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Summary

In this thesis, an analysis of self-adaptative evolution strategies (ES) is provided. Evolution strate-
gies are population-based search heuristics usually applied in continuoussearch spaces which ultilize
the evolutionary principles of recombination, mutation, and selection. Self-Adaptation in evolution
strategies usually aims at steering the mutation process. The mutation process depends on several pa-
rameters, most notably, on the mutation strength. In a sense, this parameter controls the spread of the
population due to random mutation. The mutation strength has to be varied duringthe optimization
process: A mutation strength that was advantageous in the beginning of the run, for instance, when
the ES was far away from the optimizer, may become unsuitable when the ES is close to optimizer.

Self-Adaptation is one of the means applied to this end. In short, self-adaptation means that the
adaptation of the mutation strength is left to the ES itself. The mutation strength becomes a part of
an individual’s genome and is also subject to recombination and mutation. Provided that the resulting
offspring has a sufficiently “good” fitness, it is selected into the parent population.

Two types of evolution strategies are considered in this thesis: The (1, λ)-ES with one parent and
λ offspring and (µ/µI , λ)-ES with a parental population withµ parents. The latter ES-type applies
intermediate recombination in the creation of the offspring. Furthermore, the analysis is restricted
to two types of fitness functions: the sphere model and ridge functions. The thesis uses a dynamic
systems approach, the evolution equations first introduced by Hans-Georg Beyer, and analyzes the
mean value dynamics of the ES.
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List of Symbols and Abbreviations

(1, λ)-ES ES with one parent,λ offspring

(µ/µI , λ)-ES ES withµ parents,λ offspring using intermediate recombination

β Parameter of the two-point distribution

λ Offspring number

〈x〉 Centroid or mean; usually of the parent population

N (µ, σ2) Normal (Gaussian) distribution with
meanµ and varianceσ

µ Parent number

∆Q⋆ Quality change normalized w.r.tN , i.e.,∆Q⋆ = ∆QN

∆Q Quality change. Expected change of the fitness during one generation. In
the case of intermediate ES, the quality change gives the expected change
of the fitness of the centroids.

Φ(x) Cumulative distribution function of standard normal distribution, i.e.,N (0, 1)

ρ Mixing number: Number of recombinants

σ Abbr. for 〈ς(g)〉

σ(g) Mutation strength

σ∗ Normalized mutation strength w.r.t.R andN ,
i.e.,σ∗ = σ N/R

σ⋆ Normalized mutation strength w.r.t.N ,
i.e.,σ⋆ = σN

σǫ Noise strength: The standard deviation of the noise term in the standard
noise model using a normally distributed random variable with zero mean

τ Learning rate
parameter of the log-normal distribution

ϕ(k) kth order progress rate

ϕ∗ Normalized progress rate w.r.t.R andN ,
i.e.,ϕ∗ = ϕ N/R



x

ϕ⋆ Normalized progress rate w.r.t.N ,
i.e.,ϕ⋆ = ϕN

ϕR Progress rate
sphere model: progress towards the optimizer
ridge functions: progress towards the axis

ϕx Progress rate
ridge functions: progress parallel to axis

ς(g) Mutation strength

Ck(U) Set of functionsf : U → R with f ktimes continuously differentiable and
U an open subset ofRm

g Generation number

N Search space dimensionality

R Abbreviation forr(g)

R(g) Sphere model: distance to the optimizer
ridge functions: distance to the ridge in generationg

cdf cumulative distribution function

CMA Covariance matrix adaptation

CSA Cumulative search step adaptation

pdf probability density function, density function

Truncation ratio Ratio of the parent and offspring number, i.e.,µ : λ

w.l.o.g. Without loss of generality ...

w.r.t With respect to ...
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1 Introduction

Evolution strategies (ES) are one of the main variants of evolutionary algorithms (EA) invented in
1963 by Bienert, Rechenberg, and Schwefel at the Technical University Berlin. These population-
based search heuristics move through the search space by means of variation, i.e., mutation and re-
combination, and selection. A population consists of several individuals. Each individual represents
possible solution which is coded in the object parameters.

The performance of ES strongly depends on the choice of so-called strategy parameters. In ES,
the strategy parameter equals usually the mutation strength. This parameter controls the spread of the
population due to mutation. Sometimes the mutation strength is also referred to as the step-size in an
analogy to classic optimization and numerics. During an optimization run, the mutationstrength must
be adapted continuously to allow the ES to travel with sufficient speed. To thisend, several methods
have been developed – e.g., Rechenberg’s well-known1/5th-rule [81], self-adaptation [81, 88], or
the cumulative step-size adaptation (CSA) and covariance matrix adaptation (CMA) of Ostermeier,
Gawelczyk, and Hansen, e.g., [78, 53].

Following [23, p. 8], Figure 1.1 illustrates the basic mechanism of a multi-parent (µ/ρ, λ)-ES with
σ-self-adaptation. The self-adaptation mechanism will be introduced in more detail in the following
chapter. In short, in a self-adaptive ES the tuning of the mutation strength(s) is left to the evolution
strategy itself. Each individual has its own distinct set of strategy parameters. Similar to the object
parameters, the strategy parameters are subject to variation. If an offspring is selected into the parent
population, it also has a chance to bequest its strategy parameters to the offspring generation. That is,
self-adaptation assumes a statistic/probabilistic connection between strategy parameters and “good”
fitness values.

As Fig. 1.1 shows, a (µ/ρ, λ)-ES maintains a populationP(g)
µ of µ candidate solutions in gen-

erationg – with the strategy parameters used in their creation. Based on that parent population,λ
offspring are created via variation. The variation process usually comprises recombination and muta-
tion.

The offspring are created as follows: For each offspring,ρ of theµ parents are chosen for recom-
bination leading to the setPρ. The selection of the parents may be deterministic or probabilistic (see,
e.g., [29, 43]).

First, the strategy parameters are changed. The strategy parameters of the chosenρ parents are
recombined and the result is mutated afterwards. The change of the objectparameters occurs in the
next step. Again, the parameters are first recombined and then mutated. The newly created strategy
parameterσl is used in the mutation process. Afterwards, the fitness of the offspring is calculated.

After the offspring population ofλ individuals is created, theµ-best individuals with respect to
their fitness values are chosen as the next parental populationP(g+1)

µ . Two selection schemes are
generally distinguished: “comma” and “plus”-selection. In the former case, selection is restricted to
the offspring population. In the latter, members of old parent population andthe offspring population
may be selected into the succeeding parent population.



2 1. Introduction

BEGIN
g:=0;
INITIALIZATION (P(0)

µ := {(y(0)
m , σ

(0)
m , F (y

(0)
m ))});

REPEAT
FOR EACH OF THEλ OFFSPRING DO
Pρ:=REPRODUCTION(P(g)

µ )
σ′l :=RECOMBσ(Pρ);
σl :=MUTATEσ(σ

′
l);

y′
l :=RECOMBy(Pρ);

yl :=MUTATEy(y′
l, σl);

Fl := F (yl);
END
P(g)
λ :={(yl, σl, Fl)};

CASE “,”-SELECTION:P(g+1)
µ :=SELECT(P(g)

λ );

CASE “+”-SELECTION:P(g+1)
µ :=SELECT(P(g)

µ ,P(g)
λ );

g:=g+1
UNTIL stop;

END

Figure 1.1: The (µ/ρ, λ)-σSA-ES (cf. [23, p. 8]).

The ES considered in this thesis are intermediate(µ/µI , λ)-ES with self-adaptation of a single mu-
tation strength. The termintermediatedenotes the manner of recombination. Using intermediate
recombination for both, the object parameters and the mutation strengths, the offspring are generated
according to:

1. Compute the mean〈σ〉 = 1
µ

∑µ
m=1 σm of the mutation strengthsσm of theµ individuals of the

parent population.

2. Compute the centroid〈y〉 = 1
µ

∑µ
m=1 ym of the object vectorsym of theµ individuals of the

parent population.

3. For all offspringl ∈ {1, . . . , λ}:

(a) To derive the new mutation strength: Mutate the mean〈σ〉 according toσl = 〈σ〉ζ where
ζ is a random variable which should fulfillE[ζ] ≈ 1 (see [29] for a discussion of this and
further requirements). Typical choices ofζ ’s distribution include the log-normal distribu-
tion, derivatives of normal distributions, or a two-point distribution [16].

(b) Generate the object vectoryl according toyi = 〈yi〉+ σlN (0, 1) whereyi is the vector’s
ith component andN (0, 1) stands for a standard normally distributed random variable.

Afterwards, theµ best offspring are chosen – according to their fitness. They (along withtheir muta-
tion strengths) become the parents of the next generation.

The thesis focuses on an analysis of the self-adaptation mechanism in two fitness environments:
the sphere model and ridge functions. The first function class comprisesfunctionsfsph : R

N → R of
the form

fsph(y) := g(‖y − ŷ‖) (1.1)
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with g : R→ R monotonically in- or decreasing and̂y ∈ R
N the optimizer offsph. The self-adaptive

behavior of ES on the sphere model is addressed in Chapter 4. The second fitness environment are
ridge functionsfrid : R

N → R given by

frid(y) := y1 − d
(

√

√

√

√

N
∑

i=2

y2
i

)α
. (1.2)

The parameterα, α > 0, denotes the degree of the ridge whereasd, d > 0, gives in a sense the
“sharpness” of the isofitness lines of the ridge. The larger the value ofd , the narrower the isofitness
lines nestle to the axis. Ridge functions are described in more detail in Chapter 5.

The thesis is organized as follows: In Chapter 2, an overview over the state of the present research
in self-adaptation is given. The focus is entirely on mutative self-adaptation. Therefore, the extensive
work for ES using the1/5th rule as, e.g., [62, 85] or the cumulative step-size adaptation, e.g., [9, 5,10]
is omitted.

Afterwards in Chapter 3, the analysis approach of this thesis, the evolutionequations first intro-
duced by Beyer [21], is described in greater length. The approach considers the stochastic process
induced by the ES as a (stochastic) dynamic system. After introducing the approach used, the anal-
ysis is started with intermediate ES on the undisturbed sphere model in Chapter 4. One of the aims
is to provide an explanation for the experimental findings by Grünz and Beyer [51] that ES using
intermediate recombination do not show the same robustness as a (1, λ)-ES towards the choice of the
learning rate. Afterwards, self-adaptive ES on the noisy sphere are considered.

In Chapter 5, ridge functions are considered. The behavior of self-adaptive ES on two represen-
tatives of this function class is analyzed: The sharp ridge withα = 1 and the parabolic ridge with
α = 2. Again, the undisturbed functions are treated first before the analysis iscontinued with noisy
ridge functions in the following sections. As said, the thesis uses a dynamic systems approach to
analyze self-adaptive ES. Other approaches include runtime analyses of randomized algorithms for
example. In continuous search spaces, Jägersk̈upper was the first to provide a runtime analysis of evo-
lutionary algorithms [61]. He considered several types of EA, (1 + λ)-ES, (1, λ)-ES, and (µ+ 1)-ES
[62]. Instead of self-adaptation, the focus was on the1/5th-rule as adaptation mechanism. The work
aimed at and succeeded in deriving lower and upper bounds on the expected runtime. Many of his
results were obtained for the sphere model or for the more general positive definite quadratic forms.
Among the results obtained are the following

• “The (1 + 1)-ES performs with overwhelming probabilityO(N) steps to halve the
approximation error in the search space.

• The (1+λ)-ES as well as the(1, λ)-ES get along withO(N/
√

ln(1 + λ)) steps with
overwhelming probability — when the1/5-rule bases on the number of successful
mutations.

• The (1+λ)-ES using a modified1/5-rule, which bases on the number of successful
steps, is proved to be indeed capable of getting along withO(N/

√

ln(1 + λ)) steps
with overwhelming probability, which is asymptotically optimal.

• The (µ+1)-ES using Gaussian mutations adapted by the1/5-rule performsO(µN)
steps with overwhelming probability1 to halve the approximation error in the search
space, which is also asymptotically optimal.” [62]

1An event occurs with overwhelming probability w.r.t.N if the probability of nonoccurrence is exponentially small in
N (see [62, p.15].
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Runtime analyses of randomized algorithms aim at deriving upper and lower bounds for the expected
runtime. One of the tasks is to find the relationship between the expected runtime and the search space
dimensionality. The aim is on the one hand to provide the lower bounds and on the other to give exact
proofs of the results.

The dynamic systems approach follows a different direction and aims at a different type of results.
As stated in [30], one of the aims is to provide analytical formulas of the mean-value dynamics. The
dynamic systems approach relies on asymptotical simplifications and on approximations. In a sense
it considers a model of the actual algorithm. The analytical formulas derived can be used on the
one hand to give recommendations for the parameter setting and to provide insights into the working
mechanism of ES on the other.

In this thesis, the dynamic systems approach is applied to derive the following findings:

Self-Adaptation on the Sphere Model

Self-Adaptation and Intermediate Recombination, Section 4.1

1. An explanation of the experimental finding by Grütz and Beyer [51] that intermediate recombi-
native ES are sensitive to the choice of the learning rate can be provided.

2. Main reason of the sensitivity of the progress rate: The sensitivity towards the choice of the
learning rate is due to the self-adaptation mechanism, itself. Due to the genetic repair ef-
fect, ES with intermediate recombination may operate with higher mutation strength. The
self-adaptation mechanism cannot take this into account.

3. Intermediate recombination and progress: While intermediate ES in contrastto (1, λ)-ES are
sensitive to the choice of the learning rate they may perform superiorly to (1, λ)-ES. Further-
more, they may reach their specific optimal progress.

4. Optimal learning rate: Provided that the search space dimensionality and the number of off-
spring are large, it is shown that choosing the learning rate proportionalto 1/

√
2N is approx-

imately optimal – as long as the parent number is neither close to one nor close to the number
of offspring. Especially, this includes the parent-offspring ratio usuallyrecommended.

Self-Adaptation and Noise, Sections 4.2 and 4.3

1. (1, λ)-ES suffer from a loss of step size control if the noise strength is too high(Section 4.2).
Instead of reaching a stationary state, the mutation strength shows a nearly erratic behavior.
Using the assumption that selection in the high noise regime is random, it can be shown that
the mutation strength performs a random walk. Larger mutation strengths (which would de-
crease the influence of the noise) are punished, however, because they may lead more often to
worse candidates. As result, the ES is biased towards smaller mutation strengths and shows an
irregular behavior.

2. Intermediate (µ/µI , λ)-ES are biased towards an increase of the mutation strength. This bias
safeguards against a loss of step size control (Section 4.2).

3. Concerning the residual location error,µ : λ-ratios around1/2 are optimal. Evolution strategies
with µ : λ ∈ [0.2 − 0.7] achieve similar location errors. This enables to follow the usual
recommendation to chooseµ : λ around0.27. This allows not only nearly optimal progress in
the initial optimization phase but nearly minimal residual location errors (Section4.3).
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4. The residual location error is higher than a (hypothetic) minimal error. Incase of intermediate
ES, this deviation occurs because of the non-zero stationary mutation strength. But again the
deviation of the residual location error from the minimal possible error is smallif λ is suffi-
ciently high and even improves more if one of the usualµ : λ-ratio is chosen. Recombinative
ES achieve nearly optimal location errors (Section 4.3).

Self-Adaptation on the Ridge Function Class

The Sharp Ridge, Sections 5.1.1 and 5.2.1

1. It has been shown in experiments [56] that self-adaptive ES on the sharp ridge may converge
prematurely. It is shown in Section 5.1.1 that the size of the constantd w.r.t. the population
parametersµ andλ is the critical parameter. Larged-values cause premature convergence of
the evolution strategies (Section 5.1.1). To a minor extend this can be remedied by increasing
λ. Using recombination with the usual parent offspring ratio enhances the problem: Premature
convergence occurs for even lower values ofd.

2. If d is small, the ES progresses with a positive quality change. It can be shown that the usual
recommendation of choosing the truncation ratioµ : λ ≈ 0.27 does not apply – unless the
learning rate is small, of course. Instead, it can be shown that a fixedµ-value around2− 5 is a
good choice.

3. Provided, thatd is small, an increase of the learning rate increases the performance, i.e., the
quality change. The optimizer is unattainable for finite learning rates, though.Therefore, no
recommendation of how to chooseτ can be given.

4. The sharp ridge is an example for a positive side effect of noisy fitness evaluations. First of all,
the size of thed-constant must be sufficiently high so that the axis is approached in the first hand.
Additive noise stops the ES from realizing the subgoal of optimizing the embedded sphere: The
higher this “residual location error” to the axis, the higher the progress of self-adaptive ES. As
result, recombination using the usual truncation ratio is not recommended. Recombination is
necessary, though, since a(1, λ)-ES looses step-size control.

5. The behavior of ES, i.e., the stationary normalized mutation and noise strength, on the noisy
sharp ridge is very similar to that on the noisy sphere. The mutation strength reacts towards
changes of the distance to the axis but not towards changes inx-direction, i.e., towards changes
parallel to the direction of the axis.

The Parabolic Ridge, Sections 5.1.2 and 5.2.2

1. On the parabolic ridge, no premature convergence occurs. The ES reaches a stationary distance
to the axis and progresses then with a constant mutation strength (on average). The mutation
strength only reflects the distance to the axis but not the position on the axis. Recombination has
disadvantages: The progress rate decreases when switching fromµ = 1 to µ > 1 (see Section
5.1.2).

2. Noise has only positive effects if the size of the parent population exceeds half of the size of the
offspring population. Ifµ < λ/2, noise degrades the performance (see Section 5.2.2).
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3. For small noise strengths, recombination with a truncation ratio of0.27 cannot be recom-
mended. To safeguard against a loss of step-size control, recombinationhas be used, though.
The performance loss due to recombination only holds for small noise strengths. If the noise
increases, the progress rates of intermediate ES withµ 6≈ 1 andµ 6≈ λ converge to nearly the
same progress rate (≈ 1/(4d)).

1.1 Underlying Publications

This thesis is based in part on the following publications

1. S. Meyer-Nieberg, H.-G. Beyer: Mutative Self-Adaptation on the Sharp and Parabolic Ridge,
in Stephens, C. et al., editors, Proceedings of the9th International Workshop on Foundations of
Evolutionary Algorithms (FOGA-IX), pages 70-96, 2007 [75]

2. S. Meyer-Nieberg, H.-G. Beyer: Self-Adaptation in Evolutionary Algorithms in F. Lobo, C. Lima,
and Z. Michaelewicz: Parameter Settings in Evolutionary Algorithms, pages 47-76, Springer,
2007 [76]

3. H.-G. Beyer, S. Meyer-Nieberg: Self-Adaptation on the Ridge Function Class: First Results
for the Sharp Ridge, in T.P. Runarsson et al., editors, Parallel Problem Solving from Nature 9,
pages 71-80, Springer, 2006 [28]

4. H.-G. Beyer, S. Meyer-Nieberg: Self-Adaptation of Evolution Strategies under Noisy Fitness
Evaluations. Genetic Programming and Evolvable Machines.7(4), 295-328, 2006 [27]

5. S. Meyer-Nieberg, H.-G. Beyer: On the Analysis of Self-Adaptive Evolution Strategies: First
Results, in McKay, B. et al., editors, Proc. of the CEC’05, Edinburgh, UK, pages 2341-2348,
Piscataway, NJ, 2005, IEEE [74]

The contribution of the author of this thesis is at least50%. Chapter 2 is based on a revised and
extended version of [76]. Results from [74] and [27] are presentedin Sections 4.1 and 4.2 of Chapter
4. Chapter 5, i.e., Section 5.1, is based in parts on [28] and [75].



2 Self-Adaptation in Evolutionary Algorithms

Evolutionary algorithms (EA) operate on basis of populations of individuals. Their performance de-
pends on the characteristics of the population’s distribution. Self-Adaptation aims at biasing the dis-
tribution towards appropriate regions of the search space – keeping up sufficient diversity among
individuals in order to enable further evolvability.

Generally, this is achieved by adjusting the setting of control parameters. Control parameters can
be of various forms – for instance mutation rates, recombination probabilities,or the population size
(see, e.g., [16]).

The goal is not only to find suitable adjustments but to do this efficiently. The task is even further
complicated: The EA faces a dynamic problem since a parameter setting that was optimal at the
beginning of an EA-run may become unsuitable during the evolutionary process. For this reason,
there is generally a need for a steady modification or adaptation of the control parameters during the
run of an EA.

This chapter considers the principle of self-adaptation which is explicitly used in evolutionary
programming (EP) [47, 48] and evolution strategies (ES) [81, 87] while it israrely used in genetic
algorithms (GA) [58, 59]. The areas of evolutionary algorithms differ in their terminology to some
extent: For instance, the term crossover is used more often in the field of genetic algorithms and
generally denotes recombination of two parents. Also, the mutation strength is referred to as the
mutation rate in GA.

Individuals of a population represent possible solutions. These are coded in a set of object param-
eters that can be interpreted as the genome of the individual. The basic ideaof explicit self-adaptation
consists in incorporating control parameters into the genome and evolving them alongside with the
object parameters.

In this chapter, an overview over the self-adaptative behavior of evolutionary algorithms is pro-
vided. First, a short overview over the historical development of adaptation mechanisms in evolu-
tionary computation is given in Section 2.1. In the following part, i.e., in Section 2.2, classification
schemes for grouping the various approaches are presented. Afterwards, self-adaptative mechanisms
are considered. The overview is started by some examples – introducing self-adaptation of the strat-
egy parameter and of the crossover operator. Several authors havepointed out that the concept of
self-adaptation transcends explicit self-adaptation. Section 2.3.2 is devoted to such ideas. The mech-
anism of self-adaptation has been examined in various areas in order to findanswers to the question
under which conditions self-adaptation works and when it could fail. Therefore, the chapter closes
with a short overview over some of the research done in this field.

2.1 A Short History of Adaptation in Evolutionary Algorithms

This section sketches shortly the historic development of adaptation mechanisms. The first pro-
posals to adjust the control parameters of a computation automatically date backto the early days of
evolutionary computation.

In 1967, Reed, Toombs, and Barricelli [83] experimented with the evolutionof probabilistic strate-
gies playing a simplified poker game. Half of a player’s genome consisted of strategy parameters de-
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termining, e.g., the probabilities for mutation or the probabilities for crossover with other strategies.
These strategy parameters were subject to random variation. Interestingly, it was shown for a play
with a known optimal strategy that the evolutionary simulation realized nearly optimal plans.

Also in 1967, Rosenberg [84] proposed to adapt crossover probabilities and Bagley [18] suggested
incorporating the control parameters into the representation of an individual in GA. Although Bagley’s
suggestion is one of the earliest proposals of applying classical self-adaptive methods, self-adaptation
as usually used in ES appeared relatively late in genetic algorithms. In 1987,Schaffer and Morishima
[86] introduced the self-adaptivepunctuated crossoveradapting the number and location of crossover
points. Some years later in 1992, a first method to self-adapt the mutation operator was suggested by
Bäck [14, 13]. He proposed a self-adaptive mutation rate in genetic algorithms similar to evolution
strategies.

The idea of using a meta-GA can be found quite early. Here, an upper-level GA tries to tune the
control parameters of a lower-level algorithm which in turn tries to solve the original problem. The
first suggestion stems from Weinberg [102] in 1970 and gave rise to the work by Mercer and Sampson
[73].

Concerning evolution strategies, the need to adapt the mutation strength (or strengths) appropri-
ately during the evolutionary process was recognized 1973 in Rechenberg’s seminal bookEvolutions-
strategie[81].

He proposed the well-known1/5th rule, which was originally developed for (1 + 1)-ES. It relies
on counting the successful and unsuccessful mutations for a certain number of generations. If more
than1/5th of mutations leads to an improvement the mutation strength is increased and decreased
otherwise. The aim was to stay in the so-calledevolution windowwhich guarantees nearly optimal
progress.

In addition to the1/5th rule, Rechenberg [81] also proposed to couple the evolution of the strategy
parameters with that of the object parameters. Both parameter sets were randomly changed. The idea
of (explicit) self-adaptation was born. To compare the performance of thislearning populationwith
that of an ES using the1/5th rule, Rechenberg conducted some experiments on the sphere and corridor
model. The learning population exhibited a higher convergence speed andeven more important it
proved to be applicable in cases where it is improper to use the1/5th rule. Self-adaptation thus
appeared as a more universally usable method.

Since then various methods for adapting control parameters in evolutionaryalgorithms have been
developed – ranging from adapting crossover probabilities in genetic algorithms to a direct adaptation
of the distribution [36].

In 1974, Schwefel [87, 89] introduced a self-adaptive method for changing the strategy parameters
in evolution strategies which is today commonly associated with the term self-adaptation. In its most
general form, the full covariance matrix of a general multidimensional normal distribution is adapted.
A similar method of adapting the strategy parameters was offered by Fogel etal. [46] in the area of
evolutionary programming – the so-called meta-EP operator for changing themutation strength.

A more recent technique, the cumulative path-length control, stems from Ostermeier, Hansen,
and Gawelczyk [78]. One of the aims is to derandomize the adaptation of the strategy parameters.
The methods developed, the cumulative step-size adaptation (CSA) as well as the covariance matrix
adaptation (CMA) [53], make use of anevolution path, p(g+1) = (1 − c)p(g) +

√

c(2− c)z(g+1)
sel ,

which cumulates the selected mutation steps. The variablep(g) gives the path at generationg whereas
z
(g)
sel denotes the selected mutation steps, i.e., in the case of (µ/µI , λ)-ESz

(g)
sel equals the centroid of the

mutation vectors of theµ best offspring. The basic working mechanism can be illustrated by a simple
example. Consider an evolution path with purely random selection (see [29]): Since the mutations
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are normally distributed, the cumulated evolution path is given byu(g) =
∑g

k=1 σN (k)(0,1), where
N (0,1) is a random vector with identically independentlyN (0, 1) normally distributed components
with zero mean and variance one. Therefore, the length ofu(g) is χ-distributed with expectation
u = σχ. Fitness based selection changes the situation: If the mutation steps are too large on average,
smaller mutations will be selected. Thus, the path-length is smaller thanu and the step size should be
decreased. Otherwise if the path-length is larger than the expectedu, the step-size should be increased.
The cumulative step-size adaptation is also used in the CMA-algorithm. However, additionally CMA
adapts the whole covariance matrix [53] and as such it represents the state-of-the-art in real-coded
evolutionary optimization algorithms.

2.2 A Taxonomy of Adaptation

As the previous section showed, various methods for changing and adapting control parameters of
evolutionary algorithms exist and adaptation can take place on different levels.

Mainly, two taxonomy schemes were proposed – the elder by Angeline [2] in 1995 and the
younger by Eiben, Hinterding, and Michaelewicz [42] in 1999. These schemes group adaptive com-
putations into distinct classes – distinguishing evolutionary algorithms by the typeof adaptation, i.e.,
how the parameter is changed, and by the level of adaptation, i.e., where thechanges occur.

Let us start with Angeline’s classification [2]. Considering the type of adaptation, adaptive evolu-
tionary computations are divided into algorithms withabsolute update rulesand into algorithms with
empirical update rules.

If an absolute update ruleis applied, a statistic is computed. This may be done by sampling over
several generations or by sampling the population. Based on the result, it isdecided by means of a
deterministic and fixed rule if and how the operator is to be changed. Rechenberg’s1/5th-rule [81] is
one well-known example of this group.

In contrast to this, evolutionary algorithms withempirical update rulescontrol the values of the
strategy parameters themselves. The strategy operator may be interpreted as an incorporated part of
the individual’s genome, thus being subject to “genetic variations” [2]. Incase the strategy parameter
variation leads to an individual with a sufficiently good fitness, it is selected and “survives”. Individ-
uals with appropriate strategy parameters should – on average – have good fitness values and thus a
higher chance of survival than those with badly tuned parameters. As a result, the EA should be able
to self-control the parameter change.

As Smith [92] points out, the difference between these two types of algorithms lies in the nature
of the transition function. The transition function maps the set of operators at generationt on that
at t + 1. In the case of absolute update rules, it is defined externally. In the caseof self-adaptive
algorithms, the transition function is a result of the operators and is defined by the algorithm itself.

Both classes of adaptive evolutionary algorithms can be further subdivided based on the level
the adaptive parameters operate on. Angeline distinguished betweenpopulation-, individual-, and
component-leveladaptive parameters.

Population-leveladaptive parameters are changed globally for the whole population. Examples are
for instance the mutation strength and the covariance matrix adaptation in CSA and CMA evolution
strategies [53]. Adaptation on theindividual levelchanges the control parameters of an individual
and these changes only affect that individual. The probability for crossover in GA is for instance
adapted in [86] on the level of individuals. Finally,component-leveladaptive methods affect each
component of an individual separately. Self-Adaptation in ES with correlated mutations (see Section
2.3.1) belongs to this adaptation type.

Angeline’s classification was extended and broadened by Eiben, Hinterding, and Michaelewicz
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[42]: Adaptation schemes are again classified firstly by the type of adaptation and secondly – as in [2]
– by the level of adaptation. Considering the different levels of adaptationa fourth level,environment
level adaptation, was introduced to take non static responses of the environment into account.

Concerning the adaptation type, the algorithms are divided intostatic, i.e., no changes of the
parameters occur, anddynamicalgorithms. The term “dynamic adaptation” is used to classify any
algorithm that changes the strategy parameters and is doing so without any external control. Based on
themechanism of adaptationthree subclasses are distinguished:deterministic, adaptive, and finally
self-adaptivealgorithms. The latter classes comprise the same groups of algorithms as in Angeline’s
classification [2].

A deterministic adaptation is used if the control parameter is changed according to a deterministic
rule without taking into account any present information by the evolutionary algorithm itself. Exam-
ples of this adaptation class are the time-dependent change of the mutation rates proposed by Holland
[59] and the cooling schedule in simulated annealing like selection schemes.

Algorithms with an adaptive dynamic adaptation rule take feedback from the EAitself into ac-
count and change the control parameters accordingly. Again, a well known member of this class
is Rechenberg’s1/5th-rule. Further examples include Davis’ adaptive operator fitness [35]and Jul-
strom’s adaptive mechanism [63]. The former relates the usage probabilityof reproduction operators
to their success. The latter takes the performance of crossover and mutations as basis to tune their
application ratio.

2.3 Self-Adaptation: The Principles

This section sketches the principles of self-adaptation. First, some examplesare given to illustrate
the use of self-adaptation. Self-Adaptation can be seen in a broader context than given by the original
definition. This concept ofgeneralized self-adaptationis pointed out in the following subsection. The
section ends with general demands for self-adaptive operators.

2.3.1 Self-Adapted Parameters: Some Examples

In this subsection some examples are presented in order to illustrate the basic principle. The
subsection starts with self-adaptation of strategy parameters which is probably the best known form
before addressing self-adaptation of recombination operators.

Self-Adaptation of Strategy Parameters

The technique most commonly associated with the term self-adaptation was introduced by Rechen-
berg [82] and Schwefel [87, 88] in the area of evolution strategies andindependently by Fogel [45] for
evolutionary programming. The control parameters considered here apply to the mutation process and
parameterize the mutation distribution. The mutation is usually given by a normally distributed ran-
dom vector, i.e.,Z ∼ N(0,C). The entriescij of the covariance matrixC are given bycii = var(Zi)
or by cij = cov(Zi, Zj) if j 6= i. The density function reads

pZ(Z1, . . . , ZN ) =
e−

1
2
ZTC−1Z

√

(2π)Ndet(C)
, (2.1)

whereN is the dimensionality of the search space. The basic step in the self-adaptationmechanism
consists of a mutation of the mutation parameters themselves. In contrast to the additive change of
the object variables, the mutation of the mutation strengths (i.e., the standard deviations

√
cii in (2.1))

is realized by a multiplication with a random variable. The resulting mutation parameters are then
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applied in the variation of the object parameters. It should be mentioned herethat concerning evolution
strategies, the concept of self-adaptation was originally developed for non-recombinative (1, λ)-ES.
After multi-parent strategies were proposed, self-adaptation was adapted accordingly. The reader is
referred to Section 1 for a description of a multi-parent (µ/ρ, λ)-ES withσ-self-adaptation. Depending
on the form ofC, different mutation distributions have to be taken into account. Considering the
simplest caseZ = σN (0, I), the mutation ofσ is given by

σ′ = σeτǫ (2.2)

and using the newσ′, the mutation of the object parameters reads

x′i = xi + σ′N (0, 1). (2.3)

Theǫ in Eq. (2.2) is a random number, often chosen as

ǫ ∼ N (0, 1), (2.4)

thus, producing log-normally distributedσ′ variants. This way of choosingǫ is also referred to as the
“log-normal mutation rule”. Equation (2.2) contains a new strategy specific parameter – thelearning
rate τ to be fixed. The general recommendation based on experimental findings isto chooseτ ∝
1/
√
N . Later on this recommendation was shown to be optimal with respect to the convergence

speed of (1, λ)-ES on the sphere [23, p. 303].
If different mutation strengths are used for each dimension, i.e.,Zi = σiN (0, 1), the update rule

σ′i = σi exp(τ ′N (0, 1) + τNi(0, 1)) (2.5)

x′i = xi + σ′iN (0, 1) (2.6)

has been proposed. It is recommended to choose the learning ratesτ ′ ∝ 1/
√

2N andτ ∝ 1/
√

2
√
N

[16].
The approach can also be extended to allow for correlated mutations [16].Here, rotation angles

αi need to be taken into account leading to the update rule

σ′i = σi exp(τ ′N (0, 1) + τNi(0, 1)) (2.7)

α′
i = αi + βNi(0, 1) (2.8)

x′ = x +N (0,C(σ′, α)) (2.9)

whereC is the covariance matrix [16]. The parameterβ is usually chosen as0.0873 [88].
In EP, a different mutation operator, calledmeta-EP[45], is used

σ′i = σi

(

1 + αN (0, 1)
)

(2.10)

x′i = xi + σ′iN (0, 1). (2.11)

Both operators lead to similar results – provided that the parametersτ andα are sufficiently small.
The log-normal operator, Eqs. (2.2), (2.3), and the meta-EP operator introduced above are not

the only possibilities. Self-Adaptation seems to be relatively robust to the choice of the distribution.
Another possible operator is given byǫ = ±δ, where+|δ| and−|δ| are generated with the same
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probability of 1/2. That is, the resulting cumulative density function (cdf) ofδ belongs to a two-
point distribution giving rise to the so-called two-point rule. It is usually implemented usingδ =
1/τ ln(1 + β), thus, leading with (2.2) to

σ′i =

{

σi(1 + β) if u ≤ 0.5
σi/(1 + β) if u > 0.5

, (2.12)

with u uniformly distributed random variable on]0, 1].
A further variant was proposed by Yao and Liu [105]: They substitutedthe normal distribution

of the meta-EP operator with a Cauchy-distribution. Their new algorithm, calledfast evolutionary
programming, performed well on a set of seperable test functions and appeared to be preferable in the
case of multi-modal functions. The Cauchy-distribution is similar to the normal distribution but has a
far heavier tail. Its moments are undefined.

In [68], Lee and Yao introduced yet another alternative. They suggested using a Ĺevy-distribution.
Investigating several seperable test functions, they argued that usingLévy-distributions instead of
normal distributions may lead to higher variations and a greater diversity. Compared to the Cauchy-
distribution, Ĺevy-distributions allow for a greater flexibility since the Cauchy-distribution appears as
a special case of Ĺevy-distributions.

Self-Adaptation of Recombination Operators

Crossover is traditionally regarded as the main search mechanism in genetic algorithms and most
efforts to self-adapt this operator stem from this area. In evolution strategies the term recombination
is usually used instead of crossover.

Schaffer and Morishima [86] proposed thepunctuated crossoverwhich adapts the positions where
crossover occurs. An individual’s genome is augmented with a bitstring indicating crossover points. A
position in this crossover map is changed in the same manner as its counterpartin the original genome.
Schaffer and Morishima reported that punctuated crossover performed better than one-point crossover.
Spears [98] points out, however, that the improvement of the performance might not necessarily be
due to self-adaptation but to the generic advantage of crossover with morethan one crossover point
over one-point crossover.

Spears [98] self-adapted the form of the crossover operator using an additional bit to decide
whether two-point or uniform crossover should be used for creating the offspring. Again, it should
be noted that Spears attributes the improved performance not to the self-adaptation process itself but
rather to the increased diversity that is offered to the algorithm.

Smith and Fogarty [95] introduced the so-called LEGO-algorithm, a linkage evolving genetic
algorithm. The objects which are adapted areblocks, i.e., linked neighboring genes. Each gene has
two additional bits which indicate whether it is linked to its neighbor on the right oron the left.
These additional bits are also subject to mutation. Two neighboring genes are then calledlinked if
the respective bits are set. More than two parents may contribute in the creation of an offspring. The
positions of an offspring are filled successively by a competition between parental blocks. The blocks
have to be eligible, i.e., they have to start at the position currently considered. The fittest block is
copied as a whole and then the process starts anew.

2.3.2 A Generalized Concept of Self-Adaptation

In [16], Bäck identified two key features of self-adaptation: Self-adaptation aims at biasing the
population distribution to more appropriate regions of the search space by making use of an indirect
link between good strategy parameter or recombination operator values andgood object variables.
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Furthermore, self-adaptation relies on a population’s diversity. While the adaptation of the opera-
tor ensures a good convergence speed, the degree of diversity determines the convergence reliability.
More generally speaking, self-adaptation controls the relationship between parent and offspring pop-
ulation, i.e., the transmission function (see, e.g., Altenberg [1]). The control can be direct by manipu-
lating control parameters in the genome or more implicit. In the following, we see that self-adaptation
can be put into a broader context.

Igel and Toussaint [60] addressed the question of neutral genotype-phenotype mapping. They
point out that neutral genome parts give an algorithm the ability to “vary the search space distribution
independent of the phenotypic variation” [60]. This may be regarded asone of the main benefits of
neutrality. While neutrality induces a redundancy in the relationship between genotype-phenotype,
the mapping from the genome to the population distribution has to be taken into account, too. The
latter mapping cannot be viewed as redundant in general. This use of neutrality is termedgeneralized
self-adaptation. It also comprises the classical form of self-adaptation since the strategyparameters it
adapts belong to the neutral part of the genome.

More formally, generalized self-adaptation is defined as “adaptation of theexploration distribu-
tion P (t)

P by exploiting neutrality – i.e., independent of changing phenotypes in the population, of
external control, and of changing the genotype-phenotype mapping” [60]. Igel and Toussaint showed
additionally that neutrality cannot be seen generally as a disadvantage since the enlargement of the
search space does not necessarily lead to a significant degradation ofthe performance.

In [49], Glickman and Sycara referred to animplicit self-adaptationcaused by a non-injective
genotype-phenotype mapping. Again there are variations of the genome that do not alter the fitness
value but influence the transmission function which induces a similar effect.

Beyer and Deb [38] pointed out that in well-designed real-coded GA, theparent offspring trans-
mission function is controlled by the characteristics of the parent population.Thus, the GA performs
an implicit form of self-adaptation. In contrast to the explicit self-adaptationin ES, an individual’s
genome does not contain any control parameters. Deb and Beyer [40] examined the dynamic behav-
ior of real-coded genetic algorithm (RCGA) that apply simulated binary crossover (SBX) [37, 41]. In
SBX, two parentsx1 andx2 create two offspringy1 andy2 according to

y1
i = 1/2

(

(1− βi)x1
i + (1 + βi)x

2
i

)

y2
i = 1/2

(

(1 + βi)x
1
i + (1− βi)x2

i

)

. (2.13)

The random variableβ has the density

p(β) =

{

1/2(η + 1)βη if 0 ≤ β ≤ 1
1/2(η + 1)β−η−2 if β > 1

. (2.14)

The authors pointed out that these algorithms show self-adaptive behavior although an individual’s
genome does not contain any control parameters. Well-designed crossover operators create offspring
depending on the difference in parent solutions. The spread of children solutions is in proportion to
the spread of the parent solutions. Solutions near the parent solutions are more likely to be created
as children solutions than more distant solutions [40]. In this manner, the diversity in the parental
population controls that of the offspring population.

Self-adaptation in evolution strategies has similar properties. In both cases,offspring closer to
the parents have a higher probability to be created than individuals furtheraway. While the implicit
self-adaptability of real-coded crossover operators is well understood today, it is interesting to point
out that even the standard one ork-point crossover operators operating on binary strings do have this
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property: Due to the mechanics of these operators, bit positions which arecommon in both parents
are transferred to the offspring. However, the other positions are randomly filled. From this point of
view, crossover can be seen as aself-adaptive mutation operator, which is in contrast to the building
block hypothesis [50] usually offered to explain the working of crossover in binary GA.

2.3.3 Demands on the Operators: Real-coded Algorithms

Several postulates and guidelines have been devised that should be fulfilled by self-adaptative
evolutionary algorithms. Many of them address the mutation operators. In [26, 23, 29] several rules
for the design of mutation operators were introduced that stem from analyses of implementations and
theoretical considerations in evolution strategies:

1. reachability: every finite state must be reachable,

2. scalability: the mutation operator must be tunable in order to adapt to the fitness landscape, and

3. unbiasedness: it must not introduce a bias on the population.

A detailed discussion can be found in [29], for example. The necessity ofthe first two requirements
can be immediately discerned. The demand of unbiasedness is explained in thefollowing. It should
be noted that unbiasedness is also required in the case of the recombinationoperator [26, 65]. The
demand of unbiasedness becomes clear when considering that the evolutionary search behavior of
an EA can be divided into two phases: Exploitation of the search space by selecting good solutions
(reproduction) and exploration of the search space by means of variation. Only the former generally
makes use of fitness information, whereas the latter should ideally rely on search space information
of the population alone. Thus, under a variation operator, the expected population mean should re-
main unchanged, i.e., the variation operators should not bias the population.This requirement, first
made explicit in [26], may be regarded as a basic design principle for variation operators in EA. The
basic work [26] additionally proposed design principles with respect to thechanging behavior of the
population variance. Generally, selection changes the population variance. In order to avoid pre-
mature convergence, the variation operator must counteract that effect of the reproduction phase to
some extent. General rules how to do this are, of course, nearly impossibleto give but someminimal
requirements can be proposed concerning the behavior on certain fitness landscapes [26].

For instance, Deb and Beyer [26] postulated that the population varianceshould increase expo-
nentially with the generation number on flat or linear fitness functions. As pointed out by Hansen [52]
this demand might not be sufficient. He proposed a linear increase of the expectation of the logarithm
of the variance instead. Based on the desired behavior in flat fitness landscapes, Beyer and Deb [26]
advocated applying variation operators that also increase the population variance in the general case
of unimodal fitness functions. While the variance should be decreased if the population brackets the
optimum, this should not be done by the variation operator. Instead, this task should be left to the
selection operator.

In the case of crossover operators in real-coded genetic algorithms (RCGA), similar guidelines
have been proposed by Kita and Yamamura [65]. They supposed that thedistribution of the parent
population indicates an appropriate region for further search. As before, the first guideline states that
the statistics of the population should be preserved: Both, the mean as well asthe variance-covariance
matrix, should be retained. Additionally, the crossover operator should lead to as much diversity in
the offspring population as possible. The first guideline may be violated, though, since the selection
operator typically reduces the variance. Therefore, it may be necessary to increase the present search
region.
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2.4 Self-Adaptation in EAs: Theoretical and Empirical Results

In this section, empirical and theoretical research is reviewed that aims at understanding the work-
ing of self-adaptive EA and at evaluating their performance. First, genetic algorithms are addressed
before research approaches of self-adaptation in evolution strategiesand evolutionary programming
are described.

2.4.1 Genetic Algorithms

In genetic algorithms, self-adaptation is applied to the crossover operator and to the mutation rate.
First, a review of self-adaptation of the crossover operator is given before the question of adaptation
of the mutation rate is addressed.

Self-Adaptation of the Crossover Operator: Real-Coded Genetic Alg orithms in Flat
Fitness Landscapes

Beyer and Deb [39] analyzed three crossover operators commonly used in real-coded genetic
algorithms, i.e., the simulated binary crossover (SBX) by Deb and Agrawala [37], the blend crossover
operator (BLX) of Eshelman and Schaffer [44], and thefuzzy recombinationof Voigt et al. [101]. All
crossover operators use the following recombination operator

y1,k :=
1

2

(

(1− βk)x1,k + (1 + βk)x2,k

)

y2,k :=
1

2

(

(1 + βk)x1,k + (1− βk)x2,k

)

(2.15)

with x1,k andx2,k drawn independently from the parent population andβk a random variable (see
[39]). The crossover operators differ in the distribution of the randomvariableβk.

The analysis was aimed at ascertaining if and under which conditions the postulates proposed in
Section 2.3.3 are fulfilled [39]. To this end, expressions for the mean and the variance of the offspring
population in relation to the parent population were derived. The fitness environments considered were
flat fitness landscapes and the sphere. As mentioned before in Section 2.3.3, self-adaptation should
not change the population mean in the search space, i.e., it should not introduce a bias, but it should
– since a flat fitness function is considered – increase the population variance and this exponentially
fast.

It was shown in [39] that the crossover operator leaves the population mean unchanged regardless
of the chosen distribution of the random variableβk. Concerning the population variance, an exponen-
tial change can be asserted. Whether the variance expands or contracts depends on the population size
and on the second moment of the random variable. Thus, a relationship between the population size
and the distribution parameters of the random variables can be derived which ensures an expanding
population.

A further investigation of self-adaptation of the crossover operator wasoffered by Kita [64]. He
analyzed real-coded genetic algorithms using UNDX-crossover (unimodal normal distribution) and
performed a comparison with evolution strategies. Based on empirical results, he pointed out that both
appear to work reasonably well although naturally some differences in their behavior was observed.
The ES for example widens the search space faster if the system is far away from an optimum. But
the RCGA appears to have a computational advantage in high-dimensional search spaces compared
to an ES which adapts the rotation angles of the covariance matrix according toEqs. (2.7)-(2.9). Kita
used a (15, 100)-ES with the usual recommendations for setting the learning rates.
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Self-Adaptation of the Mutation Rate in Genetic Algorithms

Traditionally, the crossover (recombination) operator is seen as the main variation operator in
genetic algorithms, whereas the mutation operator was originally proposed asa kind of background
operator endowing the algorithm with the potential ability to explore the whole search space. Actually,
there are good reasons to consider this as a reasonable recommendation ingenetic algorithms with
genotype-phenotype mapping fromBℓ → R

ℓ. As has been shown in [26], standard crossover of the
genotypes does not introduce a bias on the population mean in the phenotypespace. Interestingly,
this doesnot hold for bit-flip mutations. That is, mutations in the genotype space result in a biased
phenotypic population mean – thus violating the postulates formulated in [26]. Onthe other hand,
over the course of the years it was observed that for genetic algorithms on (pseudo) boolean functions
(i.e., the problem specific search space is theB

ℓ) the mutation operator might also be an important
variation operator to explore the search space (see, e.g., [99]). Additionally, it was found that the
optimal mutation rate or mutation probability does not only depend on the function tobe optimized
but also on the search space dimensionality and the current state of the search (see, e.g., [15]).

A mechanism to self-adapt the mutation rate was proposed by Bäck [13, 14] for GA using the
standard ES approach. The mutation rate is encoded as a bit-string and becomes part of the individual’s
genome. As it is common practice, the mutation rate is mutated first which requires itsdecoding to
[0, 1]. The decoded mutation rate is used to mutate the positions in the bit-string of the mutation rate
itself. The mutated version of the mutation probability is then decoded again in order to be used in
the mutation of the object variables.

Several investigations have been devoted to the mechanism of self-adaptation in genetic algo-
rithms. Most of the work is concentrated on empirical studies. These are often directed to possible
designs of mutation operators trying to identify potential benefits and drawbacks.

Bäck [14] investigated the asymptotic behavior of the encoded mutation rate – neglecting the
effects of recombination and selection. The evolution of the mutation rate results in a Markov chain1.
The absorbing state of this chain is zero which shows the convergence ofthe simplified algorithm.

The author showed empirically that an GA with an extinctive selection scheme2 with self-adaptation
performs better than a reference GA without adaptation [14]. For the comparison, three high-dimen-
sional test functions (two unimodal, one multimodal) were used.

In [13], a self-adaptive GA optimizing the bit-counting function was examined. Comparing its
performance with a GA that applies an optimal deterministic schedule to tune the mutation strength,
it was shown that the self-adaptive algorithm realizes nearly optimal mutation rates.

The representation of the mutation rate as a bit-string may hamper its fine-tuning by self-adaptation.
To overcome this problem, the genome is extended with a real-coded mutation ratep ∈]0, 1[ in [17].
Using a real-coded mutation rate in GA, however, necessitates several requirements: The expected
change ofp should be zero and small changes should occur with a higher probability than large ones.
Also, it is required that a change by a factorc has the same probability as by1/c. The authors used
a logistic change function with parameterγ. The algorithm was compared with a GA without any
adaptation and with a GA using a deterministic time-dependent schedule. The GAwith the determin-
istic time-dependent schedule performed best on the test-problems chosen. The self-adaptive GA was
ranked in second place. Unfortunately, the learning rateγ was found to have a high impact.

Considering the originally proposed algorithm [14], Smith [94] demonstratedthat it may get stuck
in suboptima with prematurely reduced mutation strength. He showed that the algorithm becomes

1A Markov chain is a stochastic process which possesses the Markov property, i.e., the future behavior depends on the
present state but not on the past.

2A selection scheme is extinctive iff at least one individual is not selected (see [14]).



2.4 Self-Adaptation in EAs: Theoretical and Empirical Results 17

more robust by using a fixed learning rate for the bitwise mutation of the mutation strength.
In 1996, Smith and Fogarty [96] examined empirically a self-adaptive steadystate (µ + 1)-GA

finding that self-adaptation may improve the performance of a GA. The mutationrate was encoded
again as a bit-string and several encoding methods were applied. Additionally, the impact of crossover
in combination with a self-adaptive mutation rate was investigated. The self-adaptive GA appeared to
be relatively robust with respect to changes of the encoding or crossover.

In [97], the authors examined the effect of self-adaptation when the crossover operator and the
mutation rate are both simultaneously adapted. It appeared that at least on the fitness functions con-
sidered synergistic effects between the two variation operators come into play.

To investigate the behavior of self-adaptive genetic algorithms more closely,Smith [93] developed
a model to predict the mean fitness of the population. In the model, several simplifications are made.
Most importantly, the mutation rate is only allowed to assumeq different values. Because of this,
Smith also introduced a new scheme for mutating the mutation rate. The probability ofchanging the
mutation rate is given bypz = z(q − 1)/q, wherez is the so-calledinnovation rate.

In [100], Stone and Smith compared a self-adaptive GA using the log-normal operator with a GA
with discrete self-adaptation, i.e., a GA implementing the model proposed in [93].To this end, they
evaluated the performance of a self-adaptive GA with continuous self-adaptation and the performance
of their model on a set of five test functions. Stone and Smith found that the GA with discrete self-
adaptation behaves more reliably whereas the GA with continuous self-adaptation may get stuck in
local optima. They attributed this behavior to the fact that the mutation rate givesthe probability of
bitwise mutation. As a result, smaller differences between mutation strengths arelost and more or less
the same amount of genes are changed. The variety the log-normal operator provides in continuous
search spaces cannot be carried over to the genome effectively and the likelihood of large changes is
small. In addition, they argued that concerning the discrete self-adaptationa innovation rate of one is
connected with an explorative behavior of the algorithm. This appears moresuitable for multimodal
problems whereas smaller innovation rates are preferable for unimodal functions.

2.4.2 Evolution Strategies and Evolutionary Programming

Research on self-adaptation in evolution strategies has a long tradition. Thefirst theoretic in-depth
analysis has been presented by Beyer [21]. It focused on the conditions under which a convergence of
the self-adaptive algorithm can be ensured. Furthermore, it also provided an estimate of the conver-
gence order.

The evolutionary algorithm leads to a stochastic process or more exactly to a Markov chain [77].
The random variables chosen to characterize the system’s behavior arethe object vector (or its distance
to the optimizer, respectively) and the mutation strength.

There are several approaches to analyze the Markov chain. The first [31, 12] considers the chain
directly whereas the second [90, 91, 55] analyzes induced supermartingales. The third [23, 38] uses a
model of the Markov chain in order to determine the dynamic behavior.

Convergence Results using Markov Chains

Bienven̈ue and François [31] examined the global convergence of adaptive and self-adaptive
(1, λ)-evolution strategies on spherical functions. To this end, they investigated the induced stochastic
processzt = ‖xt‖/σt. The parameterσt denotes the mutation strength, whereasxt stands for the
object parameter vector.

They showed that(zt) is a homogeneous Markov chain, i.e.,zt only depends onzt−1. This also
confirms an early result obtained in [21] that the evolution of the mutation strength can be decoupled
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from the evolution of‖xt‖. Furthermore, they showed that(xt) converges or diverges log-linearly –
provided that the chain(zt) is Harris-recurrent3.

Auger [12] followed their line of research focusing on (1, λ)-ES optimizing the sphere model. She
analyzed a general model of a (1, λ)-ES with

xt+1 = arg min
{

f(xt + σtη
1
t ξ

1
t ), . . . , f(xt + σtη

λ
t ξ

λ
t )
}

σt+1 = σtη
∗(xt), η∗ given by xt+1 = xt + σtη

∗(xt)ξ∗(xt), (2.16)

i.e.,σt+1 is the mutation strength which accompanies the best offspring. The functionf is the sphere
andη andξ are random variables. Auger proved that the Markov chain given byzt = xt/σt is Harris-
recurrent and positive if some additional assumptions on the distributions are met and the offspring
numberλ is chosen appropriately. As a result, a law of large numbers can be appliedand1/t ln(‖xt‖)
and1/t ln(σt) converge almost surely4 to the same quantity – the convergence rate. This ensures
either log-linearly convergence or divergence of the ES – depending on the sign of the limit. Auger
further showed that the Markov chain(zt) is also geometrically ergodic (see, e.g., [77]) so that the
Central Limit Theorem can be applied. As a result, it is possible to derive a confidence interval for
the convergence rate. This is a necessary ingredient, because the analysis still relies on Monte-Carlo
simulations in order to obtain the convergence rate (along with its confidence interval) numerically
for the real(1, λ)-ES.

In order to perform the analysis, it is required that the random variableξ is symmetric and that
both random variablesξ andη must be absolutely continuous with respect to the Lebesgue-measure.
Furthermore, the densitypξ is assumed to be continuous almost everywhere,pξ ∈ L∞(R), and zero
has to be in the interior of the support of the density5, i.e.,0 ∈ ˚supp pξ. Additionally, it is assumed
that1 ∈ ˚supp pη and thatE[|ln(η)|] < ∞ holds. The requirements above are met by the distribution
functions normally used in practice, i.e., the log-normal distribution (mutation strength) and normal
distribution (object variable). In order to show the Harris-recurrence, the positivity, and the geometric
ergodicity, so-called Forster-Lyapunov drift conditions need to be obtained [77, 12]. To this end, new
random variables are to be introduced

η̂(λ)ξ̂(λ) = min
{

η1ξ1, . . . , ηλξλ
}

. (2.17)

They denote the minimal change of the object variable. For the drift conditions a numberα is required.
Firstly, α has to ensure that the expectationsE[|ξ|α] andE[(1/η)α] are finite. Provided that also
E[|1/η̂(λ)|α] < 1, α can be used to give a drift conditionV . More generally stated,α has to decrease
the reduction velocity of the mutation strength associated with the best offspring ofλ trials sufficiently.
Thus, additional conditions concerningα and the offspring numberλ are introduced leading to the
definition of the sets

Γ0 = {γ > 0 : E [|1/η|γ ] <∞ and E [|ξ|γ ] <∞} (2.18)

and

Λ =
⋃

α∈Γ0

Λα =
⋃

α∈Γ0

{λ ∈ N : E [1/η̂(λ)α] < 1} . (2.19)

3LetNA be the number of passages in the setA. The setA is called Harris-recurrent ifPz(NA = ∞) = 1 for z ∈ A. Or
in other words: If the process starting fromz visits A infinitely often with probability one. A process(zt) is Harris-recurrent
if a measureψ exists such that(zt) isψ-irreducible and for allA with ψ(A) > 0, A is Harris-recurrent (see, e.g., [77]).

4A sequence of random variablesxt defined on the probability space(Ω,A, P ) converges almost surely to a random
variablex if P ({ω ∈ Ω| limt→∞ xt(ω) = x(ω)}) = 1. Therefore, events for which the sequence does not converge have
probability zero.

5The support of a densityf is the closure of the set of all non-zero points off .
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Finally, the almost sure convergence of1/t ln(‖xt‖) and1/t ln(σt) can be shown for allλ ∈ Λ. It is
not straightforward to give expressions forΛ orΛα in the general case althoughΛα can be numerically
obtained for a givenα. Only if the densities ofη andξ have bounded support, it can be shown that
Λα is of the formΛα = {λ : λ ≥ λ0}.

Convergence Theory with Supermartingales

Several authors [90, 91, 55] use the concept of martingales or supermartingales6 to show the
convergence of an ES or to give an estimate of the convergence velocity.As before, the random
variables most authors are interested in are the object variable and the mutation strength.

Semenov [90] and Semenov and Terkel [91] examined the convergenceand the convergence ve-
locity of evolution strategies. To this end, they considered the stochastic Lyapunov functionVt of a
stochastic processXt. By showing the convergence of the Lyapunov function, the convergence of the
original stochastic process follows under certain conditions.

From the viewpoint of probability theory, the functionVt may be regarded as a supermartingale.
Therefore, a more general framework in terms of convergence of supermartingales can be developed.
The analysis performed in [91] consists of two independent parts. The first concerns the conditions
that imply almost surely convergence of supermartingales to a limit set. The second part (see also
[90]) proposes demands on supermartingales which allow for an estimate ofthe convergence velocity.
Indirectly, this also gives an independent convergence proof.

The adaptation of the general framework developed for supermartingales to the situation of evo-
lution strategies requires the construction of an appropriate stochastic Lyapunov function. Because of
the complicated nature of the underlying stochastic process, the authors didnot succeed in the rigor-
ous mathematical treatment of the stochastic process. Similar to the Harris-recurrent Markov chain
approach, the authors had to resort to Monte-Carlo simulations in order to show that the necessary
conditions are fulfilled.

In [90] and [91], (1, λ)-ES are considered where the offspring are generated according to

σt,l = σte
ϑt,l

xt,l = xt + σt,lζt,l (2.20)

and the task is to optimizef(x) = −|x|. The random variablesϑt,l andζt,l are uniformly distributed
with ϑt,l assuming values in[−2, 2] whereasζt,l is defined on[−1, 1]. For this problem, it can be
shown that the object variable and the mutation strength converge almost surely to zero – provided
that there are at least three offspring. Additionally, the convergence velocity of the mutation strength
and the distance to the optimizer is bounded from above by a function of the form exp(−at) which
holds asymptotically almost surely.

Hart, DeLaurentis, and Ferguson [55] also used supermartingales in their approach. They con-
sidered a simplified (1, λ)-ES where the mutations are modeled by discrete random variables. This
applies to the mutations of the object variables as well as to those of the mutation strengths. Offspring
are generated according to

σt,l = σtD

xt,l = xt + σt,lB. (2.21)

The random variableD may assume three values{γ, 1, η} with γ < 1 < η. The random variableB
takes a value of either+1 or−1 with probability1/2 each. Under certain assumptions, the strategy

6A random processXt is called a supermartingale if E[|Xt|] < ∞ and E[Xt+1|Ft] ≤ Xt whereFt is, e.g., theσ-field
that is induced byXt.
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converges almost surely to the minimumx∗ of a functionf : R → R which is assumed to be strictly
monotonically increasing forx > x∗ and strictly monotonically decreasing forx < x∗.

As a second result, the authors proved that their algorithm fails to locate the global optimum of
a specific multimodal function with probability one. We will return to this aspect oftheir analysis in
Section 2.5.

Instead of using a Lyapunov function as Semenov and Terkel, they introduced a random variable
that is derived from the (random) object variable and the mutation strength.It can be shown that this
random variable is a nonnegative supermartingale if certain requirements are met. In that case, the ES
converges almost surely to the optimal solution if the offspring number is sufficiently high.

The techniques introduced in [55] can be applied to the multi-dimensional case[54] provided that
the fitness function is separable, i.e.,g(x) =

∑N
k=0 gk(xk), and thegk fulfill the conditions forf .

The authors considered an ES-variant where only one coordinate is changed in each iteration. The
coordinatek is chosen uniformly at random. LetXt

λ,k andΣt
λ,k denote the stochastic processes that

result from the algorithm. It can be shown thatXt
λ,1, . . . , X

t
λ,N are independent of each other. This

also holds forΣt
λ,1, . . . ,Σ

t
λ,N . Therefore, the results of the one-dimensional analysis can be directly

transferred.
Although the analysis in [55, 54] provides an interesting alternative, it is restricted to very spe-

cial cases: Due to the kind of mutations used, the convergence results in [55, 54] are, however, not
practically relevant if the number of offspring exceeds six.

Dynamic Systems Approach: The Evolution Equations

In 1996, Beyer [21] was the first to provide a theoretical framework for the analysis of self-
adaptive EAs. He used approximate equations to describe the dynamics of self-adaptive evolution
strategies. Let the random variabler(g) = ‖X(g)− X̂‖ denote the distance of the present search point
to the optimizer andς(g) the mutation strength. The dynamics of an ES can be interpreted as a Markov
process as we have already seen. But generally, the transition kernelsfor

(

r(g)

ς(g)

)

→
(

r(g+1)

ς(g+1)

)

(2.22)

cannot be analytically determined. One way to analyze the system is therefore to apply a step by
step approach extracting the important features of the dynamic process and thus deriving approximate
equations.

The change of the random variables can be divided into two parts. While thefirst denotes the
expected change, the second covers the stochastic fluctuations

r(g+1) = r(g) − ϕ(r(g), ς(g)) + ǫR(r(g), ς(g))

ς(g+1) = ς(g)
(

1 + ψ(r(g)ς(g))
)

+ ǫσ(r
(g), ς(g)). (2.23)

The expected changesϕ andψ of the variables are termedprogress rateif the distance is considered
andself-adaptation responsein the case of the mutation strength.

The distributions of the fluctuation terms are approximated using Gram-Charlierseries’ (or Edge-
worth series’), usually cut off after the first term: The stochastic term is approximated using a normal
distribution. The variance remains to be determined which can be done using the evolution equa-
tions, themselves. In short, this requires the calculations of the second moments and leads to the
corresponding second-order progress rate and to the second-order self-adaptation response.
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To analyze the self-adaptation behavior of the system, expressions for the respective progress rate
and self-adaptation response have to be found. Generally, no closed analytical solution can be derived.
Up to now, only results for (1, 2)-ES using two-point mutations could be obtained [23, p. 283f][21].
Therefore, several simplifications have to be introduced. For instance,if the log-normal operator is
examined, the most important simplification is to considerτ ≪ 1. The so derived expressions are
then verified by experiments.

Self-Adaptation on the Sphere Model It is shown in [23, p. 306] that an (1, λ)-ES with self-
adaptation convergences to the optimum log-linearly. Also the usually recommendation of choosing
the learning rate proportionally to1/

√
N , whereN is the search space dimensionality, is indeed

approximately optimal. In the case of (1, λ)-ES, the dependency of the progress on the learning rate
is weak provided thatτ ≥ c/

√
N with a constantc holds. As a result, it is not strictly necessary to

haveN -dependent learning parameters.
As has been shown in [23, p. 305], the time to adapt an ill-fitted mutation strengthto the fitness

landscape is proportionally to1/τ2. Adhering to the scaling ruleτ ∝ 1/
√
N results in an adaptation

time that linearly increases with the search space dimensionality. Therefore,it is recommended to
work with ageneration-dependentor constant learning rateτ , respectively, ifN is large.

The maximal progress rate that can be obtained in experiments is always smaller than the the-
oretical maximum predicted by the progress rate theory (without considering the stochastic process
dynamics). The reason for this is that the fluctuations of the mutation strength degrade the perfor-
mance. The average progress rate is deteriorated by a loss part stemming from the variance of the
strategy parameter. The theory developed in [23] is able to predict this effect qualitatively.

If recombination is introduced in the algorithm the behavior of the ES changesqualitatively. Beyer
and Gr̈unz [51] showed that multi-recombinative ES that use intermediate or dominantrecombination
do not exhibit the same robustness with respect to the choice of the learningrate as (1, λ)-ES. Instead
their progress in the stationary state has a clearly defined optimum and nearlyoptimal progress is
only attainable for a relatively narrow range of the learning rateτ . If the learning rate is chosen sub-
optimally, the performance of the ES degrades but the ES still converges log-linearly to the optimum.
The reason for this behavior [74] is due to the different effects recombination has on the distance to
the optimizer (i.e., on the progress rate) and on the mutation strength. An intermediate recombination
of the object variables reduces the harmful parts of the mutation vector alsoreferred to as “genetic
repair effect”. Thus, it reduces the loss part of the progress rate. This enables the algorithm to work
with higher mutation strengths. However, since the strategy parameters are necessarily selected before
recombination takes place, the self-adaptation response cannot reflectthe after selection genetic repair
effect and remains relatively inert to the effect of recombination.

Flat and Linear Fitness Landscapes In [26], the behavior of multi-recombinative ES on flat
and linear fitness landscapes was analyzed. Accepting the variance postulates proposed in [26] (see
Section 2.3.3) the question arises whether the standard ES variation operators comply with these pos-
tulates, i.e., whether the strategies are able to increase the population variance in flat and linear fitness
landscapes. Several common recombination operators and mutation operators were examined such as
intermediate/dominant recombination of the object variables and intermediate/geometric recombina-
tion of the strategy parameters. The mutation rules applied for changing the mutation strength are the
log-normal and the two-point distribution.

The analysis started with considering flat fitness landscapes which are selection neutral. Thus, the
evolution of the mutation strength and the evolution of the object variables can be fully decoupled
and the population variance can be easily computed. Beyer and Deb showed that if intermediate
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recombination is used for the object variables, the ES is generally able to increase the population
variance exponentially. The same holds for dominant recombination. However, there is a memory of
the old population variances that gradually vanishes. Whether this is a beneficial effect has not been
investigated up to now.

In the case of linear fitness functions, only the behavior of (1, λ)-ES has been examined so far. It
has been shown that the results obtained in [23] for the sphere model canbe transferred to the linear
case ifσ∗ := σ(N/R) → 0 is considered because the sphere degrades to a hyperplane. As a result,
it can be shown that the expectation of the mutation strength increases exponentially if log-normal or
two-point operators are used.

Beyond the Sphere Model: Ridge Functions

The self-adaptive behavior of evolution strategies on the ridge function class f(y) = y1 −
(
∑N

i=2 y
2
i )

(α/2) was only addressed recently. Many analyses, e.g.,[5, 9] focus on the cumulative path
length adaption rather than self-adaptation.

Lunacek and Whitley [72] presented an investigation of self-adaptive ESusing the two-point rule
for creating new mutation strength. They focused on (1, λ)-ES on two ridge function classes and
provided experimental evidence for the conjecture

“The global step-size of a self-adaptive (1, λ)-ES will stabilize when the selection ofσ
is unbiased toward larger or smaller values. If the ridge bias cannot be removed, self-
adaptation will continue to decreaseσ by selecting smaller step-sizes” [72].

To support this conjecture, they ran100 trials of a(1, 60)-ES. In the experiments, differentd-values,
d > 1, were examined.

Very recently, Arnold and MacLeod [11] presented a comparison of several adaptation methods
for ES analyzing the influence of noisy fitness evaluations. The self-adaptive ES investigated used the
two-point rule to update the mutation strength. Furthermore, the mutation strengths were recombined
using

σ′ ← σ
(

µ
∏

m=1

ς(m;λ)
) 1

µκ
(2.24)

instead of the arithmetic recombination introduced in Section 1. The parameterκ is used to dampen
the change of the mutation strength. Under some assumptions similar to the ones introduced by
Lunacek and Whitley, they succeeded in deriving equations giving the stationary distance, mutation
strength, and progress parallel to the axis direction. Among the results obtained are the following:
Self-Adaptive ES fail in the creation of useful mutation strengths ifµ ≥ λ/2 [11]. In addition, non–
recombinative(1, λ)-ES are superior to recombinative ES. Compared to other adaptation means,e.g.,
CSA-ES, self-adaptation was found to perform worst of all.

2.5 Problems and Limitations of Self-Adaptation

Most of the research done so far seems to be centered on the effects ofself-adapting the mutation
strengths. Some of the problems that were reported refer to divergenceand premature convergence
of the algorithm (see, e.g., Kursawe [67]). Premature convergence mayoccur if the mutation strength
and the population variance are decreased too fast. This generally results in a convergence towards a
suboptimal solution. While the problem is well-known, it appears that only a few theoretical investi-
gations have been done. However, premature convergence is not a specific problem of self-adaptation.
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Rudolph [85] analyzed an(1+1)-ES applying Rechenberg’s1/5th-rule. He showed for a test problem
that the ES’s transition to the global optimum cannot be ensured when the ES starts at a local optimum
and if the step-sizes are decreased too fast.

Stone and Smith [100] investigated the behavior of GA on multimodal functions applying Smith’s
discrete self-adaptation algorithm. Premature convergence was observed for low innovation rates and
high selection pressure since this combination causes a low diversity of the population. Diversity can
be increased by using high innovation rates. Stone and Smith additionally optedfor a scheme that
passes through the present value of the strategy parameter while still introducing different choices
thus providing a suitable relation between exploration and exploitation.

Liang et al. [69, 70] considered the problem of a prematurely reduced mutation strength. They
started with an empirical investigation on the loss of step size control for EP onfive benchmark
functions [69]. The EP used a population size ofµ = 100 and a tournament size ofq = 10. Stagnation
of the search occurred even for the sphere model. As they argued, thismight be due to the selection
of an individual with a mutation strength far too small but with a high fitness value. This individual
bequests its ill-adapted mutation strength to all descendants and, therefore,the search stagnates.

In [70], Liang et al. examined the probability of loosing the step size control.To simplify the
calculations, a (1 + 1)-EP was considered. Therefore, the mutation strength changes whenever a
successful mutation happens. A loss of step size control occurs if the mutation strength is smaller than
an arbitrarily small positive numberǫ afterκ successful mutations. The probability of such an event
can be computed. It depends on the initialization of the mutation strength, the learning parameter,
on the number of successful mutations, and onǫ. As the authors showed, the probability of loosing
control of the step size increases with the number of successful mutations.

A reduction of the mutation strength should occur if the EP is already close to the optimum.
However, if the reduction of the distance to the optimizer cannot keep pace with that of the mutation
strength, the search stagnates. This raises the question whether the operators used in this EP imple-
mentation comply with the design principles postulated in [39] (compare Section 2.3.3). An analysis
of the EP behavior in flat or linear fitness landscapes might reveal the very reason for this failure.
It should be noted also that similar premature convergence behaviors of self-adaptive ES are rarely
observed. A way to circumvent such behavior is to introduce a lower bound for the step size. Fixed
lower bounds are considered in [69]. While this surely prevents premature convergence of the EP, it
does not take into account the fact that the ideal lower bound of the mutationstrength depends on the
actual state of the search.

In [70], two schemes are considered proposing a dynamic lower bound (DLB) of the mutation
strength. The first is based on the success rate reminiscent of Rechenberg’s 1/5th-rule. The lower
bound is adapted on the population level. A high success rate leads to an increase of the lower bound,
a small success decreases it. The second DLB-scheme is called “mutation step size based” since it
uses the median of the mutation strengths of all successful offspring as thenext lower bound. These
two schemes appear to work well on most fitness functions of the benchmarksuite. On functions with
many local optima, however, both methods experience difficulties.

As mentioned before, Hart, Delaurentis, and Ferguson analyzed an evolutionary algorithm with
discrete random variables on a multi-modal function [55]. They showed theexistence of a bimodal
function for which the algorithm fails to converge to the global optimizer with probability one if it
starts close to the local optimal solution.

Won and Lee [104] addressed a similar problem although in contrast to Hart, DeLaurentis, and
Ferguson they proved sufficient conditions for premature convergence avoidance of a(1 + 1)-ES on
a one-dimensional bimodal function. The mutations were modeled using Cauchy-distributed random
variables and the two-point operator was used to change the mutation strengths themselves.
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Glickman and Sycara [49] identified possible causes for premature reduction of the mutation
strength. They investigated the evolutionary search behavior of a (10, 100)-EA without any crossover
on a complex problem arising from the training of neural networks with recurrent connections.

What they have calledbowl effectmay occur if the EA is close to a local minimum. Provided that
the mutation strength is below a threshold, the EA is confined in a local attractor and cannot find any
better solution. As a result, small mutation strengths will be preferred.

A second cause is attributed to the selection strength. Glickman and Sycara suspect that if the
selection strength is high, high mutation rates have a better chance of survival compared to using
low selection strength: A high mutation rate increases the variance. This is usually connected with a
higher chance of degradation as compared to smaller mutation rates. But if animprovement occurs
it is likely to be considerably larger than those achievable with small mutation rates. If only a small
percentage of the offspring is accepted, there is a chance that higher mutation strengths “survive”.
Thus, using a high selection strength might be useful in safeguarding against premature stagnation. In
their experiments, though, Glickman and Sycara could not observe a significant effect. They attributed
this in part to the fact that the search is only effective for a narrow region of the selection strength.

Recently, Hansen [52] resumed the investigation of the self-adaptive behavior of multiparent evo-
lution strategies on linear fitness functions started in [39]. Hansen’s analysis is aimed at revealing the
causes why self-adaptation usually works adequately on linear fitness functions. He offered condi-
tions under which the control mechanism of self-adaptation fails, i.e., that theEA does not increase
the step size as postulated in [39]. The expectation of the mutation strength is not measured directly.
Instead, a functionh is introduced the expectation of which is unbiased under the variation operators.
The question that now remains to be answered is whether the selection will increase the expectation
of h(σ). In other words, is the effect of an increase of the expectation a consequence of selection (and
therefore due to the link between good object vectors and good strategy values) or is it due to a bias
introduced by the recombination/mutation-operators chosen?

Hansen proposes two properties an EA should fulfill: First, the descendants’ object vectors should
be point-symmetrically distributed after mutation and recombination. Additionally, thedistribution of
the strategy parameters given the object vectors after recombination and mutation has to be identical
for all symmetry pairs around the point-symmetric center. Evolution strategies with intermediate mul-
tirecombination fulfill this symmetry assumption. Their descendents’ distribution ispoint-symmetric
around the recombination centroid.

Secondly, Hansen offers a so-calledσ-stationarity assumption. It postulates the existence of a
monotonically increasing functionh whose expectation is left unbiased by recombination and mu-
tation. Therefore,E[h(Sσi;λ|i=1,...,µ

k )] = (1/µ)
∑µ

i=1 h(σi;λ) must hold for all offspring. The term
Sσi;λ|i=1,...,µ

k denotes the mutation strength of an offspringk created by recombination and mutation.
Hansen showed that if an EA fulfills the assumptions made above, self-adaptation does not change

the expectation ofh(σ) provided that the offspring number is twice the number of parents.
The theoretical analysis was supplemented by an empirical investigation of theself-adaptation

behavior of some evolution strategies examining the effect of several recombination schemes on the
object variables and on the strategy parameter. It was shown that an ES which applies intermediate
recombination to the object variables and to the mutation strength increases the expectation oflog(σ)
for all choices of the parent population size. On the other hand, evolutionstrategies that fulfill the
symmetry and the stationarity assumption, increase the expectation oflog(σ) if λ < µ/2, keep it
constant forλ = µ/2 and decrease it forλ > µ/2.

Intermediate recombination of the mutation strengths results in an increase of themutation strength.
This is beneficial in the case of linear problems and usually works as desired in practice. However, as
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Hansen states the presence of a bias may entail “the danger of divergence or premature convergence”
[52].

2.6 Conclusions

Self-adaptation usually refers to an adaptation of control parameters which are incorporated into
an individual’s genome. These are subject to variation and selection – evolving together with the
object parameters. Stating it more generally: A self-adaptive algorithm controls the transmission
function between parent and offspring population by itself without any external influence. For this
reason the concept can be broadened to include algorithms where the representation of an individual is
augmented with genetic information that does not code information regarding the fitness but influences
the transmission function instead. Interestingly, real-coded genetic algorithms where the diversity of
the parent population controls that of the offspring may be regarded as self-adaptive. Surprisingly,
even binary genetic algorithms with crossover operators like1-point ork-point crossover share this
property to a certain extent.

Self-Adaptation is common in the area of evolutionary programming and evolutionstrategies.
Here, generally the mutation strength or the full covariance matrix is adapted.Analyses conducted so
far focus mainly on the convergence to the optimal solution. Nearly all analyses use either a simplified
model of the algorithm or have to resort to numerical calculations in their study. The results obtained
are similar: On simple fitness functions, conditions can be derived that ensure the convergence of the
EA to local optimal solutions. The convergence is usually log-linear.

The explicit use of self-adaptation techniques is rarely found in genetic algorithm and if at all
mainly used to adopt the mutation rate. Most of the studies found are directed at finding suitable
ways to introduce self-adaptive behavior in GA. As we have pointed out, however, crossover in binary
standard GA does provide a rudimentary form of self-adaptive behavior. Therefore, the mutation rate
can be often kept at a low level provided that the population size is reasonably large. However, unlike
the clear goals in real-coded search spaces, it is by no means obvious to formulate desired behaviors
the self-adaptation should realize in binary search spaces. This does not apply to some real-coded
genetic algorithms where it can be shown mathematically that they can exhibit self-adaptive behavior
in simple fitness landscapes.

It should be noted that self-adaptation techniques are not the means to solve all adaptation prob-
lems in evolutionary algorithms. Concerning evolution strategies, multi-recombinative self-adaptation
strategies are sensitive to the choice of the external learning rateτ . As a result, an optimal or a nearly
optimal mutation strength is not always realized.

More problematic appears a divergence or a premature convergence toa suboptimal solution. The
latter is attributed to a too fast reduction of the mutation strength. Several reasons for that behavior
have been proposed although not rigorously investigated up to now. However, from our own research
we have found that the main reason for a possible failure is due to the opportunistic way how self-
adaptation uses the selection information obtained from just one generation.Self-adaptation rewards
short-term gains. In its current form, it cannot look ahead. As a result,it may exhibit the convergence
problems mentioned above.

Regardless of the problems mentioned, self-adaptation is a state-of-the-art adaptation technique
with a high degree of robustness, especially in real-coded search spaces and in environments with
uncertain or noisy fitness information. It also bears a large potential for further developments both in
practical applications and in theoretical as well as empirical evolutionary computation research.
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3 Analyzing Self-Adaptive Evolution Strategies

In this chapter, the evolution equations – the approach used in the analysis of self-adaptive ES in
this thesis – are described in greater detail. The approach was first introduced in [21]. Before the
dynamics of evolution strategies can be analyzed, the variables that characterize the system must be
determined. In other words, the state variables need to be given. Considering ES, one might be
interested in monitoring the fitness values, the distance to the optimizer (depending on the fitness
model), and, since self-adaptation is considered, the mutation strength. Theapproach then aims at
modeling and analyzing the evolution of these state variables over time. In the following, the sphere
model is used for further explanations. Since the sphere model consists of functions of the form
f(y)=g(‖y − ŷ‖) = g(R), the state variables are chosen as the distance to the optimizerR(g) =
‖y(g) − ŷ‖ and the mutation strengthς(g) at generationg. The dynamics of(µ/µI , λ)-ES generate a
stochastic process

(

R(g)

ς(g)

)

→
(

R(g+1)

ς(g+1)

)

. (3.1)

As mentioned in Chapter 2, up to now no closed solution for the transition kernels could be derived in
general. The only exception is a(1, 2)-ES using the two-point rule for the mutation of the mutation
strength (see [21] of [23, p. 287].

In this thesis, therefore, the step-by-step approach introduced in [21]is followed. The approach
relies on the evolution equations. These are stochastic difference equations or iterative maps, respec-
tively, used to describe the change of the state variables during one generation. The change of the
random variables can be divided into two parts: The first denotes the expected change. The sec-
ond part covers the random fluctuations and is denoted byǫR or ǫσ. In their most general form, the
evolution equations read

R(g+1) = R(g) − E[R(g) −R(g+1)|R(g), σ(g)] + ǫR(R(g), ς(g)) (3.2)

ς(g+1) = ς(g)
(

1 + E

[

ς(g+1) − ς(g)
ς(g)

|R(g), σ(g)

]

)

+ ǫσ(R
(g), ς(g)). (3.3)

In (3.2), a well known progress measure appears: the progress rateϕR. The progress rate measures
the expected change of the distance in one generation

ϕR(ς(g), R(g)) := E[R(g) −R(g+1)|ς(g), R(g)]. (3.4)

The progress rate is an example for a so-called local performance measure – local because it depends
on the present state of the system.

In the case of the evolution of the mutation strength, a different progress measure is used. Note,
since the mutation of the mutation strength is generally realized by a multiplication with a random
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variable, the equation in (3.3) gives the relative change. The progressmeasure is called the (first-
order) self-adaptation response (SAR)ψ. The SAR gives the expected relative change of the mutation
strength in one generation

ψ(ς(g), R(g)) := E

[

ς(g+1) − ς(g)
ς(g)

|ς(g), R(g)

]

. (3.5)

Let us now address the fluctuation terms. Their distribution is not known andmust be approxi-
mated using a reference density. Note, given pdfsp1 andp2, it is possible to relatepi to pj in general
(see, e.g., [66, 32]). Common approaches comprise an expansion into a Gram-Charlier or Edgeworth
series. The reference distribution is usually (but not necessarily) chosen to be the normal distribu-
tion. In order to expand an unknown distribution at all, it must be possible to determine some of its
moments or cumulants.

First of all, the fluctuation terms are standardized using the expected value and standard deviation.
Clearly, the conditional expectation ofǫσ and ǫR is zero. Therefore, only the standard deviation
remains to be determined.

The main points of the derivation are explained considering the case ofǫR. The case of the
mutation strength may be treated analogously. LetDϕ denote the standard deviation. Therefore the
standardized random partǫ′R is related toǫR by ǫR = Dϕǫ

′
R. The standard deviation can be derived

via (3.2) since its square equals the second conditional moment ofǫR

D2
ϕ(ς(g), R(g)) = E[ǫ2R|ς(g), R(g)]

= E
[(

R(g+1) −R(g) + ϕR(ς(g), R(g))
)2
|ς(g), R(g)

]

= E
[(

R(g+1) −R(g)
)2
− 2
(

R(g) −R(g+1)
)

ϕR(ς(g), R(g))

+ϕ2
R(ς(g), R(g))|ς(g), R(g)

]

= E
[(

R(g+1) −R(g)
)2
|ς(g), R(g)

]

− ϕ2
R(ς(g), R(g)). (3.6)

The distribution ofǫ′R is expanded into an Edgeworth series. For the analysis, the expansion is cut off
after the first term (cf. [23, p.265]). That is to say, it is supposed thatthe deviations from the normal
distribution are negligible in the analysis scenario the equations will be applied to. The random
variableǫR reads

ǫR = Dϕ(ς(g), R(g))N (0, 1) + . . . (3.7)

The expectationE[(R(g+1) −R(g))2|ς(g), R(g)] appearing in (3.6) is called the second-order progress
rate

ϕ(2)(ς(g), R(g)) = E
[(

R(g+1) −R(g)
)2
|ς(g), R(g)

]

. (3.8)

The random variableǫσ is obtained similarly. As in the case of the distance, a first-order approach
(i.e., the first term of the series expansion) is used

ǫσ = Dψ(ς(g), R(g))N (0, 1) + . . . . (3.9)
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The derivation of the standard deviation is exactly the same as previously. We have

D2
ψ(ς(g), R(g)) = E[ǫ2σ|ς(g), R(g)]

= E
[(

ς(g+1) − ς(g) − ς(g)ψ(ς(g), R(g))
)2
|ς(g), R(g)

]

= E
[(

ς(g+1) − ς(g)
)2
− 2ς(g)

(

ς(g+1) − ς(g)
)

ψ(ς(g), R(g))

+ψ(ς(g), R(g))2|ς(g), R(g)
]

= E
[(

ς(g+1) − ς(g)
)2
− (ς(g))2ψ2(ς(g), R(g))|ς(g), R(g)

]

(3.10)

(cf. 3.3). Again, this introduces a new measure, the second-order SAR

ψ(2)(ς(g), R(g)) := E
[( ς(g+1) − ς(g)

ς(g)

)2
|ς(g), R(g)

]

. (3.11)

Using the results obtained so far, the evolution equations can be rewritten to

R(g+1) = R(g) − ϕR(ς(g), R(g)) +Dϕ(ς(g), R(g))N (0, 1) + . . . (3.12)

ς(g+1) = ς(g)
(

1 + ψ(ς(g), R(g))
)

+Dψ(ς(g), R(g))N (0, 1) + . . .

= ς(g)
(

1 + ψ(ς(g), R(g)) +D′
ψ(ς(g), R(g))N (0, 1) + . . .

)

(3.13)

with D′
ψ = Dψ/ς

(g).

The Deterministic Evolution Equations

In this thesis, the fluctuation parts are neglected in most cases with the exception of Section 4.4.
The evolution equations without perturbation parts are generally termed deterministic evolution equa-
tions [23]. This approach –though rather crude– serves well to extract the general characteristics of
self-adaptive evolution strategies. The deterministic evolution equations read

R(g+1) = R(g) − E[R(g) −R(g+1)] (3.14)

ς(g+1) = ς(g)
(

1 + E
[ ς(g+1) − ς(g)

ς(g)

])

. (3.15)

An equilibrium (steady state, or stationary state) is characterized byR(g+1) = R(g) andς(g+1) = ς(g).
Note, demanding stationarity of theR(g)-evolution equals a complete standstill of the ES in most
cases. Often more interesting is the evolution equation of the normalized mutation strengthς∗(g) =
ς(g)(N/R(g))

ς∗(g+1) = ς∗(g)

(

1 + ψ(ς∗(g), R(g))

1− ϕ∗
R(ς∗(g),R(g))

N

)

(3.16)

with ϕ∗
R=ϕR(N/R(g)) andς∗(g+1)=ς(g+1)(N/R(g+1)) since it allows for a stationary state without

requiring a stationary state of theR(g)-evolution. The assumption of the existence of a stationary state
is motivated by findings that it is optimal in many cases for the mutation strength to scale with the
distance to the optimizer. Optimal in this case refers to a local progress measure, i.e., to a maximal
expected gain during one generation.
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Including the Fluctuations

If the perturbation parts are included in the analysis, the situation becomes more complicated.
Equations (3.12) and (3.13) describe a Markov process, the transition densitiesptr of which have to
be determined. The variablesR(g+1), R(g), ς(g+1), andς(g) are now all random variables. Assuming
that the distribution of each has a density, the density of the distancer at generationg is denoted
with p(R(g)) and the density of the mutation strength withp(ς(g)). As pointed out in [23, p. 313],
it generally suffices not to determine the complete distribution but to concentrate on some of the
moments, generally the expectation of course. The expectations read

R(g+1) =

∫ ∞

0
R(g+1)p(R(g+1)) dR(g+1)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

(

R(g) − ϕR(R(g), ς(g))
)

×pR(R(g+1)|ς(g), R(g))p(ς(g))p(R(g)) dς(g+1) dR(g) dR(g+1)

=

∫ ∞

0

∫ ∞

0

(

R(g) − ϕR(R(g), ς(g))
)

p(ς(g))p(R(g)) dR(g) dς(g) (3.17)

ς(g+1) =

∫ ∞

0
ς(g+1)p(ς(g+1)) dς(g+1)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0
ς(g)
(

1 + ψ(ς(g), R(g))
)

×pσ(ς(g+1))p(ς(g))p(R(g)) dς(g) dR(g) dς(g+1)

=

∫ ∞

0

∫ ∞

0
ς(g)
(

1 + ψ(ς(g), R(g))
)

p(ς(g))p(R(g)) dς(g) dR(g). (3.18)

As can be inferred from (3.17) and (3.18), the transition densities are not needed if only the expecta-
tions are to be determined.

An equilibrium of a stochastic process is then characterized by a convergence of the densities
to an equilibrium distribution, i.e.,limg→∞ p(ς(g+1))=limg→∞ p(ς(g))= p∞(ς). Note, again it is
normally the normalized mutation strength which converges towards an equilibrium as long as the ES
progresses still. If a stationary state is reached, the invariant density solves the eigenvalue equation

cp∞(ς) = =

∫ ∞

0
ptr(ς|σ)p∞(σ) dσ (3.19)

with c = 1 andptr the transition density. In general, the equilibrium distributionp∞ is unknown. As
pointed out in [23, p. 318], it is possible to determinep∞ numerically or even analytically. The re-
sults, however, tend to be quite complicated and do not allow for further analytical treatment. Instead
of trying to obtain the distribution itself, the expected value is obtained analyzingthus the mean value
dynamics of the system. Unfortunately, the form of the evolution equations hinders a direct deter-
mination of the expectation since in general lower order moments depend on higher order moments
leading to a non-ending recursion.

Therefore, a so-called ansatz is used [23, p. 319]: Instead of determining the solution of (3.19),
the equilibrium distribution is set to a known (similar) distribution. This approachis reminiscent of
the Edgeworth or Gram-Charlier expansion. The ansatz distribution takes the place of the baseline
density and the expansion is cut off after the very first term.

Generally, the equations obtained are non-linear and can be solved only numerically. Special cases
may exist, though, which allow for an analytical treatment.
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In the following chapters, the evolution equations are applied to self-adaptive ES in two fitness
environments: the sphere model and ridge functions. In both cases, the analysis is divided into two
parts. First, the undisturbed fitness function is analyzed before noisy fitness evaluations are taken into
account.
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4 Self-Adaptation on the Sphere Model

The investigation of self-adaptive ES is started with the sphere model.

Definition 1. A functionf : R
N → R is called a sphere (model) if

f(y) = g(‖y − ŷ‖) (4.1)

with g : R → R a monotonously in- or decreasing function,ŷ the optimizer off , and‖x‖ =
√

∑N
i=1 x

2
i the Euclidean norm onRN .

The sphere only depends on the distance to the optimizer. It generally serves to model more
general fitness functions in the vicinity of the optimum.

The analysis presented here can be seen as an extension of the analysisfirst carried out in [21]
broadening the subject of the analysis from non-recombinative evolutionstrategies to evolution strate-
gies using intermediate recombination on the one hand and to noisy fitness evaluations on the other.

4.1 Self-Adaptation and Intermediate Recombination

Self-Adaptation was originally proposed for non-recombinative(1, λ)-evolution strategies as a
means to adapt the mutation strength. Recall, the mutation strength is treated in a similarmanner
as the object parameters. Therefore, it is subject to variation and selection. The random change is
realized by a multiplication with a random variable. Common choices of distribution functions for
this random variable include, e.g., the log-normal distribution. Here given the parentalσ, the new
mutation strengthσ′ of an offspring is generated according to

σ′ = σeτN (0,1) (4.2)

as mentioned in Chapter 2. The parameterτ is referred to as the learning rate. Another common
choice is the symmetric two-point distribution with

σ′ =

{

σ(1 + β) if u ≤ 0.5
σ/(1 + β) if u > 0.5

. (4.3)

The random variableu follows a uniform distribution on(0, 1]. Both distributions – the log-normal
and the two-point distribution – depend on one free parameter. The choiceof this parameter influences
the performance of ES. Therefore, one of the first questions to be asked is howτ (orβ) is to be chosen
so that the ES progresses with optimal speed. For(1, λ)-ES on the sphere model, this question is
already answered: It is optimal to chooseτ ∝ 1/

√
N [21]. Apart from this condition, self-adaptation

in (1, λ)-ES is remarkably robust with regard to the learning rate. Interestingly, thisdoes not hold
anymore once recombination comes into play [51]. The reasons for this behavior are investigated in
this section.



34 4. Self-Adaptation on the Sphere Model

4.1.1 Modeling the Self-Adaptive ES

To analyze the ES variables are needed to characterize the behavior. Since the sphere is considered,
the fitness functions are of the formf(y) = g(‖y − ŷ‖), with optimizerŷ. Therefore, two variables
suffice for the analysis: the distance to the optimizer, i.e.,R(g) := ‖〈y(g)〉 − ŷ‖ and the mutation
strength〈σ(g)〉 at generationg. The evolution equations introduced in Chapter 3 are used to describe
the change of these state variables from one generation to the next. Remember, the change is divided
into an expected change and into a random perturbation part. Using the statevariablesR(g) for the
distance of the centroid of the parental population to the optimizer and〈ς(g)〉 for the mean of the
mutation strengths at generationg, the evolution of the ES can be described by

(

R(g+1)

〈ς(g+1)〉

)

=

(

R(g) − ϕR(〈ς(g)〉, R(g)) + ǫ
(g)
R

〈ς(g)〉
(

1 + ψ(〈ς(g)〉, R(g))
)

+ ǫ
(g)
σ

)

. (4.4)

The deterministic changes of the variables are given by the progress rate

ϕR(〈ς(g)〉, R(g)) := E
[

R(g) −R(g+1)|〈ς(g)〉, R(g)
]

(4.5)

in the case of the distance and in the case of the mutation strength by the self-adaptation response
function (SAR)

ψ(〈ς(g)〉, R(g)) := E

[

〈ς(g+1)〉 − 〈ς(g)〉
〈ς(g)〉 |〈ς(g)〉, R(g)

]

(4.6)

whereasǫ(g)R andǫ(g)σ denote the random fluctuations.
To start the analysis, the perturbation parts of (4.4) are neglected. Furthermore, the notations

are simplified. Unless the dependence on the generation number is explicitely needed, letR :=
R(g), r := R(g+1), andσ := 〈ς(g)〉. Finally, the usual normalizations are introduced to eliminate
theR-dependency of the equations withσ∗ := σ (N/R), 〈ς∗(g+1)〉 := 〈ς(g+1)〉 (N/r), andϕ∗

R :=
ϕR (N/R).

From this point, the normalized system

(

r

〈ς∗(g+1)〉

)

=





R
(

1− ϕ∗
R(σ∗)/N

)

σ∗
(

1+ψ(σ∗)
1−ϕ∗

R(σ∗)/N

)



 (4.7)

of the deterministic evolution equations serves as the starting point of our analysis. Before continuing,
the progress rate (4.5) and the self-adaptation response function (4.6)need to be determined. The
progress rateϕ∗

R = (N/R)E[R− r] is given forτ = 0 andN →∞ by

ϕ∗
R(σ∗) = cµ/µ,λσ

∗ − σ∗2

2µ
. (4.8)

The derivation of (4.8) can be found in Appendix B.1.2 withσ∗ǫ = 0 or in [23]. The self-adaptation
response (SAR) is obtained in Appendix C.1.1. ForN →∞ andτ ≪ 1 it is given by

ψ(σ∗) = τ2
(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

. (4.9)

The coefficientscµ/µ,λ ande1,1µ,λ are special cases of the so-called generalized progress coefficients

[23, p. 172]eα,βµ,λ (A.24).
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The approximation errors made by using (4.8) and (4.9) diminish for increasingN and decreasing
τ . Therefore, the analysis is restricted to ES operating in high-dimensional search spaces and to small
learning ratesτ .

Before continuing, it is important to note a result first obtained in [21]:

“The evolution of the mutation strength can be decoupled from that of the distance.”

Why this is the case can immediately be inferred from the form of (4.7), (4.8),and (4.9): There is
no direct influence ofR on the evolution of the normalized mutation strength. The evolution of the
mutation strength can be considered and analyzed isolated. This does not hold for the evolution ofR
which is directly influenced byσ∗.

4.1.2 Analyzing the Stationary Points

Considering (4.7), the behavior of the ES is described by deterministic difference equations or by
an iterated map. Using the theory of dynamic systems [103], one of the first questions to be raised
is whether the system admits stationary points. The analysis of stationary pointshas an additional
justification: The ES should strive to operate with the best mutation strength it can achieve. The size
of the mutation strength obviously depends on the position in the search space, i.e., on the distance to
the optimizer in the case of the sphere.

Definition 2. Let f : R
N → R

M . Stationary points or fixed points (fix-points, equilibrium solutions,
stationary solutions)yS of the difference equation (or iterated map)y(t+1) = f(y(t)) are given by
yS = f(yS).

Stationary points are time-invariant solutions of the dynamic system. If the system reaches a fixed
point, it comes to a halt and no movement occurs – unless the system is perturbed. As can be seen
easily and will be shown below, system (4.7) as a whole does not admit stationary points unless very
specific situations occur. Seen isolated, the evolution equations for the mutation strength and the
distance admit stationary points, though.

Let us start with the mutation strength and consider system (4.7) and Eqs. (4.8) (progress rate)
and (4.9) (SAR). Stationary points of theσ∗-evolution of (4.7) that is points for which

〈ς∗(g+1)〉 = σ∗ ⇔ σ∗ = 0
∨ 1 + ψ

1− ϕ∗
R
N

= 1

⇔ σ∗ = 0
∨

cµ/µ,λσ
∗ − σ∗2

2µ
= −Nτ2

(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

(4.10)

holds (see (4.8) and (4.9)) are given byς∗stat1 = 0 or by

ς∗stat2 = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ



 . (4.11)

The detailed derivation of the stationary points can be found in Appendix D.1.1. Stationary points
are characterized by either a loss of step-size control or by a mutation strength which is a function of
the learning rateτ (if the other parameters are considered to be fixed). Therefore, the learning rate
can be used to calibrate the value of the non-zero stationary mutation strength.
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The stationary points of theR-evolution remain to be addressed. To this end, system (4.7) and Eq.
(4.8) have to be considered. Fixed points of theR-evolution, i.e., points for which

r = R ⇔ R = 0
∨

ϕ∗
R = cµ/µ,λσ

∗ − σ∗2

2µ
= 0 (4.12)

holds, are then given by(R, σ∗)T = (0, c)T, (R, σ∗)T = (c, 0)T with c ∈ R, c ≥ 0 or by (R, ς∗ϕR0
)T

with R > 0 and

ς∗ϕR0
= 2µcµ/µ,λ. (4.13)

Stationary solutions of system (4.7) are thus characterized as follows:

1. A loss of step-size control occurs in an arbitrary distance to the optimizer,

2. the optimum is reached, or

3. the second stationary solution of theσ∗-evolution (4.11) and the second stationary point of the
R-evolution (4.13) match.

The question remain whether these possibilities actually occur and if (4.7) admitsthem whether they
are stable solutions.

It is easy to show that the first possibility: a loss of step-size control leadsto an instable fixed
point. In other words, if the system is in the fixed pointς∗stat1 = 0 and small perturbations occur, it
will move away from it. Let us first recall the definition of asymptotic stability.

Definition 3. Let f : R
N → R

N andyS ∈ R
N a fixed point ofy(t+1) = f(y(t)). The fixed

point is called (locally) asymptotically stable if anǫ > 0 exists so that for all∆(t) with ‖∆(0)‖ < ǫ,
∆(t) = y(t) − yS

lim
t→∞

∆(t) = lim
t→∞

y(t) − yS = 0 (4.14)

holds. In other words: After a perturbation, the system returns to the equilibrium provided that the
perturbation is sufficiently small.

A well established means to show the locally asymptotic stability is via the linear approximation
using the Taylor series (see, e.g., [103, 71]).

Lemma 1. Letf : R
N → R

M be a twice continuously differentiable function. Then it follows

∆(t+1) = Df(y)|y=yS
(∆(t)) +O(∆(t)T∆(t)). (4.15)

Provided that the fixed point is hyperbolic (i.e., no eigenvalue has a real part of±1) the stability
of the fixed point can be established considering the linear system. To this end, the Jacobian matrix
Df(yS) atyS must be obtained and analyzed.

Lemma 2. Consider an iterated map. A hyperbolic fixed pointyS is stable if the absolute value of
the real part of all eigenvalues is smaller than one. It is instable if the absolute value of the real part
of one eigenvalue is greater than one (see, e.g., [103]).
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It is easy to see that the stationary solutionς∗stat1 = 0 is an unstable fixed point of the evolu-
tion equation of the mutation strength in (4.7): To this end, the first derivativeof f(σ∗) = σ∗[(1 +
ψ(σ∗))/(1 − ϕ∗

R/N)] must be determined. First of all, note thatf is C2(U) for a ballU(0) The
derivative is easily obtained as

f ′(σ∗) =
1 + ψ(σ∗)

1− ϕ∗
R(σ∗)/N

+ σ∗
( ψ′(σ∗)

1− ϕ∗
R(σ∗)/N

+
(1 + ψ(σ∗))ϕ∗

R
′(σ∗)/N

(1− ϕ∗
R(σ∗)/N)2

)

. (4.16)

Inserting the fixed point,f ′(σ∗)|σ∗=0 = 1 + τ2(1/2 + e1,1µ,λ) is obtained, which is greater than one as
long asτ > 0. The fixed pointς∗stat1 = 0 is therefore unstable.

The last possibility – an intersection of the second stationary solution of theσ∗-evolution (4.11)
with the second stationary solution of theR-evolution (4.13) does not occur for finiteτ . As already
noted in [23, p. 300] for (1, λ)-ES and also revealed by (4.10), theτ -parameter steers the stationary
point (4.12) between the zero of the SAR

ς∗ψ0
=

1/2 + e1,1µ,λ
cµ/µ,λ

(4.17)

and the second zero (4.13) of the progress rate: ForNτ2 → ∞, (4.12) goes to (4.17), whereas for
Nτ2 → 0, (4.12) approaches the zero of the progress rate (4.13). It can be shown by case inspection,
that

ς∗ψ0
=

1/2 + e1,1µ,λ
cµ/µ,λ

< ς∗ϕR0
= 2µcµ/µ,λ (4.18)

expect forµ ≈ λ. That is, the zero of the SAR is smaller than the zero of the progress rate.
The stationary mutation strength (4.11), p. 35,

ς∗stat2 = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1/2 + e1,1µ,λ

µc2µ/µ,λ

)





remains as the only (possibly) stable fixed point of theς∗-evolution in (4.7). It can be shown that it is
indeed stable provided that eitherτ is sufficiently small orN is sufficiently large.

Since the calculations are rather lengthy, they can be found in Appendix D.1.3, p. 195.
The stationary mutation strengthς∗stat2 , (4.11), is the only (locally) stable invariant solution of

(4.7). It is associated with a positive progress:ς∗stat2(τ) < 2µcµ/µ,λ for every τ < ∞ with
limτ→0ς

∗
stat2(τ)=2µcµ/µ,λ. That is, self-adaptation works in the sense that it is always associated

with a positive expected progress. The system thus moves towards the optimum (on average) – re-
gardless of the choice of the learning rate. The stationary progress rateitself can be determined by
inserting the mutation strength (4.11) into the progress rate (4.8)

ϕ∗
st =

µc2µ/µ,λ

2

(

1−
(

Nτ2 −

√

√

√

√(1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ

)2
)

. (4.19)

As the stationary mutation strength (4.11), (4.19) is a function of the learning rate. Before discussing
the dependency on this parameter, the results obtained so far are compared with the results of experi-
ments.
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4.1.3 Comparison with Experiments

Figure 4.1 compares the stationary mutation strength (4.11) with the result of experiments for two
search space dimensionalities,N = 100 andN = 10, 000. While there are large deviations for the
lower dimensional search space, the prediction quality improves forN = 10, 000.

The predictions of (4.19) are compared with the results of experiments in Figs. 4.2 and 4.3 for
two multi-recombinative ES, a (10/10I , 60)- and a (20/20I , 60)-ES. Also depicted are the results of
a numerical calculation of the stationary progress rate using theN -dependent progress rate formula
[23, p. 216f]

ϕ∗(σ∗) =
cµ/µ,λσ

∗(1 + σ∗2

2µN )
√

1 + σ∗2

2N

√

1 + σ∗2

µN

−N
(

√

1 +
σ∗2

µN
− 1
)

+O(
1√
N

) (4.20)

in the derivation. As representative of sphere functions,f(y) = ‖y‖2 was used. The sampling
process was started once a stationary normalized mutation strength was reached and kept up as long
asr(g) > 10−75. In the case of nearly optimal learning rates andN = 30, the stationary phase consists
of only 2, 000 - 3, 000 generations. Therefore, the experiments were repeated until each datapoint
represents the average of at least95, 000 experiments.

Since (4.19) has been derived using theN -independent progress rate formula (4.8), the agreement
with the experiments for low-dimensional search spaces is rather poor. However, its general tendency
as a function ofτ is similar. Furthermore, the agreements improves for larger values ofτ . The quality
of the prediction of (4.19) increases steadily with the search space dimensionality (see Fig. 4.3).

If the N -dependent progress rate (4.20) is used, the agreement with the experiments improves.
Although there are still relatively large deviations as long asτ is small, the curves of the predicted and
the observedτ -values are closer together.

The experiments, theN -dependent progress rate, and (4.19) show a strong dependency on the
choice ofτ . In all cases, the progress increases withτ until a maximum is reached and the progress
deteriorates. In the experiments and if theN -dependent progress rate is used, this behavior is more
pronounced in high-dimensional than in low-dimensional search spaces:The maximal progress de-
pends on the search space dimensionality. The position of the maximum, i.e., the optimal learning rate
depends in all three cases on the search space dimension – decreasing with increasingN . Generally,
using (4.19) leads to an underestimate of the measured optimalτ but improves ifN growths.

The results of the experiments are in accordance with the results reported in[51] where the perfor-
mance of (µ/µI , λ)-ES was investigated experimentally. The most astonishing observation reported in
that work was that the performance of the ES sensitively depends on the choice of learning parameter.
Therefore, the adjustment of the mutation strength is only nearly optimal in a narrow τ -range leading
to a deterioration of the performance of the ES otherwise.

4.1.4 Self-Adaptation and Optimal Progress

As the revealed by the experiments and as predicted by (4.19), intermediate self-adaptive ES
exhibit a positive progress rate for a wide choice ofτ -values. But the ES are sensitive to the choice
of the learning rate. Nearly optimal progress in high-dimensional search spaces can only be achieved
in a relatively narrow range of learning rates in the vicinity of an optimum. This optimal learning rate
is easily obtained. To this end, maximizer of the progress rate (4.8) is needed. As stated in [23], the
optimal progress rate and mutation strength are given by

ϕ∗
Ropt

= max
σ∗

(cµ/µ,λσ
∗ − σ∗2

2µ
) =

µc2µ/µ,λ

2
and (4.21)
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Figure 4.1: The stationary mutation strength as a function of the learning rate.Shown are the results
for (10/10I , 60), 20/20I , 60), and (30/30I , 60)-ES. The data points denote the results of experiments,
whereas the solid lines depict (4.11).
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Figure 4.2: The stationary progress rate as a function of the learning parameterτ . Shown are from left
to right the results forN = 100 andN = 30. The results of (4.19) are presented by the blue curves,
whereas the red depict the results of using theN -dependent progress rate (4.20). The points indicate
the results of experiments.

ς∗ϕRopt
= arg max

σ∗
ϕ∗
R(σ∗) = µcµ/µ,λ,λ. (4.22)

Let us now consider the stationary mutation strength (4.11). Recall, by variating τ , (4.11) can be
varied between the zero of the SAR (4.17),ς∗ψ0

, and the second zero of the progress rate (4.13),
ς∗ϕR0

. The optimal mutation strength (4.22) is reachable since it lies inside the admissibleinter-
vall, [ς∗ψ0

, ς∗ϕR0
[. Equation (4.22) can be used to determine an optimal learning rate by requiring

that ς∗stat2(τ) = ς∗ϕ∗
Ropt

= 2µcµ/µ,λ and solving the equation forτopt (see Appendix D.1.2). After a

short calculation, the optimal learning rateτopt is given by
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Figure 4.3: The stationary progress rate as a function of the learning parameterτ . Shown are from
left to right the results forN = 10, 000 andN = 1, 000. The results of (4.19) are presented as the
blue curves, whereas the red curves depict the results of using theN -dependent progress rate (4.20).
The points indicate the results of experiments.

τopt =
1√
2N

√

√

√

√

µc2µ/µ,λ

µc2µ/µ,λ − 1/2− e1,1µ,λ
. (4.23)

As (4.23) shows, the optimal learning rate scales with1/
√

2N . Equation (4.23) can be rewritten to

τopt =
1√
2N

√

√

√

√

√

1

1− 1/2−e1,1
µ,λ

µc2
µ/µ,λ

. (4.24)

Provided thatµcµ/µ ≫ (1/2 + e1,1µ,λ)/cµ/µ,λ holds, the optimal learning rate is close to1/
√

2N . This
requires sufficiently large offspring populations and choosing neitherµ 6≈ 1 nor µ 6≈ λ. Figure 4.4
shows exemplary the dependency of the optimal learning rate on the parentnumberµ for λ = 10 and
λ = 60. Provided thatλ is not small, it can be seen that the optimal learning rate is close to1/

√
2N

for a relatively wide range ofµ. That is, choosingτ ≈ 1/
√

2N may be a good approximate for the
optimal learning rate for typical truncation ratios in the interval[0.125, 0.8].

Having derived an optimal learning rate, the question remains why ES with intermediate recombi-
nation suffer more severe performance losses than (1, λ)-ES from a non-optimal choice of the learning
rate.

4.1.5 Investigating the τ -Sensitivity of Intermediate ES

The performance sensitivity of (µ/µI , λ)-ES on the choice of the learning rate is in pronounced
contrast to the(1, λ)-ES. A (1, λ)-ES has a nearly optimal performance on the sphere test function
for a wide range ofτ -values. But what are the reasons for these different responses?In this section,
the underlying causes are investigated more closely.
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Figure 4.4: The optimal learning rate (4.23) as a function of the parent numberµ for (µ/µI , 10)-ES
and (µ/µI , 60)-ES.

Deviations from the optimal learning rate

Let us start with some exemplary results forN = 100. Figure 4.5 depicts the stationary progress
rate for some (µ/µI , λ)-ES. The transition fromµ = 1 to µ > 1 leads to a qualitative different
behavior: If there is only one parent, the stationary progress rate stabilizes on a nearly optimal level
for a relatively wide range ofτ ≥ τopt. If µ increases, this is not the case anymore. The stationary
progress rates show sharper peaks and the region with nearly optimal values becomes narrower.
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Figure 4.5: The stationary progress rate as a function of the learning parameterτ for µ = 1, µ = 2,
andµ = 10 bottom to top. The dashed curves represent the results of (4.19), whereas the solid lines
depict the results obtained using theN -dependent progress rate. The points indicate the results of
experiments.
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Deviating from τopt: The Stationary Mutation Strength

But why does the stationary progress rate behave in this manner? To answer that question, consider
first the stationary mutation strength (4.11). As stated, it depends onτ . The stationary mutation
strength is furthermore determined and influenced by the progress rate (4.8) and the self-adaptation
response (4.9). Recall, the progress rate (4.8),ϕ∗

R(σ∗) = cµ/µ,λσ
∗ − σ∗2/(2µ), reaches its optimum

ϕ∗
opt = µc2µ/µ,λ/2, (4.21), atς∗ϕopt

= µcµ/µ,λ, (4.22) and is positive for0 < σ∗ < 2µcµ/µ,λ. The SAR

(4.9),ψ(σ∗) = τ2(1/2 + e1,1µ,λ − cµ/µ,λσ∗), is a monotonously decreasing function with zero (4.17),

ς∗ψ0
= (1/2 + e1,1µ,λ)/cµ/µ,λ.
It will be shown in the following that the relation between the zero of the SAR (4.17) to the optimal

mutation strength (4.22) that is the size ofa := (1/2 + e1,1µ,λ)/(µc
2
µ/µ,λ) is a decisive parameter.

First of all note that any deviation with∆, ∆ ≥ 0 from the optimal learning rate cannot have
a significant effect if the limit of the stationary mutation strength is close to the optimal mutation
strength, i.e., if

lim
τ→∞

ς∗stat2(τ) =
1/2 + e1,1µ,λ
cµ/µ,λ

= ς∗ψ0
≈ ς∗ϕopt

= µcµ/µ,λ. (4.25)

As can be verified by case inspection, this is only the case for (1, λ)-ES but not for (µ/µI , λ)-ES.
Non-recombinative ES with only one parent can be expected to be robustagainst choices of larger
learning rates. This also translates to the progress rate (see Fig. 4.5).

As can be seen, intermediate ES do have a potential problem in the sense thattheir limit for
Nτ2 →∞ is smaller than the optimizer. For too large learning rates, problems occur and the station-
ary mutation strength deviates far from the optimizer. This is amplified if the parent-offspring ratio is
chosen around0.27 which is recommended as optimal in the case of the sphere: The zero of the SAR
is significantly smaller than the optimal mutation strength. In the case of (µ/µI , 60)-ES for example,
the ratio drops to< 0.2 for µ ∈ (5, 55) with a minimal value of≈ 0.023.

This is not the only problem, though. If the decline in the performance were gradual, the difference
between limit and optimal value would not be so decisive. The question remains: What are the effects
of smaller deviations from the optimalτ?

In the following part, this question is answered by taking a closer look at the influence of a de-
viation on the stationary progress rate (4.19) and stationary mutation strength(4.11). But first, the
equations are simplified. A straightforward comparison ofς∗ϕopt

and the zero of the SARς∗ψ0
=

(1/2 + e1,1µ,λ)/cµ/µ,λ (4.17) with the stationary mutation strength (4.11) shows that (4.11) can be re-
expressed by a very simple equation

ς∗st = ς∗ϕopt

(

(1− x) +
√

(1− x)2 + 2ax
)

:= ς∗ϕopt
f(x) (4.26)

with a = (1/2 + e1,1µ,λ)/(µc
2
µ/µ,λ) andx = Nτ2. Considering the optimal progress in the stationary

state, one would like to havef(x) = 1 so that the optimal mutation strength is assumed. This (cf.
(4.23)) equals the condition

xopt =
√

(1− xopt)2 + 2axopt

⇒ xopt =
1

2(1− a) . (4.27)
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Equation (4.27) is well-defined for alla ∈ (0, 1). The casea = 0 cannot occur. Ifa > 1, i.e.,
ς∗ψ0

> ς∗ϕopt
, the ES is unable to work with the optimal progress rate at any rate.

In the following, only the functionf is addressed that is the results obtained are relative to the
optimal mutation strength and do not depend on its height. Let the deviation be given by∆, ∆ ≥ 0.
Assuming smallness of the deviations,f can be expanded into its Taylor series aroundxopt. The
Taylor series off(x) = 1− x+

√

(1− x)2 + 2ax aroundxopt = 1/(2(1− a))is given by

Tf (xopt + ∆) = f(xopt) + f ′(xopt)∆ +
f ′′(xopt)

2
∆2 +O(∆3). (4.28)

The first derivative off is given by

f ′(x) =
x− (1− a)

√

(1− x)2 + 2ax
− 1 (4.29)

whereas the second reads

f ′′(x) =
1

√

(1− x)2 + 2ax
− (x− (1− a))2
√

(1− x)2 + 2ax
3 . (4.30)

First, note the following:

1. The functionf approachesa for x→∞.

2. For alla ∈ [0, 1), f ′(x) ≤ 0 for all x ≥ 0.

3. For alla ∈ [0, 1), f ′′(x) ≥ 0 for all x ≥ 0.

In other words, the first derivative is negative but monotonously increasing. Using the mean value
theorem, the absolute value of the deviation off is

|f(xopt + ∆)− f(xopt)| = |f ′(θ)|∆

for aθ with 0 ≤ θ ≤ ∆. Therefore,

|f(xopt + ∆)− f(xopt)| ≤ |f ′(xopt)|∆
= 2(1− a)2∆ (4.31)

follows. For∆→ 0, the inequality becomes “=”. Assuming that∆ is small enough so that the “=”-
sign roughly holds, the effect of the deviation depends on the parametera, i.e., the quotientς∗ψ0

/ς∗ϕopt
.

The effect of a deviation is enhanced for all choices ofa with a ≤ 1/
√

2. The question remains
though, whether this translates to the stationary optimal progress.

Deviating from τopt: The Stationary Progress Rate

The stationary progress rate can similarly be written as

ϕ∗
st = ϕ∗

opt2 f(x)(1− f(x)

2
)

:= ϕ∗
opt g(x) (4.32)

which can be seen by plugging (4.26) into (4.8). The question remains how (4.32) responds to devi-
ations fromxopt. This is analyzed in this section. Note that sincexopt leads to a global maximum
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g′(xopt) = 0 holds. The quantity of interest is the rate by which the optimum is left. Therefore, let us
consider the first derivative. The Taylor-Series ofg′ aroundxopt is given by

T ′
g(xopt + ∆) = g′(xopt) + g′′(xopt)∆ + g′′′(xopt)/2∆2 +O(∆3). (4.33)

The first derivative is given byg′(x) = 2f ′(x)(1 − f(x)) and the second byg′′(x) = 2f ′′(x)(1 −
f(x))− 2(f ′(x))2. The rate by which the optimum is left can be given by

|g′(xopt + ∆)− g′(xopt)| = 4(1− a)4∆ +O(∆2). (4.34)

Thus, the behavior of the stationary mutation strength and therefore of the stationary progress rate
can be traced back overa = (1/2 + e1,1µ,λ)/(µc

2
µ/µ,λ) to the SAR and the progress rate. Only if

a = (1/2 + e1,1µ,λ)/(µc
2
µ/µ,λ) ≈ 1 the stationary progress rate can be expected to be robust against all

choices ofτ ≥ τopt. Otherwise ifa = (1/2 + e1,1µ,λ)/(µc
2
µ/µ,λ) < 1 which equalsς∗ψ0

< ς∗ϕopt
, the

system eventually deviates from the actual optimum sinceς∗stat2 approachesς∗ψ0
for Nτ2 → ∞. The

rate by which the optimal progress rate (relative to the optimum, of course) is left also depends on this
ratio. The smallerς∗ψ0

is in comparison toς∗ϕopt
, the sooner the optimal progress rate is left and the

stronger the limit progress rate deviates fromϕ∗
opt.

It remains to investigate the effects of recombination on the SAR and the progress rate. Keepingλ
constant, the mutation strengthς∗ϕopt

= µcµ/µ,λ is a function ofµ. Its plot (see Fig. 4.6) is symmetrical
around the maximumµ = λ/2. The freeµ factor stems actually from the loss term of the progress rate
which is dampened by recombination. Considering the derivation of the progress rate [23, p. 210f]
or B.1.2 this loss term results from the perpendicular〈zB〉-component of (B.20). Recombination
actually leads to agenetic repaireffect because these harmful components are statistically averaged
out.

The zero of the SAR defines the mutation strength for which no change with respect toR(g)

is expected. That is, the non-normalized〈ς∗(g+1)〉 equals〈ς∗(g)〉 and any change from〈ς∗(g)〉 to
〈ς∗(g+1)〉 is a result ofϕ∗/N 6= 0. As the parental numberµ increases, the zeroς∗ψ0

decreases first.
Onceµ is closer toλ, it assumes larger values until it gets greater thanς∗ϕopt

and finally even greater
thanς∗ϕ0

.
In contrast to the progress rate, the SAR is not directly influenced by the recombination of the

object parameters: Here, the average is taken over the mutation strengths and the selection only con-
siders the fitness values, i.e., the resulting distances to the optimum. The recombination of the object
parameters from which the progress rate benefits occurs afterwards and thus cannot play a role in the
case of the self-adaptation response. The SAR is a linear function of the mutation strength with no
freeµ-term and is influenced by the parental number over the progress coefficients.

As a result, the effect of changingµ is somewhat more damped – compared to that ofς∗ϕopt
which

can be seen in Fig. 4.6.

4.2 Self-Adaptation and Noisy Fitness Evaluations: ( 1, λ)-ES

In this section, the analysis is extended to self-adaptation under noisy fitness evaluations. The
noise term is represented by the standard noise model, that is, by an additive normally distributed
noise term with zero mean and standard deviation or noise strengthσǫ.

Definition 4. The noisy sphere model with the standard noise model is given by

f(y) = g(‖y − ŷ‖) + ǫ (4.35)
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Figure 4.6: Comparison between the optimal point of the progress rate (symmetric curve),ς∗ϕopt
=

µcµ/µ,λ, and the zero of the SAR,ς∗ψ0
= (1/2 + e1,1µ,λ)/cµ/µ,λ, i.e., the limit of stationary mutation

strength forNτ2 →∞.

with ǫ ∼ N (0, σǫ), g : R → R a monotonously in- or decreasing function, andŷ the optimizer of
g.

In the following, only the case of quadratic sphere functions is explicitely considered, i.e.,g(R) =
±R2. The equations can be easily adapted to include the general case. The noise strengthσǫ can be
used to model several situations. This section focuses on the most common scenario: The strength
of the noise is independent of the position of the ES in the search space. The noise strengthσǫ is
assumed to be a constant value,σǫ = c. This causes the influence of the noise to change through
the search space. Dependent on the distance‖y − ŷ‖, it may have high influence if the value of|g|
is small or it may be negligible for large|g|-values. Note, this noise model actually prevents the ES
(recombinative or non-recombinative) to converge to the optimalŷ as was shown in various papers by
Beyer and Arnold (see, e.g., [24, 25, 4]). In the following the evolution of the ES under this type of
noise is referred to asevolution under permanent noiseσǫ.

4.2.1 Modeling the Evolution Strategy

To model the evolution strategies, again the evolution equations

R(g+1) = R(g) − ϕR(ς(g), R(g), σǫ) + ǫR(ς(g), R(g), σǫ) (4.36)

ς(g+1) = ς(g)
(

1 + ψ(ς(g), R(g), σǫ)
)

+ ǫσ(ς
(g), R(g), σǫ) (4.37)

are used. The termsǫR andǫσ cover the perturbations whereas the progress rateϕR and self-adaptation
responseψ stand for the expected changes. In the following, the usual normalizationsare introduced
– settingσ∗ := (N/R)ς(g), ϕ∗

R := (N/R)ϕR, andσ∗ǫ := [N/(2R2)]σ
(g)
ǫ . As before,R := R(g) is

used in order to shorten the notation. The last normalization

σ∗ǫ :=
N

2R2
σ(g)
ǫ . (4.38)

gives raise to a third evolution equation

R(g+1) = R
(

1− 1

N
ϕ∗
R(σ∗, R, σ∗ǫ )

)

+ ǫ∗R(σ∗, R, σ∗ǫ ))
)

(4.39)
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ς∗(g+1) = σ∗
( 1 + ψ(σ∗, R, σ∗ǫ ) + ǫ∗σ(σ

∗, R, σ∗ǫ ))

1− 1
Nϕ

∗
R(σ∗, R, σ∗ǫ ) + ǫ∗R(σ∗, R, σ∗ǫ ))

)

(4.40)

σ∗ǫ
(g+1) =

σ∗ǫ
(

1− 1
Nϕ

∗
R(σ∗, R, σ∗ǫ ) + ǫ∗R(ς∗, R, σ∗ǫ ))

)2 . (4.41)

The progress rate is derived in Appendix B.1. ForN →∞ andτ = 0

ϕ∗
R(σ∗, R, σ∗ǫ ) = c1,λ

σ∗2

√

σ∗2 + σ∗ǫ
2
− σ∗2

2
(4.42)

is obtained. The derivation of the SAR (cf. C.1.1, Eq. (C.36)) gives

ψ(σ∗) = τ2
(

(d
(2)
1,λ − 1)

σ∗2

σ∗2 + σ∗ǫ
2 − c1,λ

σ∗2

√

σ∗2 + σ∗ǫ
2

)

(4.43)

for N → ∞ andτ ≪ 1. The progress coefficientd(2)
1,λ in (4.43) is a special case of the progress

coefficients and is defined by

d
(k)
1,λ :=

λ√
2π

∫ ∞

−∞
tke−

t2

2 Φ(t)λ−1 dt (4.44)

([23, p. 119]). Note,d(2)
1,λ − 1 = 1/2 + e1,11,λ holds. The evolution of theσSA-ES is fully described

by the system of stochastic evolution equations (4.39), (4.40), and (4.41). Due to the stochasticity, the
general solution would be given by a time-dependent pdfp(r, ς∗, σ∗ǫ )

(g) to be obtained by solving the
corresponding Chapman-Kolmogorov-Equations. In this section, it is abstained from trying to solve
these equations by means of analytical approximations in general. Instead,only the stationary state
(also referred to as steady state) is considered which is observed for asufficiently large generation
time g, i.e., in the limitg → ∞. Furthermore, we will not search for the steady state pdf, but rather
for its first moment assuming that the fluctuating parts in the evolution equations (4.39), (4.40), and
(4.41) can be neglected. This is a rather crude approximation, thereforeit will be compared with
simulations.

4.2.2 The Stationary State

As already mentioned, the stochastic perturbation parts of the evolution equations (4.39), (4.40),
and (4.41) are neglected. Applying thus a deterministic approach, the equations simplify to

R(g+1) = R

(

1− 1

N
ϕ∗(ς∗(g), σ∗ǫ

(g))

)

(4.45)

ς∗(g+1) = σ∗
1 + ψ(ς∗(g), σ∗ǫ

(g))
(

1− 1
Nϕ

∗(ς∗(g), σ∗ǫ
(g))
) (4.46)

σ∗ǫ
(g+1) =

σ∗ǫ
(g)

(

1− 1
Nϕ

∗(ς∗(g), σ∗ǫ
(g))
)2 . (4.47)

As (4.45) to (4.47), (4.42), and (4.43) show, theR-evolution, Eq. (4.45), is governed by the evolution
of the mutation and the noise strength, Equations (4.46) and (4.47). However, (4.46) and (4.47) do
notdepend on (4.45). That is why only the system (4.46) and (4.47) has to beconsidered whereas the
R-dynamics is fully controlled by the solution of (4.46) and (4.47).
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Evolution under Permanent Noise σǫ

Let us now consider the case of a constant noise strengthσǫ. The normalized noise strength
defined in (4.38),σ∗ǫ

(g) = σǫ[N/(2(R(g))2)], gradually increases during the course of the evolution
until no progress is possible anymore and the evolution of theR(g) comes to a halt (on average).

Three phases can be distinguished: As long as the system is far away from the optimum, the
influence of the normalized noise strength can be neglected. The situation resembles the undisturbed
sphere. As a consequence, the steady state formula

ς∗st = c1,λ(1−Nτ2) +

√

c21,λ(1−Nτ2)2 +Nτ2(2d
(2)
1,λ − 1), (4.48)

obtained in [23], holds. Considering the maximizerς∗ = c1,λ of the noise-free progress rate, the

optimal learning rate readsτ = c1,λ/
√

N(2c21,λ + 1− 2d
(2)
1,λ).

As the ES progresses and the normalized noise strength increases,ς∗ = c1,λ does not fulfill the
steady state condition anymore. The former steady state is lost. The increasing noise strengthσ∗ǫ

(g)

influences the equations more and more and leads to a continuously changingmutation strength.
Finally, theR- andς∗-dynamics converge to a stationary state which is characterized byϕ∗

R(σ∗, σ∗ǫ )
=0 andψ(σ∗, σ∗ǫ ) = 0.

The focus of this section lies on the stationary state behavior. Before continuing, the zero points
of the progress rate and SAR have to be determined. Let us start with the progress rate. There are two
qualitatively different zeros ofϕ∗

R (4.42),ς∗ϕR1
= 0 (associated ideally withσ∗ǫ = 2c1,λ) and

ς∗ϕR2
=
√

4c21,λ − σ∗ǫ 2. (4.49)

Demanding stationarity of theσ∗-evolution, i.e.,ψ = 0, the latter condition (4.49) can be used to
determine a stationary mutation strengthς∗st and thus the corresponding noise strengthσ∗ǫ st. Setting
ψ(ς∗st) = 0 gives

0 =
1

2
+

(ς∗st)
2

(ς∗st)2 + (σ∗ǫ st)
2
(d

(2)
1,λ − 1)− c1,λ(ς

∗
st)

2

√

(ς∗st)2 + (σ∗ǫ st)
2

⇒ 0 =
1

2
+ (ς∗st)

2
d

(2)
1,λ − 1− 2c21,λ

4c21,λ
(4.50)

The so obtained stationary mutation strength

ς∗st = 2c1,λ
1

√

2(2c21,λ + 1− d(2)
1,λ)

. (4.51)

can be used together with (4.49) to determine the stationary noise strength

σ∗ǫ st = 2c1,λ

√

1− 1

2(2c21,λ + 1− d(2)
1,λ)

(4.52)
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and usingσ∗ǫ
(g) = σǫ[N/(2(R(g))2)] to obtain a residual location error

Rst =
2

√

√

√

√

√

σǫN

4c1,λ

√

√

√

√

2(2c21,λ + 1− d(2)
1,λ)

2(2c21,λ + 1− d(2)
1,λ)− 1

(4.53)

defined for2c21,λ + 1− d(2)
1,λ > 1/2.

Discussion of the Stationary State

As explained above, theR-evolution is governed by the evolutions of the mutation strength and the
noise strength. Therefore, it suffices to consider the evolution equations for the latter. Taking (4.46)
and (4.47) into account, there are two different pairs of equilibrium pointsof the evolution equations
The first withe1 = (0, w)T with w ∈ R and ideallyw = 2c1,λ and the second ate2 = (s2, w2)

T with
s2 given by (4.51) andw2 by (4.52). The question arises which of these pairs is locally stable, i.e.,
stable w.r.t. small disturbances.

To this end, a linear approximation in the vicinity of the fixed point or equilibrium solution,
respectively, is used again. The first equlibrium solution,e1 = (0, w)T, is not stable since it admits
an unstable local manifold (see D.2.1). The stability of the second equilibrium point (4.51) and (4.52)
is determined numerically since the expression obtained is rather clumsy. In Appendix D.2.1, it is
shown that the second stationary solution is stable via the linear approximation ifτ > 0 – at least for
the sphere. Figure 4.7 illustrates the behavior of the equilibrium points if small disturbances occur.

Interestingly, the distanceRBst = 2
√

σǫN/(4c1,λ) obtained as an ideal case for a vanishing mutation
strength and for a noise strengthσ∗ǫ st = 2c1,λ does not differ much from (4.53) (see Fig. 4.8). If the
size of the offspring population is sufficiently large, the difference is negligible. This means in turn
that any mutation strength between zero and (4.51) leads to similar residual location errors.

Simulations: Comparison with Experiments

In this section, the predicted stationary mutation strength (4.51) and the residual location error
(4.53) are compared with the results of experiments. The quadratic spherewas chosen as test function
in all experiments.

Figure 4.8 compares the predicted expectedR-value at the steady state with simulations of real
ES runs depending on the number of offspring individuals. As one can see, the predictive quality of
(4.53) is rather good, however, one observes some randomly appearing small deviations of some data
points from the curve. There is a deeper reason for this behavior whichcan be traced back to the
σ∗-evolution.

Figure 4.9 a) presents the long-termσ∗-dynamics of a typical run of an(1, 100)-ES on a sphere
with constant noise strength. After approaching the vicinity of the steady state (within a few hundred
generations if the learning rate is chosen appropriately) the initial steady state is lost again. Unlike
the prediction of thedeterministicapproximation, the ES is generally not able to regain the predicted
steady stateς∗ (4.51). Sometimes short nearly stationary phases exist, but they appear only sporad-
ically. The only observable tendency seems to be a general preferenceof small mutation strengths.
That is, the predicted stationary mutation strength (4.51) cannot be observed after reaching the vicin-
ity of Rst. However, the resulting effect on the finally observed steady stateR is rather small: Since
any mutation strength between zero and (4.51) leads to nearly the same residual location error, both
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Figure 4.7: Behavior of the evolution equations (4.46) and (4.47) close to the fixed points. As pa-
rametersλ = 100, N = 100, andτ = 0.1 were chosen. The dashed lines represent the steady state
mutation strength (4.51) and the noise strength (4.52), respectively.

estimates (4.53) andRBst = 2
√

(σǫN)/(4c1,λ) serve relatively well as predictors of the finalRst which
can be seen in Fig. 4.8.

Interestingly, it can be seen in Fig. 4.9 that the non-existence of a final stationary state of the muta-
tion strength seems to occur only in the case of (1, λ)-ES. If intermediate recombinative (µ/µI , λ)-ES
are used, the behavior changes qualitatively: The mutation strength fluctuates very stably around a
stationary value. This interesting phenomenon is discussed in the next section.

On the Erratic Behavior of the ( 1, λ)-ES and a Possible Remedy

In order to discuss the steady state behavior of the ES, it should be recalled that the ES is operating
in the large-noise regime. After having reached the vicinity ofRst, the noise with strengthσǫ = const.
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Figure b) shows the relative deviation of (4.53) fromRBst.

is so large that it totally overshadows the actual fitness information. Thus, the selection process
becomes nearly random, i.e., theσ∗-evolution is basically driven by random samples from a log-
normal distribution with parameterτ . Under this condition, the probability of an in- or decrease of
the mutation strength equals1/2

Pr
(

ς∗(g+1) ≤ ς∗(g)
)

=

∫ ς∗(g)

0

e−
(ln(ς∗/ς∗(g)))2

2τ2

τς∗
√

2π
dς∗

=

∫ 0

−∞

e−
t2

2τ2

τ
√

2π
dt = Φ0,τ2(0) =

1

2
. (4.54)

Put it another way, theσ∗-evolution of the(1, λ)-σSA-ES performs a biased random walk: It prob-
abilistically accepts anyς∗-decrease, however, it punishes largeς∗ values due to their selective dis-
advantage. As a result, the(1, λ)-σSA-ES has a slight tendency towards smaller mutation strengths.
This is a clear disadvantage of the standard version of(1, λ)-σSA-ES. A possible remedy would be to
increase the probability ofσ∗-increases slightly. This idea will be taken up again.

But before let us consider recombinative strategies. The question arises why recombinative strate-
gies exhibit a qualitatively different behavior. For sake of simplicity, the case of an infinite number
of parents is considered. Without loss of generality, letς∗(g) = 1. Since the mutation strengthsYi of
theµ parents are independently identically distributed random variables with meanm = exp(τ2/2)
and variances2 = exp(τ2)[exp(τ2) − 1], the sum1/µ

∑µ
i=1 Yi converges to a normally distributed

random variableS ∼ N (m, s2/µ). If µ is sufficiently large, the probability that the mutation
strength decreases can be estimated using the cdf of the normal distribution.The probability of
(1/µ)

∑µ
i=1 Yi ≤ 1 becomes

Pr

(

1

µ

µ
∑

i=1

Yi ≤ 1

)

→ Φ





√
µ

1− e
τ2

2

√

eτ2(eτ2 − 1)



 (4.55)

which is smaller than1/2 if τ > 0. Actually, this preference forσ∗-increases can also be shown
for the smallest parental population sizeµ = 2. Therefore, an intermediate recombinative strategy
possesses a natural tendency to provide more increases than decreases.
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Figure 4.9: Theσ∗-evolution of some typical(µ/µI , 100)-ES runs (N = 100) on the quadratic
sphere. Shown are the results forτ = 0.01 (topmost curve),τ = 0.1, andτ = 0.9 (lowest curve).
The duration of the initial steady state forς∗(g) depends onτ and thus on the convergence velocity of
theR-variable towards the final steady state.

As to the(1, λ)-ES, this suggests the introduction of a slight preference forσ∗-increases in the
mutation operator by using a log-normal distribution

p∗σ(ς
∗|σ∗) =

1

ς∗τ
√

2π
exp

(

−(ln(ς∗/σ∗)− β)2

2τ2

)

(4.56)

with a biasβ > 0. The question remains how to chooseβ. On the one hand, it has to be sufficiently
large to induce a trend towards larger mutation strengths. One the other handconsidering the change
σl = σ(g)ζ, theE[ζ] ≈ 1 condition still has to be fulfilled.

Figure 4.10 shows the results of some ES-runs with different choices ofβ. The effect of the bias
β also depends on the learning rate: Ifτ is relatively large, the ES tends towards smaller values and
shows irregular patterns. An increase ofβ changes the behavior. Larger learning rates seem to require
larger biases in turn. Otherwise, a learning rate that is too small may lead to divergent behavior.

In order to investigate this behavior theoretically, one can apply the techniques developed in this
section. In what follows, only a short sketch of the derivations is provided. Introducingβ > 0 changes
the raw moments of the log-normal distribution toς∗k = (ς∗(g))kexp(kβ)exp(k2τ2/2). Thus, ifβ is
chosen sufficiently small, approximations with Taylor series as used in Appendix C.1 are still valid.
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Figure 4.10: Dynamics of the normalized mutation strength of (1, λ)-ES. Shown are the results of
typical ES runs on the quadratic sphere. The dimension of the search space isN = 100 and the noise
strength is set toσǫ = 1.
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Therefore, the derivation of the SAR remains the same. The only change occurs in the last step
of the calculations leading from (C.21), p. 143, over (C.22) to (C.23), because the expectations of
[(ς∗ − σ∗)/σ∗]k in (C.21) w.r.t. the log-normal density with biasβ = 0 must be replaced. Finally
SAR (C.23) becomes

ψ = τ2eβ
[1

2
+ eβ(d

(2)
1,λ − 1)

(σ∗)2

(σ∗ǫ )2 + (ς∗)2
− eβc1,λ(σ

∗)2
√

(σ∗ǫ )2 + (σ∗)2

]

. (4.57)

Now the stationary points, i.e., the solutions ofϕ∗ = 0 andψ = 0 using (4.42) and (4.57) are
determined. The conditionϕ∗ = 0 gives(ς∗(g))2 + (σ∗ǫ

(g))2 = 4c21,λ. Inserting this into (4.57) leads
to the stationary mutation strength

0 =
1

2
+ eβ(d

(2)
1,λ − 1)

ς∗st
2

σ∗ǫ
2
st + ς∗st

2 −
eβc1,λς

∗
st

2

√

σ∗ǫ
2
st + ς∗st

2

⇒ 0 =
1

2
+ eβς∗st

2

(

(d
(2)
1,λ − 1)

4c21,λ
− 1

2

)

⇒ ς∗st =
2c1,λe

−β
2

√

2(2c21,λ + 1− d(2)
1,λ)

. (4.58)

Finally, the associated noise strengthσ∗ǫ st = 2c1,λ

√

1− e−β

2(2c21,λ+1−d(2)1,λ)
gives an estimate of the

residual location error

Rβst = 2

√

√

√

√

√

σǫN

4c1,λ

√

√

√

√

1

1− e−β

2(2c21,λ+1−d(2)1,λ)

. (4.59)

As can be shown numerically (see Fig. 4.11), as long asβ is sufficiently small, the estimates (4.58)
and (4.59) do not differ significantly from (4.51) and (4.53) obtained for β = 0.

Several caveats must be added here. It seems to be difficult to find a value of β that on the one
hand raises the mutation strength sufficiently and on the other hand does notlead to a deterioration
of the residual location error. In addition, the estimates only hold for sufficiently smallβ-values
and they do not account for the interplay with the learning parameterτ . Considering the results of
the experiments (see Fig. 4.12), one finds that in the case of largerβ-values, i.e., here already for
β ≥ 0.01, the predicted mutation strength (4.58) is lower than the experimentally observed one.
Also, the ES shows a significant greater sensitivity to the choice ofβ than predicted by (4.58). These
deviations clearly indicate the limits of the deterministic analysis presented.

4.3 Intermediate ES on the Noisy Sphere

In this section, the analysis of evolution strategies on the noisy sphere is extended to ES with
intermediate recombination. The approach mirrors that of Section 4.2 closely.Therefore, this sec-
tion is kept short – only pointing out the differences between intermediate (µ/µI , λ)-ES and non-
recombinative(1, λ)-ES.
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Figure 4.11: Comparison of the predictions of the stationary mutation strength and the residual loca-
tion error. Figure a) shows the prediction obtained byRst (4.53) andRβst (4.59). Figure b) compares
the mutation strengths (4.58) and (4.51). The dimension isN = 100 and the noise strengthσǫ = 1.
The gray lines indicate the results forλ = 100 whereas the black stand forλ = 10.

The Evolution Equations for Intermediate Evolution Strategies

As in the case of (1, λ)-ES, two variables are initially used to describe the system: The distance
of the centroid to the optimizerR(g) = ‖〈y(g)〉 − ŷ‖ and the mean of the mutation strength〈ς(g)〉. To
simplify the notations, the usual normalizations are introduced withR := R(g), σ∗ := (N/R)〈ς(g)〉,
σ∗ǫ := [N/(2R2)]σǫ, andϕ∗

R := (N/R)ϕR. After normalizing, the normalized noise strength appears
as an additional time-dependent variable. Using the same arguments as in the previous section, the
analysis can be restricted to the study of the evolution of the noise and the mutation strength. Starting
point of the analysis are therefore the deterministic evolution equations

〈ς∗(g+1)〉 = σ∗
(

1 + ψ(σ∗, σ∗ǫ )

1− ϕ∗
R(σ∗,σ∗

ǫ )
N

)

σ∗ǫ
(g+1) =

σ∗ǫ

(1− ϕ∗
R(σ∗,σ∗

ǫ )
N )2

. (4.60)

The progress rateϕ∗
R and SARψ are obtained as

ϕ∗
R(σ∗, σ∗ǫ ) =

σ∗2

√

σ∗2 + σ∗2
ǫ

cµ/µ,λ −
σ∗2

2µ
(4.61)

for N →∞ andτ = 0 (see Appendix B.1) and

ψ(σ∗, σ∗ǫ ) = τ2
(1

2
+

σ∗2

σ∗2 + σ∗ǫ
2 e

1,1,
µ,λ −

σ∗2

√

σ∗2 + σ∗2
ǫ

cµ/µ,λ

)

(4.62)

for N →∞ andτ ≪ 1 (see Appendix C.1.1).

4.3.1 The Evolution of Intermediate Evolution Strategies unde r Noise

Let us assume that the ES starts far away from the optimizer. Again, three phases can be distin-
guished:
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Figure 4.12: Comparison of the predictions of the stationary mutation strength (4.58) and the residual
location error (4.59) with the results of experiments on the sphere function for some choices ofβ.
The search space dimension isN = 100, the noise was set toσǫ = 1, andτ = 0.1 was chosen as
the learning parameter. Each data point was averaged over500, 000 generations. The vertical bars
indicate the measured standard deviations.

1. An initial stationary phase: As long as the ES is far away from the optimum, theinfluence of the
noise is negligible. The ES behaves in a similar manner as in the undisturbed case and reaches
a temporary stationary point of the normalized〈ς∗(g)〉-evolution.

2. A transitional phase: Since the ES progresses towards the optimum, the noise term gains more
and more influence. This results in a loss of the stationary state and a nearly chaotic movement
until the progress towards the optimum stops entirely (on average).

3. A final stationary phase: This is due to the fact that uniform additive noise hinders the ES
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from approaching the optimum. Instead a new stationary state is reached with the distanceR
fluctuating around a positive value. The same holds for the mutation strength.

In the following, the different stationary states are characterized and theinfluence of recombination
on the behavior is discussed.

The Initial Stationary State and the Influence of Recombination

Recall from Section 4.1, that the initial stationary state (after a transient time) isa stationary state
of the 〈ς∗(g)〉-evolution only. IfR ≫ 1, the influence ofσ∗ǫ is negligible and the results obtained in
Sec. 4.1 apply:

1. The stationary state (4.11) reads

ς∗st = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 +Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ



 .

2. The stationary mutation strength and progress rate depend strongly on the correct choice of the
learning rate (4.23)

τopt =
1√
2N

√

√

√

√

µc2µ/µ,λ

µc2µ/µ,λ − 1/2− e1,1µ,λ
.

Otherwise, the progress may degrade significantly.

3. Nevertheless, recombination is beneficial since the maximal possible progress depends on the
µ : λ-ratio and is highest forµ ≈ 0.27λ.

As mentioned, this steady state is lost eventually. But choosing theµ : λ ratio and the learning rate
accordingly ensures that the progress of the ES is nearly optimal as long as the stationary state persists.

The Final Stationary State

The influence of recombination on the final stationary state needs to be discussed. It was claimed
in the previous section that recombination of the mutation strengths is beneficialsince it introduces a
bias. In contrast to non-recombinative ES, no loss of mutation strength control occurs. For an analysis,
the respective stationary mutation strength and distance for recombinative ES need to be obtained. The
approach followed mirrors the one taken in the previous section. The stationary mutation strength
reads

ς∗st =
2µcµ/µ,λ

√

4µc2µ/µ,λ − 2e1,1µ,λ

(4.63)

and is connected with the stationary noise strength

σ∗ǫ st = 2µcµ/µ,λ

√

√

√

√

4µc2µ/µ,λ − 2e1,1µ,λ − 1

4µc2µ/µ,λ − 2e1,1µ,λ
, (4.64)
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and the residual location error

Rst =

√

σǫN

4µcµ/µ,λ

4

√

√

√

√

4µc2µ/µ,λ − 2e1,1µ,λ

4µc2µ/µ,λ − 2e1,1µ,λ − 1
(4.65)

A derivation can be found in Appendix D.2.2. Note, in the case of the usualµ : λ-ratios2µc2µ/µ,λ ≫
e1,1µ,λ holds and the stationary mutation strength (4.63) scales with

√
µ – provided thatλ is large.

Therefore, recombination increases the normalized mutation strength.
The normalized noise strength (4.64) and residual location error (4.65) are given as a product of

two factors: The first stems from demanding stationarity of theR-evolution and thereforeϕ∗
R = 0

which leads to the conditionσ∗2 + σ∗ǫ
2 = 4µ2c2µ/µ,λ. Settingσ∗ = 0 leads to the first factor in (4.64)

and (4.65). The second factor gives the deviation due to the non-zero stationary mutation strength
(4.63). But the normalized noise strength (4.64) does not deviate far from the maximally possible
noise strength2µcµ/µ,λ if the offspring population is large.

A similar result holds for the location error. First of all, the minimal location error given by
√

σǫN/(4µcµ/µ,λ) is symmetric around its minimum forµ : λ = 0.5. The region around the min-

imum is relatively flat and nearly optimal distances are obtainable forµ : λ ∈ [0.2 − 0.7]. The ES
with (4.65) deviates from this optimal value, though, which is due to the non-zero mutation strength.
However, this deviation is small. Recombination may lower (4.65), so that it gets even closer to
the minimal location error: For relatively largeλ-values and ifµ is neither close to one or toλ, the
following approximate steady state values hold





σ∗ǫ app
ς∗app
Rapp



 =







2µcµ/µ,λ√
µ

√

σǫN
4µcµ/µ,λ






. (4.66)

To summarize, recombination on the noisy sphere is beneficial: Recombination of the object variables
enables a closer approach to the actual optimum. Recombination of the mutation strengths enforces
a positive stationary mutation strength and does not result in a loss of step-size control. In addition,
the deviations from the minimal location error are small and improve forµ : λ-ratios in the interval
usually recommended.

Simulations

It remains to compare the predictions by (4.63), (4.64), and (4.65) with the results of experiments.
In the experiments, (µ/µI , 60)-ES were used. The mutation strength and distance were aggregated
over 400, 000 generations in the steady state regime forN = 100 andN = 30. The experiments
were conducted using the log-normal distribution. Figure 4.13 compares thepredictions with the
experimental results. Figure 4.13 also depicts the approximated stationary state values (4.66) (dashed
gray line). These estimates serve well to predict the experimental results for parent numbers between
µ = 10 andµ = 40. As it can be seen, the agreement between experiment and prediction is good,
in general. Note, though, the mutation strength is overestimated as a rule. As it can be seen, the
dependency of the prediction quality on the search space dimensionality is relatively weak. Even
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for N = 30 good estimates can be obtained. Only in the case of the noise strength, the increase of
the dimensionality leads to a better prediction quality. The mutation strength and the location error
are predicted well even forN = 30. However, the standard deviations are smaller in the higher
dimensional search space.
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Figure 4.13: Comparison of the predictions of the residual local error (4.65), noise strength (4.64), and
mutation strength (4.63) with the results of experiments. The dotted gray lines denote the approximate
stationary state values (4.66). All data points are sampled over400, 000 generations in the steady state.
The error bars indicate the size of the standard deviations. The search space dimensionality was set to
N = 100 andN = 30. The noise strength was set toσǫ = 1.
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4.4 Including the Fluctuation Part: A Second Order Approach

In this section, the analysis is extended to evolution equations comprising the perturbation parts.
The aim is to provide a better estimate of the mean value dynamics and stationary state behavior
of self-adaptive ES. As introduced in Chapter 3, the unknown distributionof the perturbation parts
is approximated using an Edgeworth series expansion. The expansion is cut off after the first term
assuming that higher order cumulants do not have a significant influence inthe scenario under inves-
tigation. That is to say, the distribution is assumed to be sufficiently Gaussian sothat the deviations
from the normal distribution do not have significant effects in the mean valuedynamics of evolution
strategies.

4.4.1 The Evolution Equations

The analysis is started considering the evolution equations

R(g+1) = R− ϕR(σ)

N
− ǫR(R, σ) (4.67)

〈ς(g+1)〉 = σ
(

1 + ψ(σ)
)

+ ǫσ(R, σ). (4.68)

First of all, the usual normalizations are introduced withϕ∗
R := N/RϕR, σ∗ := N/Rσ, ǫ∗σ := ǫσ/σ

∗,
andǫ∗R := ǫR/R. Equations (4.67) and (4.68) change to

R(g+1) = R
(

1− ϕ∗
R(σ∗)
N

+ ǫ∗R(R, σ∗)
)

(4.69)

〈ς∗(g+1)〉 = σ∗
( 1 + ψ(σ∗) + ǫ∗σ(R, σ

∗)

1− ϕ∗
R(σ∗)
N + ǫ∗R(R, σ∗)

)

. (4.70)

Recall, the perturbation terms are modeled with

ǫ∗R =
Dϕ

R
N (0, 1) + . . . =

√

ϕ
(2)
R − ϕ2

R

R
N (0, 1) + . . .

=
1

N

√

ϕ∗(2)
R − ϕ∗

R
2N (0, 1) + . . . (4.71)

ǫ∗σ =
Dψ

σ∗
N (0, 1) + . . . =

√

ψ(2) − ψ2N (0, 1) + . . . . (4.72)

The inclusion of the perturbation parts changes the equations. Whereas itwas sufficient in the deter-
ministic approach just to calculate the progress rate (4.8),

ϕ∗
R(σ∗) = cµ/µ,λσ

∗ − σ∗2

2µ
,

and the SAR (4.9),

ψ(σ∗) = τ2
(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

,

the second order approach requires the second order progress rateϕ∗
R

(2) and the second order SAR
ψ(2). Both are obtained in the appendix (see Appendices B.1.3 and C.5). Note thefollowing: The
second order progress rate and the square of the progress rate average out. Thus for (µ/µI , λ)-ES the
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evolution equation with the perturbation part approximated with a normal distribution degrades to the
deterministic case. This does not occur in the case of the evolution of the mutation strength. In this
case the variance must be determined. The influence of the square of the first order SAR is of order
O(τ4) and only the second order SAR (C.159), p. 186,

ψ(2) =
τ2

µ
(4.73)

will be taken into account leading finally to a linear term inτ .

4.4.2 The Mean Value Dynamics of the Mutation Strength

Before starting, let us simplify the notations settingς∗ := 〈ς∗(g+1)〉. As said before, the moments
of the distributionp(ς∗) starting with the expectation have to be obtained. At this moment the tran-
sition densities are not needed. Before starting with the calculations, the evolution equation (4.70) is
simplified which requires some assumptions. First: Assuming thatϕ∗ ≪ N for all ς∗ with positive
measure, the function1/(1− ϕ∗

R/N) is expanded into

1

1− ϕ∗
R(σ∗)
N

= 1 +
ϕ∗
R(σ∗)
N

( 1

1− ϕ∗
R(σ∗)
N

)

= 1 +
ϕ∗
R(σ∗)
N

+O
(

(ϕ∗
R(σ∗)
N

)2
)

. (4.74)

Equation (4.70) changes to

ς∗ = σ∗
(

1 + ψ(σ∗) +

√

ψ(2) − ψ2N (0, 1)
)(

1 +
ϕ∗
R(σ∗)
N

)

. (4.75)

Under the further conditions thatψϕ∗
R ≪ N and that the realizations of

√

ψ(2) − ψ2N (0, 1)ϕ∗
R are

generally smaller thanN

ς∗ = σ∗
(

1 + ψ(σ∗) +

√

ψ(2) − ψ2N (0, 1) +
ϕ∗
R(σ∗)
N

)

(4.76)

is obtained. Using theN -independent variants, the progress rate and the self-adaptation response are
given by Eqs. (4.8) and (4.9). The expectation of (4.76)

E[ς∗] = σ∗
(

1 + τ2

(

1

2
+ e1,1µ,λ

))

− σ∗2cµ/µ,λτ
2

(

1− 1

Nτ2

)

− τ2 σ∗3

2µNτ2
(4.77)

depends on the past values through higher order moments. As a result, theexpectations ofς∗2 and
ς∗3 are needed. It will be shown that they in turn depend on the past throughhigher order terms. The
expectation of the square is given by

E[ς∗2] = σ∗2
(

1 + τ2[1 + 2e1,1µ,λ +
1

µ
]
)

− 2σ∗3τ2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗4 τ
2

µ

1

Nτ2
. (4.78)

The expectationE[ς∗3] can be approximated with

E[ς∗3] = σ∗3

(

1 + 3
τ2

µ
+ 3
(

1 +
τ2

µ

)

τ2
(1

2
+ e1,1µ,λ

)

)

− 3
(

1 +
τ2

µ

)

τ2cµ/µ,λσ∗4
(

1− 1

Nτ2

)

−3
(

1 +
τ2

µ

)

τ2 σ∗5

2µNτ2
. (4.79)
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4.4.3 The ES in the Stationary State

Let us now address the stationary state behavior. As the result,E[ς∗] = E[σ∗] = E[σ∗∞] holds.
Equations (4.77), (4.78), and (4.79) lead to the non-linear equations

0 = σ∗∞

(

1

2
+ e1,1µ,λ

)

− σ∗∞2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞
3

2µNτ2
(4.80)

0 = σ∗∞
2
(

1 + 2e1,1µ,λ +
1

µ

)

− 2σ∗∞
3cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞4 1

µNτ2
(4.81)
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which could be solved if the invariant density ofσ∗∞ were known. Instead of determining the invariant
density, a so-calledansatzis used. The ansatz consists in using a specific distribution to model the
behavior of the mutation strength in the stationary state. In this section, a log-normal distribution in
the stationary state is assumed, i.e., the moments are of the general formσ∗∞

k = S exp(k2t2/2). The
constantsS andt have to be determined which is done in the next paragraph.

A Log-Normal Distribution in the Stationary State

Pluggingσ∗∞
k = S exp(k2t2/2) into Eqs. (4.80)-(4.82) leads to
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3
2
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with unknown parametersS andt. Note that the equations above lead to a nonlinear system the general
solution of which cannot be provided analytically. It is possible, though, toobtain numerical solutions.
To this end, MATHEMATICA was used to determine the solutions of the first twoequations.

Comparison with Experiments Figure 4.14 shows histogram plots of some (µ/µI , 60)-ES for
the search space dimensionalityN = 100. The relative frequencies were sampled over500, 000
generations in the stationary state regime. Due to the fast convergence of the ES, the learning rate
was set toτ = 0.01. Also depicted are the pdfs of a Gaussian and a log-normal distribution using
the sample mean and variance. As can be seen, the log-normal distribution serves relatively well as
reference function for the unknown steady state distributions.

Figure 4.15 shows the stationary mutation strength obtained using (4.85) in comparison with the
stationary mutation strength observed in experiments. The mutation strength is depicted as a function
of the learning rate. The experiments were conducted using a(µ/µI , 60)-σSA-ES. Each data point
was sampled over at least100, 000 generations in the stationary state. It should be mentioned here
that since the convergence velocity depends on the learning rate, the duration of the stationary phase
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may be short due to the fast reduction of the distance to the optimizer to zero. As it can be seen in
Fig. 4.15, the quality of the prediction depends strongly on the search space dimensionality which is
due to using theN -independent formulae in the derivations.

In addition to the mutation strength, Fig. 4.15 compares the predicted stationary progress rate
with the result of experiments. The predicted stationary progress rate wasobtained by inserting the
moments of the stationary mutation strength into (4.8). Again, there are considerable deviations in the
smaller dimensional search space, but the prediction quality improves with the dimensionality.

The Influence of Fluctuations in the Second-Order Approach In the following, a closer
look is taken at the obtained stationary mutation strength. Similarly to [23], Eqs. (4.83) to (4.85) are
rewritten in terms ofs∗∞ := S et

2/2
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Equation (4.86) can be used to give the stationary mutation strength as a function of t

s∗∞ = µcµ/µ,λe
−2t2

(

(1−Nτ2) +

√

√

√

√(1−Nτ2)2 +
1
2 + e1,1µ,λ
µc2µ/µ,λ

2Nτ2et2
)

. (4.89)

The equation obtained is analogous to the case of (1, λ)-ES [21]. The mutation strength differs from
the mutation strength (4.11)

ς∗stat
det = µcµ/µ,λ

(

(1−Nτ2) +

√

√

√

√(1−Nτ2)2 +
1
2 + e1,1µ,λ
µc2µ/µ,λ

2Nτ2
)

obtained by using the deterministic approach in two terms: One inside the root, theother a general
multiplier. It is easy to see that the general influence of the multiplierexp(−2t2) outweighs the effect
by the addendexp(t2). For this reason, Eq. (4.89) leads to lower mutation strengths than (4.11)
As Beyer pointed out for (1, λ)-ES, experimentally observed mutation strengths are lower than the
deterministic estimates. This can be traced back to the neglected influence of thefluctuations during
the derivation of the estimate (see [21] or [23, p. 315f.]). Equation (4.89) corrects the estimate.

The progress rate remains to be considered. The expected progress rate is given by

ϕ∗
R(ς∗) = cµ/µ,λς∗ −

ς∗2

2µ
. (4.90)

Sinceς∗2 6= ς∗2= Var[ς∗] + ς∗2, an additional loss term, the variance, lowers the expected progress
rate [21]

ϕ∗
R(ς∗) = cµ/µ,λς∗ −

ς∗2

2µ
− Var[ς∗]

2µ
. (4.91)
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Therefore, the theoretical maximal progress rateµc2µ/µ,λ/2 is not attainable [21]. The question that re-
mains is the following: How can the fluctuations be reduced so that the ES works approximately with
its optimal progress rate? In [23] several possible means were described. The remainder of the section
is devoted to the question how recombination of the object vectors and mutation strengths influences
the fluctuations. The analysis makes use of the aforementioned ansatz, assuming a log-normal distri-
bution of the mutation strength in the stationary state. It should be noted that recombination does not
only influence the variance but of course the expectation ofς∗ and the progress rate.
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Figure 4.14: Relative frequencies of the normalized mutation strength in the stationary state. The
search space dimensionality isN = 100. The experiments were conducted using (µ/µI , 60)-ES and
a learning rate of0.01. The lines indicate the density functions of log-normal distributions (black)
and normal distributions (gray). The density function were obtained by inserting the experimentally
found moments.
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Figure 4.15: Stationary normalized mutation strength and progress rate as a function ofτ for some
(µ/µI , 60)-ES.

Fluctuations and Recombination Before starting, consider some results obtained numerically
for two choices of the learning rate. Figure 4.16 shows how far the resultsfrom the second-order
approach deviate from the those obtained using the deterministic approach.Not surprisingly, the
deviations increase with the learning rate. As Fig. 4.16 reveals using recombination causes a better
agreement between the two approaches. For the smaller learning rate, the main difference is between
no recombination and recombination, the higher learning rate indicates an interval where the relative
deviations of the first-order from the second-order approach are approximately minimal. The interval
for (µ/µI , 60)-ES lies roughly betweenµ = 12 andµ = 20, giving aµ : λ-ratio of approximately
0.2− 1/3. In the following, two special cases are considered which allow for an analytical treatment.

Limit Case of Nτ2 → ∞ Let us first consider the limit case ofNτ → ∞. Starting from Eqs.
(4.86) and (4.87), i.e.,
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(4.92)
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Figure 4.16: The deviation from the deterministic prediction as a function of theparent numberµ.
The results were obtained numerically from Eqs. (4.83) and (4.84) for twochoices ofτ . The search
space dimensionality isN = 10, 000.

it will be shown that the system can be easily solved forNτ2 →∞. Computing the limit gives

0 =
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+ e1,1µ,λ − s∗∞et

2
cµ/µ,λ

0 = 1 + 2e1,1µ,λ +
1

µ
− s∗∞e2t22cµ/µ,λ. (4.93)

Thus, two equations describings∗∞ can be obtained

s∗∞ =
1
2 + e1,1µ,λ
cµ/µ,λ
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2

(4.94)

s∗∞ = e−2t2
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1
2 + e1,1µ,λ
cµ/µ,λ

+
1
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They can be used to determine the value ofexp(−t2)
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. (4.96)

In the following it is shown that recombination, i.e., switching fromµ = 1 toµ > 1, may increase the
factor (4.96). First of all, the function that appears in (4.96) is of the general formf(x) = x/(1 + x)
which is a strictly increasing function withf(0) = 0 and limx→∞ f(x) = 1. That f is strictly
increasing can be shown using the first derivative

f ′(x) =
1

1 + x
− x

(1 + x)2
=

1

1 + x

(1 + x

1 + x
− x

1 + x

)

=
1

1 + x
. (4.97)

While the progress coefficiente1,1µ,λ decreases withµ, the increase of2µ outweighs that decrease as

long asµ does not increase too far. Note, the coefficiente1,1µ,λ passes zero forµ = 0.5λ. As numerical
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comparisons show, the minimizer of (4.96) lies roughly in the region ofµ ≈ 0.2− 1/3λ. As a result,
for Nτ2 → ∞, the prediction obtained using the second-order approach does not deviate far from
(1/2+e1,1µ,λ)/cµ/µ,λ – the deterministic result. Let us shortly consider the stationary mutation strength
and the progress rate. Using (4.94) and (4.96) the stationary mutation strength for Nτ2 → ∞ is
obtained as

s∗∞ =
1/2 + e1,1µ,λ
cµ/µ,λ

(

2µ(1/2 + e1,1µ,λ)

2µ(1/2 + e1,1µ,λ + 1)

)

(4.98)

As stated, first factor in (4.98) equals the deterministic result, i.e., the zero ofthe SAR, whereas the
second factor constitutes a correction factor due to taking the fluctuations into account. Plugging the
mutation strength (4.98) and the inverse of (4.96) into the progress rate (B.24),ϕ∗(ς∗) = cµ/µ,λς

∗ −
ς∗2/(2µ), leads to the stationary progress rate forNτ2 →∞
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The deterministic prediction of the progress rate is reduced by the same factor as the prediction of the
mutation strength.

The varianceVar[ς∗], which reduces the progress rate, can be easily obtained as

Var[ς∗] = ς∗2 − ς∗2
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2et
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. (4.100)

The variance depends of course on the size ofs∗∞. The absolute size of the variance reduces consid-
erably once recombination comes into play. As Fig. 4.17a) shows, this reflects the behavior ofs∗∞ to
some extent. The expectations∗∞ drops sharply when switching fromµ = 1 to µ > 1. Consider-
ing the relative variance instead reveals that there is a minimizer betweenµ = 10 andµ = 20 (see
Fig. 4.17b)). Therefore, the deviation of the progress rate is minimal forµ, λ-combinations that are
normally recommended. Of course, again, this effect of reducing the variance is shown forNτ2 →∞,
only.

The Case ofNτ2 = 1 Let us now consider the special case ofNτ2 = 1. Again, analytical
solutions are easily obtained. SettingNτ2 = 1, Equations (4.86) - (4.88) describings∗∞ change to

0 =
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2
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2e3t2 1

2µ
(4.101)
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Only the first two equations are needed to determines∗∞. Rewriting Eq. (4.101) and (4.102) gives
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Thus,s∗∞ can be obtained by
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and
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with

ς∗stat
det :=

√

2µ(1/2 + e1,1µ,λ)
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(see (4.11), p. 35). Again, the resulting mutation strength can be given asthe product of the result
ς∗stat

det (obtained using the deterministic evolution equations) and a deviation term. The first claim can
be verified easily by insertingNτ2 = 1 into the stationary mutation strength (4.11). The correction
factor in (4.107) is a strictly increasing continuous function of the deviation term obtained in (4.98)
and therefore the same conclusions apply. Again, recombination with the usual µ : λ-ratios reduces
the deviation from the deterministic result. Similarly to (4.99), the progress rate forNτ2 = 1 can be
obtained as

ϕ∗
∞ = cµ/µ,λs
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2et
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. (4.108)

Let us now address the variance. ForNτ2 = 1, the variance reads
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Figure 4.18 shows the variance (4.109) as a function ofµ. As 4.18 a) indicates, recombination in-
creases the absolute size of the variance. In contrast toNτ2 → ∞, the dependence of the absolute
size of the variance is relatively weak. Figure 4.18 a) indicates two local minima of the variance. One
for the single point strategy, the other in the region ofµ ≈ 45. If the relative variance is considered, the
situation changes. Figure 4.18 b) reveals the same region of minimal relative variances as found for
Nτ2 → ∞ which is not surprising regarding the similarity of both functions. Disregarding the case
of µ ≈ λ, nearly optimal combinations ofµ andλ can be found again in an interval of approximately
µ = 0.25λ to µ = 0.35.
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Figure 4.18: The variance ofς∗ in the stationary state (4.109) as a function ofµ for Nτ2 = 1. Figure
b) depicts the variance w.r.t.s∗∞

2, (4.107).
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A Normal Distribution in the Stationary State

As it can be seen in Fig. 4.15, deviations between predicted and measured values exist. This
concerns the higher parental numbersµ = 20 andµ = 30. Here, the experimental values for small
τ values are smaller than those calculated using (4.95). In the case of the smaller parental number
µ = 10 there is a better agreement between experiment and ansatz. As was pointedout in [23] the
assumption of a log-normal distribution might not be valid for smaller learning rates. In an alternative
attempt, the normal distributionN (m, s2) was used as an alternative to model the distribution of the
stationary mutation strength. Let us reconsider Equations (4.80) - (4.82) describing the stationary
state
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Using the normal distributionσ∞ ∼ N (m, s2) leads to
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Again, the solutions are obtained numerically using MATHEMATICA. To this end, the solutions of the
first two equations were determined. Interestingly, the results do not differ significantly from those
using the log-normal distribution. The complete discussion can be found in Appendix D.3.3. The
deviations between experiment and prediction are obviously not due to using a skewed distribution.

4.5 Conclusions

In this chapter, the self-adaptive behavior of ES on the sphere model was analyzed. First, ES using
intermediate recombination for the object variables and the mutation strength were considered. After-
wards, self-adaptive ES on the noisy sphere were analyzed. Finally, the analysis was extended to the
second-order approach for intermediate ES on the undisturbed sphere. In nearly all cases, the progress
measures obtained forN → ∞ were used. Therefore, the predicted and the results of experiments
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deviate. It remains a point for future research to include theN -dependent versions of the progress
measures into the analyses. The analysis on the sphere was mainly conducted using the deterministic
evolution equations. The main drawback of this approach is revealed by considering (1, λ)-ES on the
noisy sphere: This approach cannot predict the irregular behavior of the mutation strength since no
perturbation parts are taken into account. The modeling assumption that the perturbation parts can be
neglected is violated.

As mentioned, deviations of the predicted stationary mutation strengths from theexperiments
could be observed in high-dimensional search spaces for some choicesof the parent numbers in the
noise free case. This only occurs for comparatively small values of the learning rate. While the devia-
tions are not high, they indicate a point for further research. On first sight, three possible explanations
come to mind:

• The neglectation of higher-order moments of[(ς∗ − σ∗)/σ∗]k and higher-order powers ofτ2 in
the derivation of the SAR.

• The distribution for the stationary state used in the ansatz followed.

• Using a normal distribution to model the perturbation terms.

The occurrence for small values of the learning rate indicate that the deviation is probably not due to
neglecting the higher-order terms ofτ in the derivation. A remaining cause may be that the ansatz
used is not the best approximation for the stationary state distribution. Therefore, a normal distribution
for the stationary state was investigated, but the results obtained could not be distinguished from
the results using the log-normal distribution. Finding a better distribution remainsone of the tasks
for the future. Also, it might be interesting to investigate the effects of using higher order Gram-
Charlier/Edgeworth series’ to model the the distribution of the perturbation parts. In the following,
the main results of this chapter are summarized.

In Section 4.1, a first analysis of the steady state behavior of self-adaptive (µ/µI , λ)-ES on the
sphere model using the log-normal rule for mutating the mutation strength was presented.

The evolution of an ES can be described by the change of the distance to theoptimizer and by the
change of the mutation strength. Therefore, the progress rate and the self-adaptation response function
had to be determined for the analysis. Both progress measures give the expected one-generation
change of the respective parameter (which is a relative change in the case of the mutation strength).

Neglecting the stochastic perturbation parts, equations describing the evolution of the distance to
the optimizer and the evolution of the normalized mutation strength were obtained. These equations
can be used to characterize the system in the stationary state of the normalizedmutation strength.
Note, this does not entail a stationarity of theR-evolution. The formulae used are generally asymp-
totically correct, i.e., they hold forN → ∞. Therefore, the results are only approximate for low-
dimensional search spaces.

In experiments, multi-recombinative evolution strategies have been found to show a strong de-
pendency of the stationary progress rate on the learning parameterτ . This sensitivity depends on the
parental numberµ and is in contrast to the behavior of the single parent (1, λ)-ES which operates on
a nearly optimal level for a wider range of the learning parameter.

An explanation for this behavior can be provided by a closer look at the equations describing
the stationary mutation strength and the stationary progress rate. Both are functions of the learning
parameter coupled with the search space dimension.

The stationary mutation strength also depends on the maximizer of the progressrate and the ratio
between the zero of the self-adaptation response and that maximum point. Similarly, the stationary
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progress rate is a function of the maximal progress rate and the same ratio. If the zero of the SAR
is relatively close to the maximizer of the progress rate, the stationary progress rate is robust against
changes of the optimal learning rate. This is the case if there is only one parent. But while the
recombination of the object parameters strongly influences the maximum point of the progress rate, the
influence on the zero of the self-adaptation response is more muted (the SARreacts to the aggregated
fitness). Furthermore, increasingµ decreases the zero of the SAR at first. As a result, only if the
parental number is close to one or close to the number of offspring, a more robust behavior can be
expected. In the latter case, though, the ES tends to divergent behavior.

In addition, there exists an optimal normalized mutation strength and an optimal progress rate for
each (µ/µI , λ)-ES. Comparing these maximally achievable progress rates, one finds a strong depen-
dency on the relation between the number of offspringλ and the number of parentsµ. As it could
be shown numerically [23, p. 226], forN → ∞ andλ sufficiently large, a relationµ/λ of approx-
imately 0.27 leads to nearly maximal progress rates. Therefore, evolution strategies that adhere to
this principle can exhibit high progress rates, if the mutation strength adaptation process works nearly
optimal.

The performance of the ES depends on the learning parameterτ . An optimalτ choice exists even
if the zero of the self-adaptation responseς∗ψ0

= (1/2 + e1,1µ,λ)/cµ/µ,λ and the maximum point of the
progress rateς∗ϕopt

= µcµ/µ,λ differ significantly. ForN ≫ 1, τopt is given by

τopt =
1√
2N

√

√

√

√

µc2µ/µ,λ

µc2µ/µ,λ − 1/2− e1,1µ,λ
. (4.116)

The optimal learning rate scales with1/
√

2N . If µcµ/µ,λ ≪ (1/2 + e1,1µ,λ)/cµ/µ,λ, the value of the
second square root is close to one. This is, e.g., the case for truncation ratios of approximately0.27
provided thatλ is relatively large. This ratio is theµ : λ-ratio recommended on the sphere [7],
allowing to use1/

√
2N and ensuring nearly optimal progress.

Problems arise if the learning parameter is not optimal since this may lead to progress rates that
are far smaller than the possible maximum. Of course, this does not mean that theself-adaptation
does not work in this case. For a wide range of the learning parameter, themutation strengths realized
will lead towards positive progress – albeit not with maximal possible speed.

Having said that, the question may be raised whether an intermediate recombination of the muta-
tion strength exactly mirroring the recombination of the object variables might not be better replaced
by a different method.

Actually, an intermediate recombination of the mutation strengths seems to be unnecessary for the
fitness environment considered here. This must be taken with a grain of salt, of course, since only a
deterministic approximation of the evolution equations was used and the formulaewere derived for
τ ≪ 1 or τ = 0, respectively, andN →∞. Nevertheless, switching off the recombination totally and
just taking the mutation strength of the best offspring is not expected to lead toa deterioration of the
performance in the non-noisy case. The optimal mutation strength remains reachable, since the zero
of the progress rate is still approached forNτ2 →∞. In addition, the zero of the SAR as the limit of
the stationary progress rate forNτ2 →∞ is at least higher as it would be if recombination were used.
The improvement might not be really significant but it indicates that for undisturbed sphere functions
there appears to be no detectable positive effects stemming from the intermediate recombination of the
mutation strengths. This of course, might not hold and is not expected to holdin the case of different
fitness functions.

In Section 4.2, the self-adaptation of (1, λ)-ES on the noisy sphere model was investigated. To
this end, the evolution of the ES over time was described by the evolution equations. First of all, the
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progress measures, the self-adaptation response and the progress rate had to be obtained. Afterwards, a
deterministic approach was applied, i.e., the stochastic parts of the evolution equations were neglected.

In the case of a constant noise strengthσǫ, three different phases of the evolution have been
identified. As long as the system is still far away from the optimum, the influence of the noise can be
neglected. As a result, the ES reaches a similar stationary mutation strength as inthe noise free case
and the same recommendations for choosing the learning parameter apply.

Approaching the optimum, however, changes the situation. Due to the increasing normalized
noise, the steady state of the mutation strength is lost. The progress decreases until the ES cannot get
any closer to the optimizer on average. The progress rate becomes zero.This can be used to determine
the residual location error. There are two estimates that can be obtained. The first is associated with
a vanishing mutation strength, the other demands stationarity of the mutation strength evolution as
well – requiring the SAR to be zero. Interestingly, both estimates are very similar especially if large
offspring population sizes are considered.

A remarkable observation is that the (1, λ)-ES is not able to stabilize the mutation strength al-
though the deterministic approach predicts a locally stable non-zero mutation strength. Instead its
behavior resembles a random walk where the mutation strength fluctuates between the non-zero mu-
tation strength (4.51) and zero. A general preference of small values can be observed. Since any
mutation strength between these two extremes leads nearly to the same residual location error, the
estimates that were obtained lead to good predictions.

The reason for the behavior of (1, λ)-ES cannot be explained by considering the deterministic
approximation. Comparing the behavior of (1, λ)-ES with that of intermediate (µ/µI , λ)-ES, one finds
that the latter show a second stationary phase of the mutation strength once thesystem has reached the
vicinity of the residual localization error. The difference in the behavior isclearly due to the missing
recombination of the mutation strength. If the normalized mutation strength is considerably smaller
than the normalized noise strength, the ES is virtually unable to choose the offspring on basis of the
actual fitness values. Instead – concerning the mutation strength – the selection is similar to a random
sampling of log-normally distributed variables.

Using intermediate recombination introduces a probabilistic preference towards an increase of
the mutation strength whereas an (1, λ)-ES de- and increases the mutation strength with the same
probability. Thus, (µ/µI , λ)-ES will tend to increase a small mutation strength until it is sufficiently
large so that the information obtained by the fitness function is taken into account. As far as the con-
stant noise scenario is considered, this “bias” can be regarded as a desirable property of intermediate
recombination.

The (1, λ)-ES on the sphere model has a slight bias towards a decrease of the mutation strength.
This explains the wandering behavior of the mutation strength. Introducing aslight counteracting bias
in theσ mutation operator remedies the loss of step-size control to a certain extent.

While first insights into the mechanism of self-adaptation of ES on the noisy sphere were pro-
vided, the investigations are far from being complete. First, the considerations did not take into ac-
count the stochasticity of the evolutionary process explicitly. Especially in thelarge noise regime, the
deterministic approximation leads to predictions which are not fully consonantwith the observed dy-
namics. Therefore, incorporating fluctuations and solving the corresponding Chapman-Kolmogorov-
Equations remains as a task for the future.

In Section 4.3, the behavior of intermediate (µ/µI , λ)-evolution strategies on the noisy sphere was
investigated. To this end, the deterministic evolution equations were applied. Asseen in Section 4.2,
(µ/µI , λ)-ES have a slight preference for an increase of the mutation strength which is due to the
intermediate recombination of the mutation strength. This bias leads to the existenceof a stationary
state in the case of uniform noise on the sphere which can be described using the deterministic variant
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of evolution equations.
Let us sum up our findings: Intermediate recombination of the object variables and the mutation

strength introduces a strong dependency on the learning rateτ during the first phase of the optimiza-
tion process. Here, the ES can be assumed to be far away from the optimum and the influence of the
noise can be neglected. While the sensitivity with respect to the learning rate isa drawback in compar-
ison with the robustness of (1, λ)-ES, recombination of the object variables enables higher progress
rates and a faster convergence. The learning rate can be chosen appropriately, so that the ES adapts
an optimal normalized mutation strength.

In the last phase, noise overshadows the information of the fitness function. In this case, recom-
bination is the cause of two effects: Recombination of the object variables allows smaller residual
location errors, whereas recombination of the mutation strengths leads to a sufficiently stable station-
ary mutation strength in contrast to (1, λ)-ES.

The usual recommendation of choosingµ : λ ≈ 0.27 still applies – regardless whether self-
adaptation in the noise-free case or in the case of permanent noise is considered. While this ratio
results in a high sensitivity towards the size ofτ , the achievable progress is optimal. Additionally
in the noise scenario, this truncation ratio leads to a nearly optimal location error. Interestingly, the
predicted residual location error does not deviate far from a hypothetical minimal value obtained for
a zero mutation strength. Recombination improves the deviation even more.

The analysis presented here is not complete. In Section 4.3, the effects ofadditive uniform noise
were investigated. Other noise models remain to be considered – for instanceactuator noise where
the noise is not added to the fitness function but to the coordinates of the object vector. Furthermore,
the effects of non Gaussian noise distributions would be interesting.

The progress rate and the SAR used were obtained forN →∞. In order to capture the evolution
more exactly, theN -dependent variants will have to be applied. Also, an inclusion of the perturbation
parts in the evolution equations and an extension of the analysis similar to [23, p. 309] still remain.
For the undisturbed sphere, Section (4.4) presented a first analysis.

In Section 4.4, the fluctuation parts were included in the analysis – approximating the unknown
distribution with a normal distribution. To proceed, the variances had to be obtained. In the case
of theR-evolution, the variance equals zero in the present analysis framework.Deviations from the
deterministic approach only stem from theσ∗-evolution.

The task of obtaining the mean value dynamics leads to recursive equations inwhich the raw
lower order moments depend on higher-order moments. Therefore, an ansatz has to be used setting
the distribution of the stationary mutation strength equal to a reference distribution. This was done
for two distributions: the log-normal distribution and a normal distribution. Concerning the stationary
mutation strength, i.e., the expectation, both distributions lead to nearly the same results.

Similarly to Section 4.1, experimental results for some (µ/µI , 60)-ES were obtained. In contrast
to Section 4.1, however, no closed general formulas could be provided.The solutions must be obtained
numerically. Evaluating the stationary values as functions of the learning rateunderlines the findings
of Section 4.1. Again, an optimal learning rate is clearly defined. Furthermore, ES withµ : λ-ratios
close to the recommendation of0.27 lead to the largest progress forτ -values in the vicinity of the
optimal learning rate.

As said, the solutions evade an analytical treatment in general. Further analyses, therefore, were
restricted to specific choices of the parameters – for example either the parent numberµ or the learning
rateτ .

The remainder of the subsection was concerned with the effects of recombination. For some
specific values ofτ , recombination with the usualµ : λ-ratio was shown to lead approximately to
the smallest deviations from the deterministic prediction and to the smallest relativevariances. The



74 4. Self-Adaptation on the Sphere Model

performance loss due to random fluctuations thus is nearly minimal for those ratios.
Deviations between experiments and predicted values were observed forlow-dimensional search

spaces. As a rule, the prediction quality improves with increasing dimensionality. Some further
relatively small deviations can be observed: For small values of the learning rate, predictions and
experiments deviate for ES with larger number of parents. Finding the exactcause of these deviations
remains a task for future work. The same holds for an inclusion of theN -dependency of the equations
in order to give more accurate predictions for low-dimensional search spaces.



5 Self-Adaptation on Ridge Functions

So far the focus was on the sphere modelf(y) = g(‖y − ŷ‖) which depends on one parameter
only: the distance to the optimizer. In this section, ridge functions are considered. They can be seen
as an extension of sphere functions since they contain a linear gain part and a negative sphere-like
component. General ridge functions are defined in the following way.

Definition 5. The general ridge function with axis directionv and parametersα andd determining
the shape of the ridge is given by

FgR(y) := vTy − d
(

√

(vTyv − y)T(vTyv − y)
)α

(5.1)

with d > 0 andα > 0. The vectorv ∈ R
N with ‖v‖ = 1 is called the ridge direction.

In this chapter a rotated version of the general ridge function is considered. In the case of the
rotated ridge the ridge axis is aligned with the coordinate axisy1 [22].

Definition 6. The rotated ridge function aligned with the coordinate axes has the form

FR(y) = y1 − d
(

N
∑

i=2

y2
i

)α/2
. (5.2)

The parameterα determines the degree of the ridge function and the general topology of the
fitness landscape. A ridge function withα = 1 is called a sharp ridge (see. Fig. 5.1). The parameter
d determines the angle by which the isofitness lines intersect with the ridge axis and therefore the
“sharpness” of the function. A ridge function withα = 2 is called a parabolic ridge (see. Fig. 5.2).
Again, d determines the form of the isofitness lines. In general, ifd → 0, the problem degenerates
to the hyperplaneF (y) = y1, whereas for increasingd the isofitness lines appear as more and more
parallel to the axis and the problem approaches a sphere model withF (y) = −d(∑N

i=2 y
2
i )
α/2. The

N − 1 terms which make up the sphere component of the ridge can be interpreted asa (N − 1)
dimensional distance to the axisy1. To simplify the notation,

FR(y) = y1 − d
(

N
∑

i=2

y2
i

)α/2

⇒ f(x,R) := x− dRα (5.3)

is used for the remainder of this chapter.
Ridge functions do not have a finite optimum and therefore may be considered an “ill-posed”

problem for ES [9]: Since the “optimum” lies in infinity, the fitness of the ES must be steadily in-
creased. Improvement is possible in many ways. Generally, there are two viewpoints that may be
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taken [22]. First Oyman’s viewpoint is taken into account [79, p.32]. Hesays that the “object variable
for the optimum [...] reads

x̂1 →∞, ∀i 6= 1 : x̂i = 0.”

Note, Oyman usesx instead ofy to denote the object vector. This viewpoint derives its justification
from seeing ridge functions as the limit of

Fc(y) = y1 − cy2
1 − d

(

N
∑

i=2

y2
i

)α/2
(5.4)

for c → 0 (cf. [79, 22]). For every finitec, Fc has an optimal point at(1/(2c), 0, . . . , 0)T. If c
decreases, the position on the axis moves towards infinity.

Evolution strategies use local information. They sample the search space randomly and select
theµ best offspring, i.e., theµ highest fitness values they have found. This is the foundation of the
second viewpoint wich takes a more process oriented view. The ridge does not have a finite optimum.
The algorithm is required to increase the fitness perpetually. This does notnecessarily mean that is
has to find the ridge. Although the highest fitness value is on the axis for every finite interval, the
situation changes if an unbounded search space is considered. Actually, it is not even necessary to
require a finite distance to the ridge. Since the search space is infinite, thereare infinitely many points
in arbitrary distance to the ridge for each position on the axis with exactly the same fitness. As result,
the ES may diverge from the axis – as long as it increases the linear component faster than the loss
components. In addition, this does not mean that the progress is slower as arule since moving away
from the axis may allow for higher step lengths.

As it will be shown, evolution strategies may actually exhibit both behaviors: Trying to converge
to the axis or diverging from it – enlarging the axis-component faster thanthe loss components.

This chapter is organized as follows: First, self-adaptation on sharp ridge functions is considered.
Afterwards, the parabolic ridge serves as an example for self-adaptation on ridge functions of higher
degree. Finally, the case of ridge functions disturbed by noise is addressed.

5.1 Self-Adaptation in the Noise-free Case

As mentioned, this section is devoted to an analysis of the self-adaptation behavior of evolution
strategies on undisturbed ridge functions. Again, the analysis makes use of the evolution equations
introduced in Chapter 3. Two ridge functions serve as representativesof the function class: the sharp
and the parabolic ridge.

5.1.1 The Sharp Ridge: Convergence or Divergence

The sharp ridge is characterized byα = 1 andF (y) = y1−d(
∑N

i=2 yi)
1/2 or f(x,R) := x−dR.

It has been reported [57] that self-adaptive ES fail on the sharp in some cases by reducing the mutation
strength so far that no significant progress is observable anymore. Since the “optimum” of the ridge
lies in infinity, the ES can be said to converge prematurely. This behavior is not restricted to self-
adaptation. Other adaptation schemes are also known to reduce the mutation strength prematurely –
unless modifications are introduced. In the case of CSA-ES, it was found[19] that the behavior is
determined by the choice of the ridge parameterd: Depending on the size ofd (i.e., d < 1, d > 1),
either a convergence towards the axis or a divergenceR→∞ occurs. It will be shown that in the case
of self-adaptation,d appears again as the decisive parameter and furthermore that the criticalvalue of
d depends on the population parametersµ andλ.
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Figure 5.1: Contour Plots of the sharp ridge ford = 2, d = 0.1, andN = 2. The ridge axis aligns
with thex-axis. Brighter grey tones indicate better fitness values.
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Figure 5.2: Contour Plots of the parabolic ridge ford = 2, d = 0.1, andN = 2. The ridge axis aligns
with thex-axis. Brighter grey tones indicate better fitness values.

The Evolution Equations

The behavior of self-adaptive ES on ridge function can be characterized by three variables: The
position with respect to the axisx, the distance to the axisR, and the mutation strength〈ς(g)〉. As
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before in Chapter 3, the deterministic evolution equations are used in the analysis. Letx(g) := 〈x(g)〉
denote thex-component of the centroid of the population at generationg. Similarly R := R(g)

denotes the distance of the centroid to the axis, whereasr is a short form forr := R(g+1). The
parameterσ⋆ := N〈ς(g)〉 stands for the mean of the mutation strengths in generationg – normalized
with respect to the search space dimensionality. Similarly,ς⋆ := N〈ς(g+1)〉 denotes the mean in
generationg + 1 unless the dependence on the generation number shall be emphasized. Asbefore
high-dimensional search spaces are considered. This allows to identifyN − 1 with N . Accordingly,
the normalized evolution equations read

x(g+1) = x(g) +
1

N
ϕ⋆x(σ

⋆)

r = R− 1

N
ϕ⋆R(σ⋆, R)

〈ς⋆(g+1)〉 = σ⋆
(

1 + ψ(σ⋆, R)
)

. (5.5)

The progress rateϕ⋆R and SARψ are obtained in Appendices B.2 and C.1.2 (or C.1.3, respectively) as

ϕ⋆R(σ⋆, R) =
dcµ/µ,λ√
1 + d2

σ⋆ − σ⋆2

2Rµ
(5.6)

for τ = 0 andN →∞ and

ψ(σ⋆) = τ2

(

1

2
+ e1,1µ,λ −

cµ/µ,λ

R

√

d2

1 + d2
σ⋆

)

(5.7)

for N →∞ andτ ≪ 1. Both performance measures are influenced by the ridge parameterd over the
sine of the slope angle of the gradient vector

∇fR(x,R) =

(

1

−d

)

(5.8)

with respect to thex-axis. The larger thed-value, the steeper the slope and more and more weight is
put on the linear components in (5.6) and (5.7): Ford→∞, both performance measures converge to
their sphere model equivalent. Ford→ 0, the optimization of the ridge is transformed into optimizing
the linear function inx: Expected progress towards the axis does not occur anymore and the SAR is
strictly positive.

The progress rateϕ⋆x measuring the progress on or parallel to the axis is given by

ϕ⋆x(σ
⋆) =

cµ/µ,λ√
1 + d2

σ⋆ (5.9)

(cf. Appendix B.2) and is obtained under the same conditions as (5.6).
As the SAR (5.7) and the progress rate (5.6), (5.9) is influenced by the ridge constantd. This time,

though, it is the cosine of the gradient angle that exerts its weight.
As Eqs. (5.5) - (5.7) and (5.9) show, there is no feedback of the evolution of x(g) on those of the

other state variables whereas the change ofx(g) is governed by the mutation strength. As consequence,
the analysis is continued with considering the system in(R(g+1), 〈ς⋆(g+1)〉)T

(

R(g+1)

〈ς⋆(g+1)〉

)

=

(

R− ϕ⋆R(R, σ⋆)/N

σ⋆
(

1 + ψ(R, σ⋆)
)

)

. (5.10)
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First of all, it should be noted that (5.10) with (5.6) and (5.7) permits negative values in contrast to
described process itself. Therefore, first the zero points of the evolution equations are obtained. As
can be seen, in the case of theR-evolution, the variableR(g+1) might be negative if

0 ≥ R− 1

N
ϕ⋆R(σ⋆)

⇒ 0 ≥ R−
cµ/µ,λd

N
√

1 + d2
σ⋆ +

σ⋆2

2µRN
(5.11)

leading to the zero points

σ⋆1,2 = R
( d√

1 + d2
µcµ/µ,λ ±

√

µ2c2µ/µ,λ
d2

1 + d2
− 2µN

)

(5.12)

which are not defined inR if N > (1/2)µc2µ/µ,λ(d
2/(1 + d2). If the search space dimensionality is

sufficiently large, the deterministic evolution equation only admits positive results. In the case of the
SAR,

0 < σ⋆
(

1 + ψ(σ⋆)
)

⇒ 0 <
1

τ2
+

1

2
+ e1,1µ/λ −

cµ/µ,λ

R

d√
1 + d2

σ⋆

⇒ σ⋆ < R
(

√
1 + d2

dcµ/µ,λτ2
+

( 1
2 + e1,1µ/λ

cµ/µ,λ

)
√

1 + d2

d

)

must hold for positive〈ς∗(g+1)〉. As it can be seen, the relation between mutation strength and distance
is decisive. The mutation strength must exceed the zero point of the SAR. And furthermore, it has
to be considerably greater thanR/τ2. Choosingτ sufficiently small, increases the admissible region.
The SAR (5.7) decreases linear with the mutation strength, though. Too largemutation strengths result
in a negative answer of the evolution equation. As it is shown later on, this does not occur, actually.

Considering the deterministic difference equation system (5.10), the first question to be addressed
is whether the system comes to a halt; in other words, whether stationary pointsexist.

Stationary Points

Stationary points are characterized by〈ς⋆(g+1)〉 = 〈ς⋆(g)〉 andR(g+1) = R(g). Considering (5.10),
the progress rate (5.6), and the SAR (5.7), a stationary state requires either a zero mutation strength
or that the zero ofϕ⋆R, (5.6),

ς⋆ϕR0
= 2µcµ/µ,λ

d√
1 + d2

R (5.13)

and the zero ofψ, (5.7),

ς⋆ψ0
=

(1/2 + e1,1µ,λ
cµ/µ,λ

)

√
1 + d2

d
R (5.14)

are equal. Note, both are linear functions inR. As a result, they do not intersect in general for positive
distances. Only in one singular case, there are stationary points of (5.10)with a positive mutation
strength: A stationary state with a non-zero mutation strength of system (5.10)exists if and only if



80 5. Self-Adaptation on Ridge Functions

d = dcrit =

√

√

√

√

2e1,1µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1
(5.15)

holds (see (5.13) and (5.14)). Otherwise, there is no stationary point exceptσ⋆ = 0. In the situation
of (5.15), (5.13) and (5.14) overlap as functions ofR – creating a single linear function inR. For
everyR there is a mutation strength for which the whole system comes to a halt. As result, neither a
stationary distance nor a mutation strength can be determined. The expected changes indicate that the
stationary state line serves as an attractor. But where the system comes to rest depends on the position
in the search space. Furthermore, the ES is subject to random perturbations which the deterministic
equations neglect. Due to perturbations, the stationary state will be left. The system is expected to
return to the line but to a different position than before. As a result, ford-choices close to the critical
value, a meandering behavior of the ES is expected.

The parameterdcrit depends on the population parametersµ andλ and is largest (i.e., close to one
for most choices ofλ) for µ = 1 or µ close toλ. Theλ-dependence ofdcrit is relatively weak which
shall be illustrated exemplarily for a (1, λ)-ES. In the case of extremely small offspring population
sizes, i.e.,λ < 3, the criticald-value is greater than1, going down to≈ 0.936 aroundλ ≈ 12 before
approaching1 again forλ→∞. The latter approach is extremely slow, though.

The dependence on the size of the parent population is more pronounced. Switching fromµ = 1
to µ = 2 lowers the criticald-value about≈ 40%. This trend translates to the usualµ : λ-ratios:
Compared toµ = 1, recombination decreases the criticald-value as Fig. 5.3 illustrates for the case of
(µ/µI , 10)-ES.

The Influence of d

Thedcrit-value (5.15) is a critical point for system (5.10): For all choicesd 6= dcrit, the deter-
ministic system (5.10) does not come to a halt for strictly positive choices of themutation strength.
As already observed in various experiments, there are two opposite behaviors of the ES. Either it
converges prematurely – approaching the axis and reducing the mutation strength in the process or it
diverges from the axis – increasingσ⋆ andR. The size of the parameterd determines which behavior
occurs: Ford > dcrit (5.15), the variablesR andς⋆ are expected to decrease, whereas ford < dcrit
they are expected to increase.

Figure 5.3 illustrates the behavior of evolution strategies for several choices ofµ. Forµ = 1 the
results diverge with the exception ofd = 0.9 (critical d-value0.936). In the case ofµ = 3 with a
critical d-value of0.418, all runs withd ≤ 0.5 diverge whereas forµ = 5 only the runs ford = 0.2
diverge. The criticald-value in this case is0.318.

The causes for these behaviors are investigated in the following. Let us start with Fig. 5.4 which
shows the isoclinesϕ⋆R = 0, (5.13), andψ = 0, (5.14). Both are linear functions inR and influenced
by the sine of the gradient’s slope angle

∇fR(x,R) =

(

1

−d

)

.

But the influence ofd on the zero of the progress rate is reciprocal to its influence on the SAR.
Increasingd decreases the zero of the SAR, but increases the zero of the progress rate. Both values
approach their sphere model equivalent and the influence of the linear part of the ridge is lessened. On
the other hand, decreasingd lowers the zero of the progress rate since more and more weight is put
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on the linear component of the ridge. The zero of the SAR increases in turnuntil the SAR is finally
strictly positive which is required in the optimization of linear functions.

Self-Adaptation sees the fitness as a whole and thus the compromise of the linear and the sphere
component. It does not generally focus on a positive lateral progressrate. It is shown later on that
concerningd, the zero of the SAR behaves in the same manner as the optimizer of the quality change
(expected change of the fitness). Concerning the zeros of the progress rate and the zero of the SAR, the
different dependence ond can cause the zero points or the isoclines, respectively, to switch roles: For
d < dcrit, (5.14) is greater than (5.13). Ford > dcrit, the zero of the progress rate (5.13) dominates
the zero of the SAR (5.14) as in the sphere model case.

Consider now Fig. 5.4. On the one hand, if the system (5.10) is on the lineψ = 0, (5.14), the
evolution of the mutation strength comes to a halt. A change can only occur because of the ongoing
evolution ofR. On the other hand, on the lineϕ⋆R0, there is no change inR and the system only moves
due to a change in the mutation strengthσ⋆.

Considering the SAR, remember that for mutation strengths smaller than the zeroof the SAR, an
increase is expected whereas for mutation strengths greater then the zeroan expected decrease occurs.
Translating that for Fig. 5.4, the area belowψ = 0 is characterized by a positive SAR and an expected
increase of the mutation strength which is indicated by the upward arrow. Thearea aboveψ = 0 is
characterized instead by(σ⋆, R)T-combinations for which the SAR is negative and thus a decrease of
the mutation strength is expected. This is indicated by the downward pointing arrow.

Similarly in the case of the progress rate, the area belowϕ⋆R = 0 is characterized by(σ⋆, R)
combinations for which the progress rate is positive. Because of the definition of the progress rate
ϕ⋆R = NE[R − r], positive progress is connected with a decrease of the distance. Therefore, below
ϕ⋆R = 0 a decrease of the distance is expected (which is indicated by the left pointingarrows in Fig.
5.4). Finally, once(σ⋆, R)T is above the lineϕ⋆R = 0, an increase of the distance to the ridge is
expected – indicated by the right pointing arrows. The figure of the isoclines can be used to illustrate
the key features of the behavior of the system rather easily. First of all, recall that the choice ofd
decides which isocline dominates the other. Ifd < dcrit, the plot ofψ = 0, (5.14), lies above that
of ϕ⋆R = 0, (5.13). Ford > dcrit, the opposite situation occurs. This results in different movements
in the area between the two isoclines – the area system (5.10) will eventually move into as Fig. 5.4
shows:

Regardless of whetherd < dcrit or d > dcrit, the deterministic system(σ⋆, R)T leaves regionI1
andI2 via I3 for g → ∞. RegionI3 cannot be left again. Ifd > dcrit, system (5.10) moves towards
the origin – decreasingς⋆ andR. If d < dcrit, system (5.10) moves towards infinity – increasingς⋆

andR.
Let us illustrate that by example for Fig. 5.4 a). Here, the isoclineϕ⋆R = 0, (5.13), is above

the isoclineψ = 0, (5.14). This equals the conditiond > dcrit, (5.15). If the system (5.10) starts
in the area belowψ = 0, the SAR and the progress rate are positive. As a result, the mutation
strength increases and the distance decreases. The system moves towards the lineψ = 0. Once this is
reached, theς⋆-evolution temporarily stops. But since theR-evolution still progresses and the distance
decreases, the isoclineψ = 0 is crossed and the system enters the area between both isoclines. There
it remains and approaches zero. Therefore, forς⋆ϕR0

, (5.13),> ς⋆ψ0
, (5.14), i.e., ford > dcrit, the

system inR andς⋆ approaches the origin withR→ 0, ς⋆ → 0 as in the case of the sphere.
The opposite behavior appears ford < dcrit, (5.15) (see Fig. 5.4 b)) andς⋆ϕR0 (5.13)< ς⋆ψ0

(5.14).
Again, the system reaches the cone defined byϕ⋆R = 0, (5.13), andψ = 0, (5.14), and cannot leave it
again. But once it is inside, due to the expected increases of the mutation strength and the distance it
moves into the opposite direction – going to infinity.

What does the behavior of (5.10) mean for the ES? The size of the parameter d with respect to
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dcrit, (5.15), decides whether a premature convergence occurs. The critical size ofd depends on the
choice of the population parametersµ andλ. Introducing recombination, i.e.,µ > 1, lowers the
critical d-value forµ 6≈ λ. That is, a premature reduction of the mutation strength can be modified to
some extend by using non-recombinative strategies. Summarizing, the characteristics of self-adaptive
ES on the sharp ridge are the following:

1. There is no feedback of thex(g)-evolution on the evolutions of〈ς⋆(g)〉 andR(g).

2. The evolutions of〈ς⋆(g)〉 andR(g) are coupled.

3. Because of this, the evolution of the mutation strength is kept between the zero of the progress
rateϕ⋆R and the SARψ.

4. Both variables are influenced by the constant gradient of the ridge and thus by the ridge param-
eterd.

5. Concerningd, the zero of the SAR follows the optimizer of the quality change – a behavior not
shown by the zero of the progress rate as it is shown in the next section.

6. The size ofd with respect toµ andλ decides whether the ES operates with mutation strengths
that lead to a positive or negative progress rate.

The first situation connected with positive progress towards the axis results in a premature convergence
whereas the latter causes the ES to show in a way the behavior required: The fitness is on average
increased and increased as the next section illustrates.

Divergence: The Influence of Recombination

If the ridge parameterd is sufficiently small with respect toλ andµ, a self-adaptive ES does
not converge prematurely but increases the distance to the ridge and the mutation strength. The first
question that arises, though, is whether the ES has a positive quality change. If this is true it would be
interesting to know whether the ES is able to travel with nearly optimal speed.

Potentially Too Small Mutation Strengths So, letd < dcrit, (5.15), and consider the expected
change of the fitness from one generation to the next. This performance measure

∆Q := E[F (〈y(g+1)〉)− F (〈y(g)〉)] (5.16)

is called thequality change. Using the same normalization as before, i.e., setting∆Q⋆ = N∆Q, it
can be easily given as∆Q⋆= ϕ⋆x + dϕ⋆R since the sharp ridge is considered. Using the progress rates
(5.6) and (5.9), the quality change reads

∆Q⋆ =
√

1 + d2cµ/µ,λς
⋆ − d

2Rµ
ς⋆2. (5.17)

Its optimizer is given by

ς⋆opt = cµ/µ,λRµ

√
1 + d2

d
(5.18)

and scales with the distance to the axis. In addition, the quality change is positive for mutation
strengths in the interval]0, 2Rµcµ/µ,λ

√
1 + d2/d[. So, first of all as long as self-adaptation leads to
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Figure 5.3: Results from (µ/µI , 10)-ES runs for the first100, 000 generations for several choices of
d (N = 100). Shown is every20th value. Each data line is averaged over20 runs. Also shown is the
span between the minimal and maximal values.

mutation strengths inside this interval, the expected quality change is positive. That this is actually
the case can be shown again by taking a look at Fig. 5.4. As the figure shows the ES – i.e., the system
in σ⋆ andR – is expected to remain in regionI2 in the long run. The maximal mutation strength the
ES can attain there is the SAR’s zero

ς⋆ψ0
= R

(

1/2 + e1,1µ,λ
cµ/µ,λ

)
√

1 + d2

d

(see (5.14)). It is interesting that both the zero of the SAR and the optimizer of the quality change show
the same scaling behavior with respect to the gradient∇fR(x,R) = (1,−d)T: Both are influenced
by the reciprocal of the sine of the angle. Again, this is due to the fact that self-adaptation sees the
fitness as a whole. In terms of changingd, the zero of SAR thus behaves as would be optimal for the
quality change. A similar result holds for the dependence onR, of course.

Taking a closer look at (5.18) and (5.14) reveals that apart from the sine of the angle, the situation
of the optimizer of the progress rate and the zero of the SAR on the sphere model reappears (cf.
Section 4.1, 33ff). It can be shown by case inspection that for a long range ofµ-values (except for
µ = 1 or µ ≈ λ) ς⋆ψ0

is quite smaller thanς⋆opt [74] (cf. Fig. 4.6, p. 45) and of course smaller than the
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Figure 5.4: The isoclinesϕ⋆R = 0, (5.13), andψ = 0, (5.14) as functions of the distance to the ridge
R for (1, 10)-ES witha = 1. In a) regionI1 is characterized by∆R > 0, ∆ς⋆ < 0, I2 by ∆R < 0,
∆ς⋆ < 0, andI3 by ∆R < 0, ∆ς⋆ > 0. Possible movements between the regions areI3 → I2 and
I1 → I2. It is easy to see thatI1 andI3 will be left eventually. The regionI2 cannot be left and the
system inς⋆ andR approaches the origin. In b) regionI1 is characterized by∆R > 0, ∆ς⋆ < 0, I2
by ∆R > 0, ∆ς⋆ > 0, andI3 by ∆R < 0, ∆ς⋆ > 0. Possible movements areI1 → I2 andI3 → I2,
but I2 cannot be left. The system diverges to infinity.

second zero of the quality change.
This has two effects: Self-adaptation is not expected to fail, i.e., to lead to a negative quality

change. But only in the case of one parent the ES has the potential to realize mutation strengths
relatively close to the optimizer – at least theoretically.

This does not necessarily exclude benefits due to recombination, though.Even if a recombinative
strategy cannot reach its optimal mutation strength, the quality change associated with the mutation
strength realized may be greater than that of the non-recombinative(1, λ)-ES.

Normalizing the Evolution Equations To answer the question, whether recombination on the
sharp ridge is beneficial, the analysis must be extended. As it was shown,the optimal mutation
strength scales with the distance to the axis. Assuming that self-adaptation works sufficiently well
to adjust at least to this scaling behavior, it is postulated that〈ς⋆(g)〉 ≈ cR(g). In other words, if the
normalizationσ∗ := σ⋆/R is introduced, the existence of a stationary state of the normalized system

(

R(g+1)

〈ς∗(g+1)〉

)

=





R
(

1− 1
Nϕ

∗(σ∗)
)

σ∗
(

1+ψ(σ∗)

1− 1
N
ϕ∗(σ∗)

)



 (5.19)

with the normalized progress rate

ϕ∗(σ∗) =
dcµ/µ,λ√
1 + d2

σ∗ − σ∗2

2µ
(5.20)

and its second zero

ς∗ϕR
= 2µcµ/µ,λ

d√
1 + d2

(5.21)

is assumed. Note, the mutation strengthς∗ = ς∗/r is normalized with respect toR(g+1) = R(1 −
ϕ∗/N) thus introducing the denominator in the second line in (5.19). The equation forthe mutation
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strength normalized with respect toR,

〈ς∗(g+1)〉 = σ∗
( 1 + ψ(σ∗)

1− ϕ∗
R(ς∗)/N

)

= σ∗
(1 + τ2(1/2 + e1,1µ,λ − d√

1+d2
cµ/µ,λσ

∗)

1− 1
N ( d√

1+d2
cµ/µ,λσ∗ − σ∗2

2µ )

)

(5.22)

(see (5.7) and (5.20) has a stationary point with〈ς∗(g+1)〉 = σ∗. Stationarity requiresϕ∗
R(ς∗st) =

−Nψ(ς∗st) which leads to a stationary mutation strength

ς∗st =

√

d2

1 + d2
µcµ/µ,λ

(

(1−Nτ2)

+

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1 + d2

d2

)1/2 + e1,1µ,λ
µc2µ/µ,λ

)

. (5.23)

as is illustrated in Appendix E, p. 215, Eqs. (E.3)-(E.6). The learning rateτ controls (5.23) – variating
it between the zero of the progress rate and the zero of the SAR. Both aresmaller than the zero of the
quality change. Decreasingτ drives the stationary mutation strength towards the zero of the progress
rateς∗ϕ∗

R0
= 2µcµ/µ,λ(d/

√
1 + d2) (5.21), while increasing the learning rate results in the stationary

mutation strength going to the zero of the SARς∗ψ0
= (
√

1 + d2/d)(1/2+e1,1µ,λ)/cµ/µ,λ. That is to say,
the maximal possible mutation strength cannot be attained in the stationary state forfinite τ . Equation
(5.23) is connected with a expected positive normalized quality change

∆Q∗
st = dµc2µ/µ,λ

(

(1−Nτ2)−

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1 + d2

d2

)1/2 + e1,1µ,λ
µc2µ/µ,λ

)

×
(

1− d2

2(1 + d2)

(

(1−Nτ2)

−

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1 + d2

d2

)1/2 + e1,1µ,λ
µc2µ/µ,λ

)

)

. (5.24)

Recombination and the Stationary State The system behaves similarly as if the ES were on the
sphere. Unlike to the sphere, though, a divergence of the distance occurs ford < dcrit. Furthermore,
the zero of the SAR is greater than the zero of the progress rate and equals the maximal mutation
strength that can be reached in the stationary state.

The question that remains concerns potential benefits from recombination –even if the actual
optimal mutation strength with respect to the quality change is unattainable. This paragraph aims
at shedding some light on this question. Recall that increasing the learning rate results in greater
stationary mutation strengths and with it in higher quality changes. Operating withrelatively large
learning rates is advisable regardless of the strategy applied. But in this case, the influence of the zero
of the SAR may outweigh that of the zero of the progress rate.
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Let us first consider (5.23). For increasingτ -values the stationary mutation strength behaves more
and more like the zero of the SAR. Concerning recombination, this is not beneficial since it is largest
for µ = 1 or µ ≈ λ (cf. Section 4.1).

To an extent, the quality change (5.24) behaves differently, since there are additional dependences
onµ as Fig. 5.5 illustrates. But forNτ2 →∞, the effects of recombination of the quality change can
be easily examined by plugging (5.14) into (5.15)

∆Q∗(ς∗ψ0
) =

(

1 + d2

d

)(1/2 + e1,1µ,λ
cµ/µ,λ

)

(

cµ/µ,λ −
1

2µ

(1/2 + e1,1µ,λ
cµ/µ,λ

)

)

. (5.25)

Interestingly, there are cases for which using recombination leads to advantages ifλ is sufficiently
large. But theµ which optimizes (5.25) is extremely small in relation toλ – ranging fromµ = 1 for
very smallλ values overµ = 2 for λ = 13 to µ = 5 for λ = 100, 000.

Benefits from recombination appear for sufficiently smallτ -values. As long as the stationary
mutation strength behaves approximately as the zero of the progress rate, recombination increases the
stationary mutation strength untilµ ≈ λ/2 and the stationary quality change untilµ ≈ 1/5, . . . , 1/3λ.
But the improvement by increasingτ surpasses the improvement by recombination with this ratio by
far.

Figure 5.5 compares the stationary normalized mutation strength (5.23) with the results of experi-
ments for two choices ofτ . As can be seen, the larger theτ -value, the smaller the numberµ for which
the quality change starts to decline which is in accordance with the experiments as Fig.5.5 shows.
Also visible is the influence of the learning rateτ on the prediction quality. Observed and predicted
values are close together for smaller learning rates. In the case of the larger learning rate, greater
deviations occur. The behavior as a function of the parent numberµ is very similar, though.

5.1.2 The Parabolic Ridge: A Stationary State

Let us now consider the parabolic ridge, i.e.,α = 2 andF (y) = y1−d(
∑N

i=2 y
2
i )=: x−dR2, as a

representative of ridge functions withα ≥ 2. As in the case of the sharp ridge, we start considering the
deterministic system inR andσ⋆: The deterministic evolution equations in the case of the parabolic
ridge are given by

r = R− 1

N
ϕ⋆R(σ⋆, R)

〈ς⋆(g+1)〉 = σ⋆
(

1 + ψ(σ⋆, R)
)

. (5.26)

The progress ratesϕ⋆R, ϕ⋆x, and the SARψ were obtained in Appendices B.2.2 and C.1.2 as

ϕ⋆R(σ⋆, R) =
dαRα−1cµ/µ,λ√
1 + d2α2R2α−2

σ⋆ − σ⋆2

2Rµ
(5.27)

and

ϕ⋆x(σ
⋆, R) =

cµ/µ,λ√
1 + d2α2R2α−2

σ⋆ (5.28)

for τ = 0 andN →∞ and

ψ(σ⋆) = τ2

(

1

2
+ e1,1µ,λ −

cµ/µ,λ

R

√

d2α2R2α−2

1 + d2α2R2α−2
σ⋆

)

. (5.29)
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Figure 5.5: The stationary mutation strength (5.23) and quality change (5.17)for some(µ/µI , 10)-ES
with self-adaptation on the sharp ridge. Each data point was sampled over100, 000 generations. Figs.
a) and b) show the results forN = 30, c) and d) those forN = 100. The quality change is given by
the red line.

First of all, note that the influence of the distance to the ridge is different compared to the case of the
sharp ridge. Consider first the progress rate (5.27). In the case of the sharp ridge, the distanceR only
influenced the loss part of (5.27). Now, it also appears in the gain part. Similarly, the linear part of the
SAR is influenced by an additional function of the distance.

The R-Dependence of the Zero Points

Let us start with the evolution of the mutation strength. The present mutation strength is increased
if the value of the SAR (5.29) is positive and decreased otherwise. The SAR is a monotonously
decreasing function inς⋆ with only one zeroς⋆ψ0

which depends on the ridge factors overdαRα−1 and

furthermore onR = R(g)

ς⋆ψ0
= R

1/2 + e1,1µ,λ
cµ/µ,λ

√

1 + α2d2R2α−2

α2d2R2α−2

= ς⋆sphψ0

√

1 + α2d2R2α−2

α2d2R2α−2
. (5.30)
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The zero (5.30) only differs from the normalized (with respect toN ) zero of the SAR for the sphere
model

ς⋆sphψ0
:= R

1/2 + e1,1µ,λ
cµ/µ,λ

(5.31)

(see [74]) by the square root which equals the reciprocal of the sine of the slope angle of the gradient.
It is easy to see that

lim
R→∞

ς⋆ψ0
=

1/2 + e1,1µ,λ
cµ/µ,λ

lim
R→∞

√

1 + α2d2R2α−2

α2d2R2α−4
=∞

lim
R→0

ς⋆ψ0
=











∞ if α > 2
1/2+e1,1

µ,λ

2dcµ/µ,λ
if α = 2

0 if α = 1

(5.32)

holds. As one can see, ifR increases, the SAR (5.29) tends to increase the zero of the SAR in turn.
That is, larger and larger mutation strengths are expected to lead towards an increase. For decreasing
distances, there are two different behaviors forα ≥ 2. In the case ofα < 2, the zero of the SAR goes
to infinity asR→ 0. In the case ofα = 2, taking the limit of the zero leads to a strictly positive value.
All mutation strengths greater than this limit value are expected to increase. Theimportant point is
that the ES maintains a strictly positiveς⋆ψ0

– provided thatα > 1. In the case of the sharp ridge it
goes to zero. These behaviors can be traced back to the local shape ofthe ridge, i.e., to the gradient at
R,∇f(x,R) = (1,−dαRα−1)T. Let us reconsider the SAR (5.29)

ψ(σ⋆) = τ2
(

1/2 + e1,1µ,λ − cµ/µ,λ
dαRα−1

√

1 + (dαRα−1)2
σ⋆

R

)

.

The slope of the gradient of quadratic (or higher) ridge functions depends in stark contrast to the
sharp ridge on the distance to the ridge axis. If the distance is large, the SARresembles its sphere
model equivalent. As the distance to the axis decreases, the angle betweenaxis and gradient becomes
smaller. The sine approaches zero and counteracts to some extend the normal reaction of the sphere
model to increase the loss part. Ifα > 2, the SAR behaves as it is required for linear functions: Every
mutation strength is increased. In the case of the parabolic ridge, the reaction is different and falls
short of the requirement for linear functions since only mutation strengths smaller than a distinct value
are increased and otherwise decreased.

TheR-evolution remains to be considered. The progress rateϕ⋆R (5.27) is strictly positive in the
intervalς⋆ ∈]0, 2Rµ cµ/µ,λ

√

(α2d2R2α−2)/(1 + α2d2R2α−2)[. The second zero of the progress rate
(5.27) reads

ς⋆ϕR0
= 2Rµcµ/µ,λ

√

α2d2R2α−2

1 + α2d2R2α−2

= ς⋆sphϕR

√

α2d2R2α−2

1 + α2d2R2α−2
(5.33)

with

ς⋆sphϕR
:= 2Rµcµ/µ,λ (5.34)
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denoting the normalized (with respect toN ) zero of the progress rate in the case of the sphere model
[23]. Again the zero of the sphere model appears weighted in this case bythe sine of the slope angle
of the gradient and not by its reciprocal. As a result, it can be shown thatthe zero of the progress rate
behaves in accordance with the distance to the ridge, i.e.,

lim
R→∞

ς⋆ϕR
= 2µcµ/µ,λ lim

R→∞

√

α2d2R2α

1 + α2d2R2α−2
=∞

lim
R→0

ς⋆ϕR
= 2µcµ/µ,λ lim

R→0

√

α2d2R2α

1 + α2d2R2α−2
= 0. (5.35)

As seen, one of the first obvious differences between the sharp ridge(α = 1) and higher-order ridge
functions (α ≥ 2) is that only in the case of the latter, the SAR (5.29) eventually stops the mutation
strength from following every decrease of the distance. Furthermore, only for α = 1 both zeros (5.30)
and (5.33) are linear functions inR.

A Stationary State

Figure 5.6 illustrates the behavior of the(σ⋆, R)T-system depicting the so-called isoclines (see,
e.g., [33])ϕ⋆R = 0 andψ = 0 as functions ofR. The area below the isoclineψ = 0 is characterized
by (σ⋆, R)T-combinations for which the SAR is positive and the mutation strength is expectedto
increase. Similarly, the area belowϕ⋆R = 0 is characterized by a positive progress rate and thus by
an expected decrease of the distance to the ridge. IfR increases, the SAR tends to increase larger
and larger mutation strengths. This effects in turn theR-evolution. Here, the zero of the progress rate
increases as well. Mutation strengths that result in an expected decreaseof the distance are increasing.
On the other hand, ifR decreases, the zero of the progress rate decreases as well. Mutation strengths
that would increase the distance are thus also decreasing. But the potential answer of theσ⋆-evolution
is either to increase an increasing range of mutation strengths or at least every mutation strength
smaller than a limit. Thus, neither a convergence ofR → 0, i.e., a convergence to the axis, nor a
divergence ofR→∞ occurs.

As Fig. 5.6 shows there is a stationary state of the (ς⋆, R)T-system. In the stationary state theς⋆-
and theR-evolution come to a halt (on average) – i.e., the evolution strategy is expectedto fluctuate
at a certain distance to the axis. Apart from the trivial stationary state withς⋆ = 0, the stationary
state is characterized by requiring that both the SAR (5.29) and the progress rateϕ⋆R (5.27) are zero.
Therefore, the stationary states of the system (5.26) are given by

(

Rst
ς⋆st

)

=

(

c

0

)

(5.36)

with an arbitraryc ∈ R and

(

Rst
ς⋆st

)

=











1
2d

√

1/2+e1,1
µ,λ

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ

√
2µ

2d

1/2+e1,1
µ,λ

q

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ











(5.37)
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Figure 5.6: The zero points of the progress rateϕ⋆R andψ as functions of the distance to the ridge
R for (1, 10)-ES with d = 1. RegionI1 is characterized by∆R > 0, ∆ς⋆ > 0, I2 by ∆R < 0,
∆ς⋆ > 0, I3 by ∆R < 0, ∆ς⋆ < 0, and finallyI4 by ∆R > 0, ∆ς⋆ < 0. The system either leaves
every regionIk again, i.e., it oscillates, or it converges to the equilibrium point.

in the case ofα = 2 and

(

Rst
ς⋆st

)

=











(

1/2+e1,1
µ,λ

α2d2(2µc2
µ/µ,λ

−1/2−e1,1
µ,λ)

)1/(2α−2)

√

2µ(1/2 + e1,1µ,λ)

(

1/2+e1,1
µ,λ

α2d2(2µc2
µ/µ,λ

−1/2−e1,1
µ,λ)

)1/(2α−2)











(5.38)

for generalα > 1. The derivation can be found in Appendix E.1.2. In [19] an estimate of the stationary
distance of CSA-ES was obtained for the parabolic ridge, i.e., forα = 2, Rst ∝ 1/(2d) which also
reappears in the case ofσ-self-adaptation. Concerning the ridge constantd, both mechanisms show
the same behavior. Again, a similarity with the situation on the noisy sphere model appears [25]. On
the noisy sphere, the stationary distance scales with the standard deviation (noise strength) of additive
normally distributed noise, i.e.,Rst ∝ σǫ. Therefore,1/d, the inversion of the weighting constant
of the embedded sphere, seems similar to the noise termσǫ. A further similarity is of course the
stationary state of both evolutions – the evolution ofR and the mutation strengthς⋆. The stationarity
of the latter has an additional effect: Due toψ = 0, the learning rateτ does not have any influence in
the stationary state at least if (5.29) is used. It is interesting to note a furtherproperty of the stationary
state in the case of the parabolic ridge provided that2µc2µ/µ,λ ≫ 1/2 + e1,1µ,λ. This condition holds for
example for sufficiently largeλ and for recombinative ES with the usual ratio ofµ : λ, i.e.,µ 6≈ λ and
µ 6≈ 1. In this case, the stationary distance and and mutation strength are very close to

(

Rappr
σ⋆appr

)

=







1
2d

√

1/2+e1,1
µ,λ

2µc2
µ/µ,λ

1
2d

1/2+e1,1
µ,λ

cµ/µ,λ






. (5.39)

The approximate stationary distance in (5.39) is formally equal to the square root of the quotient of
the zero of the SAR(1/2 + e1,1µ,λ)/cµ/µ,λ (4.17), p. 37, and the zero of the progress rate2µcµ/µ,λ
(4.13) in the sphere model case. The difference is the appearance of the ridge constantd in (5.39).
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The mutation strength in (5.39) is the zero of the SAR (5.29) obtained forR = 0. As far as it
concerns the SAR and the evolution of the mutation strength, the situation of the stationary state does
not differ much from the hypothetical case that the ES is on the axis itself having achieved the subgoal
of optimizing the embedded sphere.

As was shown, in the case of the parabolic ridge, the system admits a stationary state with a
strictly positive stationary mutation strength and distance to the axis. Unlike the case of the sharp
ridge, neither a convergence to the axis nor a divergence of the distance occurs. The parameterd
is still important since it determines the steady state distance to the ridge and with it the mutation
strength.

While the progress towards the axis stops (on average), there is progress parallel to the axis. The
stationary progress rate reads

ϕ⋆x st =
cµ/µ,λ

√

1 + 4d2R2
st

ς⋆st

=
√

(1/2 + e1,1µ,λ)(2µc
2
µ/µ,λ − 1/2− e1,1µ,λ)

×
( 1/2 + e1,1µ,λ

α2d2(2µc2µ/µ,λ − 1/2− e1,1µ,λ))

)1/(2α−2)
(5.40)

which can be easily obtained by inserting the stationary mutation strength and distance (5.37) into the
progress rate (5.28). In the case ofα = 2,

ϕ⋆x st =
1/2 + e1,1µ,λ

2d
(5.41)

is obtained. For a more detailed derivation, the reader is referred to Appendix E.1.2. As it can be
inferred from (5.41), the stationary progress depends on the population parametersµ andλ and on the
ridge parameterd. Sincee1,1µ,λ > 0 for µ < λ/2, e1,1µ,λ = 0 for µ = λ/2 ande1,1µ,λ < 0 for µ > λ/2,
the stationary progress rate (5.41) is greater than1/(4d) in the first, equals1/(4d) in the second, and
is smaller in the last case. It should be noted that for largerd-constants, the ES is able to get closer to
the axis. In a sense, it succeeds better in fulfilling the partial aim of optimizing the sphere. However,
this results finally in an overall performance loss: The larger the weighting constant of the sphere
part, the smaller the progress parallel to the axis. It is interesting, to note a further characteristic of
self-adaptive ES on the parabolic ridge. Due to the stationarity of theς⋆-evolution, the learning rateτ
is not expected to have an influence on the progress rate. That is, the usual tuning parameter of self-
adaptation cannot be used to improve the performance of the ES. Using the deterministic approach,
the equations show that the learning rate may only have an influence as long as the evolution of the
mutation strength has not reached a steady state.

This situation differs fundamentally from the stationary state on the undisturbed sphere. On the
sphere, the evolution of the mutation strength – normalized with respect to the distance and the search
space dimensionality – reached a stationary state. The ES tuned the mutation strength proportionally
to the distance to the optimizer. The evolution of the distance and the evolution of the non-normalized
mutation strength progressed still. Due to the non stationarity of the latter evolution, the learning rate
could be used as a control parameter. Here, both evolutions come to a halt. Only as long as the ES
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progresses towards the axis, the learning rate may be used to improve the performance. Once the
stationary state is reached, however, the system is independent of the choice of τ . Obviously, the
ES still adjust the mutation strength according to the distance. Here however,it is an adjustment to
the distance to the ridge and not to the optimizer. The value of thex-component does not have any
influence. Only the evolution of the distance to the axis and the evolution of the mutation strength are
coupled.

The stationarity of both evolutions was already encountered in the case of self-adaptive ES on
the noisy sphere. There, additive noise with a constant noise strength kept the ES from reaching the
optimizer. After a transient phase, a self-adaptive ES reached a stationary state of the distance and
the mutation strength. Something similar occurs on the parabolic ridge. Self-Adaptation works on the
parabolic ridge in the sense that no premature convergence occurs. However, once the stationary state
is reached, self-adaptation could be switched off. The mutation strength is stationary and does not
reflect any movement or position inx-direction.

Figure 5.7 shows the stationary mutation strength, distance (5.37), and progress rate (5.41) as
functions of the parent numberµ comparing them with the results of experiments. The agreement
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Figure 5.7: The stationary distance, mutation strength (5.37), and progress rate (5.41) for some
(µ/µI , 10)-ES with self-adaptation on the parabolic ridge. Each data point was sampledover200, 000
generations (N = 30,N = 100) and900, 000 (N = 1000) generations. The stars indicate the results
for N = 1000, the triangles those forN = 100, and the boxes those forN = 30.

between prediction and experiment is good, but it should be mentioned that the experimental data
are lower than predicted. Interestingly, the experiments do not show significant differences between
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high and low search space dimensionalities. This is somewhat surprising andup to now not fully
understood.

The Influence of Recombination Equations (5.37) and (5.41) can be used to investigate the
influence of recombination. As Fig. 5.7 shows, the maximal progress and themaximal mutation
strength occur in the case of non-recombinative ES, i.e., forµ = 1, which is confirmed by experiments.
Introducing multi-parent recombination does not lead to any advantage at all. The stationary progress
on the axis is influenced by the stationary mutation strength and distance and therefore by the progress
rate (towards the axis) (5.27) and the SAR (5.29). In the case of the parabolic ridge, it can be given as
ϕ⋆x st = (1/2+e1,1µ,λ)/(2d) (5.41). The effects of recombination are reflected by the progress coefficient

e1,1µ,λ which stems from the SAR. All other influences have averaged out. The progress coefficiente1,1µ,λ
is a monotonously decreasing function inµ for µ < λ/2. As already pointed out, the first zero point
is atµ = λ/2. Afterwards, negative values are assumed until the coefficient approaches zero again
for µ = λ. As a result, the stationary progress (5.41) is largest forµ = 1 and ES does not benefit
from recombination. At first glance this is contradictory to the results obtained by Oyman [79]. He
pointed out that recombination has positive effects in the case of the parabolic ridge since the distance
to the ridge is decreased. This enables larger progress rates [79, p. 139]. This result was obtained
for constant mutation strengths, though. Unfortunately, in the case of self-adaptive ES recombination
also decreases the mutation strength mirroring the response of the zero of the SAR. The decrease of
the distance fails to counteract this trend leading to a falling progress rate withµ.

Using the deterministic variant of the evolution equations, two main results can bederived: First,
a stationary state other thanς⋆ = 0 exists which admits positive progress. Second, the ES does not
benefit at all from multi-parent recombination.

5.2 Self-Adaptive ES on Noisy Ridge Functions

In this section, the analysis is extended to ridge functions that are disturbed by noise. The noise
term is modeled using the standard noise model of an additive normally distributed term with zero
mean and standard deviation (noise strength)σǫ. As before, it is assumed that the noise strength is
constant and does not depend on the position in the search space. First,the sharp ridge is addressed
before an analysis of the parabolic ridge is provided.

5.2.1 Noise is Beneficial: Noise on the Sharp Ridge

As it was shown in Section 5.1.1, there are generally two types of behavior shown by evolution
strategies on the sharp ridgef(x,R) = x − dR: Dependent on the ridge parameterd, an ES either
converges prematurely or continuously enlarges the mutation strength and the distance to the ridge.
But what happens if noise influences the fitness evaluations? Isd still a decisive parameter then?

The Noise Model and the Evolution Equations

To investigate the behavior of ES on the noisy sharp ridge, the standard noise model is used.
Therefore, the noise is modeled using an additive normally distributed random variable with a constant
(uniform) standard deviationσǫ. Therefore, given the object vectory the apparent fitness reads

FR(y) = y1 − d

√

√

√

√

N
∑

i=2

y2
i + ǫ
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= y1 − d

√

√

√

√

N
∑

i=2

y2
i + σǫN (0, 1)

⇒ f(x,R) = : x− dR+ σǫN (0, 1). (5.42)

Again, due to the form of the undisturbed fitness functionf(x,R) = x − dR three variables are of
interest: thex-component denoting the change parallel to the ridge axis, the lateral componentR
measuring the distance to the ridge, and the mutation strengthσ.

To investigate the change of these three variables over time, the deterministic evolution equations

x(g+1) = x(g) + ϕ⋆x(σ
⋆, σ⋆ǫ )/N (5.43)

r = R− ϕ⋆R(R, σ⋆, σ⋆ǫ )/N (5.44)

〈ς⋆(g+1)〉 = σ
(

1 + ψ(R, σ⋆, σ⋆ǫ )
)

(5.45)

are considered. Note, the normalized versionsϕ⋆x := Nϕx, ϕ⋆R := NϕR, σ⋆ := Nσ, andσ⋆ǫ := Nσǫ
are used again. The progress ratesϕ⋆x, ϕ⋆R, and the SARψ are obtained in Appendices B.2-C. Here,
their main characteristics are shortly discussed.

The progress rateϕ⋆x = NE[x(g+1) − x(g)] obtained forτ = 0 andN →∞ as

ϕ⋆x(σ
⋆) =

σ⋆2
√

(1 + d2)σ⋆2 + σ⋆ǫ
2
cµ/µ,λ (5.46)

is – as before – a quasi-linear function of the mutation strength. Again, thereis no influence ofx itself
on its own expected change. At first sight, the progress parallel to the axis is diminished by the noise
strength – but as it is shown later on the situation is more complicated.

The progress rateϕ⋆R = NE[R(g) −R(g+1)], i.e.,

ϕ⋆R(σ⋆, R) =
dσ⋆2

√

(1 + d2)σ⋆2 + σ⋆ǫ
2
cµ/µ,λ −

σ⋆2

2Rµ
(5.47)

consists of a gain and a quadratic loss part and can be interpreted as a function of the mutation strength.
Again, (5.47) is determined forN → ∞ andτ = 0. The influence of the additional parameters, i.e.,
the ridge parameters and noise strength, enter the progress rate over thegain part. The loss part is only
influenced by the parent numberµ and the distance to the ridge.

The SARψ = E[(〈ς⋆(g+1)〉 − 〈ς⋆(g)〉)/〈ς⋆(g)〉],

ψ(σ⋆, R) = τ2

(

1/2 + e1,1µ,λ
(1 + d2)σ⋆2

(1 + d2)σ⋆2 + σ⋆ǫ
2

−cµ/µ,λ
dσ⋆2

R
√

(1 + d2)σ⋆2 + σ⋆ǫ
2

)

(5.48)

is determined under the assumptionτ ≪ 1 and forN → ∞. Noise influences the gain and the
loss part, but the influence of the distance is only present in the loss part. It should be noted that the
prediction quality of (5.48) deteriorates relatively fast with increasingσ⋆ for smaller values ofN .
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Since the required functions are given, the analysis can be started. As inthe previous sections, the
evolution of thex-component does not influence the evolution ofR andσ⋆. The evolution parallel
to the axis is governed by the evolutions of the remaining two state variables instead. Therefore, it
suffices to consider the system inR andσ⋆

(

r

〈ς⋆(g+1)〉

)

=

(

R− ϕR(R, σ⋆, σ⋆ǫ )/N

σ⋆
(

1 + ψ(R, σ⋆, σ⋆ǫ )
)

)

. (5.49)

There are two behaviors the system(R, σ⋆)T, (5.49), is expected to show: a convergence to a
stationary state (which may be either a convergence to a point or to an orbit) or a divergence ofR and
σ⋆. The following part of this section is devoted to deriving conditions for divergence or convergence.

Introducing Normalizations

To make the equations easier to handle, an additional normalization for the progress ratesϕ⋆x,
(5.47),ϕ⋆R, (5.48), the mutation strength, and the noise strength is introduced. The aim isto eliminate
the distance to the ridgeR in (5.46) – (5.49). Setting thusσ∗ := σ⋆/R, σ∗ǫ := σ⋆ǫ /R, ϕ∗

x := ϕ⋆x/R,
andϕ∗

R :=ϕ⋆R/R, the progress rates (5.46), (5.47), and the SAR (5.48) change to

ϕ∗
x(σ

∗, σ∗ǫ ) =
σ∗2

√

(1 + d2)σ∗2 + σ∗2
ǫ

cµ/µ,λ, (5.50)

and

ϕ∗
R(σ∗, σ∗ǫ ) =

σ∗2d
√

(1 + d2)σ∗2 + σ∗ǫ
2
cµ/µ,λ −

σ∗2

2µ
, (5.51)

and

ψ(σ∗, σ∗ǫ ) = τ2

(

1/2 + e1,1µ,λ
(1 + d2)σ∗2

(1 + d2)σ∗2 + σ∗ǫ
− cµ,µ,λ

dσ∗2

√

(1 + d2)σ∗2 + σ∗ǫ
2

)

. (5.52)

The evolution equations forR andσ∗ change accordingly. Note,〈ς∗(g+1)〉 := 〈ς⋆(g+1)〉/r = R(1 −
ϕ∗
R/N)

(

r

〈ς∗(g+1)〉

)

=





R
(

1− ϕ∗
R(σ∗, σ∗ǫ )/N

)

σ∗
(

1+ψ(σ∗,σ∗
ǫ )

1−ϕ∗
R(σ∗,σ∗

ǫ )/N

)



 . (5.53)

As in the case of the noisy sphere (cf. Section 4.2), a thirdg-dependent variable appears: The normal-
ized noise strengthσ∗ǫ

(g) changes withR(g). However, the (direct) influence ofR(g) can be eliminated
leading to the new evolution equation

σ∗ǫ
(g+1) =

σ∗ǫ
1− ϕ∗

R(σ∗, σ∗ǫ )/N
. (5.54)

Due to the normalization, the evolution ofR neither influences the evolution of the mutation strength
nor the evolution of the noise strength. As before in Section 4.2, its evolution isdecoupled and it
suffices to analyze the two-dimensional evolution equations

(

σ∗ǫ
(g+1)

〈ς∗(g+1)〉

)

=





σ∗
ǫ

1−ϕ∗
R(σ∗,σ∗

ǫ )/N

σ∗
(

1+ψ(σ∗,σ∗
ǫ )

1−ϕ∗
R(σ∗,σ∗

ǫ )/N

)



 . (5.55)

For the remainder of this section, the evolution equations (5.55) are used.
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Determining Stationary States

Following the previous approach in Section 5.1, the stationary points are determined first. Station-
ary points of (5.55) defined as(σ∗ǫ

(g+1), 〈ς∗(g+1)〉)T = (σ∗ǫ , σ
∗)T can be calculated in a straightfor-

ward way. The stationary solution of the evolution equation forσ∗ǫ in (5.55) requires the progress rate
(5.51) to be zero. Therefore, the task is to find zero points of (5.51) which are also stationary points
for the evolution of the mutation strength. It can be shown that the stationary state of the system (5.55)
is given by

(

σ∗ǫ stat1
ς∗stat1

)

=

(

c

0

)

(5.56)

with c ∈ R, c ≥ 0 or by

(
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=
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
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
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









(5.57)

(see Appendix E.2.1, p. 223). In the situation of (5.57), the ES does not converge to the axis. Note, the

stationary mutation strength goes to zero ford→ 0 and to2µcµ/µ,λ/
√

4µc2µ/µ,λ − 2e1,1µ,λ for d→∞.

The normalized noise strength behaves proportional tod: For d → 0, σ∗ǫ (d) → 0 andσ∗ǫ (d) → ∞
for d → ∞. Both variables are completely determined by the population parameterµ andλ and of
course by the ridge parameterd.

The noise effectively stops the ES from approaching the ridge axis arbitrarily close. Similar to the
sphere model, a stationary distance to the ridge axis can be derived

Rstat =
Nσǫ

2dµcµ/µ,λ

√

√

√

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1
. (5.58)

See Appendix E.2.1 for the derivation.
As it has been shown, system (5.55) comes to a halt either by a loss of step-size control in an arbi-

trary distance to the axis or by attaining stationary values for the mutation strength and the distance.
The question remains under which conditions this stationary state exists. As it isshown next, the

weighting constantd is again decisive w.r.t.µ andλ. Letµ ≤ λ/2. The stationary state is only defined
for weighting constantsd which fulfill

d ≥ dcrit :=

√

√

√

√

2e1,1µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1
. (5.59)

See Appendix E.2.1, p. 226f. for a derivation.
First of all, note that the samed-value as for the undisturbed sharp ridge decides over the existence

of the stationary state. The reason for this is that only in the case ofd > dcrit, the ES moves towards
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the axis at all. In the case ofd < dcrit, the distance to the axis and the mutation strength enlarge. Since
the noise strength remains constant, it gradually looses its influence until the ES behaves as if it were
optimizing the noise-free ridge. The constraintµ ≤ λ/2 is sufficient but not necessary. The equations
generally hold unlessµ ≈ λ but a sharp boundary cannot be given. Letµ ≤ λ/2. If d ≥ dcrit holds
then (5.57) is a locally stable fix-point of (5.55) for the ES considered whereas (5.56) is instable (see
Appendix E.2.1).

Let us sum up our findings. Ford > dcrit, ES moves towards the ridge axis as in the undisturbed
case. Contrary to its behavior in the noise-free case, it converges to a stationary state that has a well-
defined distance to the axis. The evolution ofR comes to a halt on average and the ES travels parallel
to the axis direction.

The normalized stationary progress rate behaves in the same manner as the normalized stationary
mutation strength: It does not depend on the noise strength, i.e., it stays constant. This can be easily
seen since the stationary progress rate can be re-expressed as

ϕ∗
xstat =

σ∗stat
2

2µd
(5.60)

since due to the stationary of theR evolution,
√

σ∗stat
2 + σ∗ǫ

2
stat = 2µcµ/µ,λ holds. The normal-

ized progress (5.60) depends on the stationary mutation strength in (5.57),the constantd and on the
population parameters.

Only after switching to the non-normalized versions a dependence on the noise strength appears.
This is due to the linear dependence of the stationary distance on the noise strength.

The non-normalized progress parallel to the ridge axis can be obtained byplugging (5.57) and
(5.58) into (5.50) as

ϕstx (σǫ) = σǫcµ/µ,λ

√

1

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1

×
√

1

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ
(5.61)

The derivation can be found in Appendix E.2.1, p. 228. The non-normalized progress rate scales linear
with the noise strength – a behavior that is also exhibited by the non-normalizedmutation strength

ςstat =
σǫ

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− (2e1,1µ,λ + 1)
(5.62)

(cf. Appendix E.2.1, p. 228). The larger the noise strength, the farer the ES stays away from the
ridge axis. In turn, the mutation strength and the stationary progress increase with the distance scaling
linearly with the noise strength. This is a result of the optimization behavior. If the ES is far away
from the ridge axis the influence of the noise in comparison to that ofR is relatively small. Provided
d is relatively large, the ES starts approaching the axis but is hindered in the convergence by the
noise. Higher noise strengths result in larger distances to the axis. This in turn allows larger stationary
mutation strengths. Larger mutation strengths are connected with higher expected gains on the ridge
axis. On the sharp ridge, noise with a constant strength effectively stopsthe ES from optimizing
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the contained sphere model and enforces a more significant gain on the axis. This only holds for
sufficiently large ridge parametersd.

If d is too small, the ridge is not being tracked and a divergence of the distance occurs. The
distanceR increases which lessens the (relative) influence of the noise. In this case, the ES will
gradually start to behave as if it were optimizing the undisturbed sharp ridge– striding away from
the axis with a negative progress rateϕR– but with an overall positive quality change, i.e., the gain
parallel to the axis surpasses the loss due to the distances increase. This case was already discussed in
Section 5.1.1.

Recapitulating, note that in the case of constant noise strength the ES showsa similar behavior
as in the noise free case: The choice of the ridge parameterd decides whether the ridge is tracked or
not. If the ridge is not tracked the influence of the noise decreases and the ES attains a positive though
not optimal quality change. If the ridge is tracked, the ES cannot converge to the ridge due to the
noise. Noise is actually beneficial since it prevents premature convergence: The larger the noise, the
larger the mutation strength and with it the progress in axis direction. In contrast to the former case
of divergence from the axis, the ES progresses with a constant non-normalized mutation strength (on
average). In short, noise on the sharp ridge either soon looses its influence or has an actual positive
influence as it keeps the ES from optimizing only the sphere part.

Comparison with Experiments

Figure 5.8 shows a comparison between the normalized stationary values (5.57) and (5.60) and
experimental data for three search space dimensionalitiesN = 30, N = 100, andN = 500. The
prediction quality improves with the search space dimensionality with the exceptionof the station-
ary mutation strength in (5.57). In this case, the agreement is good even forthe lower dimensional
search spaceN = 30 and does not improve visibly ifN increases. It can be seen though that (5.57)
tends to overestimate the stationary mutation strength if the parent number is relatively small. This
probably causes in turn the greater deviations of (5.60) from the experimental progress rates for these
µ values. While the agreement of (5.60) with the experiments is quite good for largeN in general,
the experimental results forµ = 1 andµ = 2 are far lower than predicted. Figure 5.9 compares the
non-normalized values (5.58), (5.61), and (5.62) with the results of experiments. Again, the prediction
quality if relatively poor forN = 30 and improves with the search space dimensionality. As it can be
seen, the experiments for (1, 60)-ES result in far smaller mutation strengths than predicted.

The Effects of Recombination

The effects of recombination remain to be addressed. Figure 5.9 shows thestationary mutation
strength and progress rate as functions of the parent numberµ. As it reveals, switching fromµ = 1 to
µ > 1 is not beneficial. To find out why, let us start with the normalized mutation and noise strength
(5.57). Provided that the size of the offspring population is not small, (5.57) shows an interesting
scaling behavior with respect toµ. If 2µc2µ/µ,λ ≫ e1,1µ,λ holds, the stationary point can be approximated
with

(

σ∗ǫ appr
ς∗appr

)

=

(

2dµcµ/µ,λ√
µ

)

. (5.63)

Equation (5.63) holds forµ 6≈ 1 andµ 6≈ λ and largeλ. Interestingly, it equals the scaling behavior
on the noisy sphere (4.66) with only one exception, the ridge parameterd, which appears in the case
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Figure 5.8: The stationary noise strength , stationary mutation strength (both in(5.57)), and stationary
progress rate (5.60) on the sh arp ridge as functions ofµ. The results were averaged over several
runs with different choices ofσǫ with σ⋆ǫ = 1, 2, 3, and5. The search space dimensionalities are
N = 30,N = 100, andN = 500. In the case ofN = 30 each data point was sampled over100, 000
generations for each noise strength and then averaged over all noise strengths, i.e., over a total of
4 × 100, 000 generations. ForN = 100 andN = 500 4 × 200, 000 generations were used. The
results forN = 30 are denoted by the round points, those forN = 100 by the squares, whereas the
results forN = 500 are given by the diamonds.

of the noise strength. Apparently, in this respect the ES behaves in a verysimilar manner on the noise
sharp ridge as on the noisy sphere. The fact that the noisy sharp ridgeand not the noisy sphere is to be
optimized is not recognizable in the stationary mutation strength and as said concerning the stationary
normalized noise only the presence of the weighting factor differentiates (5.63) from (4.66).

Recombination increases the mutation strength in (5.63) and (4.66). A similar result, though, holds
for the normalized noise strength which increases with2µcµ/µ,λ. This results in smaller distances to
the ridge axis. With similar arguments as before, the scaling behavior of the distance to the ridge w.r.t.
µ reads

Rappr =
Nσǫ

2dµcµ/µ,λ
. (5.64)
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Figure 5.9: The stationary distance (5.58), stationary mutation strength (5.62), and stationary progress
rate (5.61) for constant noise on the sharp ridge as functions ofµ. The search space dimensionalities
areN = 30, N = 100, andN = 500. In the case ofN = 30 each data point was sampled over
100, 000 generations, whereas forN = 100 andN = 500 200, 000 generations were used. The
results forN = 30 are denoted by the round points, those forN = 100 by the squares, whereas the
results forN = 500 are given by the diamonds.

The approximate distance (5.64) is also the minimal possible distance that can beobtained. This can
be inferred by using the stationary conditionϕ∗

R = 0

ϕ∗
R = 0 ⇐⇒ σ∗ = 0

∨

(1 + d2)σ∗2 + σ∗ǫ
2 = 4µ2c2µ/µ,λ = 0 (5.65)
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(see (5.50)) and lettingσ∗ → 0.

While the decrease of the distance was beneficial on the sphere, it has theopposite effect on the
ridge. The normalized stationary progress (5.60) reveals the problem: Ifµ 6≈ 1 andµ 6≈ λ, the
influence ofµ on the normalized progress rate is negligible. Because ofς∗stat ∝

√
µ, the normalized

progress rate does not differ much from

ϕ∗
xappr =

1

2d
(5.66)

provided thatλ is not small.

Since the normalized progress rate stays nearly constant, a problem is encountered in the case
of the non-normalized variables. The non-normalized progress rate (5.61) scales approximately with
1/(2µcµ/µ,λ) and drops sharply if recombination is introduced.

The normalized noise scales with2µcµ/µ,λ and the distance therefore with1/(2µcµ/µ,λ). This
outperforms the increase of the normalized mutation strength with

√
µ: The non-normalized mutation

strength decreases with1/(2
√
µcµ/µ,λ). Decreasing the mutation strength is necessary on the sphere.

Since the ES is able to approach the optimizer more closely, the mutation strength must reflect this and
decrease accordingly. On the ridge, though, this means that the mutation strength is decreased because
the subgoal of optimizing the sphere is better realized. This does not equala better achievement of
the overall goal. Again, neither the position nor the gain inx-direction is reflected.

On first sight, recombination does not have any benefits. A caveat must be added, though. As on
the sphere (cf. Section 4.2), the (1, λ)-ES looses step-size control in the stationary state – a behavior
not predictable by the deterministic evolution equations. Therefore, as a rule the progress parallel to
the axis halts and the ES stagnates prematurely. Recombination is therefore beneficial. The problem
now consists in choosingµ sufficiently large so that the ES may stabilize the mutation strength and
sufficiently small so that the progress does not decrease too far. Concerning the general behavior
of the progress rate,µ ≈ 2 − 5 appears as a good choice – at least for the ES and noise strengths
considered here.

5.2.2 Noise on the Parabolic Ridge

As it has been shown in the previous section, additive noise on the sharp ridge is actual beneficial:
It keeps the ES from realizing the subgoal of optimizing the sphere. Since the ES cannot converge
to the axis, it maintains a positive mutation strength. As result, there is progressin x-direction and
no premature convergence occurs. The effects of noisy perturbations in the case of the remain to be
addressed. Recall, the noisy parabolic ridge is defined as

f(y) = y1 − d
N
∑

i=2

y2
i + ǫ

= y1 − d
N
∑

i=2

y2
i + σǫN (0, 1)

:= x− dR2 + σǫN (0, 1). (5.67)

Again, the parameterσǫ denotes the noise strength and is assumed to be constant.
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The Evolution Equations and Progress Measures

As before, the first-order evolution equations without perturbation partsserve as the starting point
for the analysis

x(g+1) = x(g) + ϕ⋆x(R, σ
⋆, σ⋆ǫ )/N (5.68)

r = R(g) − ϕ⋆R(R, σ⋆, σ⋆ǫ )/N (5.69)

ς⋆ = σ⋆
(

1 + ψ(R, σ⋆, σ⋆ǫ )
)

. (5.70)

Before starting the analysis, we need the progress ratesϕ⋆x andϕ⋆R and the SARψ. Their derivation
can be found in Appendix B.2 and Appendix C.1.2. The progress rates

ϕ⋆x(R, σ
⋆, σ⋆ǫ ) =

cµ/µ,λ
√

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2
σ⋆2 (5.71)

and

ϕ⋆R(R, σ⋆, σ⋆ǫ ) =
2dRcµ/µ,λ

√

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2
σ⋆2 − σ⋆2

2Rµ
(5.72)

are obtained forN →∞ andτ = 0. The SAR

ψ(σ⋆, σ⋆ǫ ) = τ2
(

1/2−
2dcµ/µ,λσ

⋆2

√

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2

+ e1,1µ,λ
(1 + 4d2R2)σ⋆2

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2

)

(5.73)

is derived under the assumptionτ ≪ 1 and forN →∞.

Determining Stationary Solutions

As before, the stationary state behavior of the ES is of interest. So first ofall, the stationary states
are determined starting with the evolution of the distance to the axis (5.69). Demanding stationarity of
theR-evolution leads to an expression of the stationary mutation strength as a function of the distance

0 = ϕ⋆R(R, σ⋆, σ⋆ǫ )

⇒ 0 =
2dRcµ/µ,λ

√

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2
σ⋆2 − σ⋆2

2Rµ

⇒ σ⋆ = 0
∨

σ⋆2 =
16d2R4µ2c2µ/µ,λ

1 + 4d2R2
− σ⋆ǫ

2

1 + 4d2R2
. (5.74)

Otherwise, the distanceR(g) to the ridge must be zero. Demanding further stationarity of theς⋆-
evolution (5.70), eitherσ⋆ = 0 orψ = 0, i.e.,

0 = τ2
(

1/2−
2dRcµ/µ,λσ

⋆2

R
√

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2

+ e1,1µ,λ
(1 + 4d2R2)σ⋆2

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2

)

(5.75)

(cf. 5.73) have to hold. The mutation strength in (5.75) can be eliminated by inserting (5.74). We
arrive at a third order polynomial inR2
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0 = R6 −R4 1

4d2

( 2e1,1µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1

)

− R2σ⋆ǫ
2

8d2µ2c2µ/µ,λ

( 2µc2µ/µ,λ − e
1,1
µ,λ

4µc2µ/µ,λ − 2e1,1µ,λ − 1

)

+
e1,1µ,λσ

⋆
ǫ
2

32d4µ2c2µ/µ,λ

(

4µc2µ/µ,λ − 2e1,1µ,λ − 1
) (5.76)

which can be solved analytically (see Appendix E.2.2). Since

σ⋆st =

√

16
(d2R4

stµ
2c2µ/µ,λ

1 + 4d2R2
st

)

− σ⋆ǫ
2

1 + 4d2R2
st

, (5.77)

the solutions can be used to obtain the stationary mutation strength and with it the stationary progress
parallel to the axis

ϕ⋆st =
cµ/µ,λ

√

(1 + 4d2R2
st)σ

⋆
st

2 + σ⋆ǫ
2
σ⋆st

2 =
1

4dµ

σ⋆st
2

R2
st

. (5.78)

The solutions of (5.76), however, are not very informative. Therefore, the influence of the noise will
be discussed using Figs. 5.10-5.15.

Discussion of the Results and Comparison with Experiments

Figures 5.10-5.15 show the stationary distance, mutation strength, and progress parallel to the
axis for some (µ/µI , 60)-ES. Also shown are the results of experiments forN = 30 andN = 100.
The ridge constantd was set tod = 5. In the case ofN = 100, all data points are obtained by
sampling over400, 000 generations in the stationary state whereas200, 000 generations were sampled
forN = 30. As long asµ is relatively small, there are deviations between experiments and predictions.
This concerns especially the case ofµ = 2, i.e., small parent numbers. The prediction quality is
generally better for larger noise strengths than for smaller. The exceptionis again the case ofµ = 2.
Similarly to the case of the undisturbed parabolic ridge, increasing the search space dimensionality
does not have any detectable influence on the prediction quality.

Again, it should be noted that in the case of the (1, λ)-ES, a similar problem as in the case of the
sphere model appears: Once the fitness evaluations are overlaid by noise and the noise strength is too
large, the (1, λ)-ES looses step-size control. The mutation strength is reduced to very smallvalues
and the progress rate drops significantly. This cannot be predicted by the deterministic evolution
equations.

In the case of the distance (see Figs. 5.10 and 5.11), the prediction quality of the solution of (5.76)
is good. Only for very small noise strengths, some deviations can be observed in the case ofµ = 2.

Greater deviations are observed in the case of the mutation strength (5.77).Especially, there
are deviations for smaller parent numbersµ and small noise strengths. Equation (5.77) tends to
overestimate the experimental results (see Figs. 5.13 and 5.12). Increasing µ improves the agreement
provided that the noise strength is large.
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Figure 5.10: The stationary distance obtained using (5.76) (colored) in comparison to the stationary
distance estimate (5.80) (black, dashed). As it can be seen, the curves are very similar and cannot be
differentiated easily. The points denote the results of experiments with (µ/µI , 60)-ES withd = 5 for
N = 30 (disks) andN = 100 (squares). Each data point was averaged over400, 000 (N = 100) and
200, 000 (N = 30) generations in the stationary state.

A problem occurs in the case of the progress rate (5.78). Equation (5.78) shows a similar behavior
as the experiments with respect to varying the noise strength. That is, forµ < λ/2, the progress rate
decreases with the noise and goes to a limit value. Forµ = λ/2, it remains constant. Finally, for
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Figure 5.11: The stationary distance obtained using (5.76) in comparison to the stationary mutation
strength estimate (5.80). Both are shown as functions of the noise strength.The figure depicts the
result for smaller noise strengths. As it can be seen, the predictions of (5.76) and (5.80) are very
similar – except for the caseµ = 2.

µ > λ/2 it increases with the noise approaching again a limit value. However, (5.78)overestimates
the results. Furthermore, the convergence to the limit is not as fast as in the experiments (see Figs. 5.14
and 5.15). Equation (5.78) only serves well to predict the stationary state progress rate for large noise
strengths. The exception is of course the case ofµ = λ/2. All examined strategies with intermediate
recombination converge to very similar limits.
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Figure 5.12: The stationary mutation strength obtained using (5.77) (dashedlines) in comparison to
the stationary mutation strength estimate (5.81). As it can be seen, this scale reveals some differences
between experiments and prediction.

As seen, noise generally increases the distance to the axis and the mutation strength. As the
experiments showed, the transition from the zero-noise level to very small noise-levels may cause an
initial decrease but this is soon overcome and the variables increase. As itcan be discerned from
Figs. ?? - ??, the increase is approximately proportional to the square root of the noisefor both
the mutation strength and the distance. The slope of the increase is determined by the population
parametersµ and λ. The stationary progress rate is influenced by the square of the ratio of the
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Figure 5.13: The stationary mutation strength obtained using (5.77) (colored) in comparison to the
stationary mutation strength estimate (5.81)(black, dashed) . The curves are similar although some
deviations can be observed, especially for small noise strengths and smaller number of parents. Again,
the points denote the results of experiments with (µ/µI , 60)-ES withd = 5 for N = 30 (disks) and
N = 100 (squares). Each data point was averaged over400, 000 (N = 100) and200, 000 (N = 30)
generations in the stationary state.

mutation strength and the distance. Noise would have a positive effect if the increase of the stationary
mutation strength outperformed the increase of the stationary distance. However, this is not always the
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case. The dependence on the noise strength appears complicated. Comparing the zero noise and the
large noise regime, it can be found that noise finally lowers the initial progress rate forµ < λ/2, but
increases it forµ > λ/2. Regardless of the noise strength, evolution strategies with parent populations
with less than half the size of the offspring populations have a progress rate that is larger than that of
other strategies. Large noise strengths, however, diminish this advantage.

The case ofµ = 30 = λ/2 is very interesting since the progress rate is not influenced by the noise
at all. For all examined choices ofσ⋆ǫ , it remains on the same level it had forσ⋆ǫ = 0. Apparently, there
is an balance between the influence of distance and of the mutation strength, i.e., σ⋆st(σ

⋆
ǫ ) = Rst(σ

⋆
ǫ ).

The question remains why noise increases the progress rate for intermediate ES withµ > λ/2, but
decreases it forµ < λ/2. As (5.78) reveals, the increase of the stationary mutation strength with
the noise must stronger than the increase of the distance to the axis to result finally in an increase of
(5.78). Apparently, this is the case forµ > λ/2. Unfortunately, Equations (5.76) - (5.78) lead to quite
complicated solutions which cannot be easily used to answer the question.

However, another interesting behavior is shown in Fig. 5.16. Let us assume a constant noise
strength for the moment and consider the stationary mutation strength, distance, and progress rate
(5.76) - (5.78) as functions of the parent numberµ. ConcerningRst, a similar behavior as in the case
of the noise sphere occurs: Evolution strategies withµ : λ-ratios around≈ 0.5 have the smallest
distances to the ridge. All other strategies are grouped around this value,with increasing distances for
µ → λ andµ → 1. Furthermore, the distances are approximately symmetric. This is in accordance
with the behavior on the noisy sphere [25].

The behavior of the mutation strength (5.77) remains to be addressed. If the noise strength is
large, the stationary mutation strength (5.77) first decreases and then increases withµ. Concern-
ing larger values ofµ, a similar increase of the mutation strength withµ was already observed on
the noisy sphere. There, the non-normalized stationary mutation strength scales approximately with
1/
√

4cµ/µ,λ. As Fig. 5.16 shows (5.77) behaves similarly for large noise strengths.
The progress rate (5.77) depends on the square of ratio of the mutation and the noise strength –

weighted additionally with1/µ. Its behavior as a function ofµ shows some similarities to the non-
noisy case (5.41), p. 91, (see Fig. 5.16 c) and Fig.5.7 b), p. 92). Onlyin the large-noise regime the
influence of the mutation strength is sufficient to lead towards a nearly constant progress rate for a
wide range ofµ.

Recombination is beneficial in the sense that the induced inherent bias for an increase of the
mutation strength serves as a safeguard against a loss of step-size control: Strategies that make use
of only one parent cannot stabilize the mutation strength. Once the ES is relatively close to the axis
and the influence of the noise is too large, a loss of step-size control can be observed. Since (1, λ)-
ES are prone to a loss of step-size control, recombination appears necessary. The question of how to
choose the truncation ratio remains to be answered, however. For large noise strengths, the differences
between the performances of different (µ/µI , λ)-ES are smoothed out. The experiments showed an
even faster convergence of the progress rate towards its limit than predicted. Thus, the case of larger
noise strengths appears more important than the case of smaller noise strengths. The parent numberµ
must be chosen so that the mutation strength and progress rate stabilize. As Figs. 5.12 to 5.15 shows,
a parent number ofµ = 2 appears to be too small to stabilize the mutation strength sufficiently.
Choosingµ = 10, however, is sufficient in our scenario.

The Case of Large Noise Strengths

As said, the solutions of (5.78) are complicated. Therefore, this section aimsat deriving simpler
approximate solutions. The derivation is primary based on the finding of the previous section: If
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Figure 5.14: The stationary progress rate obtained using (5.79) in comparison to the estimate (5.84)
(black dashed line). Again, the points denote the results of experiments with (µ/µI , 60)-ES with
d = 5 for N = 30 (disks) andN = 100 (squares). Each data point was averaged over400, 000
(N = 100) and200, 000 (N = 30) generations in the stationary state.

the noise strength is large, a self-adaptive ES on the noisy parabolic shows a similar behavior in the
stationary state as on the noisy sphere.

First of all, a minimal distance to the axis can be determined by using (5.74) and settingσ⋆ = 0
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Figure 5.15: The stationary progress rate obtained using (5.79) (dashed line) in comparison to the
estimate (5.80) (solid line). Forµ < λ/2, the stationary progress rate obtained using (5.79) tends to
overestimate the experimental results. It should be noted that the experimental results converge far
sooner than estimated.

Rmin =

√

σǫN

4dµcµ/µ,λ
=

√

σ⋆ǫ
4dµcµ/µ,λ

. (5.79)
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Figure 5.16: The influence of the parent numberµ on the stationary distance, mutation strength and
progress rate for several noise levels (σ⋆ǫ = 1, 10, 100).

However, (5.79) and (5.76) lead to very similar results at least for the evolution strategies examined.
The influence of a non-zero mutation strength on the resulting distance is onlyminor. Equation (5.79)
is applicable only if the noise strength is sufficiently large since it neglects the part of the stationary
distance that is due to the evolution of the mutation strength.

But Equation (5.79) points to again to the very interesting characteristic: Concerning the minimal
distance, the ES behaves similarly to an ES on the noisy sphere. The minimal distance mirrors the
minimal distance (4.66) – apart from the weighting factor1/d. This is the basis for the following
approach to determine easier estimates for the stationary distance and mutation strength. Since (5.79)
is the minimal distance of the noisy sphere (4.66) weighted with1/

√
d, it is assumed that a similar

relationship holds for the stationary distances (5.76) and (4.65). This leads to the estimate

Rappr =

√

σ⋆ǫ
4dµcµ/µ,λ

4

√

√

√

√

4µc2µ/µ,λ − 2e1,1µ,λ

4µc2µ/µ,λ − 2e1,1µ,λ − 1
. (5.80)

As Figs. 5.10 and 5.11 show the deviations between estimate (5.80) and (5.76)are not high. Equation
(5.80) can now be used together with (5.77) to obtain an estimate of the stationary mutation strength

ς⋆appr =
σ⋆ǫ

√

4µc2µ/µ,λ − 2e1,1µ,λ − 1

√

√

√

√1 + dσ⋆
ǫ

µcµ/µ,λ

√

4µc2
µ/µ,λ

−2e1,1
µ,λ

4µc2
µ/µ,λ

−2e1,1
µ,λ−1

. (5.81)
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Again, (5.81) is only applicable ifσ⋆ǫ is large, since (5.81) predicts a zero mutation strength for
zero noise strength which is not the case on the parabolic ridge. As Fig. 5.13 shows, the prediction
quality of (5.81) is reasonably good: Only for small values ofσ⋆ǫ , greater deviations occur as it was
to be expected. For greaterσ⋆ǫ the prediction quality improves. It is interesting to note the following
findings: First of all, the lines of (5.81) and (5.77) move closer together for increasing noise. Second, a
similar effect occurs for an increasing parent numberµ. Finally, in the case of smaller parent numbers,
(5.81) even serves better as a predictor of the experiments than the resultsobtained by using (5.76)
and (5.77) – provided that the noise is not small.

It is also interesting to note two limit behaviors of (5.81). Provided thatσ⋆ǫ is large, the estimate
is approximately

ς⋆appr2 =
√

σ⋆ǫ
µcµ/µ,λ

√

4µc2µ/µ,λ − 2e1,1µ,λ − 1 4

√

d2
(

4µc2
µ/µ,λ

−2e1,1
µ,λ

4µc2
µ/µ,λ

−2e1,1
µ,λ−1

)

(5.82)

that is it scales approximately with
√
σ⋆ǫ . Provided that2µc2µ/µ,λ ≫ e1,1µ,λ + 1, the estimate (5.81) can

be approximated with

ς⋆appr3 =
σ⋆ǫ

√

4µc2µ/µ,λ + 4dcµ/µ,λσ⋆ǫ

. (5.83)

The estimates (5.80) and (5.81) can be used to obtain an estimate for the stationary progress parallel
to the axis

ϕ⋆x appr =
cµ/µ,λσ

⋆
ǫ

√

4µc2µ/µ,λ − 2e1,1µ,λ − 1
√

4µc2µ/µ,λ − 2e1,1µ,λ + dσ⋆
ǫ

µcµ/µ,λ
(4µc2µ/µ,λ − 2e1,1µ,λ)

.(5.84)

The prediction quality of (5.84) is only good if the noise strength is large. First of all, it fails to capture
the interesting behavior of the progress rate as a function of the noise strength. Instead of showing
different responses for different choices ofµ, it predicts an increasing progress rate for increasing
noise for all strategies considered. Equation (5.84) has a finite limit forσ⋆ǫ →∞

lim
σ⋆

ǫ→∞
ϕ⋆x appr =

µc2µ/µ,λ

d(4µc2µ/µ,λ − 2e1,1µ,λ)
. (5.85)

Provided thatλ is large, it can be shown that (5.85) leads to nearly the same value≈ 1/(4d) for a
wide range of the parameterµ, i.e., as long asµ 6≈ 1 or µ 6≈ λ andλ is relatively large.

It is interesting to compare this limit with the stationary progress rate (5.40)

ϕ⋆x st =
1/2 + e1,1µ,λ

2d

obtained for zero noise. Recall,ϕ⋆x st > 1/(4d) for µ < λ/2, ϕ⋆x st = 1/(4d) for µ = λ/2, and
ϕ⋆x st < 1/(4d) for µ > λ/2. Figure 5.17 compares (5.40) with (5.85). The expected behavior occurs:
If µ < λ/2, (5.85) is smaller than (5.40). Ifµ is larger, (5.85) exceeds (5.40). The crossing point of
both progress rates lies atµ ≈ λ/2. This underlines again the finding that noise does not influence
the performance ifµ ≈ λ/2 is chosen. It also shows that in the case of smaller noise strengths, ES
with smaller parent numbers are expected to perform superiorly. The problem now consists in finding
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a parent numberµ that is sufficiently high to stabilize the mutation strength but sufficiently small to
have a relatively high progress. As said, the expected changes cannot cover the stochastic behavior of
(1, λ)-ES. Therefore, the approach using the deterministic evolution equationscannot be used to make
a recommendation of howµ should be chosen. In the case ofµ = 2 and random selection Section 4.2
indicated a bias towards an increase. As the figures show, this bias is not sufficient for a stabilization
of the mutation strength on the level needed. Thus, higher parent numbers, i.e.,µ = 10 should be
used. Of course it is also possible to follow a similar approach as in Section 4.2and to introduce a
small bias towards an increase of the mutation strength.

10 20 30 40 50 60

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

µ

ϕ⋆x st(σ
⋆
ǫ = 0)

limσ⋆
ǫ→∞ ϕ⋆x appr

ϕ⋆xst

10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.1

0.12

µ

ϕ⋆x st(σ
⋆
ǫ = 0)

limσ⋆
ǫ→∞ ϕ⋆x appr

ϕ⋆xst

a)ϕ⋆x st, d = 5 b)ϕ⋆x st, d = 10

20 40 60 80 100

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

µ

ϕ⋆x st(σ
⋆
ǫ = 0)

limσ⋆
ǫ→∞ ϕ⋆x appr

ϕ⋆xst

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

0.12

µ

ϕ⋆x st(σ
⋆
ǫ = 0)

limσ⋆
ǫ→∞ ϕ⋆x appr

ϕ⋆xst

c)ϕ⋆x st, d = 5 d)ϕ⋆x st, d = 10

Figure 5.17: Comparison of the limit (5.85) of the estimate (5.84) of the progress rate with the sta-
tionary progress rate (5.41) for the undisturbed ridge. The progressrates are shown as functions ofµ.
The offspring number is set toλ = 60 (Figs. a), b)) and toλ = 100 (Figs. c),d)). The value of1/(4d)
is indicated by the dotted blue horizontal line.

5.2.3 Self-Adaptation on Ridge Functions: Conclusions

This chapter was devoted to an analysis of self-adaptive evolution strategies on the ridge function
classf(x,R) = x− dRα. Two types of ridge functions were considered: the sharp ridge withα = 1
and the parabolic ridge withα = 2. Section 5.1 was devoted to an analysis of ES on undisturbed ridge
functions. In Section 5.2, the analysis was extended to allow to investigate the effects of additive
normally distributed noise. All analyses used the deterministic evolution equations (see Chapter 3).
Therefore, first of all, the progress measures, the progress rates inR andx-direction and the self-
adaptation response, had to be given. In the following, the main results of the analysis are summarized.

Self-adaptive intermediate ES show very different behaviors on the sharp and parabolic ridge. In
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the case ofα = 2, the ES fluctuates at a stationary distance from the ridge with a positive mutation
strength (cf. Subsection 5.1.2). As a result, there is progress in axis direction and no premature
convergence occurs. The fitness diverges towards infinity. However, the mutation strength stays
constant on average. In the non-noisy case, recombination does not appear to have an advantage.
Using the usualµ : λ-ratios, i.e., truncation ratios between[2/λ . . . 0.5], the stationary mutation
strength is similar to the zero of the SAR obtained for the sphere model. It shows the same response
with respect to the change ofµ: Recombination lowers the mutation strength. Although the distance
to the axis is also reduced, this cannot counteract the resulting effect onthe progress rate. Non-
recombinative (1, λ)-ES have the highest progress rate.

It should be noted, though, that the SAR is also responsible for preventing a premature conver-
gence. It strives to maintain a positive mutation strength for decreasing distances which eventually
halts any convergence towards the axis. As already pointed out in [19],the case ofα > 1 closely
resembles the situation in the noisy sphere model where the ES is unable to converge to the optimizer
and remains on average at a certain distance to the optimizer.

In Section 5.1.2 the sharp ridge was considered. Here, no stationary statewith a positive mutation
strength exists – unless a normalization with the distance to the axis is introduced.On the sharp ridge,
the ES either converges prematurely or enlarges the distance to the axis perpetually. Which behavior
occurs depends on the size of the ridge parameterd with respect to the population parametersµ and
λ. Recombination lowers this criticald-value. As result, ES with intermediate recombination show a
premature convergence for smaller values ofd than (1, λ)-ES.

Provided that the ES does not converge prematurely, it can be shown that the travel speed is not
optimal (w.r.t. the quality change). First of all, the optimizer of the quality changecannot be obtained
for finite learning rates. Self-adaptation realizes too small mutation strengths.Additionally, there may
be problems with recombination. Increasing the learning rate will improve the performance of the ES.
Increasing the learning rate, however, causes the stationary mutation strength (normalized w.r.t. to
N andR) to behave more and more like the zero of the SAR. The zero of the SAR decreases when
switching fromµ = 1 to µ > 1. Recombination according to the truncation ratioµ : λ recommended
on the sphere is not beneficial. Instead, apparently a fixed value ofµ betweenµ = 2 andµ = 5
appears as good choice.

In Section 5.2, noisy ridge functions were investigated using the standard noise model of additive
normally distributed noise. Both ridge function models behave similarly: Additivenoise eventually
halts the approach to the axis and stops the ES from realizing the subgoal ofoptimizing the embedded
sphere with a finite optimum. Accordingly, in general no premature convergence occurs. Instead,
evolution strategies show on average a constant progress parallel to theaxis direction. Of course,
considering the sharp ridge this only holds ifd is sufficiently large so that the axis is approached
in first case. Ifd is too small and the ES diverges, the effects of the noise are soon diluted until it
behaves as if it were optimizing the undisturbed ridge. Ifd is sufficiently large, a stationary state of
the distance and the mutation strength exists. In general, the following holds: The larger the noise
strength, the larger the stationary distance and the mutation strength. This results in larger progress
parallel to the axis direction. Additive noise is beneficial on the sharp ridge: Because of the noise the
finite subgoal of optimizing the sphere cannot be realized. Since the better fulfillment of the subgoal
is connected with a reduction of the mutation strength, this is an advantage. Recombination has a
similar effect as in the case of the sphere model. It reduces the distance to the axis. This decrease
with µ is stronger than the increase of the normalized stationary mutation strength (w.r.t. the distance
and search space dimensionality). These responses eventually cause aperformance degradation: The
normalized progress stays constant and the non-normalized progress rate decreases. Recombination
on the ridge does have a positive effect, though. The (1, λ)-ES looses step-size control similar to the
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ES on the noise sphere (cf. Section 4).
On the parabolic ridge (cf. Subsection 5.2.2), noise has a similar effect in the sense that the ES

stays farer away from the axis and operates with higher mutation strengths.The effect on the non-
normalized progress rate is not so clearly defined: The progress rate depends on the distance to the
ridge and the mutation strength. Its exact behavior depends on the population parametersµ andλ.
In the case ofµ = λ/2 the distance and the mutation strength balance out: The progress rate is inert
to the noise strength. Forµ < λ/2, the progress rate decreases with the noise strength whereas it
increases forµ > λ/2. The line defined byµ = 30 is not crossed, though. Interestingly, this line
with ≈ 1/(4d) serves relatively well as a predictor of the progress rate provided thatλ is relatively
large.In contrast to the sharp ridge where increasing the noise strength resulted in an increase of the
progress rate, ES on the parabolic ridge converge to very similar limits. Thatis, noise cannot be used
to increase or decrease the performance over a certain level. The progress rates of evolution strategies
with µ < λ/2 do not decrease significantly farther than1/(4d) while the progress rates of ES with
µ > λ/2 approach1/(4d) from below.

Again, evolution strategies with only one parent suffer a similar loss of step-size control as before.
On approach of the axis and therefore on increase of the normalized noise strength, the mutation
strength is reduced significantly. Recombination is therefore required to retain a positive mutation
strength and progress.

The ES were investigated using the so-called deterministic evolution equations.These difference
equations can be used to describe the expected change of the state variables from one generation to the
next. The drawback of this approach is of course that the loss of step-size control is not predictable.

The analysis presented here can and should be extended in several points: First of all, the progress
measures obtained for the evolution equations hold exactly only forN → ∞. All results obtained
using these progress measures hold only approximately in low-dimensional search spaces. Therefore,
one aim should be to use progress measures obtained for finiteN . Furthermore, the derivation of
the SAR should be reconsidered and higher-order terms of the Taylor series development should be
included (see Appendix C.1.2). In addition, an inclusion of the perturbationparts of the evolution
equations would be interesting. Furthermore, a comparison with other adaptation schemes as the
CSA or the1/5th rule is of interest.
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6 Evolution Strategies and Self-Adaptation

This thesis focuses on the self-adaptation mechanism in evolution strategies.In general, an evolution-
ary computation is termed self-adaptive if the control of strategy parametersis left to the computation
itself. In evolution strategies, self-adaptation is usually applied to the mutation operator, i.e., the
mutation strength.

In Chapter 2, an overview of self-adaptation and the present state of research was given. The
survey focused on explicit analyses of self-adaptation. Theoretical analyses of self-adaptive ES focus
on the stochastic process generated by the evolutionary algorithm. Three main groups can be distin-
guished – each centering on a distinct aspect of the stochastic process:Markov chains, Martingales,
and the dynamic systems approach over the evolution equations. It is interesting to note that no analy-
sis of the mechanism of self-adaptive evolution strategies in continuous search spaces exists that does
not resort to either a simplification of the system or Monte Carlo simulations.

Chapter 3 introduced the analysis approach followed in this thesis. The approach was first pro-
posed by Beyer in [21]. In short, the state variables of the ES are described by stochastic difference
equations (the evolution equations) decomposed in a deterministic and a perturbation part. The de-
terministic part can be identified as the expected change of the variable under consideration. The
distribution of the remaining fluctuation part is unknown in general. Since it is possible to obtain
some of its moments over the evolution equations, the unknown distribution is approximated with a
Gram-Charlier series using the normal distribution as baseline. The furtherapproach consists then
basically of two steps: In step one, the fluctuation terms are neglected. The aim is to derive the
main characteristics of the self-adaptive process. Step two extends the analysis to an inclusion of the
fluctuation terms approximated with a normal distribution.

In Chapter 4, the self-adaption behavior of evolution strategies on the sphere was analyzed. In
the beginning, the analysis presented in [21] was extended to intermediate (µ/µI , λ)-ES. To this end,
the deterministic evolution equations were applied. An explanation was given for the experimental
findings that intermediate ES show strong dependencies on the correct choice of the learning rate in
contrast to (1, λ)-ES. Furthermore, an optimal learning rate valid for high-dimensional search spaces
could be obtained.

In short, recombination in the case of the sphere model has the drawback that the ES is sensitive
to the correct choice of the learning rate. This sensitivity can be traced back to the finding that the
self-adaptation mechanism can only rely on the fitness. Thus, it cannot make use of the advantages
provided by the recombination of the object parameters. Due to the recombination of the object
parameters, intermediate ES could operate with higher mutation strengths which isnot reflected in the
self-adaptation response. On the sphere, the ES reaches a stationary state of the normalized mutation
strength (normalized w.r.t. the distance and the search space dimensionality).In other words, the
influences of the change of the non-normalized mutation strength (self-adaptation response) and of
the change of the distance (progress rate) are balanced. The stationary state depends on the learning
rate over the self-adaptation response (SAR). In general there are three decisive mutation strengths
which characterize the stationary state: the zero and the optimizer of the progress rate and the zero
of the SAR. The ES should strive to work with mutation strengths close to the optimizer. Which
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stationary mutation strength the ES stabilizes depends on the learning rate, howver. The learning
rate can be used to variate the mutation strength from its minimum to the maximum forNτ2 → ∞.
If the learning rate is is too small, the ES operates with mutation strengths close to thezero of the
progress rate and if it is chosen too large, the stationary mutation strength approaches the zero of the
SAR. The latter behavior is not problematic in (1, λ)-ES: The zero of the SAR and the optimizer of
the progress rate are very close together. Choices ofτ -values larger than optimal do not lead to a
significant performance loss. In multi-recombinative (µ/µI , λ)-ES, however, the zero of the SAR is
usually far smaller than the optimizer of the progress rate which accounts forthe sensitivity.

Regardless of the sensitivity towards the correct choice ofτ , self-adaptive ES still perform supe-
riorly compared to (1, λ)-ES. Furthermore, the learning rate can be chosen so that the ES progresses
with optimal speed (w.r.t. the progress rate). Additionally, recombination has positive effects if the
fitness function evaluations are overlaid with noise. The (1, λ)-ES suffers from a loss of step size
control if the noise becomes too large. It can be shown that it performs a biased random walk in the
large-noise regime. Intermediate (µ/µI , λ)-ES still maintain a positive stationary mutation strength.
Furthermore, recombination leads to smaller residual location errors. The smallest residual location
errors are achieved by (µ/µI , λ)-ES with a parent-offspring ratio ofµ : λ = 1/2. Evolution Strate-
gies with a ratio between0.2 and0.7 do not deviate far from this optimum. Therefore, the usual
recommendation of choosingµ : λ ≈ 0.27 can be followed.

Finally, a second-order approach was applied in the case of intermediate ES on the undisturbed
ridge. In the second-order approach the influences of the perturbation parts of the evolution equations
are not neglected but modeled using a Gaussian distribution. First of all, it was seen that the results
obtained do not differ significantly from those obtained using the deterministicapproach – if recom-
bination is applied. The equations derived are recursive and highly non-linear and furthermore the
stationary state distribution is unknown. Therefore the ansatz introduced in[21] was followed and a
log-normal distribution was used to model the unknown steady state distribution. Still, in general, the
solutions can be only provided numerically. Only some exemplary cases couldbe analyzed analyti-
cally. For the specific learning rates, it was found that recombination leadsto further benefits: The
deviations due to perturbations are nearly minimal if the usualµ : λ ratio is chosen – at least for the
learning rates considered.

Chapter 5 was devoted to evolution strategies on ridge functions. In the case of the sharp ridge,
evolution strategies were found to converge prematurely in some cases. This depends on the size of
the ridge function constantdwith respect to the population parameters. In short, self-adaptation is torn
in a way between two subgoals [79]: reduce the distance to axis or enlargethe gain along thex-axis.
Concerning the improvement of the fitness, the ES neither “sees” the positionon thex-axis nor the
distance to the axis. The feedback is over the overall fitness change. Therefore, the quality change,
i.e., the expected fitness change from generationg to g + 1, was considered. The optimizer of the
quality change scales with the distance to the search space. If the mutation strength is normalized with
respect to the distance to the ridge, its evolution equation permits a stationary state. This stationary
state is also observable in experiments (see, e.g., [75]) and required if theES should have a chance
to work with nearly optimal mutation strengths with respect to the quality change. Concerning the
quality change, i.e., the expected fitness change from generationg to g + 1, self-adaptation adjusts
the stationary point correctly with respect to changes ind andR. If these parameters are changed, the
stationary solution shows the same response as the optimizer of the quality change. It should be noted
that in the long run a rewarding of the short-term gain may be problematic. In terms of following the
optimizer of the quality change, a stationary state of the mutation strength with respect to the distance
is good. But if this is coupled with an reduction of the distance to the axis which iscaused by too
larged-values, it means that the non-normalized mutation strength decreases and decreases until it is
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too small for any significant progress: The ES converges prematurely.
It should be noted that the non-normalized evolution equations do not allow for any stationary

state for neither the mutation strength nor the distance – except in the singular case withd exactly
the size of the criticald-value. This is reminiscent of the finding of Lunacek and Whitley that the
ridge bias in the case of (1, λ)-ES on the sharp ridge cannot be removed and the mutation strength
cannot stabilize [72]. Their subsequent finding that the ES decreasesthe mutation strength could not
be supported in general. This can be probably explained by their experimental set-up which used only
d-values greater than one and therefore higher than the criticald-value.

At this point it should be noted that the self-adaptation response is influenced by the distance to
the ridge in general. This holds for the sharp ridge as well as for the parabolic ridge. This is in contrast
to the response to the linear gain part of the ridge function. This leads leadsto a constant value in the
SAR. Therefore, the SAR is inert to the position parallel to the axis.

Furthermore, recombination with the usualµ : λ-ratio cannot be recommended. It has positive
effects for small choices ofτ . But it should be noted that the optimizer of the quality change is not
attainable for finiteτ . Increasing the learning rate turns working with the usual truncation ratio from
an advantage into a disadvantage. It can be shown finally forNτ2 →∞, that only very small choices
of µ > 1 lead to a higher quality change thanµ = 1. This behavior is due to the response of the sta-
tionary mutation strength to changes ofτ . As long as the learning rate is small, the stationary mutation
strength behaves as the zero of the progress rate and increases oncerecombination is used. Increasing
the learning rate drives the mutation strength towards the zero of the SAR which decreases if recom-
bination with the usualµ : λ-ratio is introduced. The learning rate increases the quality change far
further than working with the bestµ : λ-ratio and smaller learning rates could. Thus, recombination
with the usual truncation ratio is not recommended. It should be mentioned thatincreasing the learn-
ing rate causes a deterioration of the prediction quality. This can be traced back to the derivation of
quality change which relied on the assumption that the changes induced by mutation are relatively
small. If τ is relatively high, this may cause deviations. Generally speaking, the quality of the results
is more sensitive to the choice of the learning rate in the case of the sharp ridge than in the case of the
sphere model. But although the prediction quality deteriorates, experiments and prediction show the
same response to recombination.

Self-Adaptive evolution strategies do not fail on the parabolic ridge. No premature convergence
occurs. The evolutions of the distance to the axis and the mutation strength reach a stationary state.
However, the ES still progresses parallel to the axis. The mutation strength isstationary, though,
and does not reflect thex-position. Interestingly, recombination does not have positive effects onthe
performance of the ES. The progress rate decreases for increasingparent numbers.

At first glance this contradicts the results obtained by Oyman [79]. He pointed out that the “better
fulfillment of the short-term goal” (here: achieving smaller distances to the ridge) is equivalent to a
higher progress rate [79, p. 138]. But Oyman’s analysis could not take the response of self-adaptive
ES into account.

In the case of self-adaptation, recombination does not only decrease thestationary distance but it
also decreases the stationary mutation strength. The decrease of the mutationstrength outweighs that
of the distance. As result, the progress rate declines. It is interesting to note that for a wide range
of µ : λ-combinations and largeλ, the stationary mutation strength is very similar to the stationary
mutation strength which would be obtained for a zero distance. This stationarymutation strength
equals the zero point of the normalized SAR of the sphere model weighted withthe ridge parameter
d. As result, a similar response to changes in the parent number is observedand the evolution of the
mutation strength behaves roughly as if the subgoal of optimizing the sphere component were already
realized.
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If the fitness functions evaluations are overlaid with noise, the results change to some extent. In
this thesis, the effects of additive uniform noise were investigated using thenormal distribution to
model the fluctuations. As it could be observed in experiments, the (1, λ)-ES looses step-size control
on approach of the ridge axis. Again, the deterministic approach cannot predict this behavior.

Recombination is therefore necessary in order to maintain a positive mutation strength and to
ensure the possibility of further progress. As said before, recombination introduces a bias towards an
increase of the mutation strength which serves as a safeguard.

In the case of the sharp ridge, noise has a positive influence. Considering the normalized system
(w.r.t. N andR), the situation is analogous to the noisy sphere model. This leads to a result which
surprises at first glance: Additive noise with a constant noise strength improves the performance of
the ES. The stationary progress rate scales linearly with the noise strength.One reason for this is that
the noise keeps the ES from realizing the finite subgoal. Regarding the task of optimizing the sphere
part of the ridge, noise still deteriorates the performance: The larger thenoise strength, the greater the
location error to the axis. But for the overall goal, this is an advantage since all stationary variables
scale with the noise strength and the distance to the axis. This also means that recombination with
the usual truncation ratio ofµ : λ = 0.27 or similar values should not be used. As on the sphere,
ES withµ : λ = 1/2 show the smallest stationary distances to the axis and ES with truncation ratios
between1/3 and2/3 come close. Concerning the progress rate (non-normalized), this decrease of
the distance is too strong to be counterbalanced: Evolution strategies with these or similar truncation
ratios do not show large stationary progress rates. However, recombination is necessary to prevent a
loss of step-size control.

In the case of the parabolic ridge, noise increases the stationary distanceto the axis and the mu-
tation strength. Both variables influence the progress rate. Concerning the effects of the noise on
the performance, three situations occur: Noise degrades the performance if the parental population is
smaller than1/2 of the offspring population. If exactly half of the parents are used, changing the noise
strength does not have any effects at all. If more parents are utilized, noise improves the performance.
However, the progress rates of ES with truncation ratios smaller than1/2 are larger than those of ES
with µ : λ > 1/2. This advantage diminishes if the noise strength increases.

Concerning self-adaptation, two effects that may cause problems were identified. First of all,
self-adaptation, i.e., the self-adaptation response, can only use aggregated information over the fitness
values. In the case of the sphere model, it cannot make use of the genetic repair effect which is induced
by the recombination of the object parameters.

Second, in the case of ridge functions the performance of self-adaptive depends strongly on the
distance to the axis. This is often coupled with a deterioration of the performance: The better the
ES succeeds in optimizing the sphere part, the more the performance decreases. Recombination with
µ ≤ λ/2 generally improves this optimization result. Accordingly, recombination with the usual
truncation ratio often causes a decline of the performance.

It should be noted that this behavior is in pronounced contrast to the behavior of ES using cumu-
lative step-size adaptation [9]. As shown in [9] for the parabolic ridge, aCSA-ES achieves a progress
rate ofϕx = µc2µ/µ,λ/(2d) for zero noise strength. Working with the usual truncation ratio improves
the performance. Furthermore, the stationary distance,R = N/(2d), does not depend onµ.

The deterministic evolution equations can be used to analyze the main characteristics of the
steady-state dynamics. The drawback is of course the non-capturing ofthe irregular dynamics of
the process. As seen, the loss of step-size control (1, λ)-ES on noisy fitness functions could not
be predicted. This clearly indicates a limit of the approach and requires switching to higher-order
approximations. Of course, the analysis can be extended in various points.It remains to include
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theN -dependent progress measures in the analysis. This concerns especially the self-adaptation re-
sponse for the sharp ridge. And furthermore, other noise models, for instance actuator noise, should
be investigated.
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A Results from Probability Theory and Statistics

In this chapter, some results from probability and statistics are provided thatare central to the analysis
of self-adaptive evolution strategies using the evolution equations.

A.1 Random Variables and Distributions

First some basic definitions are given before the concepts of moments and cumulants are intro-
duced. Afterwards, some distributions appearing often in the area of evolution strategies are described.

A.1.1 Random Variables

Let us consider a sample spaceΩ, i.e., the set of all possible outcomes of experiments or events
ω. A random variableX is then defined as a (measurable) real-valued function on the sample space
X : Ω→ R. The distribution functionFX defined by

FX(t) = Pr({X ≤ t}) (A.1)

is also called thecumulative distribution function(cdf). It is easy to see that it is a monotonously
increasing and right-continuous function withFX(t) → 0 for t → −∞ andFX(t) → 1 for t → ∞.
If F is differentiable, its derivativep is called theprobability density function(pdf) or shortly density
function and

FX(t) =

∫ t

−∞
p(x) dx (A.2)

holds. The expectation of a random variable is defined by

E[X] =

∫ ∞

−∞
xp(x) dx (A.3)

whereas the variance is given by

Var[X] = E
[

(X − E[X])2
]

. (A.4)

Expectation and variance are the special cases of the so-called moments.

A.1.2 Moments and Cumulants

LetX be a random variable with pdfp(X). Thekth (raw) moment is given by

µk =

∫ ∞

−∞
xkp(x) dx. (A.5)

The central moments are taken around the meanµ := µ1

mk =

∫ ∞

−∞
(x− µ)kp(x) dx. (A.6)
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Since

(x− µ)k = (−1)k
k
∑

l=0

(

k

l

)

(−1)lxlµl−k (A.7)

the central moments can be expressed as functions of the raw moments

mk = (−1)k
k
∑

l=0

(

k

l

)

(−1)lµlµ
l−k. (A.8)

An opposite result holds in turn of course. Note, moments do not exist for every continuous distribu-
tion. A well known example is the Cauchy-distribution with density

p(x) =
1

πa

1

1 + (x/a)2
(A.9)

and parametera > 0 which does not have any finite moment. Moments can be defined in yet another
way. The so-called moment generating function is defined by

ξ(t) =

∫ ∞

−∞
etxp(x) dx. (A.10)

It is easy to see that thekth raw moment is given byµk = dk/( dtk)ψ(t)|t=0. The moment generating
function is similar to the characteristic function or Fourier transform of the distribution given by

ζ(t) =

∫ ∞

−∞
eitxp(x) dx. (A.11)

The natural logarithm of the moment-generating function is called the cumulant generating function

Ξ(t) = ln(ξ(t)). (A.12)

Similarly to the moments, the cumulant ofkth order is obtained asκk = dk/( dtk)Ξ(t)|t=0 with
κ0 = 0.

A.1.3 Distributions

In this subsection, an overview over some distributions is given which appear often in the context
of evolution strategies.

Normal Distribution

The normal distribution or Gaussian is one of the most important distributions in statistics. Partly,
it owns its importance to the fact the sum of random variables converges to anormally distributed
random variable under relatively mild conditions. The probability density function reads

p(x) =
1√
2πσ

e
− 1

2

(

x−µ
σ

)2

. (A.13)

It depends on two parameters: the meanµ and the standard deviationσ and is a symmetric function
aroundµ. The cumulative density function is given by

Φ(t) =

∫ t

−∞

1√
2πσ

e
− 1

2

(

x−µ
σ

)2

dx. (A.14)
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Log-Normal Distribution

A random variableX is called log-normally distributed if its logarithm is normally distributed.
The pdf

p(x) =
1

2xτ
√

2π
e
− 1

2

(

ln(x)−µ
τ

)2

(A.15)

is only defined forx > 0. The moments of the log-normal distribution are given by

µk = ekµ+ k2τ2

2 . (A.16)

χ2-Distribution A random variable with density

p(x) = =

{

0, if x ≤ 0
1

2
k
2 Γ(k/2)

x
k−2
2 e−

x
2 if x > 0 (A.17)

is calledχ2-distributed withk degrees of freedom orχ2
k-distributed. TheΓ-function is given fork > 0

by

Γ(k) =

∫ ∞

0
yk−1e−y dy (A.18)

The first two moments of theχ2
k-distribution readE[χ2

k] = k and Var[χ2
k] = 2k. Theχ2-distribution

is connected with the normal distribution over the following theorem.

Theorem 1. LetZ1, . . . , Zk bek standard normally distributed random variables. Then the sum of
the squaresY = Z2

1 + . . .+ Z2
k is χ2

k-distributed.

The square of a single standard normally distributed variable isχ2
1-distributed. In the case of two

summands, theχ2
2-distribution equals an exponential distributionγλ,1(x) = λe−λx with parameter

λ = 1/2 (see, e.g.,[80]).

A.2 Order Statistics

The presentation in this section follows [80]. LetX1, . . . , Xλ denoteλ random variables. For all
ω ∈ Ω letXm:λ(ω) denote themth smallest value ofX1(ω), . . . , Xλ(ω), i.e.,

X1:λ(ω) ≤ X2:λ(ω) ≤ . . . ≤ Xλ:λ(ω). (A.19)

The random variablesXm:λ, . . . , Xλ:λ are called order statistics withXm:λ giving themth order
statistic. Provided that allXi are independent and identically distributed with cdfP (x), the cdf of
these random variables is given by

Pm:λ(x) =
λ
∑

k=m

(

λ

k

)

P (x)k
(

1− P (x)
)λ−k

. (A.20)

This can be seen easily. The proof presented is taken from [80]. Let the random variablesYm(x)
denote1{Xm≤x} and letY (x) :=

∑λ
m=1 Ym(x). SincePr(Ym(x) = 1) = P (x), Y is B(λ, P (x))-

distributed which leads to (A.20) using

{Xm:λ ≤ x} = {m ≤ Y (x) ≤ λ}. (A.21)
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The density function can be obtained via differentiation of (A.20) leading to

pm:λ(x) =
d

dx
Pm:λ(x) =

λ
∑

k=m

k

(

λ

k

)

P (x)k−1
(

1− P (x)
)λ−k

p(x)

−
λ
∑

k=m

(λ− k)
(

λ

k

)

P (x)k
(

1− P (x)
)λ−k−1

p(x)

= λ
λ
∑

k=m

(

λ− 1

k − 1

)

P (x)k−1
(

1− P (x)
)λ−k

p(x)

− λ
λ
∑

k=m

(

λ− 1

k

)

P (x)k
(

1− P (x)
)λ−k−1

p(x)

= λ
λ−1
∑

k=m−1

(

λ− 1

k

)

P (x)k
(

1− P (x)
)λ−k−1

p(x)

− λ
λ
∑

k=m

(

λ− 1

k

)

P (x)k
(

1− P (x)
)λ−k−1

p(x)

= λ

(

λ− 1

m− 1

)

P (x)m−1
(

1− P (x)
)λ−m

p(x)

− λ

(

λ− 1

λ

)

P (x)λ
(

1− P (x)
)−1

p(x)

= λ

(

λ− 1

m− 1

)

P (x)m−1
(

1− P (x)
)λ−m

p(x). (A.22)

In the analyses, the density of themth best offspring is required. The realizationXm;λ(ω) thus often
denotes not themth smallest but themth highest outcome. In this case, note that themth highest
value out ofλ trials is also the(λ−m+ 1)th smallest. The density is therefore given by

pm;λ(x) = pλ−m+1:λ(x) = λ

(

λ− 1

λ−m+ 1− 1

)

P (x)λ−m+1−1
(

1− P (x)
)λ−λ+m−1

p(x)

= λ

(

λ− 1

λ−m

)

P (x)λ−m
(

1− P (x)
)m−1

p(x)

= λ

(

λ− 1

m− 1

)

P (x)λ−m
(

1− P (x)
)m−1

p(x). (A.23)

A.3 Generalized Progress Coefficients

The generalized progress coefficients are given by

eα,βµ,λ =
λ− µ
√

2π
α+1

(

λ

µ

)∫ ∞

0
tβe−

α+1
2
t2Φ(t)λ−µ−1

(

1− Φ(t)
)µ−α

dt (A.24)

(see [23, p. 172]). The special casecµ/µ,λ := e1,0µ,λ

cµ/µ,λ =
λ− µ
2π

(

λ

µ

)∫ ∞

0
e−t

2
Φ(t)λ−µ−1

(

1− Φ(t)
)µ−1

dt (A.25)

gives the expectation of the mean of theµ best ofλ trials of standard normally distributed random
variables.



B The Progress Rates

This chapter describes how the progress rates for the sphere model and the ridge function class can be
obtained. The progress rate is a central performance measure. In the case of the sphere model, it gives
the expected one-generational change of the distance to the optimizer. In the case of ridge functions,
two progress rates appear since two variables are used to describe the evolution of the object variables.
These are the distance to the ridge axis and the position on the axis. The progress rates are needed in
Chapter 4-5 to describe the evolution of the ES. First, the progress rate for the sphere model is derived
following the derivation in [6]. Afterwards, the so-called second-order progress rate is computed. The
second-order progress denotes the expectation of the square of the change of the distance and is needed
in the analysis if the fluctuation terms are not neglected (c.f. Sec. 4.4). Finally, the progress rates are
computed for the ridge function class. First, a density function for the qualitychange induced by a
mutation is obtained. Using this result, the progress rates for the distance to theaxis and the position
on the axis can be obtained. The density obtained in B.2.1 will also be used in thecalculation of the
self-adaptation response (SAR) in the case of ridge functions in Appendix C.

B.1 The Sphere Model

This section gives the derivation of the first- and second-order progress rate. Before these can
be obtained, fitness change of an offspring must be determined. This is done in the first subsection
B.1.1. Subsection B.1.2 sketches the derivation of the first-order progress rate, B.1.3 describes how
the second-order progress rate can be obtained.

B.1.1 The Fitness Change of an Offspring

In this section, the fitness change due to a mutation is obtained for the sphere model. Since
the fitness functionf is the sphere, it is given byf(y) = g(‖y − ŷ‖) with ŷ the optimizer off .
The functiong is a monotonously increasing or decreasing function. Without loss of generality, this
subsection considers a minimization problem, i.e.,g increases with the distance to the optimizerR.
One of the simplest members of this function class is the quadratic sphereg(R) = R2. If z denotes a
mutation vector, the associate fitness changeQ(z) is given by

Q(z) = F (〈y〉)− F (〈y〉+ z) = g(R)− g(r) (B.1)

whereR denotes the distance of the centroid to the optimizer whereasr stands for the distance of the
mutation vector. In the general case, some approximations have to be made during the derivations.
Many of these are not necessary for the quadratic sphere as will be shown later on. Provided thatg is
aCK+1-function, the Taylor expansion to the order ofK reads

Tg(r) =
K
∑

k=0

dk

drk
g(r)|r=R

(r −R)k

k!
+O((r −R)K+1). (B.2)
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In the following,r−R≪ 1 is assumed. This allows to cut off the expansion ofg after the linear term
and to neglect quadratic and higher contributions

g(r) = g(R) +
d

dr
g(r)|r=R(r −R) +O((r −R)2). (B.3)

The fitness change can thus be approximated with

Q(z) = − d

dr
g(r)|r=R(r −R) +O((r −R)2). (B.4)

In following, the notation is shortened tog′(R) := ( d/dr)g(r)|r=R. The change of the distances
must be addressed in the next step. To this end, the usual decomposition ofthe mutation vector is
used: Each mutation vectorz can be given as the sum of two vectors, the first,zA, parallel toR – the
second,zB, perpendicular tozA. Sincer = ‖〈y(g)〉+ z− ŷ‖, we have

r2 = (R− zA)2 + ‖zB‖2 = R2 − 2RzA + z2
A + ‖zB‖2

= R2
(

1− 2

R
zA +

z2
A

R2
+
‖zB‖2
R2

)

. (B.5)

The decomposition of the mutation vector is used to obtain the difference of the distances

r −R = R

√

1− 2

R
zA +

z2
A

R2
+
‖zB‖2
R2

−R

= R

√

1− 2

R
(zA −

z2
A

2R
− ‖zB‖

2

2R
)−R

≈ R
(

1− 2

R
(zA −

z2
A

2R
− ‖zB‖

2

2R
)
)

−R

= −zA +
z2
A

2R
+
‖zB‖2

2R
(B.6)

using a Taylor series expansion of the root
√

1− 2x and taking only the linear term. Due to the
isotropy of mutations,zA can be assumed to beσz1e1, with e1 the first unit vector andz1 a standard
normally distributed random variable. The vectorzB consists of the remainingN − 1 components,
each also normally distributed. Assuming that the contribution ofz2

1 can be neglected, Equation (B.6)
changes to

r −R ≈ −σz1 +
σ2

2R

N
∑

i=2

z2
i

= −σz1 +
σ2

2R

N
∑

i=2

z2
i (B.7)

The sum is aχ2
N−1-distributed random variable. As it was shown in [6] using the Central Limit

Theorem, it is possible to model the sumσ2/(2R)
∑N

i=2 z
2
i by a normally distributed random variable

with mean(N −1)σ2 and variance2(N −1)σ4 if N is large. Large values ofN also allow to identify
N − 1 with N . The difference can therefore be approximated with

r −R ≈ −σz1 +
Nσ2

2R
+

√
2N

2R
σ2u (B.8)
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whereu is a standard normally distributed random variable. This leads to

Q(z) ≈ g′(R)σz1 −
g′(R)Nσ2

2R
− g′(R)

√
2N

2R
σ2u. (B.9)

If the fitness evaluations are disturbed by additive noise, the selection is not based on the values ofQ
but on

Q̃(z) = Q(z) + ǫ

≈ g′(R)σz1 −
g′(R)Nσ2

2R
− g′(R)

√
2N

2R
σ2u+ ǫ. (B.10)

In this thesis, only normally distributed noise with mean zero and standard deviation σǫ is considered.
This results in

Q̃(z) ≈ g′(R)σz1 −
g′(R)Nσ2

2R
− g′(R)

√
2N

2R
σ2u+ σǫzǫ (B.11)

with zǫ standard normally distributed. Equation (B.11) leads to the cumulative distribution function
(cdf)

P (q̃) = Φ
( q̃ + g′(R)Nσ2

2R
√

(g′(R)σ)2 +
(

g′(R)
√

2N
2R σ2

)2
+ σ2

ǫ

)

(B.12)

and the probability density function (pdf)

p(q̃) =

exp

(

− 1
2

(

q̃+
g′(R)Nσ2

2R
s

(g′(R)σ)
2
+

(

g′(R)
√

2N
2R

σ2

)2

+σ2
ǫ

)2
)

√
2π

√

(g′(R)σ)2 +
(

g′(R)
√

2N
2R σ2

)2
+ σ2

ǫ

. (B.13)

Introducing the usual normalizations [6],Q̃∗ := Q̃[N/(Rg′(R))], σ∗ := σ(N/R), andσ∗ǫ :=σǫ[N/(Rg
′(R))],

the normalized fitness change is

Q̃∗ = σ∗z1 −
σ∗2

√
2N

u− σ∗ǫ zǫ −
σ∗2

2
. (B.14)

Equation (B.14) can be used to give the cumulative distribution function

P (q̃∗|σ∗) = Φ





q̃∗ + σ∗2

2
√

σ∗2(1 + σ∗2

2N ) + σ∗ǫ
2



 (B.15)

and the probability density function

p(q̃∗|σ∗) =
e

− 1
2

0

@

q̃∗+ σ∗2

2
r

σ∗2(1+ σ∗2
2N

)+σ∗
ǫ
2

1

A

2

√
2π
√

σ∗2(1 + σ∗2

2N ) + σ∗ǫ
2
. (B.16)
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In the case of the quadratic sphere, neither the Taylor series expansionof the functiong nor the
expansion of the root are necessary. The corresponding values can be obtained directly. The starting
point is (B.5) which can be inserted directly into (B.1)

Q(z) = g(R)− g(r) = R2 − r2 = R2 −R2 + 2RzA − z2
A − ‖zB‖2

= 2Rσz1 −Nσ2 −
√

2Nσ2u

= g′(R)σz1 −
Ng′(R)

2R
σ2 −

√
2N

2R
σ2u (B.17)

sinceg′(R) = 2R. The main prerequisite in the case of the quadratic sphere is a high-dimensional
search space so that theχ2

N -distributed sum in (B.5) can be approximated by a normally distributed
random variable.

B.1.2 The First-Order Progress Rate

Let R(g) := 〈y(g)〉 − ŷ and letR := R(g) = ‖R(g)‖ denote the distance of the centroid of the
parental population to the optimizer in generationg. The notation of the mean of theµ mutation
strengths〈ς(g)〉 will be shortened in the following toσ in order to simplify the equations.

The progress rate is defined as the expected one-generation change of the distance

ϕR = E[R−R(g+1)|(R, σ)]. (B.18)

and was already obtained in [6] forτ = 0. This progress rate will be used in analysis. Although the
progress rate has been found to depend on the learning parameterτ [51], this approach is justified by
the observation that generallyτ ∝ 1/

√
N is chosen as a rule of thumb. Since the analysis is restricted

to high-dimensional search spaces, this should allow to use the result obtained in [6].
The derivation of the progress rate relies on an appropriate decomposition of the mutation vectors

which was described in the previous subsection. It is possible to decompose the centroid of the
mutation vectors〈z〉 in a similar manner. Let〈zA〉 denote the part of the centroid pointing towards
the optimizer and let〈zB〉 denote the perpendicular components. Thus, based on

ϕR = E[R−R(g+1)|σ,R]

= RE
[

1−
√

(

1− 〈zA〉
R

)2
+
‖〈zB〉‖2
R2

|σ,R
]

(B.19)

or on the normalized equation

ϕ∗
R = NE

[

1−
√

(

1− 〈zA〉
R

)2
+
‖〈zB〉‖2
R2

|σ∗
]

(B.20)

an approximate formula forϕ∗ can be derived by calculating the expectation of〈zA〉 and‖〈zB〉‖2 and
assuming that the expectation of the square root may be approximated by these expectations. Thus,
an estimate for the progress rate was obtained in [6] as

ϕ∗
R(σ(g)) = N

[

1−
√

1− 2σ(g)

R(g)
〈z1〉+

‖〈zB〉‖2
(R(g))2

]

(B.21)

leading to

ϕ∗
R(σ∗(g)) = N

[

1−

√

1 +
σ∗(g)2

µN
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×

√

√

√

√

√1− 2

N





1 + σ∗(g)2

2µN

1 + σ∗(g)2

µN





σ∗(g)2cµ/µ,λ
√

σ∗ǫ + σ∗(g)2(1 + σ∗(g)2

2N )

]

. (B.22)

Linearizing the second square root finally gives

ϕ∗
R =

cµ/µ,λσ
∗(1 + σ∗2

2µN )
√

1 + σ∗2

µN

√

1 + σ∗
ǫ
2

σ∗2

−N
[

√

1 +
σ∗2

µN
− 1
]

. (B.23)

ConsideringN →∞ leads to theN -independent progress rate

ϕ∗
R =

cµ/µ,λσ
∗2

√

σ∗2 + σ∗ǫ
2
− σ∗2

2µ
(B.24)

that will be used in Chapter 4. The coefficientcµ/µ,λ denotes a special case of the generalized progress

coefficientseα,βµ,λ ((cµ/µ,λ := e1,0µ,λ), see Eq. (A.25), p. 126. Equation (B.24) was derived under several
assumptions. The first was to neglect the influence of the learning parameter τ . The justification for
this lies in the observation thatτ is generally chosen to be proportional to1/

√
N . In high-dimensional

search spaces, the influence of the learning rateτ on the progress rate is small enough not to be
considered. The second assumption is made in (B.21) where the progressrate is given as the progress
of the expectation of〈z〉. This equals assuming that the fluctuations need not be taken into account
and has consequences for the second order progress rate. Underthe assumption above it follows
ϕ∗(2) = ϕ∗2 as it is shown in Section B.1.3. As a result, the varianceD2

ϕ∗ = ϕ∗(2) − ϕ∗2 is zero
permitting only a first order approximation of ther-evolution equation.

B.1.3 The Second-Order Progress Rate

The second-order progress rate is needed for the evolution equations(4.74) if the second-order ap-
proximation is used and the stochastic parts are modeled using normally distributed random variables.
As before in the case of the first order progress rate, only the case ofτ = 0 is considered. Under
this restriction, the derivation of the second-order progress rate is very straightforward. As mentioned
earlier, the second-order progress rate is actually a function of the first-order progress rate (B.24). Let
us start with the definition

ϕ(2)(〈ς(g)〉, R(g)) = E
[

(R(g) −R(g+1))2|〈ς(g)〉, R(g)
]

= E
[

(R(g))2 − 2R(g)R(g+1) + (R(g+1))2|〈ς(g)〉, R(g)
]

= 2R(g)E
[

(R(g) −R(g+1)|〈ς(g)〉, R(g)
]

− (R(g))2

+E
[

(R(g+1))2|〈ς(g)〉, R(g)
]

. (B.25)

Considering the definition of the first-order progress rate (B.18), (B.25) leads to

ϕ(2)(〈ς(g)〉, R(g)) = 2R(g)ϕ(〈ς(g)〉, R(g))− (R(g))2 + E
[

(R(g+1))2
]

. (B.26)

If the normalizationϕ∗(2) := (N/R(g))2ϕ(2) is used, we obtain

ϕ∗(2) = N2E





(

1− R(g+1)

R(g)

)2



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= N2E

[

2

(

1− R(g+1)

R(g)

)

− 1

]

+N2E





(

R(g+1)

R(g)

)2




= Nϕ∗ −N2 +
N2

(R(g))2
E
[

(R(g+1))2
]

. (B.27)

As mentioned before, if the estimate (B.21) is used for the first-order progress rate, Equation (B.27)
leads toϕ∗2, which can be shown by calculating the square of (B.21)

ϕ∗2 = N2



1− 2

√

1− 2〈ς(g)〉
R(g)

〈z1〉+
‖〈zB〉‖2
(R(g))2

+ 1− 2〈ς(g)〉
R(g)

〈z1〉+
‖〈zB〉‖2
(R(g))2





= N2



2− 2

√

1− 2〈ς(g)〉
R(g)

〈z1〉+
‖〈zB〉‖2
(R(g))2

− 1 + 1− 2〈ς(g)〉
R(g)

〈z1〉+
‖〈zB〉‖2
(R(g))2





= 2Nϕ∗ +N2

(

−1 + 1− 2〈ς(g)〉
R(g)

〈z1〉+
‖〈zB〉‖2
(R(g))2

)

= 2Nϕ∗ +N2

(

−1 +
1

(R(g))2
E[(R(g+1))2]

)

= ϕ∗(2). (B.28)

B.2 Ridge Functions

The section is devoted to the determination of the progress ratesϕR measuring the progress to-
wards the axis andϕx giving the progress parallel to the axis. The derivation makes use of a result
obtained in [8]. But first of all, the density function of an offspring is needed.

B.2.1 The Fitness Change of an Offspring

Let us consider the fitness change of an offspringl based on the centroid〈y〉 of the parent popu-
lation

Q := F (yl)− F (〈y〉) = yl1 − 〈y1〉 − d(rα −Rα)

=: zx − d(rα −Rα) (B.29)

wherezx := yl1 − 〈y1〉 denotes the change in the first component of the vector, whereasR :=

(
∑N

k=2(〈yk〉)2)
1/2 denotes the centroid’s distance to the ridge andr := (

∑N
k=2(y

l
k)

2)1/2 gives the
distance of the offspring. In order to derive the cumulative density function (cdf) and probability
density function (pdf) of an offspring several steps are needed:

1. Note, the rotated ridge function is used, i.e.,f(y) = y1 − d(
∑N

i=2 y
2
i )
α/2 =: x− dRα. Thus,

zx = x − 〈x〉 is the change of the first component of the object vector and obeys aN (0, σ)-
distribution.

2. The changer − R is small. Under this assumption consider the Taylor series expansion of
f(r) = rα aroundR, Tf (r) = Rα + αRα−1(r − R) + O((r − R)2). Provided that the
contributions of the quadratic (and higher) terms can be neglected, the fitness change simplifies
toQ = x−〈x〉−dαRα−1(r−R)+O((r−R)2). Note the assumption above is only necessary
to treat the case of generalα. In the case ofα = 1, there is no quadratic term. In the case of
α = 2, it is possible to treatr2 directly by the usual decomposition (see below). So, in the case
of the sharp and the parabolic ridge the assumption is not required.
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3. Consider the(N − 1)-dimensional system(y2, . . . , yN )T. An offspring is created by adding
a mutation vectorz to the parental vectorR, i.e., r = R + z. Switching to a coordinate
system with origin inR, we can decomposez into two parts−zReR + h with eR := R/R and
h perpendicular toR. This decomposition is similar to the decomposition in the case of the
sphere model [23]. Therefore, ther-vector can re-written asr = R− zReR + h and its length
asr = ‖r‖ =

√

(R− zReR)2 + h2=
√

R2 − 2Rzr + z2
r + h2.

4. The distributions of the components of ther-vector remains to be addressed. Due to the isotropy
of the mutations used, the componentzR will be assumed to be the second component of the
object vectory. It is thereforeN (0, σ)-distributed. Its square isχ2

1-distributed. The remaining
sumh2 =

∑N
i=3 y

2
i consists of the squares ofN − 2 normally distributed random variables and

isχ2
N−2-distributed. Aχ2

N−2-distribution may be modeled using a normal distribution provided
thatN is large (see Appendix B.1.1). Considering largeN allows additional to substituteN−2
with N . Accordingly, it is assumed in the following thath2 isN (Nσ2,

√
2Nσ2) distributed.

5. Consider the square root

f(zR, hR) =
√

(R− zR)2 + h2 =
√

R2 − 2RzR + z2
R + h2 (B.30)

which can be rewritten as

f(zR, hR) = R

√

1− 2

R
zR +

z2
R

R2
+
h2

R2

= R

√

1− 2
(zR
R
− z2

R

2R2
− h2

2R2

)

. (B.31)

Provided thatzR ≪ R, h≪ R hold, the root can be expanded into a Taylor series around zero
and cut off after the very first term givingf(zR, hR) = R(1−zR/R+z2

R/(2R
2)+h2/(2R2)).

Provided thatz2
R/(2R

2)≪ 1, the term may be neglected.

6. Let us treat the case ofα = 2 separately. Here, we haver2 = (R − zR)2 + h2 = 2R2(1 −
zR/R + h2/(2R2)). Neither, the smallness assumption ofr − R in 2. nor the assumptions in
5.,zR ≪ R andh≪ R, are required at this point.

As already pointed out in [19] the resulting fitness change

Q = zx − dαRα−1
(

R(1− zR
R

+
h2

2R2
)−R

)

= zx + dαRα−1
(

zR −
h2

2R

)

(B.32)

is very similar to that of a noisy sphere withzx in the role of the noise term. The cumulative density
function (cdf) and the probability density function (pdf) of an offspringcan now be easily given as

PQ(Q) = Φ

(

Q+ q N2Rσ
2

√

σ2(1 + q2) + q2 N
2R2σ4

)

(B.33)

and

pQ(Q) =

exp

(

− 1
2

(

Q+q N
2R
σ2

q

σ2(1+q2)+q2 N
2R2 σ

2

)2
)

√
2π
√

σ2(1 + q2) + q2 N
2R2σ4

(B.34)
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with

q := dαRα−1. (B.35)

Introducing the normalizationsQ⋆ = QN andσ⋆ = σN , the pdf and cdf change to

PQ(Q⋆) = Φ

(

N
Q⋆

N + q σ⋆2

2RN
√

σ⋆2(1 + q2) + q2 σ⋆4

2N2R2

)

= Φ

(

Q⋆ + q σ
⋆2

2R
√

σ⋆2(1 + q2) + q2 σ⋆4

2N2R2

)

(B.36)

and

pQ(Q⋆) = N

exp

(

− 1
2

(

Q⋆+q σ⋆2

2R
q

σ⋆2(1+q2)+q2 σ⋆4

2N2R2

)2
)

√
2π
√

σ⋆2(1 + q2) + q2 σ⋆2

2N2R2

(B.37)

The expressionp(Q) dQ is equal to(1/N) p(Q⋆) dQ⋆. ForN → ∞, some components in (B.37)
stemming from the distance’s perpendicular part vanish leading to

PQ(Q⋆) = Φ
( Q⋆ + q σ

⋆2

2R
√

σ⋆2(1 + q2)

)

(B.38)

and

p⋆Q(Q⋆) =

exp

(

− 1
2

(

Q⋆+q σ⋆2

2R√
σ⋆2(1+q2)

)2
)

√
2π
√

σ⋆2(1 + q2)
(B.39)

which will be used in the determination of the SAR in C.1.2. Equations (B.38) and (B.39) can be
easily adapted to the case of noisy fitness evaluations. Using the standard model of additive normally
distributed noisezǫ with zero mean and standard deviationσǫ, it is easy to see that the fitness change
of an offspring (B.32) changes to

Q = zx + dαRα−1
(

zR −
h2

2R2

)

+ zǫ. (B.40)

The cdf and pdf ofQ are obtained as

PQ(Q) = Φ

(

Q+ q N2Rσ
2

√

σ2(1 + q2) + q2 N
2R2σ4 + σ2

ǫ

)

(B.41)

and

pQ(Q) =
1

√
2π
√

σ2(1 + q2) + q2 N
2R2σ4 + σ2

ǫ

e

− 1
2

(

Q+q N
2R

σ2
r

σ2(1+q2)+q2 N
2R2 σ4+σ2

ǫ

)2

. (B.42)
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B.2.2 The Progress Rates

The following lemma is taken directly from [8, p.6]:

Lemma 1. Let Y1, Y2, . . . , Yλ beλ independent standard normally distributed random variables and
let Z1, Z2, . . . , Zλ beλ independent normally distributed random variables with zero mean and vari-
anceθ2. Then, definingXl = Yl + Zl for l = 1, . . . , λ and ordering the sample members by nonde-
creasing values of theX variates, the expected value of the arithmetic mean of thoseµ of theYl with
the largest associated values ofXl is

〈Y 〉 =
cµ/µ,λ√
1 + θ2

. (B.43)

The progress coefficient in (B.43) is given by Eq. (A.25), p. 126. Lemma 1 can be used to
determine the progress rates. Note, the same decomposition as in Appendix B.2.1 applies: The fitness
change of an offspring is given by

Q = zx + qzR −
q

2R
h2 + zǫ (B.44)

with q := dαRα−1 (B.35). The random variableszx and zR are normally distributed with mean
zero and standard deviationσ. Similarly, the random variableh2 may be assumed to be normally
distributed with meanNσ2 and standard deviation

√
2Nσ2 if N is large. The noise termszǫ also

follows a normal distribution with zero mean and standard deviationσǫ. In the following, we will
switch to standard normally distributed random variablesu∗:

Q = σux + qσuR + σǫuǫ −
q

2R

√
2Nσ2uh2 − q

2R
Nσ2. (B.45)

Let us start with the axial progress

ϕx = E[〈x(g+1)〉 − 〈x(g)〉] = E[〈zx〉] = σE[〈ux〉]. (B.46)

The expectation can be determined using Lemma 1. Note, the addend[q/(2R)]Nσ2 in (B.45) does not
influence the selection since it is the same for all offspring. The corresponding normally distributed
variablesZl of Lemma 1 are defined by

Zl =
q

σ
σuR +

σǫ
σ
uǫ −

q

2σR

√
2Nσ2uh2 =

√

q2(1 +
N

2R2
σ2) +

σ2
ǫ

σ2
Nl(0, 1) (B.47)

whereNl(0, 1) denotes a standard normally distributed random variable. Note, the sum of two
normally distributed random variables is again a normally distributed random variable. Therefore,
Lemma 1 gives

ϕx =
cµ/µ,λσ

2

√

σ2(1 + q2) + q2 N
2R2σ4 + σ2

ǫ

. (B.48)

Introducing the normalizationsϕ⋆x := Nϕx, σ⋆ := Nσ, andσ⋆ǫ := Nσǫ, (B.48) changes to

ϕ⋆x =
cµ/µ,λσ

⋆2

√

σ⋆2(1 + q2) + q2

2R2N
σ⋆2 + σ⋆ǫ

2
. (B.49)
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LettingN →∞ leads to the progress rate

ϕ⋆x =
cµ/µ,λσ

⋆2

√

σ⋆2(1 + q2) + σ⋆ǫ
2

(B.50)

which will be used in the calculations in Chapter 5.
The progress (not normalized and normalized) towards the axis is definedas

ϕR := E[R− r] = RE
[

1−
√

(

1− 〈zR〉
R

)2
+
〈h〉2
R2

]

ϕ⋆R := NE[R− r] = RNE
[

1−
√

(

1− 〈zR〉
R

)2
+
〈h〉2
R2

]

. (B.51)

To continue, we use the results obtained in [23] and [8]:

1. It was shown in [23, p. 209] that

ϕ⋆R = NR

(

1−

√

(

1− 〈zR〉
R

)2
+
〈h〉2
R2

)

+O
( 1√

N

)

. (B.52)

2. To determine the expectation of the central component Lemma 1 can be used. The determina-
tion is completely analogous to the determination ofE[〈zx〉]. Only the roles ofzR andzx are
reversed

〈zR〉 =
cµ/µ,λqσ

2

√

σ2(1 + q2) + q2 N
2R2σ4 + σ2

ǫ

(B.53)

=
cµ/µ,λqσ

⋆2

N
√

σ⋆2(1 + q2) + q2 N
2R2σ⋆

4 + σ⋆ǫ
2
. (B.54)

3. In the case of the lateral component, the expectation over the square ofthe sum ofµ vectors
must be taken. Since the random vectorshm;λ are independent [23],E[hT

m;λhl;λ] = 0 holds for
m 6= l. The expectation

〈h〉2 =
〈h2〉
µ

(B.55)

remains. Remember, the random variableh2 of each offspring is also a normally distributed
random variable with meanNσ2 and standard deviation

√
2Nσ2

〈h2〉
µ

=

√
2N

µ
σ2〈uh2〉+ N

µ
σ2. (B.56)

Let us now consider〈uh2〉. Using (B.45), the correspondingZl of Lemma 1 read

Zl =
σ

q
2R

√
2Nσ2

ux +
qσ

q
2R

√
2Nσ2

uz +
σǫ

q
2R

√
2Nσ2

uǫ

=

√

σ2(1 + q2) + σ2
ǫ√

2Nσ2 q
2R

Nl(0, 1). (B.57)
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Taking note of the sign in (B.45), this leads to

〈uh2〉 = −
q

2R

√
2Ncµ/µ,λσ

2

√

σ2(1 + q2) + q2 N
2R2σ4 + σ2

ǫ

. (B.58)

By plugging (B.58) into (B.56),

〈h2〉
µ

= −
cµ/µ,λq

N
Rσ

4

µ
√

σ2(1 + q2) + q2 N
2R2σ4 + σ2

ǫ

+
N

µ
σ2 (B.59)

is obtained. Introducing again the normalizationsσ⋆ := Nσ andσ⋆ǫ := Nσǫ, (B.59) changes to

〈h2〉
µ

= −
cµ/µ,λ

q
RN2σ

⋆4

µ
√

σ⋆2(1 + q2) + q2 σ⋆4

2R2N
+ σ⋆ǫ

2
+
σ⋆2

µN
(B.60)

and (B.54) becomes

〈zR〉 =
cµ/µ,λq

σ⋆2

N
√

σ⋆2(1 + q2) + q2

2NR2σ⋆
4 + σ⋆ǫ

2
. (B.61)

The results (B.60) and (B.61) are then inserted into the lateral progress rate (B.52).

4. Using Taylor series expansions (see [23, p.215]) for (B.52) and the resulting expressions, it can
be shown that forN →∞

ϕ⋆R =
qσ⋆2

√

σ⋆2(1 + q2) + σ⋆ǫ
2
cµ/µ,λ −

σ⋆2

2Rµ
(B.62)

with q = dαRα−1 (B.35) is obtained. The calculations are straightforward. Inserting (B.60)
and (B.61) into (B.52) leads to the following argument of the root

(

1− 〈zR〉
R

)2
+
〈h2〉
µR2

=
(

1−
qcµ/µ,λσ

⋆2

RN
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

)2

−
qcµ/µ,λσ

⋆4

N2R2µ
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

+
σ⋆2

µNR2
.

Performing the multiplication and reordering the result into an expression of the form1 − 2x
gives

(

1− 〈zR〉
R

)2
+
〈h2〉
µR2

= 1− 2
qcµ/µ,λσ

⋆2

RN
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

+
q2c2µ/µ,λσ

⋆4

R2N2
(

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
)
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−
qcµ/µ,λσ

⋆4

N2R2µ
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

+
σ⋆2

µNR2

= 1− 2

(

qcµ/µ,λσ
⋆2

RN
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

−
q2c2µ/µ,λσ

⋆4

2R2N2
(

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
)

+
qcµ/µ,λσ

⋆4

2N2R2µ
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
− σ⋆2

2µNR2

)

(B.63)

The next step consists of expanding
√

1− 2x into its Taylor series around zero and taking only
the linear term inx. Thus, the approximation is only valid for small values ofx. Regarding
(B.63),N ≪ 1 must hold and the resulting error term is of order1/N . Thus, the order of the
previous error term1/

√
N still applies. The first derivative off(x) =

√
1− 2x is given by

f ′(x) = −1/
√

1− 2x. The progress rate (B.52) changes to

ϕ⋆R = NR

(

1− 1 +
qcµ/µ,λσ

⋆2

RN
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

−
q2c2µ/µ,λσ

⋆4

2R2N2
(

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
)

+
qcµ/µ,λσ

⋆4

2N2R2µ
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
− σ⋆2

2µNR2

)

+O(
1√
N

)

=
qcµ/µ,λσ

⋆2

√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2

−
q2c2µ/µ,λσ

⋆4

2RN
(

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
)

+
qcµ/µ,λσ

⋆4

2NRµ
√

σ⋆2(1 + q2) + q2 σ
⋆4

2N + σ⋆ǫ
2
− σ⋆2

2µR
+O(

1√
N

) (B.64)

Letting nowN →∞, (B.64) changes to (B.62)

ϕ⋆R =
qcµ/µ,λσ

⋆2

√

σ⋆2(1 + q2) + σ⋆ǫ
2
− σ⋆2

2µR

Equation (B.62) will serve as an approximate formula for finite dimensional search spaces. Both
progress rates, (B.48) and (B.62), were obtained for the caseτ = 0 and thus only applicable for
small values ofτ .



C The Self-Adaptation Response

This chapter presents the derivation of the self-adaptation response (SAR). The SAR is a central
measure in the analysis of self-adaptive evolution strategies using the dynamic systems approach.
This chapter is organized as follows: First, the general approach to determine the first-order SAR for
(µ/µI , λ)-ES is introduced (C.1). During the derivations, several functions are expanded into their
Taylor series’. For a first analysis, only the first derivations are needed. The second section gives the
specific SARs for the sphere model and the ridge function. For a more precise approach, a general
formula for determining the derivations is required. The remaining sections are devoted to this task.

C.1 A General Derivation

This section presents a general derivation of the SAR which is applicable tothe sphere model as
well as to the ridge functions. This derivation is only valid for small values ofthe learning rateτ since
higher-order terms ofτ which appear during the calculations are neglected.

The self-adaptation response function (SAR) denotes the expected relative change of the mean of
the mutation strengths of theµ parents

ψ(〈σ〉) = E
[〈ς〉 − 〈σ〉
〈σ〉

]

=
1

µ

µ
∑

m=1

E
[ ςm;l − 〈σ〉
〈σ〉

]

. (C.1)

The random variableςm;λ denotes the mutation strength connected with themth best quality or fitness
change inλ trials. One of the main points in the derivation of the SAR is the determination of the
corresponding probability density function (pdf)pm;λ(ς). Note, as a rule the expectation in (C.1)
depends on further variables. Since they depend in turn on the fitness model under consideration, they
are not modeled at this point. They will come into play once the specific fitness models are considered.
Furthermore, no normalization is introduced.

The general equation for the pdf can be given easily. Applying the concept of induced order
statistics (see e.g. [3, 23, 4]) the pdf of the random variable leading to themth highest fitness change
Q in λ trials has to be derived. Putting it in another way,m − 1 out of λ offspring must have a
higher andλ − m offspring must have a lower fitness change. Using the cdf ofQ, PQ(Q|〈σ〉),
the probability for the first condition isPr(q > Q) = 1 − Pr(q < Q) = 1 − PQ(Q|〈σ〉) and
Pr(q < Q) = PQ(Q|〈σ〉) in the case of the latter. It is easy to see using elementary combinatorics
that there are

λ

(

λ− 1

m− 1

)

=
λ!

(m− 1)!(λ−m)!
(C.2)

different possibilities for these combinations. The resulting general equation for the pdf

pm;λ(ς|〈σ〉) = pσ(ς|〈σ〉)
λ!

(m− 1)!(λ−m)!

×
∫ ∞

−∞
pQ(Q|ς)PQ(Q|〈σ〉)λ−m

(

1− PQ(Q|〈σ〉)
)m−1

dQ (C.3)
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serves as the basis point for all further derivations. First, the cdfPQ(Q|〈σ〉) which appears in (C.3)
must be determined. The cumulative density function is given as the expectation

PQ(Q|〈σ〉) =

∫ ∞

0
PQ(Q|ς)pσ(ς|〈σ〉) dς. (C.4)

Note,PQ is used in (C.4) instead ofPQ to distinguish between the expectationPQ and the cdfPQ of
Q for a ς. It was shown in [23, p.290] for a general functionf(ς) that

E[f(ς)] =

∫ ∞

0
f(ς)pσ(ς|〈σ〉) dς = f(〈σ〉) +O(τ2) (C.5)

holds – provided thatς follows a log-normal distribution with parameterτ . A similar results holds
for the symmetric two-point distribution. In the following, (C.4) is substituted byPQ(Q|〈σ〉). The
induced error vanishes forτ → 0. In the following, it is assumed that the argument ofPQ(Q|〈σ〉) is
of the form

Q+ h(〈σ〉)
g(〈σ〉) (C.6)

with h, g ∈ C∞(R), g : R → R
+. This holds for example in the case of the sphere model and the

ridge functions. As a next step, the standardized variable

z = −Q+ h(〈σ〉)
g(〈σ〉)

⇔ Q = −g(〈σ〉)z − h(〈σ〉) (C.7)

is introduced. Plugging (C.7) into (C.3) gives the pdf of the mutation strength

pm;λ(ς|〈σ〉) = pσ(ς|〈σ〉)
λ!

(m− 1)!(λ−m)!

×
∫ ∞

−∞
g(〈σ〉)pz(−z|ς)Pz(−z|〈σ〉)λ−m

(

1− Pz(−z|〈σ〉)
)m−1

dz. (C.8)

Let us now come back to the SAR (C.1) which has changed with (C.8) to

ψ(〈σ〉) =

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)
1

µ

µ
∑

m=1

λ!

(m− 1)!(λ−m)!

×
∫ ∞

−∞
g(〈σ〉)pz(−z|ς)Pz(−z|〈σ〉)λ−m

(

1− Pz(−z|〈σ〉)
)m−1

dz dς. (C.9)

In the case of the ridge functions and the sphere model, the approach cannow be simplified. In both
casesPQ(Q|ς) is the cdf of the normal distribution with meanh(ς) and standard deviationg(ς). Thus,

PQ(Q|〈σ〉) = Φ
(Q+ h(〈σ〉)

g(〈σ〉)
)

, pQ(Q|ς) =
1

g(ς)
√

2π
e
− 1

2

(

Q+h(ς)
g(ς)

)2

, (C.10)

Pz(z) = Φ(z), and pz(z|ς) =
1

g(ς)
√

2π
e
− 1

2

(

g(〈σ〉)z−(h(ς)−h(〈σ〉))
g(ς)

)2

(C.11)
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apply and the SAR (C.9) dissolves to

ψ(〈σ〉) =

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)
1

µ

µ
∑

m=1

λ!

(m− 1)!(λ−m)!

1√
2π

×
∫ ∞

−∞

g(〈σ〉)
g(ς)

e
− 1

2

(

g(〈σ〉)z−(h(ς)−h(〈σ〉))
g(ς)

)2
(

1− Φ(z)
)λ−m

Φ(z)m−1 dz dς. (C.12)

In the next step, the order of the summation and the inner integration is swapped. The sum in (C.12)

1

µ

µ
∑

m=1

λ!

(m− 1)!(λ−m)!

(

1− Φ(z)
)λ−m

Φ(z)m−1

itself represents a regularized incomplete beta function [23, p. 147f] andcan be substituted by an
integral

1

µ

µ
∑

m=1

λ!

(m− 1)!(λ−m)!

(

1− Φ(z)
)λ−m

Φ(z)m−1 =
λ!

µ

∫ 1−Φ(z)
0 xλ−µ−1(1− x)µ−1 dx

(λ− µ− 1)!(µ− 1)!
. (C.13)

Plugging the integral (C.13) into (C.9) leads to

ψ(〈σ〉) =

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)
1√
2π

∫ ∞

−∞

g(〈σ〉)
g(ς)

e
− 1

2

(

g(〈σ〉)z−(h(ς)−h(〈σ〉))
g(ς)

)2

×
∫ 1−Φ(z)

0
xλ−µ−1(1− x)µ−1 λ!

(λ− µ− 1)!µ!
dxdz dς. (C.14)

Changing the integration order of the inner integrals overx andz in (C.14) gives

ψ(〈σ〉) =

∫ ∞

0

g(〈σ〉)
g(ς)

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)
1√
2π

(λ− µ)

(

λ

µ

)

×
∫ 1

0
wλ−µ−1(1− w)µ−1

∫ Φ−1(1−w)

0
e
− 1

2

(

g(〈σ〉)z−(h(ς)−h(〈σ〉))
g(ς)

)2

dz dw dς. (C.15)

Setting finallyt = Φ−1(1− w),

ψ(〈σ〉) =

∫ ∞

0

g(〈σ〉)
g(ς)

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)(λ− µ)

(

λ

µ

)

×
∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−
t2

2

2π

×
∫ t

−∞
e
− 1

2

(

g(〈σ〉)z−(h(ς)−h(〈σ〉))
g(ς)

)2

dz dt dς (C.16)

is obtained. This is the point to introduce further simplifications in order to solvethe three integrals.
The starting point is the innermost integral overz which leads to the cdf of the normal distribution
with mean(h(ς)− h(〈σ〉))/g(〈σ〉) and standard deviationg(ς)/g(〈σ〉). The SAR (C.16) changes to

ψ(〈σ〉) =

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)(λ− µ)

(

λ

µ

)

×
∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−
t2

2√
2π

Φ
(g(〈σ〉)t− (h(ς)− h(〈σ〉))

g(ς)

)

dt dς.
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The lastΦ-cdf will be expanded into its Taylor series around〈σ〉 since it hinders further calculations.
The derivatives ofΦ read

Φ(f(ς))′ = f ′(ς)
e−

f(ς)2

2√
2π

(C.17)

∂k+1

∂ςk+1
Φ(f(ς)) =

∂k

∂ςk

(

f ′(ς)
e−

f(ς)2

2√
2π

)

for k > 0 (C.18)

with f(ς):=g(〈σ〉)/g(ς)t−(h(ς) − h(〈σ〉))/g(ς). For the time being, the exact higher order coeffi-
cients are not needed in the approach since the Taylor series will be cut off eventually after the first
terms. Using (C.17) and (C.18), the Taylor series reads

TΦ(t, ς) = Φ(t) +
e−

t2

2√
2π

(

− g′(〈σ〉)
g(〈σ〉) t−

h′(〈σ〉)
g(〈σ〉)

)

〈σ〉
( ς − 〈σ〉
〈σ〉

)

+

1√
2π

∞
∑

k=1

〈σ〉k+1

(k + 1)!

( ς − 〈σ〉
〈σ〉

)k+1

× ∂k

∂ςk

(

(

− g(〈σ〉) g
′(ς)
g2(ς)

t+
g′(ς)(h(ς)− h(〈σ〉))

g(ς)2
− h′(ς)
g(ς)

)

×exp

(

− 1

2

(g(〈σ〉)t− (h(ς)− h(〈σ〉))
g(ς)

)2
)

)

|ς=〈σ〉. (C.19)

Plugging (C.19) into the SAR (C.9), three integrals are obtained: one containing the normal distribu-
tion function at〈σ〉, one comprising the first derivation and a quadratic(ς − 〈σ〉)-term, and one with
higher derivations and polynomials in(ς − 〈σ〉) with degree three or higher

ψ(〈σ〉) =

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)

pσ(ς|〈σ〉)(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ
e−

t2

2√
2π

dt dς

+

∫ ∞

0
〈σ〉
( ς − 〈σ〉
〈σ〉

)2
pσ(ς|〈σ〉)(λ− µ)

(

λ

µ

)

×
∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−t
2

2π

(

− g′(〈σ〉)
g(〈σ〉) t−

h′(〈σ〉)
g(〈σ〉)

)

dt dς

+
∞
∑

k=1

∫ ∞

0

〈σ〉k+1

(k + 1)!

((ς − 〈σ〉
〈σ〉

)k+2
pσ(ς|〈σ〉)

×(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−
t2

2

2π

× ∂k

∂ςk

(

(

− g(〈σ〉) g
′(ς)
g2(ς)

t+
g′(ς)(h(ς)− h(〈σ〉))

g((ς)2
− h′(ς)
g(ς)

)

×exp
(

− 1

2

(g(〈σ〉)t− (h(ς)− h(〈σ〉))
g(ς)

)2)
)

|ς=〈σ〉 dt dς. (C.20)

First of all, the integration overς is addressed. The remainder of this section is restricted the log-
normal distribution with learning rateτ . First of all, note that the expectation of(ς − 〈σ〉)k leads to a
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series inτ2l. It can be shown that the expectation of[(ς − 〈σ〉)/〈σ〉]k does not include anyτ2l-Terms
with 2l + 1 < k. At this point, the series is expanded to the precision ofτ2, thus the expectations
of terms[(ς − 〈σ〉)/〈σ〉]k, k ≥ 3, enters the error term. Section C.3 is aimed at developing a more
accurate formula for the SAR. The equations obtained there are lengthy and complicated, though.

Considering (C.20) reveals that the last integral contributes only to the error term. Equation (C.20)
can therefore be given by

ψ(〈σ〉) =
( ς − 〈σ〉
〈σ〉

)

(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ
e−

t2

2√
2π

dt

+〈σ〉
( ς − 〈σ〉
〈σ〉

)2
(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

− g′(〈σ〉)
g(〈σ〉) t−

h′(〈σ〉)
g(〈σ〉)

)

×
(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−t
2

2π
dt+O

(

(ς − 〈σ〉)3
)

(C.21)

or inserting the expectations obtained in Section C.2

ψ(〈σ〉) =
(τ2

2
+O(τ4)

)

×(λ− µ)

(
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µ

)∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ
e−

t2

2√
2π

dt

+
(

〈σ〉τ2 +O(τ4)
)(

− g′(〈σ〉)
g(〈σ〉) t−

h′(〈σ〉)
g(〈σ〉)

)

×(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−t
2

2π
dt+O(τ4)

= τ2

(

1

2
(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1

Φ(t)µ
e−

t2

2√
2π
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+〈σ〉(λ− µ)

(

λ

µ

)∫ ∞

−∞

(

− g′(〈σ〉)
g(〈σ〉) t−

h′(〈σ〉)
g(〈σ〉)

)

×
(

1− Φ(t)
)λ−µ−1

Φ(t)µ−1 e−t
2

2π
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)

+O(τ4). (C.22)

The value of the first integral is one. The other integral cannot be solved analytically. Instead, the
generalized progress coefficientseα,βµ,λ are used. Reconsidering the definition (A.24), p. 126

eα,βµ,λ =
λ− µ
√

2π
α+1

(

λ

µ

)∫ ∞

−∞
tβe−

α+1
2
t2Φ(t)λ−µ−1

(

1− Φ(t)
)µ−α

dt

with cµ/µ,λ := e1,0µ,λ, the SAR is given by

ψ(〈σ〉) = τ2

(

1

2
+ 〈σ〉

(

e1,1µ,λ
g′(〈σ〉)
g(〈σ〉) − cµ/µ,λ

h′(〈σ〉)
g(〈σ〉)

)

)

+O(τ4). (C.23)

The self-adaptation response (C.23) has been derived under the assumption thatτ is sufficiently small.
In the case of the two-point operator a similar result holds provided that theparameterβ is sufficiently
small. In this case, the SAR reads
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ψ(〈σ〉) = β2(1 + β)

(

1

2
+ 〈σ〉

(

e1,1µ,λ
g′(〈σ〉)
g(〈σ〉) − cµ/µ,λ

h′(〈σ〉)
g(〈σ〉)

)

)

+O(β4). (C.24)

This can be easily verified by following the approach until Eq. (C.21), using a similar argument to
drop the higher order terms ofβ (see Section C.2) and inserting the expectations into (C.21).

The general equations (C.23) and (C.24) can now be used to give the first-order SAR for the
sphere model and the ridge functions for sufficiently small values ofτ andβ. In the next subsection,
the SARs for the undisturbed and noisy sphere model are derived. Afterwards, the SARs for ridge
functions will be given.

C.1.1 Sphere Model: The self-adaptation response function f or τ ≪ 1

First, the SAR of the noise-free sphere model is determined. The generalSAR (C.23)

ψ(〈σ〉) = τ2

(

1

2
+ 〈σ〉

(

e1,1µ,λ
g′(〈σ〉)
g(〈σ〉) − cµ/µ,λ

h′(〈σ〉)
g(〈σ〉)

)

)

+O(τ4)

requires the determination of the functionsg andh and their derivatives. These functions can be
obtained by considering the cdf of the fitness changePQ(Q|ς) = P ((Q + h(ς))/g(ς)) (cf. Eq.
(B.12)). In this section, the log-normal distribution is considered. The equation for the symmetric
two-point operator (C.23) can be obtained by substitutingτ2 with β2(1 + β). In this section, the
fitness function is denoted byf(y) = w(‖y − ŷ‖) = w(R).

The Undisturbed Sphere Model In the case of the noise-free sphere, the pdf of fitness change
reads

PQ(Q|ς) = Φ

(

Q+ Nw′(R)
2R ς2

w′(R)
√

ς2 + N
2R2 ς4

)

. (C.25)

The functions required,h andg are therefore

h(ς) =
Nw′(R)

2R
ς2, h′(ς) =

Nw′(R)

R
ς (C.26)

and

g(ς) = w′(R)

√

ς2 +
N

2R2
ς4, g′(ς) = w′(R)

2ς + 4 N
2R2 ς

3

2
√

ς2 + N
2R2 ς4

. (C.27)

After inserting (C.26) and (C.27) into the SAR (C.23),

ψ(〈σ〉) = τ2
(1

2
+ 〈σ〉

(

e1,1µ,λ
2〈σ〉+ 4 N

2R2 〈σ〉3

2
(

〈σ〉2 + N
2R2 〈σ〉4

) − cµ/µ,λ
N
R 〈σ〉

√

〈σ〉2 + N
2R2 〈σ〉4

))

+O(τ4)(C.28)

is obtained. Introducing the usual normalization,σ∗ := N/R〈σ〉, changes (C.28) to

ψ(σ∗) = τ2
(1

2
+
Rσ∗

N

(

e1,1µ,λ
2Rσ

∗
N + 2Rσ∗3

N2

2
(

R2σ∗2

N2 +R2 σ∗4

2N3

) − cµ/µ,λ
N σ∗

N
√

R2σ∗2

N2 +R2 σ∗4

2N3

))

+O(τ4)

= τ2
(1

2
+ σ∗

(

e1,1µ,λ
2σ∗ + 2σ

∗3

N

2
(

σ∗2 + σ∗4

2N

) − cµ/µ,λ
σ∗

√

σ∗2 + σ∗4

2N

))

+O(τ4). (C.29)
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LettingN →∞, the limit of (C.29) is obtained as

ψ(σ∗) = τ2
(1

2
+ e1,1µ,λ − cµ/µ,λσ∗

)

+O(τ4). (C.30)

Equation (C.30) will be used in the further calculations in Chapter 4. Equations (C.29) and (C.30)
were obtained under the following conditions: As small learning rateτ (or the parameterβ, respec-
tively). This is due to the derivation of the general equation of the SAR. Inthe case of (C.29), a
high-dimensional search space is required which is due to a requirement inobtaining the cdf of the
fitness change (B.12).

Equation (C.30) was compared with the results of ES-runs (Fig. C.1). In allexperiments, the
negative sphere functionF (y) = −‖y‖2 was used as fitness function. TheN -dependency is weak in
the experimental results and the agreement at least for smaller mutation strengths is good.
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Figure C.1: The self-adaptation responseψ in the case of a log-normal distribution of the mutation
strength. The points denote the results of one-generation experiments. Each data point was averaged
over 250 000 trials. As initial vectory(0) = 10 was chosen. From top to bottom the results for
(10/10I , 60)-, (20/20I , 60)-, and(30/30I , 60)-ES are shown.

The SAR for the Noisy Sphere In the case of the noisy sphere, the pdf of the fitness change is
given by

PQ(Q|ς) = Φ

(

Q+ Nw′(R)
2R ς2

w′(R)
√

ς2 + σ2
ǫ

w′(R) + N
2R2 ς4

)

(C.31)

(see B.12). The functionsh andg required for the general SAR (C.23) are

h(ς) =
Nw′(R)

2R
ς2, h′(ς) =

Nw′(R)

R
ς (C.32)

and

g(ς) = w′(R)

√

ς2 +
σ2
ǫ

w′(R)2
+

N

2R2
ς4, g′(ς) = w′(R)

2ς + 2 N
R2 ς

3

2
√

ς2 + σ2
ǫ

w′(R)2
+ N

2R2 ς4
. (C.33)
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Note, againw denotes the fitness function instead of the original symbolg in (B.12).
Inserting (C.32) and (C.33) into the SAR (C.23) gives

ψ(〈σ〉) = τ2
(1

2
+ 〈〈σ〉〉

(

e1,1µ,λ
〈σ〉+ N

R2 〈σ〉3
(

〈σ〉2 + σ2
ǫ

w′(R)2
+ N

2R2 〈σ〉4
)

−cµ/µ,λ
N
R 〈σ〉

√

〈σ〉2 + σ2
ǫ

w′(R)2
+ N

2R2 〈σ〉4

))

+O(τ4). (C.34)

Now the same normalization as in the previous section is introduced – settingσ∗ := (N/R)〈σ〉 and
σ∗ǫ := [N/(w′(R)R)]σǫ. The SAR changes to

ψ(σ∗) = τ2
(1

2
+
Rσ∗

N

(

e1,1µ,λ
Rσ∗
N +Rσ∗3

N2
(

R2σ∗2

N2 + R2σ∗
ǫ
2

2N2 +R2 σ∗4

2N3

)

−cµ/µ,λ
Rσ∗

√

R2σ∗2

N2 + R2σ∗2

N2 +R2 σ∗4

2N3

))

+O(τ4). (C.35)

LettingN →∞,

ψ(σ∗) = τ2
(1

2
+ e1,1µ,λ

σ∗2

σ∗2 + σ∗ǫ
2 − cµ/µ,λ

σ∗2

√

σ∗2 + σ∗ǫ
2

)

+O(τ4) (C.36)

is obtained. The conditions under which (C.35) and (C.36) were obtained are the same as in the case
of the noise-free sphere: A small learning rateτ (or the parameterβ, respectively). Again, (C.35) is
obtained for large search spaces.

Both SARs (C.35) and (C.36) are compared with the results of experiments. The set-up of the
experiments is similar to the noise free case. The experiments were conductedusing (µ/µI , 100)-
ES Each data point was sampled over250, 000 runs of one-generation experiments. Two search
space dimensionalities were investigated:N = 30 andN = 100. Even in the low-dimensional
search space (N = 30), the prediction quality is reasonable good – expecially for smaller mutation
strengths. Deviations occur for higher mutation strengths. This is more pronounced for smaller noise
strengths than for higher. Increasing the mutation strength eventually results in a deviation from the
N -dependent prediction (C.35).

C.1.2 Ridge Functions: The Self-Adaptation Response Functi on for τ ≪ 1

This section is devoted to the task of determining the SAR for ridge functions. Recall, the SAR is
given by (C.23)

ψ(〈σ〉) = τ2

(

1

2
+ 〈σ〉

(

e1,1µ,λ
g′(〈σ〉)
g(〈σ〉) − cµ/µ,λ

h′(〈σ〉)
g(〈σ〉)

)

)

+O(τ4)

with g andh stemming from the cdf of the fitness change of the formPQ(Q|ς) = P [(Q+h(ς))/g(ς)].
In this section, the equation for the symmetric two-point operator (C.23) is notgiven explicitely, since
it can be obtained by substitutingτ2 with β2(1 + β).

As in the case of the sphere model, first undisturbed ridge functions are considered before the
SAR for noisy ridge functions is derived.
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Figure C.2: The first-order self-adaptation response functionψ for some choices ofτ and some
(µ/µI , 100)-ES. Equation (C.35) is represented by the gray lines, whereas the blacklines denote
(C.36). The points denote the results of one-generation experiments and each was obtained by aver-
aging over250, 000 trials.

The Undisturbed Ridge In the case of the noise-free ridge function, the pdf of fitness change is
given by (B.33), p. 133,

PQ(Q|ς) = Φ

(

Q+ αdRα−1 N
2R ς

2

√

ς2(1 + α2d2R2α−2) + α2d2R2α−2 N
2R2 ς4

)

. (C.37)

The functions required for the SAR (C.23) are therefore

h(ς) = αdRα−1 N

2R
ς2
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Figure C.3: The first-order self-adaptation response functionψ for some choices ofτ and some
(µ/µI , 100)-ES. Equation (C.35) is represented by the gray lines, whereas the blacklines denote
(C.36). The points denote the results of one-generation experiments and each was obtained by aver-
aging over250, 000 trials.

h′(ς) = αdRα−1N

R
ς (C.38)

and

g(ς) =

√

ς2(1 + α2d2R2α−2) + α2d2R2α−2
N

2R2
ς4

g′(ς) =
2ς(1 + α2d2R2α−2) + 2α2d2R2α−2 N

R2 ς
3

2
√

ς2(1 + α2d2R2α−2) + α2d2R2α−2 N
2R2 ς4

(C.39)
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Figure C.4: The first-order self-adaptation response functionψ for some choices ofτ and some
(µ/µI , 100)-ES. Equation (C.35) is represented by the gray lines, whereas the blacklines denote
(C.36). The points denote the results of one-generation experiments and each was obtained by aver-
aging over250, 000 trials.

Plugging (C.38) and (C.39) into the SAR (C.22) leads to

ψ(〈σ〉) = τ2
(1

2
+ 〈〈σ〉〉

(

e1,1µ,λ
〈σ〉(1 + α2d2R2α−2) + α2d2R2α−2 N

R2 〈σ〉3
(

〈σ〉2(1 + α2d2R2α−2) + α2d2R2α−2 N
2R2 〈σ〉4

)

−cµ/µ,λ
αdRα−1N

R 〈σ〉
√

〈σ〉2(1 + α2d2R2α−2) + α2d2R2α−2 N
2R2 〈σ〉4

))

+O(τ4). (C.40)
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Figure C.5: The first-order self-adaptation response functionψ for some choices ofτ and some
(µ/µI , 100)-ES. Equation (C.35) is represented by the gray lines, whereas (C.36) isrepresented by
the black lines. The points denote the results of one-generation experimentsand each was obtained
by averaging over250, 000 trials.

Using the normalizationσ⋆ := N〈σ〉, the SAR changes to

ψ(σ⋆) = τ2
(1

2
+
σ⋆

N

(

e1,1µ,λ

σ⋆

N (1 + α2d2R2α−2) + α2d2R2α−2 N
R2

σ⋆3

N3
(

σ⋆2

N2 (1 + α2d2R2α−2) + α2d2R2α−2 N
2R2

σ⋆4

N4

)

−cµ/µ,λ
αdRα−1N

R
σ⋆

N
√

σ⋆2

N2 (1 + α2d2R2α−2) + α2d2R2α−2 N
2R2

σ⋆4

N4

))

+O(τ4) (C.41)
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= τ2

(

1

2
+ e1,1µ,λ

σ⋆2(1 + α2d2R2α−2) + α2d2R2α−2 σ⋆4

NR2
(

σ⋆2(1 + α2d2R2α−2) + α2d2R2α−2 σ⋆4

2R2N

)

−cµ/µ,λ
αdRα−1 σ⋆2

R
√

σ⋆2(1 + α2d2R2α−2) + α2d2R2α−2 σ⋆4

2R2N

)

+O(τ4). (C.42)

LettingN →∞,

ψ(σ⋆) = τ2
(1

2
+ e1,1µ,λ

σ⋆2(1 + α2d2R2α−2)

σ⋆2(1 + α2d2R2α−2)
− cµ/µ,λ

αdRα−1σ⋆2

R
√

σ⋆2(1 + α2d2R2α−2)

)

+O(τ4)

= τ2
(1

2
+ e1,1µ,λ − cµ/µ,λ

αdRα−1σ⋆

R
√

1 + α2d2R2α−2

)

+O(τ4) (C.43)

is obtained. Let us summarize the conditions under which (C.42) and (C.43) were derived: The
general SAR requires the learning rateτ (or the parameterβ, respectively) to be small. The cdf of
the fitness change was obtained for large valueN . Therefore, (C.42) only holds in large dimensional
search spaces. Finally, (C.43) is obtained forN →∞.

It remains to compare both SARs (C.42) and (C.43) with the results of experiments (see Fig. C.6).
For the experiments, a(1, 60)-ES, a (10/10I , 60)-ES, and a (30/30I , 60)-ES were chosen and run on
the sharp (α = 1) and parabolic ridge (α = 2). The learning rate was set toτ = 1/

√
N and the

d-constant was set tod = 0.2. The starting vectorsym
0 were randomly chosen and normalized to

‖ym
0 ‖ = 1.
In the case of the parabolic ridge, the prediction quality is good. This even holds for the low

dimensional search space (N = 30). In the case of the sharp ridge, considerable deviations can be
found forN = 30. This is especially true for the (1, 60)-ES which deviates very soon from the
values predicted by (C.43). Smaller deviations can be observed for the experiments in the higher
dimensional search space (N = 500). It should be noted that theN -dependent (C.43) also fails to
capture the exact behavior of the measured SAR. The prediction quality is far better in the case of
the parabolic ridge. Several causes may contribute to the behavior of the SAR. First, higher-order
terms ofτ were neglected during the derivation of the SAR. Second, the derivationof the fitness gain
relied on the assumption that the changes of the components of mutation vector are small w.r.t. the
distance. This allowed the Taylor expansion of the square root in Eq. (B.31), p. 133 and the subsequent
cutting off of the series after the linear term. The learning rate forN = 30 andN = 100 may thus
contribute together with theN -dependent terms to the deviation. It should be noted that in the case
of the parabolic ridge this smallness assumption is not required. This is also stressed by considering
the prediction quality of the SAR in [28] which used an alternative fitness change for (1, λ)-ES. This
alternative fitness change resulted in a better prediction quality for smallerN . Therefore in the next
section an alternative derivation for the SAR is given.

The SAR for Noisy Ridge Functions In the case of noisy ridge functions, the pdf of fitness
change is given by

PQ(Q|ς) = Φ

(

Q+ αdRα−1 N
2R ς

2

√

ς2(1 + α2d2R2α−2) + σ2
ǫ + α2d2R2α−2 N

2R2 ς4

)

. (C.44)
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Figure C.6: The first-order SAR Eq. (C.42) (dashed lines) and Eq. (C.43) (solid lines) on the sharp
and parabolic ridge for some (µ/µI , 60)-ES. Shown are the results forµ = 1, µ = 10, andµ = 20.
The distance to the ridge was set toR = 1. Each data point was obtained by sampling over100, 000
one-generation experiments forN = 30, 200, 000 for N = 100, and250, 000 for N = 500. The
results forN = 30 are denoted by diamond shaped symbols (red), whereas stars (blue) stand for
N = 100, and triangles (black) forN = 500.

Considering the general form of the SAR (C.23), the functionsh andg and their derivatives are

h(ς) = αdRα−1 N

2R
ς2, h′(ς) = αdRα−1N

R
ς (C.45)
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and

g(ς) =

√

ς2(1 + α2d2R2α−2) + σ2
ǫ + α2d2R2α−2

N

2R2
ς4,

g′(ς) =
2ς(1 + α2d2R2α−2) + 2α2d2R2α−2 N

R2 ς
3

2
√

ς2(1 + α2d2R2α−2) + σ2
ǫ + α2d2R2α−2 N

2R2 ς4
. (C.46)

As one can easily see, the rest of the steps in obtaining the SAR are entirely analogous to the noise-free
case. Inserting (C.45) and (C.46) into the SAR (C.23) leads to

ψ(〈σ〉) = τ2
(1

2
+ 〈〈σ〉〉

(

e1,1µ,λ
〈σ〉(1 + α2d2R2α−2) + α2d2R2α−2 N

R2 〈σ〉3
(
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α−1N
R 〈σ〉

√

〈σ〉2(1 + α2d2R2α−2) + σ2
ǫ + α2d2R2α−2 N

2R2 〈σ〉4

))

+O(τ4). (C.47)

Now the same normalization as before is introduced – settingσ⋆ := N〈σ〉 andσ⋆ǫ := Nσǫ. The SAR
(C.47) changes to

ψ(σ⋆) = τ2
(1

2
+
σ⋆

N

(

e1,1µ,λ

σ⋆
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R
√

σ⋆2(1 + α2d2R2α−2) + σǫ2 + α2d2R2α−2 σ⋆4

2R2N

)

+O(τ4). (C.48)

Computing the limesN →∞ of (C.48) gives

ψ(σ⋆) = τ2
(1

2
+ e1,1µ,λ

σ⋆2(1 + α2d2R2α−2)

σ⋆2(1 + α2d2R2α−2) + σ⋆ǫ
2

−cµ/µ,λ
αdRα−1σ⋆2

R
√

σ⋆2(1 + α2d2R2α−2) + σ⋆ǫ
2

)

+O(τ4). (C.49)

The conditions under which (C.48) and (C.49) were derived are the sameas in the case of the noise-
free ridge: The learning rateτ (or the parameterβ, respectively) has to be small and the search space
must be high-dimensional.

Both SARs (C.48) and (C.49) are compared with the results of experiments in Figure C.7. The
set-up of the experiments is nearly the same as in the noise-free case. The noise strengths was set to
σǫ = 1 for N = 100 and toσǫ = 0.33 for N = 30. The learning rate was set toτ = 1/

√
N . In the

case of the parabolic ridge, the prediction quality is reasonably good – even in the low dimensional
search space (N = 30). In the case of the sharp ridge, the prediction quality is only good for higher
dimensional search spaces.
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Figure C.7: The first-order SAR (C.48) (dashed lines) and (C.49) (solidlines) on the sharp and
parabolic ridge for some (µ/µI , 60)-ES. Shown are the results forµ = 1, µ = 10, andµ = 20. The
distance to the ridge was set toR = 1. Each data point was obtained by sampling over100, 000 one-
generation experiments forN = 30, 200, 000 for N = 100, and250, 000 for N = 500. The results
for N = 30 are denoted by diamond shaped symbols (red), whereas stars (blue) stand forN = 100,
and triangles (black) forN = 500.
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C.1.3 Ridge Functions: An Alternative Derivation of the Self -Adaptation Re-
sponse Function for the Sharp Ridge

In this section, an alternative fitness change is used to determined the SAR for the sharp ridge.
This fitness change uses a different approach to give the density ofr [23, p.111]. The starting point
is the Taylor series expansion off(r) = rα in B.2.1. Again, the Taylor series aroundR, Tf (r) =
Rα + αRα−1(r −R) +O[(r −R)2], is cut off after the linear term. This leads to the fitness change

Q = zx + dRα − dRα− dαRα−1(r −R)−O[(r −R)2] + ǫ

= zx − dαRα−1(r −R)−O[(r −R)2] + ǫ. (C.50)

Similar to (B.29), p. 132,zx denotes the change in the first component of the vector, whereasǫ stands
for the noise term. Following [22], a normal approximation for the pdf ofr

p(r|ς) =

exp

(

−1
2

(

r−
√
R2+ς2N

ς

s

R2+ ς2N
2

R2+ς2N

)

)

√
2πς

√

R2+ ς2N
2

R2+ς2N

(C.51)

is used [23, p.111]. This results in the following cdf of the fitness change

PQ(Q|ς) = Φ

(

Q+ αdRα−1(
√
R2 + ς2N −R)

√

ς2 + σ2
ǫ + α2d2R2α−2ς2

(

R2+ς2N/2
R2+ς2N

)

)

. (C.52)

Recall, the SAR is given by (C.23)

ψ(〈σ〉) = τ2

(

1

2
+ 〈σ〉

(

e1,1µ,λ
g′(〈σ〉)
g(〈σ〉) − cµ/µ,λ

h′(〈σ〉)
g(〈σ〉)

)

)

+O(τ4)

with g andh stemming from the cdf of the fitness change of the formPQ(Q|ς) = P ((Q+h(ς))/g(ς)).
Again, first undisturbed ridge functions are considered before the SAR for noisy ridge functions

is derived.

The Undisturbed Ridge In the case of the undisturbed ridge, the variance of the noise term in
(C.52) is zero yielding

PQ(Q|ς) = Φ

(

Q+ αdRα−1(
√
R2 + ς2N −R)

√

ς2 + α2d2R2α−2ς2
(

R2+ς2N/2
R2+ς2N

)

)

. (C.53)

The functions needed for the SAR (C.23) are

h(ς) = αdRα−1(
√

R2 + ς2N −R)

h′(ς) = αdRα−1 Nς√
R2 + ς2N

(C.54)
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and

g(ς) =

√

ς2 + α2d2R2α−2ς2
(R2 + ς2N/2

R2 + ς2N

)

g′(ς) =
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(
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2

)

2

√
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(

R2+ς2N/2
R2+ς2N

)

=

2ς
[

1 + α2d2R2α−2
(

R2+ς2N/2
R2+ς2N

)]

+ α2d2R2α−2Nς3
(

R2+ς2N−2R2−ς2N
(R2+ς2N)

2

)

2

√

ς2 + α2d2R2α−2ς2
(

R2+ς2N/2
R2+ς2N
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2
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√

ς2 + α2d2R2α−2ς2
(

R2+ς2N/2
R2+ς2N

)

. (C.55)

Plugging (C.54) and (C.55) into the SAR (C.23) gives

ψ(〈σ〉) = τ2

(

1

2
+ 〈σ〉

(

− cµ/µ,λ
αdRα−1N〈σ〉

√

R2 +N〈σ〉
√

〈σ〉2 + α2d2R2α−2〈σ〉2
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R2+ς2N/2
R2+〈σ〉2N

)
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R2+〈σ〉2N

)

2

(
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R2+〈σ〉2N

)

)

−e1,1µ,λ
α2d2R2α−2N〈σ〉3

(

R2

(R2+〈σ〉2N)
2

)

2

(

〈σ〉2 + α2d2R2α−2〈σ〉2
(
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)

)
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)

+O(τ4)
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(
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2
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√

R2 +N〈σ〉
√
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(

R2+ς2N/2
R2+〈σ〉2N

)
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α2d2R2α−2N〈σ〉4

(

R2

(R2+〈σ〉2N)
2

)

2

(

〈σ〉2 + α2d2R2α−2〈σ〉2
(

R2+〈σ〉2N/2
R2+〈σ〉2N

)

)

)

+O(τ4). (C.56)

Using the same normalization as before, i.e.,σ⋆ := N〈σ〉, the SAR changes to

ψ(σ⋆) = τ2

(

1

2
+ e1,1µ,λ − cµ/µ,λ

αdRα−1σ⋆2

√

R2 + σ⋆2

N

√
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)

)

)

+O(τ4). (C.57)
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LettingN →∞,

ψ(σ⋆) = τ2
(1

2
+ e1,1µ,λ − cµ/µ,λ

αdRα−1σ⋆

R
√

1 + α2d2R2α−2

)

+O(τ4) (C.58)

is obtained which equals (C.43). The conditions for the derivation of (C.57) and (C.58) are the same
as for (C.42) and (C.43): A small learning rateτ and a large value ofN in the case of (C.57).

In the following, the SARs (C.57) and (C.58) are compared with the results ofexperiments. The
experiments were already described in the previous section. As expected, the prediction quality of the
SAR (C.57) is not good in the case of the parabolic ridge (see Fig. C.8). This is due to the derivation
of the fitness change (C.52). Equation (C.57) agrees very well with the experiments in the case of the
sharp ridge.

The SAR for Noisy Ridge Functions In the case of noisy ridge functions, the pdf of fitness
change is given by

PQ(Q|ς) = Φ

(

Q+ αdRα−1(
√
R2 + ς2N −R)

√

ς2 + σ2
ǫ + α2d2R2α−2ς2

(

R2+ς2N/2
R2+ς2N

)

)

. (C.59)

Considering the general form of the SAR (C.23), the functionsh andg and their derivatives are

h(ς) = αdRα−1(
√

R2 + ς2N −R)

h′(ς) = αdRα−1 ςN√
R2 + ς2N

(C.60)

and

g(ς) =

√

ς2 + σ2
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(R2 + ς2N/2

R2 + ς2N

)

g′(ς) =
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(
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√
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(
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R2+ς2N

)

. (C.61)

As one can easily see, the rest of the steps in obtaining the SAR are entirely analogous to the noise-free
case. Inserting (C.61) into the SAR (C.23) leads to

ψ(〈σ〉) = τ2
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1

2
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+O(τ4). (C.62)
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Figure C.8: The first-order SAR Eq. (C.57) (dashed lines) and Eq. (C.58) (solid lines) for some
(µ/µI , 60)-ES. Shown are the results forµ = 1, µ = 10, andµ = 20. The distance to the ridge was
set toR = 1. Each data point was obtained by sampling over100, 000 one-generation experiments
for N = 30, 200, 000 for N = 100, and250, 000 for N = 500. The results forN = 30 are denoted
by diamond shaped symbols (red), whereas stars (blue) stand forN = 100, and triangles (black) for
N = 500.

Now the same normalizations as before are introduced – settingσ⋆ := N〈σ〉 andσ⋆ǫ := Nσǫ. The
SAR (C.62) changes to

ψ(σ⋆) = τ2

(

1

2
− cµ/µ,λαdRα−1 σ⋆2

√

R2 + σ⋆2

N

√
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LettingN →∞ gives

ψ(σ⋆) = τ2
(1

2
+ e1,1µ,λ

σ⋆2(1 + α2d2R2α−2)

σ⋆2(1 + α2d2R2α−2) + σ⋆ǫ
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−cµ/µ,λ
αdRα−1σ⋆2

R
√

σ⋆2(1 + α2d2R2α−2) + σ⋆ǫ
2

)

+O(τ4). (C.64)

Again, the conditions under which (C.63) and (C.64) were derived are the same as in the case of
(C.48) and (C.49)

Figure C.9 shows a comparison of (C.63) and (C.64) with the results of experiments. Again, there
is a good agreement of (C.63) with the experiments in the case of the sharp ridge. In the case of the
parabolic ridge, the same observations can be made as in the case of the undisturbed ridge: Due to the
derivation of (C.64), (C.49) serves better to predict the experiments.

C.2 Calculating the Expectation

In this section, the expectations of

E
[( ς − 〈σ〉

〈σ〉
)k]

=

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)k
pσ(ς|〈σ〉) dς (C.65)

are determined for the log-normal and the symmetric two-point operator. In Section C.1 it was claimed
that if the Taylor series inτ2k is cut off after the(n + 1)th summand, the expectation of (C.65) with
degree≥ 2n + 1 is zero. In this section, this claim is verified. First, the log-normal distribution is
considered, before the case of the two-point distribution is discussed for the sake of completeness.

C.2.1 The log-normal operator

The moments of a log-normal distribution are given by(ς)k=(〈σ〉)ke k2τ2

2 . The aim of the section

is to derive expressions for
(

ς−〈σ〉
〈σ〉

)k
. Since

( ς − 〈σ〉
〈σ〉

)k
=

k
∑

l=0

(

k

l

)

(ς)l(−1)k−l(〈σ〉)−l, (C.66)

the expectation is given by

( ς − 〈σ〉
〈σ〉

)k
= (−1)k

k
∑

l=0

(

k

l

)

(−1)le
l2τ2

2 . (C.67)
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Figure C.9: The first-order SARs (C.64) (solid lines) and (C.63) (dashed lines) on the sharp and
parabolic ridge for some (µ/µI , 60)-ES. The distance to the ridge was set toR = 1 and the noise
strength toσ⋆ǫ = 1. Each data point was obtained by sampling over100, 000 one-generation exper-
iments forN = 30, 200, 000 for N = 100, and250, 000 for N = 500. The results forN = 30
are denoted by diamond shaped symbols (red), whereas stars (blue) stand forN = 100, and triangles
(black) forN = 500.
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Sincee
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has to be considered. As it is shown later,
∑k
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As a result, ifτ ≪ 1 is assumed and the Taylor series is cut off aftern = n0, accordingly, the expected

values for
(

ς−〈σ〉
ς(g)

)k
with k ≥ 2n0 + 1 do not have to be taken into account. In the following, the

expectation of
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is given for some choices ofk, i.e., for
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The remainder of the section is devoted to show that
∑k

l=0

(

k
l

)

(−1)ll2n = 0 holds ifk ≥ 2n+1. This
is done using induction. Letm = 2n and start withm = 0. Splitting the sum into even and uneven
terms and considering Pascal’s triangle

k
∑
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(

k

l

)

(−1)l =

{

∑(k)/2
l=0

(

k
2l

)

−∑k/2−1
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(

k
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)
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∑(k−1)/2

l=0

(

k
2l

)

−∑(k−1)/2−1
l=0

(

k
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if k = 2j + 1

= 2k−1 − 2k−1 = 0. (C.71)

Let nowm = 1. In this case

k
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l=0
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k

l
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(−1)ll = k

k
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k − 1

l − 1
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(−1)l
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∑
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k − 1

l

)

(−1)l = 0 (C.72)

holds. Finally form→ m+1, remember thatlm can be written aslm =
∑m

j=0 cm,j
∏j−1
i=0 (l− i) with

constantscm,j . This leads to
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k

l
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∑
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∑
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∑
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−
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×
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∑
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= 0. (C.73)
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Thus, the expectation of higher order terms vanishes. An analogous result holds for the two-point
operator.

C.2.2 The two-point operator

The moments of the random variableςk are given byςk = 〈σ〉k/2 (αk + α−k). The analysis
will be restricted to the case ofα ≈ 1. Setting thusα := 1 + β, β ≪ 1 follows. The function
f(β) = (1 + β)−k will be developed into its Taylor series around zero. The Taylor seriesTf (β) is
given by

Tf (β) =

∞
∑

i=0

(k + j − 1)!

(k − 1)!j!
(−1)jβj

= 1− kβ +
k(k + 1)

2
β2 − k(k + 1)(k + 2)

6
β3 +O(β4). (C.74)

The term(1 + β)k is given by the binomial formula

(1 + β)k =

k
∑

i=0

(

k

i

)

βi

= 1 + kβ +
k(k − 1)

2
β2 +

k(k − 1)(k − 2)

6
β3 +O(β4). (C.75)

Thus, the sum of (C.74) and (C.75) reads

(1 + β)k + (1 + β)−k = 1− kβ +
k(k + 1)

2
β2 − k(k + 1)(k + 2)

6
β3

+1 + kβ + k
k(k − 1)

2
β2 +

k(k − 1)(k − 2)

6
β3 +O(β4)

= 2 +
k + 1 + k − 1

2
kβ2 +

(k − 1)(k − 2)− (k + 1)(k + 2)

6
kβ3 +O(β4)

= 2 + k2β2 + k2β3 +O(β4) = 2 + k2β2(1 + β) +O(β4). (C.76)

Addressing the expectation of

(

ς − 〈σ〉
〈σ〉

)k

= (−1)k
k
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)

ς l(−1)l〈σ〉−l (C.77)

gives
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∑
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∑
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(−1)ll2 +O(β4).(C.78)
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As it was shown in the previous section, the value of the first addend of (C.78) is zero. Therefore, no
power ofβ below two appears in the approximation.

Considering the results for the log-normal distribution, we see that the expectation (C.78) contains
only terms of orderO(β4) if k ≥ 3. For the SAR, the values of (C.78) fork = 1 andk = 2, i.e.,

(

ς − 〈σ〉
〈σ〉

)1

= −β2(1 + β)
1

2

1
∑

l=1

(

1

l

)

(−1)ll2 +O(β4)

=
β2

2
(1 + β) +O(β4) (C.79)

(

ς − 〈σ〉
〈σ〉

)2

= β2(1 + β)
1

2
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−
(

2

1

)

+ 4

(

2

2
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+O(β4) = β2(1 + β) +O(β4) (C.80)

need to be determined.

C.3 A General Formula

The section is devoted to the task of determining a recursive equation. The ultimate aim is to
gain an equation or a MATHEMATICA-program which can be used to givethe SAR in an (arbitrary)
precision ofτ . This section still does not include theτ -dependent terms ofPQ (C.4) in the derivation.
The main point of this section is to illustrate some points of the derivation which arealso relevant for
the next section which presents an approach which accounts for allτ -dependent terms.

C.3.1 The Derivation

The starting point is (C.20) in Appendix C.1, p. 142,

ψ(〈σ〉) =

∫ ∞

0

( ς − 〈σ〉
〈σ〉

)
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pσ(ς|〈σ〉)(λ− µ)

(

λ

µ

)

×
∫ ∞
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)

×exp
(
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2
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g(ς)

)2)
)

|ς=〈σ〉 dt dς.
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Again, the three integrals have to be considered. The first two can be easily developed into a general
formula ofτ . Recall from Appendix C.2 that

(

ς − 〈σ〉
〈σ〉

)
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∞
∑
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τ2n
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∞
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∑
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− 2 + 22n
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(C.81)

holds. Considering the results obtained so far in Appendix C.1 for the firsttwo integrals in (C.20), it
is easy to see that

I1 + I2 =
∞
∑
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2nn!
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(C.82)

(cf. (C.22)) holds. As already mentioned in Appendix C.1, the third integralposes more difficulties.
This concerns the appearance of higher derivatives and of coursethe integration overt. Let us now
focus on

I3 =
∞
∑
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∫ ∞

0

〈σ〉k+1

(k + 1)!
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|ς=〈σ〉 dt dς (C.83)

and start with the derivatives. In the following let

u(ς) := g(〈σ〉) g
′(ς)
g2(ς)

t+
g′(ς)(h(ς)− h(〈σ〉))

g((ς)2
− h′(ς)
g(ς)

(C.84)

and

v(ς) := exp
(

− 1

2

(g(〈σ〉)t− (h(ς)− h(〈σ〉))
g(ς)

)2)

. (C.85)

Thekth derivative of a product of two functions simply reads

(u(ς)v(ς))(k) =
k
∑

l=0

(

k

l

)

u(k−l)(ς)v(l)(ς) (C.86)
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with u(k)(ς) := ∂k

∂ςk
u(ς). Thekth derivative of a composite function is not so easily obtained. Fol-

lowing [32] it reads

dn

dςn
u(v(ς)) = n!

∑

{km}

dr

dyr
u(y)|y=v(ς)

n
∏

m=1

1

km!

( 1

m!
v(m)(ς)

)km

(C.87)

with r = k1 + . . . + kn and {km} the set of all non-negative integer solutions of the so-called
Diophantine equation (see, e.g., [32])

k1 + 2k1 + . . .+ nkn = n. (C.88)

Thelth derivative ofu is of the form

u(l) =
( g′(ς)
g(ς)2

)(l)
g(〈σ〉)t+

( g′(ς)
g(ς)2

(h(ς)− h(〈σ〉))
)(l)
−
(h′(ς)
g(ς)

)(l)
(C.89)

with

( g′(ς)
g(ς)2

)(l)
=

l
∑

j=0

(

l

j

)

g(l+1−j)(ς)
(

g(ς)−2
)(j)

. (C.90)

Thejth derivative of the composite function is given by

(

g(ς)−2
)(j)

= j!
∑

{km}
(2 + r)!(−1)rg(ς)−2−r

j
∏
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1
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( 1
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g(m)(ς)

)km

(C.91)

since(y−2)(j) = (−1)j(2 + j)!y−2−j . The derivation of the third term in (C.89) can be obtained by

(h′(ς)
g(ς)

)(l)
=

l
∑
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(
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)
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(
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(C.92)

with

(
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. (C.93)

The remaining derivation of the last composite term of (C.89) can be determined using

( g′(ς)
g(ς)2
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)(l)

=
l
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∑
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. (C.94)

Concerningt the lth derivative ofu stays linear. This is not the case ifv is considered. The function
itself is a composite function of the formv(ς) = exp(w) and therefore the derivative is

v(l)(ς) = l!
∑

{km}
ew(ς)

l
∏

m=1

1

km!

( 1

m!
w(m)(ς)

)km

. (C.95)



C.3 A General Formula 167

The functionw is again a composite function withw(ς) = −1/2z(ς)2 leading to

w(l)(ς) = −1

2
l!
∑

{km}
2× . . .× (2− r)z(ς)2−r

l
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1

km!

( 1
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. (C.96)

Finally, the last remaining derivatives remain those of the arguments ofz leading to

z(l)(ς) = g(〈σ〉)t
(

g(ς)−1
)(l)

+
l
∑

m=0

(

l

m

)

(

h(ς)− h(σ)
)(l−m)(

g(ς)−1
)(m)

. (C.97)

Some simplifications can be made:

1. Thelth summand in (C.97) vanishes completely

z(l)(ς)|ς=〈σ〉 = g(〈σ〉)t
(

g(ς)−1
)(l)
|ς=〈σ〉

+
l−1
∑

m=0

(
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)

h(ς)(l−m)|ς=〈σ〉
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)(m)
|ς=〈σ〉. (C.98)

2. Sincez(〈σ〉) = t, only sets with at most two elements have to be taken into account

w(l)(ς) = −1

2
l!
∑
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2× . . .× (2− r)t2−r

l
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. (C.99)

3. Concerningt thelth derivative ofvet
2/2 is a polynomial int

v(l)(ς) = l!e−
t2

2

∑

km

l
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m=1

1

km!

( 1

m!
w(m)(ς)

)km

. (C.100)

In principle, (C.86) to (C.100) can be used to determine the SAR. However,performing the calcula-
tions is lengthy and the results are not easily usable. Therefore, the remainder of the section is aimed
at providing a MATHEMATICA-program for determining the SAR. To this end, reconsider (C.82)
and (C.83). Equation (C.82) can be directly transferred. In the case ofEq. (C.83), the first step is to
swap the integration order – computing first the integral overς

I3 =
∞
∑

k=1

∫ ∞

0

〈σ〉k+1
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×exp
(
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2
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g(ς)

)2)
)

|ς=〈σ〉 dt. (C.101)
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The integration result for every term of the series inn gives a series inτ2l. To obtain the general series
in powers ofτ2, the summation order must be swapped. For notation convenience letCtk(〈σ〉) denote
the integral overt of kthe derivative in (C.101). After integrating overς,

I3 =

∞
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Ctk
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∞
∑
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∑
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)

(−1)hh2j (C.102)

is obtained. As shown, the coefficientCtk leads to expressions of the forme−t
2/2
∑2k+1

i=0 ai(〈σ〉)ti.
The integration overt in (C.101) leads therefore to special cases of the progress coefficients (A.24)
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=
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(−1)iai(〈σ〉)e1,iµ,λ. (C.103)

The task remains to determine the coefficients in (C.103) which can be done using MATHEMATICA.
The SAR can then be obtained by combining (C.82) and (C.102) as

ψ(〈σ〉) =
∞
∑

n=1

τ2n

2nn!

(

1 +
(
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+
∞
∑
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h=0

(
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h

)

(−1)hh2j (C.104)

In the following section, the effects of including higher-order terms ofτ in the SAR (C.104) are
discussed. The parabolic ridge is used to as a test function for the SAR (C.104).

C.3.2 Comparison with the Parabolic Ridge

Let us compare the obtained SAR (C.104) with the results of experiments for the parabolic ridge.
Three evolution strategies were examined: a (1, 60)-ES, a (10/10I , 60)-ES, and a (20/20I , 60)-ES.
The SAR was expanded up toτ6. The ridge constantd was set tod = 0.2 and the distance to the ridge
toR = 1. In the following, the SARs are numbered in accordance to the expansion,i.e.,ψi denotes
the result up to the power ofτ2i. Figure C.11 compares the prediction with the results of experiments
for N = 100. In the derivation of the SAR, theN -dependent version was used. The influence of the
higher orderτ -terms is relatively minor. Although,ψk with k > 1 deviate from the results obtained
for k = 1, the effect wished for cannot be obtained in general. In the case ofµ = 1, Fig. C.11 a),
the deviations from the result forψ1 do not lead to a better prediction quality. In the case ofµ = 10,
Fig. C.11 b),ψ2 andψ3 move closer to the experimental results for higher mutation strengths, but
ψ2 andψ3 do not overlap with the measured data. Furthermore,ψ3 does not deviate far fromψ2. In
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Get [ "eabml.mat" ]
Clear [ fh , fg , awts , cwkt , bw , wkt , ps i1 , ps i3 , p s i ]
n=100
d =0.2
a=2
fh [ s ] : = a∗d∗ s ˆ 2 / 2
dfh [ s ] : =D[ fh [ x ] , { x , 1} ] / . x−>s
fg [ s ] : = s∗Sqrt [1+ a ˆ2∗d ˆ2+ a ˆ2∗ d ˆ2∗ s ˆ 2 / ( 2∗ n ) ]
d fg [ s ] : =D[ fg [ x ] , { x , 1} ] / . x−>s
awts [ k , t , s ] : =
Module [ { x , y , l , e rg} ,
expo [ x , y , l ] :=
D[ expo [ x , y , l − 1 ] , x ] −

expo [ x , y , 1 ]∗ expo [ x , y , l − 1]∗ expo [ x , y , 0 ] ;
expo [ x , y , 0 ] := fg [ s ] / fg [ x ] ∗ y − ( fh [ x ] − fh [ s ] ) / fg [ x ] ;
expo [ x , y , 1 ] := D[ fg [ s ] / fg [ x ] ∗ y − ( fh [ x ] − fh [ s ] ) / fg [ x ] , x ] ;
e rg =expo [ x , y , k + 1 ] / . x−>s / . y−>t
]
cwkt [ k , s , m , l ] : = Module [ { a l i s t , erg , coe fs , y , as} ,

c o e f s =C o e f f i c i e n t L i s t [ awts [ k , y , as ] , y ] ;
e rg =Sum[ ( −1 ) ˆ ( j −1)∗ c o e f s [ [ j ] ] ∗ eabml [ 1 , j−1,m, l ] ,

{ j , 1 , Length [ c o e f s ]} ] ;
e rg / . as−>s ]

wkt [ k , j ] : = Sum[ Binomial [ k , h ]∗ ( −1) ˆ h∗h ˆ ( 2∗ j ) , { h , 0 , k} ]
bw[ w , s , m , l ] : = Module [ { as , k , e rg} ,

e rg =I f [2∗w−2<=0,
0 ,
Sum[ cwkt [ k , as ,m, l ]∗ as ˆ ( k + 1 ) / ( ( k +1 ) ! )∗ ( −1 ) ˆ k∗wkt [ ( k +2) ,w] ,

{k , 1 ,w∗2−2}]
] ;
e rg / . as−>s ]

p s i 3 [ t au , i , s , m , l ] : = Module [ { as , t , e rg} ,
e rg =I f [ i <2 ,0 ,Sum[ t a u ˆ ( 2∗w ) / ( ( w! ) ∗2 ˆw)∗bw[w, s ,m, l ] ,{w, 2 , i } ] ]

]
p s i 1 [ t au , i , s , m , l ] : =

Sum[ t a u ˆ ( 2∗w ) / ( ( w! ) ∗2 ˆw)
∗ (1+(−2+2ˆ(2∗w) ) ∗ s
∗ ( d fg [ s ] / fg [ s ]∗ eabml [ 1 , 1 ,m, l ]−cmmkl [m, l ]∗ dfh [ s ] / fg [ s ] ) ) ,
{w, 1 , i } ]

p s i [ t au , i , s , m , l ] : = p s i 1 [ tau , i , s ,m, l ]+ p s i 3 [ tau , i , s ,m, l ]

Figure C.10: The MATHEMATICA source code for the SAR
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the case ofµ = 20, finally, ψ2 andψ3 are very close to the experimental data. Note,ψ2 (indicated
by the dashed line with the shorter dots in Fig. C.11 c)) gives better results. The behavior may have
several causes: First of all, there are all still neglectedτ2k terms which may cause deviations. Second,
it should be noted that taking more terms of theτ2 series does not necessarily improve the prediction
quality for any fixedτ .
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a)µ = 1,N = 100, τ = 0.1 d = 0.2 b) µ = 10,N = 100, τ = 0.1, d = 0.2
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c) µ = 20,N = 100, τ = 0.1 d = 0.2

Figure C.11: Comparison of the SAR (C.104) with the results of experiments. Three SARs,ψ1, ψ2,
andψ3 are shown. The solid line representsψ1, the dottedψ2 (dashed, short dots) andψ3 (dashed,
longer dots). The results forψ2 andψ3 cannot be distinguished, since the lines nearly overlap.

C.4 A General Formula: A Second Approach

First of all, a minimization problem will be considered. In other words, themth best fitness change
is not themth highest fitness change but themth smallest. It is easy to see that the fitnes change of an
offspring retains the general form of the previous sections. In other words, it is assumed that first,

PQ(Q) = PQ

(Q− h(ς)
g(ς)

)

(C.105)

and second

PQ(Q) = Φ
(Q− h(ς)

g(ς)

)

(C.106)

holds in accordance with (C.4). Let us reconsider the SAR (C.1) which is now given by

ψ(σ) =
λ

µ

µ
∑

m=1

(

λ− 1

m− 1

)∫ ∞

0

( ς − σ
σ

)

pσ(ς|σ)
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×
∫ ∞

−∞
pQ(Q|ς)PQ(Q|σ)m−1

(

1− PQ(Q|σ)
)λ−m

dQdς (C.107)

with

PQ(Q|σ) =

∫ ∞

0
PQ(Q|ς)pσ(ς|ς) dς. (C.108)

At this point the deviation is changed. Instead of switching to standardized integration variables, the
steps for (C.13) - (C.16) are performed first. First, the order of summationand integration is swapped
and the sum is substituted by an integral

λ

µ

µ
∑

m=1

(

λ− 1

m− 1

)

(

1− PQ(Q)
)λ−m

PQ(Q)m−1 =
λ!

µ

∫ 1−PQ(Q)
0 xλ−µ−1(1− x)µ−1 dx

(λ− µ− 1)!(µ− 1)!
. (C.109)

Again, the integral is reinserted into the SAR (C.107) giving

ψ(σ) = (λ− µ)

(

λ

µ

)∫ ∞

0

( ς − σ
σ

)

pσ(ς|σ)

∫ ∞

−∞
pQ(Q|ς)

×
∫ 1−PQ(Q)

0
xλ−µ−1(1− x)µ−1 dxdQdς. (C.110)

After some calculations and subsequent reordering, the SAR

ψ(σ) = (λ− µ)

(

λ

µ

)∫ ∞

0

( ς − σ
σ

)

pσ(ς|σ)

×
∫ ∞

−∞
(1− PQ(Q))λ−µ−1PQ(Q)µ−1pQ(Q)PQ(Q|ς) dQdς (C.111)

is obtained withpQ := ∂/(∂Q)PQ. At this point the integral

PQ(Q|σ) =

∫ ∞

0
PQ(Q|ς)pσ(ς|σ) dς (C.112)

has to be reconsidered. ExpandingPQ into its Taylor series aroundσ gives

PQ(Q|σ) =

∫ ∞

0

∞
∑

k=0

∂k

∂ςk
PQ(Q|ς)|ς=σ

( ς − σ
σ

)k σk

k!
pσ(ς|σ) dς

=

∞
∑

k=0

∂k

∂ςk
PQ(Q|ς)|ς=σ

( ς − σ
σ

)k σk

k!

= Φ
(Q− h(σ)

g(σ)

)

+
∞
∑

k=1

∂k

∂ςk
PQ(Q|ς)|ς=σ

( ς − σ
σ

)k σk

k!
. (C.113)

Again, it is refrained from computing the derivatives∂k/(∂ςk)PQ(Q|ς)|ς=σ. This will be done even-
tually using MATHEMATICA. Note the following, though: Thekth derivative ofPQ can be given
as a product of the pdfpQ and a polynomial inQ. This will finally lead to coefficients similar to the
progress coefficientseα,βµ,λ (A.24). The second step consists of taking the expectationE[((ς − σ)/σ)k]

and developing it into a series inτ2 similar to Eqs. (C.66)f. in Appendix C.2.1. Accordingly,

PQ(Q|σ) = Φ
(Q− h(σ)

g(σ)

)

+
∞
∑

k=1

ak(Q, σ)
∞
∑

n=⌈k/2⌉

τ2n

n!2n

k
∑

l=0

(

k

l

)

(−1)ll2n (C.114)
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is obtained (cf. (C.69)). The coefficientak denotes

ak(Q, σ) := (−1)k
∂k

∂ςk
PQ(Q|ς)|ς=σ

σk

k!
. (C.115)

The last calculation concerningPQ(Q|σ) at this moment is to change the order of summation leading
to

PQ(Q|σ) = Φ
(Q− h(σ)

g(σ)

)

+
∞
∑

n=1

τ2n

n!2n

2n
∑

k=1

ak(Q, σ)
k
∑

l=0

(

k

l

)

(−1)ll2n

=: Φ
(Q− h(σ)

g(σ)

)

+
∞
∑

n=1

τ2n

n!2n
cn(Q, σ). (C.116)

Accordingly, the product(1− PQ)λ−µ−1 in (C.111) reads

(

1− PQ(Q|σ)
)λ−µ−1

=

λ−µ−1
∑

l=0

(

λ− µ− 1

l

)

(

1− Φ
(Q− h(σ)

g(σ)

))λ−µ−1−l

×(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(Q, σ)

)l
(C.117)

whereasPµ−1
Q in (C.111) is given by

PQ(Q|σ)µ−1 =

µ−1
∑

m=0

(

µ− 1

m

)

Φ
(Q− h(σ)

g(σ)

)µ−1−m( ∞
∑

n=1

τ2n

n!2n
cn(Q, σ)

)m
. (C.118)

The product of (C.116) and (C.117) reads in turn

(

1− PQ(Q|σ)
)λ−µ−1

PQ(Q|σ)µ−1 =

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ
(Q− h(σ)

g(σ)

))λ−µ−1−l
Φ
(Q− h(σ)

g(σ)

)µ−1−m

×(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(Q, σ)

)m+l
. (C.119)

A similar series is obtained for the integral

IQ(Q, σ) =

∫ ∞

0

( ς − σ
σ

)

PQ(Q|ς)pσ(ς|σ) dς. (C.120)

Taylor series expansion of (C.120) aroundσ leads to

IQ =
∞
∑

k=1

∂k−1

∂ςk−1
PQ(Q|ς)|ς=σ

σk−1

(k − 1)!

( ς − σ
σ

)k

= Φ
(Q− h(σ)

g(σ)

)( ς − σ
σ

)

+
∞
∑

k=2

∂k−1

∂ςk−1
PQ(Q|ς)|ς=σ

σk−1

(k − 1)!

( ς − σ
σ

)k
. (C.121)
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Computing the expectation and reordering according to powers ofτ2 gives

IQ(Q|σ) =
∞
∑

n=1

τ2n

n!2n

(

Φ
(Q− h(σ)

g(σ)

)

−
2n−1
∑

k=1

ak(Q, σ)
k+1
∑

l=0

(

k + 1

l

)

(−1)ll2n
)

=
∞
∑

n=1

τ2n

n!2n

(

wn(Q|σ) + Φ
(Q− h(σ)

g(σ)

))

. (C.122)

The functionpQ remains to be considered. SincepQ = ∂/(∂Q)PQ, it is obtained using (C.116) as

pQ(Q|σ) dQ = φ
(Q− h(σ)

g(σ)

)

+
∞
∑

n=1

τ2n

n!2n

2n
∑

k=1

∂

∂Q
ak(Q, σ)

k
∑

l=0

(

k

l

)

(−1)ll2n dQ

= φ
(Q− h(σ)

g(σ)

)

+

∞
∑

n=1

τ2n

n!2n
vn(Q|σ) dQ. (C.123)

The product of (C.122) and (C.123) reads

pQ(Q|σ)IQ(Q|σ) dQ = φ
(Q− h(σ)

g(σ)

)

Φ
(Q− h(σ)

g(σ)

)

∞
∑

n=1

τ2n

n!2n
dQ

+φ
(Q− h(σ)

g(σ)

)

∞
∑

n=1

τ2n

n!2n
wn(Q|σ) dQ

+Φ
(Q− h(σ)

g(σ)

)

∞
∑

n=1

τ2n

n!2n

∞
∑

n=1

τ2n

n!2n
vn(Q|σ) dQ

+
∞
∑

n=1

τ2n

n!2n
wn(Q|σ)

∞
∑

n=1

τ2n

n!2n
vn(Q|σ) dQ. (C.124)

Now, the integration variableQ is transformed tot = (Q− h(σ))/g(σ). We arrive at

pt(t|σ)It(t|σ) dt = φ(t)Φ(t)
∞
∑

n=1

τ2n

n!2n
dt

+φ(t)
∞
∑

n=1

τ2n

n!2n
wn(t|σ) dt

+Φ(t)g(σ)
∞
∑

n=1

τ2n

n!2n

∞
∑

n=1

τ2n

n!2n
vn(t|σ) dt

+
∞
∑

n=1

g(σ)
τ2n

n!2n
wn(t|σ)

∞
∑

n=1

τ2n

n!2n
vn(t|σ) dt. (C.125)

Since

φ
(Q− h(σ)

g(σ)

)

=
1

g(σ)
√

2π
e
− 1

2

(

Q−h(σ)
g(σ)

)2

, (C.126)

it follows that

φ(t) dt =
e−

t2

2√
2π

= g(σ)φ
(Q− h(σ)

g(σ)

)

. (C.127)
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Furthermore,dQ = g(σ) dt holds and leads together with (C.127) to (C.125). It remains to compute

the product of (C.119) and (C.124)
(

1 − Pt(t|σ)
)λ−µ−1

Pt(t|σ)µ−1pt(t|σ)It(t|σ) dt. Again, four

terms can be distinguished

I1(t|σ) dt = φ(t)Φ(t)
∞
∑

n=1

τ2n

n!2n

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−1−m(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(t, σ)

)m+l
dt

= φ(t)

∞
∑

n=1

τ2n

n!2n

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−m(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(t, σ)

)m+l
dt, (C.128)

I2(t|σ) dt = φ(t)

∞
∑

n=1

τ2n

n!2n
wn(t|σ)

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−1−m(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(t, σ)

)m+l
dt, (C.129)

I3(t|σ) dt = Φ(t)g(σ)

∞
∑

n=1

τ2n

n!2n

∞
∑

n=1

τ2n

n!2n
vn(t|σ)

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−1−m(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(t, σ)

)m+l
dt

= g(σ)
∞
∑

n=1

τ2n

n!2n

∞
∑

n=1

τ2n

n!2n
vn(t|σ)

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−m(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(t, σ)

)m+l
dt, (C.130)

I4(t|σ) dt =
∞
∑

n=1

g(σ)
τ2n

n!2n
wn(t|σ)

∞
∑

n=1

τ2n

n!2n
vn(t|σ)

λ−µ−1
∑

l=0

µ−1
∑

m=0

(

λ− µ− 1

l

)(

µ− 1

m

)

×
(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−1−m(−1)l
(

∞
∑

n=1

τ2n

n!2n
cn(t, σ)

)m+l
dt (C.131)

with

ψ(σ) = (λ− µ)

(

λ

µ

)∫ ∞

−∞
I1(t) + I2(t) + I3(t) + I4(t) dt. (C.132)

The aim is now to giveψ (C.132) up to a precision ofτ2K . As it can be seen easily, the summation
over l andm can be cut off after min{K,λ − µ − 1} in the case ofl and min{K,µ − 1} in m. This
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means that (C.130) and (C.131) only contribute to the SAR ifK > 2. As stated before, the coefficients
cn, wn, andvn contain products of a polynomial int andexp(−t2/2). Therefore, expressions similar
to the definition of the progress coefficients (A.24) can be obtained. Also note that the freeg(σ)-
term in (C.130) and (C.131) averages out eventually. In the following the MATHEMATICA-code is
described. Let us start with Fig. C.12 which defines some progress coefficients. These stem from
considering the sums overm andl in Eqs. (C.128)-(C.131) which contain products of the form

(

λ− µ− 1

l

)(

µ− 1

m

)

(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−1−m. (C.133)

Additionally, they are multiplicated with one or two pdfs of the standard normal distribution and with
polynomials int. In other words (C.132) contains terms of the following general form

em,l,h,k,jµ,λ = (λ− µ)

(

λ

µ

)(

λ− µ− 1

l

)(

µ− 1

m

)

∫ ∞

−∞

(

1− Φ(t)
)λ−µ−1−l

Φ(t)µ−1−m+jφ(t)l+m+htk dt. (C.134)

Thet-dependent terms can now be expressed in terms of (C.134). It remains todetermine

1. which powers oft actually appear forτ2k, k fixed

2. the coefficients which are connected toti in τ2k.

So first of all, the coefficientsvn, wn, andcn have to be obtained. This requires some further calcula-
tions. These coefficients are given as follows

vn :=
2n
∑

k=1

∂

∂t
ak(t, σ)

k
∑

l=0

(

k

l

)

(−1)ll2n

=
2n
∑

k=1

∂

∂t
ak(t, σ)wk,n (C.135)

wn := −
2n−1
∑

k=1

ak(t, σ)
k+1
∑

l=0

(

k + 1

l

)

(−1)ll2n

= −
2n−1
∑

k=1

ak(t, σ)wk+1,n (C.136)

cn :=
2n
∑

k=1

ak(t, σ)
k
∑

l=0

(

k

l

)

(−1)ll2n

=
2n
∑

k=1

ak(t, σ)wk,n (C.137)
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f i [ x ] := (1 + Erf [ x / 2 ˆ ( 1 / 2 ) ] ) / 2

l f i [ x ] := Module [ {aaa} , aaa = N[ f i [ x ] ] ;
I f [ aaa =!= 0 . 0 , Log [ aaa ] ,
−Log [2∗ Pi ] / 2 − x ˆ 2 / 2 − Log[−x ] ]
]

l 1 f i [ x ] := Module [ {aaa} , aaa = 1−N[ f i [ x ] ] ;
I f [ aaa =!= 0 . 0 , Log [ aaa ] ,
−Log [2∗ Pi ] / 2 − x ˆ 2 / 2 − Log [ x ] ]
]

e i j k m l [ i , j , h , k , w , mu , lambda ] :=
e i j k m l [ i , j , h , k ,w, mu , lambda ] =

Module [ {aa ,m, l} ,m=mu; l = lambda ;I f [ l −m−i −1 == 0 ,
( aa=
Log [ Binomial [ l −m−1, i ]∗ I f [m−1==0 ,1 ,Binomial [m−1, j ] ] ∗ Binomial [ l ,m ] ] ;

( l−m)∗ ( 2∗ Pi ) ˆ ( − ( i + j +h ) / 2 ) ∗ NIn tegra te [
I f [ k == 0 , 1 , t ˆ k ] ∗ Exp [ −( i + j +h ) / 2 ∗ t ∗ t + aa +
I f [ ( l −m−i −1) == 0 , 0 , ( l−m−i −1)∗ l 1 f i [ t ] ] +
I f [ (m−j −1−w) <= 0 , 0 , (m−j −1−w)∗ l f i [ t ] ] ] ,
{ t , −8, −2, 2 , 8} , MaxRecursion−> 45] ) ,
( aa =

( Log [ Binomial [ l −m−1, i ]∗ I f [m−1==0 ,1 ,
Binomial [m−1, j ] ] ∗ Binomial [ l ,m ] ] ) / ( l −j−i−w−2);

( l−m)∗ ( 2∗ Pi ) ˆ ( − ( i + j +h ) / 2 ) ∗ NIn tegra te [
I f [ k == 0 , 1 , t ˆ k ] ∗ Exp [ −( i + j +h ) / 2 ∗ t ∗ t +
I f [ ( l −m−i −1) == 0 , 0 , ( l−m−i −1)∗( aa + l 1 f i [ t ] ) ]
+ I f [ (m−j −1−w) <= 0 , 0 , (m−j −1−w) ∗ ( aa + l f i [ t ] ) ] ] ,
{ t , −8, −2, 2 , 8} , MaxRecursion−> 45] ) ]

]

Figure C.12: The MATHEMATICA source code for the coefficientsei,j,h,k,wµ,λ (C.134). The code is

oriented after the MATHEMATICA code for theei,jµ,λ coefficients of Beyer.

with ak(t, σ) given by (C.115), i.e., by

ak(t, σ) = (−1)k
∂k

∂ςk
PQ(t|ς)|ς=σ

σk

k!

andwk,n by

wk,n :=

k
∑

l=0

(

k

l

)

(−1)ll2n. (C.138)

Figure C.13 shows how these coefficients are obtained. Note, the coefficientakts gives∂k/(∂sk)PQ
whereasbkts computes∂k+1/(∂t∂sk)PQ. It remains to treat the remaining sums in (C.128)-(C.131).
First of all, let us consider

∑∞
i=1 τ

2i/(i!2i)ci. Of course, the series can be cut off after the wished
precision is reached. In the following, letK denote the maximal power ofτ2. The sumPt in Figure
C.13 computes then

Pt =
K
∑

n=1

cn(t, σ)
τ2n

n!2n
. (C.139)
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whereaspt gives

pt =
K
∑

n=1

vn(t, σ)
τ2n

n!2n
. (C.140)

Let us now reconsider (C.121) where two sums are given – one containing Φ(t) and the other deriva-
tives ofΦ. The sumtheintPhi determines the first, wheretheint stands for the latter.

Now the single factors can be combined (see Fig. C.14). Let us first consider a singlem andl addend
in (C.128)-(C.131). First of all, the product of the series inτ2 has to be determined. Afterwards, only
the terms up to the power ofτ2K need to be retained. The addend in (C.128)

φ(t)Φ(t)
τ2n

n!2n

(

K
∑

n=1

cn
τ2n

n!2n

)l+m
(C.141)

is given byprodphiPhi whereasprodphi computes the addend in (C.129)

φ(t)
K
∑

n=1

wn
τ2n

n!2n

(

K
∑

n=1

cn
τ2n

n!2n

)l+m
. (C.142)

The remaining addends in (C.130)

Φ(t)g(σ)
τ2n

n!2n

K
∑

n=1

vn
τ2n

n!2n

(

K
∑

n=1

cn
τ2n

n!2n

)l+m
(C.143)

and (C.130)

K
∑

n=1

vn
τ2n

n!2n

K
∑

n=1

wn
τ2n

n!2n

(

K
∑

n=1

cn
τ2n

n!2n

)l+m
(C.144)

are then given byprodPhi andprod, respectively.

It remains to combine the obtained addends with the correspondingei,j,h,k,wµ,λ -coefficients (C.134).
Therefore, the addends for each equation (C.128)-(C.131) are reconsidered in Figures C.15 and C.16.
First, the coefficient for eachτ2k is obtained. Afterwards, the results are used to determine the coeffi-
cients ofti. These are combined with the appropriateei,j,h,k,wµ,λ -coefficients before, finally, the results

are gathered up again in a polynomial inτ2k. The SAR can then be obtained by summing up the
single addends in (C.128)-(C.131) and computing the remaining sums overm andl.
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dim=100
d =0.2
a=2
h [ s ] : = a∗d∗s ˆ 2 / 2
g [ s ] : = s∗Sqrt [1+ d ˆ2∗ a ˆ2+ a ˆ2∗d ˆ2∗ s ˆ 2 / ( 2∗ dim ) ]
a k t s [ k , t , s ] : = Module [ { x , y , l ,w} ,
expo [ x , y , l ] := D[ expo [ x , y , l − 1 ] , x ] −

expo [ x , y , 0 ]∗ expo [ x , y , l − 1]∗ expo [ x , y , 1 ] ;
expo [ x , y , 0 ] := g [ s ] / g [ x ]∗ y − ( h [ x ] − h [ s ] ) / g [ x ] ;
expo [ x , y , 1 ] := D[ expo [ x , y , 0 ] , x ] ;
w=expo [ x , y , k ] / . x−>s / . y−>t ]
b k t s [ k , t , s ] : = Module [ { x ,w, y , l } ,
expo [ x , y , l ] :=
D[ expo [ x , y , l − 1 ] , x ] −

expo [ x , y , 0 ]∗ expo [ x , y , l − 1]∗ expo [ x , y , 1 ] ;
expo [ x , y , 0 ] := g [ s ] / g [ x ]∗ y − ( h [ x ] − h [ s ] ) / g [ x ] ;
expo [ x , y , 1 ] := D[ expo [ x , y , 0 ] , x ] ;
w=D[ expo [ x , y , k ] , y ] / . x−>s / . y−>t ]
wkn [ k , n ] : = Sum[ Binomial [ k , l ] ∗ ( −1) ˆ l ∗ l ˆ ( 2∗ n ) ,{ l , 0 , k} ]
[ . . . ]
r e s u l t [ n , t , s , mu , l a ] : = Module [ { tau , erg , as , y} ,
a k L i s t =Table [ a k t s [ k , y , as ]∗ as ˆ k∗( −1)ˆ k / k ! ,{ k , 1 , 2∗ n } ] ;
b k L i s t =Table [ a k t s [ k , y , as ]∗ as ˆ k∗( −1)ˆ k / k ! ,{ k , 1 , 2∗ n } ] ;
c k L i s t =Table [ I f [ k ==1 ,0 , a k t s [ k−1,y , as ]∗ as ˆ ( k−1)∗(−1)ˆ k / ( k−1) ! ] ,{ k , 1 , 2∗ n } ] ;
cn [ i , y , a s ] : = Sum[ a k L i s t [ [ k ] ] ∗wkn [ k , i ] , { k , 1 , 2∗ i } ] ;
bn [ i , y , a s ] : = Sum[ b k L i s t [ [ k ] ] ∗wkn [ k , i ] , { k , 1 , 2∗ i } ] ;
dn [ i , y , a s ] : = Sum[ c k L i s t [ [ k ] ] ∗wkn [ k , i ] , { k , 2 , 2∗ i } ] ;
P t [ i , t au , as , y ] : = I f [ i >0,Sum[ t a u ˆ ( 2∗ j ) / ( j ! ∗2 ˆ j )∗ cn [ j , y , as ] ,{ j , 1 , i } ] , 0 ] ;
p t [ i , t au , as , y ] : = I f [ i >0,Sum[ t a u ˆ ( 2∗ j ) / ( j ! ∗2 ˆ j )∗ bn [ j , y , as ] ,{ j , 1 , i } ] , 0 ] ;
t h e i n t [ i , t au , as , y ] : = I f [ i >0,Sum[ t a u ˆ ( 2∗ ( j ) ) / ( ( j ) ! ∗ 2 ˆ ( j ) ) ∗ dn [ j , y , as ] ,

{ j , 1 , i } ] , 0 ] ;
t h e i n t P h i [ i , t au , as , y ] : = I f [ i >0,Sum[ t a u ˆ ( 2∗ ( j ) ) / ( ( j ) ! ∗ 2 ˆ ( j ) ) ,{ j , 1 , i } ] , 0 ] ;
i n t E r g = t h e i n t [ n , tau , as , y ] ;
i n t P h i E r g = t h e i n t P h i [ n , tau , as , y ] ;
p tE rg = p t [ n , tau , as , y ] ;
P tErg= Pt [ n , tau , as , y ] ;
e rg =Sum[ Sum[ ( −1) ˆ l ∗ ( getPower4 [ n , tau , s ,m, l , mu , la , PtErg , i n t P h i E r g , y ]+

getPower3 [ n , tau , s ,m, l , mu , la , PtErg , ptErg , i n t P h i E r g , y]+
getPower2 [ n , tau , s ,m, l , mu , la , PtErg , i n tE rg , y ]+
getPower1 [ n , tau , s ,m, l , mu , la , PtErg , ptErg , i n tE rg , y ] ) ,

{ l , 0 ,Min [ la−mu−1,n ]} ] , {m, 0 ,Min [mu−1,n ]} ] ;
e rg = erg / . as−>s / . tau−>t
]

Figure C.13: The MATHEMATICA source code for obtaining the coefficients. Some lines are missing
(indicated by [...]) which will be explained later.

C.4.1 Comparison with the Parabolic Ridge

Again, the parabolic ridge is taken as a test function for the SAR (C.132). Let us now compare
the SAR (C.132) with the results of experiments for the parabolic ridge. Three evolution strategies
were examined: a (1, 60)-ES, a (10/10I , 60)-ES, and a (20/20I , 60)-ES. The SAR was expanded up
to τ6. The ridge constantd was set tod = 0.2 and the distance to the ridgeR wasR = 1. In the
following, the SARs are again numbered in accordance to the highest power of τ2 in the expansion,
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prod [ n , t au , s , y , m , l , P t I n , p t I n , t h e I n t I n ] : = Module [
{ res , end , erg , t , ay , as} ,
I f [m+ l +2>n , e rg =0 ,
r e s = P t I n ˆ (m+ l )∗ p t I n∗ t h e I n t I n ;
end=Min [ Exponent [ res , t a u ] , 2∗ n ] ;
e rg =I f [ end<0 ,0 ,

Sum[ C o e f f i c i e n t L i s t [ res , t a u ] [ [ i ] ]∗ t a u ˆ ( i−1) ,
{ i , 1 , end +1} ] ]

] ]
p rodPh i [ n , t au , s , y , m , l , P t I n , p t I n , t h e i n t P h i I n ] : = Module [

{ res , end , erg , t , ay , as} ,
I f [m+ l +2>n , e rg =0 ,
r e s = P t I n ˆ (m+ l )∗ p t I n∗ t h e i n t P h i I n ;
end=Min [ Exponent [ res , t a u ] , 2∗ n ] ;
e rg =I f [ end<0 ,0 ,

Sum[ C o e f f i c i e n t L i s t [ res , t a u ] [ [ i ] ]∗ t a u ˆ ( i−1) ,
{ i , 1 , end +1} ] ]

] ]
p rodph i [ n , t au , s , y , m , l , P t I n , t h e i n t I n ] : = Module [

{ res , end , erg , t , ay , as} ,
I f [m+ l +1>n , e rg =0 ,
r e s = P t I n ˆ (m+ l )∗ t h e i n t I n ;
end=Min [ Exponent [ res , t a u ] , 2∗ n ] ;
e rg =I f [ end<0 ,0 ,

Sum[ C o e f f i c i e n t L i s t [ res , t a u ] [ [ i ] ]∗ t a u ˆ ( i−1) ,
{ i , 1 , end +1} ] ]

] ]
p r o d p h i P h i [ n , t au , s , y , m , l , P t I n , t h e i n t P h i I n ] : = Module [

{ res , end , erg , t , ay , as} ,
I f [m+ l +1>n , e rg =0 ,
r e s = P t I n ˆ (m+ l )∗ t h e i n t P h i I n ;
end=Min [ Exponent [ res , t a u ] , 2∗ n ] ;
e rg =I f [ end<0 ,0 ,

Sum[ C o e f f i c i e n t L i s t [ res , t a u ] [ [ i ] ]∗ t a u ˆ ( i−1) ,
{ i , 1 , end +1} ] ]

] ]

Figure C.14: The singlem andl addends in (C.128)-(C.131).

i.e.,ψi denotes the result up to the power ofτ2i. Figure C.17 compares the prediction with the results
of experiments forN = 100. In the derivation of the SAR, theN -dependent version was used.
Additionally, Figure C.18 shows a comparison of the two approaches. It can be seen easily that using
(C.132) has no significant advantage over using (C.104) – at least up tothe power ofτ6. In the case
of µ = 10, apparently (C.104) leads to better results. It should be noted, though, thatψ3 obtained by
(C.132) is closer to the experimental data thatψ2. This might indicate that higher-order expansions
lead to better results. Unfortunately, the MATHEMATICA-programm takes far too long to determine
ψ4.
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getPower1 [ n , t au , s , m , l , mu , l a , P t I n , p t I n , t h e I n t I n , y ] : = Module [
{ t , t L i s t , yL i s t , c o e f L i s t , prod , res , max , amax , end , end2 , re s 2} ,
I f [ n<2, e rg =0 ,I f [m+ l +2>n , e rg =0 ,
r e s =prod [ n , tau , s , y ,m, l , P t In , p t I n , t h e I n t I n ] ;
t L i s t = C o e f f i c i e n t L i s t [ res , t a u ] ;
y L i s t = C o e f f i c i e n t L i s t [ t L i s t , y ] ;
end =0;
end=Min [2∗ n +1 ,Exponent [ res , t a u ] ] ;
end2=Max [ end , 0 ] ;
I f [ end2 ==0 ,0 ,
max=0;
For [ i =1; amax =0 , i<Length [ t L i s t ] , i ++;
amax=Exponent [ t L i s t [ [ i ] ] , y ] ; I f [ max<amax , max=amax , max ] ; ] ;
c o e f L i s t =Table [ e i j k m l [m, l , 2 , i −1 ,0 ,mu , l a ] ,{ i , 1 , max +1} ] ;
r e s 2 =I f [ Length [ y L i s t ] >0 ,Table [ I f [ y L i s t [ [ i ] ] ! = { } ,
I f [ Length [ y L i s t [ [ i ] ] ] = = 0 , y L i s t [ [ i ] ] ∗ c o e f L i s t [ [ 1 ] ] ,

Sum[ y L i s t [ [ i ] ] [ [ j ] ] ∗ c o e f L i s t [ [ j ] ] ,
{ j , 1 ,
Min [ Length [ y L i s t [ [ i ] ] ] , Length [ c o e f L i s t ] ] } ] ] , 0 ] ,

{ i , 1 , Length [ y L i s t ] } ] , 0 ] ;
e rg =Sum[ r e s 2 [ [ i ] ] ∗ t a u ˆ ( i−1) ,{ i , 1 , Length [ r e s 2 ]} ]
] ] ] ]

getPower2 [ n , t au , s , m , l , mu , l a , P t I n , t h e i n t I n , y ] : = Module [
{ t , t L i s t , yL i s t , c o e f L i s t , res2 , res , erg , end2 , as} ,
I f [m+ l +1>n , e rg =0 ,
r e s = p rodph i [ n , tau , s , y ,m, l , P t In , t h e i n t I n ] ;
t L i s t = C o e f f i c i e n t L i s t [ res , t a u ] ;
end=Min [2∗ n +1 ,Exponent [ res , t a u ] ] ;
end2=Max [ end , 0 ] ;
I f [ end2 ==0 ,0 ,
y L i s t = C o e f f i c i e n t L i s t [ t L i s t , y ] ;
max=0;
For [ i =1; amax =0 , i<Length [ t L i s t ] , i ++;
amax=Exponent [ t L i s t [ [ i ] ] , y ] ; I f [ max<amax , max=amax , max ] ; ] ;
c o e f L i s t =Table [ e i j k m l [m, l , 2 , i −1 ,0 ,mu , l a ] ,{ i , 1 , max +1} ] ;
r e s 2 =I f [ Length [ y L i s t ] >0 ,Table [ I f [ y L i s t [ [ i ] ] ! = { } ,
I f [ Length [ y L i s t [ [ i ] ] ] = = 0 , y L i s t [ [ i ] ] ∗ c o e f L i s t [ [ 1 ] ] ,

Sum[ y L i s t [ [ i ] ] [ [ j ] ] ∗ c o e f L i s t [ [ j ] ] ,
{ j , 1 ,
Min [ Length [ y L i s t [ [ i ] ] ] , Length [ c o e f L i s t ] ] } ] ] , 0 ] ,

{ i , 1 , Length [ y L i s t ] } ] , 0 ] ;
e rg =Sum[ r e s 2 [ [ i ] ] ∗ t a u ˆ ( i−1) ,{ i , 1 , Length [ r e s 2 ]} ]
] ] ]

Figure C.15: Computing the sums I.

C.5 The Second-Order SAR for τ ≪ 1

In this section, the second-order SAR forτ ≪ 1 is derived. The second-order SAR is needed in
the second-order approximation of the dynamics of self-adaptive ES. The approach followed is sim-
ilar to the one used in Section C.1 for the determination of a more general first-order self-adaptation
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getPower3 [ n , t au , s , m , l , mu , l a , P t I n , p t I n , t h e i n t P h i I n , y ] : = Module [
{ t , t L i s t , yL i s t , c o e f L i s t , res2 , res , erg , end2 , as} ,
I f [ n<2, e rg =0 ,I f [m+ l +2>n , e rg =0 ,
r e s = prodPh i [ n , tau , s , y ,m, l , P t In , p t I n , t h e i n t P h i I n ] ;
t L i s t = C o e f f i c i e n t L i s t [ res , t a u ] ;
end=Min [2∗ n +1 ,Exponent [ res , t a u ] ] ;
end2=Max [ end , 0 ] ;
I f [ end2 ==0 ,0 ,
y L i s t = C o e f f i c i e n t L i s t [ t L i s t , y ] ;
max=0;
For [ i =1; amax =0 , i<Length [ t L i s t ] , i ++;
amax=Exponent [ t L i s t [ [ i ] ] , y ] ; I f [ max<amax , max=amax , max ] ; ] ;
c o e f L i s t =Table [ e i j k m l [m, l , 1 , i −1 ,(−1) ,mu , l a ] ,{ i , 1 , max +1} ] ;
r e s 2 =I f [ Length [ y L i s t ] >0 ,Table [ I f [ y L i s t [ [ i ] ] ! = { } ,

I f [ Length [ y L i s t [ [ i ] ] ] = = 0 , y L i s t [ [ i ] ] ∗ c o e f L i s t [ [ 1 ] ] ,
Sum[ y L i s t [ [ i ] ] [ [ j ] ] ∗ c o e f L i s t [ [ j ] ] ,
{ j , 1 ,
Min [ Length [ y L i s t [ [ i ] ] ] , Length [ c o e f L i s t ] ] } ] ] , 0 ] ,

{ i , 1 , Length [ y L i s t ] } ] , 0 ] ;
e rg =Sum[ r e s 2 [ [ i ] ] ∗ t a u ˆ ( i−1) ,{ i , 1 , Length [ r e s 2 ]} ] ;
e rg / . as−>s / . t−>t a u ] ] ]

]
getPower4 [ n , t au , s , m , l , mu , l a , P t I n , t h e i n t P h i I n , y ] : = Module [

{ t , t L i s t , yL i s t , c o e f L i s t , res2 , res , erg , end2 , as} ,
I f [m+ l +1>n , e rg =0 ,
r e s = p r o d p h i P h i [ n , tau , s , y ,m, l , P t In , t h e i n t P h i I n ] ;
t L i s t = C o e f f i c i e n t L i s t [ res , t a u ] ;
end=Min [2∗ n +1 ,Exponent [ res , t a u ] ] ;
end2=Max [ end , 0 ] ;
I f [ end2 ==0 ,0 ,
y L i s t = C o e f f i c i e n t L i s t [ t L i s t , y ] ;
max=0;
For [ i =1; amax =0 , i<Length [ t L i s t ] , i ++;
amax=Exponent [ t L i s t [ [ i ] ] , y ] ; I f [ max<amax , max=amax , max ] ; ] ;
c o e f L i s t =Table [ e i j k m l [m, l , 1 , i −1 ,(−1) ,mu , l a ] ,{ i , 1 , max +1} ] ;
r e s 2 =I f [ Length [ y L i s t ] >0 ,Table [ I f [ y L i s t [ [ i ] ] ! = { } ,
I f [ Length [ y L i s t [ [ i ] ] ] = = 0 , y L i s t [ [ i ] ] ∗ c o e f L i s t [ [ 1 ] ] ,

Sum[ y L i s t [ [ i ] ] [ [ j ] ] ∗ c o e f L i s t [ [ j ] ] ,
{ j , 1 ,
Min [ Length [ y L i s t [ [ i ] ] ] , Length [ c o e f L i s t ] ] } ] ] , 0 ] ,

{ i , 1 , Length [ y L i s t ] } ] , 0 ] ;
e rg =Sum[ r e s 2 [ [ i ] ] ∗ t a u ˆ ( i−1) ,{ i , 1 , Length [ r e s 2 ]} ]

] ] ]

Figure C.16: Computing the sums II.

response. The distributions considered are again the log-normal and thesymmetric two-point distri-
bution.
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The second-order SAR is defined as

ψ(2)(〈σ〉) = E

[

(〈ς〉 − 〈σ〉
〈σ〉

)2

|〈σ〉
]

. (C.145)

Again, the further dependencies ofψ(2) which may include the distance to the optimizer or the noise
strength are not denoted at this point. Considering (C.145) and performing the multiplication,

ψ(2)(〈σ〉, R, 〈σ〉ǫ) =
1

〈σ〉2
E
[

〈ς〉2 − 2〈ς〉+ 〈σ〉2
]

(C.146)

needs to be computed. Since〈ς〉 = 1/µ
∑µ

m=1 ςm;λ, the terms inside the expectation can be split into

〈ς〉2 − 2〈ς〉+ 〈σ〉2 =
1

µ2

µ
∑

m=1
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2

µ2
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k−1
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ςk;λςm;λ

−2〈σ〉
µ

µ
∑

m=1

ςm;λ + 〈σ〉2. (C.147)

The derivation of the second order self adaptation response is straightforward. The calculations sim-
plify considerably if (C.147) is re-expressed in terms of(ς − 〈σ〉)k. Sinceς = (ς − 〈σ〉) + 〈σ〉 and
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Figure C.17: Comparison of the SAR (C.132) with the results of experiments. Three SARs,ψ1, ψ2,
andψ3 are shown. The solid line representsψ1, the dottedψ2 (dashed, short dots) andψ3 (dashed,
longer dots). The results forψ2 andψ3 cannot be distinguished, since the lines nearly overlap in the
case ofµ = 1 andµ = 30. Only forµ = 20, greater differences can be observed.
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Figure C.18: Comparison of the SAR (C.132) (red lines) with (C.104) (blue lines) and the results of
experiments.

ς2 = 〈σ〉2 − 2〈σ〉(ς − 〈σ〉) + (ς − 〈σ〉)2 hold, the sums in Eq. (C.147) change to
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2〈σ〉
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The result (C.149) can be easily obtained by considering
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µ
∑

k=1

(ςk;λ − 〈σ〉)

−〈σ〉2µ(µ− 1)

2
. (C.151)

As a result, the expression〈ς〉2 − 2〈ς〉+ 〈σ〉2 simplifies considerably to

〈ς〉2 − 2〈ς〉+ 〈σ〉2 = 〈σ〉2 +
〈σ〉2
µ
− 2〈σ〉

µ2

µ
∑

m=1

(ςm;λ − 〈σ〉) +
1

µ2

µ
∑

m=1

(ςm;λ − 〈σ〉)2

〈σ〉2 − 〈σ〉
2

µ
+

2

µ
〈σ〉

µ
∑

k=1

(ςm;λ − 〈σ〉)−
2

µ2
〈σ〉

µ
∑

k=1

(ςm;λ − 〈σ〉)

+
2

µ2

µ
∑
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k−1
∑
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2〈σ〉
µ

µ
∑

m=1

(ςm;λ − 〈σ〉)− 2〈σ〉2

=
1

µ2

µ
∑

m=1

(ςm;λ − 〈σ〉)2 +
2

µ2

µ
∑

k=2

k−1
∑

m=1

(ςk;λ − 〈σ〉)(ςm;λ − 〈σ〉). (C.152)
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Let us consider the expectation of1/µ2
∑µ

m=1(ςm;λ − 〈σ〉)2

E

[

〈σ〉2
µ2

µ
∑

m=1

( ςm;λ − 〈σ〉
〈σ〉

)2
]

=
λ!

µ2

µ
∑

m=1

∫ ∞

−∞

∫ ∞

0

(

ςm;λ−〈σ〉
〈σ〉

)2

(λ−m− 1)!(m− 1)!
p∗σ(ς|〈σ〉)p(Q|ς)

×
(

1− P (Q|〈σ〉)
)m−1(

P (Q|〈σ〉)
)λ−m

dQdς (C.153)

first. As in Section C.1, the pdf and the cdf are assumed to be are given by (C.10)

PQ(Q|〈σ〉) = Φ
(Q+ h(〈σ〉)

g(〈σ〉)
)

, pQ(Q|ς) =
1

g(ς)
√

2π
e
− 1

2

(

Q+h(ς)
g(ς)

)2

.

Setting againz = (Q+ h(〈σ〉))/g(〈σ〉),

E

[
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〈σ〉

)2
]

=
λ!

µ2

µ
∑

m=1

∫ ∞

−∞

∫ ∞

0

(

ςm;λ−〈σ〉
〈σ〉

)2

(λ−m− 1)!(m− 1)!
pσ(ς|〈σ〉)g(〈σ〉)

×p(−z|〈σ〉)
(

1− P (−z|〈σ〉)
)m−1(

P (−z|〈σ〉)
)λ−m

dz dς

=
λ!

µ2

µ
∑

m=1

∫ ∞

0

(

ςm;λ−〈σ〉
〈σ〉

)2

(λ−m− 1)!(m− 1)!
pσ(ς|〈σ〉)

×
∫ ∞

−∞

g(〈σ〉)
g(ς)

e
− 1

2

(

g(〈σ〉)
g(ς)

z−h(ς)−h(〈σ〉)
g(ς)

)2

√
2π

×Φ(z)m−1
(

1− Φ(z)
)λ−m

dz dς (C.154)

is obtained (cf.(C.11)) which is similar to (C.12). The following steps are the same as in the derivation
of the first order SAR (C.12)-(C.20). Instead of (C.20), finally
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× ∂k

∂ςk

(

( g′(ς)
g2(ς)

t+
g′(ς)(h′(ς)− h(〈σ〉))

g((〈σ〉)2 − h′(ς)
g(ς)

)

×exp
(

− 1

2

(g(〈σ〉)t− (h(ς)− h(〈σ〉))
g(ς)

)2)
)

|ς=〈σ〉 dt dς (C.155)

is obtained. The same argumentation as in the case of (C.20)f. applies to (C.155). Only the first
integral has to be taken into account ifτ ≪ 1 or β ≪ 1 holds. Let us first consider the log-normal
operator. Provided that the learning rateτ is small, higher order terms ofτ , i.e., O(τ4), can be
neglected. Taking only the value of the first integral into account, (C.155)leads to

E

[

〈σ〉2
µ2

µ
∑

m=1

( ςm;λ − 〈σ〉
〈σ〉

)2
]

=
〈σ〉2
µ

τ2 +O(τ4). (C.156)

The expectation of the double sum

I2 =
2

µ2〈σ〉2
E

[

µ
∑

k=2

k−1
∑

l=1

(ςk;λ − 〈σ〉)(ςl;λ − 〈σ〉)
]

(C.157)

remains to be determined. It will be shown that the contribution ofI2 may be neglected forτ ≪ 1. In
I2, the joint distribution ofςl;λ andsk;λ needs to be taken into account. To this end, the results obtained
in [23, 4] are used. W.l.o.g., let us assume that a minimization problem is considered. Using again the
concept of induced order statistics, the variableςl;λ denotes the mutation strength that is associated
with the apparentlth best offspring, i.e., it leads to thelth smallest apparent fitness inλ trials. Note,
thelth smallest apparent fitness is associated with thelth highest quality or fitness change.

Thus, assuming that the offspring are ordered, i.e.,l < k, (l−1) offspring need to have an apparent
fitness change higher than that of thelth individual. In addition, there arek− l− 1 offspring between
the lth and thekth individual. Finally,λ − k individuals will have a smaller apparent fitness change
than thekth offspring. This leads to

I2 =
2λ!

µ2〈σ〉2
µ
∑

k=2

k−1
∑

l=1

1

(l − 1)!(λ− k)!(k − l − 1)!

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

∫ w

−∞
(ς − 〈σ〉)(s− 〈σ〉)

×p(w|ς)p(v|s)P (v|〈σ〉)λ−k
(

P (w|〈σ〉)− P (v|〈σ〉)
)k−l−1(

1− P (w|〈σ〉)
)l−1

×pσ(ς|〈σ〉)pσ(s|〈σ〉) dv dw dς ds. (C.158)

The key point of the remaining argumentation is that the random variablesς andσ do not depend on
each other. If the mutation strengths are log-normally distributed or follow a two-point distribution,
similar arguments as before apply. Provided thatτ ≪ 1 or β ≪ 1, all terms in (C.158) are negligible
since finally the expectation of terms of the form(ς − 〈σ〉)k(s − 〈σ〉)l has to be taken. Considering
(C.158), the lowest power of the learning rateτ or β that can appear is four. The contribution ofI2
can therefore be neglected for very small values ofτ .

As a result, the second order self-adaptation response is given by

ψ(2)(〈σ〉) =
τ2

µ
+O(τ4). (C.159)
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Equation (C.159) only holds for smallτ -values and due to the derivations for the cdf of the sphere
and the ridge it is applicable in large dimensional search spaces only. It is very interesting to note,
that there is no influence of the distance to the optimizer (or to the ridge axis) and additionally no
influence of potential noise. Furthermore, (C.159) is not influenced by the search space dimension.

In the case of the symmetric two-point operator, a similar result can be obtained. The first integral
in (C.155) leads to

E

[

〈σ〉2
µ2

µ
∑

m=1

( ςm;λ − 〈σ〉
〈σ〉

)2
]

= 〈σ〉2β
2

µ
(1 + β) +O(β4) (C.160)

and thus to the second-order self-adaptation response

ψ(2)(〈σ〉) =
β2

µ
(1 + β) +O(β4). (C.161)

All further terms contain only higher order terms ofβ.
It remains to compare (C.159) with the results of experiments. Recall the fitness function of the

sphere modelf(y) = g(‖y − ŷ‖). The experiments were conducted usingg(y) = −‖y‖2.

Sphere Model: Experiments for the second order SAR

Equation (C.159) was compared to the results of experiments (see Figures C.19 to C.23). The val-
ues were obtained by averaging over the results of250, 000 one-generation experiments. As predicted,
the experiments show no apparent dependency of the second order SAR on the search space dimen-
sionality. But in contrast to the constant value (C.159) predicts, a dependency on the mutation strength
can be found in the experimental data. To state it more clearly, the influence can only be neglected
for small mutation strengths. The higher the mutation strength, the more the measured second-order
SAR deviates from the straight line. This is more pronounced for smaller normalized noise strengths
than for larger. Thus, (C.159) is strictly speaking only valid for small mutationstrengths. We suspect
that the reasons for this can be found in the negligence of the higher order terms ofτ . If the mutation
strength is increased too far, its contribution seems to outweigh theτ4 and higher order terms. This
could be amended to some extent by choosing smallerτ -values or of course by taking higher order
terms ofτ into account.
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Figure C.19: The second-order self-adaptation response functionψ(2) for some choices ofτ and some
(µ/µI , 100)-ES. The points denote the results of one-generation experiments and each was obtained
by averaging over250, 000 trials.
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Figure C.20: The second-order self-adaptation response functionψ(2) for some choices ofτ and some
(µ/µI , 100)-ES. The points denote the results of one-generation experiments and each was obtained
by averaging over250, 000 trials.
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Figure C.21: The second-order self-adaptation response functionψ(2) for some choices ofτ and some
(µ/µI , 100)-ES. The points denote the results of one-generation experiments and each was obtained
by averaging over250, 000 trials.
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Figure C.22: The second-order self-adaptation response function for some choices ofτ and some
(µ/µI , 100)-ES. The points denote the results of one-generation experiments and each was obtained
by averaging over250, 000 trials.
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Figure C.23: The second-order self-adaptation response function for some choices ofτ and some
(µ/µI , 100)-ES. The points denote the results of one-generation experiments and each was obtained
by averaging over250, 000 trials.



D The Sphere Model: Derivations of the Main
Results

This chapter gives the details of the calculations used for obtaining the central results in Chapter 4. Its
outline also follows the general outline of Chapter 4. First, (µ/µI , λ)-ES on the undisturbed sphere
model are addressed – giving the derivations of the results in Section 4.1.Afterwards, the calculations
leading to the results of (1, λ)-ES on the noisy sphere in Section 4.2 are presented. The remaining
sections, D.2.2 and D.3, are devoted to intermediate ES on the noisy sphere, i.e., to the results in Sec.
4.3 and to the analysis including the perturbation parts in Sec. 4.4.

D.1 The Sphere Model without Noise

This section illustrates in greater detail how the results of Section 4.1 are obtained. First, the
determination of the stationary points of the evolution of the mutation strength is described in D.1.1.
The results obtained are then used to derive an optimal learning rate which maximizes the stationary
progress rate (see D.1.2). Finally in D.1.3, it is shown that the stationary solution is stable under
certain circumstances.

D.1.1 Stationary Points of the Evolution of the Mutation Streng th

Consider the deterministic evolution equations (4.7), p. 34,

(

r

〈ς∗(g+1)〉

)

=





R
(

1− ϕ∗
R(σ∗)/N

)

σ∗
(

1+ψ(σ∗)
1−ϕ∗

R(σ∗)/N

)



 (D.1)

which describe the one-generational change of (µ/µI , λ)-ES. The progress rate appearing in (D.1)
reads

ϕ∗
R(σ∗) = cµ/µ,λσ

∗ − σ∗2

2µ
(D.2)

(cf. Eq. (4.8)) and the SAR is given by

ψ(σ∗) = τ2
(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

(D.3)

(cf. (4.9)). In this section, the stationary points of theσ∗-evolution of (4.7) (or (D.1), respectively) are
derived. Recall, stationary points are defined by

〈ς∗(g+1)〉 = σ∗ ⇔ σ∗ = 0
∨ 1 + ψ(σ∗)

1− ϕ∗
R(σ∗)
N

= 1

⇔ σ∗ = 0
∨

cµ/µ,λσ
∗ − σ∗2

2µ
= −Nτ2

(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

(D.4)
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(see (D.2) and (D.3)). As (D.4) shows eitherς∗st1 = 0 or

1 =
( 1 + ψ(σ∗)

1− ϕ∗(σ∗)
N

)

⇒ 1− ϕ∗(σ∗)
N

= 1 + ψ(σ∗)

⇔ −ϕ∗(σ∗) = Nψ(σ∗)

⇒ −cµ/µ,λσ∗ +
σ∗2

2µ
= Nτ2

(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

(cf. (D.2) and (D.3))

⇔ 0 = −2µNτ2(1/2 + e1,1µ,λ)− 2(1−Nτ2)µcµ/µ,λσ
∗ + σ∗2 (D.5)

has to hold. The positive solution of this quadratic equation is given by

ς∗st2 = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ



 (D.6)

which equals the non-zero stationary mutation strength (4.11), p. 35.

D.1.2 The Optimal Learning Rate

In this paragraph, the optimal learning rate for self-adaptive (µ/µI , λ)-ES is derived. The starting
point is Eq. (4.11), p. 35 or (D.6), respectively,

ς∗stat2 = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ



 .

The optimizer of the progress rate (D.2),ϕ∗
R = cµ/µ,λς

∗ − ς∗2/(2µ) is given byς∗ϕ∗
R opt

= µcµ/µ,λ.

Requiring thatς∗stat2(τ) = ς∗ϕ∗
R opt

= µcµ/µ,λ leads to (4.23), since

µcµ/µ,λ = µcµ/µ,λ
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



⇒ 1 = (1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ

⇒ (Nτ2)2 = (1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ

⇔ 0 = 1− 2Nτ2
(

1−
1/2 + e1,1µ,λ
µc2µ/µ,λ

)

⇒ 0 = 1− 2Nτ2
(µc2µ/µ,λ − 1/2− e1,1µ,λ

µc2µ/µ,λ

)

. (D.7)

Equation (D.7) leads to the optimal learning rate
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τ =
1√
2N

√

√

√

√

µc2µ/µ,λ

µc2µ/µ,λ − 1/2− e1,1µ,λ
. (D.8)

D.1.3 Stability of the stationary mutation strength

Consider System (4.7), p. 34. It is shown in the following that the stationarymutation strength
(4.11), p. 35, or (D.6), p. 194,

ς∗st2 = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 +Nτ2
(1/2 + e1,1µ,λ

µc2µ/µ,λ

)





is a stable fixed point of the evolution of the mutation strength

ς∗ = σ∗
( 1 + ψ(σ∗)

1− ϕ∗
R(σ∗)
N

)

=: f(σ∗). (D.9)

Using Lemma 1, p. 36, i.e., showing the stability using the linear approximation, the stability criterion
for the fixed pointς∗st2 is given by|f ′(σ∗)|σ∗=ς∗st2

| < 1. The functionf is given by

f(σ∗) = σ∗
(

1 + ψ(σ∗)

1− ϕ∗(σ∗)
N

)

(D.10)

with the progress rate (D.2), p.193,

ϕ∗
R(σ∗) = cµ/µ,λσ

∗ − σ∗2

2µ

and the self-adaptation response function (D.3), p. 193,

ψ(σ∗) = τ2
(

1/2 + e1,1µ,λ − cµ/µ,λσ∗
)

.

The derivative off reads

f ′(σ∗) =
1 + ψ(σ∗)

1− ϕ∗
R(σ∗)/N

+ σ∗
( ψ′(σ∗)

1− ϕ∗
R(σ∗)/N

+
(1 + ψ(σ∗))ϕ∗

R
′(σ∗)/N

(1− ϕ∗
R(σ∗)/N)2

)

. (D.11)

First of all, noteς∗st2 (D.6) is a stationary point. Therefore,

1 + ψ(ς∗st2)

1− ϕ∗
R(ς∗st2)/N

= 1 (D.12)

holds. The derivative off atσ∗ = ς∗st2 simplifies to

f ′(σ∗)|σ∗=ς∗st2
= 1 +

ς∗st2
1− ϕ∗

R(ς∗st2)/N

(

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N

)

. (D.13)
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Note,ς∗st2 > 0, ϕ∗
R(ς∗st2) ≥ 0, and w.l.o.g.ϕ∗

R(ς∗st2) < N . A necessary condition for the stability of
ς∗st2 is therefore

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N < 0. (D.14)

This can be shown very easily. Sinceψ′(ς∗st2) = −τ2cµ/µ,λ andϕ∗
R
′(ς∗st2) = cµ/µ,λ − ς∗st2/µ, (D.14)

leads to the inequality

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N < 0

⇒ cµ/µ,λ(1/N − τ2)− ς∗st2
µN

< 0

⇔ (1−Nτ2)cµ/µ,λ <
ς∗st2
µ

⇔ (1−Nτ2)µcµ/µ,λ < ς∗st2 with the stationary mutation strength (D.6) or (4.11)

⇒ (1−Nτ2)µcµ/µ,λ < µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1/2 + e1,1µ,λ

µc2µ/µ,λ

)





⇒ 0 <

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1/2 + e1,1µ,λ

µc2µ/µ,λ

)

(D.15)

which holds in general. The necessary condition is therefore fulfilled. Toprove that|f ′(σ∗)|σ∗=ς∗st2
| <

1, it has to be shown that either0 < f ′(σ∗)|σ∗=ς∗st2
< 1 or −1 < f ′(σ∗)|σ∗=ς∗st2

< 0 holds. Let us

start withf ′(σ∗)|σ∗=ς∗st2
> 0.

f ′(σ∗)|σ∗=ς∗st2
= 1 +

ς∗st2
1− ϕ∗

R(ς∗st2)/N

(

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N

)

> 0

⇒ 1− ϕ∗
R(ς∗st2)/N + ς∗st2

(

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N

)

> 0

⇒ N − ϕ∗
R(ς∗st2) + ς∗st2

(

Nψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)

)

> 0

⇒ N − cµ/µ,λς∗st2 +
ς∗st2

2

2µ
+ ς∗st2

(

−Nτ2cµ/µ,λ + cµ/µ,λ −
ς∗st2
µ

)

> 0

⇒ N − cµ/µ,λς∗st2 +
ς∗st2

2

2µ
+ (1−Nτ2)cµ/µ,λς

∗
st2 −

ς∗st2
2

µ
> 0

⇒ N −Nτ2cµ/µ,λς
∗
st2 −

ς∗st2
2

2µ
> 0. (D.16)

In order to show the last inequality, the stationary mutation strength (D.6) must beinserted into (D.16)
and the result must be evaluated numerically.

Note, though, if the last inequality (D.16) is seen as a function ofς∗st2 it is quite easy to show
that (D.16) holds provided thatτ ∝ 1/

√
N andN is large. First of all, the last inequality of (D.16)

is monotonously decreasing function ofς∗st2 . The maximal value the stationary mutation strength
can assume isς∗st2 = 2µcµ/µ,λ. If (D.16) holds for the upper bound, it holds for all other mutation
strengths given by (D.6) as well. Insertingς∗st2 = 2µcµ/µ,λ into (D.16) gives

N −Nτ22µc2µ/µ,λ −
4µ2c2µ/µ,λ

2µ
> 0
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⇔ N − (1 +Nτ2)2µc2µ/µ,λ > 0 (D.17)

⇔ N(1− τ22µc2µ/µ,λ) > 2µc2µ/µ,λ (D.18)

⇒ N >
2µc2µ/µ,λ

1− τ22µc2µ/µ,λ

∧

τ2 <
1

2µc2µ/µ,λ
(D.19)

which holds for sufficiently largeN provided thatτ is sufficiently small orτ ∝ 1/
√
N . In other

words, provided that the search space dimensionality is sufficiently large,it can be assumed that
f ′(σ∗)|σ∗=ς∗st2

> 0. The question that remains is whetherf ′(σ∗)|σ∗=ς∗st2
< 1. This condition is easily

shown since it simplifies to (D.14)

f ′(σ∗)|σ∗=ς∗st2
= 1 +

ς∗st2
1− ϕ∗

R(ς∗st2)/N

(

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N

)

< 1

⇒ ς∗st2

(

ψ′(ς∗st2) + ϕ∗
R
′(ς∗st2)/N

)

< 0

⇒ Nψ′(ς∗st2) + ϕ∗
R
′(ς∗st2) < 0

which was already shown. Note, the result is only valid in high-dimensional search spaces since
N > ϕ∗

R is required. A sufficient but not necessary condition is for exampleN > ϕ∗
max = µc2µ/µ,λ/2.

D.2 The Sphere Model with Noise

In this section, the derivations of the results for (1, λ)-ES and for (µ/µI , λ)-ES on the noisy sphere
are given. The fitness evaluations are assumed to be disturbed by noise.The noise model applied is
the standard noise model consisting of an additive normally distributed noise term with zero mean and
(constant) standard deviationσǫ. The derivations of this and the following sections are restricted to
the quadratic sphere.

D.2.1 (1, λ)-ES on the Noisy Sphere: The Stability of the Stationary Points

This subsection describes the calculations which lead to the determination of the stationary points
of the evolution equations (4.46) and (4.47)

ς∗(g+1) = σ∗
1 + ψ(ς∗(g), σ∗ǫ

(g))
(

1− 1
Nϕ

∗(ς∗(g), σ∗ǫ
(g))
) (D.20)

σ∗ǫ
(g+1) =

σ∗ǫ
(g)

(

1− 1
Nϕ

∗(ς∗(g), σ∗ǫ
(g))
)2 (D.21)

in Section 4.2. Taking (4.46) and (4.47) into account, there are two different pairs of equilibrium
points of the evolution equations: The first withe1 = (0, w)T with w ∈ R and ideallyw = 2c1,λ and
the second ate2 = (s2, w2)

T with s2 given by (4.51)

ς∗st = 2c1,λ
1

√

2(2c21,λ + 1− d(2)
1,λ)

(D.22)

andw2 by (4.52)

σ∗ǫ st = 2c1,λ

√

1− 1

2(2c21,λ + 1− d(2)
1,λ)

. (D.23)



198 D. The Sphere Model: Derivations of the Main Results

The question arises which of these pairs is locally stable, i.e., stable w.r.t. small disturbances.
This will be shown again using a linear approximation in the vicinity of the equilibrium solution.

Recall, if the general mapx(g+1) = f(x(g)) is considered, the stability of hyperbolic fixed points can
be shown via the Jacobian

Df(x)|x=xS =







∂
∂x1

f1 . . . ∂
∂xN

f1

...
...

∂
∂x1

fN . . . ∂
∂xN

fN






. (D.24)

The question, whethery is a stable fixed point can be solved by determining the eigenvalues of
Df |x=y. If an eigenvalueλi exists with|λi| > 1, theny is unstable [71]. Thus, the solutions of
det(Df |x=y − λTE) = 0, with E the unity matrix, have to be determined. Considering the evolution
equations (4.46) and (4.47), first the Jacobian matrix at(ς∗∞, σ

∗
ǫ∞)T of

f

(

ς∗

σ∗ǫ

)

=

(

ς∗ 1+ψ(ς∗,σ∗
ǫ )

1−ϕ∗(ς∗,σ∗
ǫ )/N

σ∗ǫ
1

(1−ϕ∗(ς∗,σ∗
ǫ )/N)2

)

(D.25)

must be obtained. In general, the Jacobian of a functionf : R
2 → R

2 is given by

Df

(

ς∗

σ∗ǫ

)

=

(

∂
∂ς∗ f1

∂
∂σ∗

ǫ
f1

∂
∂ς∗ f2

∂
∂σ∗

ǫ
f2

)

. (D.26)

In the special case of the evolution equations,

∂

∂ς∗
f1 =

1 + ψ(ς∗, σ∗ǫ )
1− ϕ∗(ς∗, σ∗ǫ )/N

+ ς∗
(

∂
∂ς∗ψ(ς∗, σ∗ǫ )

1− ϕ∗(ς∗, σ∗ǫ )/N

+
∂

∂ς∗
ϕ∗(ς∗, σ∗ǫ )

1 + ψ(ς∗, σ∗ǫ )
N(1− ϕ∗(ς∗, σ∗ǫ )/N)2

)

∂

∂ς∗
f2 = σ∗ǫ

2 ∂
∂ς∗ϕ

∗(ς∗, σ∗ǫ )

N(1− ϕ∗(ς∗, σ∗ǫ )/N)2+1

∂

∂σ∗ǫ
f1 = ς∗

(

∂
∂σ∗

ǫ
ψ(ς∗, σ∗ǫ )

1− ϕ∗(ς∗, σ∗ǫ )/N

+
∂

∂σ∗ǫ
ϕ∗(ς∗, σ∗ǫ )

1 + ψ(ς∗, σ∗ǫ )
N(1− ϕ∗(ς∗, σ∗ǫ )/N)2

)

∂

∂σ∗ǫ
f2 =

1

(1− ϕ∗(ς∗, σ∗ǫ )/N)2
+ σ∗ǫ

2 ∂
∂σ∗

ǫ
ϕ∗(ς∗, σ∗ǫ )

N(1− ϕ∗(ς∗, σ∗ǫ )/N)3
(D.27)

have to be determined. The derivations of the progress rate (4.42)

ϕ∗
R(σ∗, R, σ∗ǫ ) = c1,λ

σ∗2

√

σ∗2 + σ∗ǫ
2
− σ∗2

2µ
(D.28)

and the SAR (4.43)

ψ(σ∗) = τ2
(

(d
(2)
1,λ − 1)

σ∗2

σ∗2 + σ∗ǫ
2 − c1,λ

σ∗2

√

σ∗2 + σ∗ǫ
2

)

(D.29)
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are given by

∂

∂ς∗
ϕ∗(ς∗, σ∗ǫ ) =

c1,λς
∗

√

ς∗2 + σ∗ǫ
2

(

2− ς∗2

ς∗2 + σ∗ǫ
2

)

− ς∗

∂

∂ς∗
ψ∗(ς∗, σ∗ǫ ) =

τ2ς∗
√

ς∗2 + σ∗ǫ
2

(

2(d
(2)
1,λ − 1)

√

ς∗2 + σ∗ǫ
2
(1− ς∗2

ς∗2 + σ∗ǫ
2 )

+
c1,λς

∗2

ς∗2 + σ∗ǫ
2 − 2c1,λ

)

∂

∂σ∗ǫ
ϕ∗(ς∗, σ∗ǫ ) = − c1,λσ

∗
ǫ ς

∗2

√

ς∗2 + σ∗ǫ
23

∂

∂σ∗ǫ
ψ∗(ς∗, σ∗ǫ ) =

τ2σ∗ǫ ς
∗2

√

ς∗2 + σ∗ǫ
23

(

c1,λ − 2
d

(2)
1,λ − 1

√

ς∗2 + σ∗ǫ
2

)

. (D.30)

Let us now consider the first equilibrium pointe1 = (0, w)T with w ∈ R. The Jacobian ate1 is easily
calculated as

Df =

(

1 + τ2

2 0
0 1

)

(D.31)

leading to the equation(1 + τ2/2 − λ1)(1 − λ2) = 0 for the eigenvalues. Unfortunately strictly
speaking, a problem occurs, since one of the eigenvalues is exactly one– leading to a non-hyperbolic
fixed point. Therefore in general, the stability for the fixed point cannot be examined using the linear
approximation. The reason is that the nature of the eigenspace cannot beused to infer the nature of
the center manifold1 Wc of the non-linear system. Note, though, the first eigenvalueλ1 = 1 + τ2/2
leads to an unstable manifoldWu. The nature of the solution inWc does not matter anymore. Any
disturbance close to zero but entirely inWu does not converge to zero: The fixed point is not stable.

The stability of the second equilibrium point can be determined by inserting (4.51) and (4.52)
into the Jacobian. The expression obtained is rather clumsy, therefore, anumerically obtained plot of
the eigenvalues and a range ofλ-values is provided in Fig. D.1. As one can see, the larger of both
eigenvalues is less than the critical value of one. Generally, the larger eigenvalue approaches1 if
τ → 0 and decreases if the learning parameter increases. This is a reasonableresult: If τ = 0, the
mutation operator

σ′ = σeτN (0,1),

Eqs. (2.2) and (2.4), p. 11, does not change the mutation strength. Thatis, the mapping is neither
contracting nor expanding. In finite dimensional search spaces and forτ > 0, one can conclude that
the second fixed point, where the mutation strength is given by (4.51) and thenoise strength by (4.52),
is locally stable – at least for the quadratic sphere.

D.2.2 Intermediate Recombination and Noisy Fitness Evaluat ions

This section presents the derivations of the results used in Section 4.3. That is, it describes how
the stationary mutation strength (4.63), noise strength (4.64), and residuallocation error (4.65) are

1In short, a manifold can be assumed to have locally the structure of an Euclidean subspace[103]
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Figure D.1: Numerically obtained eigenvalues of the Jacobian for the fixed point e2, i.e., the mutation
strength given by (4.51) and the noise strength by (4.52). The search space dimension was set to
N = 100.

derived. Since the approach is analogous to the approach used for (1, λ)-ES, only the main points are
given for the sake of completeness. Starting point is the stationarity of theσ∗ǫ -evolution in (4.60)

〈ς∗(g+1)〉 = σ∗
(

1 + ψ(σ∗, σ∗ǫ )

1− ϕ∗
R(σ∗,σ∗

ǫ )
N

)

σ∗ǫ
(g+1) =

σ∗ǫ

(1− ϕ∗
R(σ∗,σ∗

ǫ )
N )2

demanding either a zero noise strength or a vanishing progress rate (4.61)

0 =
σ∗2

√

σ∗2 + σ∗2
ǫ

cµ/µ,λ −
σ∗2

2µ

⇒ σ∗st1 = 0
∨

0 =
1

√

σ∗2 + σ∗2
ǫ

cµ/µ,λ −
1

2µ

⇔ ς∗stat1 = 0
∨

4µ2c2µ/µ,λ = σ∗2 + σ∗2
ǫ . (D.32)

Equation (D.32) gives a stationarity condition for theR-evolution which can be used in two ways.
First of all, a maximal noise strength and with it a minimal residual location error can be obtained by
settingσ∗ = 0

σ∗ǫ max = 2µcµ/µ,λ (D.33)

⇒ Rmin =

√

σǫN

4µcµ/µ,λ
(D.34)

sinceσ∗ǫ = σǫN/(2R
2). Second, Eq. (D.32) can be used together with the stationarity condition of

the〈ς∗(g)〉-evolution to derive the stationary state values of the mutation strength, distance, and noise
strength. The〈ς∗(g)〉-evolution (4.60) is stationary if the normalized mutation strength is zero or if the
SAR (4.62) vanishes, i.e., if

0 = τ2
(1

2
+ e1,1µ,λ

σ∗2

σ∗2 + σ∗ǫ
2 − cµ/µ,λ

σ∗2

√

σ∗2 + σ∗ǫ
2

)
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⇒ 0 =
1

2
+ e1,1µ,λ

σ∗2

σ∗2 + σ∗ǫ
2 − cµ/µ,λ

σ∗2

√

σ∗2 + σ∗ǫ
2
. (D.35)

Equation (D.35) can be used together with (D.32) to obtain the stationary mutationstrength (4.63)

0 =
1

2
+ e1,1µ,λ

σ∗2

4µ2c2µ/µ,λ
− cµ/µ,λ

σ∗2

2µcµ/µ,λ

⇔ −1

2
= σ∗2

( e1,1µ,λ
4µ2c2µ/µ,λ

−
cµ/µ,λ

2µcµ/µ,λ

)

⇔ σ∗2 =
4µ2c2µ/µ,λ

4µc2µ/µ,λ − 2e1,1µ,λ

⇒ ς∗st =

√

√

√

√

4µ2c2µ/µ,λ

4µc2µ/µ,λ − 2e1,1µ,λ
. (D.36)

The remaining stationary values are obtained by inserting (D.36) (or (4.63), respectively) into the
stationarity condition (D.32). Solving the result forσ∗ǫ st leads to (4.64), since

σ∗ǫ st =
√

4µ2c2µ/µ,λ − ς∗st2

=

√

√

√

√4µ2c2µ/µ,λ −
4µ2c2µ/µ,λ

4µc2µ/µ,λ − 2e1,1µ,λ
(D.37)

gives

σ∗ǫ st = 2µcµ/µ,λ

√

√

√

√

4µc2µ/µ,λ − 2e1,1µ,λ − 1

4µc2µ/µ,λ − 2e1,1µ,λ
(D.38)

Equation (D.38) can be used to derive the residual location errorRst, (4.65),

Rst =

√

Nσǫ
2σ∗ǫ st

=

√

Nσǫ
4µcµ/µ,λ

4

√

√

√

√

4µc2µ/µ,λ − 2e1,1µ,λ

µc2µ/µ,λ − 2e1,1µ,λ − 1
(D.39)

sinceσ∗ǫ = σǫ[N/(2R
2)].

D.3 The Sphere Model: A Second Order Approach

This section presents the calculations in the case of the second order approach which takes the
fluctuation terms into account (cf. Section 4.4). In this section, the mean valuedynamics are consid-
ered. Since the distribution cannot be obtained analytically, an alternative approach must be applied.
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Following [20], a log-normal distribution is used to model the distribution of the mutation strength.
This is described in D.3.2. Since the results obtained tend to differ in some casefrom the results ob-
served in experiments, an alternative approach using a normal distributionis evaluated and compared
to the approach using the log-normal distribution (see D.3.3).

D.3.1 Mean Value Dynamics of the Mutation Strength in the Stati onary State

This section is devoted to determining the mean value dynamics of the mutation strength using the
second order approach. The starting point is the evolution equation of themutation strength (4.70), p.
59

〈ς∗(g+1)〉 = σ∗
( 1 + ψ(σ∗) + ǫ∗σ(R, σ

∗)

1− ϕ∗
R(σ∗)
N + ǫ∗R(R, σ∗)

)

. (D.40)

Using theN -independent variants, the progress rate and the self-adaptation response are given by Eqs.
(4.8)

ϕR(σ∗) = cµ/µ,λσ
∗ − σ∗2

2µ
(D.41)

and (4.9)

ψ(σ∗) = τ2
(1

2
+ e1,1µ,λ − cµ/µ,λσ∗

)

. (D.42)

The fluctuation parts are modeled using Gaussian distributions with zero mean.The variance can
be determined using the evolution equations (4.67) and (4.70) (cf. Chapter3). In the case of the
R-evolution (4.67), the variance is given by

D2
ϕR

= ϕ
(2)
R − ϕ2

R. (D.43)

Since the assumptions that were made during the derivation of the progressrate lead toϕ(2)
R = ϕ2

R,
the variance of theR-evolution is zero. Provided that these assumptions (see, e.g., [6]) are valid,
deviations from the deterministic equations are mainly due to the evolution of the mutation strength.
Its variance is given by

D2
ψ = ψ(2) − ψ2. (D.44)

The second order SARψ(2) was obtained in Appendix C.5 as

ψ(2) =
τ2

µ
(D.45)

if the higher order terms ofτ are neglected. Plugging (D.45) and (D.42) into (D.44) and dropping all
terms of higher than quadratic order leads to

D2
ψ =

τ2

µ
. (D.46)

The evolution equation (D.40) changes to

〈ς∗(g+1)〉 = σ∗
(1 + ψ(σ∗) + τ√

µN (0, 1)

1− ϕ∗
R(σ∗)
N

)

.
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Sinceϕ∗ ≪ N is assumed, the term1/(1− ϕ∗
R/n) can be simplified to

1

1− ϕ∗
R(σ∗)
N

= 1 +
ϕ∗
R(σ∗)
N

( 1

1− ϕ∗
R(σ∗)
N

)

= 1 +
ϕ∗
R(σ∗)
N

+O
(

(
ϕ∗
R(σ∗)
N

)2
)

. (D.47)

Accordingly, Eq. (D.47) changes to

〈ς∗g+1〉 = σ∗
(

1 + ψ(σ∗) +
τ2

√
µ
N (0, 1)

)(

1 +
ϕ∗
R(σ∗)
N

)

. (D.48)

Under the conditions thatψϕ∗
R ≪ N and that the realizations ofτ

2√
µN (0, 1)ϕ∗

R are considerably
smaller thanN , Eq. (D.48) can be further simplified yielding

〈ς∗g+1〉 = σ∗
(

1 + ψ(σ∗) +
τ2

√
µ
N (0, 1) +

ϕ∗
R(σ∗)
N

)

. (D.49)

Equation (D.49) serves as a starting point for the determination of the moments.Plugging Eqs. (4.8)
and (4.9) into (D.49) leads to the expectation

E[ς∗] = σ∗ + τ2

(

σ∗

2
− cµ/µ,λσ∗2 + e1,1µ,λσ

∗
)

+
cµ/µ,λ

N
σ∗2 − σ∗3

2µN

= σ∗
(

1 + τ2

(

1

2
+ e1,1µ,λ

))

− σ∗2cµ/µ,λτ
2

(

1− 1

Nτ2

)

− τ2 σ∗3

2µNτ2
. (D.50)

As can be seen (D.50) depends on the previous values through higher-order terms. As a result, the
expectations ofς∗2 andς∗3 are needed. It will be shown that they in turn depend on the past through
higher-order terms. The expectation of the square of (D.49) is given by

E[ς∗2] = E

[(

σ∗
(

1 + ψ(σ∗) +
ϕ∗(σ∗)
N

)

+ σ∗
τ√
µ
N (0, 1)

)2]

= E

[

σ∗2
(

1 + ψ(σ∗) +
ϕ∗(σ∗)
N

)2
]

+ E

[

σ∗2 τ
2

µ

]

= E

[

σ∗2
(

1 + ψ2(σ∗) +
ϕ∗2(σ∗)
N2

+ 2ψ(σ∗) +
2ϕ∗(σ∗)
N

+ 2ψ(σ∗)
ϕ∗(σ∗)
N

)

]

+ E

[

σ∗2 τ
2

µ

]

= E

[

σ∗2
(

1 + 2ψ(σ∗) +
2ϕ∗(σ∗)
N

)

]

+ E

[

σ∗2 τ
2

µ

]

if ψ2 ≪ 1 andϕ∗
R

2 ≪ N hold. Inserting (4.8) and (4.9) leads then to

E[ς∗2] = E

[

σ∗2
(

1 + 2τ2[
1

2
+ e1,1µ,λ − cµ/µ,λσ∗]

)

]

+ σ∗2 τ
2

µ
+ E

[

σ∗2 2

N

(

cµ/µ,λσ
∗ − σ∗2

2µ

)

]

= σ∗2
(

1 + τ2[1 + 2e1,1µ,λ +
1

µ
]
)

− 2σ∗3τ2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗4 τ
2

µ

1

Nτ2
(D.51)

which again depends on higher order terms. Similarly to (D.51), the expectation E[ς∗3] can be ap-
proximated with

E[ς∗3] = σ∗3
(

1 + 3
τ2

µ

)

+ 3
(

1 +
τ2

µ

)

E

[

σ∗3
(

ψ(σ∗) +
ϕ∗(σ∗)
N

)

]

(D.52)
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if τ ≪ 1 andϕ∗ ≪ N are assumed. Inserting again (4.8) and (4.9) gives

E[ς∗3] = σ∗3
(

1 + 3
τ2

µ

)

+ 3
(

1 +
τ2

µ

)

E

[

σ∗3τ2
[1

2
+ e1,1µ,λ − cµ/µ,λσ∗

]

+
σ∗3

N

[

cµ/µ,λσ
∗ − σ∗2

2µ

]

)]

= σ∗3
(

1 + 3
τ2

µ

)

+ 3
(

1 +
τ2

µ

)

τ2

[

σ∗3

2
+ σ∗3e1,1µ,λ − cµ/µ,λσ∗4 +

cµ/µ,λ

Nτ2
σ∗4 − σ∗5

2µNτ2

]

= σ∗3

(

1 + 3
τ2

µ
+ 3
(

1 +
τ2

µ

)

τ2
(1

2
+ e1,1µ,λ

)

)

− 3
(

1 +
τ2

µ

)

τ2cµ/µ,λσ∗4
(

1− 1

Nτ2

)

−3
(

1 +
τ2

µ

)

τ2 σ∗5

2µNτ2
(D.53)

which in turn depends on higher order moments. Let us now address the stationary state behavior. As
the result,E[ς∗] = E[σ∗] = E[σ∗∞] holds. Equations (D.50), (D.51), and (D.53) lead to the non-linear
equations

σ∗∞ = σ∗∞

(

1 + τ2

(

1

2
+ e1,1µ,λ

))

− σ∗∞2τ2cµ/µ,λ

(

1− 1

Nτ2

)

− τ2 σ∗∞
3

2µNτ2

⇒ 0 = σ∗∞

(

τ2

(

1

2
+ e1,1µ,λ

))

− σ∗∞2τ2cµ/µ,λ

(

1− 1

Nτ2

)

− τ2 σ∗∞
3

2µNτ2

⇒ 0 = σ∗∞

(

1

2
+ e1,1µ,λ

)

− σ∗∞2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞
3

2µNτ2
, (D.54)

σ∗∞
2 = σ∗∞

2
(

1 + τ2[1 + 2e1,1µ,λ +
1

µ
]
)

− 2σ∗∞
3τ2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞4 τ
2

µ

1

Nτ2

⇒ 0 = σ∗∞
2
(

τ2[1 + 2e1,1µ,λ +
1

µ
]
)

− 2σ∗∞
3τ2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞4 τ
2

µ

1

Nτ2

⇒ 0 = σ∗∞
2
(

1 + 2e1,1µ,λ +
1

µ

)

− 2σ∗∞
3cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞4 1

µNτ2
, (D.55)

and

σ∗∞
3 = σ∗∞

3

(

1 + 3
τ2

µ
+ 3
(

1 +
τ2

µ

)

τ2
(1

2
+ e1,1µ,λ

)

)

− 3
(

1 +
τ2

µ

)

τ2cµ/µ,λσ∗∞
4
(

1− 1

Nτ2

)

−3
(

1 +
τ2

µ

)

τ2 σ∗∞
5

2µNτ2

⇒ 0 = σ∗∞
3

(

3
τ2

µ
+ 3
(

1 +
τ2

µ

)

τ2
(1

2
+ e1,1µ,λ

)

)

− 3
(

1 +
τ2

µ

)

τ2cµ/µ,λσ∗∞
4
(

1− 1

Nτ2

)

−3
(

1 +
τ2

µ

)

τ2 σ∗∞
5

2µNτ2

⇒ 0 = σ∗∞
3

(

1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

)

−
(

1 +
τ2

µ

)

cµ/µ,λσ∗∞
4
(

1− 1

Nτ2

)

(D.56)

−
(

1 +
τ2

µ

) σ∗∞
5

2µNτ2

which could be solved if a solution of the eigenvalue problem (3.19) (Ch. 3,p. 30) can be given. In
general this is not the case. Therefore, theansatzintroduced in [21] is applied.
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D.3.2 A Log-Normal Distribution in the Steady State

Instead of determining the stationary distribution, the log-normal distribution is used as a place-
holder. The raw moments of a log-normal distribution are of the formσ∗∞

k = S exp(k2t2/2). The
parametersS andt remain to be determined. To this end, Eqs. (D.54) to (D.57) are used. Plugging
σ∗∞

k = S exp(k2t2/2) into Eqs. (D.54)-(D.57) leads to

0 = Se
t2

2

(

1

2
+ e1,1µ,λ

)

− S2e2t2cµ/µ,λ

(

1− 1

Nτ2

)

− S3e
9
2
t2 1

2µNτ2

⇒ 0 =
1

2
+ e1,1µ,λ − Se

3
2
t2cµ/µ,λ

(

1− 1

Nτ2

)

− S2e4t2 1

2µNτ2
, (D.57)

0 = S2e2t2
(

1 + 2e1,1µ,λ +
1

µ

)

− S3e
9
2
t22cµ/µ,λ

(

1− 1

Nτ2

)

− S4e8t2 1

µNτ2

⇒ 0 = 1 + 2e1,1µ,λ +
1

µ
− Se

5
2
t2cµ/µ,λ2

(

1− 1

Nτ2

)

− S2e6t2 1

µNτ2
, (D.58)

and

0 = S3e
9
2
t2
(

1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

)

− S4e8t2
(

1 +
τ2

µ

)

cµ/µI ,λ

(

1− 1

Nτ2

)

−S5e
25
2
t2

1 + τ2

µ

2µNτ2

⇒ 0 =
1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

−
(

1 +
τ2

µ

)

Se
7
2
t2cµ/µI ,λ

(

1− 1

Nτ2

)

−
(

1 +
τ2

µ

)

S2e8t2 1

2µNτ2
(D.59)

with the unknown parametersS and t to be determined. Note that the equations above lead to a
nonlinear system the general solution of which cannot be provided analytically. It is possible, though,
to obtain numerical solutions using MATHEMATICA (see the discussion in Paragraph 4.4.3 and Fig.
4.15, p. 61).

In some special cases, analytical solutions are obtainable. Before proceeding, Eqs. (D.57) to
(D.59) are rewritten in terms ofs∗∞ := S et

2/2

0 =
1

2
+ e1,1µ,λ − s∗∞et

2
cµ/µ,λ

(

1− 1

Nτ2

)

− s∗∞2e3t2 1

2µNτ2
, (D.60)

0 = 1 + 2e1,1µ,λ +
1

µ
− s∗∞e2t2cµ/µ,λ2

(

1− 1

Nτ2

)

− s∗∞2e5t2 1

µNτ2
, and (D.61)

0 =
1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

− s∗∞e3τ2
cµ/µ,λ

(

1− 1

Nτ2

)(

1 +
τ2

µ

)

−
1 + τ2

µ

2µNτ2
s∗∞

2e7t2 (D.62)

similarly to [23, p. 319]. As said (D.60) - (D.62) lead to analytical solutions in some cases. These are
the limit cases ofNτ2 →∞ andNτ2 = 1. The calculations are given in the following paragraphs of
this appendix. A discussion of the results and a comparison with experiments can be found in Section
4.4.3, p. 63.
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Limit Case of Nτ2 →∞ Let us first consider the limit case ofNτ2 →∞. The system Eqs. (D.60)
and (D.61), i.e.,

0 =
1

2
+ e1,1µ,λ − s∗∞et

2
cµ/µ,λ

(

1− 1

Nτ2

)

− s∗∞2e3t2 1

2µNτ2

0 = 1 + 2e1,1µ,λ +
1

µ
− s∗∞e2t2cµ/µ,λ2

(

1− 1

Nτ2

)

− s∗∞2e5t2 1

µNτ2
(D.63)

can be easily solved forNτ2 →∞. Taking the limit gives

0 =
1

2
+ e1,1µ,λ − s∗∞et

2
cµ/µ,λ

0 = 1 + 2e1,1µ,λ +
1

µ
− s∗∞e2t22cµ/µ,λ (D.64)

leading to two equations describings∗∞

s∗∞ =
1
2 + e1,1µ,λ
cµ/µ,λ

e−t
2

and (D.65)

s∗∞ = e−2t2

(

1
2 + e1,1µ,λ
cµ/µ,λ

+
1

2µcµ/µ,λ

)

. (D.66)

Setting (D.65) equal (D.66) leads to an expression forexp(−t2)
1
2 + e1,1µ,λ
cµ/µ,λ

e−t
2

=

(

1
2 + e1,1µ,λ
cµ/µ,λ

+
1

2µcµ/µ,λ

)

e−2t2

⇒
1
2 + e1,1µ,λ
cµ/µ,λ

e−t
2

=





2µ
(

1
2 + e1,1µ,λ

)

+ 1

2µcµ/µ,λ



 e−2t2

⇒ e−t
2

=

( 1
2 + e1,1µ,λ
cµ/µ,λ

)(

2µcµ/µ,λ

2µ
(

1
2 + e1,1µ,λ

)

+ 1

))

⇒ e−t
2

=
2µ
(

1
2 + e1,1µ,λ

)

2µ
(

1
2 + e1,1µ,λ

)

+ 1
. (D.67)

Equation (D.67) can be used to obtain the stationary mutation strength forNτ2 → ∞ by inserting
(D.67) into (D.65) or (D.66)

s∗∞ =

( 1
2 + e1,1µ,λ
cµ/µ,λ

)( 2µ
(

1
2 + e1,1µ,λ

)

2µ
(

1
2 + e1,1µ,λ

)

+ 1

)

. (D.68)

The stationary progress rate can be determined in turn by plugging (D.68) into the progress rate (B.24),
ϕ∗(ς∗) = cµ/µ,λς

∗ − ς∗2/(2µ), leads to

ϕ∗
∞ = cµ/µ,λσ∗∞ −

(σ∗∞)2

2µ
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= cµ/µ,λs
∗
∞ −

(s∗∞)2et
2

2µ

= cµ/µ,λ

( 1
2 + e1,1µ,λ
cµ/µ,λ

)( 2µ
(

1
2 + e1,1µ,λ

)

2µ
(

1
2 + e1,1µ,λ

)

+ 1

)

− 1

2µ

(

( 1
2 + e1,1µ,λ
cµ/µ,λ

)( 2µ
(

1
2 + e1,1µ,λ

)

2µ
(

1
2 + e1,1µ,λ

)

+ 1

)

)2
(2µ

(

1
2 + e1,1µ,λ

)

+ 1

2µ
(

1
2 + e1,1µ,λ

)

)

=

(

cµ/µ,λ

( 1
2 + e1,1µ,λ
cµ/µ,λ

)

− 1

2µ

( 1
2 + e1,1µ,λ
cµ/µ,λ

)2)( 2µ
(

1
2 + e1,1µ,λ

)

2µ
(

1
2 + e1,1µ,λ

)

+ 1

)

= ϕ∗
(1/2 + e1,1µ,λ

cµ/µ,λ

)

(

2µ(1/2 + e1,1µ,λ)

2µ(1/2 + e1,1µ,λ) + 1

)

. (D.69)

An Analytical Solution for Nτ2 = 1 As a second special case,Nτ2 = 1 is considered. Again,
analytical solutions can be easily obtained. Equations (D.60)-(D.62) describing s∗∞ change to

0 =
1

2
+ e1,1µ,λ − s∗∞

2e3t2 1

2µ
(D.70)

0 = 1 + 2e1,1µ,λ +
1

µ
− s∗∞2e5t2 1

µ
(D.71)

0 =
1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

−
1 + τ2

µ

2µ
σ∗∞

2e7t2 . (D.72)

Only the first two equations are needed to determines∗∞. Rewriting Eqs. (D.70) and (D.71) gives

s∗∞
2 = 2µ

(

1

2
+ e1,1µ,λ

)

e−3t2 (D.73)

s∗∞
2 =

(

2µ
(1

2
+ e1,1µ,λ

)

+ 1

)

e−5t2 . (D.74)

Thus, setting Eq. (D.73) equal to (D.74), we can derive an expressionfor e−2t2

2µ

(

1

2
+ e1,1µ,λ

)

e−3t2 =

(

2µ
(1

2
+ e1,1µ,λ

)

+ 1

)

e−5t2

⇒ e−2t2 =
2µ
(

1
2 + e1,1µ,λ

)

+ 1

2µ
(

1
2 + e1,1µ,λ

) . (D.75)

Equation (D.75) is then inserted into (D.73) leading to

s∗∞
2 = 2µ

(1

2
+ e1,1µ,λ

)

(2µ
(

1
2 + e1,1µ,λ

)

+ 1

2µ
(

1
2 + e1,1µ,λ

)

) 3
2

. (D.76)
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The resulting expected mutation strength

s∗∞ =

(

2µ
(1

2
+ e1,1µ,λ

)

) 1
2
(2µ

(

1
2 + e1,1µ,λ

)

+ 1

2µ
(

1
2 + e1,1µ,λ

)

) 3
4

(D.77)

differs from the deterministic result (4.11) by

(2µ
(

1
2 + e1,1µ,λ

)

+ 1

2µ
(

1
2 + e1,1µ,λ

)

) 3
4

(D.78)

as can be seen by insertingNτ2 = 1 into (4.11)

ς∗stat2 = µcµ/µ,λ



(1−Nτ2) +

√

√

√

√(1−Nτ2)2 + 2Nτ2
1/2 + e1,1µ,λ
µc2µ/µ,λ





= µcµ/µ,λ





√

√

√

√2
1/2 + e1,1µ,λ
µc2µ/µ,λ





=

√

2µ
(

1/2 + e1,1µ,λ

)

. (D.79)

D.3.3 A Normal Distribution in the Stationary State

In this subsection the normal distributionN (m, s2) is used to model the distribution of the sta-
tionary mutation strength. The subsection is devoted to determining the equationsto describe the
stationary state, to obtain some special analytical solutions and to compare the results with that of the
approach using the log-normal distribution. Since a normal distribution with mean m and standard
deviations is used, the raw moments can be obtained easily over

xk =
1

s
√

2π

∫ ∞

−∞
xke

− 1
2

(

x−m
s

)2

dx

=
1√
2π

∫ ∞

−∞
(st+m)ke−

t2

2 dt

=
1√
2π

k
∑

l=0

(

k

l

)

mk−lsl
∫ ∞

−∞
tle−

t2

2 dt

=
1√
2π

k
∑

l=0

(

k

l

)

mk−lsl
∫ ∞

−∞
tle−

t2

2 dt

=











m for k = 1
m2 + s2 for k = 2

1√
2π

(

mk +
∑k

l=1

(

k
l

)

mk−lsl
∫∞
−∞ tle−

t2

2 dt
)

for k > 2

. (D.80)

The integral can be calculated using partial integration. The result is a recursive equation for all even
l

1√
2π

∫ ∞

−∞
tle−

t2

2 dt = −[tl−1e−
t2

2 ]∞−∞ +
(l − 1)√

2π

∫ ∞

−∞
tl−2e−

t2

2 dt
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=
(l − 1)√

2π

∫ ∞

−∞
tl−2e−

t2

2 dt

=











(l − 1)(l − 3) . . .
∫∞
−∞

e−
t2

2√
2π

dt if l = 2j

(l − 1)(l − 3) . . .
∫∞
−∞ t e

− t2

2√
2π

dt if l = 2j + 1

=

{

(l − 1)(l − 3) . . . 1 if l = 2j
0 if l = 2j + 1

. (D.81)

The first raw moments are therefore

σ∞ = m (D.82)

σ2∞ = m2 + s2 (D.83)

σ3∞ = m3 + 3ms2 (D.84)

σ4∞ = m4 + 6m2s2 + 3s4 (D.85)

σ5∞ = m5 + 10ms2 + 15s4. (D.86)

The starting point to determine the steady state values are Eqs. (4.80)-(4.82), p. 61,

0 = σ∗∞
(

1/2 + e1,1µ,λ − σ∗∞2cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞
3

2µNτ2
(D.87)

0 = σ∗∞
2
(

1 + 2e1,1µ,λ +
1

µ

)

− σ∗∞32cµ/µ,λ

(

1− 1

Nτ2

)

− σ∗∞
4

µNτ2
(D.88)

0 = σ∗∞
3

(

1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

)

−
(

1 +
τ2

µ

)

cµ/µ,λσ∗∞
4
(

1− 1

Nτ2

)

−
(

1 +
τ2

µ

) σ∗∞
5

2µNτ2
. (D.89)

Using the normal distributionσ∞ ∼ N (m, s2), a system of nonlinear equations inm ands is obtained
(cf. (D.82)-(D.86))

0 = m
(

1/2 + e1,1µ,λ

)

− (s2 +m2)cµ/µ,λ

(

1− 1

Nτ2

)

− m(m2 + 3s2)

2µNτ2
(D.90)

0 = (s2 +m2)
(

1 + 2e1,1µ,λ +
1

µ

)

−m(3s2 +m2)2cµ/µ,λ

(

1− 1

Nτ2

)

−3s4 + 6s2m2 +m4

µNτ2
(D.91)

0 = m(m2 + 3s2)

(

1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

)

−
(

1 +
τ2

µ

)

cµ/µ,λ(3s
4 + 6s2m2 +m4)

(

1− 1

Nτ2

)

−
(

1 +
τ2

µ

)m(15s4 + 10s2m+m5)

2µNτ2
. (D.92)

Again, analytical results can only be derived for some special cases which is done in the following
paragraphs for the sake of completeness. First of all: Equations (D.90)and (D.91) allow up to two
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solutions for the stationary mutation strength, expecially ifτ is relatively high, i.e.,Nτ2 ≥ 1. One
solution is small, the other nearly coincides with the solution obtained using the log-normal distri-
bution (and is more in accordance with the results of experiments). Figure D.2shows the results for
some(µ/µI , 60)-ES (N = 10, 000). As one can see the curves for the greater solution of (D.90) and
(D.91) and the one obtained using the log-normal ansatz and Eqs. (D.62) -(D.62) cannot be distin-
guished. If the learning rate increases, the numerical determination of the mutation strength seems to
be problematic in some cases as seen in Fig. D.2. In the following, some specialanalytical solutions
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Figure D.2: Stationary normalized mutation strength and progress rate as a function of τ for some
(µ/µI , 60)-ES andN = 10, 000.

are provided.

The special case of Nτ2 → ∞ In this paragraph, the stationary mutation strength is derived
Nτ2 →∞.

0 = m
(

1/2 + e1,1µ,λ

)

− (s2 +m2)cµ/µ,λ (D.93)

0 = (s2 +m2)
(

1 + 2e1,1µ,λ +
1

µ

)

−m(3s2 +m2)2cµ/µ,λ (D.94)

0 = m(m2 + 3s2)

(

1

µ
+
(

1 +
τ2

µ

)(1

2
+ e1,1µ,λ

)

)

(D.95)

Equation (D.93) leads to

m
(1/2 + e1,1µ,λ

cµ/µ,λ

)

= s2 +m2 (D.96)



D.3 The Sphere Model: A Second Order Approach 211

which, following insertion into (D.94) and solving form = σǫ, gives

(s2 +m2)

(

(1/2 + e1,1µ,λ
cµ/µ,λ

)

+
1

2µcµ/µ,λ

)

= m
(

3s2 +m2
)

⇒ m
(1/2 + e1,1µ,λ

cµ/µ,λ

)

(

(1/2 + e1,1µ,λ
cµ/µ,λ

)

+
1

2µcµ/µ,λ

)

= m
(

3s2 +m2
)

⇔
(1/2 + e1,1µ,λ

cµ/µ,λ

)

(

(1/2 + e1,1µ,λ
cµ/µ,λ

)

+
1

2µcµ/µ,λ

)

= 3m
(1/2 + e1,1µ,λ

cµ/µ,λ

)

− 3m2 +m2

⇒
(1/2 + e1,1µ,λ

cµ/µ,λ

)2
+

1/2 + e1,1µ,λ
2µc2µ/µ,λ

= 3m
(1/2 + e1,1µ,λ

cµ/µ,λ

)

− 2m2. (D.97)

Equation (D.97) leads to two positive solutions

m1,2 =
3

4

(1/2 + e1,1µ,λ
cµ/µ,λ

)

±

√

√

√

√

9

16

(1/2 + e1,1µ,λ
cµ/µ,λ

)2
− 1

2

(1/2 + e1,1µ,λ
cµ/µ,λ

)2
− 1

2

(1/2 + e1,1µ,λ
2µc2µ/µ,λ

)

⇒ m1,2 =
(1/2 + e1,1µ,λ

cµ/µ,λ

)

(

3

4
±
√

9

16
− 1

2
− 1

4µ(1/2 + e1,1µ,λ)

)

⇒ m1,2 =
(1/2 + e1,1µ,λ

cµ/µ,λ

)

(

3

4
± 1

4

√

√

√

√

2µ(1/2 + e1,1,µ,λ )− 8

2µ(1/2 + e1,1µ,λ)

)

(D.98)

which are defined forµ > 4/(1/2 + e1,1µ,λ) provided that1/2 + e1,1µ,λ > 0. Again, the solution of the
deterministic result (4.11) forNτ2 →∞

lim
Nτ2→∞

ς∗stat =
1/2 + e1,1µ,λ
cµ/µ,λ

(D.99)

reappears with a correction factor.

The special case of Nτ2 = 1 In this section, the stationary mutation strength forNτ2 = 1 is
determined. SettingNτ2 = 1 changes Eqs. (D.90) and (D.91) to

0 = m(1/2 + e1,1µ,λ)−m
m2 + 3s2

2µ
(D.100)

0 = (s2 +m2)
(

1 + 2e1,1µ,λ +
1

µ

)

− 1

µ

(

3s4 + 6s2m2 +m4
)

. (D.101)
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Solving (D.100) fors2 leads to

s2 =
1

3

(

2µ(1/2 + e1,1µ,λ)−m2
)

(D.102)

m4 =
1

9

(

(

(2µ(1/2 + e1,1µ,λ)
)2
− 2m22µ(1/2 + e1,1µ,λ) +m4

)

. (D.103)

Plugging (D.102) and (D.103) into (D.101) leads to the replacement of the terms by

s2 +m2 =
1

3

(

2µ(1/2 + e1,1µ,λ) + 2m2)

(s2 +m2)
(

2µ(1/2 + e1,1µ,λ) + 1
)

=
1

3

(

2µ(1/2 + e1,1µ,λ) + 2m2
)(

2µ(1/2 + e1,1µ,λ) + 1
)

=
1

3

(

2µ(1/2 + e1,1µ,λ)
2 + 2µ(1/2 + e1,1µ,λ)

+2m22µ(1/2 + e1,1µ,λ) + 2m2
)

3s4 =
1

3

(

(

(2µ(1/2 + e1,1µ,λ)
)2
− 2m22µ(1/2 + e1,1µ,λ) +m4

)

6m2s2 = 2m22µ(1/2 + e1,1µ,λ)− 2m4

3s4 + 6m2s2 +m4 =
1

3

(

(

2µ(1/2 + e1,1µ,λ)
)2
− 2m22µ(1/2 + e1,1µ,λ) +m4

)

2m22µ(1/2 + e1,1µ,λ)− 2m4 +m4

=
1

3

(

2µ(1/2 + e1,1µ,λ)
)2

+
4

3
m22µ(1/2 + e1,1µ,λ)

−2

3
m4 (D.104)

and therefore to

3s4 + 6s22m2 +m4 = (s2 +m2)
(

2µ(1/2 + e1,1µ,λ) + 1
)

0 = m4 −m2(2µ(1/2 + e1,1µ,λ)− 1) +
1

2
2µ(1/2 + e1,1µ,λ) (D.105)

Solving (D.105) form2 gives

m2
1,2 =

1

2

(

2µ(1/2 + e1,1µ,λ)− 1
)

±
√

1

4

(

2µ(1/2 + e1,1µ,λ)− 1
)2
− 1

2

(

2µ(1/2 + e1,1µ,λ)
)

=
1

2

(

2µ(1/2 + e1,1µ,λ)− 1
)

±
√

1

4

(

2µ(1/2 + e1,1µ,λ)
2 − 4µ(1/2 + e1,1µ,λ) + 1

)

− 1

2

(

2µ(1/2 + e1,1µ,λ)
)

=
1

2

(

2µ(1/2 + e1,1µ,λ)− 1
)

±
√

1

4

(

2µ(1/2 + e1,1µ,λ)
2
)

− 2µ(1/2 + e1,1µ,λ) +
1

4
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=
1

2

(

2µ(1/2 + e1,1µ,λ)− 1

±
√

(

2µ(1/2 + e1,1µ,λ)
2
)

− 4(2µ(1/2 + e1,1µ,λ)) + 1
)

. (D.106)

Again, two positive solutions are obtained for the root of (D.106). As stated, the larger stationary
mutation strength is more in accordance with the results of experiments. As before, the result of the
deterministic approach2µ(1/2 + e1,1µ,λ) appears coupled with a correction term.
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E Ridge Functions: Derivation of the Main Re-
sults

In this section, the derivations of main equations in Chapter 5 are presented. In Subsection E.1.1, the
undisturbed sharp ridge is considered. In particular, it is shown how thestationary mutation strength
can be derived. Afterwards in Subsection E.1.2, the derivation of the stationary state values is given
in the case of the parabolic ridge. The next section addresses noisy ridge functions. Subsection E.2.1
is devoted to the noisy sharp ridge. First, the stationary points are derived. This concluded, the non-
normalized stationary values of the mutation strength and progress rate are determined. Subsection
E.2.2 is devoted to the noise parabolic ridge. The main point is the determination ofthe stationary
distance to the ridge.

E.1 The Noise Free Case

As stated before, this section is devoted to the derivation of the main results ofSection 5.1 starting
with the sharp ridge before presenting the calculations in the case of the parabolic ridge.

E.1.1 The Sharp Ridge: The Stationary Normalized Mutation Stren gth

In this section, the derivation of the stationary state of the evolution equation (5.23)

ς∗st =

√

d2

1 + d2
µcµ/µ,λ

(

(1−Nτ2)

+

√

√

√

√(1 +Nτ2)2 + 2Nτ2(1 + d2)
1/2 + e1,1µ,λ
d2µc2µ/µ,λ

)

(E.1)

is given. The evolution equation (5.46)

ς∗ = σ∗
(1 + τ2(1/2 + e1,1µ,λ − d√

1+d2
cµ/µ,λσ

∗)

1− 1
N ( d√

1+d2
cµ/µ,λσ∗ − σ∗2

2µ )

)

(E.2)

serves as the starting point of the derivation. After having derived the stationary mutation strength, it
is shown that this stationary solution is stable with respect to the linear approximation.

Deriving the Stationary Mutation Strength

Demanding stationarity of theς∗-evolution, (5.46), the mutation strength must either be zeroσ∗ =
0 or

1 =
1 + τ2

(

1/2 + e1,1µ,λ − d√
1+d2

cµ/µ,λσ
∗)

1− 1
N ( d√

1+d2
cµ/µ,λσ∗ − σ∗2

2µ )
(E.3)
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has to hold. The latter condition leads to

1− 1

N
(

d√
1 + d2

cµ/µ,λσ
∗ − σ∗2

2µ
) = 1 + τ2

(

1/2 + e1,1µ,λ −
d√

1 + d2
cµ/µ,λσ

∗)

⇒ d√
1 + d2

cµ/µ,λσ
∗ − σ∗2

2µ
= −Nτ2

(1

2
+ e1,1µ,λ −

d√
1 + d2

cµ/µ,λσ
∗)

⇔ (1−Nτ2)
d√

1 + d2
cµ/µ,λσ

∗ − σ∗2

2µ
= −Nτ2(

1

2
+ e1,1µ,λ)

⇒ σ∗2 − (1−Nτ2)
d√

1 + d2
2µcµ/µ,λσ

∗ = Nτ22µ(
1

2
+ e1,1µ,λ) (E.4)

which has two solutions

ς∗1,2 = (1−Nτ2)
d√

1 + d2
µcµ/µ,λ

±
√

µ2c2µ/µ,λ
d2

1 + d2
(1−Nτ2)2 +Nτ22µ(1/2 + e1,1µ,λ). (E.5)

As can be inferred from (E.5), the positive solution and the stationary mutation strength is given by
(5.23)

ς∗st =

√

d2

1 + d2
µcµ/µ,λ

(

(1−Nτ2)

+

√

√

√

√(1−Nτ2)2 + 2Nτ2
(1 + d2

d2

)(

1
2 + e1,1µ,λ
µc2µ/µ,λ

)

)

. (E.6)

The stationary quality change (5.24) can be derived by inserting (E.6) into(5.17)

∆Q∗ =
√

1 + d2cµ/µ,λς
∗ − d

2µ
ς∗2. (E.7)

This leads to

∆Q∗
st =

√

1 + d2cµ/µ,λ

√

d2

1 + d2
µcµ/µ,λ

(

(1−Nτ2)

+

√

√

√

√(1 +Nτ2)2 + 2Nτ2
(1 + d2

d2

)(

1
2 + e1,1µ,λ
µc2µ/µ,λ

)

)

− d

2µ
µ2c2µ/µ,λ

( d2

1 + d2

)

(

(1−Nτ2)

+

√

√

√

√(1 +Nτ2)2 + 2Nτ2
(1 + d2

d2

)(

1
2 + e1,1µ,λ
µc2µ/µ,λ

)

)2

= dµc2µ/µ,λ

(

(1−Nτ2)
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+

√

√

√

√(1 +Nτ2)2 + 2Nτ2
(1 + d2

d2

)(

1
2 + e1,1µ,λ
µc2µ/µ,λ

)

)

×
(

1− d2

2(1 + d2)

(

(1−Nτ2)

+

√

√

√

√(1 +Nτ2)2 + 2Nτ2
(1 + d2

d2

)(

1
2 + e1,1µ,λ
µc2µ/µ,λ

)

)

. (E.8)

Stability of the Stationary Mutation Strength

The stability of the stationary mutation strength (E.6) remains to be shown. To this end, the linear
approximation is used again. Therefore, the first derivative of

f(s) = s
( 1 + ψ(s)

1− ϕR(s)
N

)

= s
(1 + τ2(1/2 + e1,1µ,λ − d√

1+d2
s)

1− 1
N ( d√

1+d2
s− s2

2µ)

)

(E.9)

which appears in the evolution equation (E.2) needs to be determined. Since the derivative ats = σ∗st
is required, the calculations simplify. More specifically, the derivative given by

f ′(s) =
1 + ψ(s)

1− ϕR(s)
N

+
s

1− ϕR(s)
N

(

ψ′(s) +
ϕ′
R(s)

N

( 1 + ψ(s)

1− ϕR(s)
N

)

)

(E.10)

changes to

f ′(s)|s=σ∗
st

= 1 +
σ∗st

1− ϕR(σ∗
st)

N

(

ψ′(σ∗st) +
ϕ′
R(σ∗st)
N

)

(E.11)

since the ES is in the stationary state. It remains to show that|f ′(σ∗st)| < 1 holds. Let us start with
f ′(σ∗st) > −1. It has to be shown that

1 +
σ∗st

1− 1
N

(

dcµ/µ,λ√
1+d2

σ∗st −
σ∗

st
2

2µ

)

(

−
dτ2cµ/µ,λ√

1 + d2
+

dcµ/µ,λ

N
√

1 + d2
− σ∗st
Nµ

)

> −1 (E.12)

holds. Inequality (E.12) can be simplified to

1 +
σ∗st

1− 1
N

(

d√
1+d2

cµ/µ,λσ
∗
st −

σ∗
st

2

2µ

)

(

( 1

N
− τ2

) d√
1 + d2

cµ/µ,λ −
σ∗st
Nµ

)

> −1

⇒ σ∗st

1− 1
N

(

d√
1+d2

cµ/µ,λσ
∗
st −

σ∗
st

2

2µ

)

(

( 1

N
− τ2

) d√
1 + d2

cµ/µ,λ −
σ∗st
Nµ

)

> −2

⇐⇒
( 1

N
− τ2

) d√
1 + d2

cµ/µ,λσ
∗
st −

σ∗st
2

Nµ
> −2 +

2

N

d√
1 + d2

cµ/µ,λσ
∗
st −

σ∗st
2

Nµ

⇐⇒
( 1

N
− τ2

) d√
1 + d2

cµ/µ,λσ
∗
st > −2 +

2

N

d√
1 + d2

cµ/µ,λσ
∗
st

⇐⇒ −
( 1

N
+ τ2

) d√
1 + d2

cµ/µ,λσ
∗
st > −2

⇒
( 1

N
+ τ2

) d√
1 + d2

cµ/µ,λσ
∗
st < 2. (E.13)
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Inequality (E.13) requires inserting the normalized mutation strength (E.6) into (E.13) and determin-
ing whether (E.13) holds or not. In the following, a different approach isfollowed. Instead of inserting
(E.6), the highest stationary mutation strength that may occur is considered.The conditions derived
in this manner are therefore sufficient but not necessary. The highest mutation strength is the zero of
the SAR,ς∗ψ0

= (1/2 + e1,1µ,λ)/cµ/µ,λ
√

1 + d2/d which is obtained forNτ2 →∞. If (E.13) holds for
ς∗ψ0

, it holds in general. Insertingς∗ψ0
into (E.13) leads to a sufficient condition forf ′(σ∗st) > −1

( 1

N
+ τ2

) d√
1 + d2

cµ/µ,λ

(1/2 + e1,1µ,λ
cµ/µ,λ

)

√
1 + d2

d
< 2

⇒
( 1

N
+ τ2

)(

1/2 + e1,1µ,λ

)

< 2

⇒ τ2 <
2

1/2 + e1,1µ,λ
− 1

N
. (E.14)

Provided that the learning rateτ is sufficiently small with respect to the choices ofµ andλ, f ′(σ∗st) >
−1 can be ensured. The case off ′(σ∗st) < 1 remains to be shown. Consider

1 +
σ∗st

1− 1
N

(

d√
1+d2

cµ/µ,λσ
∗
st −

σ∗
st

2

2µ

)

(

−
τ2dcµ/µ,λ√

1 + d2
+

dcµ/µ,λ

N
√

1 + d2
− σ∗st
Nµ

)

< 1. (E.15)

Sinced < dcrit, the progress rate for the stationary mutation strength is negative. Inequality (E.15)
gives

( 1

N
− τ2

) d√
1 + d2

cµ/µ,λ −
σ∗st
Nµ

< 0

⇒ µ
(

1−Nτ2
) d√

1 + d2
cµ/µ,λ < σ∗st. (E.16)

If Nτ2 ≥ 1, nothing remains to be shown. Otherwise, forNτ2 < 1, a similar approach as before
is followed. This time it is shown that (E.16) is valid for the smallest stationary mutation strength.
The smallest stationary mutation strength is the zero of the progress rateς∗ϕR0

= 2µcµ/µ,λd/
√

1 + d2.
Inserting the zero into (E.16) leads to

µ
(

1−Nτ2
) d√

1 + d2
cµ/µ,λ < 2µcµ/µ,λ

d√
1 + d2

⇒ 1−Nτ2 < 2 (E.17)

which is generally fulfilled. In this section, a sufficient condition for the stability of the stationary
mutation strength could be derived. Provided that the learning rate is sufficiently small, the stationary
mutation strength (E.6) is stable with respect to the linear approximation.

E.1.2 The Parabolic Ridge: The Stationary State

In this section, the calculations leading to the stationary points (5.37), p. 89

(

Rst
ς⋆st

)

=











1
2d

√

1/2+e1,1
µ,λ

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ

√
2µ

2d

1/2+e1,1
µ,λ

q

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ











(E.18)
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and (5.38), p. 90

(

Rst
ς⋆st

)

=











(

1/2+e1,1
µ,λ

α2d2(2µc2
µ/µ,λ

−1/2−e1,1
µ,λ)

)1/(2α−2)

√

2µ(1/2 + e1,1µ,λ)

(

1/2+e1,1
µ,λ

α2d2(2µc2
µ/µ,λ

−1/2−e1,1
µ,λ)

)1/(2α−2)











(E.19)

are given. Furthermore, some numerical evidence is provided for the claim that the stationary state
(E.18) is stable.

Determining the Stationary State

In this subsection, the stationary states are determined. To this end, the evolution equations (5.26)

r = R− 1

N
ϕ⋆R(σ⋆, R)

ς⋆ = σ⋆
(

1 + ψ(σ⋆, R)
)

(E.20)

are needed. Stationary solutions of (E.20) require either a zero mutation strength ofϕ⋆R(σ⋆, R) = 0
in the case of theR-evolution andψ(σ⋆, R) = 0 in the case of theσ⋆-evolution. The progress rate
(5.27)

ϕ⋆R(σ∗, R) =
dαRα−1cµ/µ,λ√
1 + d2α2R2α−2

σ∗ − σ⋆2

2Rµ
(E.21)

leads to two zerosς⋆ϕR01
= 0 and (5.33)

ς⋆ϕR0
= 2Rµcµ/µ,λ

√

α2d2R2α−2

1 + α2d2R2α−2
. (E.22)

The zero of SAR (5.29)

ψ(σ⋆) = τ2

(

1

2
+ e1,1µ,λ −

cµ/µ,λ

R

√

d2α2R2α−2

1 + d2α2R2α−2
σ⋆

)

(E.23)

is given by (5.30)

ς⋆ψ0
= R

1/2 + e1,1µ,λ
cµ/µ,λ

√

1 + α2d2R2α−2

α2d2R2α−2
. (E.24)

If stationarity of both evolution equations is demanded, either the mutation strength must be zero or
ς⋆ψ0

= ς⋆ϕR0
has to hold, i.e.,

2Rµcµ/µ,λ

√

α2d2R2α−2

1 + α2d2R2α−2
= R

1/2 + e1,1µ,λ
cµ/µ,λ

√

1 + α2d2R2α−2

α2d2R2α−2
(E.25)

(cf. (E.22) and (E.23)). Solving (E.25) forR, a stationary distance to the axis

2Rµcµ/µ,λ

√

α2d2R2α−2

1 + α2d2R2α−2
= R

1/2 + e1,1µ,λ
cµ/µ,λ

√

1 + α2d2R2α−2

α2d2R2α−2
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⇒ 2µcµ/µ,λα
2d2R2α−2 =

1/2 + e1,1µ,λ
cµ/µ,λ

(1 + α2d2R2α−2)

⇔
(

2µcµ/µ,λ −
1/2 + e1,1µ,λ
cµ/µ,λ

)

α2d2R2α−2 =
1/2 + e1,1µ,λ
cµ/µ,λ

⇔ α2d2R2α−2 =
1/2 + e1,1µ,λ

cµ/µ,λ

(

2µcµ/µ,λ −
1/2+e1,1

µ,λ

cµ/µ,λ

)

⇔ α2d2R2α−2 =
1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

⇒ Rst,α = 2α−2

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

(E.26)

is obtained for generalα ≥ 2 and

Rst =
1

2d

√

√

√

√

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ
(E.27)

for α = 2. The stationary distance can be used to determine the stationary mutation strength in (5.38)
by plugging (E.26) into (E.22) or (E.23). In the following, (E.22) is used. Let us first consider

α2d2R2α−2
st

1 + α2d2R2α−2
st

=
1/2 + e1,1µ,λ

(

2µc2µ/µ,λ − 1/2− e1,1µ,λ
)(

1 +
1/2+e1,1

µ,λ

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ

)

=
1/2 + e1,1µ,λ
2µc2µ/µ,λ

. (E.28)

Plugging (E.28) and (E.26) into (E.22) leads to

ς⋆st = 2Rstµcµ/µ,λ

√

α2d2R2α−2
st

1 + α2d2R2α−2
st

= Rst2µcµ/µ,λ

√

√

√

√

1/2 + e1,1µ,λ
2µc2µ/µ,λ

= Rst

√

2µ(1/2 + e1,1µ,λ)

= 2α−2

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

√

2µ(1/2 + e1,1µ,λ). (E.29)

Thus, the stationary mutation strength in (5.38) is obtained. Settingα = 2 gives the mutation strength
in (5.37)

ς⋆st =

√
2µ

2d

1/2 + e1,1µ,λ
√

2µc2µ/µ,λ − 1/2− e1,1µ,λ
. (E.30)
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Now the stationary progress rateϕ⋆x st can be derived. Plugging (5.38) into (5.28)

ϕ⋆x(σ
⋆, R) =

cµ/µ,λ√
1 + d2α2R2α−2

σ⋆ (E.31)

leads to

ϕ⋆x st =
cµ/µ,λ

√

1 +
1/2+e1,1

µ,λ

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ

√

2µ(1/2 + e1,1µ,λ)

× 2α−2

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

=
cµ/µ,λ

√

2µc2
µ/µ,λ

2µc2
µ/µ,λ

−1/2−e1,1
µ,λ

√

2µ(1/2 + e1,1µ,λ)

× 2α−2

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

=

√

2µc2µ/µ,λ − 1/2− e1,1µ,λ
2µ

√

2µ(1/2 + e1,1µ,λ)

× 2α−2

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

=
√

2µc2µ/µ,λ − 1/2− e1,1µ,λ
√

1/2 + e1,1µ,λ

× 2α−2

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

(E.32)

for generalα ≥ 2 and to

ϕ⋆x st =
√

2µc2µ/µ,λ − 1/2− e1,1µ,λ
√

1/2 + e1,1µ,λ

×

√

√

√

√

1

α2d2

(

1/2 + e1,1µ,λ

2µc2µ/µ,λ − 1/2− e1,1µ,λ

)

=
1/2 + e1,1µ,λ

2d
(E.33)

for α = 2.

Stability of the Stationary State

In this paragraph, some numerical evidence is provided for the claim that the stationary solution
is asymptotically stable. To this end, system

(

r

ς⋆

)

=

(

R− 1
Nϕ

⋆
R(σ⋆, R)

σ⋆
(

1 + ψ(σ⋆, R)
)

)

= f

(

R

σ⋆

)

=

(

f1(R, σ
⋆)

f2(R, σ⋆)

)

(E.34)
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is reconsidered. The progress rate (E.21) reads

ϕ⋆R(σ⋆, R) =
dαRα−1cµ/µ,λ√
1 + d2α2R2α−2

σ⋆ − σ⋆2

2Rµ

and the SAR (E.23) is given as

ψ∞(σ⋆) = τ2

(

1

2
+ e1,1µ,λ −

cµ/µ,λ

R

√

d2α2R2α−2

1 + d2α2R2α−2
σ⋆

)

.

The eigenvalues of the Jacobian off at the stationary point must be determined. The Jacobian reads

Df

(

R

σ⋆

)

=

(

∂
∂Rf1(R, σ

⋆) ∂
∂σ⋆ f1(R, σ

⋆)
∂
∂Rf2(R, σ

⋆) ∂
∂σ⋆ f2(R, σ

⋆)

)

. (E.35)

The derivatives can be obtained as follows

∂

∂R
f1(R, σ

⋆) = 1− 1

N

∂

∂R
ϕ⋆R(σ⋆, R)

∂

∂σ⋆
f1(R, σ

⋆) = − 1

N

∂

∂σ⋆
ϕ⋆R(σ⋆, R)

∂

∂R
f2(R, σ

⋆) = σ⋆
∂

∂R
ψ(σ⋆, R)

∂

∂σ⋆
f2(R, σ

⋆) = 1 + ψ(σ⋆, R) + σ⋆
∂

∂σ⋆
ψ(σ⋆, R)

with

∂

∂R
ϕ⋆R(σ⋆, R) = cµ/µ,λσ

⋆

(

dα(α− 1)Rα−2

√
1 + d2α2R2α−2

−d
3α3(2α− 2)R(α−1)(2α−3)

2
√

1 + d2α2R2α−23

)

+
σ⋆2

2R2µ
(E.36)

∂

∂σ⋆
ϕ⋆R(σ⋆, R) =

dαRα−1cµ/µ,λ√
1 + d2α2R2α−2

− σ⋆

Rµ

∂

∂R
ψ(σ⋆, R) = τ2cµ/µ,λσ

⋆

(

− dα(α− 2)Rα−3

√
1 + d2α2R2α−2

σ⋆)

= +
d3α3(2α− 2)R(α−2)(2α−3)

2
√

1 + d2α2R2α−23 σ⋆

)

(E.37)

∂

∂σ⋆
ψ(σ⋆, R) = −τ2 cµ/µ,λ

R

√

d2α2R2α−2

1 + d2α2R2α−2
. (E.38)

At this point, a further analytical analysis is not carried out. Instead, the eigenvalues will be ob-
tained numerically using MATHEMATICA. Therefore, only some numerical evidence can be pro-
vided to support the claim of stability. Figure E.1 shows some numerically obtained eigenvalues for
(µ/µI , 60)-ES as functions of the parent numberµ for some choices ofN . The learning rate is set to
1/
√
N . As it can be seen, the eigenvalues are smaller than one as long asµ is not too close toλ. In

these cases, the larger eigenvalue exceeds one indicating instability. Again, decreasingτ increases the
eigenvalues (see the discussion in Appendix D.2.1).



E.2 The Noisy Ridge 223

0 10 20 30 40 50 60
0.6

0.7

0.8

0.9

1.0

µ

λ1, λ2

0 10 20 30 40 50 60
0.975

0.980

0.985

0.990

0.995

1.000

µ

λ1, λ2

a)N = 30 b)N = 100

Figure E.1: Numerically obtained eigenvalues for (µ/µI , 60)-ES. The search space dimensionalities
examined wereN = 30 andN = 100. The learning rateτ was set toτ = 1/

√
N . Two values of

the ridge parameterd were analyzed. The results ford = 1 are indicated using red-colored symbols,
whereas blue symbols denote the results obtained ford = 5. However, the graphs for both values
overlap. The smaller eigenvalue is indicated using diamond-shaped symbols.Triangles stand for the
higher eigenvalue.

E.2 The Noisy Ridge

In this section, the derivation of the main results for Chapter 5.2, i.e., for ES on the noisy sharp
and parabolic ridge are presented. Again, the noise is modeled using the standard approach with an
additive normally distributed noise term. Subsection E.2.1 describes how to obtain the main results
for the sharp ridge, whereas Subsection E.2.2 addresses the parabolicridge.

E.2.1 The Sharp Ridge

This subsection is devoted to the noisy sharp ridge. The noise is modeled usingthe standard
approach with an additive normally distributed noise term. First, the stationary points are derived.
Afterwards, the local stability of these fixed points is investigated. As the next step, it is shown that
the samed-constant as in the undisturbed case is the decisive parameter deciding themain behavior
of the ES. Finally the non-normalized stationary values are derived.

The Derivation of the Stationary Points In this paragraph, it is shown that the stationary state
of the system (5.55)

(

σ∗ǫ
(g+1)

〈ς∗(g+1)〉

)

=





σ∗
ǫ

1−ϕ∗
R(σ∗,σ∗

ǫ )/N

σ∗
(

1+ψ(σ∗,σ∗
ǫ )

1−ϕ∗
R(σ∗,σ∗

ǫ )/N

)



 (E.39)

with

ϕ⋆R(σ⋆, R) =
dσ⋆2

√

(1 + d2)σ⋆2 + σ⋆ǫ
2
cµ/µ,λ −

σ⋆2

2Rµ
(E.40)

(cf. (5.47)) and

ψ(σ⋆, R) = τ2

(

1/2 + e1,1µ,λ
(1 + d2)σ⋆2

(1 + d2)σ⋆2 + σ⋆ǫ
2
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−cµ/µ,λ
dσ⋆2

R
√

(1 + d2)σ⋆2 + σ⋆ǫ
2

)

(E.41)

(cf. (5.48)) is given by either (5.56)
(

σ∗ǫ stat1
ς∗stat1

)

=

(

c

0

)

(E.42)

with c ∈ R, c ≥ 0 or by (5.57)

(

σ∗ǫ stat
ς∗stat

)

=











2dµcµ/µ,λ

√

d2(4µc2
µ/µ,λ

−2e1,1
µ,λ−1)−2e1,1

µ,λ−1

d2(4µc2
µ/µ,λ

−2e1,1
µ,λ)−2e1,1

µ,λ

2dµcµ/µ,λ
q

d2(4µc2
µ/µ,λ

−2e1,1
µ,λ)−2e1,1

µ,λ











(E.43)

Considering (5.55), stationarity of theσ∗ǫ -evolution requiresσ∗ǫ = 0 or

ϕ∗
R(σ∗, σ∗ǫ ) = 0

⇒ 0 =
dσ∗2

√

(1 + d2)σ∗2 + σ∗ǫ
2
cµ/µ,λ −

σ∗2

2µ
cf.(E.40)&(E.41))

⇒ ς∗stat1 = 0
∨ d

√

(1 + d2)σ∗2 + σ∗ǫ
2
cµ/µ,λ =

1

2µ

⇒ ς∗stat1 = 0
∨

(1 + d2)σ∗2 + σ∗ǫ
2 = 4d2µ2c2µ/µ,λ. (E.44)

This relation between the mutation and the noise strength can be used to determinethe stationary
mutation strength. Demanding stationarity of theς∗-evolution

ς∗stat1 = 0
∨ 1 + ψ(σ∗, σ∗ǫ )

1− ϕ∗
R(σ∗, σ∗ǫ )/N

= 1

⇒ ς∗stat1 = 0
∨

Nψ(σ∗, σ∗ǫ ) = −ϕ∗
R(σ∗, σ∗ǫ )

⇒ ς∗stat1 = 0
∨

Nτ2

(

1

2
+

e1,1µ,λ(1 + d2)σ∗2

(1 + d2)σ∗2 + σ∗ǫ
−

cµ/µ,λdσ
∗2

√

(1 + d2)σ∗2 + σ∗ǫ
2

)

= 0 cf. (5.48)

⇒ ς∗stat1 = 0
∨ 1

2
+

e1,1µ,λ(1 + d2)σ∗2

(1 + d2)σ∗2 + σ∗ǫ
−

cµ/µ,λdσ
∗2

√

(1 + d2)σ∗2 + σ∗ǫ
2

= 0. (E.45)

As (E.44) and (E.45) show,ς∗stat1 = 0 is a stationary state of the deterministic evolution equations
(5.55).

A further stationary solution is obtained by inserting the second condition in (E.44) into (E.45)
which eliminates the noise strength

0 =
1

2
+ e1,1µ,λ

(1 + d2)σ∗2

4d2µ2c2µ/µ,λ
− cµ/µ,λ

dσ∗2

2µdcµ/µ,λ

⇒ −1

2
= σ∗2

(

e1,1µ,λ
1 + d2

4d2µ2c2µ/µ,λ
− 1

2µ

)

⇔ −1

2
= σ∗2

(e1,1µ,λ(1 + d2)− 2d2µc2µ/µ,λ

4d2µ2c2µ/µ,λ

)

⇔ σ∗2 =
4d2µ2c2µ/µ,λ

−2e1,1µ,λ(1 + d2) + 4d2µc2µ/µ,λ
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⇒ ς∗stat2 =
2dµcµ/µ,λ

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

. (E.46)

The stationary mutation strength is only defined if the constantd is sufficiently high

d2(4µc2µ/µ,λ − 2e1,1µ,λ) > 2e1,1µ,λ

⇒ d >

√

√

√

√

e1,1µ,λ

2µc2µ/µ,λ − e
1,1
µ,λ

. (E.47)

The stationary distance to the axis remains to be determined. To this end, the stationary mutation
strength (E.46) is plugged into the second condition of (E.44)

4d2µ2c2µ/µ,λ = (1 + d2)ς∗stat2
2 + σ∗ǫ

2

⇒ 4d2µ2c2µ/µ,λ = (1 + d2)
4d2µ2c2µ/µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ
+ σ∗ǫ

2

⇔ σ∗ǫ
2 = 4d2µ2c2µ/µ,λ

(

1− 1 + d2

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

)

⇒ σ∗ǫ = 2dµcµ/µ,λ

√

√

√

√1− 1 + d2

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

⇒ σ∗ǫ = 2dµcµ/µ,λ

√

√

√

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ
. (E.48)

The normalized stationary noise strength that is obtained in this way gives the stationary distance to
the axis

σ∗ǫ = 2dµcµ/µ,λ

√

√

√

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

⇒ N

Rstat2
σǫ = 2dµcµ/µ,λ

√

√

√

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

⇒ Rstat2 =
Nσǫ

2dµcµ/µ,λ

√

√

√

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1
. (E.49)
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Note, the stationary state in (E.49) is only defined for positive arguments of the square root

0 ≤
d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1
. (E.50)

Condition (E.50) is fulfilled if the numerator and denominator are both positive or both negative. The
latter situation is not allowed, though, since in this case the normalized mutation strength (E.47) is not
defined. In the following paragraph, it is shown that the denominator in (E.50) is decisive leading to
the same criticald-constant as in the case of the undisturbed sharp ridge.

The Critical d-Constant Let µ ≤ λ/2. This paragraph is devoted to showing that (5.59)

d > dcrit :=

√

√

√

√

2e1,1µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1
(E.51)

has to hold for the existence of a stationary state. Note, ifµ ≈ λ, dcrit can assume negative values. In
the usual range ofµ : λ-ratios ofµ ≤ λ/2, it is positive, though. The starting point is (E.50)

0 ≤
d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1
.

Under the condition of (E.48), (E.50) holds if

0 < d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ ⇔ d2 >
e1,1µ,λ

2µc2µ/µ,λ − e
1,1
µ,λ

and (E.52)

0 < d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1⇔ d2 >
2e1,1µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1
(E.53)

are true. The decisive bound is (E.53), since

2e1,1µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1
>

e1,1µ,λ

2µc2µ/µ,λ − e
1,1
µ,λ

⇒
(

2e1,1µ,λ + 1
)(

2µc2µ/µ,λ − e
1,1
µ,λ

)

> e1,1µ,λ

(

4µc2µ/µ,λ − 2e1,1µ,λ − 1
)

⇔ e1,1µ,λ

(

4µc2µ/µ,λ − 2e1,1µ,λ

)

+ 2µc2µ/µ,λ − e
1,1
µ,λ > e1,1µ,λ

(

4µc2µ/µ,λ − 2e1,1µ,λ − 1
)

⇔ 2µc2µ/µ,λ − e
1,1
µ,λ > −e1,1µ,λ

2µc2µ/µ,λ > 0 (E.54)

which holds in general. The bound (E.53) is therefore always greater than (E.52) and the argument
in (E.50) fulfilled if (E.51) holds. In other words, the stationary state exists ifand only if the axis is
approached and (E.51) or (5.59), respectively, is again the decisiveparameter.
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Stability of the Stationary Point In this paragraph, the stability of the stationary points is ana-
lyzed. Letµ ≤ λ/2. If d ≥ dcrit, numerical evidence is provided that (5.57)

(

σ∗ǫ st
ς∗st

)

=











2dµcµ/µ,λ

√

d2(4µc2
µ/µ,λ

−2e1,1
µ,λ−1)−2e1,1

µ,λ−1

d2(4µc2
µ/µ,λ

−2e1,1
µ,λ)−2e1,1

µ,λ

2dµcµ/µ,λ
q

d24µc2
µ/µ,λ

−2e1,1
µ,λ(1+d2)











(E.55)

is a locally stable fix-point of (5.55)

(

σ∗ǫ
(g+1)

〈ς∗(g+1)〉

)

=





σ∗
ǫ

1−ϕ∗
R(σ∗,σ∗

ǫ )/N

σ∗
(

1+ψ(R,σ∗,σ∗
ǫ )

1−ϕ∗
R/N

)



 (E.56)

whereas (5.56)

(

σ∗ǫ stat1
ς∗stat1

)

=

(

c

0

)

(E.57)

with c ∈ R, c ≥ 0 is instable. The latter can be show relatively easily using again the linear approx-
imation. The approach in this section follows closely the one introduced in Appendix D.2.1. The
deterministic evolution equations are of the general formy(g+1) = f(y(g))= (f1(y

(g)), f2(y
(g)))T.

The stability of hyperbolic fixed points can be established via the eigenvaluesof the Jacobian off

Df(y) =

(

∂
∂y1

f1(y
(g)) ∂

∂y2
f1(y

(g))
∂
∂y1

f2(y
(g)) ∂

∂y2
f2(y

(g))

)

(E.58)

at the fixed pointy = ys. Provided the absolute values of all eigenvalues are smaller than one, the
fixed point is stable. To this end, the partial derivatives must be obtained

∂

∂y1
f1(y

(g)) =
1

1− ϕ∗
R(σ∗, σ∗ǫ )/N

+
σ∗ǫ

∂
∂σ∗

ǫ
ϕ∗
R(σ∗, σ∗ǫ )/N

(1− ϕ∗
R(σ∗, σ∗ǫ )/N)2

∂

∂y1
f2(y

(g)) = σ∗
( ∂

∂σ∗
ǫ
ψ(σ∗, σ∗ǫ )

1− ϕ∗
R(σ∗, σ∗ǫ )/N

+

∂
∂σ∗

ǫ
ϕ∗
R(σ∗, σ∗ǫ )

N

[

1 + ψ(σ∗, σ∗ǫ )

(1− ϕ∗
R(σ∗, σ∗ǫ )/N)2

])

∂

∂y2
f1(y

(g)) =
σ∗ǫ

N
(

1− ϕ∗
R(σ∗, σ∗ǫ )/N
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. (E.59)
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We need the values of these derivatives at the fix-points. Therefore,ϕ∗
R = 0 andψ = 0 hold giving

∂
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)
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. (E.60)

For continuing, the derivatives of (5.51) and (5.48) are needed

∂

∂σ∗ǫ
ϕ∗
R(σ∗, σ∗ǫ ) = −cµ/µ,λ

dσ∗2

√

(1 + d2)σ∗2 + σ∗ǫ
23σ
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ǫ

∂
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ψ(σ∗, σ∗ǫ ) = τ2σ∗ǫ
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2)2
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√
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23

)

∂

∂σ∗
ϕ∗
R(σ∗, σ∗ǫ ) =
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23 cµ/µ,λ −
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∂
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∗2

√

(1 + d2)σ∗2 + σ∗ǫ
2

)

+τ2σ∗
(

−
2(1 + d2)e1,1µ,λ

(1 + d2)(σ∗2 + σ∗ǫ
2)2

+
(1 + d2)2cµ/µ,λσ

∗2

√

(1 + d2)σ∗2 + σ∗ǫ
23

)

.

In the case of the first fixed point, the calculations can be stopped at this point. The equilibrium
solution (5.56) with(σ∗ǫ stat1 , ς

∗
stat1)

T = (c, 0)T is unstable. The eigenvalues of the Jacobian read
λ1 = 1 andλ2 = 1 + τ2/2. As seen, (5.56) admits an unstable manifold forτ > 0 leading to a
general local instability.

The second fixed point (5.56) requires more effort. In the following, numerical evaluations using
MATHEMATICA (R) are provided since inserting the fixed point into the equations above results in
complicated expressions. The drawback of this approach is of course that the stability of the stationary
point cannot be proven anymore. Instead of a proof, only some numerical evidence can be given that
it is stable for the conditions tested. Figure E.2 shows both eigenvalues for(µ/µI , 60)-ES. As before,
it is observed that the eigenvalues approach one forτ → 0. Since there are not any changes of the
mutation strength forτ = 0, this behavior was to be expected. Ifµ approachesλ, the larger eigenvalue
may exceed one, indicating instability forµ ≈ λ. The influence of the constantd appears to be minor.

Non-Normalized Stationary Values In this paragraph, the non-normalized stationary mutation
strength and progress rate are obtained. The non-normalized stationarymutation strength can be
derived from (5.57) using the stationary distance (5.58). Since

ςst =
Rst
N − 1

ς∗st, (E.61)
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Figure E.2: Numerically obtained eigenvalues for (µ/µI , 60)-ES. The search space dimensionalities
examined wereN = 30 andN = 100. The learning rateτ was set toτ = 1/

√
N . Two values of

the ridge parameterd were analyzed. The results ford = 1 are indicated using red-colored symbols,
whereas blue symbols denote the results obtained ford = 5. The graphs for both values are close
together, however, and cannot be distinguished easily. The smaller eigenvalue is indicated using
diamond-shaped symbols. Triangles stand for the higher eigenvalue.

Eq. (5.62) follows

ςst =
Rst
N − 1

2dµcµ/µ,λ
√

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ)
(E.62)

=
σǫ(N − 1)
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×
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⇒ ςst =
σǫ

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− (2e1,1µ,λ + 1)
. (E.63)

Similarly, the non-normalized progress rate (5.61) is obtained. Plugging the normalized mutation
strength and noise strength in (5.63) into the progress rate (5.50) leads to

ϕstx (σǫ) =
Rst
N
ϕ∗
x
st(ς∗st, σ

∗
ǫ st) =

Rst
N

ς∗st
2

2dµ

=
σǫ

2dµcµ/µ,λ

√

√

√

√

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1

×
2dµc2µ/µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ

which finally gives (5.61)
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ϕstx (σǫ) = σǫcµ/µ,λ

√

1

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1)− 2e1,1µ,λ − 1

×
√

1

d2(4µc2µ/µ,λ − 2e1,1µ,λ)− 2e1,1µ,λ
. (E.64)

E.2.2 The Noisy Parabolic Ridge

This subsection describes how the main results in Subsection 5.2.2 are obtained. This consists
mainly in obtaining the stationary distance to the axis, i.e., in deriving and solving the respective
equation.

Derivation of the Third-Order Polynomial The starting point is the stationarity condition for
theR-evolution (5.74)

0 = ϕ⋆R(R, σ⋆, σ⋆ǫ )

⇒ 0 =
2dRcµ/µ,λ

√

(1 + 4d2R2)σ⋆2 + σ⋆ǫ
2
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2Rµ

⇒ σ⋆ = 0
∨
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16d2R4µ2c2µ/µ,λ
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− σ⋆ǫ

2

1 + 4d2R2
. (E.65)

Since the〈ς⋆〉-evolution becomes also stationary, eitherσ⋆ = 0 has to hold or (5.75)

0 = ψ(σ⋆, σ⋆ǫ )

= τ2
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⋆2
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√
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2

)

(E.66)

must be fulfilled. Inserting (5.74) into (5.75) leads to a third-order polynomial in R2 (??)
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The cubic polynomial (E.67) inR2 leads to analytical solutions. Let us first consider the general cubic
equation.

Solutions of the Cubic Equation x3 − ax2 − bx+ c = 0 The solutions can be given as follows
(see, e.g., [34])
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√
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−1 + i
√

3

6 3
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2
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√
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3
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27c2 − 18abc− 4a3c− 4b3 − a2b2. (E.68)

Considering (E.67) and (E.68), the coefficients read

a =
1

4d2

( 2e1,1µ/µ,λ + 1

4µc2µ/µ,λ − 2e1,1µ,λ − 1

)
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ǫ
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2
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.

Although analytical solutions can be provided, the results are quite clumsy. Therefore, the solutions
are not given explicitely.
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