distribution and a normal distribution. ¢@oning the stationary
mutation strength, i.e., the expectation, both distributions lead to nearly the ssuite.re

Similarly to Section 4.1, experimental results for somg(;, 60)-ES were obtained. In contrast
to Section 4.1, however, no closed general formulas could be provithedsolutions must be obtained
numerically. Evaluating the stationary values as functions of the learningmdezlines the findings
of Section 4.1. Again, an optimal learning rate is clearly defined. Furthern8 withy : A-ratios
close to the recommendation 027 lead to the largest progress forvalues in the vicinity of the
optimal learning rate.

As said, the solutions evade an analytical treatment in general. FurtHgses)aherefore, were
restricted to specific choices of the parameters — for example either the paneber. or the learning
rater.

The remainder of the subsection was concerned with the effects of re@zatioh. For some
specific values of-, recombination with the usual : \-ratio was shown to lead approximately to
the smallest deviations from the deterministic prediction and to the smallest relatiaaces. The
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performance loss due to random fluctuations thus is nearly minimal for thties.r

Deviations between experiments and predicted values were obsented-fdimensional search
spaces. As a rule, the prediction quality improves with increasing dimension&8iyne further
relatively small deviations can be observed: For small values of the Igarata, predictions and
experiments deviate for ES with larger number of parents. Finding the exasé of these deviations
remains a task for future work. The same holds for an inclusion oMtteependency of the equations
in order to give more accurate predictions for low-dimensional seamtesp



5 Self-Adaptation on Ridge Functions

So far the focus was on the sphere modéy) = ¢(||ly — y||) which depends on one parameter
only: the distance to the optimizer. In this section, ridge functions are corsid&hey can be seen
as an extension of sphere functions since they contain a linear gainnpkat megative sphere-like
component. General ridge functions are defined in the following way.

Definition 5. The general ridge function with axis directienand parametera andd determining
the shape of the ridge is given by

For(y) = viy-— d(\/(VTyv —y)T(vTyv — y)) (5.1)
with d > 0 anda > 0. The vectorv € RY with ||v|| = 1 is called the ridge direction. O

In this chapter a rotated version of the general ridge function is corsiddn the case of the
rotated ridge the ridge axis is aligned with the coordinate @x[22].

Definition 6. The rotated ridge function aligned with the coordinate axes has the form

a/2

Frly) = yl—d<§:yi2> - (5.2)
=2

O]

The parametenr determines the degree of the ridge function and the general topology of the
fitness landscape. A ridge function with= 1 is called a sharp ridge (see. Fig. 5.1). The parameter
d determines the angle by which the isofitness lines intersect with the ridge akihemefore the
“sharpness” of the function. A ridge function with= 2 is called a parabolic ridge (see. Fig. 5.2).
Again, d determines the form of the isofitness lines. In general, i 0, the problem degenerates
to the hyperpland’(y) = y1, whereas for increasingthe isofitness lines appear as more and more
parallel to the axis and the problem approaches a sphere model\yth= —d(Zf\LQ yf)"‘/Q. The

N — 1 terms which make up the sphere component of the ridge can be interpretedvVas- 1)
dimensional distance to the axjs. To simplify the notation,

N 9 /2
Faly) = m—d(>v?)
i=2
= f(z,R) = z—dR" (5.3)

is used for the remainder of this chapter.

Ridge functions do not have a finite optimum and therefore may be condideréill-posed”
problem for ES/[9]: Since the “optimum” lies in infinity, the fitness of the ES messteadily in-
creased. Improvement is possible in many ways. Generally, there arddgwpoints that may be
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taken [22]. First Oyman'’s viewpoint is taken into account [79, p.32]shigs that the “object variable
for the optimum [...] reads

f1—>OO, Vi#l:fizo.”

Note, Oyman uses instead ofy to denote the object vector. This viewpoint derives its justification
from seeing ridge functions as the limit of

N a/2
Fy) = m—ci—d( Y u?) (5.4)
=2

for ¢ — 0 (cf. [79,/22]). For every finite:, F.. has an optimal point atl/(2c¢),0,...,0)". If ¢
decreases, the position on the axis moves towards infinity.

Evolution strategies use local information. They sample the search spatenmly and select
the p best offspring, i.e., the highest fithess values they have found. This is the foundation of the
second viewpoint wich takes a more process oriented view. The ridgendd@ave a finite optimum.
The algorithm is required to increase the fithess perpetually. This doesoessarily mean that is
has to find the ridge. Although the highest fitness value is on the axis foy éuaée interval, the
situation changes if an unbounded search space is considered. Adtuallyot even necessary to
require a finite distance to the ridge. Since the search space is infiniteateendinitely many points
in arbitrary distance to the ridge for each position on the axis with exactly the fitness. As result,
the ES may diverge from the axis — as long as it increases the linear conigasier than the loss
components. In addition, this does not mean that the progress is sloweulassace moving away
from the axis may allow for higher step lengths.

As it will be shown, evolution strategies may actually exhibit both behaviangng to converge
to the axis or diverging from it — enlarging the axis-component fastertti@loss components.

This chapter is organized as follows: First, self-adaptation on sharg figigtions is considered.
Afterwards, the parabolic ridge serves as an example for self-adaptatiddge functions of higher
degree. Finally, the case of ridge functions disturbed by noise is amdtes

5.1 Self-Adaptation in the Noise-free Case

As mentioned, this section is devoted to an analysis of the self-adaptatiovidrebfaevolution
strategies on undisturbed ridge functions. Again, the analysis makeg thee @volution equations
introduced in Chapter 3. Two ridge functions serve as representafivies function class: the sharp
and the parabolic ridge.

5.1.1 The Sharp Ridge: Convergence or Divergence

The sharp ridge is characterizeddy= 1 andF (y) = y1 —d(> N, yi)'/? or f(x, R) := = — dR.
It has been reported [57] that self-adaptive ES fail on the sharpme sases by reducing the mutation
strength so far that no significant progress is observable anymoree ®ia “optimum” of the ridge
lies in infinity, the ES can be said to converge prematurely. This behaviort isestricted to self-
adaptation. Other adaptation schemes are also known to reduce the mutatigthsprematurely —
unless modifications are introduced. In the case of CSA-ES, it was fii@jdhat the behavior is
determined by the choice of the ridge parameteDepending on the size af(i.e.,d < 1,d > 1),
either a convergence towards the axis or a divergéhee oo occurs. It will be shown that in the case
of self-adaptationd appears again as the decisive parameter and furthermore that the caiticabf
d depends on the population paramefeend\.
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a)d =2 b)d = 0.1

Figure 5.1: Contour Plots of the sharp ridge fore= 2, d = 0.1, and N = 2. The ridge axis aligns
with the z-axis. Brighter grey tones indicate better fitness values.
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Figure 5.2: Contour Plots of the parabolic ridge dor 2, d = 0.1, and N = 2. The ridge axis aligns
with the z-axis. Brighter grey tones indicate better fitness values.

The Evolution Equations

The behavior of self-adaptive ES on ridge function can be charaeteby three variables: The
position with respect to the axis, the distance to the axiB, and the mutation strengl(h(g)>. As
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before in Chapteér 3, the deterministic evolution equations are used in thesianalgtz(9) = (2(9))
denote thez-component of the centroid of the population at generagiorSimilarly R := R
denotes the distance of the centroid to the axis, wherdasa short form forr := Rt The
parameter* := N (¢(9)) stands for the mean of the mutation strengths in generationormalized
with respect to the search space dimensionality. Similaty;= N<g(9+1)> denotes the mean in
generationg + 1 unless the dependence on the generation number shall be emphasizeeforks
high-dimensional search spaces are considered. This allows to idahtifyt with N. Accordingly,
the normalized evolution equations read

1 * *
ro= R- N‘PR(U . R)
<§*(g+1)> — 0_*(1 + ,‘/)(0_*’ R)) ) (55)

The progress ratg}, and SARy are obtained in Appendices B.2 and C|1.2 (or C.1.3, respectively) as

*2
dey/ux ot

oN(c*, R) = — 5.6
R(J ’ ) V14 d? 2Ru (5.6)
forr =0andN — oo and
1 Cru/p d?
Y(o*) = 712 (2 + e/lﬁ’i\ _ TnlmA T U*) (5.7)

for N — oo andt <« 1. Both performance measures are influenced by the ridge paradrater the
sine of the slope angle of the gradient vector

Vin(e.R) — (_1 d) (5.8)

with respect to the:-axis. The larger th@-value, the steeper the slope and more and more weight is
put on the linear components in (5.6) and (5.7): #or oo, both performance measures converge to
their sphere model equivalent. Ror— 0, the optimization of the ridge is transformed into optimizing
the linear function inz: Expected progress towards the axis does not occur anymore andfhis S
strictly positive.

The progress ratg; measuring the progress on or parallel to the axis is given by

Cu/p,\
*(o*) = AO’* 5.9

(cf. Appendix B.2) and is obtained under the same conditions ds (5.6).

As the SAR|(5.7) and the progress rate (5/6), (5.9) is influenced by the ciwhstand. This time,
though, it is the cosine of the gradient angle that exerts its weight.

As Egs.[(5.5) -/(5.7) and (5.9) show, there is no feedback of the evnlafio(@) on those of the
other state variables whereas the change©fis governed by the mutation strength. As consequence,
the analysis is continued with considering the systerffff 1), (¢*(9+1Dy)T

(g+1) R— ¢%(R,0*)/N
<<§(Zi)>) - ( 0*<1¢f¢(R’ U*)) ) : (5.10)
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First of all, it should be noted that (5.10) with (5.6) and (5.7) permits negatiues in contrast to
described process itself. Therefore, first the zero points of the temolaquations are obtained. As
can be seen, in the case of tReevolution, the variabld(9+1) might be negative if

1
0 > R— —pr(c")

= N

c )\d 0.*2
=0 > R— AT 5.11
- NV1 + 2 2uRN (-11)

leading to the zero points

d 2
- o d 2.2 47
012 = R(mp’cu/uv\ + \/’u Cufp 1+ d2

which are not defined iR if N > (1/2)“Ci/u \(@?/(1 4 d?). If the search space dimensionality is
sufficiently large, the deterministic evolution equation only admits positive resnltee case of the
SAR,

- Q/LN) (5.12)

0 < U*(1+¢(a*))

Lo o CGwywn  d

1, 11
Lot o R(\/ler2 +(2+6“/A>V1+d2)
deyuat? Cu/pA d

must hold for positivéc*(9+1)). As it can be seen, the relation between mutation strength and distance

is decisive. The mutation strength must exceed the zero point of the SAR{ulthermore, it has

to be considerably greater th&ly 2. Choosingr sufficiently small, increases the admissible region.

The SAR|(5.7) decreases linear with the mutation strength, though. Tooartgéion strengths result

in a negative answer of the evolution equation. As it is shown later on, teis miat occur, actually.
Considering the deterministic difference equation system (5.10), thediestign to be addressed

is whether the system comes to a halt; in other words, whether stationary @astts

Stationary Points

Stationary points are characterized(bf9 ™)) = (¢*9)) andR(¢*+1) = R Considering (5.10),
the progress rate (5.6), and the SAR (5.7), a stationary state requiresaitbro mutation strength
or that the zero op*%, (5.6),

. d
Sero QMCM/MJ\W R (5.13)
and the zero of), (5.7),
\ 1/2+ €, 5\ V1 + &2

Cu/pA

are equal. Note, both are linear functiondinAs a result, they do not intersect in general for positive
distances. Only in one singular case, there are stationary points of (&ithO positive mutation
strength: A stationary state with a non-zero mutation strength of system &is@ if and only if
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2e,7 +1
d= dcrit — 9 : 1,1 (515)
e s 28 ]

holds (see (5.13) and (5.14)). Otherwise, there is no stationary paiapex* = 0. In the situation
of (5.15), (5.13) and (5.14) overlap as functionsfof- creating a single linear function iR. For
every R there is a mutation strength for which the whole system comes to a halt. As restilerra
stationary distance nor a mutation strength can be determined. The expgemte@s indicate that the
stationary state line serves as an attractor. But where the system conmsgiepends on the position
in the search space. Furthermore, the ES is subject to random pertusbatiach the deterministic
equations neglect. Due to perturbations, the stationary state will be left. yBtensis expected to
return to the line but to a different position than before. As a resuliffomoices close to the critical
value, a meandering behavior of the ES is expected.

The parameted,..;; depends on the population paramejeend) and is largest (i.e., close to one
for most choices of) for u = 1 or i close toA. The A-dependence af...;; is relatively weak which
shall be illustrated exemplarily for d,(\)-ES. In the case of extremely small offspring population
sizes, i.e.\ < 3, the criticald-value is greater thah, going down to~ 0.936 around\ ~ 12 before
approaching again forA — oc. The latter approach is extremely slow, though.

The dependence on the size of the parent population is more prono@wiching fromy = 1
to u = 2 lowers the criticaki-value about= 40%. This trend translates to the usyal: A-ratios:
Compared tq: = 1, recombination decreases the critidatalue as Fid. 5/3 illustrates for the case of

(11/pr, 10)-ES.

The Influence of d

Thed.-value (5.15) is a critical point for system (5.10): For all choideg d...;;, the deter-
ministic system|(5.10) does not come to a halt for strictly positive choices ahtltation strength.
As already observed in various experiments, there are two oppositgitveshaf the ES. Either it
converges prematurely — approaching the axis and reducing the mutaéiogthtn the process or it
diverges from the axis — increasiag and R. The size of the parametérdetermines which behavior
occurs: Ford > d..;; (5.15), the variable& and¢* are expected to decrease, whereasifer d...;;
they are expected to increase.

Figure 5.3 illustrates the behavior of evolution strategies for severalehofg:. Forp = 1 the
results diverge with the exception df= 0.9 (critical d-value0.936). In the case oft = 3 with a
critical d-value 0f0.418, all runs withd < 0.5 diverge whereas fot. = 5 only the runs ford = 0.2
diverge. The criticall-value in this case i8.318.

The causes for these behaviors are investigated in the following. Leamsvith Fig. 5.4 which
shows the isoclinegy}, = 0, (5.13), and) = 0, (5.14). Both are linear functions iR and influenced
by the sine of the gradient’s slope angle

Vir(e,R) = (fd)

But the influence ol on the zero of the progress rate is reciprocal to its influence on the SAR.
Increasingd decreases the zero of the SAR, but increases the zero of the ogtesBoth values
approach their sphere model equivalent and the influence of the liadasfjphe ridge is lessened. On
the other hand, decreasingowers the zero of the progress rate since more and more weight is put
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on the linear component of the ridge. The zero of the SAR increases inmtiirihe SAR is finally
strictly positive which is required in the optimization of linear functions.

Self-Adaptation sees the fitness as a whole and thus the compromise of thetiddhe sphere
component. It does not generally focus on a positive lateral proga¢ss It is shown later on that
concerningl, the zero of the SAR behaves in the same manner as the optimizer of the quatiggech
(expected change of the fithess). Concerning the zeros of the psagte and the zero of the SAR, the
different dependence ahcan cause the zero points or the isoclines, respectively, to switch rales: F
d < derit, (5.14) is greater than (5.13). Fér> d..;;, the zero of the progress rate (5.13) dominates
the zero of the SAR (5.14) as in the sphere model case.

Consider now Fig. 5/4. On the one hand, if the system (5.10) is on theliae0, (5.14), the
evolution of the mutation strength comes to a halt. A change can only occuidgechthe ongoing
evolution of k. On the other hand, on the ligg;,, there is no change iR and the system only moves
due to a change in the mutation strength

Considering the SAR, remember that for mutation strengths smaller than thefzeeoSAR, an
increase is expected whereas for mutation strengths greater then tla zsqmected decrease occurs.
Translating that for Fig. 5.4, the area belgw= 0 is characterized by a positive SAR and an expected
increase of the mutation strength which is indicated by the upward arrowarBaeabove) = 0 is
characterized instead ljy*, R)"-combinations for which the SAR is negative and thus a decrease of
the mutation strength is expected. This is indicated by the downward pointimg. arr

Similarly in the case of the progress rate, the area beigw= 0 is characterized byo*, R)
combinations for which the progress rate is positive. Because of thatefiof the progress rate
¢} = NE[R — r|, positive progress is connected with a decrease of the distance.fdreefzelow
% = 0 a decrease of the distance is expected (which is indicated by the left pcantowgs in Fig.
5.4). Finally, once(c*, R)" is above the linep}, = 0, an increase of the distance to the ridge is
expected — indicated by the right pointing arrows. The figure of the is@ctiag be used to illustrate
the key features of the behavior of the system rather easily. First okeallirthat the choice of
decides which isocline dominates the otherd I& d..;;, the plot ofy) = 0, (5.14), lies above that
of ¢}, = 0, (5.13). Ford > d.,i, the opposite situation occurs. This results in different movements
in the area between the two isoclines — the area system (5.10) will eventualyyintowas Fig! 5.4
shows:

Regardless of whether < d..;; ord > d..i;, the deterministic systerfo*, R)" leaves regiorn;
and/, via I3 for g — oco. Regionls cannot be left again. @ > d..;;, system[(5.10) moves towards
the origin — decreasing® andR. If d < d..;+, System/(5.10) moves towards infinity — increasing
andR.

Let us illustrate that by example for Fig. 5.4 a). Here, the isodlipe= 0, (5.13), is above
the isoclineyy = 0, (5.14). This equals the conditiah > d..;;, (5.15). If the system (5.10) starts
in the area below) = 0, the SAR and the progress rate are positive. As a result, the mutation
strength increases and the distance decreases. The system movds theéiney) = 0. Once this is
reached, the*-evolution temporarily stops. But since tReevolution still progresses and the distance
decreases, the isocline= 0 is crossed and the system enters the area between both isoclines. There
it remains and approaches zero. Thereforesfor, (5.13),> <7 , (5.14), i.e., ford > dcit, the
system inR and¢* approaches the origin witR — 0, ¢* — 0 as in the case of the sphere.

The opposite behavior appears fox d..+, (5.15) (see Fig. 514 b)) and , (5.13)< ¢ (5.14).
Again, the system reaches the cone definegpy= 0, (5.13), and) = 0, (5.14), and cannot leave it
again. But once it is inside, due to the expected increases of the mutatiogtisteand the distance it
moves into the opposite direction — going to infinity.

What does the behavior df (5/10) mean for the ES? The size of the paraingtih respect to
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drit, (5.15), decides whether a premature convergence occurs. Thalaitie ofd depends on the
choice of the population parametgisand A. Introducing recombination, i.ey > 1, lowers the
critical d-value forp 5 A. That is, a premature reduction of the mutation strength can be modified to
some extend by using non-recombinative strategies. Summarizing, thetehistacs of self-adaptive

ES on the sharp ridge are the following:

1. There is no feedback of thé?)-evolution on the evolutions dt*(9)) and R().
2. The evolutions ofc*(9)) and R are coupled.

3. Because of this, the evolution of the mutation strength is kept betweenrthefzbe progress
ratey’ and the SARp.

4. Both variables are influenced by the constant gradient of the ridfjthas by the ridge param-
eterd.

5. Concerningl, the zero of the SAR follows the optimizer of the quality change — a behavior no
shown by the zero of the progress rate as it is shown in the next section.

6. The size off with respect tq. and \ decides whether the ES operates with mutation strengths
that lead to a positive or negative progress rate.

The first situation connected with positive progress towards the axiés@sa premature convergence
whereas the latter causes the ES to show in a way the behavior requireditrieiss is on average
increased and increased as the next section illustrates.

Divergence: The Influence of Recombination

If the ridge parameted is sufficiently small with respect ta and u, a self-adaptive ES does
not converge prematurely but increases the distance to the ridge and thmmsii&ngth. The first
question that arises, though, is whether the ES has a positive qualityechtigs is true it would be
interesting to know whether the ES is able to travel with nearly optimal speed.

Potentially Too Small Mutation Strengths So, letd < d..;#, (5.15), and consider the expected
change of the fitness from one generation to the next. This performarairee

AQ = E[F((yt))) — F((y9))] (5.16)

is called thequality change Using the same normalization as before, i.e., setfiqgf = NAQ, it
can be easily given a8Q*= ¢} + dy%, since the sharp ridge is considered. Using the progress rates
(5.6) and[(5.9), the quality change reads

d
BT = V1t @ - moc? (5.17)
2Rpu
Its optimizer is given by
. V1+d?
Sopt = C,u/u,/\R:u d (5.18)

and scales with the distance to the axis. In addition, the quality change is pdsitimutation
strengths in the interval, 2Rpuc,,/,, xV'1 + d?/d[. So, first of all as long as self-adaptation leads to
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Figure 5.3: Results fromu(/ 1.1, 10)-ES runs for the first00, 000 generations for several choices of
d (N = 100). Shown is ever0th value. Each data line is averaged o¥@runs. Also shown is the
span between the minimal and maximal values.

mutation strengths inside this interval, the expected quality change is positit.this is actually
the case can be shown again by taking a look at Fig. 5.4. As the figuressheS —i.e., the system
in o* and R — is expected to remain in regidp in the long run. The maximal mutation strength the
ES can attain there is the SAR’s zero

P R<1/2+€,1j,1x>\/1+d2
v Cu/pA d

(seel(5.14)). Itis interesting that both the zero of the SAR and the optinfitex quality change show
the same scaling behavior with respect to the gradiefit(x, R) = (1, —d)": Both are influenced
by the reciprocal of the sine of the angle. Again, this is due to the fact ¢laddaptation sees the
fitness as a whole. In terms of changihghe zero of SAR thus behaves as would be optimal for the
quality change. A similar result holds for the dependencé&paf course.

Taking a closer look at (5.18) and (5/14) reveals that apart from tleeo$ithe angle, the situation
of the optimizer of the progress rate and the zero of the SAR on the sphalel mappears (cf.
Section 4.1] 33ff). It can be shown by case inspection that for a lomgeraf -values (except for
p=1oru= M) is quite smaller thaw,, [74] (cf. Fig. 4.6, p/ 45) and of course smaller than the
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Figure 5.4: The isoclinegy}, = 0, (5.13), and) = 0, (5.14) as functions of the distance to the ridge
R for (1,10)-ES witha = 1. In a) region/; is characterized bAR > 0, A¢* < 0, I by AR < 0,
A¢* < 0, andl3 by AR < 0, A¢* > 0. Possible movements between the regions/are> I, and

I, — Is. Itis easy to see thd and /s will be left eventually. The regioi, cannot be left and the
system inc* and R approaches the origin. In b) regidnis characterized bAR > 0, A¢* < 0, Iy

by AR > 0, A¢* > 0, andl3 by AR < 0, A¢* > 0. Possible movements afe — I, andls — Is,
but I> cannot be left. The system diverges to infinity.

second zero of the quality change.

This has two effects: Self-adaptation is not expected to falil, i.e., to lead tgatives quality
change. But only in the case of one parent the ES has the potential teerealiation strengths
relatively close to the optimizer — at least theoretically.

This does not necessarily exclude benefits due to recombination, thBugihif a recombinative
strategy cannot reach its optimal mutation strength, the quality change asdagith the mutation
strength realized may be greater than that of the non-recombiriati%e-ES.

Normalizing the Evolution Equations To answer the question, whether recombination on the
sharp ridge is beneficial, the analysis must be extended. As it was shiosvioptimal mutation
strength scales with the distance to the axis. Assuming that self-adaptatike sudficiently well

to adjust at least to this scaling behavior, it is postulated{kl'féi)> ~ ¢RY. In other words, if the
normalizationo™ := ¢* /R is introduced, the existence of a stationary state of the normalized system

Rlg+D) R(l - %@*(U*))
<<§*(g+1)>> = 0*( (o) ) (5.19)
1—¢* (%)
with the normalized progress rate
deyun o*?
(o*) = —L0"— 5.20
and its second zero
. d
gSﬂR == 2,UJCM//L7)\W (521)

is assumed. Note, the mutation strength= ¢*/r is normalized with respect tR(9+1) = R(1 —
©* /N) thus introducing the denominator in the second line in (5.19). The equatidthefonutation
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strength normalized with respect iy
o 1+9Y(07)
7 (= SOE(C*)/N)
. <1 +72(1/2 + e;’})\ - \/117%/#7,\0*»
= O

_ Ll d w _ o*?
1 N(‘/71+d2 Cu/u o 2u>

<§>k (g+1)>

(5.22)

(see (5.7) and (5.20) has a stationary point wigH9™)) = o*. Stationarity requires% (%) =
—N1(s},) which leads to a stationary mutation strength

* d? 2
Sst = 1_+_d2'u'cﬂ/#7)‘<(1 - N7 )

1+d2\ 1/2+ €.
) -

(5.23)

| (1= Nr2)2 4 2N7’2( 5
i
B/ A

as is illustrated in Appendix|E, p. 215, Egs. (E.3)-(E.6). The learningrratmtrols|(5.28) — variating

it between the zero of the progress rate and the zero of the SAR. Basmaiter than the zero of the
quality change. Decreasingdrives the stationary mutation strength towards the zero of the progress
rateg;;,éo = 2pcy,/u \(d/V1+ d?) (5.21), while increasing the learning rate results in the stationary

mutation strength going to the zero of the SAR = (v/1+ d?/d)(1/2+¢,7) /¢, - Thatis to say,
the maximal possible mutation strength cannot be attained in the stationary sfatidat. Equation
(5.23) is connected with a expected positive normalized quality change

N Ar 1,1
AQY, = du 1+d2\1/2+¢;
:t d Ci/u,)\ ((1 NT2) J (1 — ]\[’7'2)2 + 2N 7‘2( 7 ) A )

d2
X (1 T ((1 — N72)

11
J (1—N72)2+2N72<1+d2)1/2+€“”\>>. (5.24)

2 2
d FCu A

2
c
TR

Recombination and the Stationary State ~ The system behaves similarly as if the ES were on the
sphere. Unlike to the sphere, though, a divergence of the distanoesdocd < d...;;. Furthermore,
the zero of the SAR is greater than the zero of the progress rate anid dggianaximal mutation
strength that can be reached in the stationary state.

The question that remains concerns potential benefits from recombinagwan-if the actual
optimal mutation strength with respect to the quality change is unattainable. Traigrgph aims
at shedding some light on this question. Recall that increasing the leaatmgesults in greater
stationary mutation strengths and with it in higher quality changes. Operatingaeilattively large
learning rates is advisable regardless of the strategy applied. But in sieistba influence of the zero
of the SAR may outweigh that of the zero of the progress rate.
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Let us first consider (5.23). For increasingalues the stationary mutation strength behaves more
and more like the zero of the SAR. Concerning recombination, this is nofibiahsince it is largest
for =1 or u =~ X\ (cf. Section 4.1).

To an extent, the quality change (5.24) behaves differently, since treeaglditional dependences
ony as Figl 5.5 illustrates. But faN72 — oo, the effects of recombination of the quality change can

be easily examined by plugging (5.14) into (5.15)

AQ*(g;ZO)’ _ (1 + d2) <1/2 + ei’,lA) (Cu/m)\ _ 1<M\)) (5.25)

d Cpfp\ 2N Cuspun

Interestingly, there are cases for which using recombination leads totades if\ is sufficiently
large. But theu which optimizes[(5.25) is extremely small in relationXe- ranging fromu = 1 for
very smallX values ovep = 2 for A = 13 to u = 5 for A = 100, 000.

Benefits from recombination appear for sufficiently smallalues. As long as the stationary
mutation strength behaves approximately as the zero of the progresgcatapination increases the
stationary mutation strength until~ X\ /2 and the stationary quality change unptik: 1/5,...,1/3\.

But the improvement by increasingsurpasses the improvement by recombination with this ratio by
far.

Figure 5.5 compares the stationary normalized mutation strength (5.23) witrsthts ref experi-
ments for two choices af. As can be seen, the larger thevalue, the smaller the numbgifor which
the quality change starts to decline which is in accordance with the experinehtg.8.5 shows.
Also visible is the influence of the learning rateon the prediction quality. Observed and predicted
values are close together for smaller learning rates. In the case of tlee leagning rate, greater
deviations occur. The behavior as a function of the parent numizevery similar, though.

5.1.2 The Parabolic Ridge: A Stationary State

Let us now consider the parabolic ridge, i€~ 2 andF(y) = y; —d(ZiN:2 y?)=:r—dR* asa
representative of ridge functions with> 2. As in the case of the sharp ridge, we start considering the
deterministic system i ando™*: The deterministic evolution equations in the case of the parabolic
ridge are given by

o= R o)
) = (1490, R)). (5.26)

The progress ratesy,, %, and the SAR) were obtained in Appendices B.2.2 and C.1.2 as

daR*" e, o*’

R0 R) = = 5.27
SOR(U ’R) \/WU 2R/J/ ( )

and

* [ K _ CM/IM)\ *
P R) = o (5.28)

1 Colpn PolR2a—2
Y(o*) = 712 ( + ei& — ug \/1 Pl o |. (5.29)
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Figure 5.5: The stationary mutation strength (5.23) and quality change 6risOme(s/ .z, 10)-ES
with self-adaptation on the sharp ridge. Each data point was sampledlddv@00 generations. Figs.
a) and b) show the results fof = 30, c) and d) those foN = 100. The quality change is given by
the red line.

First of all, note that the influence of the distance to the ridge is differanpaoed to the case of the
sharp ridge. Consider first the progress rate (5.27). In the case sh#ip ridge, the distanégonly
influenced the loss part of (5.27). Now, it also appears in the gain gentla8y, the linear part of the
SAR is influenced by an additional function of the distance.

The R-Dependence of the Zero Points

Let us start with the evolution of the mutation strength. The present mutatiogy#tris increased
if the value of the SAR/(5.29) is positive and decreased otherwise. TH® iSA monotonously
decreasing function ig* with only one zer@ng0 which depends on the ridge factors oderR*~! and

furthermore onk = R

R1/2 + ei’i \/1 + a2d2R2a—2
Cofun a2d2 R20—2

«sph 1+ a2d?R2—2
= S 2dZR2a—2

(5.30)
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The zero (5.30) only differs from the normalized (with respechipzero of the SAR for the sphere
model

1,1
R1/2 +e,)

Cu/pA

*sph | _

= (5.31)

(seel[74]) by the square root which equals the reciprocal of the ihe glope angle of the gradient.
It is easy to see that

i o 1/2 + e,/ . \/ 1+ a2d2R%2
im = — P22 lim {\/—————— =00
R—o00 (wo C,U/Mv)\ R—o0 a2d?R2a—4
00 if > 2
e 1/2+ey .
11{13) Shy = W/:; ifao=2 (5.32)
0 fa=1

holds. As one can see, it increases, the SAR (5.29) tends to increase the zero of the SAR in turn.
That is, larger and larger mutation strengths are expected to lead towarisease. For decreasing
distances, there are two different behaviorsdor 2. In the case ofv < 2, the zero of the SAR goes

to infinity asR — 0. In the case ofv = 2, taking the limit of the zero leads to a strictly positive value.
All mutation strengths greater than this limit value are expected to increasemploetant point is

that the ES maintains a strictly positiv@0 — provided thatx > 1. In the case of the sharp ridge it
goes to zero. These behaviors can be traced back to the local sttapeidfe, i.e., to the gradient at
R,Vf(z,R) = (1,—daR1)T. Let us reconsider the SAR (5.29)

., daR*! ‘L*)
/1A /1+(daRa—l)2 R/

The slope of the gradient of quadratic (or higher) ridge functions mi#pén stark contrast to the
sharp ridge on the distance to the ridge axis. If the distance is large, theé&s&Ribles its sphere
model equivalent. As the distance to the axis decreases, the angle batigand gradient becomes
smaller. The sine approaches zero and counteracts to some extendntiaé re@ction of the sphere
model to increase the loss partalf> 2, the SAR behaves as it is required for linear functions: Every
mutation strength is increased. In the case of the parabolic ridge, the re&ctldferent and falls
short of the requirement for linear functions since only mutation strengihfiey than a distinct value
are increased and otherwise decreased.

The R-evolution remains to be considered. The progressgt€s.27) is strictly positive in the
intervalc* €]0, 2Ryt ¢, \ v/ (02d?R22=2) /(1 + o2d?>R?>*~2)]. The second zero of the progress rate

(5.27) reads

viot) =7 (1/2+ ¢}

2R R22
g:’RO = 2RMCM/M7>\\/1 + a2d2R20—2

sph a2d2 R2a—2
§*<ppR \/1 T a2d2 R2a—2 (5.33)

with

<*fop£ 1= 2Rpcy (5.34)
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denoting the normalized (with respectid zero of the progress rate in the case of the sphere model
[23]. Again the zero of the sphere model appears weighted in this cabe Isjne of the slope angle

of the gradient and not by its reciprocal. As a result, it can be shownitbatero of the progress rate
behaves in accordance with the distance to the ridge, i.e.,

; i 22 R2
A Son = 206 0 A T olPRe—2
A2d2R2a
Il%lg%) Sorn QMCH/M,\ hm \/1 TRER 0. (5.35)

As seen, one of the first obvious differences between the sharp(ridgel) and higher-order ridge
functions (v > 2) is that only in the case of the latter, the SAR (5.29) eventually stops the mutation
strength from following every decrease of the distance. Furthermohefar o = 1 both zeros (5.30)

and (5.33) are linear functions iR.

A Stationary State

Figure! 5.6 illustrates the behavior of the*, R)"-system depicting the so-called isoclines (see,
e.g., [33])¢5 = 0 andy = 0 as functions ofR. The area below the isocling = 0 is characterized
by (o*, R)"-combinations for which the SAR is positive and the mutation strength is expezted
increase. Similarly, the area belawy, = 0 is characterized by a positive progress rate and thus by
an expected decrease of the distance to the ridg® ilfcreases, the SAR tends to increase larger
and larger mutation strengths. This effects in turnfhevolution. Here, the zero of the progress rate
increases as well. Mutation strengths that result in an expected deofdlaselistance are increasing.
On the other hand, iR decreases, the zero of the progress rate decreases as well. Mutaingths
that would increase the distance are thus also decreasing. But the gateswiar of thex*-evolution
is either to increase an increasing range of mutation strengths or at leagtreutation strength
smaller than a limit. Thus, neither a convergencezof- 0, i.e., a convergence to the axis, nor a
divergence ofR — oo occurs.

As Fig./5.6 shows there is a stationary state of theR)"-system. In the stationary state tite
and theR-evolution come to a halt (on average) — i.e., the evolution strategy is expgediedtuate
at a certain distance to the axis. Apart from the trivial stationary stateqtith 0, the stationary
state is characterized by requiring that both the SAR (5.29) and the progrep3, (5.27) are zero.
Therefore, the stationary states of the system (5.26) are given by

Rst C
(&) = () 639

with an arbitraryc € R and

1 1/2+eu,>\
9% 2 1,1
Rst a 2d 2MCIL/H5>\_1/2_CP‘7)‘ (5 37)
* - 1,1 -
Sst V20 1/2+e
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Figure 5.6: The zero points of the progress rateand+ as functions of the distance to the ridge
R for (1,10)-ES withd = 1. RegionI; is characterized bAR > 0, A¢* > 0, I by AR < 0,
A¢* > 0, I3sby AR < 0, A¢* < 0, and finallyl, by AR > 0, A¢* < 0. The system either leaves
every regionl; again, i.e., it oscillates, or it converges to the equilibrium point.

in the case ofv = 2 and

Lzretd 1/(2a—2)
(Rst) _ a?d? (QHCi/u,A_l/Q_eillx\) (5.38)
Sst 2u(1/2 + ") L2 R
H wA\ a2d2(2uc2 ,  —1/2—e)})

for generaky > 1. The derivation can be found in Appendix E.1.2. In [19] an estimate oft#i®aary
distance of CSA-ES was obtained for the parabolic ridge, i.eqfer 2, Ry, o 1/(2d) which also
reappears in the case efself-adaptation. Concerning the ridge constgnboth mechanisms show
the same behavior. Again, a similarity with the situation on the noisy sphere muukesis [25]. On
the noisy sphere, the stationary distance scales with the standard deviaigmgtrength) of additive
normally distributed noise, i.eRs; « o.. Therefore,1/d, the inversion of the weighting constant
of the embedded sphere, seems similar to the noise dernA further similarity is of course the
stationary state of both evolutions — the evolutionfodnd the mutation strengtii. The stationarity
of the latter has an additional effect: Dueyto= 0, the learning rate does not have any influence in
the stationary state at least/if (5.29) is used. It is interesting to note a fprieerty of the stationary
state in the case of the parabolic ridge provided m@ﬁ/w >1/2+ ei’}x This condition holds for
example for sufficiently larga and for recombinative ES with the usual ratiqof A, i.e.,u % A and

u # 1. In this case, the stationary distance and and mutation strength are veryaclos

1,1
R 1 1/2+eu7)\
\/ 2
< appr) _ 2d 2/1‘6#//{-3\ ) (539)
1 1/2+6u:A

2d Cuyp

*
Uappr

The approximate stationary distancelin (5.39) is formally equal to the sgo@trefrthe quotient of
the zero of the SAR1/2 + GZJ}A)/%/M,A _(4.17), p._, and the zero of the progress e,/
(4.13) in the sphere model case. The difference is the appearaneerafgh constant in (5.39).
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The mutation strength in (5.39) is the zero of the SAR (5.29) obtaine®fer 0. As far as it
concerns the SAR and the evolution of the mutation strength, the situation aatlomary state does
not differ much from the hypothetical case that the ES is on the axis itselfdnachieved the subgoal
of optimizing the embedded sphere.

As was shown, in the case of the parabolic ridge, the system admits a statsbate with a
strictly positive stationary mutation strength and distance to the axis. Unlike fgecfahe sharp
ridge, neither a convergence to the axis nor a divergence of the distemears. The parameter
is still important since it determines the steady state distance to the ridge and wihnitutiation
strength.

While the progress towards the axis stops (on average), there is ggquarallel to the axis. The
stationary progress rate reads

90* _ C,U'/M»)\ g*
T st 1‘|‘4d2Rgt st
1Ll 1,1
\/(1/2 +e,)2uc, \—1/2-e.)
y ( 1/2 4+ ei’i )1/(2a—2)
1,1
O‘de(ZMCi/u,A —1/2—¢,}))

(5.40)

which can be easily obtained by inserting the stationary mutation strength aaalogig5.37) into the
progress rate (5.28). In the casenof= 2,

1,1
1/2+e€,,

Cha = g (5.41)

is obtained. For a more detailed derivation, the reader is referred tontippE.1.2. As it can be
inferred from|(5.41), the stationary progress depends on the popufsiiameterg and and on the
ridge parameted. Sincee,’ > 0 for u < A/2, e, = 0for u = A/2 ande,’§ < 0for p > \/2,
the stationary progress rate (5.41) is greater tyddd) in the first, equald /(4d) in the second, and
is smaller in the last case. It should be noted that for ladgawnstants, the ES is able to get closer to
the axis. In a sense, it succeeds better in fulfilling the partial aim of optimizmghere. However,
this results finally in an overall performance loss: The larger the weightingtant of the sphere
part, the smaller the progress parallel to the axis. It is interesting, to nottharfcharacteristic of
self-adaptive ES on the parabolic ridge. Due to the stationarity afftteolution, the learning rate
is not expected to have an influence on the progress rate. That isudlewsing parameter of self-
adaptation cannot be used to improve the performance of the ES. Usingtérenthistic approach,
the equations show that the learning rate may only have an influence assldimg evolution of the
mutation strength has not reached a steady state.

This situation differs fundamentally from the stationary state on the undistigiigere. On the
sphere, the evolution of the mutation strength — normalized with respect to taratisand the search
space dimensionality — reached a stationary state. The ES tuned the mutatigthgbreportionally
to the distance to the optimizer. The evolution of the distance and the evolutiommdthnormalized
mutation strength progressed still. Due to the non stationarity of the latter evolitelearning rate
could be used as a control parameter. Here, both evolutions come to a hltagdong as the ES
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progresses towards the axis, the learning rate may be used to improvefirenpace. Once the
stationary state is reached, however, the system is independent ofdice oli~. Obviously, the
ES still adjust the mutation strength according to the distance. Here hovtagesin adjustment to
the distance to the ridge and not to the optimizer. The value of-tbemponent does not have any
influence. Only the evolution of the distance to the axis and the evolution of tteionustrength are
coupled.

The stationarity of both evolutions was already encountered in the casdf-@idsptive ES on
the noisy sphere. There, additive noise with a constant noise strengtthkeES from reaching the
optimizer. After a transient phase, a self-adaptive ES reached a stgtgiate of the distance and
the mutation strength. Something similar occurs on the parabolic ridge. Sebtaabe works on the
parabolic ridge in the sense that no premature convergence occuvsvétponce the stationary state
is reached, self-adaptation could be switched off. The mutation strengtitiensiry and does not
reflect any movement or position irrdirection.

Figurel 5.7 shows the stationary mutation strength, distance (5.37), ancegsagtel (5.41) as
functions of the parent number comparing them with the results of experiments. The agreement

QdRst 2d§0§st
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2 3 4 5 6 7 8 K 2 3 4 5 6 7 8 K
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Figure 5.7: The stationary distance, mutation strength (5.37), and psogats|(5.41) for some
(1/pr, 10)-ES with self-adaptation on the parabolic ridge. Each data point was saoyael)0, 000
generations ¥ = 30, N = 100) and900, 000 (N = 1000) generations. The stars indicate the results
for N = 1000, the triangles those faV = 100, and the boxes those fo¥ = 30.

between prediction and experiment is good, but it should be mentioned thakgierimental data
are lower than predicted. Interestingly, the experiments do not show sariifilifferences between
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high and low search space dimensionalities. This is somewhat surprisingpatednow not fully
understood.

The Influence of Recombination  Equations[(5.37) and (5.41) can be used to investigate the
influence of recombination. As Fig. 5.7 shows, the maximal progress anehdikemal mutation
strength occur in the case of non-recombinative ES, i.ey ferl, which is confirmed by experiments.
Introducing multi-parent recombination does not lead to any advantadje Bita stationary progress

on the axis is influenced by the stationary mutation strength and distance egfdtbdy the progress
rate (towards the axis) (5.27) and the SAR (5.29). In the case of thbqiaredge, it can be given as

go; st = (1/2+e1’1 )/(2d) (5.41). The effects of recombination are reflected by the progreﬁindmet

el A ! which stems from the SAR. All other influences have averaged out. TuyzgBs coefﬂmeni
|s a monotonously decreasing functioryirior © < A/2. As already pointed out, the first zero pomt
is atp = A\/2. Afterwards, negative values are assumed until the coefficient apipes zero again
for © = X. As a result, the stationary progress (5.41) is largesf.fer 1 and ES does not benefit
from recombination. At first glance this is contradictory to the results olddiyeOyman [79]. He
pointed out that recombination has positive effects in the case of thegharatige since the distance
to the ridge is decreased. This enables larger progress rates [799). This result was obtained
for constant mutation strengths, though. Unfortunately, in the case eddafitive ES recombination
also decreases the mutation strength mirroring the response of the zeeoS¥h The decrease of
the distance fails to counteract this trend leading to a falling progress ratg with

Using the deterministic variant of the evolution equations, two main results cderlved: First,
a stationary state other thgh = 0 exists which admits positive progress. Second, the ES does not
benefit at all from multi-parent recombination.

5.2 Self-Adaptive ES on Noisy Ridge Functions

In this section, the analysis is extended to ridge functions that are distuyteoide. The noise
term is modeled using the standard noise model of an additive normally disttitarte with zero
mean and standard deviation (noise strength)As before, it is assumed that the noise strength is
constant and does not depend on the position in the search spacethEigdtarp ridge is addressed
before an analysis of the parabolic ridge is provided.

5.2.1 Noise is Beneficial: Noise on the Sharp Ridge

As it was shown in Sectiaon 5.1.1, there are generally two types of behdwamsby evolution
strategies on the sharp ridgéz, R) = = — dR: Dependent on the ridge parametikran ES either
converges prematurely or continuously enlarges the mutation strengthead@tance to the ridge.
But what happens if noise influences the fitness evaluation$8tl a decisive parameter then?

The Noise Model and the Evolution Equations

To investigate the behavior of ES on the noisy sharp ridge, the standese model is used.
Therefore, the noise is modeled using an additive normally distributedmawaoable with a constant
(uniform) standard deviation.. Therefore, given the object vectpithe apparent fithess reads
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N
= y1—d\| > 12 +0N(0,1)
=2
= f(z,R) = :x—dR+oN(0,1). (5.42)

Again, due to the form of the undisturbed fitness functfgm, R) = = — dR three variables are of
interest: thex-component denoting the change parallel to the ridge axis, the lateral cemip®
measuring the distance to the ridge, and the mutation strength

To investigate the change of these three variables over time, the determinidtitavequations

29t = 29 4 o (0%, 0%) /N (5.43)

r = R—¢R(R,0%07)/N (5.44)
g*(g—i-l) = o(l14+Y(R, 0" cF 5.45
( ) (R, 0%, 07) (5.45)

are considered. Note, the normalized versiphs= Ny,, ¢% := Nyg, 0* := No, ando} := No.
are used again. The progress ratés¢},, and the SAR) are obtained in Appendices B.2-C. Here,
their main characteristics are shortly discussed.

The progress ratg* = NE[z(9+) — 2(9)] obtained forr = 0 andN — oo as

0*2

&
VA + @) o2

gh(o") = (5.46)

is — as before — a quasi-linear function of the mutation strength. Again,ithecenfluence of: itself
on its own expected change. At first sight, the progress parallel to thésadiminished by the noise
strength — but as it is shown later on the situation is more complicated.

The progress ratey = NE[RY — RU+V)], j.e.,

dO_*Q 0,*2

* (" R _ v
¢r(c", R) \/(1—|—d2)0*2+0€*2%/”’/\ 2Ry

(5.47)

consists of a gain and a quadratic loss part and can be interpretedasiarff the mutation strength.
Again, (5.47) is determined faV — oo andr = 0. The influence of the additional parameters, i.e.,
the ridge parameters and noise strength, enter the progress rate ayantpart. The loss partis only
influenced by the parent numberand the distance to the ridge.

The SARY = E[((¢*7F1)) — (1)) /(¢ 9))],

N 9 11 (1+d*o*
w(o' 7R) = T (1/2+eu,)\(1+d2)0*2+022

do.*2 )
—C / A (548)
e R\/(l +d?)o*? + 032

is determined under the assumption< 1 and for N — oo. Noise influences the gain and the
loss part, but the influence of the distance is only present in the loss psimould be noted that the
prediction quality of((5.48) deteriorates relatively fast with increasih@or smaller values ofV.
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Since the required functions are given, the analysis can be startedti#fesprevious sections, the
evolution of thez-component does not influence the evolutionfbndo*. The evolution parallel
to the axis is governed by the evolutions of the remaining two state variableadnsiberefore, it
suffices to consider the systemfhando™

R — R,0%,0%)/N
r - (7 PRl N )*/ . (5.49)
(*(a+1)) o* (14 0(R,0%,07))
There are two behaviors the systém, o*)", (5.49), is expected to show: a convergence to a

stationary state (which may be either a convergence to a point or to an orditivergence ok and
o*. The following part of this section is devoted to deriving conditions foedjence or convergence.

Introducing Normalizations

To make the equations easier to handle, an additional normalization for teepsoratesy;,
(5.47),¢%, (5.48), the mutation strength, and the noise strength is introduced. Thetaieliminate
the distance to the ridgg in (5.46) —(5.49). Setting thus* := 0*/R, 0} := 0! /R, ¢} := ¢}/R,
andy}, :=¢% /R, the progress rates (5.46), (5.47), and the SAR (5.48) change to

*2
* * * g
SO;U(O- ?0-6) = \/(1+d2)0*2+0*26u/u,)\a (550)
and
*2 *2
o*°d o
r(o*,0l) = c - 5.51
SDR( ) \/(1+d2)0'*2+0':2 ITYITON 20 ( )
and
. . B 9 11 (1+d2)0'*2 B dO_*Q
Plo*ol) = 7 (1/2+eu7)\(1+d2)0*2+02 Crp i deTiat) (5.52)

The evolution equations fak ando* change accordingly. Notes*(9+ 1)) .= (¢*(9F1)y /- — R(1 —
Pr/N)

( " )_ R(1 - ¢p(0,07)/N) 559
*(g+1) N w(__14¢(o*,07) ' '
S ) 7 (1—%(0*,0:)/1\/)

As in the case of the noisy sphere (cf. Section 4.2), a thideépendent variable appears: The normal-
ized noise strength*(9) changes withk(9). However, the (direct) influence @¢ can be eliminated
leading to the new evolution equation

O_*

*(ngl) _ € (5 54)
Te - * * ok : :
1- @R(U 706)/N
Due to the normalization, the evolution &fneither influences the evolution of the mutation strength
nor the evolution of the noise strength. As before in Section 4.2, its evolutidadsupled and it

suffices to analyze the two-dimensional evolution equations

*

#(g+1) — e
< o - 1—pp(o*,0%)/N 5 55)
*(g+1) ) B * 1+¢(0*,07) ) .

(o ) g (1—90}%(0*702)/1\7)

For the remainder of this section, the evolution equations (5.55) are used.
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Determining Stationary States

Following the previous approach in Section 5.1, the stationary points areetel first. Station-
ary points of (5.55) defined s+ ™!) (¢*(9+D))T = (5* )T can be calculated in a straightfor-
ward way. The stationary solution of the evolution equatiorsfom (5.55) requires the progress rate
(5.51) to be zero. Therefore, the task is to find zero points of (5.51)hdme also stationary points
for the evolution of the mutation strength. It can be shown that the statiotzdeysf the system (5.55)

is given by
(Ue*statl) — (C> (556)
gstatl 0

withc € R,¢c > 0 or by

2 2 Gl g il
. 2dpic o d (4'u'cu/u,>\ 2(3#,)\1 11) QeT,l)\ 1
, 2 ) ,
(Ue*stat) _ e d2(4“0u/u,>\_zeu,>\)_2eu,>\ (557)
Sstat 2dpcy /0

D) 1 11
\/d2(4“cu/u,>\_2eu,>\)_26u,>\

(see Appendix E.2.1, p. 223). In the situation of (5.57), the ES doe®nwoenye to the axis. Note, the
stationary mutation strength goes to zerodor- 0 and tO?MCu/u,A/\/‘lMCQ — 2e;”1A for d — oo.

B/ 1A
The normalized noise strength behaves proportiondt teord — 0, o}(d) — 0 ando}(d) — oo

for d — oo. Both variables are completely determined by the population parameted A and of
course by the ridge parametér

The noise effectively stops the ES from approaching the ridge axisanilyittlose. Similar to the
sphere model, a stationary distance to the ridge axis can be derived

= 5 1,1 1,1
Ristat Noe PR 0 = 2un) ~ 260 (5.58)
Sta; . .
Qdﬂc,u,/,u)\ d2(4,u,ci/u’)\ _ 26;11,:1)\ - 1) - 26/5«,,1)\ -1

See Appendix E.2.1 for the derivation.
As it has been shown, system (5.55) comes to a halt either by a loss @iztegentrol in an arbi-
trary distance to the axis or by attaining stationary values for the mutation gtrand the distance.
The guestion remains under which conditions this stationary state exists. Ahdvig next, the
weighting constand is again decisive w.r.tu and\. Lety < \/2. The stationary state is only defined
for weighting constantg which fulfill

1,1
QeH’A—F 1

2 1,1 :
Ay — 2600~ 1

d 2> derit == (5.59)

See Appendix E.2.1, p. 226f. for a derivation.
First of all, note that the samkvalue as for the undisturbed sharp ridge decides over the existence
of the stationary state. The reason for this is that only in the cagde>ofl.;;, the ES moves towards
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the axis at all. In the case df< d..;;, the distance to the axis and the mutation strength enlarge. Since
the noise strength remains constant, it gradually looses its influence untibtbetiaves as if it were
optimizing the noise-free ridge. The constraint \/2 is sufficient but not necessary. The equations
generally hold unlesg ~ A but a sharp boundary cannot be given. ket /2. If d > d..;; holds

then (5.57) is a locally stable fix-point of (5.55) for the ES considered®ads(5.56) is instable (see
Appendix E.2.1).

Let us sum up our findings. Fdr> d..;;, ES moves towards the ridge axis as in the undisturbed
case. Contrary to its behavior in the noise-free case, it convergeddtianary state that has a well-
defined distance to the axis. The evolutiond€omes to a halt on average and the ES travels parallel
to the axis direction.

The normalized stationary progress rate behaves in the same manner asyihized stationary
mutation strength: It does not depend on the noise strength, i.e., it stastsuabriThis can be easily
seen since the stationary progress rate can be re-expressed as

* 2
* _ O stat (5 60)
Prstat 2ﬂd '

since due to the stationary of the evolution, \/o7%,,,* + 7%, = 2uc,/,. holds. The normal-
ized progress (5.60) depends on the stationary mutation strength in h&€pnstant/ and on the
population parameters.

Only after switching to the non-normalized versions a dependence on igesiength appears.
This is due to the linear dependence of the stationary distance on the neirsgtstr

The non-normalized progress parallel to the ridge axis can be obtainpligying (5.57) and
(5.58) into (5.50) as

1
Soit(o-6> = O0eCp/u 9 2 1,1 1,1
d (4,ucu/%)\ -2, —1) =2, -1
1
X (5.61)
Nl ]
\/d2(4uci/u,/\ —2e,5) —2¢,)

The derivation can be found in Appendix E.2.1], p. 228. The non-norathbrogress rate scales linear
with the noise strength — a behavior that is also exhibited by the non-normaiiziedion strength

Oc

11 11
\/d2(4,uci/%)\ — 26#)\ —-1)— (26#7)\ +1)

(5.62)

Sstat

(cf. Appendix E.2.1, p/ 228). The larger the noise strength, the faseEfh stays away from the
ridge axis. In turn, the mutation strength and the stationary progresss$eandi the distance scaling
linearly with the noise strength. This is a result of the optimization behavior.elE&8 is far away
from the ridge axis the influence of the noise in comparison to thatisfrelatively small. Provided
d is relatively large, the ES starts approaching the axis but is hindered irotivergence by the
noise. Higher noise strengths result in larger distances to the axis. Thia allmws larger stationary
mutation strengths. Larger mutation strengths are connected with highetexpgins on the ridge
axis. On the sharp ridge, noise with a constant strength effectively #tepgES from optimizing
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the contained sphere model and enforces a more significant gain onisheTdms only holds for
sufficiently large ridge parametedis

If dis too small, the ridge is not being tracked and a divergence of the distaicoeso The
distanceR increases which lessens the (relative) influence of the noise. In thes tesES will
gradually start to behave as if it were optimizing the undisturbed sharp +idgeding away from
the axis with a negative progress ratg— but with an overall positive quality change, i.e., the gain
parallel to the axis surpasses the loss due to the distances increasesehigas already discussed in
Section 5.1.1.

Recapitulating, note that in the case of constant noise strength the ES alsinvar behavior
as in the noise free case: The choice of the ridge paranietecides whether the ridge is tracked or
not. If the ridge is not tracked the influence of the noise decreasesabthttains a positive though
not optimal quality change. If the ridge is tracked, the ES cannot coaverthe ridge due to the
noise. Noise is actually beneficial since it prevents premature convegrgé&he larger the noise, the
larger the mutation strength and with it the progress in axis direction. In cbritréhe former case
of divergence from the axis, the ES progresses with a constantaromatized mutation strength (on
average). In short, noise on the sharp ridge either soon looses itscdloe has an actual positive
influence as it keeps the ES from optimizing only the sphere part.

Comparison with Experiments

Figure 5.8 shows a comparison between the normalized stationary valués4bd(5.60) and
experimental data for three search space dimensionalities 30, N = 100, and N = 500. The
prediction quality improves with the search space dimensionality with the excegititie station-
ary mutation strength in (5.57). In this case, the agreement is good evéreftmwer dimensional
search spac& = 30 and does not improve visibly iV increases. It can be seen though that (5.57)
tends to overestimate the stationary mutation strength if the parent number igetglathall. This
probably causes in turn the greater deviations of (5.60) from the expahprogress rates for these
w values. While the agreement of (5.60) with the experiments is quite good @ Miin general,
the experimental results for = 1 andu. = 2 are far lower than predicted. Figure 5.9 compares the
non-normalized values (5.58), (5.61), and (5.62) with the results ofiempets. Again, the prediction
quality if relatively poor forN = 30 and improves with the search space dimensionality. As it can be
seen, the experiments for, 60)-ES result in far smaller mutation strengths than predicted.

The Effects of Recombination

The effects of recombination remain to be addressed. Figure 5.9 shosmtiomary mutation
strength and progress rate as functions of the parent nyml#es it reveals, switching fromy = 1 to
1 > 1is not beneficial. To find out why, let us start with the normalized mutation ais strength
(5.57). Provided that the size of the offspring population is not small, Ysb@ws an interesting
scaling behavior with respect to If 2uci I > e;’i holds, the stationary point can be approximated
with

(0:*“””’") = (261“0“/“’A > (5.63)
Sappr \/ﬁ

Equation((5.68) holds for # 1 andy % X and large). Interestingly, it equals the scaling behavior
on the noisy sphere (4.66) with only one exception, the ridge paramendrich appears in the case
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Figure 5.8: The stationary noise strength , stationary mutation strength (&tB#)), and stationary
progress rate (5.60) on the sh arp ridge as functions. ofhe results were averaged over several
runs with different choices of. with o7 = 1,2,3, and5. The search space dimensionalities are
N =30, N = 100, andN = 500. In the case ofV = 30 each data point was sampled otéf, 000
generations for each noise strength and then averaged over all ireisgtlss, i.e., over a total of
4 x 100,000 generations. FoN = 100 and N = 500 4 x 200,000 generations were used. The
results forN = 30 are denoted by the round points, those for= 100 by the squares, whereas the
results forN = 500 are given by the diamonds.

of the noise strength. Apparently, in this respect the ES behaves in aiw@lgr manner on the noise
sharp ridge as on the noisy sphere. The fact that the noisy shar@ndg®t the noisy sphere is to be
optimized is not recognizable in the stationary mutation strength and as sa&tciogcthe stationary
normalized noise only the presence of the weighting factor differentiai&@3)(om (4.66).

Recombination increases the mutation strength in (5.63) and (4.66). A simildty tesugh, holds
for the normalized noise strength which increases @jth, /,, . This results in smaller distances to
the ridge axis. With similar arguments as before, the scaling behavior of taacksto the ridge w.r.t.
1 reads

No.

Vo (5.64)
2dpcy

Rappr
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Figure 5.9: The stationary distance (5.58), stationary mutation strength),(&r@Pstationary progress

rate (5.61) for constant noise on the sharp ridge as functiops ©he search space dimensionalities
are N = 30, N = 100, and N = 500. In the case ofV = 30 each data point was sampled over
100,000 generations, whereas fé&¥ = 100 and N = 500 200,000 generations were used. The
results forN = 30 are denoted by the round points, those for= 100 by the squares, whereas the

results forN = 500 are given by the diamonds.

The approximate distance (5.64) is also the minimal possible distance that ohtabeed. This can
be inferred by using the stationary conditipi} = 0

Ypr=0 <= o' = O\/(l +d)o*? + o7 = 4u20l2t/#’A =0

(5.65)
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(seel(5.50)) and letting* — 0.

While the decrease of the distance was beneficial on the sphere, it hggpibhsite effect on the
ridge. The normalized stationary progress (5.60) reveals the problem:Af1 andu % ), the
influence ofu on the normalized progress rate is negligible. Becausg gfoc |/u, the normalized
progress rate does not differ much from

SOZ appr ﬁ (5 : 66)

provided that\ is not small.

Since the normalized progress rate stays nearly constant, a problenoimared in the case
of the non-normalized variables. The non-normalized progress ratf) & éles approximately with
1/(2pc,/u,5) @and drops sharply if recombination is introduced.

The normalized noise scales wihc,/, » and the distance therefore with(24c,,/,, »). This
outperforms the increase of the normalized mutation strength,ithThe non-normalized mutation
strength decreases withi (2, /7ic,,/,, »). Decreasing the mutation strength is necessary on the sphere.
Since the ES is able to approach the optimizer more closely, the mutation strengtiefleasthis and
decrease accordingly. On the ridge, though, this means that the mutatmytlsisedecreased because
the subgoal of optimizing the sphere is better realized. This does not @dpetier achievement of
the overall goal. Again, neither the position nor the gaim-direction is reflected.

On first sight, recombination does not have any benefits. A caveat matded, though. As on
the sphere (cf. Section 4.2), thk §)-ES looses step-size control in the stationary state — a behavior
not predictable by the deterministic evolution equations. Therefore, de theuprogress parallel to
the axis halts and the ES stagnates prematurely. Recombination is therefefieiak The problem
now consists in choosing sufficiently large so that the ES may stabilize the mutation strength and
sufficiently small so that the progress does not decrease too far.e@img the general behavior
of the progress ratey ~ 2 — 5 appears as a good choice — at least for the ES and noise strengths
considered here.

5.2.2 Noise on the Parabolic Ridge

As it has been shown in the previous section, additive noise on the stigeds actual beneficial:
It keeps the ES from realizing the subgoal of optimizing the sphere. SiecE$hcannot converge
to the axis, it maintains a positive mutation strength. As result, there is pragressirection and
no premature convergence occurs. The effects of noisy perturbatidghe case of the remain to be
addressed. Recall, the noisy parabolic ridge is defined as

N
fly) = m—d> yl+e
=2
N
= 0 —dZy?—i—aEN(O, 1)
=2
= z—dR*+ o N(0,1). (5.67)

Again, the parameter. denotes the noise strength and is assumed to be constant.
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The Evolution Equations and Progress Measures

As before, the first-order evolution equations without perturbation parig as the starting point
for the analysis

20t = 20 4 o (R, 0%, 07) /N (5.68)
r = RY —gh(R, 0%, 0%)/N (5.69)
* = U*(l—Fl/J(R,O'*,O':)). (5.70)

Before starting the analysis, we need the progress &tesd o}, and the SAR). Their derivation
can be found in Appendix B.2 and Appendix C|1.2. The progress rates

Pi(R, 0%, 0f) = JiT 4;2’2 ’“2";0*2 p— o+ (5.71)
and
*2
PR(B, % 00) = NG +iflf1;g;/;j2 + o7 o ;Ru (5:72)
are obtained folN — oo andr = 0. The SAR
2dcy, /00" 11 (1+4d’R*)0*?

W(o*, o) = 72<1/2— ) (5.73)

\/(1 + 4d2R?)0*? + 0¥2 € (14 4d2R?)0*2 4 o*2
is derived under the assumptionk 1 and forN — oc.

Determining Stationary Solutions

As before, the stationary state behavior of the ES is of interest. So fiadlt tfe stationary states
are determined starting with the evolution of the distance to theaxis (5.69). D@rgastationarity of
the R-evolution leads to an expression of the stationary mutation strength astmfuoicthe distance

0=pr(R, 0% 0F)

= 0= 2dRey o2 o*?
V(14 4d2R?)0*2 + o*2 2Ru
PR, o

1+ 4d?R? 1+ 4d?R?’

Otherwise, the distancB(¥ to the ridge must be zero. Demanding further stationarity ofsthe
evolution|(5.70), eithes* = 0 ory =0, i.e.,

(5.75)

2dRc;, ), 0" 11 (1+4d*R?)0*? )

0=7*(1/2-
T\ BRI+ PR 1o | PN+ AP0 + 07

(cf. [5.73) have to hold. The mutation strengthlin (5.75) can be eliminated bstings€5.74). We
arrive at a third order polynomial iR?
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1,1 2 1,1
0 = RO— R4L( 26#)\ t1 ) _ RQC’:Q 2”Cu/u,/\ G )
= 2 11 2,22 1,1
id 4'uci/u,>\ e S “u/pA 4'uci/u,>\ —2e,5 1
61’1 0.*2
it S “’2 ‘ — (5.76)
4,2 _ -
e Cufp (4“cu/#,>\ 2e,)\ 1)
which can be solved analytically (see Appendix E.2.2). Since
d2R% p2c? *2
o = 16( ot “/2“’*) S — (5.77)
1+ 4d2R2, 1+ 4d2R2,

the solutions can be used to obtain the stationary mutation strength and with itttbesstaprogress
parallel to the axis

* cl‘«/#)‘ * 2 1 U:tQ ; (578)

Pst = Ost = 77 7o
V(L +4d2R2)0%? + 022 Adp By

The solutions off (5.76), however, are not very informative. Theegftihe influence of the noise will
be discussed using Figs. 5/10-5.15.

Discussion of the Results and Comparison with Experiments

Figures 5.10-5.15 show the stationary distance, mutation strength, andgsqgarallel to the
axis for some [/ 1, 60)-ES. Also shown are the results of experimentsfoe= 30 and N = 100.

The ridge constant was set tod = 5. In the case ofV = 100, all data points are obtained by
sampling over00, 000 generations in the stationary state wherzts 000 generations were sampled

for N = 30. As long asu is relatively small, there are deviations between experiments and predictions.
This concerns especially the caserof= 2, i.e., small parent numbers. The prediction quality is
generally better for larger noise strengths than for smaller. The excaptimain the case of = 2.
Similarly to the case of the undisturbed parabolic ridge, increasing thehsspace dimensionality
does not have any detectable influence on the prediction quality.

Again, it should be noted that in the case of theX)-ES, a similar problem as in the case of the
sphere model appears: Once the fitness evaluations are overlaid byandithe noise strength is too
large, the {, \)-ES looses step-size control. The mutation strength is reduced to very\atabs
and the progress rate drops significantly. This cannot be predictedebgetierministic evolution
equations.

In the case of the distance (see Figs. 5.10 and 5.11), the prediction qti#ieysmlution of((5.76)
is good. Only for very small noise strengths, some deviations can bevelserthe case gf = 2.

Greater deviations are observed in the case of the mutation strength (&3@gcially, there
are deviations for smaller parent numbersand small noise strengths. Equation (5.77) tends to
overestimate the experimental results (see Figs. 5.13 and 5.12). Ingreasiproves the agreement
provided that the noise strength is large.
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Figure 5.10: The stationary distance obtained using (5.76) (colorednipadson to the stationary
distance estimate (5.80) (black, dashed). As it can be seen, the ctewesasimilar and cannot be
differentiated easily. The points denote the results of experiments wifly (60)-ES withd = 5 for
N = 30 (disks) andN = 100 (squares). Each data point was averaged ®er000 (N = 100) and
200,000 (N = 30) generations in the stationary state.

A problem occurs in the case of the progress rate (5.78). Equatior) €h@&s a similar behavior
as the experiments with respect to varying the noise strength. That js,<fok/2, the progress rate
decreases with the noise and goes to a limit value. (Fer \/2, it remains constant. Finally, for
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Figure 5.11: The stationary distance obtained using (5.76) in comparisoa gbationary mutation
strength estimate (5.80). Both are shown as functions of the noise stréfughigure depicts the
result for smaller noise strengths. As it can be seen, the predictions7&) (&hd [(5.80) are very
similar — except for the cage= 2.

u > \/2 it increases with the noise approaching again a limit value. However, (6vé8gstimates
the results. Furthermore, the convergence to the limit is not as fast as ipegneents (see Figs. 5./14
and 5.15). Equation (5.78) only serves well to predict the stationary stagegss rate for large noise
strengths. The exception is of course the cagse ef A\ /2. All examined strategies with intermediate
recombination converge to very similar limits.
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Figure 5.12: The stationary mutation strength obtained using(5.77) (dashsylin comparison to
the stationary mutation strength estimate (5.81). As it can be seen, this sealks myme differences
between experiments and prediction.

As seen, noise generally increases the distance to the axis and the mutaiythstrAs the
experiments showed, the transition from the zero-noise level to very soiséi-tevels may cause an
initial decrease but this is soon overcome and the variables increase.cés lite discerned from
Figs. ?? - ??, the increase is approximately proportional to the square root of the faidmoth
the mutation strength and the distance. The slope of the increase is determitied gopulation
parameters: and A. The stationary progress rate is influenced by the square of the ratie of th
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Figure 5.13: The stationary mutation strength obtained using|(5.77) (cdlioredmparison to the
stationary mutation strength estimate (5.81)(black, dashed) . The cuevesralar although some
deviations can be observed, especially for small noise strengths andrsmatleer of parents. Again,
the points denote the results of experiments witfy(;, 60)-ES withd = 5 for N = 30 (disks) and
N = 100 (squares). Each data point was averaged ¢9@r000 (N = 100) and200, 000 (N = 30)
generations in the stationary state.

mutation strength and the distance. Noise would have a positive effect ifdiease of the stationary
mutation strength outperformed the increase of the stationary distancevetotigs is not always the
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case. The dependence on the noise strength appears complicated.ri@grtiy@azero noise and the
large noise regime, it can be found that noise finally lowers the initial pssgege forn < A/2, but
increases it fop, > \/2. Regardless of the noise strength, evolution strategies with parent fopsla
with less than half the size of the offspring populations have a progresthed is larger than that of
other strategies. Large noise strengths, however, diminish this advantage

The case ofs = 30 = \/2 is very interesting since the progress rate is not influenced by the noise
at all. For all examined choices af, it remains on the same level it had tgr = 0. Apparently, there
is an balance between the influence of distance and of the mutation streng#tf, icg) = R (o).

The question remains why noise increases the progress rate for inteteng8iavithy, > \/2, but
decreases it fon < A\/2. As (5.78) reveals, the increase of the stationary mutation strength with
the noise must stronger than the increase of the distance to the axis to reslyltifi an increase of
(5.78). Apparently, this is the case for> /2. Unfortunately, Equations (5.76) - (5.78) lead to quite
complicated solutions which cannot be easily used to answer the question.

However, another interesting behavior is shown in Fig. 5.16. Let usvessuconstant noise
strength for the moment and consider the stationary mutation strength, djstemcprogress rate
(5.76) - (5.78) as functions of the parent numpeConcerningR,;, a similar behavior as in the case
of the noise sphere occurs: Evolution strategies with A-ratios around~ 0.5 have the smallest
distances to the ridge. All other strategies are grouped around this wétliéncreasing distances for
i — Aandu — 1. Furthermore, the distances are approximately symmetric. This is in accerdan
with the behavior on the noisy sphere [25].

The behavior of the mutation strength (5.77) remains to be addressed. lbigeegtrength is
large, the stationary mutation strength (5.77) first decreases and theadasrwith.. Concern-
ing larger values of:, a similar increase of the mutation strength wittwas already observed on
the noisy sphere. There, the non-normalized stationary mutation strerdgls approximately with
1/./4c, - As Fig/5.16 shows (5.77) behaves similarly for large noise strengths.

The progress rate (5.77) depends on the square of ratio of the mutatidheanoise strength —
weighted additionally withi /.. Its behavior as a function gf shows some similarities to the non-
noisy case (5.41), p. 91, (see Fig. 5.16 c) and Fig.5.7 b), p. 92). i@nhe large-noise regime the
influence of the mutation strength is sufficient to lead towards a nearly cinstagress rate for a
wide range ofu.

Recombination is beneficial in the sense that the induced inherent bias focr@ase of the
mutation strength serves as a safeguard against a loss of step-siz#: cBimaitegies that make use
of only one parent cannot stabilize the mutation strength. Once the ES igeblaliose to the axis
and the influence of the noise is too large, a loss of step-size controlecabderved. Since ()\)-

ES are prone to a loss of step-size control, recombination appearsagcekhe question of how to
choose the truncation ratio remains to be answered, however. For tasgestrengths, the differences
between the performances of differept/f:;, A\)-ES are smoothed out. The experiments showed an
even faster convergence of the progress rate towards its limit than tgedichus, the case of larger
noise strengths appears more important than the case of smaller nois¢éhstr@ihg parent number
must be chosen so that the mutation strength and progress rate stabilizgs A5.E2 to 5.15 shows,

a parent number ofi = 2 appears to be too small to stabilize the mutation strength sufficiently.
Choosingu = 10, however, is sufficient in our scenario.

The Case of Large Noise Strengths

As said, the solutions of (5.78) are complicated. Therefore, this sectionaaidesiving simpler
approximate solutions. The derivation is primary based on the finding ofrtha@opis section: If
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Figure 5.14: The stationary progress rate obtained using](5.79) in cizmpao the estimate (5.84)
(black dashed line). Again, the points denote the results of experiments with,60)-ES with
d = 5 for N = 30 (disks) andN = 100 (squares). Each data point was averaged @0er000
(N = 100) and200, 000 (N = 30) generations in the stationary state.

the noise strength is large, a self-adaptive ES on the noisy parabolis shsimilar behavior in the
stationary state as on the noisy sphere.

First of all, a minimal distance to the axis can be determined by using (5.74p#imtys™* = 0
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Figure 5.15: The stationary progress rate obtained using|(5.79) @ésk in comparison to the
estimate|(5.80) (solid line). For < \/2, the stationary progress rate obtained using (5.79) tends to
overestimate the experimental results. It should be noted that the expetinesuolés converge far
sooner than estimated.

N *
Rmin = L = = : (579)
Adpcy Adpcy
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Figure 5.16: The influence of the parent numpesn the stationary distance, mutation strength and
progress rate for several noise levet$ & 1, 10, 100).

However, [(5.79) and (5.76) lead to very similar results at least for thieitemo strategies examined.
The influence of a non-zero mutation strength on the resulting distance imamy. Equation (5.79)
is applicable only if the noise strength is sufficiently large since it neglectsdatieopthe stationary
distance that is due to the evolution of the mutation strength.

But Equation((5.79) points to again to the very interesting characteristicceZoimg the minimal
distance, the ES behaves similarly to an ES on the noisy sphere. The minimatelistarors the
minimal distancel (4.66) — apart from the weighting factgd. This is the basis for the following
approach to determine easier estimates for the stationary distance and mutatigths Since (5.79)
is the minimal distance of the noisy sphere (4.66) weighted Witid, it is assumed that a similar
relationship holds for the stationary distances (5.76) land (4.65). This tedbe estimate

2 _9,b1
R O';Ek 4 4HC.U‘/H'1>\ 26M7>\ (5 80)
appr 11 : -
4dpe,, Zl,uci/lM —2¢,, — 1

As Figs./5.10 and 5.11 show the deviations between estimate (5.80) andg& 7@}t high. Equation
(5.80) can now be used together with (8.77) to obtain an estimate of the stationtation strength

CT*

_ ¢ . (5.81)

2 1,1

11 do* 4dpc / AT2€, )\

4 02 — 2t — 1.1 € /i, s
\/ HCu/un A + Kl \[ 4pc? 2l —1

w/pA

*
gappr




112 5. Self-Adaptation on Ridge Functions

Again, (5.81) is only applicable i& is large, since (5.81) predicts a zero mutation strength for
zero noise strength which is not the case on the parabolic ridge. As F&ysbalvs, the prediction
quality of (5.81) is reasonably good: Only for small valuesrdf greater deviations occur as it was
to be expected. For greatef the prediction quality improves. It is interesting to note the following
findings: First of all, the lines of (5.81) and (5.77) move closer togethénfoeasing noise. Second, a
similar effect occurs for an increasing parent numhbeginally, in the case of smaller parent numbers,
(5.81) even serves better as a predictor of the experiments than the cdgalted by using (5.76)
and (5.77) — provided that the noise is not small.

It is also interesting to note two limit behaviors of (5.81). Provided #fais large, the estimate
is approximately

§2ppr2 = \/;

*
€
4pc? —2¢b
2 _9bl _qaf 2 2HumaT 0
\/4NCH/N1>\ 26M7>\ 1\/d 4pc? —2¢11 1

/B AT

HCu/p,)

(5.82)

that is it scales approximately witjic*. Provided thaﬂuci/# \ > eL’IA + 1, the estimate (5.81) can
be approximated with

O.*

£ . (5.83)
\/4/”;21/#,)\ + 4dcu/#’>\ae*

The estimates (5.80) and (5.81) can be used to obtain an estimate for the sigirogaess parallel
to the axis

*
gappr?)
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The prediction quality of (5.84) is only good if the noise strength is larget &l it fails to capture
the interesting behavior of the progress rate as a function of the noisgtstrdnstead of showing
different responses for different choicesafit predicts an increasing progress rate for increasing
noise for all strategies considered. Equation (5.84) has a finite limitfer oo

MCQ/ A
lim ¢} = R T (5.85)
or oo T ¥ apPT d(4,uci o~ 26, 3)

Provided that\ is large, it can be shown that (5/85) leads to nearly the same walug4d) for a
wide range of the parametgri.e., aslong ag % 1 or u % X\ and\ is relatively large.
It is interesting to compare this limit with the stationary progress rate (5.40)

1,1
o _ 1/2+e#7>\
x st 2d

obtained for zero noise. Recal} ., > 1/(4d) for p < \/2, ¢k o = 1/(4d) for p = /2, and

ok o < 1/(4d) for p > A\/2. Figure 5.17 compares (5.40) with (5.85). The expected behaviorsaccur

If u < /2, (5.85) is smaller than (5.40). Jf is larger, [(5.85) exceeds (5/40). The crossing point of
both progress rates lies at~ /2. This underlines again the finding that noise does not influence
the performance if. ~ \/2 is chosen. It also shows that in the case of smaller noise strengths, ES
with smaller parent numbers are expected to perform superiorly. Thgpnanow consists in finding
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a parent number that is sufficiently high to stabilize the mutation strength but sufficiently small to
have a relatively high progress. As said, the expected changestcaweothe stochastic behavior of
(1, N)-ES. Therefore, the approach using the deterministic evolution equatonst be used to make

a recommendation of how should be chosen. In the casewof= 2 and random selection Section 4.2
indicated a bias towards an increase. As the figures show, this bias isficiest for a stabilization

of the mutation strength on the level needed. Thus, higher parent nymbers = 10 should be
used. Of course it is also possible to follow a similar approach as in Secticand.® introduce a
small bias towards an increase of the mutation strength.
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Figure 5.17: Comparison of the limit (5.85) of the estimate (5.84) of the pregets with the sta-
tionary progress rate (5.41) for the undisturbed ridge. The progaéss are shown as functionsaf
The offspring number is set to= 60 (Figs. a), b)) and ta. = 100 (Figs. c),d)). The value aof/(4d)
is indicated by the dotted blue horizontal line.

5.2.3 Self-Adaptation on Ridge Functions: Conclusions

This chapter was devoted to an analysis of self-adaptive evolution séstmgthe ridge function
classf(z, R) = x — dR“. Two types of ridge functions were considered: the sharp ridgeawithl
and the parabolic ridge with = 2. Section 5.1 was devoted to an analysis of ES on undisturbed ridge
functions. In Section 5/2, the analysis was extended to allow to investigatdféloes eof additive
normally distributed noise. All analyses used the deterministic evolution eqagter Chapter 3).
Therefore, first of all, the progress measures, the progress raisaird z-direction and the self-
adaptation response, had to be given. In the following, the main results aftiysis are summarized.

Self-adaptive intermediate ES show very different behaviors on the simal parabolic ridge. In
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the case ofr = 2, the ES fluctuates at a stationary distance from the ridge with a positive mutation
strength (cf. Subsection 5.1.2). As a result, there is progress in axigidireand no premature
convergence occurs. The fitness diverges towards infinity. Hawéwve mutation strength stays
constant on average. In the non-noisy case, recombination doeppedrao have an advantage.
Using the usual : A-ratios, i.e., truncation ratios betwe@y\...0.5], the stationary mutation
strength is similar to the zero of the SAR obtained for the sphere model. Issih@same response
with respect to the change pf Recombination lowers the mutation strength. Although the distance
to the axis is also reduced, this cannot counteract the resulting effetteoprogress rate. Non-
recombinative [, \)-ES have the highest progress rate.

It should be noted, though, that the SAR is also responsible for pregeaomemature conver-
gence. It strives to maintain a positive mutation strength for decreasingcistavhich eventually
halts any convergence towards the axis. As already pointed out intfi9Lase ofx > 1 closely
resembles the situation in the noisy sphere model where the ES is unable ¢éogstosthe optimizer
and remains on average at a certain distance to the optimizer.

In Section 5.1.2 the sharp ridge was considered. Here, no stationarwitagepositive mutation
strength exists — unless a normalization with the distance to the axis is introddicélde sharp ridge,
the ES either converges prematurely or enlarges the distance to the gatupdly. Which behavior
occurs depends on the size of the ridge paraméteith respect to the population parametgrand
A. Recombination lowers this criticdlvalue. As result, ES with intermediate recombination show a
premature convergence for smaller valued dfan (1, \)-ES.

Provided that the ES does not converge prematurely, it can be shotthéhaavel speed is not
optimal (w.r.t. the quality change). First of all, the optimizer of the quality chaageot be obtained
for finite learning rates. Self-adaptation realizes too small mutation stremgdd#ionally, there may
be problems with recombination. Increasing the learning rate will improve tiierpence of the ES.
Increasing the learning rate, however, causes the stationary mutatingtst(aormalized w.r.t. to
N and R) to behave more and more like the zero of the SAR. The zero of the SARaEs when
switching fromu = 1 to 1 > 1. Recombination according to the truncation ratio A recommended
on the sphere is not beneficial. Instead, apparently a fixed valpebetweeny = 2 andy = 5
appears as good choice.

In Section 5.2, noisy ridge functions were investigated using the standa® model of additive
normally distributed noise. Both ridge function models behave similarly: Additodise eventually
halts the approach to the axis and stops the ES from realizing the subgmiinizing the embedded
sphere with a finite optimum. Accordingly, in general no premature conmeeggeccurs. Instead,
evolution strategies show on average a constant progress parallel agishdirection. Of course,
considering the sharp ridge this only holdsdiis sufficiently large so that the axis is approached
in first case. Ifd is too small and the ES diverges, the effects of the noise are soon diluiied un
behaves as if it were optimizing the undisturbed ridged i sufficiently large, a stationary state of
the distance and the mutation strength exists. In general, the following hdhgstaiger the noise
strength, the larger the stationary distance and the mutation strength. Thiis nedarger progress
parallel to the axis direction. Additive noise is beneficial on the sharp riBgeause of the noise the
finite subgoal of optimizing the sphere cannot be realized. Since the hdiiément of the subgoal
is connected with a reduction of the mutation strength, this is an advantagemBieation has a
similar effect as in the case of the sphere model. It reduces the distanceagish This decrease
with p is stronger than the increase of the normalized stationary mutation strengthtfie.distance
and search space dimensionality). These responses eventually ¢aargarimance degradation: The
normalized progress stays constant and the non-normalized progtestecreases. Recombination
on the ridge does have a positive effect, though. The)ES looses step-size control similar to the
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ES on the noise sphere (cf. Section 4).

On the parabolic ridge (cf. Subsection 5.2.2), noise has a similar effect isetfise that the ES
stays farer away from the axis and operates with higher mutation strenftleseffect on the non-
normalized progress rate is not so clearly defined: The progressapénds on the distance to the
ridge and the mutation strength. Its exact behavior depends on the popydateameterg and \.

In the case of. = )\/2 the distance and the mutation strength balance out: The progress rate is inert
to the noise strength. Far < \/2, the progress rate decreases with the noise strength whereas it
increases fop: > A/2. The line defined by, = 30 is not crossed, though. Interestingly, this line
with ~ 1/(4d) serves relatively well as a predictor of the progress rate providedtisatelatively
large.In contrast to the sharp ridge where increasing the noise stresgiked in an increase of the
progress rate, ES on the parabolic ridge converge to very similar limits.i§;lraiise cannot be used

to increase or decrease the performance over a certain level. Theggogtes of evolution strategies
with 1 < A/2 do not decrease significantly farther thif{4d) while the progress rates of ES with

> A\/2 approachl /(4d) from below.

Again, evolution strategies with only one parent suffer a similar loss ofsigpeontrol as before.
On approach of the axis and therefore on increase of the normalizeel stoégth, the mutation
strength is reduced significantly. Recombination is therefore requireddim r@ positive mutation
strength and progress.

The ES were investigated using the so-called deterministic evolution equalioese difference
equations can be used to describe the expected change of the statesémab one generation to the
next. The drawback of this approach is of course that the loss of geantrol is not predictable.

The analysis presented here can and should be extended in sewetsl piost of all, the progress
measures obtained for the evolution equations hold exactly onlywfer oc. All results obtained
using these progress measures hold only approximately in low-dimensgarehspaces. Therefore,
one aim should be to use progress measures obtained for MinitEurthermore, the derivation of
the SAR should be reconsidered and higher-order terms of the Tayies skevelopment should be
included (see Appendix C.1.2). In addition, an inclusion of the perturbatéots of the evolution
equations would be interesting. Furthermore, a comparison with other dapgaehemes as the
CSA or thel/5th rule is of interest.
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6 Evolution Strategies and Self-Adaptation

This thesis focuses on the self-adaptation mechanism in evolution strategieseral, an evolution-
ary computation is termed self-adaptive if the control of strategy parameiefsto the computation
itself. In evolution strategies, self-adaptation is usually applied to the mutatieratap, i.e., the
mutation strength.

In Chapter 2, an overview of self-adaptation and the present statesedirdh was given. The
survey focused on explicit analyses of self-adaptation. Theoretiedyses of self-adaptive ES focus
on the stochastic process generated by the evolutionary algorithm. Thiegrmaps can be distin-
guished — each centering on a distinct aspect of the stochastic privadsv chains, Martingales,
and the dynamic systems approach over the evolution equations. It isfimgtesote that no analy-
sis of the mechanism of self-adaptive evolution strategies in continuorchssgzaces exists that does
not resort to either a simplification of the system or Monte Carlo simulations.

Chapter 3 introduced the analysis approach followed in this thesis. Theambpwas first pro-
posed by Beyer in [21]. In short, the state variables of the ES areideddry stochastic difference
equations (the evolution equations) decomposed in a deterministic and dpgonipart. The de-
terministic part can be identified as the expected change of the variable comd®deration. The
distribution of the remaining fluctuation part is unknown in general. Since ibssiple to obtain
some of its moments over the evolution equations, the unknown distribution isxappted with a
Gram-Charlier series using the normal distribution as baseline. The faapipeoach consists then
basically of two steps: In step one, the fluctuation terms are neglected. iffhis & derive the
main characteristics of the self-adaptive process. Step two extendsallysiano an inclusion of the
fluctuation terms approximated with a normal distribution.

In Chapter 4, the self-adaption behavior of evolution strategies on treesptas analyzed. In
the beginning, the analysis presented in [21] was extended to intermediate 4)-ES. To this end,
the deterministic evolution equations were applied. An explanation was givehd experimental
findings that intermediate ES show strong dependencies on the coroémt o the learning rate in
contrast to {, A)-ES. Furthermore, an optimal learning rate valid for high-dimensionatkesgpaces
could be obtained.

In short, recombination in the case of the sphere model has the drawlad¢RalES is sensitive
to the correct choice of the learning rate. This sensitivity can be tracddtbahe finding that the
self-adaptation mechanism can only rely on the fitness. Thus, it cannat usakof the advantages
provided by the recombination of the object parameters. Due to the recdinhbimd the object
parameters, intermediate ES could operate with higher mutation strengths winitmeflected in the
self-adaptation response. On the sphere, the ES reaches a stattatenf the normalized mutation
strength (normalized w.r.t. the distance and the search space dimensionalibther words, the
influences of the change of the non-normalized mutation strength (seifedida response) and of
the change of the distance (progress rate) are balanced. The stastatardepends on the learning
rate over the self-adaptation response (SAR). In general thereragdbcisive mutation strengths
which characterize the stationary state: the zero and the optimizer of theegsagte and the zero
of the SAR. The ES should strive to work with mutation strengths close to the optimihich
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stationary mutation strength the ES stabilizes depends on the learning ratesrhdvie learning
rate can be used to variate the mutation strength from its minimum to the maximu¥rfor- oco.

If the learning rate is is too small, the ES operates with mutation strengths closezerthef the
progress rate and if it is chosen too large, the stationary mutation stremytieapes the zero of the
SAR. The latter behavior is not problematic ih §)-ES: The zero of the SAR and the optimizer of
the progress rate are very close together. Choicesv@lues larger than optimal do not lead to a
significant performance loss. In multi-recombinatiye (.1, \)-ES, however, the zero of the SAR is
usually far smaller than the optimizer of the progress rate which accouritsefgensitivity.

Regardless of the sensitivity towards the correct choice stlf-adaptive ES still perform supe-
riorly compared to {, A\)-ES. Furthermore, the learning rate can be chosen so that the E®ssegr
with optimal speed (w.r.t. the progress rate). Additionally, recombination bsisiye effects if the
fithess function evaluations are overlaid with noise. The\}-ES suffers from a loss of step size
control if the noise becomes too large. It can be shown that it performasadrandom walk in the
large-noise regime. Intermediate/(.;, A)-ES still maintain a positive stationary mutation strength.
Furthermore, recombination leads to smaller residual location errors. riiakest residual location
errors are achieved by.(p;, A)-ES with a parent-offspring ratio gf : A = 1/2. Evolution Strate-
gies with a ratio betweef.2 and 0.7 do not deviate far from this optimum. Therefore, the usual
recommendation of choosing: A ~ 0.27 can be followed.

Finally, a second-order approach was applied in the case of interme@ate Ehe undisturbed
ridge. In the second-order approach the influences of the pertunlgetits of the evolution equations
are not neglected but modeled using a Gaussian distribution. First of alisiseen that the results
obtained do not differ significantly from those obtained using the determimigpooach — if recom-
bination is applied. The equations derived are recursive and highiimesr and furthermore the
stationary state distribution is unknown. Therefore the ansatz introdud@d]iwas followed and a
log-normal distribution was used to model the unknown steady state distrib&tidinin general, the
solutions can be only provided numerically. Only some exemplary cases lbew@dalyzed analyti-
cally. For the specific learning rates, it was found that recombination keafisther benefits: The
deviations due to perturbations are nearly minimal if the ugual ratio is chosen — at least for the
learning rates considered.

Chaptet 5 was devoted to evolution strategies on ridge functions. In theotése sharp ridge,
evolution strategies were found to converge prematurely in some casissdefiends on the size of
the ridge function constaritwith respect to the population parameters. In short, self-adaptation is torn
in a way between two subgoals [79]: reduce the distance to axis or eti@gain along the-axis.
Concerning the improvement of the fitness, the ES neither “sees” the pasititrex-axis nor the
distance to the axis. The feedback is over the overall fithess changeefdte, the quality change,
i.e., the expected fithess change from generajiom g + 1, was considered. The optimizer of the
quality change scales with the distance to the search space. If the mutatimttstssnormalized with
respect to the distance to the ridge, its evolution equation permits a stationaryT$tetestationary
state is also observable in experiments (see, e.g., [75]) and requireddBtisbould have a chance
to work with nearly optimal mutation strengths with respect to the quality changaceening the
quality change, i.e., the expected fitness change from generatmyg + 1, self-adaptation adjusts
the stationary point correctly with respect to changesamd R. If these parameters are changed, the
stationary solution shows the same response as the optimizer of the qualiggchtahould be noted
that in the long run a rewarding of the short-term gain may be problematictnivs tef following the
optimizer of the quality change, a stationary state of the mutation strength wittctesyihe distance
is good. But if this is coupled with an reduction of the distance to the axis whichused by too
larged-values, it means that the non-normalized mutation strength decreasescaedsgs until it is
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too small for any significant progress: The ES converges prematurely.

It should be noted that the non-normalized evolution equations do not adloanfy stationary
state for neither the mutation strength nor the distance — except in the singséawithd exactly
the size of the criticali-value. This is reminiscent of the finding of Lunacek and Whitley that the
ridge bias in the case of (\)-ES on the sharp ridge cannot be removed and the mutation strength
cannot stabilize [72]. Their subsequent finding that the ES decréasasutation strength could not
be supported in general. This can be probably explained by their expgahset-up which used only
d-values greater than one and therefore higher than the criticalue.

At this point it should be noted that the self-adaptation response is inéddmcthe distance to
the ridge in general. This holds for the sharp ridge as well as for théplizaidge. This is in contrast
to the response to the linear gain part of the ridge function. This leadstieadsonstant value in the
SAR. Therefore, the SAR is inert to the position parallel to the axis.

Furthermore, recombination with the usyat \-ratio cannot be recommended. It has positive
effects for small choices af. But it should be noted that the optimizer of the quality change is not
attainable for finiter. Increasing the learning rate turns working with the usual truncation natio f
an advantage into a disadvantage. It can be shown finally/fdr — oo, that only very small choices
of u > 1 lead to a higher quality change than= 1. This behavior is due to the response of the sta-
tionary mutation strength to changesrofAs long as the learning rate is small, the stationary mutation
strength behaves as the zero of the progress rate and increasesammobination is used. Increasing
the learning rate drives the mutation strength towards the zero of the SAR déiceases if recom-
bination with the usual. : A-ratio is introduced. The learning rate increases the quality change far
further than working with the begt : A-ratio and smaller learning rates could. Thus, recombination
with the usual truncation ratio is not recommended. It should be mentioneith¢thedasing the learn-
ing rate causes a deterioration of the prediction quality. This can be trac&ddthe derivation of
quality change which relied on the assumption that the changes induced byomuatie relatively
small. If 7 is relatively high, this may cause deviations. Generally speaking, the quiltg cesults
is more sensitive to the choice of the learning rate in the case of the shaeghalgin the case of the
sphere model. But although the prediction quality deteriorates, experimah{grediction show the
same response to recombination.

Self-Adaptive evolution strategies do not fail on the parabolic ridge. f¢apture convergence
occurs. The evolutions of the distance to the axis and the mutation strengtharstationary state.
However, the ES still progresses parallel to the axis. The mutation strengthtisnary, though,
and does not reflect theposition. Interestingly, recombination does not have positive effectsen
performance of the ES. The progress rate decreases for incr@gasen numbers.

At first glance this contradicts the results obtained by Oyman [79]. He mbintethat the “better
fulfillment of the short-term goal” (here: achieving smaller distances to thge)its equivalent to a
higher progress rate [79, p. 138]. But Oyman’s analysis could netttak response of self-adaptive
ES into account.

In the case of self-adaptation, recombination does not only decreasetiomary distance but it
also decreases the stationary mutation strength. The decrease of the nuitatigth outweighs that
of the distance. As result, the progress rate declines. It is interestingedhmad for a wide range
of u : A-combinations and largg, the stationary mutation strength is very similar to the stationary
mutation strength which would be obtained for a zero distance. This statiomatgtion strength
equals the zero point of the normalized SAR of the sphere model weightedhsitidge parameter
d. As result, a similar response to changes in the parent number is obs@ivélle evolution of the
mutation strength behaves roughly as if the subgoal of optimizing the sphvapoent were already
realized.
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If the fithess functions evaluations are overlaid with noise, the resultgeharsome extent. In
this thesis, the effects of additive uniform noise were investigated usingdimal distribution to
model the fluctuations. As it could be observed in experiments,Ithg-ES looses step-size control
on approach of the ridge axis. Again, the deterministic approach careditpthis behavior.

Recombination is therefore necessary in order to maintain a positive mutatogtstrand to
ensure the possibility of further progress. As said before, recombmiatimduces a bias towards an
increase of the mutation strength which serves as a safeguard.

In the case of the sharp ridge, noise has a positive influence. Cangidee normalized system
(w.r.t. N andR), the situation is analogous to the noisy sphere model. This leads to a resuiit wh
surprises at first glance: Additive noise with a constant noise strengtlowepithe performance of
the ES. The stationary progress rate scales linearly with the noise str@mgthieason for this is that
the noise keeps the ES from realizing the finite subgoal. Regarding theftagkirnizing the sphere
part of the ridge, noise still deteriorates the performance: The largeoike strength, the greater the
location error to the axis. But for the overall goal, this is an advantage sithstationary variables
scale with the noise strength and the distance to the axis. This also meansdmabireation with
the usual truncation ratio f : A = 0.27 or similar values should not be used. As on the sphere,
ES withp : A = 1/2 show the smallest stationary distances to the axis and ES with truncation ratios
betweenl /3 and2/3 come close. Concerning the progress rate (non-normalized), thisadecoé
the distance is too strong to be counterbalanced: Evolution strategies wighothgisnilar truncation
ratios do not show large stationary progress rates. However, recationiris necessary to prevent a
loss of step-size control.

In the case of the parabolic ridge, noise increases the stationary distatheeaxis and the mu-
tation strength. Both variables influence the progress rate. Concerr@ngffétts of the noise on
the performance, three situations occur: Noise degrades the pertmifiéime parental population is
smaller thari /2 of the offspring population. If exactly half of the parents are used)ging the noise
strength does not have any effects at all. If more parents are utilizesa, ingproves the performance.
However, the progress rates of ES with truncation ratios smallerltfzare larger than those of ES
with 1 : A > 1/2. This advantage diminishes if the noise strength increases.

Concerning self-adaptation, two effects that may cause problems werifiete First of all,
self-adaptation, i.e., the self-adaptation response, can only use aggtagformation over the fitness
values. In the case of the sphere model, it cannot make use of the gepaircaffect which is induced
by the recombination of the object parameters.

Second, in the case of ridge functions the performance of self-adaggpends strongly on the
distance to the axis. This is often coupled with a deterioration of the perfagnarhe better the
ES succeeds in optimizing the sphere part, the more the performancesgscri@acombination with
u < A\/2 generally improves this optimization result. Accordingly, recombination with thalusu
truncation ratio often causes a decline of the performance.

It should be noted that this behavior is in pronounced contrast to theibelod ES using cumu-
lative step-size adaptatian [9]. As shown/in [9] for the parabolic ridgeSA-ES achieves a progress
rate ofp, = “Ci/u,k/@d) for zero noise strength. Working with the usual truncation ratio improves
the performance. Furthermore, the stationary distaRce, N/(2d), does not depend gn

The deterministic evolution equations can be used to analyze the main chatiastef the
steady-state dynamics. The drawback is of course the non-capturiig afegular dynamics of
the process. As seen, the loss of step-size conttdl){ES on noisy fithess functions could not
be predicted. This clearly indicates a limit of the approach and requireshéwgtto higher-order
approximations. Of course, the analysis can be extended in various pétim&nains to include
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the N-dependent progress measures in the analysis. This concerngbgplee self-adaptation re-
sponse for the sharp ridge. And furthermore, other noise models,d@nice actuator noise, should
be investigated.



122 6. Evolution Strategies and Self-Adaptation




A Results from Probability Theory and Statistics

In this chapter, some results from probability and statistics are providedréhaentral to the analysis
of self-adaptive evolution strategies using the evolution equations.

A.1 Random Variables and Distributions

First some basic definitions are given before the concepts of momentuandants are intro-
duced. Afterwards, some distributions appearing often in the area loftievostrategies are described.

A.1.1 Random Variables

Let us consider a sample spdeei.e., the set of all possible outcomes of experiments or events
w. A random variableX is then defined as a (measurable) real-valued function on the sample space
X : Q — R. The distribution functiorf'y defined by

Fx(t) = Pr{X <t}) (A1)

is also called theumulative distribution functioficdf). It is easy to see that it is a monotonously
increasing and right-continuous function wiktx (t) — 0 for ¢t — —oco andFx (t) — 1 for ¢ — oc.

If Fis differentiable, its derivative is called theprobability density functioipdf) or shortly density
function and

t
B = [ s (A2)
holds. The expectation of a random variable is defined by
E[X] = / xp(z)dz (A.3)

whereas the variance is given by
Var[X] = E [(X - E[X])ﬂ . (A.4)
Expectation and variance are the special cases of the so-called moments.

A.1.2 Moments and Cumulants

Let X be a random variable with pgf X'). Thekth (raw) moment is given by

e = /OO 2Fp(z) da. (A.5)

—0o0

The central moments are taken around the mea#a 1

- / (@ )ple) dr. (A.6)

— 00
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Since
k
@t = Y ()t (A7)
1=0
the central moments can be expressed as functions of the raw moments
"k
e = 03 () 0 (A8)

=0

An opposite result holds in turn of course. Note, moments do not existéwy €ontinuous distribu-
tion. A well known example is the Cauchy-distribution with density

() 1 1
)= ——-—
P mal+ (x/a)?
and parametei > 0 which does not have any finite moment. Moments can be defined in yet another
way. The so-called moment generating function is defined by

(A.9)

) = /00 ep(z) da. (A.10)

—00

Itis easy to see that theh raw moment is given by, = d*/(dt*)y(t)|=o. The moment generating
function is similar to the characteristic function or Fourier transform of thigibligion given by

[e.9]

(t) = / e@p(x) da. (A.11)

—00

The natural logarithm of the moment-generating function is called the cumwdaetating function

=) = In(E(t)). (A.12)

Similarly to the moments, the cumulant bfh order is obtained as, = d*/(dt*)=Z(t)|;—o with
Ry = 0.

A.1.3 Distributions

In this subsection, an overview over some distributions is given whichaaymen in the context
of evolution strategies.

Normal Distribution

The normal distribution or Gaussian is one of the most important distributionatistes. Partly,
it owns its importance to the fact the sum of random variables convergesdmally distributed
random variable under relatively mild conditions. The probability densitgtfon reads

p@) = — e_%<I;M)2. (A.13)

2ro

It depends on two parameters: the meaand the standard deviatianand is a symmetric function
aroundu. The cumulative density function is given by

() = /t ! e7%<%)2dx. (A.14)

—oo V2TO
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Log-Normal Distribution

A random variableX is called log-normally distributed if its logarithm is normally distributed.
The pdf

1 _% (ln(z)fu,)2
r) = e T A.15
p(z) 2oron (A.15)

is only defined forr > 0. The moments of the log-normal distribution are given by

i +k2T2
pr = et (A.16)
x2-Distribution A random variable with density

{0, if <0

L %% ifz>0 (A.17)

25T(k/2)
is calledy-distributed withk: degrees of freedom g -distributed. Thé'-function is given fork > 0
by
(k) = / yFle TV dy (A.18)
0
The first two moments of thg?-distribution reads[x3] = k and Vafx;] = 2k. The x-distribution
is connected with the normal distribution over the following theorem.

Theorem 1. Let 74, ..., Z;, be k standard normally distributed random variables. Then the sum of
the squarey” = Z? + ... + Z} is x:-distributed. O

The square of a single standard normally distributed variab{g-distributed. In the case of two
summands, the3-distribution equals an exponential distributign(z) = Ae~** with parameter
A =1/2 (see, e.g.,[80]).

A.2 Order Statistics

The presentation in this section follows [80]. LEt, ..., X, denote\ random variables. For all
w € Q let X,,,.,(w) denote thenth smallest value ok (w), ..., X)(w), i.e.,

Xia(w) < Xon(w) <... < Xoa(w). (A.19)

The random variableX,,.», ..., X)., are called order statistics with,,., giving the mth order
statistic. Provided that alk; are independent and identically distributed with étfr), the cdf of
these random variables is given by

A=k

Poa(z) = ﬁ:(;)zﬂ(z)kﬁpm) : (A.20)

This can be seen easily. The proof presented is taken from [80]. ketatidom variable¥’,, (z)
denotely, <, and letY (z) := Z;Zl Y (x). SincePr(Yy,(z) = 1) = P(x), Y is B(\, P(x))-
distributed which leads to (A.20) using

(X <o} = {m<Y(@) <Ak (A21)
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The density function can be obtained via differentiation of (A.20) leading to
d A A A—k
pm:)\(x) = Epm)\(lp) - Z k<k‘> P(w)k_l(l — P(l’)) p(x)

=0 P (1= P@) ™ ote)
A—1
<k - 1) P(z)
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(m )P ym- 1(1—P($)>/\_mp(w)
=AM )P (- Pw) i)

_ )\< _11>P(a:)m 1(1—P(1:))/\7mp(m). (A.22)

In the analyses, the density of theth best offspring is required. The realizatiéf,. (w) thus often
denotes not thenth smallest but thenth highest outcome. In this case, note that#hth highest
value out of) trials is also thé A — m + 1)th smallest. The density is therefore given by

pm;)\(ac) =pPrmi1a(z) = )\( A—1 >P(a:)/\m+ll (1 B P(m)) /\—/\+m_1p($)

A—m+1-1
_ )\< ;:;) Py (1- P(x))m_lp(:v)
_ )\< ; __11> P (1 P@)" pla) (A.23)

A.3 Generalized Progress Coefficients

The generalized progress coefficients are given by

aﬁ o >\_:u A > B —atls2 A—p—1 o poe
WA = T <u> /0 1Be= o (1) (1 <I>(t)> dt (A.24)
(see([23, p. 172]). The special casg,,» == €,
B et A N B B U p=l
Cuur = g <M> /0 0 (1 <I>(t)) dt (A.25)

gives the expectation of the mean of thdest of \ trials of standard normally distributed random
variables.



B The Progress Rates

This chapter describes how the progress rates for the sphere mddakaidge function class can be
obtained. The progress rate is a central performance measure. hsthefdche sphere model, it gives
the expected one-generational change of the distance to the optimizes. dash of ridge functions,
two progress rates appear since two variables are used to descrilelttime of the object variables.
These are the distance to the ridge axis and the position on the axis. Thegsrogfes are needed in
Chapter 4-5 to describe the evolution of the ES. First, the progress rakefsphere model is derived
following the derivation in [6]. Afterwards, the so-called second-opiegress rate is computed. The
second-order progress denotes the expectation of the square bétige®f the distance and is needed
in the analysis if the fluctuation terms are not neglected (c.f./Sec. 4.4). Fitrelprogress rates are
computed for the ridge function class. First, a density function for the quaigyge induced by a
mutation is obtained. Using this result, the progress rates for the distanceaxigtand the position
on the axis can be obtained. The density obtained in B.2.1 will also be useddalthdation of the
self-adaptation response (SAR) in the case of ridge functions in Appénd

B.1 The Sphere Model

This section gives the derivation of the first- and second-order essgrate. Before these can
be obtained, fitness change of an offspring must be determined. Thigesiohe first subsection
B.1.1. Subsection B.1.2 sketches the derivation of the first-order mogaée, B.1.3 describes how
the second-order progress rate can be obtained.

B.1.1 The Fitness Change of an Offspring

In this section, the fitness change due to a mutation is obtained for the sphdet n&ince
the fitness functiory is the sphere, it is given by(y) = ¢(|ly — y||) with y the optimizer off.
The functiong is a monotonously increasing or decreasing function. Without loss of gligethis
subsection considers a minimization problem, igeincreases with the distance to the optimizer
One of the simplest members of this function class is the quadratic spieye= R?2. If z denotes a
mutation vector, the associate fithness chafge) is given by

Qz) = F((y)-F({y)+z)=g(R)—g(r) (B.1)

whereR denotes the distance of the centroid to the optimizer wheretends for the distance of the
mutation vector. In the general case, some approximations have to be nradgtte derivations.
Many of these are not necessary for the quadratic sphere as wilblandater on. Provided thatis
aCK+1-function, the Taylor expansion to the orderisfreads

K VK
de M= RM+O((T—R)K+1). (B.2)
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In the following,r — R <« 1 is assumed. This allows to cut off the expansiog after the linear term
and to neglect quadratic and higher contributions

o) = 9(R)+ < g(r)lenlr — R) + O(r — R)"). ®.3)
The fitness change can thus be approximated with
Q) = —g(lmrlr — R)+ O((r — R)). (8.4

In following, the notation is shortened 8(R) := (d/dr)g(r)|.—r. The change of the distances
must be addressed in the next step. To this end, the usual decompositierobitation vector is
used: Each mutation vectarcan be given as the sum of two vectors, the fizgt, parallel toR — the
secondz s, perpendicular ta 4. Sincer = ||(y(9) + z — ||, we have

r? = (R—ZA)Q—FHZBHZ*R2—2RZA+Z?4+HZBH2
2 25, lzsl?
o 2 A
= B(1-Seat b+ o). (B.5)

The decomposition of the mutation vector is used to obtain the difference oistiaaces

2 Z | llzsl?
r—R = R\/l—R At gyt g R

2 25 |lzsl]?
= 1—- = _ A EBI Yy
R\/ FAGy -y - Al

2 22 HZBH2
( R( A7 9R 2R )>
HZB”
_ B.6
ZA +2E + oR ( )

using a Taylor series expansion of the rg@dt — 22 and taking only the linear term. Due to the
isotropy of mutationsza can be assumed to be;eq, with e; the first unit vector and; a standard
normally distributed random variable. The vec#gy consists of the remaininy — 1 components,
each also normally distributed. Assuming that the contributiorf @fan be neglected, Equation (B.6)
changes to

0? &
r—R =~ —oz + —RE 22
i=2

2 N

g Z (B.7)

The sum is ay% _,-distributed random variable. As it was shown in [6] using the Central Limit
Theorem, it is possible to model the surty (2R) Y, 2? by a normally distributed random variable
with mean(N — 1)o? and varianc@(N — 1)o* |f N is large. Large values d¥ also allow to identify

N — 1 with N. The difference can therefore be approximated with

= —0z1 +

:o \

No? 2N ,
r—R = —azl—I—ﬁ—l— 2Rau (B.8)
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whereu is a standard normally distributed random variable. This leads to

/ 2 /
o _g(BR)No® ¢ (R)V2N ,

Q(z) ~ ¢ (R)oxn 5R 5p O W
If the fitness evaluations are disturbed by additive noise, the selectiohligsed on the values ¢f

but on

(B.9)

Q(z) = Q(z)+e
/ 2 /
o g (R)No* ¢ (R)V2N ,
~ g (R)oz 3R 5 O U +e. (B.10)
In this thesis, only normally distributed noise with mean zero and standardideviais considered.

This results in

/ 2 /
SN g (R)No*  ¢'(R)V2N ,
Q(z) ~ ¢ (R)ozn 5R 5 O U + OcZe (B.11)
with z, standard normally distributed. Equation (B.11) leads to the cumulative distmbfutiection

(cdf)

-~ ¢ (R)No?
i+ R ) (B.12)

o - ;
wg'(R)a) + (29528 02) 1 02

and the probability density function (pdf)

_ g (R)No2 2
exp(—%( +or . ) >
\/ (' (R)0)*+ (79'“?!” 02) +o?
p(@) = - : (B.13)
2 '(R)V2N
\/27‘(‘\/(9/(R)0') + (79 ( 2)R 02) + o2

Introducing the usual normalizations [6); := Q[N/(R¢'(R))],c* := o(N/R), ando*:=0.[N/(Rg (R))],

€

the normalized fithess change is

B 0.*2 0*2
* ok — otz — . B.14
Q oz mu o 5 ( )
Equation|(B.14) can be used to give the cumulative distribution function
o q* + 0';2
P(@*|lo*) = @ - (B.15)
\/0*2(1 + %x) +oi?

and the probability density function

- 0*2 2
1 Tty
2 *2 o*2 *2
e o (1+W)+06

p(G*lo") = : (B.16)
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In the case of the quadratic sphere, neither the Taylor series exparfsiba functiong nor the
expansion of the root are necessary. The corresponding valudgeazbtained directly. The starting
point is (B.5) which can be inserted directly into (B.1)

Q(z) = g(R)—g(r) = R*—r* = R* — R* + 2Rza — 25 — ||z]”
= 2Roz — No? —V2No%u
Ng'(R) 2 2N
“ ok 7 2R
sinceg’(R) = 2R. The main prerequisite in the case of the quadratic sphere is a high-dimansion

search space so that tiyé -distributed sum in (B.5) can be approximated by a normally distributed
random variable.

= ¢(R)ozn (B.17)

B.1.2 The First-Order Progress Rate

LetR(¥) := (y()) — g and letk := R = ||R)| denote the distance of the centroid of the
parental population to the optimizer in generatipn The notation of the mean of the mutation
strengthg<(9)) will be shortened in the following te in order to simplify the equations.

The progress rate is defined as the expected one-generation clidimgelistance

or = E[R—RYY|(R,0)]. (B.18)

and was already obtained in [6] fer= 0. This progress rate will be used in analysis. Although the
progress rate has been found to depend on the learning paranf&igy this approach is justified by
the observation that generaltyoc 1/1/N is chosen as a rule of thumb. Since the analysis is restricted
to high-dimensional search spaces, this should allow to use the result ohita[6g

The derivation of the progress rate relies on an appropriate decompasitioe mutation vectors
which was described in the previous subsection. It is possible to decentpescentroid of the
mutation vectorsz) in a similar manner. Letz4) denote the part of the centroid pointing towards
the optimizer and letzp) denote the perpendicular components. Thus, based on

¢r = E[R-RUT|o R]

= RE[1- \/(1 - <Z};‘>)2 + H%BJHQ 0. R (B.19)

or on the normalized equation

oh = NE[1- \/(1 - %‘O)Q + ”<Z]§2>”an*} (B.20)

an approximate formula fas* can be derived by calculating the expectationzof) and||(z)||* and
assuming that the expectation of the square root may be approximated byeipestations. Thus,
an estimate for the progress rate was obtained in [6] as

20‘(9)
a9y = _ _
Yp(@¥) = N [1 \/1 )

o+ [eall 521

leading to

o*(9)?
uN
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*(g)2
1— 2 1+ J2uN o*(9) Cp/p, B.22
% N o*(9)? 2 @2 | (B.22)
) Yoo

Linearizing the second square root finally gives

*2

c o (1+ Z+ %2
pp = 5 Q“N)Q - N1+ 2= -1 (B.23)
2/ o¢ L
V L+ ZN 1+3%%
ConsideringV — oo leads to theV-independent progress rate
*2 *2
C g
B/ A g (824)

M= e T
that will be used in Chapter 4. The coefficieny,, , denotes a special case of the generalized progress
coefficientSez:f ((cpjun = ei’g), see Eq. (A.25), p. 126. Equation (B.24) was derived under akver
assumptions. The first was to neglect the influence of the learning paramdéike justification for
this lies in the observation thatis generally chosen to be proportionalltd,/N. In high-dimensional
search spaces, the influence of the learning rate the progress rate is small enough not to be
considered. The second assumption is made in (B.21) where the progjeeissgiven as the progress
of the expectation ofz). This equals assuming that the fluctuations need not be taken into account
and has consequences for the second order progress rate. tbadessumption above it follows
¢*®) = ©*? as it is shown in Section B.1.3. As a result, the variaie = ©*) — »*? is zero
permitting only a first order approximation of thhesvolution equation.

B.1.3 The Second-Order Progress Rate

The second-order progress rate is needed for the evolution equgki@asif the second-order ap-
proximation is used and the stochastic parts are modeled using normally distriéotewm variables.
As before in the case of the first order progress rate, only the case=of) is considered. Under
this restriction, the derivation of the second-order progress rateyistraightforward. As mentioned
earlier, the second-order progress rate is actually a function of th@fisr progress rate (B.24). Let
us start with the definition

oD ((9) RW) = E [( R — Rlo+D2| (), R(g)]
= E [(R(g))Z —2RW R+ 4 (RlIH1))2|((9)y, R(g)}
— 9RWE [( R — Ro+D|((9)y, R(g)} — (R9)2
+E (R, RO (B.25)
Considering the definition of the first-order progress rate (B.18), (Be2fsls to
o@D (@), R9) = 2RD (<), ROY — (R L E [( R<g+1>)2} _ (B.26)
If the normalizationy*(?) := (N/R)2,(2) is used, we obtain

( R(9+1) ) 2]
1=
R(9)

(P* (2) _ NQE
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2
R(g+D) R(g+D)
_ 2 _ _ 2
= N2E 2(1 = 1 +NE || g
_ N - N4 g (Rl9+1)2 (B.27)
- Y T Re)e [ J: '

As mentioned before, if the estimate (B.21) is used for the first-order @ssgate, Equation (B.27)
leads top*?, which can be shown by calculating the square of (B.21)

wz]w<12¢12wmzﬁ+<m>2ﬂ2wm@ﬁ+<m>j

(R(g))2

Bl(RP]) =) (8.28)

B.2 Ridge Functions

The section is devoted to the determination of the progress gateaeasuring the progress to-
wards the axis ang, giving the progress parallel to the axis. The derivation makes use ciu# re
obtained in/[8]. But first of all, the density function of an offspring is dee.

B.2.1 The Fitness Change of an Offspring

Let us consider the fitness change of an offspfibgsed on the centroig;) of the parent popu-
lation

Q:=F)-F{y) = wi—{y)—dr*—R)
2y —d(r® — R%) (B.29)

wherez, := y} — (y;) denotes the change in the first component of the vector, whdteas
(N, ((yr))?)/* denotes the centroid's distance to the ridge ane- (-, (y4)2)"/? gives the
distance of the offspring. In order to derive the cumulative densitytfomdcdf) and probability
density function (pdf) of an offspring several steps are needed:

1. Note, the rotated ridge function is used, ify) = y1 — d( 32V, y2)*/* =: 2 — dR". Thus,
z; = x — (x) is the change of the first component of the object vector and obayfar)-
distribution.

2. The change — R is small. Under this assumption consider the Taylor series expansion of
f(r) = r*aroundR, T¢(r) = R* + aR*7'(r — R) + O((r — R)?). Provided that the
contributions of the quadratic (and higher) terms can be neglected, thesfithange simplifies
toQ =z — (x) —daR*1(r— R)+O((r — R)?). Note the assumption above is only necessary
to treat the case of general In the case ofv = 1, there is no quadratic term. In the case of
a = 2, itis possible to treat? directly by the usual decomposition (see below). So, in the case
of the sharp and the parabolic ridge the assumption is not required.
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3. Consider thé N — 1)-dimensional systenfys, ..., yx)". An offspring is created by adding
a mutation vector to the parental vectoR, i.e.,r = R + z. Switching to a coordinate
system with origin inR,, we can decomposeinto two parts—zrer +h wither := R/R and
h perpendicular tdR. This decomposition is similar to the decomposition in the case of the
sphere model [23]. Therefore, thevector can re-written as= R — zgeg + h and its length
asr = |r|| = /(R — zgrer)? + h2= \/R2 — 2Rz, + 22 + h2.

4. The distributions of the components of #hgector remains to be addressed. Due to the isotropy
of the mutations used, the componegtwill be assumed to be the second component of the
object vectory. It is therefore\ (0, o)-distributed. Its square ig?-distributed. The remaining
sumh? = Zf\ig y? consists of the squares of — 2 normally distributed random variables and
is x3_-distributed. Ax%;_,-distribution may be modeled using a normal distribution provided
thatV is large (see Appendix B.1.1). Considering lafgallows additional to substituty’ — 2
with N. Accordingly, it is assumed in the following that is A'(N o2, v/2N¢2) distributed.

5. Consider the square root

ferhr) = V(B—zp)?+ h2 = \/R? — 2Rap + 2 + 2 (B.30)

which can be rewritten as

2 2% h?
f(zrshR) = R\/l—RZRJrR@vLRQ

z z h?

- mfi-o(E- R (8:31)
Provided thaty < R, h < R hold, the root can be expanded into a Taylor series around zero
and cut off after the very first term giving(zr, hr) = R(1 — zr/R+z%/(2R?) + h%/(2R?)).
Provided that%/(2R?) < 1, the term may be neglected.

6. Let us treat the case of = 2 separately. Here, we havé = (R — zp)? + h? = 2R%*(1 —
zr/R + h?/(2R?)). Neither, the smallness assumption-of R in 2. nor the assumptions in
5.,zr < Randh < R, are required at this point.

As already pointed out in [19] the resulting fitness change

_ _ a—1 om0
Q = z;—daR (R(l R +2R2) R)
h?
_ a—1 .
= z,+daR (zR IR ) (B.32)

is very similar to that of a noisy sphere with in the role of the noise term. The cumulative density
function (cdf) and the probability density function (pdf) of an offspraamn now be easily given as

Q + q350° )
VoAl + ) + g2 P

(B.33)

@ - o

and

B l Q_i_q%ol 2
eXp< 2 (\/02(1+q2)+q22g202>
pQ(Q) = : (B.34)
\/271'\/02(1 +¢2) + QQ—Q%Q o4




134 B. The Progress Rates

with
q = daR“ % (B.35)

Introducing the normalization@* = QN ando* = o N, the pdf and cdf change to

CANIPN- skt
\/0*2(1""“12)"‘(122]%2}22
* 0_*2
+ o __
_ <1>< Q"+ 45r : (B.36)
Vo2 + ¢) + ¢ g
and
* . o*2 2
o N i)
o* g
po(@QY) = N T anR? (B.37)

m\/a*2(l +¢2) + qu‘\’,g;g

The expression(Q) dQ is equal to(1/N) p(Q*)dQ*. For N — oo, some components in (B.37)
stemming from the distance’s perpendicular part vanish leading to

. Q* +q%n
and
P N
exp< — () >
P5(Q") L) (8.39)

V2102 (1 + ¢?)

which will be used in the determination of the SAR in C|1.2. Equatibons (B.38)/Rr89) can be
easily adapted to the case of noisy fitness evaluations. Using the stand#gbahadditive normally
distributed noise,. with zero mean and standard deviatign it is easy to see that the fithess change
of an offspring|(B.32) changes to
h2
_ a—1 o
Q = z,+daR (zR 2R2> + Ze. (B.40)

The cdf and pdf of) are obtained as

Q + qds0?
Po(Q) = <I>< 2 (B.41)
\/02(1 +¢2) + QQ%OA + o2
and
_1( Q+q%a )2
2
po(Q) = ! o YRt ) g

\/271'\/02(1 +¢2) + QQ%OA + o2
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B.2.2 The Progress Rates
The following lemma is taken directly from [8, p.6]:

Lemma 1. Let Yy, Y5, ..., Y, be ) independent standard normally distributed random variables and
let 71, Zs, ..., Zy be X independent normally distributed random variables with zero mean and vari-
ancef?. Then, definingX; = Y; + Z; for [ = 1,..., A and ordering the sample members by nonde-
creasing values of th& variates, the expected value of the arithmetic mean of thasfahe Y; with

the largest associated valuesXfis

) = \/C% (B.43)

The progress coefficient in (B.43) is given by Eq. (A.25),/p. |126mb®/ 1 can be used to
determine the progress rates. Note, the same decomposition as in Appendiaghles: The fitness
change of an offspring is given by

Q = zp+qzp— %/ﬁ 4z (B.44)
with ¢ := daR*~! (B.35). The random variables, and zr are normally distributed with mean
zero and standard deviatien Similarly, the random variablé? may be assumed to be normally
distributed with mearVo? and standard deviatiof2No? if N is large. The noise terms also
follows a normal distribution with zero mean and standard deviationin the following, we will
switch to standard normally distributed random variablgs

q q
Q = oug+ qour+ ocue — ﬁ\/ INo2uy — ﬁNUQ. (B.45)
Let us start with the axial progress
po = E[@) - @9)] = E[(z)] = oE[(us)]. (B.46)

The expectation can be determined using Lemma 1. Note, the afigéd&)] N o2 in (B.45) does not
influence the selection since it is the same for all offspring. The cornelipg normally distributed
variablesZ; of Lemmad 1 are defined by

z = ¢ Ie U iN o = |21+ 2 0?) + %L N(0,1)  (BAT
I ;UUR"‘;UG—E g Up2 = q(—f—TJRQO')—Fﬁ l(,) ( )
where \;(0,1) denotes a standard normally distributed random variable. Note, the sunoof tw
normally distributed random variables is again a normally distributed randoiabl@ Therefore,
Lemmad 1 gives

2
& 7/\O'
o = n/n - . (B.48)
\/U2<1 +¢*) + ¢*5pp0t + 02

Introducing the normalizationg? := N¢,, o* := No, ando’ := No., (B.48) changes to

c 0.*2
or = 1/ A (B.49)

\/0*2(1 +q2) + 21%21\1‘7*2"‘0?2
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Letting N — oo leads to the progress rate

2
ot = AT (B.50)
! Vo2 (14 %) + o022

which will be used in the calculations in Chaptér 5.
The progress (not normalized and normalized) towards the axis is defned

on = E[R—r]zRE[l—\/(l—@}]?>2+<g>;}
oy = NE[R—T}:RNE[1—\/(1—<j§>)2+<g>j] (B.51)

To continue, we use the results obtained in [23] and [8]:
1. It was shown in [23, p. 209] that

o = NR(I—\/(1—<Z£>> +<J};>22>+(9(\/1N). (B.52)

2. To determine the expectation of the central component Lémma 1 can heTieedetermina-
tion is completely analogous to the determinatiorpfz, )]. Only the roles oty andz, are

reversed
2
(zr) = Cu/uA9T (B.53)
\/0-2( )+ q 0-4 + 0-2
*2
_ Cufu 99" (B.54)

N\/o*2(1+ q?) + ¢® Sz 0** + o7

3. In the case of the lateral component, the expectation over the squinre im ofy, vectors
must be taken. Since the random vecliogs, are independerims]a[hfmhm] = 0 holds for
m # [. The expectation

(h)2 = () (B.55)
7]
remains. Remember, the random variabteof each offspring is also a normally distributed
random variable with mealN o2 and standard deviatiof2N o

(h?) VAN o N

—r = o (up2) + —o”. (B.56)
7 % 1%
Let us now considefu;2). Using (B.45), the correspondirig of Lemma 1 read
Z) = 7 + e U
: %\/702 25 \/70 = > \/ﬁcﬂ ‘
1
_ Volllta HUGN(O 1). (B.57)

V2No?5h
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Taking note of the sign in (B.45), this leads to

= V2N 2
up2) = — 2RV~ CuluT (B.58)

o1+ @) + @0t + o2

—~

By plugging (B.58) into/(B.56),

N 4
(h? Cu/u RO N
L

~

== - +—0c (B.59)

i 02(1+q2)+q2%04+02 H

is obtained. Introducing again the normalizatieris= No ando? := No., (B.59) changes to

h2 c LU*‘l *2
L 1/ 1A RN? - + UN (B.60)
2 /-1:\/0—*2(l+q2> +q22¢17%2N +O'Z(2 2

—~

and (B.54) becomes

*2

c q%—
or) = wud N (B.61)

\/0'*2(1“‘(]2) + 2]\‘1[R20.*4+0.2—2

—

The results/ (B.60) and (B.61) are then inserted into the lateral progresiB.52).

4. Using Taylor series expansions (see [23, p.215]) for (B.52) andetbulting expressions, it can
be shown that fo’V — oo

q0'*2 0_*2

Cufur — =
Vo (L +q?) + o2 " 2R

YR = (B.62)

with ¢ = daR*~! (B.35) is obtained. The calculations are straightforward. Inserting JB.60
and|(B.61) into[(B.52) leads to the following argument of the root

(1 B <ZR>>2 n (h2) _ (1 B qcu/u’,\a"2 )2
2 *
R pht RN\/U*2(1+q2)+q2;—]§+a;2
qcu//MU*4 o*?
N 5 . . UNRE
N2R?p/o**(1 + ¢2) + ¢* S + oF

Performing the multiplication and reordering the result into an expressioredbtin1 — 2x
gives

T2\ *2
(1 B <ZR>>2 n (h?) 1_9 9Cu/ur9
R RN\/U*2(1+q2)+q23—;€+0§2
4

2.2 *
T/’

R2N?(02(1+ ?) + 2% + 02
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qcu/'u’)\o,*ll N 0_*2
_ - 5
N2R2u\/a*2(1+q2)+q2%]\?+06*2 pINE
qcu//w\a*2

1— 2(
RN\/o*?(1 + ¢2) + qQ% +o*?
2.2 x4
T/’

2R2N2(J*2(1+q2)+q2%+0:2>

*4 2
9Cu/p o o*

> 2uNR

+
2N2R2u\/0*2(1 +4q%) + QQ% + o7}

2)(B.ess)

The next step consists of expandiffd — 2« into its Taylor series around zero and taking only
the linear term inx. Thus, the approximation is only valid for small valueszof Regarding
(B.63), N < 1 must hold and the resulting error term is of ord¢N. Thus, the order of the
previous error term /v/N still applies. The first derivative of (z) = /1 — 2z is given by
f'(x) = —1/4/1 — 2x. The progress rate (B.52) changes to

*2
9Cu/p 0

RN\/J*2(1+Q2)+Q2%+O‘:2
4

oh = NR<1—1+

2.2 *
T Cju?

2R2N2(J*2(1 +¢2) + % +U:2>

4 2
qc o* o* 1
+ = 1 2 NR?) * O(\/N)
2N2R2M\/U*2(1+q2)+q2%]\/ +G€*2 H

*2
9Cu/p 29

Vor2(1+ @) + @25y + 072
4

2.2 *
T/’

2RN <0*2(1 +¢%) + qQZ—;\? + a§2)

x4 2
9Cu/p o o*

+ 2uR

1
L O(—) (B.64)
2NR[L 0-*2(1 + q2) + QQ% + 0-2(2 \/N

Letting nowN — oo, (B.64) changes to (B.62)

" qcu/u,/\(‘r*2 o*?
r = -
VT ) to 2R

Equation|(B.62) will serve as an approximate formula for finite dimensio@atbespaces. Both
progress rates, (B.48) and (B/62), were obtained for thexcasé and thus only applicable for
small values of-.




C The Self-Adaptation Response

This chapter presents the derivation of the self-adaptation respoA$d.($he SAR is a central
measure in the analysis of self-adaptive evolution strategies using thenitysgstems approach.
This chapter is organized as follows: First, the general approach torde&ethe first-order SAR for
(u/pr, A)-ES is introduced (C.1). During the derivations, several functioeseapanded into their
Taylor series’. For a first analysis, only the first derivations areledeThe second section gives the
specific SARs for the sphere model and the ridge function. For a moceserapproach, a general
formula for determining the derivations is required. The remaining sectrendesxoted to this task.

C.1 A General Derivation

This section presents a general derivation of the SAR which is applicathe sphere model as
well as to the ridge functions. This derivation is only valid for small valugbeiearning rate since
higher-order terms of which appear during the calculations are neglected.

The self-adaptation response function (SAR) denotes the expecttéderelzange of the mean of
the mutation strengths of theparents

sy = B[] L plom = (o)) c

The random variablg,,., denotes the mutation strength connected withitiie best quality or fitness
change in) trials. One of the main points in the derivation of the SAR is the determination of the
corresponding probability density function (pdf),.\(s). Note, as a rule the expectation in (C.1)
depends on further variables. Since they depend in turn on the fitness$ omar consideration, they
are not modeled at this point. They will come into play once the specific fithedslsware considered.
Furthermore, no normalization is introduced.

The general equation for the pdf can be given easily. Applying theeginaf induced order
statistics (see e.g. [3, 23, 4]) the pdf of the random variable leading tathéighest fithess change
Q@ in X\ trials has to be derived. Putting it in another way,— 1 out of A offspring must have a
higher and\ — m offspring must have a lower fithess change. Using the cdfoP(Q|(c)),
the probability for the first condition i°r(¢ > Q) = 1 — Pr(q¢ < Q) = 1 — Po(Q|(r)) and
Pr(q < Q) = Pg(Q|(o)) in the case of the latter. It is easy to see using elementary combinatorics
that there are

A—1 Al
= 2
A(m—l) (m — 1A —m)! (€2)
different possibilities for these combinations. The resulting generatiequar the pdf
Al

pm;A(§|<U>) = pg(§|<0>)(m_1>!(>\_m)!

< [ pal@oPe@le)* ™ (1-Pe@le)) " do  (€3)
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serves as the basis point for all further derivations. First, théPedf)|(c)) which appears in (C|3)
must be determined. The cumulative density function is given as the expactatio

Po(Qllo / Po(Ql)ps (s](0)) de (C.4)

Note, Py is used in[(C.4) instead @f, to distinguish between the expectatiBp and the cdfP of
Q for ac. It was shown in [23, p.290] for a general functifty) that

_ /0 " HOpe(slio)) ds = F((0) + O(?) (C5)

holds — provided that follows a log-normal distribution with parameter A similar results holds
for the symmetric two-point distribution. In the following, (C.4) is substitutedAy(Q|(c)). The
induced error vanishes for — 0. In the following, it is assumed that the argumentf(Q|(o)) is
of the form

Q + h({0))
4((0)) (.6

with h, g € C*°(R), g : R — R*. This holds for example in the case of the sphere model and the
ridge functions. As a next step, the standardized variable

Q-+ h((o)
9((o))
©Q = —g((o)z—h((o)) G
is introduced. Plugging (C.7) into (C.3) gives the pdf of the mutation strength
posalslie)) = po(sllo) i
< [ goppet=slaPsliap (1= P=slon) " dz (€8)
Let us now come back to the SAR (C.1) which has changed with (C.8) to
[ (s (o) IS
woy = [ (G melion, X g T
<[ gllopa=2l0 P2l (o) *m(l ~P(=el(o)" dzds. (C9)

In the case of the ridge functions and the sphere model, the approacdlware simplified. In both
cases’(Q|s) is the cdf of the normal distribution with meéits) and standard deviatigy(s). Thus,

o i)
Po@lie) = @( %), el@lo = e (5) o

1 ,%< o)z (h(s)=h( >>))
P,(z) = ®(2), and pz(z\g):g e 9() (C.11)
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141
apply and the SAR (C.9) dissolves to
[ s (o) 1 & Al 1
(o) = /0 < (o) )pa(§|<0’>)umz::1 (m — DA —m)!y2r
( (e))z=(h($) = >>>>2
* gllo)) -3 (e R
X N 1-® ®(2)" " dzds. (C.12
| L. (1-2() " "8 dzde. (€ 12)
In the next step, the order of the summation and the inner integration is ssvapipesum in[(C.12)
"

1 A\ A—m —
PP Tl Gk Bl

itself represents a regularized incomplete beta function [23, p. 147ftande substituted by an

integral
Ly & A AL [P A1) _ g1 gy
- 1-® B(zym—1 — M Jo
“;1 (m—l)!<A—m)!< (Z>) ()

. (C.13
poo A=p= D p—1)! (€19
Plugging the integral (C.13) into (C.9) leads to

s = [T mtslon—= [~

/H)(Z) Amu=lq — gypt A dzdzd (C.14)
X x — X -V yaraz daq. .
0 (A=p =Dt

Changing the integration order of the inner integrals avandz in (C.14) gives

slio) = [T R (D) oyt - ()

2
9({o)) e*% (g(<”>>zf(gh((:)>*h(<v>>>)
g(s)

V2T 7!

1 1 (1-w) _;(g(<a>>z—<h<<>—h(<a>>>)2
x/ w’\_”_l(l—w)“_l/ e 2 9(s) dz dw dg.(C.15)
0 0

Setting finallyt = ®~1(1 — w),

¢ _;(g(<a>>z—<h(<)—h<<a>))
X/ e 2 g(s)

o0

3 )Zdzdtdg

(C.16)

is obtained. This is the point to introduce further simplifications in order to gbkvé¢hree integrals.
The starting point is the innermost integral owewhich leads to the cdf of the normal distribution

with mean(h(s) — h((c)))/g({o)) and standard deviatiaf(<)/g({c)). The SAR|(C.16) changes to
o) = [ (D) mteliono- ()

) dtds.
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The last®-cdf will be expanded into its Taylor series aroufad since it hinders further calculations.
The derivatives of> read

_f?%
B(f(s) = f(s)° o (C.17)
k+1 k —@
gng@(f(c)) = §d€<f’(c)e\/%> for k > 0 (C.18)

with f(<):=g((0))/g(s)t—(h(s) — h({c)))/g(s). For the time being, the exact higher order coeffi-
cients are not needed in the approach since the Taylor series will bé eweatually after the first
terms. Using/(C.17) and (C.18), the Taylor series reads

Ty(t,c) = O(t)+ (_ g{a), h’(<g>)><g><g _ (0_>) .

Very o g((a)  g((o) (o)
1 & <O.>k+1 §—<O'> k+1
\/ﬁ;(k—kl)!( o) )
o '(9), , 9 ©)N(s) =h((a))) _ H(S)
R e )
1 rg((o))t = (h(s) = h((0))))?
Xexp<—2< 9(<) ) >)|§(0>‘ (C.19)

Plugging (C.19) into the SAR (C.9), three integrals are obtained: one congaie normal distribu-
tion function at(c’), one comprising the first derivation and a quadrétie- (o))-term, and one with
higher derivations and polynomials {n — (o)) with degree three or higher

s = [T mcona-m(Y) [ (1-aw) " oy aras

+ [T@ () wetclona - ()

x /_Z (1 - @(t))klhlcl)(t)#—lef 2 (7 Z/((<<Z>>))t _ ’;’((<<5>>))) dt ds

xeXp( B }<9(<a>)t — (h(s) — h(<0>)))2)> oo dt ds. (C.20)

First of all, the integration over is addressed. The remainder of this section is restricted the log-
normal distribution with learning rate. First of all, note that the expectation @f— (o))" leads to a
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series inr?. It can be shown that the expectation@f— (o)) /(c)]* does not include any?-Terms

with 21 + 1 < k. At this point, the series is expanded to the precisiom%fthus the expectations

of terms[(s — (o)) /(0)])¥, k > 3, enters the error term. Section C.3 is aimed at developing a more

accurate formula for the SAR. The equations obtained there are lengltgoarplicated, though.
Considering (C.20) reveals that the last integral contributes only to theterm. Equation (C.20)

can therefore be given by

o) N
o) () A= (u) L e )
x (1 - @(t))A_u_lé(t)“l(;: dt + O(m) (C.21)

or inserting the expectations obtained in Section C.2
2

vo) = (F+oh)

0= [

2 w)oJ s 27
A\ [ ({0 h (o))
re0-m(o) [ (5 )
x(1- (I)(t)))\_#_lé(t)“_le;; dt) + 0. (C.22)

The value of the first integral is one. The other integral cannot be da@walytically. Instead, the
generalized progress coeﬁiciemﬁé}f are used. Reconsidering the definition (A.24), p. 126

Gr = paw <2>/ tﬁe*aTHtQCD(t)’\’“’l(l—@(t))u_adt
V 4T0 —0o0

with ¢/, \ 1= ei’g, the SAR is given by

a,f3 )‘_:u

< 1,1 g'({a)) W (o))

¢(<0>) = T2 (% + <U> eﬂ,)\ g(<a>) _cu/u,)\m>) +O(T4)' (C23)

The self-adaptation response (C.23) has been derived under timeass thatr is sufficiently small.
In the case of the two-point operator a similar result holds provided thattfzenetep is sufficiently
small. In this case, the SAR reads
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w(io) =81+ )5+ 0 (LD - a2 DY) + 0. (29

This can be easily verified by following the approach until Eg. (C.21),guaisimilar argument to
drop the higher order terms of(see Section C.2) and inserting the expectationsinto (C.21).

The general equations (CJ23) and (C.24) can now be used to give sherfiler SAR for the
sphere model and the ridge functions for sufficiently small valuesasfd 5. In the next subsection,
the SARs for the undisturbed and noisy sphere model are derivedrwafigs, the SARs for ridge
functions will be given.

C.1.1 Sphere Model: The self-adaptation response functionf or r <« 1
First, the SAR of the noise-free sphere model is determined. The g&®Ra(C.23)

"({o W ((o
oo = 5+ (A 1O ) o

requires the determination of the functiopmsand /. and their derivatives. These functions can be
obtained by considering the cdf of the fitness chafg€Q|s) = P((Q + h(s))/g(s)) (cf. Eq.
(B.12)). In this section, the log-normal distribution is considered. Thetmu for the symmetric
two-point operator/ (C.23) can be obtained by substitutihgvith 3(1 + 3). In this section, the
fitness function is denoted bY(y) = w(|ly — y||) = w(R).

The Undisturbed Sphere Model In the case of the noise-free sphere, the pdf of fithess change
reads

Q+ e’
Po(@lo) = o ) (C.25)
w’(R)\Kz-l-%&
The functions requiredy andg are therefore
_ NWR) L, NW(R)
h<) = —Sp— W)=—F—s (C.26)

and

g(s R)y/<? +—2<, q'( w'( (C.27)
2R 2\/§ +2R ¢4

After inserting [(C.26) and (C.27) into the SAR (Cl.23),

1 +4 s x
v(o) = 7 (5+ ) (enh o >2 2}32( >4 — /o R<"fv )) +o(g.28)
2((0)2 + (o)) (0)2 + 2 (o)1
is obtained. Introducing the usual normalizatiei,;:= N/R(c), changes (C.28) to
* *3 *
. 1 Ro*/,; 282 +2R%; NS .
1/}<U ) = (s + €\ . = Cu/u,\ +O(T )
<2 N ( H 2(R2U 2 R22UN3> /Rj\(])’2*2 +R2§;/§>>
1 . 20 + QL o*

T (v N AN, ) BYCTER) (c.29)

7A *
: 2(0*2 + 4) o*2 4 T
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Letting N — oo, the limit of (C.29) is obtained as

* 1 *
Y(e*) = 72 (5 + ei”l)\ — Gl )& ) S (9(7'4). (C.30)

Equation [(C.30) will be used in the further calculations in Chapter 4. Equafior29) and[(C.30)
were obtained under the following conditions: As small learning rafer the parametef, respec-

tively). This is due to the derivation of the general equation of the SARhéncase off (C.29), a
high-dimensional search space is required which is due to a requiremelptigiiming the cdf of the

fitness change (B.12).

Equation [(C.30) was compared with the results of ES-runs (Fig. C.1). lexplriments, the
negative sphere functiofi(y) = —||y||?> was used as fitness function. Thedependency is weak in
the experimental results and the agreement at least for smaller mutatiorttsdrsngpod.

¢<S*(g)) 1/)(8*(9))

0.02 0.02
0.015

0.01 0. 01\
0005 x(g) \N\(‘)‘\‘s&“&& 5 2 25 3 57
0.5 \1\\ 5 2 2.5 3 S \\\
-0.005 [ -0.01
001 \
-0.02 N
-0.015 ¥

-0.02 * w

a)N =30,7=0.1 b) N =100, = 0.1

Figure C.1: The self-adaptation responsé the case of a log-normal distribution of the mutation
strength. The points denote the results of one-generation experimentsd&a point was averaged
over 250 000 trials. As initial vectoy(®) = 10 was chosen. From top to bottom the results for
(10/10¢,60)-, (20/20;,60)-, and(30/307, 60)-ES are shown.

The SAR for the Noisy Sphere In the case of the noisy sphere, the pdf of the fithess change is
given by

Nw'(R) 9
_|_7
Po(Qls) = @( © 2 (C.31)
w'(R) \/g2 + ormy + oS’
(see B.12). The functions andg required for the general SAR (C.23) are
_ ONWR) 5, Nw(R)
hQ) = —Sp— WO)=—F—s (C.32)

and

2 N 2% + 2053
= W(R) [+ s+ —ct, g(o) = w(R R
g(§) w( )\/§ +w/(R)2+2R2g7 g(c) w( )2\/§2+ o

. (C.33)

2
€ N
wime TS

'UJ/
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Note, againu denotes the fitness function instead of the original symhol(B.12).
Inserting[(C.32) and (C.33) into the SAR (C.23) gives

1 (el’l (o) + 72 (0)?
LA

)) + o). (C.34)

Now the same normalization as in the previous section is introduced — settirg (N/R)(o) and
o .= [N/(w'(R)R)]o.. The SAR changes to

* *3
Y(o*) = 72 (1 + fto” (el’l RUW - R?TQ
9 N A ([ R2 %2 R25x2 #4
(Be” + 55 + R4 )
Ro*
—Cuun )) + o). (C.35)
R2O'*2 R20*2 D) o*4
NZ2 + NZ2 + R 2N3
Letting N — oo,
1 0,*2 0,*2
= = N5 — — (@) C.36
,(’ZJ(O- ) T (2 +€H,)\0-*2+0.2<2 TV \/m) + (T ) ( )

is obtained. The conditions under which (C.35) and (C.36) were obtanedti@same as in the case
of the noise-free sphere: A small learning ratéor the parametes, respectively). Again| (C.35) is
obtained for large search spaces.

Both SARs[(C.35) and (C.36) are compared with the results of experimehtsséi-up of the
experiments is similar to the noise free case. The experiments were condsotgdi:/ 7, 100)-
ES Each data point was sampled 0280, 000 runs of one-generation experiments. Two search
space dimensionalities were investigated: = 30 and N = 100. Even in the low-dimensional
search space\ = 30), the prediction quality is reasonable good — expecially for smaller mutation
strengths. Deviations occur for higher mutation strengths. This is morepnoed for smaller noise
strengths than for higher. Increasing the mutation strength eventuallysresa deviation from the
N-dependent prediction (C.35).

C.1.2 Ridge Functions: The Self-Adaptation Response Functi onfor 7 < 1

This section is devoted to the task of determining the SAR for ridge functiomsalRthe SAR is
given by (C.23)

21 11 9'({0)) h'((a)) "
oo = 75+ ~amgey)) O
with g andh stemming from the cdf of the fitness change of the f&tgiQ|s) = P[(Q+h(s))/g(s)].
In this section, the equation for the symmetric two-point operator (C.23) igiven explicitely, since
it can be obtained by substituting with 5%(1 + 3).
As in the case of the sphere model, first undisturbed ridge functionsoasedered before the
SAR for noisy ridge functions is derived.
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Figure C.2: The first-order self-adaptation response functicior some choices of and some
(1/11,100)-ES. Equation[(C.35) is represented by the gray lines, whereas the Ilaskdenote
(C.36). The points denote the results of one-generation experimentselmdvas obtained by aver-
aging over250, 000 trials.

The Undisturbed Ridge In the case of the noise-free ridge function, the pdf of fithess change is
given by [(B.33), p. 133,

Po(Qls) = (C.37)

<I>< Q + adR*~ 1452 )
\/gz(l + 02d2R20-2) 4 a2d? 202 N 4

The functions required for the SAR (C.23) are therefore

N
h _ d a—1 2
(<) adR 2R
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Figure C.3: The first-order self-adaptation response functicior some choices of and some
(1/11,100)-ES. Equation[(C.35) is represented by the gray lines, whereas the Illaskdenote
(C.36). The points denote the results of one-generation experimentselmdvas obtained by aver-
aging over250, 000 trials.

N
n'(s) = ozdRo‘_lﬁg (C.38)

and

N
g(§) — \/§2(1 + a2d2R2a—2) + a2d2R2a—Qng4
2§(1 + a2d2R2a—2) + 2a2d2R2a—2%§3

2\/g2(1 + a2d2R2a—2) + anQRQO‘_Z%q‘l

(C.39)
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Figure C.4: The first-order self-adaptation response functicior some choices of and some
(1/11,100)-ES. Equation[(C.35) is represented by the gray lines, whereas the Illaskdenote
(C.36). The points denote the results of one-generation experimentsemdvas obtained by aver-
aging over250, 000 trials.

Plugging (C.38) and (C.39) into the SAR (C.22) leads to

Y(lo)) = 72 (1 + (o)) (61’1 (o) (1 + a2d2R2a—2) + a2d2R20_2%<0‘>3
79 (<0‘>2(1 + a2d?R2-2) + a2d2R2a72%<0>4>
adRa_1%<o'>

“Cu/p,A
\/<0>2(1 + 02d2R20-2) 4 a2d? R20-2 N (5)4

)) +O(4). (C.40)
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Figure C.5: The first-order self-adaptation response functicior some choices of and some
(1/11,100)-ES. Equation (C.35) is represented by the gray lines, whereas (C.@§)resented by
the black lines. The points denote the results of one-generation experiamehésach was obtained
by averaging ove250, 000 trials.

Using the normalization™ := N (o), the SAR changes to

@ w

UW(l_i_aZdQRZa 2)+a2d2R2a 2}]%\7 o*
(1 + a2d2R2e— 2)+a2d2R20z 2N

*

6o = (55l ii( )

2R?
dRO1%
/o e & _))+o@h) (A
’ 0*2(1+a2d2R2a 2) + a2d2R202 20
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_ _ *4
7_2<1 11 0_*2(1+a2d2R2a 2)+a2d2R2a 2%}{2

— 9 +eun (g*2(1 + a2d2R20-2) 4 22 R20—2 2;,—{;3\})
—Cp/p adRailL; > + 0. (C.42)
\/0*2(1 + 02d?R2-2) 4 azngga_g%
Letting N — oo,
00t = (5 + e T s i ) + O
= G + €3 = Cuu = \/%) +0(r?) (C.43)

is obtained. Let us summarize the conditions under which (C.42)[and (C&®) derived: The
general SAR requires the learning ratéor the parameteg, respectively) to be small. The cdf of
the fitness change was obtained for large valueTherefore,/(C.42) only holds in large dimensional
search spaces. Finally, (Cl43) is obtained/for— oc.

It remains to compare both SARs (C.42) and (C.43) with the results of expesifse Fig. C.6).
For the experiments, @, 60)-ES, a (0/10;, 60)-ES, and a0/30;, 60)-ES were chosen and run on
the sharp ¢ = 1) and parabolic ridgeo{ = 2). The learning rate was set to= 1/1/N and the
d-constant was set té = 0.2. The starting vectorgg* were randomly chosen and normalized to
lygl = 1.

In the case of the parabolic ridge, the prediction quality is good. This eghis lfior the low
dimensional search spac&' (= 30). In the case of the sharp ridge, considerable deviations can be
found for N = 30. This is especially true for thel (60)-ES which deviates very soon from the
values predicted by (C.43). Smaller deviations can be observed for gegiments in the higher
dimensional search spac® (= 500). It should be noted that th&'-dependent (C.43) also fails to
capture the exact behavior of the measured SAR. The prediction qualay leefter in the case of
the parabolic ridge. Several causes may contribute to the behavior oAReFdrst, higher-order
terms ofr were neglected during the derivation of the SAR. Second, the derivattitie fitness gain
relied on the assumption that the changes of the components of mutation wecsonall w.r.t. the
distance. This allowed the Taylor expansion of the square root in Edl)(§:3133 and the subsequent
cutting off of the series after the linear term. The learning rateMoe 30 and N = 100 may thus
contribute together with thé&’-dependent terms to the deviation. It should be noted that in the case
of the parabolic ridge this smallness assumption is not required. This is assexdrby considering
the prediction quality of the SAR in [28] which used an alternative fitnesegdnéor (1, \)-ES. This
alternative fitness change resulted in a better prediction quality for sméll@herefore in the next
section an alternative derivation for the SAR is given.

The SAR for Noisy Ridge Functions  In the case of noisy ridge functions, the pdf of fitness
change is given by

Po(Qls) = (C.44)

<I>< Q-i—adRa_l%gQ >
\/<2(1 + 02d2R?072) 4 02 + a2d2R202 4
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e)u = 20, d = 0.2, sharp ridge flu = 20, d = 0.2, parabolic ridge

Figure C.6: The first-order SAR Eq. (Cl42) (dashed lines) and Eq3jstlid lines) on the sharp
and parabolic ridge for some [, 60)-ES. Shown are the results for= 1, . = 10, andu = 20.
The distance to the ridge was setRo= 1. Each data point was obtained by sampling o\@r, 000
one-generation experiments fdr = 30, 200,000 for N = 100, and250, 000 for N = 500. The
results forN = 30 are denoted by diamond shaped symbols (red), whereas stars (bhutY@ta
N = 100, and triangles (black) folv = 500.

Considering the general form of the SAR (C.23), the functioasndg and their derivatives are

N N
h(s) = adRaflﬁg% h'(g)zadRa*Eg (C.45)
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and
N
g(s) = \/g2(1+a2d2R2a2)+0—2 a2d2 R2a—2 R2§ ’
2¢(1 + 2d2R2a—2 +9 2d2R2a—2ﬂ3
Jc) = Ata ) £ 20 AN (C.46)

2\/§2(1 + a2d?R2072) + 02 + a?d? R2 -2 1 4
As one can easily see, the rest of the steps in obtaining the SAR are entalgaus to the noise-free
case. Inserting (C.45) and (C.46) into the SAR (C.23) leads to
1 (o) (1 + a?d’R**72) + a2d®R** 24 (0)3
o) = (5 + o) (e -
<<0>2(1 + a2d2R20-2) 4 o2 + a2d2R2a72W<0->4>
Cu/n )\adRa_l%<a>

- ’ +0(rY.  (C.47)
\/<a)2(1 + a?d?R2%02) + 02 + a2d2R20—22%2<0>4>)

Now the same normalization as before is introduced — setting= N (o) ando} := No.. The SAR
(C.47) changes to

LN*(I + a2d2R2a—2) + ald?R20—2 N o*3

1 o Nos
Y(o*) = 1° (§ + N (ellj,lA <C],\;; (14 a2d2R2-2) 4 % + oz?dZRQaRQj%Q ?\;:)
—Cu/un - adR Ty I N = )) + (’)(T4)
2 (1 + a2d2R22) + 052 + Q2d2R2a-2 N o
_ < . {\ o*2(1 + Q2d2R22) 4 a2d2 R2~ QEN
2z (0*2(1 + a2d?R20-2) + g*? 4 a2d? R22—2 2}‘{;})

adRe-1 e
ulmA %2 212 P20—2 2 12 P2a—2 _o**
0*%(1 + a?d?R?**~2) + 0.2 + o?d’R SN
Computing the limesV — oo of (C.48) gives

) +0O(th). (C.48)

1 *2 1 2d2 20—2
2 ,U« o* (1 L a2d2R2a 2) +O'*
adRY— 1 *2

—c
“/“’/\R\/a*z(l + a2d2R20=2) 4 g*2

)+orh.  (c49)

The conditions under which (C.48) and (C.49) were derived are the aarnmethe case of the noise-
free ridge: The learning rate(or the parametef, respectively) has to be small and the search space
must be high-dimensional.

Both SARs|(C.48) and (C.49) are compared with the results of experimenigureFC.7. The
set-up of the experiments is nearly the same as in the noise-free caseniddistrengths was set to
oe = 1 for N = 100 and too. = 0.33 for N = 30. The learning rate was set to= 1/\/N. In the
case of the parabolic ridge, the prediction quality is reasonably goodn-iethe low dimensional
search spaceN = 30). In the case of the sharp ridge, the prediction quality is only good forenigh
dimensional search spaces.
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b). =1, d = 0.2, parabolic ridge

/72

d). = 10, d = 0.2, parabolic ridge

»/7?

e)u = 20,d = 0.2, sharp ridge flu = 20, d = 0.2, parabolic ridge

Figure C.7: The first-order SAR (C.48) (dashed lines) and (C.49) (4ioks) on the sharp and
parabolic ridge for someu(/ 1.1, 60)-ES. Shown are the results for= 1, . = 10, andu = 20. The
distance to the ridge was set/= 1. Each data point was obtained by sampling c\@r, 000 one-
generation experiments fa¥ = 30, 200, 000 for N = 100, and250, 000 for N = 500. The results
for N = 30 are denoted by diamond shaped symbols (red), whereas stars (bheejstad/ = 100,

and triangles (black) foN = 500.
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C.1.3 Ridge Functions: An Alternative Derivation of the Self -Adaptation Re-
sponse Function for the Sharp Ridge

In this section, an alternative fithess change is used to determined the AR feharp ridge.
This fithess change uses a different approach to give the densitj28f p.111]. The starting point
is the Taylor series expansion ¢fr) = r® in[B.2.1. Again, the Taylor series aroutt| 7¢(r) =
RY + aR*L(r — R) + O[(r — R)?, is cut off after the linear term. This leads to the fitness change

Q = 2.+ dRY—dRa —daR* *(r—R) — O[(r — R)*] +¢
= 2z, —daR*'(r —R) - O[(r — R)?| + e (C.50)

Similar to (B.29), p. 132;, denotes the change in the first component of the vector, whestasds
for the noise term. Following [22], a normal approximation for the pdf of

exp<_5<r_¢m)>

2
2, 2N
R2455

R2+§2N

p(rls) = (C.51)
R2+<27N
V2| prrdn

is used [23, p.111]. This results in the following cdf of the fitness change

Q + adR*Y(VRZ+ ZN — R) )

(I)< R2462N/2
2 2
\/<2 + 02 + a2d? R?*~2¢2 (RRSLjCéVf

Po(Qls) (C.52)

Recall, the SAR is given by (C.23)

o) = 5+ @A et (D)) + o

with g andh stemming from the cdf of the fitness change of the f@giQ|c) = P((Q+h(s))/g(s))-
Again, first undisturbed ridge functions are considered before tHe 8Anoisy ridge functions
is derived.

The Undisturbed Ridge In the case of the undisturbed ridge, the variance of the noise term in
(C.52) is zero yielding

+adR*Y(vVR2+¢2N — R
Po(@ls) = c1>< v Siidinik )>. (€53)
\/g2 1 a2d2R20-22 (RR;jgéV]\é?)
The functions needed for the SAR (C.23) are
h(s) = adR**(vV/R%?+ 2N —R)
W) = adretN< (C.54)

VR?2+¢2N
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and

R? +¢2N/2
— 2 242 P20v—2 -2
9(s) = \/c + a?d?R §<R2—|—§2N>

2 12 p2a—2 R2+c2N/2) 2 12 p2a—2 2(Nc(R2+g2N)—2Nc(R2+c2N/2)>
2¢ + 2ad“ R q(iRQHQN + a*d“R 'S (R2+<2N)2

2 2
2\/@ 1 a2d2R20-22 (RRjjgéV]\/f)

2 2 2 2N _ 2_ 2
21+ a2 (202 ) | + a2 223 (& S )

2 2
2\/§2 1 a2d2 R20-22 (RR;?(;VJ\/;)

2 2
2\/§2+042d2R2a_2§2<RR;j§£V]\//2>

Plugging(C.54) and (C.55) into the SAR (Cl.23) gives

adR*~1N (o)
VR2+ N{o) \/ ()2 + a2d2R20=2(g)? (%)

Ly a2 o)

2 o 2
2 <<0>2 + Q2P Ro)? (IR <g>§§§2)>
a2d2R2a—2N<0.>3 ( R? 2)
—e;lﬁ\ (R2+(0)2N) >> +0()
' 2 <<0>2 + a2d2R20-2(g)2 (R2+(0>2N/2>>

(o) = 7 <2+<0><_Cu/u,>\

1,1
—i—e“’/\2<a>

R2+(0)2N

a—1 2
- 2 1+€1,1 . adR* ' N{o)
9 A G/ N2
VR T N<o>\/ (0)2 + a2 R2-2(0)2 (1 E32 )

22 R20-2 N (5)4 R?
11 ordtht (@) ((RQ+<0>2N)2>

7o) ) <<0>2 + a2d2R20-2 ()2 (RQJF<0>2N/2)> )

+O(rh). (C.56)

R2+(0)?N

Using the same normalization as before, i&.;= N (c), the SAR changes to

1 1.1 adRa_10*2
P(o*) = 77 <2 e T Cu/u 2
R2 + a*2 0-*2 + a2d2R2a720.*2 (RQJFC;N >
N R2+U;\(f2
o *4 2
O¢2d2R2a 20-]V((R2fa*2)2)
—e\ X +0(). (C.57)

*
SR

*2
" 2<U*2+a2d2R2a—20*2(R2+2Nz))
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Letting N — oo,

adR1o*

1
S _ 2( = 1,1 _
vt =T (2+6W WA R T P PR

) +O(rY) (C.58)

is obtained which equals (C.43). The conditions for the derivation of (Gbd (C.58) are the same
as for (C.42) and (C.43): A small learning rat@and a large value @V in the case of (C.57).

In the following, the SARS (C.57) and (C.58) are compared with the resuéisgEriments. The
experiments were already described in the previous section. As expéagaediction quality of the
SAR (C.57) is not good in the case of the parabolic ridge (see Fig. C.8&.isTHue to the derivation
of the fitness change (C.52). Equation (C.57) agrees very well with {heriexents in the case of the
sharp ridge.

The SAR for Noisy Ridge Functions In the case of noisy ridge functions, the pdf of fitness
change is given by

(C.59)

Po(Qls)

R%24+¢2N

<1>< Q + adR*Y(VRZ + N - R) )
\/gz + 02 + a2d2 2022 <R2+€2N/2)

Considering the general form of the SAR (C.23), the functioasdg and their derivatives are

h(s) = adR**(v/R%2+ 2N —R)

<N

n = adR ' ——— C.60
) = d N (€69
and
R2 +¢2N/2
— 2 2 292 R2a—2 -2
9(s) \/§ + 02+ a2d’R §<R2+§2N>
2 {1 + a?d?R2%—2 <7R;2+j2%\/[2>} — 042(i21%2a’2N§3(7R2 2)
/ ° (R2+¢2N)
g() = . (C.61)

2\/062 + <% 4 a?d? R?0—2¢2 (7}2;22\[]\/,2)

As one can easily see, the rest of the steps in obtaining the SAR are entalgaus to the noise-free
case. Inserting (C.61) into the SAR (C.23) leads to

1

o 2
V(o)) = 72 (2—Cu/u7)\0édRa1 (0)"N

R? + <0’>2N\/<0'>2 + 02 + a2d?R?**=2(0)? <7R;2+_£‘<T£évj\/[2>

14+ a2d?R20-2 <R2+<0>2N/2)

» R?+(0)?N
+26,u7>\<0'>2 B ol N2
QPR RN (o) ()
_6,1;7& (R2+<Ui:2]i)<a)2N/2 ) +0(r). (C.62)
2(02 + () + @22 R (o) (SHENE ) )
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d). = 10, d = 0.2, parabolic ridge
v/7

l\x
i L n L L L L L L L L L L L L O'*

e)u = 20, d = 0.2, sharp ridge flu = 20, d = 0.2, parabolic ridge

Figure C.8: The first-order SAR Ed. (C/57) (dashed lines) and Eq8fG®lid lines) for some
(1/p1,60)-ES. Shown are the results for= 1, p = 10, andp = 20. The distance to the ridge was
settoR = 1. Each data point was obtained by sampling oM#F, 000 one-generation experiments
for N = 30, 200, 000 for N = 100, and250, 000 for N = 500. The results forV = 30 are denoted
by diamond shaped symbols (red), whereas stars (blue) staidd for100, and triangles (black) for
N = 500.

Now the same normalizations as before are introduced — setting: N (o) ando} := No.. The
SAR (C.62) changes to

g

1 *2
T 72<2—cu/u,wdm—1

ox2

2
2, o*2 %2 %2 272 P2a—2 -+2 ( B2+ 5N
R + N\/a + 0 +a*d*R o L
N
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2 *2
1 +a2d2R2°‘_2(R +%)
R+

2 2 o B2+ %%
(022 4 0*2 + a2a2R2 20 (ﬁ))

N

o02d2R20—20*" ( R2 2)
¥\ )
2 2 o B2+ %0
2 o* —I—O'* +a2d2R2a720-* 2£\f2
€ R24 2%
N

) +0(rh). (C.63)

Letting N — oo gives

7_2(1 6171 0_*2(1 4 a2d2R2a—2)
2 ThAG*2(1 4 02d2R20-2) 4 g*2
adRoz—lo.*2

=@
A R o2 (1 + 022 R2a-2) 1 22

)+orh. (o9

Again, the conditions under which (C/63) and (C.64) were derived aesdime as in the case of
(C.48) and((C.49)

Figure C.9 shows a comparison of (C.63) dnd (C.64) with the results ofimeas. Again, there
is a good agreement of (CJ63) with the experiments in the case of the shgep hidthe case of the
parabolic ridge, the same observations can be made as in the case ofittierbad ridge: Due to the
derivation of [(C.64), (C.49) serves better to predict the experiments.

C.2 Calculating the Expectation

In this section, the expectations of

¢ —(0)\F /°° s —(o)\F
E = o d C.65
K () ) } o ( (o) ) Po(sl(@)) ds (C.65)
are determined for the log-normal and the symmetric two-point operatoediio® C.1 it was claimed
that if the Taylor series in?* is cut off after the(n + 1)th summand, the expectation of (C.65) with
degree> 2n + 1 is zero. In this section, this claim is verified. First, the log-normal distribution is
considered, before the case of the two-point distribution is discusséliefgake of completeness.

C.2.1 The log-normal operator

— 2,2
The moments of a log-normal distribution are given(by“:(<a>)kekT. The aim of the section

k
is to derive expressions f ri(f?) . Since

<§_<U>)k = Z<I;>(<)l(—1)k‘l(<a>)‘l, (C.66)

k
(@) =

the expectation is given by
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e)u = 20,d = 0.2, sharp ridge flu = 20, d = 0.2, parabolic ridge

Figure C.9: The first-order SARs (C.64) (solid lines) and (C.63) (dhsines) on the sharp and
parabolic ridge for someu(/ 1.1, 60)-ES. The distance to the ridge was setiRo= 1 and the noise
strength tao? = 1. Each data point was obtained by sampling oM#, 000 one-generation exper-
iments for N = 30, 200,000 for N = 100, and250, 000 for N = 500. The results forN = 30
are denoted by diamond shaped symbols (red), whereas stars (bheejostd = 100, and triangles
(black) for N = 500.
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1272 0o 12n

Sincee 2 =Y | Lo,

TN S .
(g <a<> >>k B anQ” ;( > 1)”2
k

=0

_ ki;zn () (—1)l2n (C.68)

n=1 =0

3

has to be considered. As itis shown lafel;_, (¥)(—1)4?" = 0 holds fork > 2n + 1. The expected
values are therefore given by

(D! oz e

(g — <a>)k _ ) <X (D=t k=2
(=1 30 1y 2 i

xS0 (’“)(— )ZF" if k=25 +1

— (—1)F Z T <> 1)k, (C.69)

As aresult, ifr < 1is assumed and the Taylor series is cut off aftet ng, accordingly, the expected

k
values for( (<;;>) with k& > 2ng + 1 do not have to be taken into account. In the following, the

k
expectation ol( (_f,‘)’>> is given for some choices &f i.e., for

I . . .
k_1:><€zg<>0>)1 = -2 12n2<> 12"_27;;

n*l =1 n=1
o T 7'4
== ?‘Fg—i—..
=0\ =T 2n
k=2 (o) ) - Zn‘2"2<> )1
n=1 =1
o0 n 7
= 2[2” 1—”]Tn! +%+
¢ —(0)\3 — T n
":32‘( () ) - _an () DL
n ” T2n 974
B 23[32 1 ]2"71! 2

= ) = S ()
- Z[(6)22” + 20— 4(1 + 32)] L

21!
n=2

= 34

2n
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=5 () = Xy (]

— Z[l + 2(3277,) + 5271 1 22714’1 _ 2471]

n=3
572" 1570
Xoml = (C.70)

The remainder of the section is devoted to show ¥igit, (¥)(—1)42" = 0 holds ifk > 2n + 1. This
is done using induction. Let, = 2n and start withrm = 0. Splitting the sum into even and uneven
terms and considering Pascal’s triangle

k - . .

Z (k) (—1)1 _ { le)o/f /(22kl) f/(z)kl 1()2/1?11) i itk =2j

=\ l 0 ( ) - (yy) ifk=2j+1

= okl =0. (C.71)

Let nowm = 1. In this case

- —kk_o (k ; 1) (—1)' =0 (€72)

holds. Finally form — m + 1, remember thalt™ can be written a&™ = Y- ¢, ; [ /2, (I — ) with
constants,, ;. This leads to

b - £

=0

=1 j=0 i=0
k m 7j—1
=3 ()0 Y engtm - [T -0
=1 7=0 =0
m 7 k I
ST | (R SECE (i
7=0 1=0 l=j+1 J
m j—1
= emi(m—j) [J(k—1)
j=0 i=0

« Z(—nl(’“ _J,) 0. (C.73)
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Thus, the expectation of higher order terms vanishes. An analogauls mekls for the two-point
operator.

C.2.2 The two-point operator

The moments of the random variahle are given byc* = (6)*/2 (a* + a~*). The analysis
will be restricted to the case @f ~ 1. Setting thusee := 1 + 3, 8 < 1 follows. The function
f(8) = (1 + B)~* will be developed into its Taylor series around zero. The Taylor séfj€s) is
given by

7)) = ZO(’Z“;_"DN 1y
k(k + 1)
2

The term(1 + 3)* is given by the binomial formula

(1+p)F = E;(’f)ﬁ

k(k —1)

= 1-kB+ B2 — 3+ 0pY). (C.74)

k(k +1)(k + 2)
6

k(k — 1)(k — 2)

= 1+kf+ = B+ : 3+ 0. (C.75)
Thus, the sum of (C.74) and (C.75) reads
Qaf gt = 1_kﬁ+k(k2+1)62_ k(k+1g(k+2)ﬁ3
1 kg h g MEZVEZD) g g
_ 2+k+1—;k—1kﬂ2+ (k:—l)(k:—2)g(k:+1)(k:+2)kﬂ3+o(ﬂ4)
= 24+ K232+ K23 + O(BY) =2+ K2B%(1 + B) + O(BY). (C.76)

Addressing the expectation of

() - B Qe e

(7)1 2+ 2o+ ) + 005
(—1)! + B2(1 + B)(— k;f:( ) iz + 03

2
1+ a1

MwN

<’;> (-1)11% + 0(p4)(C.78)
=

[e=]
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As it was shown in the previous section, the value of the first addend. 8@ zero. Therefore, no
power of 3 below two appears in the approximation.

Considering the results for the log-normal distribution, we see that the®tjmn (C.78) contains
only terms of orde© (%) if k > 3. For the SAR, the values of (C.78) for= 1 andk = 2, i.e.,

W = —ﬂ%wﬁ)éi(})(—1)%%0(54)

- @2<1+5>+0(64> (C.79)
(ga@):} = 52(1+ﬂ);§;(?)(—1)ll2+0(54)
- % +5>{ ®+4<§ﬂ+o<ﬁ4>:52<1+5>+o<ﬁ4> (C.80)

need to be determined.

C.3 A General Formula

The section is devoted to the task of determining a recursive equation. Iflinata aim is to
gain an equation or a MATHEMATICA-program which can be used to tieeSAR in an (arbitrary)
precision ofr. This section still does not include thedependent terms df, (C.4) in the derivation.
The main point of this section is to illustrate some points of the derivation whicalsoeelevant for
the next section which presents an approach which accounts fodalbendent terms.

C.3.1 The Derivation
The starting point is (C.20) in Appendix C.1,p. 142,

o = [ nf2) w0 o

+ [0 () wetcliona - ()
</ Z <1 e )>A_“_1‘I’“)“162_: (- S~ ) s

—oo 27
o 9),  g©)0()—h({a)) I(s)
" ack << g(<0>)92(<)th 9((c)? - g(<)>
L rg({o))t — (h(s) — h({0)))\?2
coxp( — (A= 0 )))| oyt
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Again, the three integrals have to be considered. The first two can I daeloped into a general
formula of 7. Recall from Appendix CJ2 that

(g ZU<>U>>2 ) ”5_031 27“27:! :o <?> (-u = g:l 277?; (-2+2) (C.81)

holds. Considering the results obtained so far in Appendix C.1 for theicsintegrals in/(C.20), it
is easy to see that

I +1, = i;ﬁ;
n=1 ’

g0 1 W (o)) & 7" .

) (g1 e~ o iy ) 2 g ( ~ 242

_ iw <1+(_2+2—zn)<g>)(g;'(<<<§>>)>e;,i _CWI;'(<<<5>>>>)> (C82)

(cf. (C.22)) holds. As already mentioned in Appendix|C.1, the third intggmakés more difficulties.
This concerns the appearance of higher derivatives and of cthesetegration ovet. Let us now
focus on

k: 1
- S [ ) g

xexp( ;(Q(W)t SUDE h(<a>)))2)> [e—(o) dtds (C.83)

Q
—
N
~—
—~
>
—~
N
~

h({c n
M) 1 s

and

o9 = oxp( — L (2D (M) = Alloyy .89

The kth derivative of a product of two functions simply reads

k

(u(s)o(e)® = Z(l;)u(’”)(c)v“)(c) (C.86)

=0
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with u®) (¢) := g—fku(g). The kth derivative of a composite function is not so easily obtained. Fol-
lowing [32] it reads

e ol Fom
g - ”'{kz} 3y " Wl=) l_:[ ,T(fv )) (C.87)

with » = k1 + ... + k, and {k,,} the set of all non-negative integer solutions of the so-called
Diophantine equation (see, e.g., [32])

k1 + 2k + ... + nky, = n. (C.88)

Thelth derivative ofu is of the form

u = (LN gont+ (L8 o)~ niio) " = (BN (cag)

9(s)?

with
l

2 (l.)g““‘%) (562", (C.90)

=0

(g’(§)><l>
9(c)?
The jth derivative of the composite function is given by
o\ 0) , P R N
(g(<) 2) = j! 2(2—1-7“)!(—1) g(§) 2 H kim!(mg( )(§)> (C.91)
{km} m=1

since(y=2)Y) = (=1)7(2 + j)ly~2~7. The derivation of the third term in (C.89) can be obtained by
I

S

Jj=0

with

(697)” = A+ f[kl(m,g )" (co9)

{kem}
The remaining derivation of the last composite term of (C.89) can be detaimsieg
!

(G0 =nem)” = 32 ()00 - te) ™ (59"

=0

)

IS

=X ()( D)o 9mo) - i)

j=0 k=0

<.

x(g(s ) (C.94)

Concerning thelth derivative ofu stays linear. This is not the casevifs considered. The function
itself is a composite function of the foro{s) = exp(w) and therefore the derivative is

!
WD) = 1 Z oW H k,ln!(n{b!w(m)(g)ym' (C.95)

{km} m=1



C.3 A General Formula 167

The functionw is again a composite function with(c) = —1/2z(<)? leading to
!
1 1 1 km
! _ 2—r m
wh(e) = 51! {}k :}2 X .ox (2= 1)2(<) gl m(mw( >(y)|y:2(g)) . (C.96)

Finally, the last remaining derivatives remain those of the argumentseaiding to

() = ww»%ao*ﬁ”+§j(;)@«»—M@)“mKwo*Ym. (.97
m=0

Some simplifications can be made:
1. Thelth summand in (C.97) vanishes completely

Dl = (Dt (567) ezt

—(o)- (C.98)

+
s =
N————

=

N

&)
—
B
2
T N\

<

—~

e
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N—

2

2. Sincez({o)) = t, only sets with at most two elements have to be taken into account

l
wh(c) = —%Z!ZQX... 2— )t Hki(—z ))km. (C.99)

{km}

3. Concerning thelth derivative ofve!’/2 is a polynomial int

W0) = lle- ZH = '(i (m) g))k"i (C.100)

ky m=1

In principle, (C.86) to[(C.100) can be used to determine the SAR. Howgegnrming the calcula-
tions is lengthy and the results are not easily usable. Therefore, the tEmairthe section is aimed
at providing a MATHEMATICA-program for determining the SAR. To thisdemeconsider (C.82)
and [(C.83). Equation (C.82) can be directly transferred. In the caBg.diC.83), the first step is to
swap the integration order — computing first the integral gver

k—l—l
Z/ k:+1 a>< >>k+2p"(§’<">)dg

x(\ — p) <2> /OO (1 - <I>(t))Af‘hlcp(t)u—l%r7

—00

gﬁawwywHy@wo
k

<exp( - l(g(<a>)t — (h(s) — h(<a>))>2>> o 101
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The integration result for every term of the series igives a series in?'. To obtain the general series
in powers ofr?, the summation order must be swapped. For notation conveniencf(let)) denote
the integral ovet of kthe derivative in/(C.101). After integrating over

Mg

0 2j k+2 k 9
k+2 T + h12j
I3 -1) > WZ( N )(_1)hj
j=[k/2+1] h=0
_ i-%zzzct o)kt 1)k1§ k+2 (_1)hh2j (C.102)
S0 = kk+1) N\ h '

is obtained. As shown, the coefficiefif, leads to expressions of the forent’/>2 szgl ai({o))t.

The integration over in (C.101) leads therefore to special cases of the progress coeffi(le4)

2k+41 0o

a = ;ai«ow-u)@) /- (1—@<t>)k‘“‘1¢<t>“1tf‘}fdt
2k+1

ot = Z(—l)iai(<0>)()‘_u)<:>/

i=0 -

2
00 1 =

(et (1 - @(t))“f A

2

2k+1

= > (=Dia({o)e,). (C.103)

=0

The task remains to determine the coefficients in (C.103) which can be dioigeMIBTHEMATICA.
The SAR can then be obtained by combining (C.82) and (C.102) as

2 < ( — 24 2—2n)<g>> <Z((<<Z>>)) elltlx — C“/Wm))

00 P 25— k+2 k42 '
Z Z 1)’“2( . ><—1>’”Lh2f (C.104)
2 k=

h=0

(e} 2n

In the following section, the effects of including higher-order termg ah the SAR [(C.104) are
discussed. The parabolic ridge is used to as a test function for the SAB4)C

C.3.2 Comparison with the Parabolic Ridge

Let us compare the obtained SAR (C.1L04) with the results of experimentsfpatiabolic ridge.
Three evolution strategies were examined:1g&()-ES, a (0/10;,60)-ES, and aZ0/20;, 60)-ES.
The SAR was expanded upt6. The ridge constant was set tal = 0.2 and the distance to the ridge
to R = 1. In the following, the SARs are numbered in accordance to the expansiqny denotes
the result up to the power of?. Figure C.11 compares the prediction with the results of experiments
for N = 100. In the derivation of the SAR, th&-dependent version was used. The influence of the
higher orderr-terms is relatively minor. Althoughy;, with £ > 1 deviate from the results obtained
for k = 1, the effect wished for cannot be obtained in general. In the cage-ofl, Fig./C.11 a),
the deviations from the result far, do not lead to a better prediction quality. In the casg ef 10,
Fig. b),1»2 and3 move closer to the experimental results for higher mutation strengths, but
1o and3 do not overlap with the measured data. Furthermogedoes not deviate far frong,. In
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Get["eabm . mat " ]

Clear[fh,fg,awts , cwkt,bw,wkt, psil, psi3, psi]
n=100

d=0.2

a=2

fhs_]:=axdxs"2/2

dfh[s_]:=D[fh[x], {x,1}]/.x—=>s
fg[s_]:=sxSqrt[l+a"2«d"2+a"2d"2xs"2/(2xn)]
dfg[s_1:=D[fg[x],{x,1}]/.x—>s

awts[k ,t_,s_]:=

Module[{x,y, |, erg},

expo[x, y-, I.] :=
expo[x, y, lkexpo[x, y, |l — 1l]xexpo[x, y, O0];

expo[x, y_, 0] := fg[s]/fg[x]xy — (fh[x] — fh[s])/fg[x];
expo[x., y-, 1] := D[fg[s]/fg[x]*xy — (fh[x] — fh[s])/fg[x],x];
erg=expo[x,y,k+1]/.x>s/.y—>t

cwkt[k_,s.,m_, I_]:=Module[{ alist ,erg,coefs ,y, ap,
coefs=CoefficientList[awts[k,y,as],y];
erg=Sum[( —1)"(j—1)xcoefs[[j]]xeabmlI[1,j—1,m, I],

{j,1,Length[coefs]}];

erg/.as>s]

wkt[k_,j_-]:=Sum[Binomial [k,h]x(—=1)"h«h~(2«j),{h,0,k}]

bw[w_,s_,m_,|_]:=Module[{as ,k, erg},
erg=If [2xw—2<=0,

0,
Sum[cwkt[k,as ,m, I Jxas " (k+1)/((k+21)!x(—1)"kxwkt[(k+2),w],
{k,1 ,w«2-2}]
l;
erg/.as>s]
psi3[taw ,i-,s.,m_,l_]:=Module[{as ,t,erg},
erg=If [i <2,0 Sum[tau~(2xw)/((w!)*2"w)xbw[w,s m, ] ,{w,2,i}]]
]
psil[taw ,i_,s.,m,I|_]:=
Sum[tau " (2xw)/((w!)x2"w)
x(L+(—2+27(2«wW)) xS
x(dfg[s]/fg[s]xeabml[1,1 ,m, |}cmmkli[m,|]xdfh[s]/fg[s])) .,
{(w,1,i}]
psi[tau ,i_,s.,m_,|_]:=psil[tau,i,s,m,|]+psi3[tau,i,s,m,|I]

Figure C.10: The MATHEMATICA source code for the SAR
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the case ofu = 20, finally, 1), and+3 are very close to the experimental data. Natg (indicated

by the dashed line with the shorter dots in Fig. C.11 c)) gives better restiésb@havior may have
several causes: First of all, there are all still neglea-l%derms which may cause deviations. Second,
it should be noted that taking more terms of tfeseries does not necessarily improve the prediction
quality for any fixedr.

b) =10, N =100,7=0.1,d =0.2

c)u=20,N=100,7=0.1d=0.2

Figure C.11: Comparison of the SAR (C.104) with the results of experimehM®eTSARS)1, 1,
andqs are shown. The solid line represents, the dottedy», (dashed, short dots) ang; (dashed,
longer dots). The results far, andt3 cannot be distinguished, since the lines nearly overlap.

C.4 A General Formula: A Second Approach

First of all, a minimization problem will be considered. In other wordsiitle best fithess change
is not themth highest fithess change but theh smallest. It is easy to see that the fithes change of an
offspring retains the general form of the previous sections. In otbedsyit is assumed that first,

Po@ = (PN (C.105)
and second
Po(Q) = @(ng(?)(g)) (C.106)

holds in accordance with (C.4). Let us reconsider the (C.1) whicbvisgiven by

Uo) = 2;(2‘_11) J G
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x /_OO Po(Qls)Po(Qlo)™ (1 - PQ(QyJ)) "0 de (C.107)
with
Po(Qlo) = /OOO Po(Qls)ps (<) ds. (C.108)

At this point the deviation is changed. Instead of switching to standarditegration variables, the
steps for[(C.183) 4 (C.16) are performed first. First, the order of summatidrintegration is swapped
and the sum is substituted by an integral

M- (A1 A-m N A € ) A
ungl(m—l) (1-Po(@) " "Po@t = 2o T LB (ca0g)
Again, the integral is reinserted into the SAR (C.107) giving
v = 0=-n () [T (5 et [ palalo
1-Po(Q)
></ ¢ 21— )P de dQ ds. (C.110)
0

After some calculations and subsequent reordering, the SAR

v = 0=n () [T (57 pelcio)

<[ 1= Pa@) " Po(@ ol @Fo(@) dQds (C1Y)

— 00

is obtained withpg := 0/(0Q)P¢. At this point the integral

Po(Qlo) = /OOOPQ<Q|<>pg<<|a>d< (€.112)

has to be reconsidered. Expandifg into its Taylor series around gives
k

Po(Qle) /Z cPa(@)l=o (=) Topolslo) s

Z Po(Qls) |§—U( J)ki;’:
Q —h(o
< 9(o)

k

) ZWPQ (Qls)le= U(U‘j)k‘z, (C.113)

Again, it is refrained from computing the derivativés/ (0s*) Py (Q|s)|c=,. This will be done even-
tually using MATHEMATICA. Note the following, though: Théth derivative of P, can be given
as a product of the pgfy and a polynomial irQ). This will finally lead to coefficients similar to the
progress coefficientsjzf (A.24). The second step consists of taking the expect@jofy — o)/c)*]
and developing it into a series it similar to Eqgs.[(C.66)f. in Appendix C.2.1. Accordingly,

Po(Qlo) = <I>(Qg_(g)<a))+gak(c2, Z nWZ() Dl (C.114)

=[k/2] 1=0
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is obtained (cf.[(C.69)). The coefficiemt denotes

k k
(@) = (D PoQI)r Ty (€115)

The last calculation concernify, (Q)|o) at this moment is to change the order of summation leading
to

2n

wor) = (©H) 5 S s (e
n=1 k=1 =0
. <1>( (g)(a))vLZ;!z;cn(Q,o). (C.116)
n=1

Accordingly, the productl — Pg)*~#~!in (C.111) reads

D Sl G [ TR

=0
_1) T
x(~1) (T; Tren(Q.0)) (C.117)
wherea/,"! in (C.111) is given by
2n

g — h(o)\H—1-m /= T
Py = 3 (" N)e(T )T (X

m=0

en(Q, a))m. (C.118)

The product of (C.116) and (C.117) reads in turn

(1-Pa@)" " Pa@) ! = oS <A o 1) <H”_"L 1>

=0 m=0
Q = hg)\\ =1t 1Q = h(o)yutom

(-2(07)) T )
0 72n m

(Y T en@e)" (c119)
n=1

A similar series is obtained for the integral
lo@a) = [ (*27) Po(@epatelo) s (C120)

Taylor series expansion of (C.120) arounttads to
k-1 okl T gk
lo = Zakl Qk'”( —1)!<T)

= (L) (50 L e el@ergioy

k__i)! (g(;”)k. (C.121)
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173
Computing the expectation and reordering according to powers gitves
o) = 32 (oY) S aian 3 (V) o)
- ni '221; (wn(Qlo) +¢(Q;(§§U)))~ (C.122)

The functionp, remains to be considered. Sineg = 9/(9Q)P, it is obtained using (C.116) as

(a - NG 172n
po@)aq = oL 1D+ §jn,2n§j—akcz, Y (3)enena
=0

- O'
- ¢< g(a) ) +; n!QnU"(Q’U) dQ. (C.123)
The product of (C.122) and (C.123) reads

Pe(Qlo)Io(Qle) dQ = ¢<Q_h(0))@(Q—h(a)>iT2n

/(o) o) )
Q—h(o)y§~ "
LU R L
Q — h(o) S, rin 2 r2n
+<I>< g9(o) ) ; nl2n nz::l n!2”vn(Q’U) e
& 72n © 72n
+ i wn(@lo) D —ova(Qlo) Q. (C.124)
n=1 n=1
Now, the integration variabl€ is transformed te = (Q — h(0))/g(o). We arrive at
o 2n
piltlo)Li(tlo)dt = (@)Y
n=1 "
oo 2n
+o(t) Y ~ o wn(tlo) dt
n=1"""
e 7_2n T2n
+®(t)g(0) nzl iz g tn(tlo) dt
e T2n e 7_2n
+nzl 9(0) s wn(t]o) nzl g Un(tlo) dt. (C.125)
Since
d)(Q — h(O')) _ 1 e_% (Q;(Z()U))Q (C.126)
9(o) g(o)v2r ’
it follows that
e T Q- h(o)
syt ="7— = g()o(= %) (c.127)
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Furthermore, d@ = g(o) dt holds and leads together with (C.127)[to (C.125). It remains to compute

1
the product of[(C.119) and (C. 1\24()1 Py t|a)) o Py(t|o)*tpy(t|o) I;(t|o) dt. Again, four
terms can be distinguished

L(tlo)dt = ¢(t)®(t) i ;.227; Ail 3 (A : llt ) > <Mﬂ_”b 1)

x (1 . @(t))”fl* @(t)“_m(—l)l(i ;—cn(t, a))m” dt, (C.128)

Hd = o3 Tt 30 5 (V) ()

00 2n 00 72n Acp el — - -
Itlo)dt = @(g(0) Y. > g e 11) > ZC : 1) (Hm1>

n=1 =0 m=0
A—p—1-1 . > 2n m+l
x(l—(l)(t)) fyp=lm (1)l Zn'ann(t,o)> dt
n=1
o~ T T2 AL - p—1\ /-1
SEC)IEED LTI DI D (i | Gy
n=1 =0 m=0
A—p—1—1 . > r2n m+l
x(1- o) B(1)" (_1)1(2mcn(t, o))" dt,  (C130)

n= =0 m=0
A—p—1—1 Cm 2n m+l
X (1 - <I>(t)> o(f)h L (—1)1(;1 el 0)) dt  (C.131)
with
Y) = (A—p) (2) / h I (t) + Ir(t) + I3(t) + I4(t) dt. (C.132)

The aim is now to gives (C.132) up to a precision af?. As it can be seen easily, the summation
over! andm can be cut off after mifi, A\ — i — 1} in the case of and min{ K, . — 1} in m. This



C.4 A General Formula: A Second Approach 175

means that (C.130) and (C.131) only contribute to the SAR if 2. As stated before, the coefficients
¢n, Wy, anduv,, contain products of a polynomial inandexp(—t2/2). Therefore, expressions similar
to the definition of the progress coefficients (A.24) can be obtained. Adg® that the freg(o)-
term in (C.130) and (C.131) averages out eventually. In the following tAEHIEEMATICA-code is
described. Let us start with Fig. C/12 which defines some progrescets. These stem from
considering the sums over and!/ in Egs. [(C.128)+(C.131) which contain products of the form

()\ —~ ;; - 1> <u —~ 1) (1 B q)(ﬂ)A—H—l—l@(t)u—l—m. (C.133)

m

Additionally, they are multiplicated with one or two pdfs of the standard norméilligion and with
polynomials int. In other words (C.132) contains terms of the following general form

; N A—pu—1 —1
m,lhkj 1% 2
i = a-n() (L)

/ h (1 - <I>(t))Ai#ilil(l)(t)“_l_m+j¢(t)l+m+htk dt. (C.134)

— 00

Thet-dependent terms can now be expressed in terms of (C.134). It remaetetmine
1. which powers of actually appear for?*, k fixed
2. the coefficients which are connectedtin 72*.

So first of all, the coefficients,, w,,, andc,, have to be obtained. This requires some further calcula-
tions. These coefficients are given as follows

k
Uy = Z;ak(t,o)z<];>(_1)ll2n

k=1 =0

ak(t, a)wk,n (C135)

k=1 =0
2n—1

= - Z ak(t>o-)wk+1,n (C136)
k=1

= > ap(t,o)wpp (C.137)
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fi[x_] := (1 + Erf[x/2°(1/2)])/2

Ifi[x_] := Module[ {aaa}, aaa =N[fi[x]];
If[ aaa =!= 0.0, Log[aaa],
—Log[2xPi]/2 — x"2/2 — Log[—x]]

]

[1fi[x_-] := Module[ {aaa}, aaa = EN[fi[x]];
If[ aaa =!= 0.0, Log[aaal],
—Log[2«Pi]/2 — x"2/2 — Log[x]]

eijkml[i_,j-,h_.,k.,w_, mu, lambda] :=
eijkml[i,j,h,k,w, mu, lambda] =

Module[ {aa,m, I} ,m=mu;|=lambdaif [ |-m-i—-1 ==
(aa=
Log[Binomial [l -m—1,i]* If [m—1==0,1Binomial [m—1,j]]* Binomial [l ,m]];
(I-m)* (2« Pi)"(—(i+j+h)/2) x Nintegrate]
If [k == 0, 1, t°k] = Exp[ —(i+j+h)/2 % txt + aa +
If [(l-m-i—=1) == 0, O, (lm-i—-1)«xI1fi[t]] +
If [(m-j—1-w) <= 0, 0, (mj—L1-w)=Ifi[t]]],
{t, -8, =2, 2, 8, MaxRecursion—> 45] ),
(aa =
(Log[Binomial [ -m—1,i]« If [m—1==0,1,

Binomial [m—1,j]]*Binomial [I ,m]])/ (| —j—i—-w—2);
(1-m)x (2« Pi)"(—(i+j+h)/2) x Nintegrate]
If [k == 0, 1, t"k] = Exp[ —(i+j+h)/2 * txt +
If [(l-m-i-1) == 0, 0, (lHmi—1)x(aa + I1fi[t])]
+ If [(mj—1-w) <= 0, 0, (mj—1lw)x(aa + Ifi[t])]],
{t, -8, =2, 2, 8, MaxRecursion—> 45] ) ]
]

Figure C.12: The MATHEMATICA source code for the coefficienfs;""" (C.134). The code is
oriented after the MATHEMATICA code for the;’, coefficients of Beyer.

with ay(t, o) given by (C.115), i.e., by
i k

0 o
ay(t,o) = (—1)k67ngQ(t|<)\<:aH
andwy, ,, by
k
Wep = Z<’;>(—1)lz2n. (C.138)
1=0

Figure C.13 shows how these coefficients are obtained. Note, the @efiiets giveso® /(9s*) Py
whereaskts compute®*+1/(9tds*) Py. It remains to treat the remaining sumsfin (C.128)-(C.131).
First of all, let us conside} 2, 7% /(i!2)c;. Of course, the series can be cut off after the wished
precision is reached. In the following, |&f denote the maximal power of. The sunPt in Figure
computes then

K 2n
Po= Y et U)JW (C.139)
n=1 ’
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whereast gives

K 2n

_
peo= ) valt:0) 0. (C.140)

n=1

Let us now reconsider (C.121) where two sums are given — one corgdnfif and the other deriva-
tives of ®. The sumtheintPhi determines the first, whettheint stands for the latter.

Now the single factors can be combined (seelFig. C.14). Let us firsidemressinglen and/ addend
in (C.128)-(C.131). First of all, the product of the seriesfrhas to be determined. Afterwards, only
the terms up to the power ofX need to be retained. The addend in (C!128)

7_2n K 7_2n I+m
B(O(t) <n:1 ) (C.141)
is given byprodphiPhi whereaprodphi computes the addend in (C.129)
K 2n K 2n | |+m
T T
The remaining addends in (C.130)
on K 2n K 2n | |+m
T T T
@(t)g(a)nmn ;vnn!Q" (;Cnn!Q") (C.143)
and|(C.130)
K on K 2n K 2n  I4+m
T T T
;Unn!Q” ;wnn!Z” (T;Cnn!Z”) (C.144)

are then given byrodPhi andprod, respectively.

It remains to combine the obtained addends with the correspom@fﬁ’w-coefficients (C.134).
Therefore, the addends for each equation (C.128)-(C.131) avagigered in Figures C.15 and Cl16.
First, the coefficient for eact?” is obtained. Afterwards, the results are used to determine the coeffi-
cients oft’. These are combined with the appropriq’g@h’k’w—coeﬁicients before, finally, the results
are gathered up again in a polynomial7iff. The SAR can then be obtained by summing up the
single addends in (C.128)-(C.131) and computing the remaining sumsoaBd!.
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dim=100

d=0.2

a=2

h[s_]:=axdxs"2/2

g[s_-]:=sxSqrt[l+d"2«a"2+a"2d"2xs"2/(2xdim)]

akts[k ,t-,s_]:=Module[{x,y, | ,w},

expo[x, y., |I_] := D[expo[x, vy, | — 1], x] —
expo[x, y, Okexpo[x, y, | — 1l]lxexpo[x, y, 11];

expo[x., y-, 0] := g[s]/g[x]xy — (h[x] — h[s])/g[x];

expo[x, y-, 1] := D[expo[x, y, O0],x];

w=expo[x,y,k]/.x>s/.y>t]

bkts[k.,t_,s_]:=Module[{x,w,y, |},

expo[x, y-, I_.] :=
D[expo[x, vy, | — 1], x] —
expo[x, y, Okexpo[x, y, | — 1l]lxexpo[x, y, 11];

expo[x., y-, 0] := g[s]/g[x]xy — (h[x] — h[s])/g[x];
expo[x, y., 1] := D[expo[x, y, 0],x];
w=D[expo[x,y,k],y]/.x=>s/.y>t]
wkn[k-,n_]:=Sum[ Binomial [k, IT«(—=21)"I«1"(2%n),{1,0,k}]
[...]
result[n,t.,s.,mu,la_]:=Module[{tau ,erg,as,¥,
akList=Table[akts[k,y,askas k«(—1)"k/k!,{k,1,2«n}];
bkList=Table[akts[k,y,askas k«(—1)"k/k!,{k,1,2xn}];
ckList=Table[ If [k==1,0,akts[k-1,y,askas " (k—1)«(—1)"k/(k—21)!1,{k,1,2xn}];
cnli-,y-,as. ]:=Sum[akList[[k]] «wkn[k,i],{k,1,2«i}];
bnli_,y-,as ]:=Sum[bkList[[k]] xwkn[k,i],{k,1,2xi }];
dn[i_,y_,as ]:=Sum[ckList[[k]] «wkn[k,i],{k,2,2xi}];
Ptli-,tau.,as ,y_-]:=I1f [i >0,Sum[tau”(2«j)/(j!*2"j)«cn[j,y,as]{j,1,i}],0];
ptli_,tau.,as ,y_]:=If [i >0,Sum[tau”(2«j)/(j!=«2"j)«bn[j,y,as]{j.,1,i}],0];
theint[i_,tau.,as ,y_]:=1f [i >0,Sum[tau " (2x(j))/((j)!'*2"(j))*dn[j,y,as],
{i.1,i}1,0];
theintPhi[i.,tau.,as ,y_]:=If [i >0,Sum[tau~(2«(j))/((j)'«2"(j)).{j.1,i}],0];
intErg=theint[n,tau,as,y];
intPhiErg=theintPhi[n,tau,as,y];
ptErg=pt[n,tau,as,yl;
PtErg=Pt[n,tau,as,y];
erg=Sum[Sum[( —1)" | «x(getPower4[n,tau,s,m,| ,mu,la,6 PtErg,intPhiErg ,y]+
getPower3[n,tau,s,m,| ,mu,la, PtErg, ptErg,intPhiErd+y
getPower2[n,tau,s,m,| ,mu,la, PtErg,intErg ,y]+
getPowerl[n,tau,s,m,| ,mu,la,h PtErg, ptErg,intErg ,y]),
{1,0 ,Min[la—mu—1,n]}],{m,0 ,Min [mu—1,n]}];
erg=erg/.as>s/.tau—>t

]

Figure C.13: The MATHEMATICA source code for obtaining the coeffite Some lines are missing
(indicated by [...]) which will be explained later.

C.4.1 Comparison with the Parabolic Ridge

Again, the parabolic ridge is taken as a test function for the SAR (C.13%)us now compare
the SAR [(C.132) with the results of experiments for the parabolic ridge. eTévelution strategies
were examined: al(60)-ES, a (0/107, 60)-ES, and aZ0/20;, 60)-ES. The SAR was expanded up
to 7%, The ridge constant was set tal = 0.2 and the distance to the ridge wasR = 1. In the
following, the SARs are again numbered in accordance to the highest pdwe in the expansion,
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prod[n_,tau.,s_,y_.,m_,|_,Ptln_,ptin_,thelntin_]:=Module|
{res ,end,erg,t,ay, as
[f [m+1+2>n,erg=0,
res=Ptin"(m+| % ptinxthelntin;
end=Min [ Exponent[res ,tau],2n];
erg=If [end<0,0,
Sum[ CoefficientList[res ,tau][[i]]«tau”(i—1),
{i,1,end+1]]
1]
prodPhi[n ,tau.,s_,y_.,m_,|_,Ptln_, ptin_,theintPhiln ]:=Module[
{res ,end,erg,t,ay, ds
If [m+I+2>n,erg=0,
res=Ptin"(m+| x ptinxtheintPhiln;
end=Min [ Exponent[res ,tau],2n];
erg=If [end<0,0,
Sum[ CoefficientList[res ,tau][[i]]xtau”(i—1),
{i,1,end+1}]]
1]
prodphi[n ,tau.,s_,y.,m_,|_,Ptln_,theintlin_]:=Module]
{res ,end,erg,t,ay, ds
If [m+I+1>n,erg=0,
res=Ptln"(m+| xtheintln;
end=Min [ Exponent[res ,tau],2n];
erg=If [end<0,0,
Sum[ CoefficientList[res ,tau][[i]]*tau”(i—1),
{i,1,end+1}]]
11
prodphiPhi[n,tau.,s_,y_.,m_,|_,Ptin_,theintPhiln ]:=Module[
{res ,end,erg,t,ay, as
[f [m+l+1>n,erg=0,
res=Ptin"(m+lxtheintPhiln;
end=Min [ Exponent[res ,tau],2n];
erg=If [end<0,0,
Sum[ CoefficientList[res ,tau][[i]]xtau”(i—1),
{i,1,end+1]]
1]

Figure C.14: The single: and! addends in (C.128)-(C.131).

i.e.,1); denotes the result up to the powerdf. Figure C.17 compares the prediction with the results
of experiments forN = 100. In the derivation of the SAR, thé&/-dependent version was used.
Additionally, Figure C.18 shows a comparison of the two approachesn beaeen easily that using
(C.132) has no significant advantage over using (C.104) — at leasttbp mower ofr®. In the case

of u = 10, apparently (C.104) leads to better results. It should be noted, thowghystbbtained by
(C.132) is closer to the experimental data thvat This might indicate that higher-order expansions
lead to better results. Unfortunately, the MATHEMATICA-programm takeddo long to determine

Py,
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getPowerl[n,tau.,s. ,m_,|I_,mu,la_,Ptin_, ptin_,thelntin_ ,y_]:=Module]
{t,tList ,yList,coefList,prod,res ,max,amax,end,end2s@},
If [n<2,erg=0,|f [m+I+2>n,erg=0,
res=prod[n,tau,s,y,m,|,Ptin, ptin,thelntin];
tList=CoefficientList[res ,tau];
yList=CoefficientList[tList ,y];
end=0;
end=Min [2xn+1,Exponent[res , tau]];
end2Max[end ,0];
If [end2==0,0,
max=0;
For[i=1;amax=0,kLength[tList],i++;
amax=Exponent[tList[[i]],y]; If [maxamax,max=amax,max];];
coefList=Table[eijkmI[m,|,2,i-1,0,mu,la] {i,1,max+1}];
res2=f [Length[yList] >0,Table[ If [yList[[i]]!= {},
If [Length[yList[[i]]]==0,yList[[i]] xcoefList[[1]],
Sum[yList[[i]][[j]] =coefList[[j]],
{i.1,
Min [Length[yList[[i]]], Length[coefList]]}1],0],
{i,1,Length[yList]}],0];
erg=Sum[res2[[i]]xtau”(i—1),{i,1,Length[res2]}]
1111
getPower2[n,tau.,s.,m_,l_,mu,la_,Ptln_,theintln_ ,y_]:=Module|
{t,tList ,yList,coefList ,res2,res,erg,end2,ps
If [m+I+1>n, erg=0,
res=prodphi[n,tau,s,y,m,|,Ptln,theintin];
tList=CoefficientList[res ,taul];
end=Min [2xn+1,Exponent[res , tau]];
end2Max[end ,0];

If [end2==0,0,
yList=CoefficientList[tList ,y];
max=0;

For[i=1;amax=0,kLength[tList],i++;
amax=Exponent[tList[[i]],y]; If [maxamax,max=amax,max];];
coefList=Table[eijkmI[m,|,2,i-1,0,mu,la] {i,1,max+1}];
res2=f [Length[yList] >0,Table[ If [yList[[i]]!= {},
If [Length[yList[[i]]]==0,yList[[i]] «coefList[[1]],
Sum[yList[[i]][[j]] =coefList[[j]],
{i1,
Min [Length[yList[[i]]], Length[coefList]]}1],01],
{i,1,Length[yList]}],0];
erg=Sum[res2[[i]]xtau”(i—1),{i,1,Length[res2]}]
11 1

Figure C.15: Computing the sums I.

C.5 The Second-Order SAR for 7 < 1

In this section, the second-order SAR fork 1 is derived. The second-order SAR is needed in
the second-order approximation of the dynamics of self-adaptive ESapproach followed is sim-
ilar to the one used in Section C.1 for the determination of a more generalrfiiest-elf-adaptation
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getPower3[n,tau.,s. ,m_,I_,mu,la_,Ptin_, ptin_,theintPhiln ,y_]:=Module[
{t,tList ,yList,coefList ,res2 ,res,erg,end2,ps
If [n<2,erg=0|f [m+1+2>n,erg=0,
res=prodPhi[n,tau,s,y,m,|,Ptin,ptin,theintPhiln];
tList=CoefficientList[res ,taul];
end=Min [2xn+1 ,Exponent[res ,tau]];
end2Max[end ,0];

If [end2==0,0,
yList=CoefficientList[tList ,y];
max=0;

For[i=1;amax=0,kLength[tList],i++;
amax=Exponent[tList[[i]],y]; If [maxxamax,max=amax,max];];
coefList=Table[eijkmI[m,|,1,i-1,(=1),mu,la]{i,1,max+1}];
res2=If [Length[yList] >0,Table[ If [yList[[i]]!={},
If [Length[yList[[i]]]==0,yList[[i]] xcoefList[[1]],

Sum[yList[[i]][[j]] =coefList[[j]],

{i1,

Min[Length[yList[[i]]], Length[coefList]]}]],0],

{i,1,Length[yList]}],0];

erg=Sum[res2[[i]]xtau”(i—1),{i,1,Length[res2]}];
erg/.as>s/.t—>taul]]

]
getPowerd[n,tau.,s.,m_,l_,mu,la_,Ptin_,theintPhiln ,y_]:=Module[
{t,tList ,yList,coefList ,res2 ,res,erg,end2,ps
If [m+I+1>n,erg=0,
res=prodphiPhi[n,tau,s,y,m,|,Ptin,theintPhiln];
tList=CoefficientList[res , tau];
end=Min [2xn+1,Exponent[res , tau]];
end2Max[end ,0];
If [end2==0,0,
yList=CoefficientList[tList ,y];
max=0;
For[i=1;amax=0,kLength[tList],i++;
amax=Exponent[tList[[i]],y]; If [maxxamax,max=amax,max];];
coefList=Table[eijkmI[m,|,1,i-1,(=1),mu,la]{i,1,max+1}];
res2=If [Length[yList] >0,Table[ If [yList[[i]]!= {},
If [Length[yList[[i]]]==0,yList[[i]] *coefList[[1]],
Sum[yList[[i]][[j]] =coefList[[j]],
{i.1,
Min[Length[yList[[i]]], Length[coefList]]}]],0],
{i,1,Length[yList]}],0];
erg=Sum[res2 [[i]]«xtau”(i—1),{i,1,Length[res2]}]
111

Figure C.16: Computing the sums II.

response. The distributions considered are again the log-normal aegntimeetric two-point distri-
bution.
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The second-order SAR is defined as
2
W) = E [(W) r<o>] . (c.145)

Again, the further dependencies®f?) which may include the distance to the optimizer or the noise
strength are not denoted at this point. Considering (C.145) and perfpthemultiplication,

YO((0), R do)) = —B[l6) ~2(6) + (0)?] (C.146)

{o)

needs to be computed. Singg = 1/u>"" | ¢.5, the terms inside the expectation can be split into

7 1
()2 = 2(6) + (o) = %Z QZZWW

k=2m=1

N
<— Z Gmix + (C.147)

The derivation of the second order self adaptation response is stomightfl. The calculations sim-
plify considerably if[(C.147) is re-expressed in termgof- (0))*. Sinces = (s — (0)) + (¢) and

ayu=1,N=100,7=0.1d=0.2 b) u =10, N =100,7=0.1,d = 0.2

¢) =20, N =100,7=0.1d=0.2

Figure C.17: Comparison of the SAR (C.132) with the results of experimehM®eTSARSy)1, 1,
andqs are shown. The solid line represents, the dottedy» (dashed, short dots) ang; (dashed,
longer dots). The results faf, andis cannot be distinguished, since the lines nearly overlap in the
case ofu = 1 andp = 30. Only for x = 20, greater differences can be observed.
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IN
T

b) =10, N = 100, 7 = 0.1, d = 0.2

c)pu=20,N=100,7=0.1d=0.2

Figure C.18: Comparison of the SAR (C.132) (red lines) with (C.104) (blwss)iand the results of
experiments.

2 = (0)2 = 2(0)(s — (0)) + (s — (¢))? hold, the sums in Eq. (C.147) change to

M12 Z SR 2 Z ()" = 2(0) (mix = (0)) + (mir — (0))?
m=1

o

k-1 B L
23 Y o = S+ B (o) Y (o (o)

k=2m=1

2373 (G — (0D (G — () (C.149)
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k—1

k=2m=1

D oma = 2(0) > (Gmin — (o) + 2(0)” (C.150)

W no k-1 nw k—1 no k—1
YD A= @)mn =) = DD wasma = (@)Y Dk —(0) DY s
k=2 m=1 k=2 m=1 k=2m=1
oo k—1
DN
k=2 m=1
pnook—1 o k—1 p—1 "
= D D wsma— (@)D A > 1)) G Y 1
k=2 m=1 k=2 m=1 m=1 k=m-+1
wook—1
+(o)? Z 1
k=2m=1
wok—1 o p—1
- Z SksASm;\ — <0> Z(k - l)gk AT <U> (/’L - I{?)§k A
k=2 m=1 k=2 k=1
—1
+<U>2 M(M )
2
k—1 pn—1

()2 = 2(c) + (o)

I
M=

SkaSmx — () ) (k=14 p — ke

B
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N
Il
—_
£
I|
N

p—1)sin — (o) (p — D)gun +

|
—
Q
™ o~
—

|
—
=

I
M=
(]

SkaSmsA — () (1 — 1) (Sksx — (o))

=
||
o
Il
—
=
Il
A

—<0>2“(“2_ 2 (C.151)
As aresult, the expressidn)? — 2(<) + (0')? simplifies considerably to
2 H 1
(00 + 7 2O S (= (o) + 5 D (s — (0))?
H m=1 H m=1
s (o) 2 & 2 a
()" - -t ;<0> kZ:l(gmA — (o)) - E@ ;(%A —(9))
2 LA 2(0) &
+— Z Z(%)\ — (o)) (msr — (o)) = —= Z(%,\ — (o)) — 2<0>2
K k=2 m=1 K m=1
k—1
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Let us consider the expectation fu > _ (s — (0))?

Smx—(o)

2
2 p e | o o oo =
E[LZ Z(gm*@f >)2] - :;mZ: / N / (A_Enff)!(%_1)!p:;<<\<a>>p<c2|<>

m=1

m—1 m
(1= P@IND)" (P@IEY) " dQds  (C.1593)
first. As in Section C.1, the pdf and the cdf are assumed to be are givé&h 1Y) (
L e(@th((o) R )
Po(@lto)) = &= 255). pa(Ql) = = e .

Setting again: = (Q + ({0)))/9((0)),

I gm)\ (U )2

E[?Z(W)] _ z/ [ o m_1 Spelslioa(io)

m=1

xp(~2l(o)) (1~ P(~=l(o)) " (P(~2l(e))) " " dzds
: 2
_ A;i/ow( (477) Dolsl{o))

A—m—1)!(m—1)!

m=1
,;<g<<a>>z,h(<>—h<<v>>)2
/oo g((o))e 2\ g(s) g(s)
X
—oo 9(s) V21
A—m
><<I>(z)m’1<1—<1)(z)) dz ds (C.154)

is obtained (cf.(C.11)) which is similar to (C.12). The following steps are thesas in the derivation
of the first order SAR (C.12)-(C.20). Instead of (C.20), finally

I Y

X

E

o). Ko
(= Sttt gty )

)2 S [ (o)FHL (o) k43
+M2;/0 G ) Pl
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O ((146),  dRHE)-h(o) K
Xf‘%’“((g%)“ FUCTASY
Xexp<_ ;<g(<0>)t - (;((;)) - h(<0>)))2)> )t de(C.155)

is obtained. The same argumentation as in the case of [(C.20)f. applies t&)CQ#ly the first
integral has to be taken into accountrifk« 1 or 5 < 1 holds. Let us first consider the log-normal
operator. Provided that the learning ratés small, higher order terms of, i.e., O(r%), can be
neglected. Taking only the value of the first integral into account, (C.[E3%)s to

E [<Zéz zﬂ: (gm??of) <0>>2] — <O-IUJ>27'2 —+ 0(7'4), (C156)

m=1

The expectation of the double sum

nw k—1
I [ZZ Sk — (o)) (spn — (o >)] (C.157)

remains to be determined. It will be shown that the contributiofr @hay be neglected far < 1. In

I>, the joint distribution of;. , andsy,., needs to be taken into account. To this end, the results obtained
in [23, 4] are used. W.l.o.g., let us assume that a minimization problem is coadidésing again the
concept of induced order statistics, the variaplge denotes the mutation strength that is associated
with the apparentth best offspring, i.e., it leads to tlith smallest apparent fithess Artrials. Note,
thelth smallest apparent fitness is associated withittihbighest quality or fithess change.

Thus, assuming that the offspring are ordered,ii.€. f, (I—1) offspring need to have an apparent
fitness change higher than that of fhieindividual. In addition, there are— [ — 1 offspring between
thelth and thekth individual. Finally,A — & individuals will have a smaller apparent fithess change
than thekth offspring. This leads to

L= QA‘Zili:lz_l I — k: —l—l//// (¢ =(o))(s = o)

k=2 1=1
<p(wls)p(v]3) P(v] (o)~ (P<wr<a>> ~Ple)) T (1- P(w\<a>>)l‘1
X Do (s]{0))ps(s|(c)) dvdw ds ds. (C.158)

The key point of the remaining argumentation is that the random varialdledo do not depend on
each other. If the mutation strengths are log-normally distributed or follow gowimt distribution,
similar arguments as before apply. Provided that 1 or 5 < 1, all terms in|(C.158) are negligible
since finally the expectation of terms of the fofm— (o))*(s — (o))" has to be taken. Considering
(C.158), the lowest power of the learning rater 3 that can appear is four. The contributionfef
can therefore be neglected for very small values.of

As a result, the second order self-adaptation response is given by

(o)) = %2+0(T4). (C.159)
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Equation [(C.159) only holds for smattvalues and due to the derivations for the cdf of the sphere
and the ridge it is applicable in large dimensional search spaces only. dtyisnteresting to note,
that there is no influence of the distance to the optimizer (or to the ridge axdsadditionally no
influence of potential noise. Furthermore, (C.159) is not influenceddgehrch space dimension.

In the case of the symmetric two-point operator, a similar result can be othtdihe first integral
in (C.155) leads to

E

<U>2 ¢ Smx — (0)\2 3
112 Z( )\<J> )] = <‘7>2;(1+5)+0(ﬁ4) (C.160)

and thus to the second-order self-adaptation response

m=1

vO(e)) = %2(1+ﬁ)+0(ﬁ4)- (C.161)

All further terms contain only higher order terms@f
It remains to compare (C.159) with the results of experiments. Recall thesfitmestion of the
sphere modef (y) = g(|ly — ¥||). The experiments were conducted usiitg) = —||y||*.

Sphere Model: Experiments for the second order SAR

Equation|(C.159) was compared to the results of experiments (see Figlie®(C.23). The val-
ues were obtained by averaging over the resul250f000 one-generation experiments. As predicted,
the experiments show no apparent dependency of the second orReorSthe search space dimen-
sionality. But in contrast to the constant value (C.159) predicts, a depepan the mutation strength
can be found in the experimental data. To state it more clearly, the influamcenty be neglected
for small mutation strengths. The higher the mutation strength, the more the edasgond-order
SAR deviates from the straight line. This is more pronounced for smallenaled noise strengths
than for larger. Thus| (C.159) is strictly speaking only valid for small mutatteengths. We suspect
that the reasons for this can be found in the negligence of the higharterdes ofr. If the mutation
strength is increased too far, its contribution seems to outweigh“tta@d higher order terms. This
could be amended to some extent by choosing smalielues or of course by taking higher order
terms ofr into account.
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Figure C.19: The second-order self-adaptation response functiofor some choices of and some
(1/pr,100)-ES. The points denote the results of one-generation experiments dnd:@aobtained
by averaging ove250, 000 trials.
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Figure C.20: The second-order self-adaptation response functidofor some choices of and some
(1/pr,100)-ES. The points denote the results of one-generation experiments dndi@aobtained

by averaging ove250, 000 trials.
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Figure C.21: The second-order self-adaptation response functidofor some choices of and some
(1/pr,100)-ES. The points denote the results of one-generation experiments dnd:@aobtained

by averaging ove250, 000 trials.
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Figure C.22: The second-order self-adaptation response functiofoe choices of and some
(1/pr,100)-ES. The points denote the results of one-generation experiments dndi@aobtained

by averaging ove250, 000 trials.
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Figure C.23: The second-order self-adaptation response functisofoe choices of and some
(1/pr,100)-ES. The points denote the results of one-generation experiments dnd:@aobtained
by averaging ove250, 000 trials.



D The Sphere Model: Derivations of the Main
Results

This chapter gives the details of the calculations used for obtaining thetessults in Chapter 4. Its
outline also follows the general outline of Chapter 4. Firg#,/(;, \)-ES on the undisturbed sphere
model are addressed — giving the derivations of the results in SectioAftetwards, the calculations
leading to the results ofi(\)-ES on the noisy sphere in Section 4.2 are presented. The remaining
sections, D.2.2 and D.3, are devoted to intermediate ES on the noisy sphete the results in Sec.

4.3 and to the analysis including the perturbation parts in[Sec. 4.4.

D.1 The Sphere Model without Noise

This section illustrates in greater detail how the results of Section 4.1 are ethtakirst, the
determination of the stationary points of the evolution of the mutation strengthdsitoed in D.1.1.
The results obtained are then used to derive an optimal learning rate whiaimizes the stationary
progress rate (see D.1.2). Finallylin D.1.3, it is shown that the stationartisois stable under
certain circumstances.

D.1.1 Stationary Points of the Evolution of the Mutation Streng th
Consider the deterministic evolution equations|(4.7), p. 34,
R(1—%h(c*)/N
<<g*(;+1)>> - ( *(< 1f1ﬁ£*) )/> ) ) (O-1)
T \T=pR(")/N

which describe the one-generational changeigfu(, \)-ES. The progress rate appearing/in (D.1)
reads

Or(c") = Cu/u,AU* - ﬂ (D.2)
(cf. Eq. (4.8)) and the SAR is given by
(o) = 72 <1/2 + 6}& — cu/u)\a*) (D.3)

(cf. (4.9)). In this section, the stationary points of thieevolution of (4.7) (or[(D.1), respectively) are
derived. Recall, stationary points are defined by

<g*(g+1)> — 0" o 0\/ 1+¢

0_*2

& o= OVCH/M/\O'* — o — —N72 (1/2 + ellﬁ\ — cu/u,)\a*) (D.4)
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(seel(D.2) and (D!3)). As (D.4) shows eithgr = 0 or
(1 4Y(07)
- (e

=1- ('0*](\(77*) = 1+4+¢(c")
& —p'(e") = Ny(o")
= —Cu/ua0 + 0222 = N7? (1/2 + 6;1[,{\ - Cu/u)\a*> (cf. (D.2) and/(D.3))
S0 = —2uNT*(1/2+¢,3) = 2(1 = N7*)pcy uno” + 0> (D.5)

has to hold. The positive solution of this quadratic equation is given by

) , - ,1/2+ e
Ssty = My | L= N7°)+ | (1= N712)? +2NT o (D.6)
TP

which equals the non-zero stationary mutation strength (4.11),/p. 35.

D.1.2 The Optimal Learning Rate

In this paragraph, the optimal learning rate for self-adapfive:(, \)-ES is derived. The starting
pointis Eq./(4.11), p. 35 or (D.6), respectively,

1/2 + el’l)\
Satats = My | (1= N73) 4| (1 = N72)2 4 2N72—5—F=
ue
[
The optimizer of the progress rate (D.2);, = Cpfuns™ — §*2/(2M) is given byg;hm = [1Ch/pA-
Requiring that ;. (1) = g:;% — 11¢,,/,.2 leads to/(4.23), since
opt )

2 1/2+ei’1)\
Heu/ur = Heuun | (1= N72)+ | (1= N72)2 4 2N72—— 2

HC A
1/2 4 e}
=1 = (1-N7%+,|(1-N72)24 2N727/ 5 HA
pc
B/ 1A
1/2+ ¢!
= (N7%)? = (1-N72)%+ 2N727/ —22
HCu/un
1/2 + et}
S0 = 1—2N72(1—/2W
Jite
B/ 1A
2 1,1
ite —1/2—e
0 = 1- 2N72( U “’A) (D.7)
HCu/un

Equation|(D.7) leads to the optimal learning rate
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2

I FCu /A

= : . (D.8)

1
\/2N\J ,ucz/uy)\ -1/2- €,

D.1.3 Stability of the stationary mutation strength

Consider System (4.7), p. B4. It is shown in the following that the statiomargation strength
(4.11), p/ 35, o1 (D.6), p. 194,

1/2 + ey
Sst2 = HCu/px ((1 — N73) + J (1 - N72)24 N72 (%)

HCu

is a stable fixed point of the evolution of the mutation strength

1+ (o%)

¢* = 0*(1 ¢;<a*>> —: f(o*). (D.9)
- N

Using Lemma 1, p. 36, i.e., showing the stability using the linear approximatiortahiéity criterion
for the fixed point;,, is given by|f’(a*)|0*:§;2| < 1. The functionf is given by

fo") = o ( f}(g%) (D.10)
s e
with the progress rate (D.2)| p.193,
QOR(O- ) = Cu/u 0 — 2M

and the self-adaptation response function (D.3), p. 193,

* 1,1 *
(o) = 7‘2(1/2—1—6#7)\—%/#7,\0 )

The derivative off reads

(o 1+ ¢(o%) A L+ ¢(0"))eg (07) /N
o — o to . (b.11
e e S T (et o7 et iy e
First of all, noteg;, (D.6) is a stationary point. Therefore,

1 + ¢(§:t2)

- =1 (D.12)
1= oR(ss,)/N

holds. The derivative of ato* = ¢, simplifies to

Pl Mo, = 1 e (W/(sh,) + i (5, )/N). (D.13)
o 1= ¢R(ss,)/N
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Note,¢;, > 0, ¢x(c5,) > 0, and w.l.o.g.p%(s5,) < N. A necessary condition for the stability of
S, IS therefore

¢/(§§t2) + 907%/@:7&2)/]\7 < 0. (D.14)

This can be shown very easily. Sing§<};,) = —72c,/,.) andey (<%,) = ¢y — Sk, /1 (D.14)
leads to the inequality

W (s3,) + 05 (Si) /N < 0

2 §:t2
= CH/MM\(l/N_T ) — M7N < 0
Ssty
I
< (1- NTZ)NCu/u,A < ¢, With the stationary mutation strength (D.6) or (4.11)

< (1- NTQ)C!L/”’)\ <

1,1
1/2—’-6“’)\)
2

:>(1_N72)r“cu/u7)\ < BCu/un (1—]\772)—1— (1—N72)2+2NT2<
HCu/un

1,1
1/2 +€N:)\>
2

=0 < (1= N2+ ane(
TSN

(D.15)
which holds in general. The necessary condition is therefore fulfillegrdee that f/ (o )\U*_gstgy <

1, it has to be shown that eithér< f/(c*) or=cy,, < lor—1< f’(a*)|g*:§;t2 < 0 holds. Let us
start with f’(a*)|a*:<;t2 > 0.

* gs
f/(U )‘g*:g:tQ - 1 — @R(tzt )/N <1/} (gstz) + SOR gstg /N
3 2

= 1= () /N + Sty (¥ (S, + 0 (52, /N

)

)
= N — @h(sh,) + sk, (Nw (s31a) + % ( §8t2> >0

)

2

*
gSt2

I
*

2
g*
* sto *
= N = CujpuSst, T ou + §8t2< N7? CpfpuA T Cufpn
2

*

= N = Sty + ;t; +(1- NT2)CH/#,>\§st2 >0
§* 2
= N — N72c, /S5, — ‘;ﬂ > 0. (D.16)

In order to show the last inequality, the stationary mutation strength (D.6) musidrgéed into (D.16)
and the result must be evaluated numerically.

Note, though, if the last inequality (D.[L6) is seen as a functior;gfit is quite easy to show
that (D.16) holds provided that oc 1/+/N and N is large. First of all, the last inequality of (D.16)
is monotonously decreasing function ¢jf,. The maximal value the stationary mutation strength
can assume isy;, = 2uc,/, - If (D.16) holds for the upper bound, it holds for all other mutation
strengths given by (D.6) as well. Inserting, = 2uc,,, » into (D.16) gives

4'“ u/ 7R

N — N722uc?
2

/A > 0
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& N —(1+Nm)2puc,,, > 0 (D.17)
& N(1—1°2pc,,,) > 2uci/# N (D.18)
=N > M A~ < (D.19)
_ 2
I=r 2,ucu/ A 2'“ Cufu

which holds for sufficiently largeV provided thatr is sufficiently small orr o« 1/v/N. In other
words, provided that the search space dimensionality is sufficiently largan be assumed that

f'(0*)|gx=¢x, > 0. The question that remains is whethféfo* )|J*_§ < 1. This condition is easily
shown since it simplifies to (D.14)
Sa
/ *0*_* _1 sto 1/ % x 1/ % N 1
£ Moz, = 1 7=y (W) + R ©)IN) <

= 6l (V/(62) + @R (s /N) < 0
= NW(g:tg) + 90}‘%/@;}2) < 0

which was already shown. Note, the result is only valid in high-dimensicegeich spaces since
N > ¢}, isrequired. A sufficient but not necessary condition is for exampte 5, ... = “Ci/u 3/ 2

D.2 The Sphere Model with Noise

In this section, the derivations of the results forX)-ES and for [t/ 1.7, A)-ES on the noisy sphere
are given. The fitness evaluations are assumed to be disturbed by Tibésaoise model applied is
the standard noise model consisting of an additive normally distributed naisevith zero mean and
(constant) standard deviatien. The derivations of this and the following sections are restricted to
the quadratic sphere.

D.2.1 (1, ))-ES on the Noisy Sphere: The Stability of the Stationary Points

This subsection describes the calculations which lead to the determination tdttbeary points
of the evolution equations (4.46) and (4.47)

(9)
o) i w(( s - o) (D.20)
N
Srlat) oc? (D.21)
‘ (1- Lo (@ g*(g))) '

in Section 4.2. Taking (4.46) and (4!47) into account, there are two differairs of equilibrium
points of the evolution equations: The first with = (0, w)™ with w € R and ideallyw = 2¢; , and
the second aty = (s2, w2)™ with so given by (4.51)
1
S = 2c1) 5 (D.22)
V22, +1-d?)

andws by (4.52)

1
olg = 2c10, /11— : (D.23)
! \/ 2(2¢2, +1—d)
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The question arises which of these pairs is locally stable, i.e., stable w.r.t. $shatbdnces.

This will be shown again using a linear approximation in the vicinity of the equilibrsolution.
Recall, if the general map*t1) = f(x(9)) is considered, the stability of hyperbolic fixed points can
be shown via the Jacobian

o-fi . g h
Df(x)|X=xs : : (D.24)
a%lfN %f}\f

The question, whethey is a stable fixed point can be solved by determining the eigenvalues of
D f|x=y. If an eigenvalue); exists with|\;| > 1, theny is unstable [71]. Thus, the solutions of
det D f|x—y — ATE) = 0, with E the unity matrix, have to be determined. Considering the evolution
equations (4.46) and (4.47), first the Jacobian matrixato’_ )" of

g* g* 1+¢(§*7a’:)
f( > _ (J 1= (cl,ae)/N) (D.25)

o* *_ .
€ € (1—p*(s*,02)/N)?

must be obtained. In general, the Jacobian of a fungtio®? — R? is given by

% 0 0
os(;.) ( A ) . (D.26)

d
o f2 doy f2
In the special case of the evolution equations,

0 1+, 00) g*( =<, %)

f 1 —p*(s*,0t)/N 1 —*(¢*,0%)/N

8 * /% * 1+1/)(g*’o->ek)
Yot OINT ) N
P G
0 T TON( - (st o) /NP
8 f o * 8§:¢(§*7U:)
9ot T S \1- (e on)/N
NP L+ 9(¢", 0f)
MR (e R Vi
O x( % __%
d 1 255797 (<", 07)
— = + o} - D.27
60: " T U= o/NP T NI ¢ (", 00) /NP 020
have to be determined. The derivations of the progress rate (4.42)
*2 *2
g g
(o™ o= —_— — D.28
('PR(O- 7Raae) Cl,/\\/m 2#’ ( )
and the SAR/(4.43)
*2 *2
* _ 2 (2) _ g _ -’
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are given by
9 (o) = (o S Y
oc* »Ye /§*2—|—0'2<2 §*2+0:2
2
0 ¢*( * *) TQC* < 2(d§,2\ - 1) §*2 )
S ’0-6 - -
*2
C1,AS
27, N

§*2 +0.2<2 17/\>

o CINorS*?

207" (c500) = —

3
V2 4 of?
2
0 i e i~ 1 )
) ———(ax— .

Oo* / 3 2 [ ~x2 *2
O¢ §*2+0.:2 S +Ue

Let us now consider the first equilibrium poist = (0, w)™ with w € R. The Jacobian at, is easily
calculated as

(D.30)

Dy = (“032 ") (0.31)

leading to the equatiofil + 72/2 — A1)(1 — A2) = 0 for the eigenvalues. Unfortunately strictly
speaking, a problem occurs, since one of the eigenvalues is exactlyleading to a non-hyperbolic
fixed point. Therefore in general, the stability for the fixed point caneadtamined using the linear
approximation. The reason is that the nature of the eigenspace canmstdéo infer the nature of
the center manifo@ch of the non-linear system. Note, though, the first eigenvalue- 1 + 72/2
leads to an unstable manifold,,. The nature of the solution i, does not matter anymore. Any
disturbance close to zero but entirelyli, does not converge to zero: The fixed point is not stable.

The stability of the second equilibrium point can be determined by insertind)(4std [(4.52)
into the Jacobian. The expression obtained is rather clumsy, therefueexically obtained plot of
the eigenvalues and a range of/alues is provided in Fig. D.1. As one can see, the larger of both
eigenvalues is less than the critical value of one. Generally, the largawvaige approaches if
7 — 0 and decreases if the learning parameter increases. This is a reasesalitelf - = 0, the
mutation operator

o = O_e‘r/\f(O,l)7

Egs. [(2.2) and (2/4), p. 11, does not change the mutation strength.isT i@ mapping is neither
contracting nor expanding. In finite dimensional search spaces and>ab, one can conclude that
the second fixed point, where the mutation strength is given by (4.51) andigestrength by (4.52),
is locally stable — at least for the quadratic sphere.

D.2.2 Intermediate Recombination and Noisy Fitness Evaluat  ions

This section presents the derivations of the results used in Section 4 BisTiaescribes how
the stationary mutation strength (4.63), noise strength (4.64), and rekidagbn error((4.65) are

1In short, a manifold can be assumed to have locally the structure of did&arc subspace[103]
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Figure D.1: Numerically obtained eigenvalues of the Jacobian for the foiedl¢, i.e., the mutation
strength given by (4.51) and the noise strength/by (4.52). The sepaci slimension was set to
N = 100.

derived. Since the approach is analogous to the approach usadXmHS, only the main points are
given for the sake of completeness. Starting point is the stationarity of Hegolution in (4.60)

*(g+1) _ * 1 + ¢(0*7 U:)
<§ > B g <1 _ 507{(3'\;,0':)
oot o
(1 _ ¢R(3—V7U€))2

demanding either a zero noise strength or a vanishing progress rate (4.61

*2 *2
g g
0 = —2 -2
0.*2 + 0.*3 e Hes 2/‘L
* 1 1
=0 =0V = S~ g,
& Sar, =0\ 4’} = P+ 0" (D.32)

Equation (D.32) gives a stationarity condition for tReevolution which can be used in two ways.
First of all, a maximal noise strength and with it a minimal residual location eaoibe obtained by
settingo™ = 0

Ot mar = 2HCu/u) (D.33)
S Ry = -2 (D.34)
ApCp

sinces? = o.N/(2R?). Second, Eql (D.32) can be used together with the stationarity condition of
the<g*(9)>—evolution to derive the stationary state values of the mutation strength, distart noise
strength. Thég*(g)}evolution (4.60) is stationary if the normalized mutation strength is zero or if the
SAR (4.62) vanishes, i.e., if

2 2
0 = T2 (1 + 6171 70* —C / )\70* >
- A )
2 My 0.*2 +0.;s2 e /0_*2 —|—O':2



D.3 The Sphere Model: A Second Order Approach 201

1 0.*2 0,*2
=0 = ~4e

—5 5 — C ——
A %2 2 1/ 1A
2 HaA gk +O': 1/0’*24-0':‘2

Equation|(D.35) can be used together with (1).32) to obtain the stationary mussemyth/(4.63)

(D.35)

1 1 0_*2 0_*2
0 = Stengss — ~Cuurg
2 - 4'u26u/,u,)\ Q'ucﬂ/lh)\
1,1
PN L a*2< Cur _ Cu/uA )
= 2
2 4,u20M/u7>\ AT
2.2
o2 = 4 Cu/uA
g = 2 i1
s — 2€0
4p2c?
= = o - (D.36)
4pc? =2’
TP B

The remaining stationary values are obtained by inserting (D.36) (or| (4&&)ectively) into the
stationarity condition (D.32). Solving the result fof , leads to|(4.64), since

Ol = \/4M20i/IM - §§t2
4pc?
_ 2 B/ A
= 4,1126”/#7)\ o ol (D.37)
HCu A J79
gives
duc? = 261’1)\ =1
Ot = 20Cu/pn 4“/51 ; 11 (D-38)
HCu A — “Cun
Equation/(D.38) can be used to derive the residual location &Qr(4.65),
2 1,1
R " _ \/ NUf . NUE 4 4/1/0.“‘/.“")\ - 26,“)\ (D 39)
S - 3 - 1.1 .
206 st 4MCM/M7>\ ,U,Ci/ﬂ,)\ _ 26%;,)\ -1

sinces’ = o [N/(2R?)].
D.3 The Sphere Model: A Second Order Approach

This section presents the calculations in the case of the second ordeacppvhich takes the
fluctuation terms into account (cf. Sectionl4.4). In this section, the mean eghsamics are consid-
ered. Since the distribution cannot be obtained analytically, an alternaiiveach must be applied.
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Following [20], a log-normal distribution is used to model the distribution of théatn strength.
This is described in D.3.2. Since the results obtained tend to differ in somdroaséhe results ob-
served in experiments, an alternative approach using a normal distrifsiggaluated and compared
to the approach using the log-normal distribution (see D.3.3).

D.3.1 Mean Value Dynamics of the Mutation Strength in the Stati onary State

This section is devoted to determining the mean value dynamics of the mutatiortistieimg the
second order approach. The starting point is the evolution equation ofittagion strength (4.70), p.
59

Using theN-independent variants, the progress rate and the self-adaptationsesgre given by Eqs.
(4.8)

*2

* * o
QDR(O- ) = Cu/uN\0 — 20 (D41)
and|(4.9)
* 1 *
P(o™) = 72 (5 + ei’})\ = Cufu A0 ) (D.42)

The fluctuation parts are modeled using Gaussian distributions with zero niéenvariance can
be determined using the evolution equations (4.67) and[(4.70) (cf. Ck@pten the case of the
R-evolution (4.67), the variance is given by

D2 = o - (D.43)

Since the assumptions that were made during the derivation of the progtessad t0,0g) = cp%,

the variance of thek-evolution is zero. Provided that these assumptions (see, e.g., [6]pkde v
deviations from the deterministic equations are mainly due to the evolution of théianus&rength.
Its variance is given by

D2 = p@ g2 (D.44)

The second order SAR(?) was obtained in Appendix C.5 as

p® = — (D.45)

if the higher order terms of are neglected. Plugging (D.45) and (D.42) into (D.44) and dropping all
terms of higher than quadratic order leads to

D} = —. (D.46)

The evolution equation (D.40) changes to

1+ 9¢(c*) + =N(0,1)
< Vi )

¢R(0*)
1 — ==

<§*(g+1)>

g
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Sinceyp* < N is assumed, the teriry (1 — 7/n) can be simplified to

* *

S T (ol YO S DU (ol BOY (£ Lt
G B (1_¢%<Vm)—1+ L o((Fr70)). (a4

N

Accordingly, Eq.(D.47) changes to
2 * *
xg+1 _ * * T SDR<O' )
A (1+w(a)+ﬁ/\/(o,1))(1+ - ) (D.48)
Under the conditions thaby?, < N and that the realizations 0\/%/\/(0, 1)y}, are considerably
smaller thanV, Eq. (D.48) can be further simplified yielding

Equation|(D.49) serves as a starting point for the determination of the monfndgjing Egs. (4.8)
and (4.9) into[(D.49) leads to the expectation

* — o* 2 11— Cu/wA—3 o*3
E"] = o —1—72(2—0#/,1,,\02%—6%/\0)—1—“]/\’;02—2MN

o1+ 72 1 +elt — o*2c 21— —1 — 7270*3 (D.50)
9 B A /A N2 N7 .

As can be seen (D.50) depends on the previous values through loiglegrterms. As a result, the

expectations of*2 and<*® are needed. It will be shown that they in turn depend on the past through

higher-order terms. The expectation of the square of (D.49) is given by

E”] = E :<a*(1 +(o*) + Lp*](\?*)) + a*\;ﬁ/\/(o, 1))2}

- E :0*2<1 + (%) + SO*(U*))Q] + E[a*ﬂﬂ

N
¢ (o)
N2

= Blo”(1+20(c%) + 2%\7((7)” +E[G*QTMQ]

Fop(or) + 229D 2w(a*)‘p*<g*>)] +E [a*ﬂ:]

- E 0_*2<1+w2(0_*)+ N

if 12 < 1andy%? < N hold. Inserting((4.8) and (4.9) leads then to

2 «2 ol 11 . 5T «2 2 . o
E[c**] = E|o (1 + 27 [5 €, — Cu/uA0 ]) + o* ; +E|o N(CWM)\J — 2u)
— 1 — 1 21
= (1442 + ;]) — 20972, (1 - 1) - 0*4%—%2 (D.51)

which again depends on higher order terms. Similarly to (D.51), the expeciid’] can be ap-
proximated with

B = o3 (1+ 37;) +3(1+ T:)E [0*3(¢(0*) + ‘p*(a*))} (D.52)
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if 7 < 1andy* < N are assumed. Inserting again (4.8) and (4.9) gives

9 9 *3 *2
231 o3 T T 3 o[l 1,1 g g
E[§ ] = o (1-1-3?) +3<1+H>E[U* T [24-6”7)\—6#/“,)\0'*} —i—W[Cu/u,)\o’*_ 2M}>]
Cu/u,/\ﬂ_ a*?
N2 2uNT?
2

— 72 72 9/ 1 1.1 T 9 1
= 0’*3<1 +3; +3<1 + ;)T (5 +€#:>\>> _3(1+ ;)T CN/N/\U (1 - W)
72 o*5
=31 )7
+ 1 g 2uNT?

which in turn depends on higher order moments. Let us now address tibaatg state behavior. As
the resultE[¢*] = E[o*] = E[o ] holds. Equations (D.50), (D.51), and (D.53) lead to the non-linear

equations
* * 2 1 1,1 x 2,2 1 2 C
[O58% = O |+7 *+€7>\ — O T C/7)\ 177N2 7 ) N2

=0 = o (72 14—61’1 —0*27'26/ A 1——1 72 o5
& 2 A HiEs N2 2uNT?

- 2 2 *3
— 0*3(1+3T)+3<1+T)72|:0 —|—0'*3 1,1
7 7 2

_ *4
pA " Cu/pAoT

(D.53)

(1, 11\ _—=3 1 05°
=0 = o% 54‘6“’)\ — 05 Cu/ 1_N7'2 —2MN7_2, (D.54)
1 1 21
* 2 171 *
0&2 = 0'002(1+’7' [1+2€P‘:)‘+;]) —20'* 37' CH/NA(l_W) —0'004;]\777_2
1 1 —7? 1
— * 2 2 1,1 % 3 * 4
=0 = o (7’ [1—}—26#,)\—%;]) — 207 372 Cou/p\ <1— NTQ) — ok N
1 1 — 1
= 0 = o*f 2<1+2 N)‘+ M) —20'00 M/u)\(]. — N77'2) _0204@’ (D55)
and
2 2 2

* 3 _ * 3 T g 2 1 1,1 T 2 x4 1
[N = O <1+3/,L+3<1+,u)7— <2+€u7>\>> —3(1—}‘;)7 cu/#)\aoo <1_W

2 x O
T o
* W ’ 2uNT?
2

72 72 1 11 T — 1
=0 = ot (3 431+ D)2 (S eph) ) - 3(1+ D) 21— =)
To0 < 1 + + [ T 2—}—6#7/\ + r T Cu/u O N2

2 5 o* 5
-3(1+7)
* L g 2uNT?

1 2\ /1 2 1
=0 = o33 (u +(1+ ;) (5 + ei’i)) - (1+ ;)cu/wg;o‘l(l - N—TQ) (D.56)

72 0:§O5
B (1 * Z) 2uNT?
which could be solved if a solution of the eigenvalue problem (3.19) [(Cp.[30) can be given. In
general this is not the case. Therefore,dhsatzintroduced in [21] is applied.
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D.3.2 A Log-Normal Distribution in the Steady State

Instead of determining the stationary distribution, the log-normal distributiosed as a place-
holder. The raw moments of a log-normal distribution are of the forgh = S exp(k2¢2/2). The
parametersS andt remain to be determined. To this end, Eqgs. (D.54) to (D.57) are used. Riuggin
o* F = Sexp(k*t?/2) into Egs. (D.54)1(D.57) leads to

21 1,1 22t 1 3.9 1
0 = Se2(2+e#,)\>—Se Cofu I_W — 5”2 SN2

Lo 3¢ 1 o a2 1
=0 = 2—1—6%/\—Se2 Cﬂ/lh/\<1_]v7_2>_se SuNTZ (D.57)
@2, 2t? IR 3,212 1 482 1
0 = S% (1+2ew+;)—sez 20 (1 13 ) = S =
0 = 142 1 gedte, A2(1—L)—52eﬁt2 L (D.58)
/1,,)\ ,U /ey NTQ ILLNTQ
and
- ;*( + M)(T%) - st +;)Cu/m’k T N2
7_2
_ 5622%2 1+f
2uNT2
1 N1 g T2\ L 142 1
=0 = ;+(1+Z)<§+€#’)\>—<1+;>S€2 C/'I’/MIY)\ 1_N7T2
—<1+;>Se N (D.59)

with the unknown parameter$ andt¢ to be determined. Note that the equations above lead to a
nonlinear system the general solution of which cannot be providedtaradlly. It is possible, though,
to obtain numerical solutions using MATHEMATICA (see the discussion im@aph 4.4.3 and Fig.
4.15, p! 61).

In some special cases, analytical solutions are obtainable. Beforeegliog, Egs. [ (D.57) to
(D.59) are rewritten in terms of,_ := 5 e!*/2

1 11 42 1 2 32 1
0 = = A 1— — ) —g* D.60
2+6;M S5€ C#/;M( N7'2> S5 e SuNTZ ( )
1 2 1 2 1
0 = 1428 42 g 2 2(1—7)—*2“ d D.61
+ eu,)\—ku S50€” Cu/un N2 sie ,uNTQ’an ( )
1 2\ /1 14 . 302 1 72
0 = ;*(”;)(T%)‘Swe Cu/u’k(l‘w)(”;)
2
14+
o Lok 2 Tt? D.62
Q;LNTzSOO (D-62)

similarly to [23, p. 319]. As said (D.60) - (D.62) lead to analytical solutionsims cases. These are
the limit cases oV 72 — oo andN72 = 1. The calculations are given in the following paragraphs of

this appendix. A discussion of the results and a comparison with experinanbedound in Section
4.4.3,p! 68.
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Limit Case of N72 — oo Let us first consider the limit case 8fr2 — oco. The system Eqs. (D.60)
and|((D.61), i.e.,

1 1,1 . g2 1 £ 232 1
0 = 5“‘6#’/\—5009 C“/H’A<1_]\TT2) _Soo € W
1 2 1 2 1
- 1,1 x 2t x 2 bt
0 =1 + 26”7/\ + ; — Sooe C,LL/,LL,)\2<1 — W) — S (§ W (D63)
can be easily solved fa¥ 72 — oo. Taking the limit gives
| R
0 = 5 + elu”)\ — sooet C,u/,u)\
1 2
1,1 *
0 = 1+2¢,,+ s s50€%2¢,, /01 (D.64)
leading to two equations describiggy,
1 1,1
= _|_ e ’
sh, = 2 A et and (D.65)
Cpuf A
1 1,1
5 te) 1
s = e[ Z_mA . (D.66)
Cu/pA 2HC0 N
Setting (D.65) equal (D.66) leads to an expressiorefor —t2)
1 1,1 1 1,1
2 T eu,/\e—t2 _ 2 T € + 1 o2t
CufpA Cpufp\ 21/
1 1,1 1 171)
o2 T S 12 2,u<2 i) T1 o2t

Cpufp\ 20/

111
N (2 + eﬂ)\) < 2UCy /0 ))
Cu/uA 2,u(% + ei’&) +1

2u(l + 61’1 )
St = 1 2 1 1‘“ , (D.67)
2u(%+e)) +1

Equation|(D.67) can be used to obtain the stationary mutation strengffi7fdr— oo by inserting
(D.67) into (D.65) or[(D.66)

1 1,1 oL+ 1,1
+e K €
a o (R (5-+22) ). 058

o0 1,1
Cp/p 2u<% + eW\) +1

The stationary progress rate can be determined in turn by plugging (Dt68yéprogress rate (B.24),
©* (") = cupurs™ — *%/(2p), leads to

— (0% )2
9020 = Cu/u 000 — 202
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(s3,)%"

2p

1, 11
_ redy g (3 ren)
= Cu/u

1,1
Cu/pA 2,u<% + eu,)\) +1

1,1 1,1
1 (é—keil)\)( 2#(%4‘6“7/\) ) 2<2u<§+e%/\)—|—1)
20\ \ Cu/p 2#(% + ebl) +1 2#(% + ei&)

*
= Cu/uASo0 T

A
1 1,1 1 119 2#(1 +€1,1)
= (o (52) -5 (52) ) o)
PN G 216\ Cufpn ZN(% + eb&) +1
124 e0 2u(1/2+¢,})
— ( ) i : (D.69)
Ca/ 2u(1/2+e€,,) +1

An Analytical Solution for N72 =1 As a second special cas¥;2 = 1 is considered. Again,
analytical solutions can be easily obtained. Equations (D.60)-(D.62jidiegrs’ change to

1 1,1 , 2 1
0 = 5 + e,Uj,)\ — 5002€3t ﬂ (D70)
1 21
0 = 1428, + = — g5 25 = (D.71)
wA T T
2
1 T2y /1 1,1 L+ o g
0 = (1) (5 ran) - 5ot (B.72)

Only the first two equations are needed to determipeRewriting Eqs./(D.70) and (D.71) gives
s£2 = 2u <; + e};}A> o3t (D.73)
st = (2u<; + eb}Q + 1) o5t (D.74)
Thus, setting Eqg! (D.73) equal to (D.74), we can derive an expret(:m'@m%2

I o31) _3e I 11 —5¢2
2,u<2+e/w\)e = 2M<§+e%>\) +1Je

2,u<l + el’{\) +1
e = ’ A (D.75)

Equation|(D.75) is then inserted into (D!73) leading to

2 l+el’1>+1 3

1 /~L( A 2

s 2 = 2,u<—|—el’1)< ? a ) . (D.76)
1 11

2/1(5"‘6“7/\)
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The resulting expected mutation strength
Loou( el )+ g
% B 1 1,1 2 M(Q LA 4
She = <2,u(2 + eu)\)) < i (D.77)
differs from the deterministic result (4.11) by

(2,11(% + 6i’3> + 1)2

1, 11 (D.78)
2,U/<§ + e,j»\)
as can be seen by insertingr? = 1 into (4.11)
1/2+e
State = Heujpn | (1= NT%)+ (| (1 = N72)2 + 2N72 g
u/u,
HCu/ A

_ \/2u<1/2 + e;;). 079

D.3.3 A Normal Distribution in the Stationary State

In this subsection the normal distributidvi(m, s?) is used to model the distribution of the sta-
tionary mutation strength. The subsection is devoted to determining the equiatidascribe the
stationary state, to obtain some special analytical solutions and to compaesttte with that of the
approach using the log-normal distribution. Since a normal distribution witmmeand standard
deviations is used, the raw moments can be obtained easily over

JE— 1 oo i 7%(27777,)2
xk = e y dx
sV 2w
t2
= st+m T2 dt
\/271'/

k
1 KN kg [T -2
= — miT's te” 2 dt
r2<) /_oo

k

1 k) kll/oo (-
— m' s te” 2 dt
\% 0( — 00
m fork=1

= m? + s2 ] fork =2 ' (D.80)
ﬁ(mk + 300y (Fymbtsl [% e dt) fork > 2

The integral can be calculated using partial integration. The result isiesiee equation for all even
l

1 o0 2 5 -1 0o ,
e I e L
o .
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+2

(l—l)(l—3)...ff°ooe\;%dt if | =2j
- _i2

(l—l)(l—3)...ff°oote\/% dt ifl=25+1
_ (1-1)(1—-3)...1 ifl=2j
N { 0 ifl=2j+1" (b-81)

The first raw moments are therefore

o = M (D.82)
o2, = m?4s? (D.83)
@ = m3 + 3ms> (D.84)
ol = m'+6em?s® + 35 (D.85)
o5, = m’® 4 10ms? + 15s. (D.86)

The starting point to determine the steady state values are Egs. (4.80)-(4.82,

* 3

0 = 7% (1/2+ e} — o3P (1 - N172) - 25}’\0{72 (D.87)
0 = ox2(1+2e) + ;) — 75320, (1~ ﬁ) - 1%2 (D.88)
0 = %O?’(; + (1 + T:) (% + e}ﬁ\)) - (1 + T:)cu/wago‘i(l - #)

_(1 n :j) 2%2, (D.89)

Using the normal distribution, ~ N (m, s?), a system of nonlinear equationsinands is obtained

(cf. (D.82)-(D.86))

1 m(m? + 3s?)
1,1 2 2
0 = m(1/2+e}) ~ 2+ mIeuun(1- =) - S (D.90)
1 1
2 2 1,1 2 2
0 = (s"+m )(1 +2e,\ + ;) —m(3s° +m”)2¢,/, (1 - N—TQ)
35 + 652m? + m?
- e (D.91)
1 2\ /1
2 2 1,1
0 = m(m?+3s )<M+ (1+M)(2+ew)>
7 4 2, 2 4 1
_(1_’_;)6#/#7)\(38 +68 m°+m )<1_N77'2>
72\ m(15s* + 10s*m + m”®)
-(1+5) . D.92
( + 1 2uNT? ( )

Again, analytical results can only be derived for some special casied wghdone in the following
paragraphs for the sake of completeness. First of all: Equations! (Br@DJD.91) allow up to two
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solutions for the stationary mutation strength, expecially i§ relatively high, i.e. N72 > 1. One
solution is small, the other nearly coincides with the solution obtained using theologal distri-
bution (and is more in accordance with the results of experiments). Figurshbvis the results for
some(u/ur, 60)-ES (V = 10,000). As one can see the curves for the greater solution of (D.90) and
(D.91) and the one obtained using the log-normal ansatz and [Egs.| (O{B%2) cannot be distin-
guished. If the learning rate increases, the numerical determination of tiadionustrength seems to
be problematic in some cases as seen in/Fig. D.2. In the following, some spealigical solutions

sk
gstat gstat
501 50+

401
30F
20r

10+

I

oL s s s s = T 0 s s s s s \
0.00C 000z 0004 0006 000  0.01C  0.012 0.00C 0002 0004 0006 0008  001C  0.012

a) Gaussian b) Log-Normal

0 L L L L L I
0.00C 0.002 0.004 0.006 0.00€ 0.01C 0.012

¢) Comparison of Gaussian and Log-Normal Distribution

Figure D.2: Stationary normalized mutation strength and progress rate asteifuof r for some
(/p1,60)-ES andN = 10, 000.

are provided.

The special case of N72 — oo In this paragraph, the stationary mutation strength is derived
N2 = 0.

0 = m<1/2 + ei&) — (5% + m2)cu/lL7A (D.93)
1
0 = (s24+m?) (1 +2¢M + ;) — m(3s% +m2)2¢,,/ (D.94)
2 N 2\ 1 1,1
0 = mm® +357)( (1+ ;) (5 +ept) (D.95)

Equation|(D.93) leads to
1/2 4 e
m(/ 1A

) — 24m? (D.96)
Cuf A
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which, following insertion into[(D.94) and solving fon = &, gives

1/2 + ¢! 1
(82+m2)<< / M’/\)+ ) = m<352+m2)
Cu/pA 20/
1/2 +ebt 1/2 4"} 1
() (( Prony ., ) = maeen?)
Coufp,A Cpuf A 21/
1/2+eb? 1/2+ ¢! 1 1/2+ ¢!
o (LT (Y LY () g
Cu/pA CufpA 210/ un CufpA
1/2+eh 2 1/2+4€ 1/2+eb?
= ( / s / 2 = 3m</ vA) —om? (DO)
Cu/pA 21C5, 1,00 Cu/pA
Equation|(D.97) leads to two positive solutions
1/2+ e,
ms = S
AN Cup
9(1/24‘63}4&\)2 - 1(1/24‘6}1‘:{\)2 _ 1(1/2%‘6}3’3)
16 Cu/m 20 Cujpa 2 2“Cz/u,>\
1/2 + e
= mi2 = (
u/u A
<3 1 )
T 9 —Ll
1 1u(1/2+ L)
1/2+ e
Ry
Cu/pA
1,1
3 1 |2u(1 2+e V) —8
<i P12+ ¢) ) (D.98)
44\ 2u( 1/2+eM)

which are defined fop, > 4/(1/2 + eL’,lA) provided thatl /2 + ei& > 0. Again, the solution of the
deterministic result (4.11) faN 72 — oo

1/2 + e}
lim ¢, = M (D.99)
NT12—=00 Cu/p

reappears with a correction factor.

The special case of N72 = 1 In this section, the stationary mutation strength for? = 1 is
determined. Setting/7> = 1 changes Eqgs. (D.90) and (D.91) to

m? + 3s?
2
1y 1
0 = (2+m)(1+2] + =) = = (351 + 6522+ mt). (D.101)
AN

0 = m(1/24¢er)—m (D.100)
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Solving (D.100) fors? leads to

1
§2 = 3 <2M(1/2 +e.y) - m2> (D.102)

1 2
m' = (((2u(1/2 + e,i:i)) —2m*2u(1/2 + e,))) + m4>- (D.103)

Plugging (D.102) and (D.103) into (D.101) leads to the replacement of tines tey

1 1,1
F4m? = §<2,u(1/2+e#’7/\)+2m2)

1
() (2ut/2 4650 +1) = 5 (01724 e +2m) (2u1/2+ 63 +1)

1 1,1 1,1
-z (2,41/2 +eh)? + 2u(1/2 + el))

+2m*2u(1/2 4 €,)) + 2m2)
1 1,1 2 1,1
- (G IR R
6m?s® = 2m?2u(1/2 + 6;’3) —2m?
35t 4 6m2s? 4 mt = [ (20172 + M) - 2m22u(1/2 + €2 + it
strom®s? tmt = o { (2001/24 ¢3))" —2m*2u(1/2 4 ) +m
2m*2u(1/2+ €,)) — 2m* + m?
1

2 4
_ 3<2N(1/2+e;’i\)) + Sm22p(1/2+ep))
2
e (D.104)

and therefore to
3st+6522m2+mt = (s2+m?) (2,u(1/2 + e,t’,lx) + 1)

1
0 = m'—m*@2u(1/2+e,}) — 1)+ 20(1/2+ e,y (D.105)

Solving (D.105) form? gives
1
2 - L1y
miz = 5 <2,u(1/2 +e,) 1)

i\/i (2u(1/2 +ey) - 1>2 - %<2u(1/2 + 6;1;&))

1 1
- - (2M(1/2 +eld) - 1)

1 1,1 1,1 1 1,1
i\/4 (2u(1/2 el —dp(1/2 + el + 1) -3 (2u(1/2 + ew)>

1 1,1
= 5 (02465 1)

1 1,1 1,1 1
e\ [L 2 ) 2 + ]
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1 1,1
= (2,41/2 +er) -1

i\/(2u(1/2 + ei’})\)2> —42u(1/2+ ) + 1). (D.106)

Again, two positive solutions are obtained for the root/of (D.106). As dfatee larger stationary
mutation strength is more in accordance with the results of experiments. A pife result of the
deterministic approac®y(1/2 + ei’lA) appears coupled with a correction term.
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E Ridge Functions: Derivation of the Main Re-
sults

In this section, the derivations of main equations in Chapter 5 are presémigdbsection E.1.1, the
undisturbed sharp ridge is considered. In particular, it is shown hostétienary mutation strength
can be derived. Afterwards in Subsection E.1.2, the derivation of thierstay state values is given
in the case of the parabolic ridge. The next section addresses noisyfuiitictions. Subsection E.2.1
is devoted to the noisy sharp ridge. First, the stationary points are defitésiconcluded, the non-
normalized stationary values of the mutation strength and progress ratetarmitied. Subsection
[E.2.2 is devoted to the noise parabolic ridge. The main point is the determinatiba sfationary
distance to the ridge.

E.1 The Noise Free Case

As stated before, this section is devoted to the derivation of the main res@léstbn 5.1 starting
with the sharp ridge before presenting the calculations in the case of tiegfiaridge.

E.1.1 The Sharp Ridge: The Stationary Normalized Mutation Stren  gth

In this section, the derivation of the stationary state of the evolution equ&ti2a)(

. [ d?
Sot = mﬂcu/u,/\((l—]\ﬁj)

1/2 4 e}
+. (1 + N72)2 4 2N72(1 +d2)/22*“) (E.1)

d HCu/un

is given. The evolution equation (5.46)
1,1 d *
o O*<1+r2(1/2—|—eu7>\—mcu/u,)\a )) €2)
o 1 d * 0*2 .
1= N (Jzn/mr™ — )

serves as the starting point of the derivation. After having derivedt#tti®sary mutation strength, it
is shown that this stationary solution is stable with respect to the linear apptiima

Deriving the Stationary Mutation Strength

Demanding stationarity of the'-evolution, [(5.46), the mutation strength must either be zére:
0or

1,1 *
L 1+T2<1/2+6M»>\_7\/1176“/“7/\0 ) €3)
- 1 d % *2 .
L=~z umro™ = 55)
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has to hold. The latter condition leads to

1 d . o*? 9 11 d .
- N e~ g = 11246 - )
d ., o*? ol 1n d *
= 7%1_%(126“/“7,\ o = —N7T <§+e“7/\—71+d20u/u7>\g )
d o*? 1
2 * 2 1,1
<:>(1—N7' )7mclt/m>\0’ — 2” = —Nrt (§+€M7A)
d 1
= "2 (1-— NT2> mhwu/%)\a* = N722,u(§ + e;’,l)\) (E.4)
which has two solutions
" d
Slo = (1-— NT?)WWWW\
2.2 d? 2\2 2 1,1
+\/p C”/“v’\il—i—d?(l_NT )"+ N7T2u(1/2+€,))). (E.5)

As can be inferred from (E.5), the positive solution and the stationary matstiength is given by

(5.23)
* d2 2
Sst = 1+ dgucu/u,/\ (1 - Nt )

1 9 1 +61,1
+J 1 —NT2)2+2NT2( ;d )(2 2 ) (E.6)
HCu/un

The stationary quality change (5.24) can be derived by inserting (E.6{5ria)

S d
AQ* = \/H—icl?cu/m)\g*—ﬂg*z (E.7)

This leads to

_ [ d2
AQ:t = V 1 + dQCM/M,/\ mucﬂ/ﬂv/\ ((1 — NT2)

1,1

14+d2\ /3 +€

1+ N72)2 42N 2( )( “’)
+4|(1+N72)2 +2N7 7 2

B/ A

d 2.2 d2 2
75” CM/M/“(W) ((1 *N’T )

1 1,1 2
1+d>\ /3 te,
+ (1—|—N7‘2)2+2N7’2( = )(2 i
ue
B/ A

= duci/lw\ ((1 — N72)
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1,1
1+d2\ 5 +e,
£ @ N oz (1) (2 ))

2 2
d HCu
d2

1—-— (1 - N7?
X( 2(1+d2)<( ™)

142\ 3+ €0

| (1 Nr2)2 4 2N i (22 . (E.8)
d? HCu

Stability of the Stationary Mutation Strength

The stability of the stationary mutation strength (E.6) remains to be shown. Tathishe linear
approximation is used again. Therefore, the first derivative of

2 1,1 d
B IESIONE 1+T(1/2+6H’>\— 1+d25)
f(s) = s(il_m))_s( g S_VSQ) (E.9)
N N\ V/14d2 2p

which appears in the evolution equation (E.2) needs to be determined. Stberivative at = o,
is required, the calculations simplify. More specifically, the derivativeigioy

/ . 1+1/J(8) s , 90/ (8) 1+¢(S)
i) = 1«m@+1m<w(s)+ N (1%())> (E.10)
N N 3
changes to
f@looz = 14 1?07;(0,5) (¢'(U§t) + w> (E.11)
TN

since the ES is in the stationary state. It remains to showi fhat?,)| < 1 holds. Let us start with
f'(o%,) > —1. It has to be shown that

- o (_ A7y ) + depjur U;kt) > 1 (E.12)
e o — 2*:) Vitd NVi+d Np '

1— % (dc#/#,A * _ Ok
holds. Inequality (E.12) can be simplified to

ok 1 d o
- () ) o
1- %(7\/1170#/“)‘0:15 - 0255) N Viga " Np
o 1 d o
. () e )
-5 (Vlidicﬂ/,ﬂ ATt — %) N V1+ d? e Nu
— < 1 2) d * U;th > + 2 d * U;th
— -7 c ok — — — ¢ or, — =2
N Vit & /1,29 st Nu NVIit& /A9 st Nu
1 d 2 d
— (= -7 ————C O > =2+ ———=C /)y \O s
N Vitd /A9 st NVIitad? /A9 st
1 d X
<~ —(N + 7‘2> 71 i dgcﬂ/ll»Ao—St > =2
1 d X
- <N + T?) AT < 2 (E.13)
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Inequality [(E.13) requires inserting the normalized mutation strength (E.6)Ent8) and determin-
ing whether((E.13) holds or not. In the following, a different approadbliswed. Instead of inserting
(E.6), the highest stationary mutation strength that may occur is considEnectonditions derived
in this manner are therefore sufficient but not necessary. The higheation strength is the zero of
the SAR,;, = (1/2+ €,})/¢u/unV/'1 + d2/d which is obtained fotV+? — oo. If (E.13) holds for
Sy, It holds in general. Inserting], into (E.13) leads to a sufficient condition fg(c7,) > —1

1 ) d 1/2—1—6;’1)\ V1 + d?
(7 +7) g ()
N 1+ d? ’ Cu/p,A d
é(%—&—ﬁ)(lﬁ—i—ei’})\) < 2
2 1

2
I R . (E.14)
I1
1/2+€u,>\ N

2

Provided that the learning rates sufficiently small with respect to the choicesiodnd ), f/(o%,) >
—1 can be ensured. The casefdfs?,) < 1 remains to be shown. Consider

2
o* T dC/ A dC/ A o*
1+ st <_ H/H, + HIH _ st ) 1. E.15
*2> Vi+d® NViI+d® Nup &)

— i L * Ot
1 N(\/W%/M,A%t 2

Sinced < d..;, the progress rate for the stationary mutation strength is negative. litgqEal5)
gives

1 9 d ox 0
(N o7 )iwm%/w TNup ©

d

2 *
= /L(l — N1 )\/ﬁcﬂ/“’)‘ < Ogt- (E16)

If N72 > 1, nothing remains to be shown. Otherwise, 2 < 1, a similar approach as before
is followed. This time it is shown that (E.16) is valid for the smallest stationary mutati@ngth.
The smallest stationary mutation strength is the zero of the progresglggte 24,y d/V1 4 d2.
Inserting the zero into (E.16) leads to

u(l — N72>Lc A < 2uc /\L
VIt & M N
=1-N7% < 2 (E.17)

which is generally fulfilled. In this section, a sufficient condition for the #itstof the stationary
mutation strength could be derived. Provided that the learning rate isisnffjcsmall, the stationary
mutation strength (E.6) is stable with respect to the linear approximation.

E.1.2 The Parabolic Ridge: The Stationary State

In this section, the calculations leading to the stationary paints|(5.37), p. 89

1 1/2+e,

2d 2 — — 1T
Ry _ 21C, )00 1/2—e,’ (E18)
g;t o 1/24’62[,1)\

2d 2 1,1
\/Q,ucu/#’)‘fl/2feuq)\
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and|(5.38), p. 90

( 1/2+¢l >1/(2a_2)
2 72 2 _ _ 1,1
<th> _ a?d (2“0;1/#-,/\ 1/2 eu,,\) L 1/(20-2) (E19)
st 2u(1/2 + L) 2t
H mA\ 022 (2uc? ,  ~1/2-€)})

are given. Furthermore, some numerical evidence is provided for the tat the stationary state
(E.18) is stable.

Determining the Stationary State

In this subsection, the stationary states are determined. To this end, thiogvelyuations (5.26)

- R—%@ﬁ(a*,]%)
¢ = (140" R) (E.20)

are needed. Stationary solutions|of (E.20) require either a zero mutagmgtrofey,(o*, R) = 0
in the case of the&k-evolution andiy)(c*, R) = 0 in the case of the*-evolution. The progress rate

(5.27)

dO‘Ra_lcu/u«\ ., o

R _ E.21
(pR(O— ?R) \/WU 2R,LL ( )

leads to two zerog;R01 = 0 and (5.33)

N Q2d2R20—2
Sero = QR/‘CM/M«\\/l T 022 R20-2" (E.22)
The zero of SAR (5.29)
1 ¢ 202 R2o—2
) 1,1 /A *
P(e*) = 1 (2 + €N~ 7 \/1 Pl R 2 o > (E.23)

is given by (5.30)

*
S T

R1/2 + 6!1;71)\ \/1 4+ a2d2R2a—2

Cou/ A a2d?2 R2a—2 (E24)

If stationarity of both evolution equations is demanded, either the mutation gtrengt be zero or
Sio = Sere Nasto hold, i.e.,

a?d2R20—2 1/2+ ¢, \/ 1+ 02d2R20-2
2 ———— = R = E.25
R/‘Cu/u«\\/l a2 o2 Colin a2d2R2a—2 ( )
(cf. (E.22) and((E.23)). Solving (E.25) fdt, a stationary distance to the axis
2d2R20—2 1/2+ ei’i\ 1+ a2d2R20—2
2Rpcy sapras — It 2 72 P2a—2
1+ a*d“R Cu/u a*d*R
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1/2 + ebl
N 2,ucﬂ/u7,\oz2d2R2“’2 g(l + a2d2R2a*2)
C/ A
1/2 4 e} 1/2 4 e}
& (2,ucu/u,>\ - L2+ ”’)‘>a2d2R2°‘_2 = V2t en
Cu/pA Coufp,
1/2 + ek}
<~ a2d2R2°‘_2 = / ) 1,1
9 1/2+e”’7)\
Cufu X\ AHCpufpx = T
1/2+eb?
o a2d2R2a72 — 5 / 79N -
QMCM/M,/\ —1/2- Cu
1,1
1 1/2+e
= Roga = 277 2 < 5 / A - ) (E.26)
o 2/1,0#/#7)\—1/2—6H’7>\
is obtained for general > 2 and
1,1
1 1/2+e’
Ry = /2 - (E.27)

2 2 1,
2d 2“Cu/u7>\ —1/2- Cux

for « = 2. The stationary distance can be used to determine the stationary mutatiothsingdg38)
by plugging|(E.26) into (E.22) of (E.23). In the following, (El22) is use€lt Ws first consider

1,1
?d?R% 2 1/2+e,)
14 a?d?R3

9 B 1 1/2+e, )
(2/”#/#,/\ 1/2 6#A> <1+ 2uc?, |\ —1/2—e,

/A
1/2 + el’lA
HCuA

Plugging [(E.28) and (E.26) into (E.22) leads to

a?d? R
= 2RS%W\/ 1+ a2 R
st

1,1
1/2+e,,
2

B/ A

= Rsy/2u(1/2 + e;’i)

1 < 1/2+¢€) ) =
= 2 £ 2u(1/2 +¢€,7). (E.29)
242 1,1 A
A= \2ucy, = 1/2— ey !

= R5t2/JJCIJ'/‘u7/\ 2MC

Thus, the stationary mutation strengthlin (5.38) is obtained. Setftia@ gives the mutation strength

in (5.37)

1,1
5 = VI /24 € (E.30)
2d i '
\/2/‘02/#)\ —1/2- Cux
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Now the stationary progress raté ., can be derived. Plugging (5.38) into (5.28)

* [ _* _ CH/NM\ *
(0" R) = o (E31)
leads to
C A ,
Pra = L 2u(1/2+ €l

] 1/2+e,
T o —1/2—el!
ne [TYTION e,u,)\

1,1
1/2+eM )

11
1/2—6%)\

2d2
@ 2'ucM/u A

- el 2u(1/2+€;3)

\/ QNCH/M A -
2“Cu/u,>\_1/2 €l

o] L ( 1/2+ €, >
272 1,1
od 2 —1/2—e)

24 Cu/nA K

2412 —1/2 — e}
1/ A 22 1,1
— \/ 2,u 2“(1/24‘ e‘u")\)

202 1 < 1/2+e )
22 1
a?d 2,uc / )\

u

— 2 1
N \/2Mcu/;w\ \/1/2 te

1 1/2+ ¢!
x 202 ( /27 S > (E.32)

242 2 1,1
a’d U 1/2 e\

for generaky > 2 and to

1,1 1,1
Orst = \/QMCi/M7A—1/2—eu7/\\/1/2+e“’>\
1 < 1/2+ €, >
2,72 L
asd Q'UC/QL/M,A_UQ €
1/2+ el
%N
= —C E.33
57 (E.33)

fora = 2.
Stability of the Stationary State

In this paragraph, some numerical evidence is provided for the claim thatdkionary solution
is asymptotically stable. To this end, system

() = (FHemy ) () -Ciaz) e
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is reconsidered. The progress rate (E.21) reads

daR“ ¢ 2
* (K _ 1/ b * o’
SOR(O- ’R) - /1 —|—d2O(2R2a720- 2R/.L

and the SAR/(E.23) is given as

1 c PolR2a—2
* o 2 1,1 1/ 1A *
Zf)oo(U ) =T (2 + Cux R \/1 + d202R20—2 g >

The eigenvalues of the Jacobianfoét the stationary point must be determined. The Jacobian reads

pi(r) = Bk Thine ) )
The derivatives can be obtained as follows

SRR = 1 oot R

aa*f(Ra) = i ghle R)

SRR = oot R)

D BB = 10N B+ ot (ot B

with
o da(a — 1)R*2
aR¥RR) = cﬂ/wf’*QW
d3a3 (20 — 2)R(a1>(2a3>>
2V/1+ PaR22

0_*2
+2R2M (E.36)
O o B) = o
o TRV V1+ 2a2R%-2 Ry
0 9 N doa(a —2)R¥3 |
or ") = T (‘\/W‘”
+d3a3(2a _ 2)R(a—2)(2a—3) . (E 37)
= g .
2v/1+ d2a2R2o2
0 . _ 26#/%/\\/ d202 R20—2
do* (0%, R) = -7 R 1+ d?a?R20-2" (E.38)

At this point, a further analytical analysis is not carried out. Instead, idpenealues will be ob-
tained numerically using MATHEMATICA. Therefore, only some numeriocatlence can be pro-
vided to support the claim of stability. Figure E.1 shows some numerically obtaigenvalues for
(u/ 11, 60)-ES as functions of the parent numhefor some choices aV. The learning rate is set to
1/v/N. As it can be seen, the eigenvalues are smaller than one as lgnig ast too close to\. In
these cases, the larger eigenvalue exceeds one indicating instability, Aeeieasing increases the
eigenvalues (see the discussion in Appendix D.2.1).
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Figure E.1: Numerically obtained eigenvalues foy (1, 60)-ES. The search space dimensionalities
examined wereV = 30 and N = 100. The learning rate- was set tor = 1/v/N. Two values of
the ridge parametef were analyzed. The results fér= 1 are indicated using red-colored symbols,
whereas blue symbols denote the results obtained fer 5. However, the graphs for both values
overlap. The smaller eigenvalue is indicated using diamond-shaped symbalgles stand for the
higher eigenvalue.

E.2 The Noisy Ridge

In this section, the derivation of the main results for Chapter 5.2, i.e., forrE@enoisy sharp
and parabolic ridge are presented. Again, the noise is modeled usingrbdarstapproach with an
additive normally distributed noise term. Subsection E.2.1 describes how fo ¢iéamain results
for the sharp ridge, whereas Subsection E.2.2 addresses the paralg@lic

E.2.1 The Sharp Ridge

This subsection is devoted to the noisy sharp ridge. The noise is modeledthsistandard
approach with an additive normally distributed noise term. First, the statiomanyspare derived.
Afterwards, the local stability of these fixed points is investigated. As thesieg, it is shown that
the samei-constant as in the undisturbed case is the decisive parameter decidimgithbehavior
of the ES. Finally the non-normalized stationary values are derived.

The Derivation of the Stationary Points In this paragraph, it is shown that the stationary state

of the system (5.55)

*

*(g+1) %
< O¢ _ 1*@7{(‘7*7‘7:)/]\7 E.39
#(g+1) ) = c (14" 07) (E.39)
(s ) a (1—%(0*,0:)/1\/)

with
do_*? 0*2

Cour — o E.40
\/(1+d2)0'*2+0':2 N/l,)\ 2R/J, ( )

907%(0-*’ R) =

(cf. (5.47)) and

« - 2 1,1 (1+d2)0'*2
1/)(0 7R) = T <1/2+€;¢,)\(1+d2)0*2+0.:2
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“Cu/pA

do™* ) (E.41)
R\/(l +d?)o*? + 02‘2 .

<Uﬁ*stat1> - <C> (E.42)
gstatl 0

(cf. (5.48)) is given by either (5.56)

with ¢ € R, ¢ > 0 or by (5.57)

2 1,1 1,1
d2(4,u,cﬂ/u’)‘72e#_’/\71)726‘“)\71
o* QdMCH/M,)\ B2 (A2 2ol i) _9olL
€ stat _ (e /=26 3)—2€) (E.43)
. .
gstat 2ducu/”’>\

2 2 1,1 1,1
\/d (4‘ucu/u,>\72euv>\)72€u,>\

Considering| (5.55), stationarity of tla¢ -evolution requires} = 0 or

¢r(0",00) = 0
=0 = do”” LA (E.40& (E.41))
\/(1 + d?)o*? + o*? w/ 2u .
. d 1
= gstatl =0 \/ \/(1 T d2)0'*2 + O_*QCM/Nv/\ = Z
= Gty =0V (1 +d)0™? +07% =4d’p’c ), . (E.44)

This relation between the mutation and the noise strength can be used to detérengtationary
mutation strength. Demanding stationarity of tfiesvolution

. 1+ (o™, of)

== O € =
o =0V o o)/
jg:mtl =0V Nw(a*,ai) :_907%(0*70:)

1

1,1 2\ %2 *2
1 e \(1+d%)o Cpfundo o
= G =0 A — R =0 cf.(5.48
taty \/ T <2 (1 + d2)0.*2 +0.2< \/(1 T+ d2>0'*2 +O'2<2 ( )
1,1 2\ %2 2
1 e \(1+d)o c do*
= Sstaty =0V 5+ i ) - /12T =0. (E.45)

2 (A+d)o?+or /A +d)o? + 02
As (E.44) and[(E.45) showy;,;, = 0 is a stationary state of the deterministic evolution equations
(5.55).

A further stationary solution is obtained by inserting the second condition.#Ento (E.45)
which eliminates the noise strength

1 11 (1+d?*)o*? do*?
0 = —4+e\——o— —Cufur=—F7
9 A 4d2”262/u,/\ 1/ ks 201,y
1 *2( 11 1+d? 1
= —= = 0 e ’7/\72 — —)
2 " 4d2'u20u/u,A 2u
1,1 2 2, 2
- 1 o2 e \(1+d%) =2d%c,,
2 4d? 2 c?
B A
2,22
N 0,*2 _ 4d H CN/M7>\

11
—Qeu)\(l +d?) + 4d2,uci/u7)\
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The stationary mutation strength is only defined if the constamsufficiently high

2042 L1 1,1
A (dpcy iy = 2¢,5) > 2e,)

=d > |—M (E.47)

The stationary distance to the axis remains to be determined. To this end, theastatitutation
strength/(E.46) is plugged into the second condition of (E.44)

4d2ﬂ2ci/u,>\ = (1+d2)§:tat22+‘7:2
2,22
2
moit = (s
=t = M1 s

The normalized stationary noise strength that is obtained in this way givetatimnary distance to
the axis

2 L1 ;
s _ 9 d2(4'ucu/u,>\ —2e5 1 2, -1
O = 2dpcyp > B 1 1
\ d (4ucu/u’)‘ —2e,3) —2e,
2(4pc?,  —2et —1) =20 —1
N FCuux ~ 2Cun €
= o = 2dpcy/n
: YT 1 1
Rstat, \ d (4ucu/u’)‘ —2e,3) —2e,
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Note, the stationary state in (E.49) is only defined for positive argumentg afjilnare root

T 2(4pc?, = 2et — 1) —2eb 1 (E.20)
HCu un A 79

Condition (E.50) is fulfilled if the numerator and denominator are both positib®th negative. The
latter situation is not allowed, though, since in this case the normalized mutatingtst(&.47) is not
defined. In the following paragraph, it is shown that the denominator irDjEs5ecisive leading to
the same criticad-constant as in the case of the undisturbed sharp ridge.

The Critical d-Constant Letu < \/2. This paragraph is devoted to showing that (5.59)

1,1
26%/\ +1

d > deit = (E.51)

2 1,1
ey — 260 1
has to hold for the existence of a stationary state. Nojeqif A, d...;; can assume negative values. In
the usual range qf : A-ratios ofu < \/2, itis positive, though. The starting point is (E.50)

2 2 1,1 1,1
0 < d (4,ucu/w\ —2e,,) —2e,
- 2 1,1 1,1 :
d2(4ucu/u7>\ —2e,,—1) =2, -1
Under the condition of (E.48), (E.50) holds if
ol
1,1 1,1 A
0 < d2(4,uci/u7>\ —2e,) =2, & d? > 22M—171 and (E.52)
PCux ~ Cun
2t 41
2 2 1,1 1,1 2 A
0 < d*(dpc),\—2e,, —1)—2¢ —1&d* > e “_ ST (E.53)
HCuuA CuA
are true. The decisive boundis (E.53), since
1,1 1,1
26'“,)\ +1 - Y
2 1,1 2 1,1
4MCH/H’>\ — 26#)\ —1 2“%/;@ —e\
1,1 2 1,1 1,1 2 1,1
= (2(3#,/\ + 1) (2“011/#)\ - eu,/\) > (4“%/#«\ - 26#)\ o 1)
1,1 2 1,1 2 1,1 1,1 2 1,1
& e (4 2008 ) F 2 - e > ek (4nc - 200 - 1)
2 1,1 1,1
S 200 T A > T
20\ > 0 (E.54)

which holds in general. The bound (E.53) is therefore always greatar(.52) and the argument
in (E.50) fulfilled if (E.51) holds. In other words, the stationary state exisandf only if the axis is
approached and (E.51) or (5.59), respectively, is again the depisraeneter.
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Stability of the Stationary Point In this paragraph, the stability of the stationary points is ana-
lyzed. Lety < A\/2. If d > d..;+, numerical evidence is provided that (5.57)

1,1 11
2djic d?(dpc? , \—2e 5 —1)—2¢ \—1
X A 1 T.I
<Ue st) _ /p d2(4;;0‘%/“’)\—Qem/\)—ZeH%A (E.55)
*
Sst 2dpc ) x

241102 1,1 2
\/d ape?, —2el | (1+d2)

is a locally stable fix-point of (5.55)

«(g+1) ) o
O¢ . 1—<pR(0'*,0'2‘)/N (E 56)
* 1 - « [ 1+(R,0",07 ’
<<€ (g+1)) ( o (W) )

<“:stat1> - <C> (E.57)
Sstat; 0

with ¢ € R, ¢ > 0 is instable. The latter can be show relatively easily using again the lineamappr
imation. The approach in this section follows closely the one introduced ingipd.2.1. The

deterministic evolution equations are of the general fgft) = f(y(@)= (f1(y9), fo(y@))".
The stability of hyperbolic fixed points can be established via the eigenvalules Jacobian of

whereas (5.56)

(E.58)

Diy) = (aglfl(y(g)) %my@))

@fQ(y(g)) @h(y(g))

at the fixed pointy = ys. Provided the absolute values of all eigenvalues are smaller than one, the
fixed point is stable. To this end, the partial derivatives must be obtained

* 0 * %
9 fyey = 1 L st (o*,07) /N
o L= ohle" e )/N " (1= pilom,2) V)
9 . s
ifg(y(g)) _ a*( ag;«T/}(J ,or)
on T= phlo®, 0t)/N
—l—aiz*gpj%(a*ﬂf:) { 1+ 4(c”, 07) ])
N (1 — gp"l‘%(o-*7 O.;k)/N)2
19} o’ o . . .
Tfl(y(g)) = 230*%‘?(‘7 o)
N N (1= gilo"02)/N)
9 1 +¢(U*,0'*)
— 9y — p
oY) T TGN

0 * %k
—i—a*( 80*:/)(0; ’0;6)
1_90R<O- ?UE)/N
J % * % * %
Do* Y € 1 9 €
B 1CL) + Yo", o) 2>. (E.59)
N (1= @rlo*,0¥)/N)
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We need the values of these derivatives at the fix-points. Thergfgre; 0 andvy = 0 hold giving

9 0
aylfl(y ) 1+0; 80_:QOR(O' ,or)/N
0 * * %
0 9 0 *SOR(O- 706)
—fo(y9) = o x _wy Oof TR\ 0 Te)
ayl fQ(y ) g (aaiw(g 706) + N
0 o* O
G107 = peehle” o)
8 a i*gp* (O'* O'*)
5, 20 = 1407 o)y QTR 2 Tel ), E.60
8y2f2(y ) to <60'*¢(0- 506)+ N ) ( )
For continuing, the derivatives of (5.51) and (5.48) are needed
8 90* (O'* O_*) c do.*2 0*
* TR Ve = - A g
80-6 ,u/,u \/(1 + d2)0'*2 + 0_:23
2\ *2 d %2
et = ol e T )
806 ' (1—|—d2)o'* + o} ) \/(1+d2)0*2+0:2
O (0", 0" 207 Cp/uA (14 d?)o*? o*
g ,0, - - I A= —
Jo* Q'DR( ) \/(1 —|—d2)0*2 + 0?2 \/(1 s d2)a*2 +O_:23 1/ 0

1,1
e

2 *2
—(c*,0)) = 2720*< po _ (1+d%)eu/uno >
Oo* ' Ye (1+d2>0.*2+0.:2 \/(1+d2)0'*2—|—0‘2<2
1,1 «
2 < B 21+ dQ)eu,A N (1+ d2)zcu/u7)\0' 2 >
(1+d) (0 +0:2) A+ )2 + 072

In the case of the first fixed point, the calculations can be stopped at tims piche equilibrium
solution (5.56) with(c? ;s Satar,)" = (c,0)" is unstable. The eigenvalues of the Jacobian read
A = land)y = 1+ 72/2. As seen,[(5.56) admits an unstable manifold-for 0 leading to a
general local instability.

The second fixed point (5.56) requires more effort. In the followingnerical evaluations using
MATHEMATICA (R) are provided since inserting the fixed point into the atjons above results in
complicated expressions. The drawback of this approach is of coatgbéstability of the stationary
point cannot be proven anymore. Instead of a proof, only some nuaheviience can be given that
it is stable for the conditions tested. Figure [E.2 shows both eigenvalugs/fioy, 60)-ES. As before,
it is observed that the eigenvalues approach one fes 0. Since there are not any changes of the
mutation strength for = 0, this behavior was to be expectedulépproaches, the larger eigenvalue
may exceed one, indicating instability far~ A. The influence of the constaditappears to be minor.

Non-Normalized Stationary Values In this paragraph, the non-normalized stationary mutation
strength and progress rate are obtained. The non-normalized statronéation strength can be
derived from[(5.57) using the stationary distarnce (5.58). Since

RSt *

o= (E.61)
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Figure E.2: Numerically obtained eigenvalues foy 1, 60)-ES. The search space dimensionalities
examined wereV = 30 and N = 100. The learning rate- was set tor = 1/v/N. Two values of
the ridge parametet were analyzed. The results fér= 1 are indicated using red-colored symbols,
whereas blue symbols denote the results obtained fer5. The graphs for both values are close
together, however, and cannot be distinguished easily. The smallevaigens indicated using
diamond-shaped symbols. Triangles stand for the higher eigenvalue.

Eq. (5.62) follows

R 2duc
Cst jt 1 L 1 (£62)
\/dz Apuc? 2 A 26“ /\) 2e,)
11 1,1
o (N —1) P 0~ 2600) ~ 2605
1
(N = 1)2dpcyun \ d2(4uc2, \ —2ei} —1) = (2, + 1)
2dpcy,/p
1,1 1,1
\/d2 4/”’6 //L)\ 26M7A) — 26“7)\)
. o (E.63)

\/d2(4uci/u’/\ — 2@/1;’& -1) - (2e At 1)

Similarly, the non-normalized progress rdte (5.61) is obtained. Pluggingaimeatized mutation
strength and noise strengthin (5.63) into the progress/rate (5.50) leads to

Ry xSty x * Ry <, 2
goit(ae) = ]\; gpcﬂs (§st7o-€st) = ]\Sf 2?#
11 11
_ Oc d2(4/wu/u AT 2e00) —2e,,
- 1 1,1
2dpe, o\ d? (4'ucu/u>\ 2eu’7)\ -1)— 2e, —1
% 2al/wu/u A
d 4 _9 1,1 _9 1,1
( 'ucu/u A 6M7>\> €pux

which finally gives|(5.61)
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1
(o) = OcCu/uy | B 1 11
d (4/10”/#)\ -2, —1)—2,,—-1
1
X T T (E.64)
\/d2(4,uci/#’>\ = 2e,5) — 2e),

E.2.2 The Noisy Parabolic Ridge

This subsection describes how the main results in Subsection 5.2.2 are dbtahis consists
mainly in obtaining the stationary distance to the axis, i.e., in deriving and solvangespective
equation.

Derivation of the Third-Order Polynomial The starting point is the stationarity condition for
the R-evolution (5.74)

0= ¢r(R, 0%, 07)
2dRey . o o

g
V(1 +4d2R2)0*? + 072 2Rp
= 0" =0\/164’R**c ), \ — (1 +4d°R*)o** — 07> = 0

LR, o

* *2
= = . E.65
= o' =0\/o 1 +A2R2 1+ 4d2R? (E.65)
Since the(s*)-evolution becomes also stationary, eithér= 0 has to hold or (5.75)
0= 7/}(0-*’ O-:)
2dRc *2 1+ 4d2 R2)o*2
=7 (1/2- /AT TR N Ch 9 ;) (E66)
R\/(1+ 42R?)0*2 + 072 M (1 +4d?R?)0*? + oF
must be fulfilled. Inserting (5.74) into (5.75) leads to a third-order polynbimi&? (?7?)
24, 2.2 *2 1,1
0 = 1 2dey (16d Ry Cu/ux ~ e ) + Cux (16d2R4u202 \ _0*2)
2 ddpcy,\R? 1 4 4d2 R2 16d2R4,u2C;2L/H7)‘ /s €
1 1 16d2R4M202 o 022 61’1
- - _ ( /A > n A i (16d2R4,u262 - a:2>
2 2uR? 1+ A2R? 62RY 22, wl
16d2R4u262 _ 0_*2
_ 2 22 4 2 2 2 /A €
= 8d°p ey, R —8d pc,,, \R ( [ 12 >

+el1j,1>\ (16d2R4,u202/M7)\ - a:2>

= 8d2,u2ci/u7>\R4(1 + 4d°R?) — 8d2uci/M7AR2(16d2R4u2ci/M7)\ — o)
reh(162R22 | — 02 ) (1 + 4d*R?)

= 8d°u’c;,, \R'+32d"p’c,, \R® —128d'R°’c) | +8d’puc),, o R

+64d4u20i/u7>\ei”l)\R6 + 16d2u2ci/M7AR2 - 4d2e;’7&022R2 - ellﬁ’i\of
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_ 6 43 4 4,2 2 1,1 4.2 2
= —R (128d WoCy o — 04d7pte, , ne )\ — 32d7p Cu/u,,\>
+R* (8d2,u2ci/%)\ + 16d2p202/u7/\ei’71)\) + R? <8d2MCZ/M,AU:2 - 4d2ei’i\c;’:2) — ei’})\af
. 1,1 1,1
- R632d4u2ci/u7)\ (4“6121/#,/\ o 26/M o 1) B R48d2,u20i/%>\ <26W\ * 1)

2 2 42 2 1,1 %2
—R%40%7d <2'ucu/u,>\ - 1) +e,\0¢

_ pS_ pt 8d2”2ci/u,>\ ( 26/1;/1u«\ +1 )
32d4“2612¢/u7>\ 4“62//1,/\ N 26!1;71\ -1
o Aot’d? 21 )~ i urTE”
32d4,u20i/w\ <4'uci/w\ - 26}1;71)\ - 1) i 32d4u20i/%)\ (4116/21//” - 26;1[,& - 1)
= RO— R“L( 2o+ 1 )
AP \ape? |\ —2e, — 1
, of? 20160/~ ) AT’ (E.67)
B N = 2e,5 — 1) 320422 T (4uci Jun — 265 — 1) o

The cubic polynomial (E.67) ii®? leads to analytical solutions. Let us first consider the general cubic
equation.

Solutions of the Cubic Equation 23 — az? — bz + ¢ = 0 The solutions can be given as follows
(see, e.g., [34])

a
xrT = g
B V2(—a® — 3b)
33/2a3 + 9ab — 27c + 3v/3v/27¢2 — 18abc — 4a3c — 463 — a2b?
1
_|_
32
X {’/2a3 +9ab — 27c + 3v/3V/27¢? — 18abc — 4adc — 4b3 — a2b?
a 1+iV3
ro = = 3
3 3v/4
" —a?—3b
%/2@3 + 9ab — 27c + 3v3V27c2 — 18abe — 4a3c — 4b3 — a2b2
11— iv3
6/2
X €/2a3 1+ 9ab — 27c + 3v/3v/27c2 — 18abc — 4adc — 4b3 — a2b?
a 1—1iV3
T3 = S+ —r—
3 34
—a? —3b

X
V/2a3 + 9ab — 27c + 3v/3v27¢2 — 18abc — 4a3c — 4b3 — a2b?
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14i0v3
6v/2
X §/2a3 + 9ab — 27c + 3v/31/27¢2 — 18abe — 4adc — 4b3 — a2b2. (E.68)

Considering|(E.67) and (E.68), the coefficients read

o L( 2¢,),, +1 )
4d? 4“6!%/#,)\ — 2€L”1)\ —1
b= ot ( 2160~ € )
8d2p2cy \ Npc? uh 2e,\ — 1
. ei’})\a;&
1,1

32d4u202/“’>\(4uci/%>\ — 26“’7>\ — 1)

Although analytical solutions can be provided, the results are quite clunhgyrefbre, the solutions
are not given explicitely.
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