
Project group 499 final report

Biped Soccer Robots
Development of a Universal Robotic Software

and Hardware Architecture

Robotics Research Institute

PG Participants:
Lamia Chouaieb, Nikolas Ehrenberg, Niklas Goddemeier, Daniel Hauschildt,

Jens Hegenberg, Daniel Klagges, Simon Niedzwiedz, Boris Schauerte,
Robert Schmidt, Patrick Szcypior, Christopher Trampisch, Jens Walkenhorst,

Adalbert Wilczek

Advisors:
Prof. Dr.-Ing. Uwe Schwiegelsohn

Matthias Hebbel
Walter Nistico

Date:
November 5, 2007

Contents

1 Electronics 3
1.1 Embedded Board . 3
1.2 Carrier Board . 4

1.2.1 Revision 1 . 4
1.2.2 Revision 2 . 9

1.3 Debug Board . 12
1.4 Power Board . 13

1.4.1 Sandwich Technique . 13
1.4.2 Power Board Operation . 14

1.5 Security Board . 15
1.5.1 Acoustical LiPo Saver . 16
1.5.2 Crowbar Circuit . 17

1.6 USB-I2C Converter . 17
1.6.1 Motivation . 18
1.6.2 Features . 18
1.6.3 Realization . 18
1.6.4 Protocol . 21

1.7 Sensors . 21
1.7.1 Gyroscope . 21
1.7.2 Acceleration . 23
1.7.3 Foot sensors . 26

2 Hardware 29
2.1 Servos . 29
2.2 Accumulators . 30
2.3 Upper Body Design . 31

2.3.1 Hip . 31
2.3.2 Torso . 33

2.4 Battery Holders . 34
2.5 Foot Design . 35
2.6 Leg Design . 37
2.7 Arm Design . 38

3 Operating System 41
3.1 General . 41
3.2 Configuration . 42
3.3 Components / Drivers . 42
3.4 File Based Write Filter . 44

iii

Contents

3.4.1 FBWF Installation and Configuration 44
3.4.2 FBWF In Detail . 44
3.4.3 FBWF Features . 45
3.4.4 The FBWF Tool . 45

4 Software 47
4.1 Simulator . 47

4.1.1 Previous simulator . 47
4.1.2 Requirements for the new simulator 47
4.1.3 The candidates and their features 48
4.1.4 MSRS Simulator - architecture overview 49
4.1.5 Simulation Environment . 49
4.1.6 Robot Entity . 50
4.1.7 Robot Service . 54
4.1.8 Multiple robot simulation . 57
4.1.9 Summary . 57

4.2 Framework . 58
4.2.1 Design . 58
4.2.2 Main Program . 58
4.2.3 Shared Library . 58
4.2.4 ThreadObjects . 62
4.2.5 Calibration . 63

4.3 The Walking Engine . 63
4.3.1 Problems of the walking engine . 67

4.4 Special Actions, Kick, Standup . 67
4.4.1 Kick . 68
4.4.2 Stand up . 70

4.5 Inverted Kinematics . 71
4.5.1 Forward kinematics . 71
4.5.2 Newton algorithm . 75
4.5.3 Quasi-Newton algorithm . 75

4.6 BalancingEngine . 76
4.6.1 PID based BalancingEngine . 78
4.6.2 Conclusion . 80

4.7 SensorDataProcessor . 80
4.7.1 Sensor fusion . 80
4.7.2 Falldetection . 81
4.7.3 Center of Pressure calculation . 81
4.7.4 Calculation of the camera matrix 82

4.8 Behaviour State Machine . 84
4.8.1 XTC . 84
4.8.2 Behaviour Module . 84

4.9 Robot Control XP . 87
4.9.1 Robot Control XP in a Nutshell 87

iv

Contents

4.9.2 Modifications in Robot Control XP 91
4.9.3 Network connection . 93

5 Conclusion and Outlook 95
5.1 Conclusion . 95
5.2 Outlook . 95

Bibliography 98

v

Introduction

This paper describes the activities of the project group 499 at the Dortmund University.
The main aim of this project group was to create a walking, soccer playing humanoid
robot. With the use of this robot the participation in the Robocup German Open 2007
and the Robocup Atlanta 2007 was the final goal. The German Open is the german
(european) championship and the Robocup Atlanta is the world championship in robot
soccer organized by the Robocup Federation1. The aim of this federation is to support
artificial intelligence and robotics research. A "future goal" is the development of au-
tonomous robots being able to compete against the human World Soccer Champion in
the year 2050.
The Robocup Soccer is splitted up in several leagues: a simulation league, different
leagues for wheeled robots (small size, middle size) and a four legged league using the
AIBO entertainment robot. There are also two leagues for humanoid robots: the kid
size league and the teen size league.
The BreDo Brothers, a robots soccer team collaboration of Bremen University and Dort-
mund University, were playing in the kid size league in 2006. The BreDo Brothers Team
used a Kondo KHR-1 humanoid robot. Due to restrictions of this robot, it was decided
to create a similar humanoid robot with more competitive specifications. The new robot
is also a kid size robot. The developement of this robot is being done by the University
of Dortmund. The former team split up.
This document gives an overview over the different topics the project group worked on,
including electronics (Chapter 1), hardware (Chapter 2) and software parts (Chapter
3 and 4). Some of the parts described in this document are further developments or
derivatives of the preceding project groups at the University of Dortmund (No. 485
and No. 468). Robot Control XP control and other debugging software was reused, for
example. Others are redesigns of existing parts, e.g. the robot framework or the robot
body design. But many parts are completely new as they were needed for the first time,
as the boards like the embedded board, the carrier boards or the security board. Also,
sensors like the gyroscope and the acceleration sensor were completely new.

It was tried to pick the best possible parts in every area for the new robot. Thus a strong
dual core cpu powered board is used in connection with an omnivision camera for fast
and reliable computer vision. The omnivision camera system uses computer vision based
on the diploma thesis of Stefan Czarnetzki who also implemented the needed software
[Cza07]).
Microsoft Windows XP Embedded was chosen as operating system (see chapter 3).

1 www.robocup.org

1

Contents

As a hip joint was missing in the preceding robot (Kondo KHR-1)[KKC04] the robot
body has been redesigned, now consisting of modular brackets by lynxmotion2 and ser-
vos by Hitec3. The body design was redesigned several times during the project group’s
year. The design steps are discussed in detail in chapter 2.
This year, Microsoft Robotics Studio was used for the first time instead of the self de-
veloped simulator used before (see chapter 4.1). Due to shortcomings in the old robot
framework, the framework has been redesigned (see chapter 4.2). With a new robot
body design, new motion patterns needed to be developed. See chapters 4.4, 4.6 and 4.7
for a description on that.
Due to the many changes made in the framework, sensors and other parts, also the robot
control tool had to be modified (see chapter 4.9).

2 http://www.lynxmotion.com
3 http://www.hitecrc.de

2

1 Electronics

When developing a new two legged robot platform, it has to be decided what kind of
processing power is needed for the robot. Since most current humanoid robots are limited
in their processing power the choice was made to have something more convenient. The
problem that arises is that only limited space for the processing unit is available. So
only certain form factors can be used. The decision was made that a XTX-Module, a
successor of ETX-Modules, would be the best choice due to its good performance to
size ratio. It also contains several components that can be found in a standard personal
computer.

1.1 Embedded Board

The module chosen was a XTX board manufactured by Congatec4 called Conga-X945
(see table 1.1 for specifications).

Figure 1.1: Conga-X945

This module was chosen because all needed features were available (e.g. USB 2.0 for

4 http://www.congatec.com

3

1 Electronics

Processor Intel Core Duo L2400 1.66Ghz, 2-MByte L2 cache LVa

Memory 512 MB S0-DIMM DDR2 667
Chipset GMHCb Intel 82945GM and ICMc Intel 82801GBM
Audio Realtek ALC 655 AC’97 Rev. 2.2
Ethernet ICH7M with PHYd Intel 82562
Graphics Intel GMAe 950 with max. 224 Dynamic Memory
Super I/O Winbond 83627HG
Peripheral Interfaces 2x Serial ATA, 4x 1x PCI Express, 6x USB 2.0, 1x IDE,

PS/2 Keyboard + Mouse, I2C Fast Mode 400 KHz multi-
master, 2x COM Ports TTL Level, AC’97/HDAf Digital
Audio Interface

BIOS Based on AMIBIOS8-1MByte Flash Bios with congatec
Embedded BIOS features

a low voltage
b Graphics and Memory Controller Hub
c I/O Controller Hub
d Physical Interface
e Graphics Media Accelerator
f High Definition Audio codecs

Table 1.1: Conga-X945 Specifications

the cameras). Also, the power consumption is very low. Since this module is only a
"baseboard" with basic functionality, some kind of carrier board (see section 1.2.1) and
a suitable power-supply (see section 1.4), to power the board, had to be built.

1.2 Carrier Board

The carrier board is the parent-board for XTX modules. It was specially designed for the
specific XTX-module. After the XTX-module was chosen, it had to be figured out which
features of the board were needed and which additional features had to be integrated on
the board. After three months of development the first revision(see section 1.2.1) was
finished. After another three month the second revision (see section 1.2.2) was finished
and being used during the RoboCup 2007 in Atlanta.

1.2.1 Revision 1

The first revision was a simple design, only consisting of really necessary and easy to
handle components. So the first revision (see section 1.2 mainly consisted of four USB 2.0
ports, four I2C device ports, 2 serial communication ports, one +5V DC power connector,
a proprietary debug port, a SATA connector and an 100 Mbit ethernet connector. The
+5V power supply was chosen to be an extra board for the first revision, Wireless LAN

4

1.2 Carrier Board

connection was realized via an additional USB 2.0 device. The connection to the servos
was established via an additional board that was connected to a RS232 serial interface.

Figure 1.2: Carrier Board Revision 1.0

• USB 2.0
When designing a robot it is necessary to keep in mind that several peripherals
(e.g. the cameras) which would require high bandwidth have to be connected. For
example, the desired resolution for the camera images was 1024x768 pixels. These
images will be transfered as 8 bpp 5 Bayer Pattern with a framerate of about 25
fps6. So the camera needs at least a bandwidth of approximately 150 Mbit/s. To
solve the bandwidth requirement problems it was decided to use USB 2.0 with
an approximate bandwidth of 480 Mbit/s. The XTX embedded board already
had an USB 2.0-Controller on-board. In addition, there are plenty of peripherals
available on the consumer market that support USB 2.0. Since USB 2.0 is an
high speed differential bus it is important to keep the layout consideration in mind
when designing and routing the PCB7. All design criterias given by the USB 2.0
platform design guide were followed. A protection circuit(see figure 1.3) for the
USB was also added which consists of a Surge Rated Diode[SEM], which protects

5 Bits per pixel
6 frames per second
7 printed circuit board

5

1 Electronics

against overvoltage, and an Dual-Channel Power Distribution Switch[MIC], which
protects against overcurrent and thermal destruction.

Figure 1.3: USB circuit with protecion

• I2C bus
Since the XTX embedded board provided this bus it was decided to use it to interface
the sensors. The 400Khz-I2C bus is able to interface at least three sensors (2
gyrometers and 1 acceleration sensors). With an approximate payload data rate
of about 25 KByte/s and 2 Bytes per sensor a sample rate of approximately 4
KSamples/sensor seemed to be possible. Unfortunately, this was far from what
later experiments should reveale. After some tests it was discovered that only
about 20 samples per sensor could be reached. This is due to a bug in the XTX
embedded board firmware which was already known by the vendor but not yet being
fixed.

• Wired/wireless communication
For wired communication the standard on-board 100Mbit ethernet controller is
used. Since an ethernet plug was too big to be included on the carrier board,
a custom connector [Mol] is used. Wireless communication is not directly inte-
grated since it was much easier to just use an USB Wireless LAN stick instead of
integrating another circuit on the board itself.

• Serial communication
The embedded board includes two RS232 ports(see figure 1.4), for that the UART
ports supplied by the XTX board are used together with RS232 transceivers which
handle the conversion between serial port TTL level (+5V) and RS232 (+12V).
Transceivers from Analog Devices - ADM213EARZ [Dev06] are used to fulfill this
task. One RS232 port is dedicated for the communication to a previously developed
servo motor controller. The other is designed to aid debugging the hardware. As
for the wired communication normal RS232 D-Sub connectors, used in standard
pc hardware, are too large so 3-pin mini-Molex [Mol] connectors are used for the
serial ports to keep the dimensions of the board as small as possible.

6

1.2 Carrier Board

Figure 1.4: Serial port and Debug circuit

• Debugging
Debugging was an really important point during the development. In order to
interact with the operating system, VGA, keyboard and mouse support is included.
Since this is not needed in normal operation, all required hardware is outsourced
to an additional debug board(see section 1.3). A 16 pin mini-Moles connector[Mol]
on the carrier board carries out all needed signals, for instance the ps/2 signals,
I2C signals and VGA signals. Besides the debugging-connector, a serial-ATA port
is included which allows the use of standard hard disks during development of the
Windows XP Embedded operating system.

Evaluation

After using the first revision it was realized that some mistakes were made. The mini-
Molex[Mol] connectors were not as good as they were expected to be. The connectors
were too small and once they were connected it was hard to disconnect them. Also,
the more the connectors were used, the more they were damaged. As one result of
that, the wires broke out of the connectors. Beside the mini-Molex connectors the
usb connector positions were not well reachable. Flexible USB extension cables were
needed to use the ports. The ethernet connector was not working due to pcb routing
mistakes. The USB connectors lagged some capacitors that were added afterwards by
hand. Another problem that was not being thought of was how to deal with problems
of the power supply. So no over-voltage or over-current protection was added to the

7

1 Electronics

board main-power supply, which turned out to be one of the biggest mistake, since two
embedded boards were damaged due to power failures or misconnections. All this lead to
the development of the second revision (see section 1.2.2) and the security board (see
section 1.5).

8

1.2 Carrier Board

1.2.2 Revision 2

After some tests with the first revision of the carrier board (see 1.2.1), it was recognized
that some modifications had do be done to enhance the system. The first revision worked
fine but was not very applicable for the work with the robot. The robot has to carry
various additional devices like the power supply and the servo controller. Also, some
parts like the USB stick and WLAN stick have to be connected in an uncomfortable
way. To improve the old carrier board a second revision was necessary. This version of
the carrier board should also be the final revision because of time and resource consid-
erations. It was decided to order three boards, two for the robots and one as a spare
part.

Additional features

In contrast to the first revision of the board there are some additional functionalities.

Figure 1.5: Front-Side of the carrier board

• I2C-IO devices
Two new I2C devices were implemented with the general I/O expander PCF8574
[Sem97] from Philips. One is connected as an input device which can be used for
external buttons. The second is connected as an output device which can be used
for LED debugging. Both devices have 8 inputs respectively outputs and can be

9

1 Electronics

seen in figure 1.7.

• I2C-AD Converter
Two built in AD converters are connected to the I2C bus usable for the gyroscopes
(see 1.7.1). This devices are implemented with PCF8591 [Sem98] ICs produced by
Philips.

• Servo-Controller
This controller is fully integrated to the carrier board (see figure 1.5). It consists
of an Atmega128 micro controller from Atmel [Cor06], a direct connection to the
RS232 interface of the XTX board (see 1.1) and additional components needed for
a proper operation. The device is generating the PWM signal for the servos (see
2.1). For that functionality it is connected to the 24 pin headers where the servos
are connected to the carrier board (see figure 1.7).

• Ethernet-socket
This standard ethernet socket [Inc] (see figure 1.7) is added to the carrier board.
This enhances the error diagnostics if WLAN problems occur. It turned out that
this additional socket is very useful especially on contests where WLAN is not
working properly or simply is not available.

• Two fan connectors
One is used for the CPU fan, the other is yet unused and reserved for further

Figure 1.6: Fan-Connectors

applications. Both connectors (see figure 1.7) are pin compatible with normal fan
connectors (see figure 1.6) used in consumer electronics.

• Additional I2C sockets
Different additional devices can be connected via this connectors. Some additional

10

1.2 Carrier Board

sockets (see figure 1.7) are added to simplify the connection of devices for example
the foot sensors.

• Additional USB sockets
In the first revision it appeared that the USB sockets are to close together to really
connect four devices at a time. Especially the WLAN stick is far to big and blocks
at minimum two slots. For that reason two more USB slots are added to the board.
These additional slots are no standard USB sockets but normal pin headers (see
figure 1.7 - USB ports 5 and 6). The two cameras are connected to these pin
headers. Later it turned out that the connection was not as fail safe as supposed
so the USB cables where soldered directly to the pin headers.

• Pin headers for connection of the acceleration board
An I2C acceleration sensor is added to the system to detect the orientation in
space. This is very important for some special actions (see 4.4) like the stand up
movement (see 4.4.2). The acceleration sensor SMB 380 from Bosch is used which
is able to measure the acceleration in three dimensions. This sensor is connected
to the board via these additional pin headers (see figure 1.5) and is driven with
I2C signals.

• Several LEDs
Some status LEDs signalizing the status of the board and its periphery including
whose ethernet connection. They have the same functionality as status LEDs on
normal PC mainboards.

• Redesign of debug connector
The debug connector of the first revision of the carrier board appeared to be to
tiny. It got damaged to often. For that reason it was switched to a new more
robust connection type (see figure 1.5). Apart from that no changes are made due
to hardware debugging.

Changes to first revision

It became apparent to be useful to redesign some functionalities of the carrier board,
while working with the first revision. While proceeding some tests of the first revision,
some minor and major changes had to be made. The reasons and the resulting changes
to the carrier board are listed below:

• Simpler RS232 interface
The signal generation for the RS232 interface is simplified with the use of a
MAX3221, which is a RS232 transceiver [Pro99]. There is a direct connection
of the RS232 interface to the micro controller for the servos which makes the com-
munication more fail safe. The second RS232 interface is routed to the border of
the board (see figure 1.5) for directly debugging.

• Layout changes
Some layout changes are made to simplify the connection of external devices. The

11

1 Electronics

Figure 1.7: Backside of the carrier board

main change is that the USB ports are now placed inverted on the board (see figure
1.7) which allowed to connect the USB and WLAN stick without a cable behind the
back of the robot, so that they are not in the view of the omni directional camera
(see [Cza07]). The second main change is the usage of the sandwich technique,
which will be described in 1.4.1.

• No SATA interface
The SATA interface of the first revision is not implemented any more because it
was never used. It is useless because the robot will never carry a hard drive.

1.3 Debug Board

While designing the carrier board it was noticed that it is necessary to have some kind
of debug output. For the sake of compatibility, standard in- and output interfaces are
used. These are a PS2 interface for keyboard and mouse inputs as well as a VGA
interface for video signals. The realization of these interfaces was a relative easy task
because all of the interfaces are implemented on the XTX board (see 1.1). Due to space
considerations these interfaces are not directly implemented on the carrier board, but
on a specific debug card, which holds all desired functionalities. Additionally to the
features mentioned above, another I2C interface and a power LED are placed on that

12

1.4 Power Board

board.

Figure 1.8: Debugboard

The circuitry of the debug board is very simple (see figure 1.8). There are only some
resistors and capacities filtering noise away from the VGA connector and a over current
protection for the keyboard and mouse interface (similar to the implementation of the
over current protection for the USB ports in 1.2.1). The complete device is so robust
that it can be disconnected from the robot, while it is in operation.

1.4 Power Board

A very important hardware capability is to supply servos and mainboard with power. To
develop a power supply, working under the given weight and space constraints, turned
out to be a complicated task. During some early tests with the carrier board’s first
revision (see 1.2.1) it appeared that the XTX board (see 1.1) consumes up to 5 amperes
while booting. Calculations of the electric power consumption of the servos show a
current need up to 20 amperes (worst case assumption). While in operation, especially
during extreme motions of the robot (for example the stand up motion mentioned in
4.4.2), a load of approximately 10 amperes is generated. Linear voltage controllers are
not useful due to their dissipation loss and as a result of that, their thermal leakage.

1.4.1 Sandwich Technique

The connection of the power supply and the XTX board (see 1.1) became a mention-
able design criteria. It is possible to implement the power supply circuits directly on
the carrier board (see 1.2.2), but concerning the fact that the power supply often gets
damaged, a different approach was chosen. The power supply is mounted to the carrier
board using pin headers. In this way a modular design called sandwich technique is
achieved, which allows the power supply to be replaced easily. Another benefit of this
sandwich technique is a decrease in required space. Later this sandwich technique is
extended by the security board (see 1.5). In the end a very compact power supply with
different fail safe functions is produced.

13

1 Electronics

Figure 1.9: Power board and security board in sandwich technique

1.4.2 Power Board Operation

The main component of the power board is a synchronous PWM controller integrated
into one IC. PWM means that the output power transistors are driven with pulse width
modulation. A closed loop of the output voltage to the controller guarantees a stable
voltage for different loads. The loop back is working with a frequency of 200kHz. It is
used a IRU3037 [Rec05] IC in combination with IRLR3717 [Rec04] power mosfets from
International Rectifier8. The IRU3037 provides some useful additional functionalities
like an external programmable soft start function as well as an output under voltage
detection that latches off the device when a short circuit is detected on the output.
The IRU3037 is generating the PWM signal with the HDrv and LDrv pins for the two
power mosfets QX_1 and QX_2 deciding whether power is put on the output or not.
Behind the transistors an inductor iron, with several turns and two parallel capacities
CX_8 and CX_9, is used to stabilize the output voltage. The value of the output
voltage is programmed by reference voltage and external voltage divider consisting of
RX_3 and RX_4. The formula for that is:

VOUT = VREF ·
(

1 + RX_3
RX_4

)
(1.1)

With the values 1kΩ for RX_3 and 330Ω for RX_4 and an internal reference voltage
VRef = 1, 25V (see data sheet [Rec05]) this is:

8 http://www.irf.com

14

1.5 Security Board

Figure 1.10: Schematic of power board

VOUT = VREF ·
(

1 + 1000Ω
330Ω

)
(1.2)

VOUT = 5, 04V

In this type of application it is very important to use highly accurate resistor values. So
only resistors with 1% tolerance are used. For the second power supply circuit, powering
the servos, a potentiometer (see data sheet [Dep]) is used instead of the two fixed resistors
which allows to create different output voltages.

1.5 Security Board

In process of the project, it turned out that it is important to monitor the power supply
system (see 1.4) for security reasons. This relates to the input voltage, which is pro-
vided by the lithium polymer accumulators (see 2.2), as well as to the output voltage
used for the XTX board (see 1.1) and the servos (see 2.1). Because of the fact that
lithium polymer accumulators are damaged physically, when their voltage falls below a
certain level (deep discharge), LiPo9 savers are used, which measure the voltage level
continuously. The LiPo savers provide LEDs, which signalize under voltage occurrences
optically. Applied to the robot this security mechanism was not very practicable because
the flashing of the LED can be easily ignored. As an advancement an acoustical warning
in combination with the LEDs is implemented. This feature is placed on the security
board.
The second important functionality of the security board is the protection of the servos
and even more important the XTX board (see 1.1). They have to be protected against

9 Lithium polymer accumulator

15

1 Electronics

over voltage, which would destroy them. To achieve this two crowbar circuits10 are
designed and implemented.

1.5.1 Acoustical LiPo Saver

Figure 1.11: Battery protection

Generating a acoustical warning out of the optical warning the LiPo savers have to
pass down their signal to the security board. Having a dynamic load on the lithium
polymer accumulators (see 2.2), especially in motion of the robot, the voltage can drop
temporarily, although the batteries are almost full. This is not a major problem but it
causes the LiPo saver to flash shortly. The acoustical warning in contrast should only
appear, if the batteries are barely empty. This results in the fact that the LiPo saver
signal has to be filtered over time. It was decided to filter the signal over two seconds,
to avoid false negative warnings, which were evoked by a shorter time period of the LiPo
saver signal. An acoustical warning is only generated, if the signal is constant over this
period of time. A piezo speaker, which is driven by a micro controller is generating the
acoustical warning. The micro controller is also responsible for the filtering of the signal.

10 A crowbar or crowbar circuit is an electrical circuit used to prevent an over voltage condition of a
power supply unit from damaging the circuits attached to the power supply. It operates by putting a
short circuit across the voltage source.

16

1.6 USB-I2C Converter

The inputs PA6 and PA7 of the micro controller (see figure 1.11) are connected via a
voltage divider to the LiPo savers. The acoustical output is triggered over the outputs
PA4 and PA5 of the micro controller. These outputs are driven inverted to each other
to generate a strong signal for the piezo speaker. The pulsing of the circuit is done by a
16MHz crystal oscillator connected to XTAL1 and XTAL2. The programming of the
controller is done via the ISP connector.
The circuit is generating two different kinds of beep sequences depending on which
batteries (the servo batteries or the board’s batteries) are empty. In a situation where
both batteries are empty, the beep sequences are played alternating.

1.5.2 Crowbar Circuit

Figure 1.12: Crowbar circuit

The commonly used circuit is working with a thyristor, which gets low resistance in case
of an over voltage condition. The circuit creates a bypass in that situation which results
necessarily in a blow of one of the fuses. The voltage is adjusted via a Z-diode. In figure
1.12 the diode is the component D_1. It has a value of 5,1V which is adequate for the
output voltage for the XTX board (see 1.1). The XTX board is generally working with
5V. For the servo’s output voltage the crowbar circuit has to be implemented a second
time. Now only the Z-diode is changed to a 7,5V alternative.

1.6 USB-I2C Converter

All the sensors used by the robot are connected to the carrier board with help of the I2C
bus. The I2C bus is a multi master serial bus which is often used to attach low speed
devices. This section will not cover any details about the I2C bus itself or its protocol.
This chapter describes the hardware and firmware of the USB I2C converter.

17

1 Electronics

1.6.1 Motivation

The Congatec XTX board actually has an on board I2C interface which can be used.
Unfortunately it turned out that due to bad hardware implementations there is a lot of
offset created during the communication. It appeared that even having a clock speed of
400 kHz it was able to transfer only 1 Kbyte/s which is not quite enough considering
the variety of sensors it was planning to use. In order to achieve a bigger bandwidth a
simpler hardware interface had to be used which is powerful enough to operate the I2C
bus at least in fast mode (400 kHz) or even in high speed mode (3,4 MBit/s). After
trying different micro controllers the microchip PIC 18F2550 turned out to be the most
applicable. The18F2550 comes besides many other build in modules with a build in
USB 2.0 interface (full speed and up to 32 end points) and a SSP or I2C (slave/master
(interface). A free available C compiler, IDE and USB driver / development environment
is also available.

1.6.2 Features

The features implemented in the USB-I2C converter are a result of the requirements
and wishes made for the converter. Some features like the USB boot loader and 3,3V
functionality are a nice bonus resulting out of the selected hardware.

• USB 2.0 (low speed 1,5 MBit/s and full speed 12 MBit/s)

• I2C full speed (400 kHz) and high speed (1 Mhz)

• USB - boot loader

• Firmware for CDC / MCD device

• USB powered

• Fully functional even on 3,3 V

1.6.3 Realization

Microchip offers a so called USB framework which provides basic USB functionalities.
However it is still important that some parameters are adjusted to work properly. This
chapter will not cover all the descriptor available in the framework or for a USB device
in detail. It is important however to have some basic understanding how USB devices
work and are managed, the next section explains are a device needs to be set up.

• Device descriptor
In general it is true that every USB device has exactly one device descriptor. The
device descriptor contains vendor, type, serial numbers and some control informa-
tion.

18

1.6 USB-I2C Converter

• Configuration descriptor
Depending on how many configurations a device may have a USB device can have
one or more configuration descriptors. Information about energy consumption,
number and type of interfaces, etc are stored in the configuration descriptors.

• Interface descriptor
For every interface described in the configuration descriptor needs to be an interface
descriptor. Interface descriptors contain information about its type, e.g. HID, and
the number of endpoints the interface has.

• Endpoint descriptor
Every endpoints realised or used by an interface needs to be configured. The
Endpoint descriptors take care of that. Endpoints usually are either read or write,
only control endpoints can be used as read/write points. Also the size of the
endpoints needs to be described.

After the installation of the USB framework an setting up the MPLAB project the
settings described above can be applied as needed. After running various tests with
different setting configurations the following seems to be the best for this application:

• Boot loader for easy firmware upgrades

• One device descriptor

• One interface with two endpoints (incoming / outgoing)

• Pulling endpoints every 2ms

The framework also created a folder "user" where the actual device code will go. The
framework maintains the basic USB functions and has to be executed several times per
second. Thus the user code has to execute quite fast, especially it can not contain any
"while(true)" loops because it would stall the main framework and the USB device looses
the connection to the host.
During the boot sequence the user code initializes the I2C hardware of the16F2550. Dur-
ing normal operation the user code reads the USB buffer and analyses it. The protocol
used to interface the USB-I2C converter will be explained in detail later.

The hardware setup is quite simple since 18F2550 has everything need already embed-
ded. All needed are some resistors, transistors, connectors and some status LEDs. The
I2C connectors match form and pin assignment with the I2C connectors used on the
carrier board. The USB connector respects the USB pin convention and is assigned as
follows:

• Pin 1 - VBUS

• Pin 2 - D-

19

1 Electronics

Figure 1.13: Schematic

• Pin 3 - D+

• Pin 4 - Ground

The four status LED indicate:

• LED1 - green - USB-I2C converter has power

• LED2 - red - error addressing an I2C device

• LED3 - yellow - error sending data to I2C device

• LED4 - blue - boot loader / scanning for I2C devices

With the jumper J1 the boot loader can be activated. IfJ1 is closed during power on,
the USB-I2C converter will start the boot loader and a new firmware version can be
loaded with help of the windows application ”′USBoot35.exe"’. For normal operation J1
has to be open.

20

1.7 Sensors

Figure 1.14: USB-I2C converter

1.6.4 Protocol

The first byte always contains the address of the I2C device. To send control commands
to the USB-I2C converter the address has to be 0. The second byte tells the firmware
how many bytes have to be sent or read from the I2C bus. In case of a write operation
the following bytes contain the data sent to the I2C bus.

Figure 1.15: Protocol

1.7 Sensors

In this chapter the sensors available on the DohBot’s humanoid robot will be introduced.
Not all of the presented sensors were used on the German Open 2007 or at the RoboCup
2007.

1.7.1 Gyroscope

The gyroscope is an inertial sensor used to stabilize the robot’s motion while e.g. walking.
The ADXRS300 gyroscope is an analog device measuring 7 mm x 7 mm x 3 mm (see

21

1 Electronics

figure 1.16).

Figure 1.16: ADXRS300 gyroscope

It is a 300 deg/sec angular rate sensor implemented on a single chip including all re-
quired electronics. It uses an 80 Hz bandwidth and has a z axis (yaw rate) response.
The outputs are analog values ranging from 0 V to 5 V which have to be converted into
digital values. For this purpose the carrier board provides an embedded A/D converter
which is connected to the I2C bus.

Figure 1.17: Two gyroscopes mounted on a metal cube

To achieve good balancing results two gyroscopes are used so that their rotation axes
cover the x-y plane. Two sensors were mounted on a metal cube (see figure 1.17).

Figure 1.18 describes the behaviour of the sensing device when mounted on a robot that
is balancing in one direction. The rotation axis is directed out of the package’s top. For
clockwise rotations it produces values between 2.5 V and 4.75 V and for counterclockwise
rotations values between 0.25 V and 2.5 V.

22

1.7 Sensors

Figure 1.18: Rate out

Figure 1.19: Pin header

Pin Designation Description
1 VCC 5 V
2 GND Ground
3 RateOut Measurement output
4 2.5 V Reference signal
5 Temp Temperature
6 ST2 SELF-TEST INPUTS: ST2 RATEOUT response
7 ST1 SELF-TEST INPUTS: ST1 RATEOUT response

The gyroscopes were not used to stabilize the walk in actual robot soccer matches be-
cause of a lack of time for developing an accurate model and especially for implementing
an interpretation of the sensor’s outputs. Doubts that the resolution of the gyroscope
is not applicable and that therefore the gyroscope should be replaced by one with a 60
deg/sec resolution were allayed by other teams using exactly the same sensor successfully
on the German Open 2007 and at the RoboCup 2007.

1.7.2 Acceleration

The Bosch SMB 380 is a triaxial low-g acceleration sensor IC with digital output. It
allows measurements of acceleration in perpendicular axes as well as absolute temper-
ature measurements. An evaluation circuitry converts the output of a three-channel
micromechanical acceleration sensing structure that works according to the differential

23

1 Electronics

capacitance principle.
The Bosch SMB 380 has a very small package (3 mm x 3 mm x 0.9 mm) which is an
advantage and a challenge at the same time. If mounted/soldered directly to the carrier
board it consumes only very little space. The problem however is the soldering itself.
Unfortunately Bosch Sensortec provided an evaluation package with 3.2 mm pinout.

Features

Key features of the Bosch SMB 380 are the following:

• USB 2.0 (Triaxial accelerometer)

• Temperature output

• Small QFN package (footprint 3 mm x 3 mm, height 0.9 mm)

• Digital interface SPI (4-wire, 3-wire), I2C, interrupt pin

• Programmable functionality g-range ±2g/± 4g/± 8g, bandwidth 25-1500 Hz

• Ultra-low power ASIC with low current consumption and short wake-up time

Internal Filter

The Bosch SMB 380 has a built-in digital filter bank. The filter bank uses an averaging
filter to provide different frequencies. This enables the sensor to be read out at lower
frequencies without losing information due to sub sampling. This leads to a signal of
higher quality at low read-out rates (see figure 1.20 and 1.21). The frequency can be set
to seven levels between 25 Hz and 1500 Hz.

24

1.7 Sensors

Figure 1.20: Bosch SMB 380 with filter at 50 Hz and a read-out rate of approximately
25 Hz. Data recorded from a free hanging robot.

Figure 1.21: Bosch SMB 380 with filter at 1500 Hz and a read-out rate of approximately
25 Hz. Data recorded from a free hanging robot.

25

1 Electronics

Figure 1.22: Scheme of the robot’s foot

1.7.3 Foot sensors

The figure 1.22 shows a drawing of the robot’s foot equipped with sensors. The foot
sensors measure the force, that the robot applies to the ground in z direction. Each foot
is equipped with four sensors, one sensor in every corner of the foot. As sensor elements
the FSR-149 from IEE (for the data sheet see [Int]) are used. To read out the sensors
data and send it via the I2C bus to the controller board, a micro-controller At-Tiny26
from Atmel (for the data sheet see [Cor]) is used. Figure 1.23 shows that the resistors R2
to R9 build voltage dividers with the sensors. Let Si be the force dependent resistance of
the sensor i. Then the voltage Ui measured by the A/D converter of the micro-controller
is:

Ui = R

R+ Si
U0

According to the data sheet of the sensors the sensor’s resistance is approximately re-
ciprocally proportional to the force.

Si = c′i
Fi

So:
Fi = ci ·

Ui
U0 − Ui

(1.3)

A way to calibrate the sensor is to measure the parameter ci for a known calibration force,
and calculate all other forces using equation 1.3. This kind of calibration turned out to be
insufficient because it is only correct for the calibration force. Another way to calibrate
the sensors is of course to measure the voltage for a greater number of forces, and linearly

26

1.7 Sensors

Figure 1.23: Scheme of the foot sensor controller board

interpolate the forces in between this measuring points. The problem with this method
is that it systematically overestimates the force. The solution to this problem is to
combine the two ways of calibration. Instead of only measuring the voltages of the given
calibration forces, the parameter ci in equation 1.3 is additionally calculated. Between
this measuring points only the parameter c(Ui) has to be interpolated linearly and is
then used to calculate the appropriate force.

27

2 Hardware

The robot’s mechanics plays a very important role in the whole process of robot develop-
ment. It affects the way the robot walks, kicks or in general moves. It has to be robust
and lightweight. In order to satisfy all requirements a new robot was developed instead
of using an industrial manufactured configuration.

2.1 Servos

Servos belong to the most important parts of the robot because they are responsible
for stable and precise movements. In the current configuration the robot possesses 18
servos, 6 of them for the arms (3 per side) and 12 for the legs (6 per side).
On the one hand the servos must be strong enough to allow reliable movements and on
the other hand the maximal energy consumption is limited.
The first revision of the robot used several types of servos (e.g. Hitec HSR-5995TG,
Hitec HS-5995TG, Diamond DS9500, Hitec HS-5945MG). Depending on their qualities
different servo types were used in different sections of the robot: arms, hip and feet.
This was not practical because every supplement had to be bought for each servo type
separately. Another problem was that some servos were not strong enough for specific
movements (e.g. stand up). Therefore the next revision of the robot was build with
servos of one type (Hitec HSR-5990TG).
The biggest problem of this servo is its high heat development. Most of the heat is pro-
duced by electronic circuits which can be cooled passively or actively. The usage of heat
sinks provides good heat protection for servos which do not have too much load (e.g.
arms), but for servos which are permanently heavily loaded (e.g. knee joint by walking),
passive cooling is not sufficient. Some of the teams participating in the RoboCup used
therefore active cooling based on small fans attached to their servos. This type of cooling
provides very good heat dissipation, but the power consumption raises.
In the current configuration, the servos are cooled passively, but the cover of the servo’s
circuits is shifted a few millimeters outwards in order to improve the air flow. Addition-
ally, cooling spray is used for the heavily loaded joints. A disadvantage of applying the
cooling spray is that the robot has to be taken off the game. Anyway, it is necessary to
prevent the servos from being damaged.
Another problem were plastic gear wheels in the transmission (see figure 2.1) which got
broken and blocked the servo when they were exposed to heavy load and high temper-
ature. The problem was solved by replacing the plastic gear wheels with more robust
metal ones.

29

2 Hardware

Figure 2.1: Damaged gearwheel

2.2 Accumulators

To operate the robot an adequate power supply is needed. The power supply has to be
portable which means small and lightweight. Its capacity has to be sufficient for at least
10 minutes of nonstop operation which is one half of an robot soccer game. The current
configuration includes two sets of Lithium-Polymer (LiPo) accumulators with 1100 mAh
and 11.2 V. Each set consists of two accumulators. One set supplies the servos and the
other one the board.
To protect the accumulators against deep discharge (which can cause the accumulator
to explode) a LiPo saver is applied (see chapter 1.5.1) for each set of accumulators. The
LiPo saver provides a possibility to control the accumulators charge state and enables
the user to change them, if necessary.
For the board one set of fully loaded accumulators provides enough power for the whole
game which means 20 minutes of continuous operation.
The servos, although, need more power than the board. In the best case the servo’s
accumulators have to be changed only once a game. But if the servos are heavily loaded
e.g. by many stand up movements both accumulators are empty within several minutes.
This is the normal case. A possible solution would be reducing the weight of the robot’s
parts or to make movements more energy efficient.

30

2.3 Upper Body Design

2.3 Upper Body Design

The robot’s upper body is mainly divided into two parts - hip and torso. Both had to
be customly designed, due to the special needs of the customized PCB layout, the arms’
and legs’ configuration and the camera’s position.
The first revision was produced from bended aluminum sheets and was used until the
German Open. Because of the experiences made during the tournament, i.e. discovering
problems with the body’s structural integrity, the design and the production process
were altered. Since the second revision, the design is made with a CAD-Tool and the
body is produced from solid aluminum.

Figure 2.2: Upper body (exploded view)

2.3.1 Hip

A good hip design is pretty important for the robot, as it has a lot of side effects. The
leg design, the integrity of the torso, and - as experienced especially during the German
Open 2007 - also the walking stability is affected by the hip design.

Revision 1

As there has been the decision to integrate only the two servos for spreading legs into
the hip, it was looked for an easy solution to keep the design simple but functional.

31

2 Hardware

This has been achieved by customizing a Multipurpose Dual Bracket (ASB - 15) from
Lynxmotion11.
The choice of material was aluminum sheets which is very lighweighted on one hand,
but hard enough to avoid easy deformation or breaking on the other hand. By planing
the bended edges carefully, the structure gets stiff enough to compensate the occuring
stresses.

Figure 2.3: Old Hip Design

This material has been experienced not to be as solid as it was thought; and there was
also the disadvantage that bended foils can not form closed structures. For this reason
the bended edges got soft and instable, and so slightly deformed the hip while weaken-
ing the material at the same time. Because of this there have been massive problems in
walking and additional work on calibration.
This enforced a redesign of the hip after returning from the German Open 2007.

Revision 2

As there were mainly problems caused by the material and the way of production, but
not with the basic design itself, further work was concentrated on those problems.
To solve this it has been decided to produce the hip from solid aluminum by milling, so
that a closed structure with nor weak nor open edges can be obtained. The production
technique itself allows to work very precisely now allowing to precisely embed the servos
into the hip which also stablizes their bearings.
Regarding a servo’s great heat dissipation and to gain lesser weight, the new hip has
been provided with some notches, taking care not to infringe the structural integrity.

The advantages of this new design are considerably more structural integrity, improve-
ments of the walk and its stability, increased and more precise reproducability and a

11 www.lynxmotion.com

32

2.3 Upper Body Design

Figure 2.4: New Hip Design

simpler and faster assembly of the robot.

2.3.2 Torso

The most problematic tasks on the design of the torso were the size, weight and shape
of the PCB stack. But the arm design, the mounting of the camera and the dead weight
had to be considered as well.
Trying to keep the design simple it was decided to use an U-profiled torso which is
connected to the hip with screws, to ensure separate and easier maintainance of both
parts. The arms, the camera and the mountings for the PCB stack and a safety cage
are screwed to that basic frame.

Revision 1

The first revision was - like the hip - made from bended aluminum sheets, which lead to
the same structural problems. But those were even worse here as the torso was highly
deformed by the forces through the robot’s fall-downs and the forces on the arms during
stand-up moves.
In this revision also two special brackets had to be mounted to the torso for installing
the PCB stack. These were not just hard to produce because of the PCB layout, but also
took a lot of space and had to be additionaly insulated to avoid short-circuit damages
to the PCB stack. Another problem was the tricky and time-consuming installation of
the stack and the brackets themselves.

33

2 Hardware

Revision 2

Facing severe problems with structural integrity and difficult assembly to the robot, it
was likewise decided to mill the torso out of solid aluminum and to produce an optimized
new design.
As the problems with integrity should be solved by the new material, design work was
concentrated on more functionality and easier assembly. For these reasons the mountings
for the PCB stack have been integrated to the torso instead of using additional brackets,
which provides more space and easier installation and solves the danger of short-circuit
damages by limiting the area of contact to uncritical regions. Also the provisions for
installing the camera, the arms, the safety cage and wires as well as the connection to
the hip have been precisely integrated into the design.
This additionaly makes the new torso much easier and faster to assemble and to produce.

Figure 2.5: New Torso Design

From the torso’s second revision’s design a lot more structural integrity and reliability
for the robot has been experienced during Robocup 2007.

2.4 Battery Holders

In the first version of the robot, two Lithium-Polymer accumulators were mounted on
each foot, one on the front and one on the back end. They were attached to the feet
by simple Velcro fasteners. Allthough they did not got loose during operation, they

34

2.5 Foot Design

Figure 2.6: Comparison Torso Design

have not been totally fixed to their positions and there was an immanent danger of an
opponent robot kicking away a battery.
So after the German Open 2007 there has been a need for a better mounting for the
batteries. Another reason were the facts that the walk was thought to be stabilized by
having just one battery per foot and the newly tested balancing engine also needed more
weight at the hands for its efficiency.
For those reasons a cage has been designed for the batteries made out of aluminum sheet,
which is lightweight and extensively open to dissipate any heat from the batteries. It is
also universally mountable to the robot at the same time. As the holders are customized
for the batteries, they now have a tight fit, but are also pretty easy to exchange. The
battery’s fuse is now used for fastening the battery in the battery holders.
During Robocup 2007 good experiences have been made with the new battery holders,
even if some little improvements, like widening the notches for the fuses a bit, could be
made to make the exchange of batteries during matches faster and easier.

2.5 Foot Design

The foot design does not seem to be so important compared to other works done for
the robot. In fact, this is only partly true. In the beginning, the feet delivered with the
initial setup where used.

35

2 Hardware

(a) Design (b) LiPo Installed

Figure 2.7: Battery Holder

(a) Foot Design

Figure 2.8: Comparision of new and old foot design

The dimensions of these feet were remarkably smaller than allowed by the official rules.
As a result of that the whole robot was somewhat unstable during any movement.
Especially when it came to dynamic stability like in kicking movements, it was almost
impossible to keep the robot on its feet.
Since these feet where the only ones which could be bought for that robot, it was decided
to develop an own foot design.
Feet were designed which were close to the maximum allowed by the rules. The actual
design of the feet did not change that much, but this was not necessary since the only
demand was to have bigger feet, basically.
The choice of material was aluminum sheets which is very lighweighted on one hand,
but hard enough to avoid easy deformation or breaking on the other hand. By planing
the bended edges carefully, the structure gets stiff enough to compensate the occuring
stresses.

This material has been experienced not to be as solid as it was thought; and there was
also the disadvantage that bended foils can not form closed structures.

36

2.6 Leg Design

Figure 2.9: Old Hip Design

2.6 Leg Design

A good leg design is one of the most important things to have besides solid software. In
fact, it is so important that it was changed three times during the work on the robot.
Due to the lack of knowledge in humanoid soccer there was not paid much attention to
the leg design at the beginning. Thus, the initial leg design of the robot was used for
the first couple of weeks.
After first tests with the robot, the knees were moved a little bit higher, as an improve-
ment on walking and kicking was expected by that.

(a) First Re-Design (b) Intermediate Design (c) Final Design

Figure 2.10: Leg Design (2)

After some time the leg design was changed again, since the robot was still pretty tiny
and it should get as close to the maximum height allowed by the rules as possible.
The main reason for this were the dimensions of the upper body. The maximum width
allowed is relative to the height of the robot. So the robot had to be pretty tall to meet

37

2 Hardware

those regulations. This time, the small C-brackets of the legs were replaced by longer
ones. This way the robot gained about 10 cm in total height.
This leg design was used on the German Open 2007. It did not work out as well as
expected. Due to limitations in the knee servos of the robot the whole walk did not
function as intended.
Pretty soon after the tournament, the design of the legs was changed once again. This
time the long C-brackets were kept, but the actual design was changed. The knee servos
were slightly shifted and rotated, so that it was possible to move them at least as far as
needed by the walking engine.
With this leg configuration the robot was participating in RoboCup 2007 in Atlanta.
This design was working a lot better than the prior designs. And still - it will be not
kept in future. The proportion of the legs compared to the remaining body is too high.
This makes the walk and the general moving of the robot unnecessarily hard to control.
The next step will be to keep the design of the legs and change some of the long C-
brackets back to short C-brackets. This will also help getting the center of mass closer
to the ground - which by itself already helps to stabilize the robot.

2.7 Arm Design

During the work on the robot, the arm design was changed twice. The first time it was
necessary because the space inside of the robot was needed for the PCB stack and the
initial arm design blocked this space.

(a) Initial Arm Design (b) Final Arm Design

Figure 2.11: Arm Designs

The change was part of the whole redesign of the upper body for being able to carry the
PCB stack. The result can be seen in the picture 2.11.

38

2.7 Arm Design

During this reconstruction, neither the carrier board nor the congatec board was available
only a blueprint of the carrier board’s dimensions was available at that time. The new
arm design uses parts of the old legs. The long bracket in the upper part of the arms
used to be the shinbone of the robot.
Nevertheless, the design had to be changed once more to make the arm construction
more stable. Inspired by the leg design, it was used as a draft for the redesign. The
rotation parts of the legs were also used for the arms. This way the arms got a lot more
stable and now it is even possible to lift the whole robot (4kg) by grabbing only one
arm.

39

3 Operating System

3.1 General

One of the early tasks was to decide which operating system should be used by the robot.
The choices were obviously some sort of tripped down or embedded Windows, or a small
Linux distribution. Since a lot of work on the hardware side was expected and the
majority of the group was more fluent with Windows, it was decided to giveWindows
XP Embedded a try. All drivers needed for the Congatec XTX Board, wireless stick
and cameras are available for Windows. Now all drivers are also available for Linux
so that experiments with Linux might also be very interesting. This chapter gives a
little introduction to Windows XP Embedded (XPE) and will give an overview about
the configuration used. It will also list the components that where developed during the
last year.

Windows XP Embedded is basically a regular Windows XP except that it can be con-
figured very individually. The footprint ranges from a minimum of about 20 MB up
to several hundred megabytes. Usually no special hardware drivers are needed or the
Windows XP/2000 drivers can be used. XPE is, since Service Pack 2, able to start from
a USB drive, such as a memory stick. To protect the flash memory of the stick from
unnecessary write cycles, a write filter can be used.
The write filter puts a logical layer (see figure 3.3) between the data system and the
harddrive. Write requests are redirected to the logical layer and not directly written to
disk. XPE offers two write filters, the Advanced and the File Based Write Filter. The
File Based Write Filer (FBWF) was introduced with SP2 as well. Its main advantage
over the advanced write filter is, that it can be applied for a whole disk, partition or just
certain files. It turned out to be useful to have the whole drive protected except the
working folder "writable" and the registry. Since everything, except the working folder
and the registry, where write protected it was on the one hand ensured that the flash
disk did not get too many unnecessary write cycles and on the other that the operating
system could not get destroyed by accidentally deleting some files or improper shutdowns.

To manage the FBWF easier and more convenient, a tool was developed to perform
some basic operations. It will be introduced later.

To configure an XPE, various tools were developed by Microsoft. A database keeps
track about all the components available, called the Windows XPE repositories. The
Component Designer needs to be used if new components are being developed. With
help of the Component Designer the actual setup is created. After all components are
collected and all dependencies are resolved, an image of the configuration can be build.

41

3 Operating System

During the first system boot the first boot agent configures the system and registers the
components.

3.2 Configuration

The configuration or the composition of the components used for the XPE image is made
with the Target Designer shown in figure 3.1. On the left hand side the basic categories
like networking, systemtool, hardware components, etc are listed. The actual configura-
tion is shown in the middle of the screen, on the right hand side the basic properties of
the components can be set. The administrator account component for example offers the
option to specify an administrator password. Some components like the Explorer Shell
have dependencies with other components, usually the Target Designer automatically
adds the dependent components. It happened however that after the installation and
even all dependencies where resolved some functions or property dialogs had no effect
and it appeared that only the GUI itself was added. Apparently there is no automated
mechanism provided to find the missing components and it turned out to be very hard
to find the missing components manually.

Figure 3.1: Target Designer

3.3 Components / Drivers

The use of components makes the installation process very easy. Components usually
contain all the information needed to e.g. integrate drivers for a wireless networks card in
the system. A component contains files, registry settings and usually allows predefining
some settings. Once a component is created and integrated in the image there is no

42

3.3 Components / Drivers

need to install or configure any hardware after the first boot of the system. To manage,
create and edit components the Component Designer shown in figure 3.2 is used.

Figure 3.2: Component Designer

The current XPE image counts 378 components and is about 333 MB in size. The
following list gives an overview of the most important components used:

• Congatec x945

• USB boot 2.0

• File Based Write Filter

• Networking components

In addition to the predefined components it was also necessary to develop own compo-
nents to allow an easy and convenient integration of the files, tools and needed drivers.

• Additional libraries and files
This component contains some additional files and programs that might come in
handy, e.g. an text editor. It also contains a collection of files that did not belong
to a specific driver or program.

43

3 Operating System

• Creative Live! Cam Notebook Pro
This package contains the drivers and software for the notebook webcam that is
located at the lower torso of the robot.

• D-Link wireless lan
The D-Link wlan component contains only the drivers for the wireless USB-Stick.
This component could be improved by adding some networking tools.

• Omnivision camera
This component contains only the drivers for the omnivision camera, the tools for
testing and debugging are in a separate package.

• Omnivision camera tools
This package consists of the tools for testing and debugging. Because it is depen-
dent on the omnivision camera component, it cannot be used by itself.

• USB-I2C converter
Contains the USB-drivers for the USB-I2C converter - that are in particular drivers
for the converter itself and also for the bootloader. The bootloader tool and a test
tool are also included.

3.4 File Based Write Filter

As it was decided to use Windows XP Embedded (XPE) as the operating system, some
adjustments had to be done to it.
The main adjustment was the implementation of the File-Based Write Filter (FBWF),
that allows XPE to maintain the appearance of read and write access to write sensitive
or read only storage. FBWF makes read and write access transparent to applications.
Basically, it enables enhanced flash memory reliability through stateless operation, re-
duced wear, and improved servicing functions.

3.4.1 FBWF Installation and Configuration

The FBWF has been installed offline during the design phase using the Target Designer.
Once installed, it can be configured using a command shell. In order to make configura-
tion easier and faster, a little tool was developed to take care about the basic settings.
The FBWF comes with the FBWF API which gives direct access to all the functions
provided by FBWF. Until now, only a few functions are implemented, since only very
basic functions were needed so far. Extending the tool, if needed, is very easy though.

3.4.2 FBWF In Detail

The FBWF introduces several new features not found in EWF (Enhanced Write Fil-
ter): greater write filter transparency to applications, selective write through, commit
and restore, improved overlay memory utilization and finally an enhanced API. Like

44

3.4 File Based Write Filter

the Enhanced Write Filter, FBWF prevents writes to one or more protected volumes
and caches all writes to protected volumes in an overlay cache on a volatile store. But
because FBWF operates at the file level rather than the sector level, it provides several
features not found in EWF that will be presented in the following section.

3.4.3 FBWF Features

• File and Directory Management Transparency
Describes file and directory management functions available to applications.

• Selective Write Through
Describes how to allow writes to specified underlying protected volumes.

• Selective Commits and Restores
Describes how to commit writes from overlay cache to underlying protected vol-
umes and how to discard changes in overlay cache and restore the view to the
underlying protected volumes.

• FBWF Memory Optimization
Describes how FBWF optimizes utilization of overlay cache.

• FBWF API
Describes the FBWF API set.

3.4.4 The FBWF Tool

FBWF-specific functions used by the tool (used to manage the system-wide write cache):

• FbwfEnableFilter
Enables write filtering in the next session.

• FbwfDisableFilter
Disables write filtering for the next session.

• FbwfProtectVolume
Enables write protection for a specified volume.

• FbwfUnprotectVolume
Removes write protection for the specified volume. These functions are used for
file commit and restore.

• FbwfCommitFile
Writes the cached file overlay to the physical disk file.

Other functionality:

45

3 Operating System

• ShutdownWindows
Shuts down all open applications and the carrier board.

• RebootWindows
Reboots the carrier board.

FBWF operates at the file level to redirect all write requests targeted for protected
volumes to overlay cache. The figure 3.3 illustrates the relationship of FBWF to file
system I/O and Windows sub-system components.

Figure 3.3: Layer view of the FBWF

Figure 3.3 composite view presented by FBWF shows how modified files, File2 and File3
are represented in the cache but not touched in the underlying volume.

46

4 Software

4.1 Simulator

The simulator is a very important tool in the development process of a robot. It can
be used for many steps in the process - beginning from the lowest level of debugging
the walking engine, through making the first sketches of the walk or special moves, up
to the development of behaviours. The last step could be said to be the main purpose
since there is really much testing needed and the time for testing the behaviour on a real
robot is mostly very limited. Besides this rebooting the robot for testing small changes
is very time consuming.

4.1.1 Previous simulator

Until now, SimRobot was used for the simulations. It is a 3D simulator developed at
the University of Bremen, that allows the simulation of arbitary robots. The Microsoft
Hellhounds used SimRobot already for the AIBO simulations and the BreDoBrothers
adapted it then for the humanoid robot.
Its key features are:

• ODE12 physics engine.

• Sophisticated scene-management with a XML-based scene description.

• Quite large set of simulated sensors and actuators.

Unfortunately, the physical simulation was not satisfying for a humanoid robot simula-
tion and the overall performance was also a major argument for the decision to take a
look at other simulators.

4.1.2 Requirements for the new simulator

Since the simulator was supposed to be used for the next years, the choice had to be
well-grounded, so the requirements were elaborated very thorough.

Major requirements:

• Performance
For a comfortable work, the simulation should run very smoothly at about 30 fps.
In the best case with multiple robots.

12 Open Dynamics Engine www.ode.org

47

4 Software

• Best possible physical simulation
This is a really important issue, because the sketches of the walking engine or
animation moves should be made and tested in the simulator.

• Decoupling from the robotcode
The robotcode has to be connected by a TCP/IP network connection.

• Ability to simulate different kinds of sensors
Omnivision camera, gyroscope etc.

• Stability

Minor requirements:

• Ability to run a simulation with multiple robots

• Easy to maintain

• Good documentation

4.1.3 The candidates and their features

After a couple of weeks of searching and testing, two alternatives were extracted as the
potential candidates:

• USARSim
This simulator is mainly used in the rescue league. Based on the commercial
UnrealEngine and equipped with UnrealEd, a powerful editor, it seemed to be
an interesting option. The robot-to-code connection is however made through
a workaround using the Gamebots mod for Unreal - so it was not an optimal
solution. Although the biggest argument against it was the closed-source engine,
which induces unnecessary restrictions. Overall, this simulation environment did
not give an impression to be comfortable, consistent (third-party tools needed) and
expandable.

• Microsoft Robotics Studio (MSRS)
It is a quite new simulation environment. The main features are:
– Service oriented architecture
– Managed and very fast graphics engine (based on XNA13 - a set of game

development tools)
– Wrapped Ageia PhysX engine (supports hardware acceleration)
– Simplified concurrency programming library (CCR)

13 XNA’s Not Acronymed

48

4.1 Simulator

An additional advantage is the fast growing community, where the MSRS devel-
opers also participate in.

Finally, the choice fell on Microsoft Robotics Studio - not only because of its
features, but also due to the fact, that it is permanently developed further.

4.1.4 MSRS Simulator - architecture overview

The simulation architecture of the simulator consists mainly of two parts: the simulation
environment and the robot entity (as shown in figure 4.1). The third, dashed part is the
external robotcode.

Figure 4.1: Simulator architecture

All the parts will be elaborated in detail in the following sections, but for a better
understanding of the whole process, it is also important to introduce the order of events,
that are necessary to establish a simulation. The following steps are needed:

1. Start the simulation environment service and set up the scene

2. Create the robot entity, its service and connect them

3. Establish a connection between the robot service and the external robotcode

4. Start the main simulation loop (connection, sensor and movement management)

4.1.5 Simulation Environment

The simulation environment is responsible for the macro-management (i.e. interaction)
of all simulated entities. It is built up from two parts: the simulated scene (see figure

49

4 Software

Figure 4.2: Simulation scene

4.2) and the service controlling it.
The scene contains cameras, lights and of course the simulated entities like the field, the
robots and the ball.
The service is particularly responsible to set up the simulation and physics engines, to
load the entities and generally to manage the simulated scene. As the name says, it is
only a environment for the simulated robots. The real robot-related work like walking,
sensors, robotcode connection etc. is made in the robot entity described below.

4.1.6 Robot Entity

Just as in the simulation environment, also in the robot entity two parts can be differ-
entiated: a visual part and a service part. The roles are similar: the service has the task
to control the visual entity. This section is the focal point of the simulator development.

Visual Entity: physical and graphical model of the robot The model of a robot
is strictly spoken a hierarchical union of the particular parts: brackets and servos which
are connected by joints (the parts of the simulated robot are shown in figure 4.3). This
visual entity is then added to the scene in the simulation environment.

• Parts
A part consists primary of common attributes like position, orientation, weight,
friction and others. In addition to this, it has also a physical shape for the world
interaction and an optional graphical representation for rendering. The last one

50

4.1 Simulator

Figure 4.3: Robot model in single parts

can be built from one or multiple primitives: boxes, spheres or capsules. A polygon
mesh (3D model) can be optionally assigned to the part for a better look. When
there is no mesh defined, the physical primitives are taken for the rendering. Ad-
ditionally, even shaders can be assigned to the mesh.
For comparison, the figure 4.4 shows the different representations.

A model was used, where the physical shape of a C-bracket consists of three boxes,
a servo of only one box.
For the graphical model, first the off-the-shelf models provided by lynxmotion.com
(supplier of the real-robot brackets) were used. Unfortunately, the models are
designed for CAD-Applications and have massively too many polygons, so that
the simulation ran with about 10 fps (2.8GHz P4 HT, 1GB RAM, ATI Radeon

51

4 Software

Figure 4.4: Graphical, physical and wireframe representation

X1600). As a consequence they have been immediately replaced by new self-made
ones, which have only 5% of the original polygons resulting in framerate of the
original 60 fps.

• Joints
Joints are connectors, that specify how two parts can move in respect to each other
around that joint. They can connect two parts absolutely stiff and rigid. It can
also act as a hinge between them or even like a spring. The most popular joint
type in the AgeiaPhysX is the 6-degrees-of-freedom (DOF) joint (3 rotational + 3
translational), with the ability to
– lock/unlock particular DOF
– determine the spring properties (stiffness, damping)
– determine the physical correctness (for the sake of computation time)

Thereby almost every imaginable connection method can be created by combining
these properties.
Here only one rotational degree of freedom is needed, so the others have been
locked. The spring properties are set to as-rigid-as-possible, however, at the be-
ginning there were still problems with the wobbliness, so the physical correctness
had to be additionally adapted. These properties are set when a joint is created.
Nevertheless, the more important part is the connection process of two parts. Two
crucial points can be emphasized:
– Positioning in world (absolute) coordinates

This is the first essential part: placing the brackets and servos correctly in
absolute coordinates in the world (with proper orientation). Within these co-
ordinates, these parts are created and inserted into the scene. It is important
to already preconceive in this step, how the parts will be connected relatively
later on. The reason for this is explained under "Relative positioning".

52

4.1 Simulator

– Connection
The next step is the relative connection by the joint. It has two connectors
and one part is assigned to each of them. This is the second crucial part:
relative positions, rotation axes and the normal vectors (orientation) have to
be specified - in respect to certain constraints:

∗ Relative positioning
This step determines the real position of a part in the world, since every
part is positioned relatively to its parental part. The only part, whose
absolute position does matter is the root of that hierarchy, which is the
torso in this case. But this also means that the initial absolute position-
ing of the parts mentioned above will be "overwritten" by the relative one
when the physical engine will start running. So, if for example the orien-
tation is initially set wrong, the part will be forced to turn with respect
to the relative connection. This can cause odd effects like shaking or even
falling of the robot.

∗ Rotation axis matching
For every part the rotation axis has to be determined. Transformed into
world coordinates, the parts both have to lay on the same axis, ensuring
they will also turn around the same axis. If this is not done correctly the
simulated robot simply explodes.

∗ Normal vector matching
Determines the orientation of the part.

The assembly is finished at that moment in the hard code, making changes in the
model not really comfortable. As the real robot changed permanently, it was often
needed to also adapt the simulated model, which took quite a lot of time.

• Other issues when creating the model
The bare hierarchical union of parts could result in a moving robot, but for getting
the best possible simulation, attention has to be paid to some more constraints:
– Proportionality

A very important issue is the proportionality of the parts, as the same angles
have to work on the real as well as the simulated robot. This criteria has
been met pretty successfully, so even the inverse kinematics can be debugged
in the simulator.

– Weight distribution
The next crucial issue is the weight of the parts and the weight distribution
across the robot. In spite of the fact that all robot parts were weighed and
the weights of the simulated parts were set correctly, the first version of the
robot had a greater forward inclination than the real one. Therefore the
weight distribution had to be adjusted by displacing the centre of mass a bit
backwards.

53

4 Software

– Friction
Another, not less inferior concern was to find suitable values for the friction,
for both the underground and the feet. Many tests were needed to find the
proper values. It is likely that if the robot design will change significantly,
the friction parameters will have to be adapted again.

4.1.7 Robot Service

This is the second part of the simulated robot: the model-controlling service layer. The
robot service is mainly responsible for managing the connection to the robot-code, the
robot movement and the sensors.
A service in Microsoft Robotics Studio can be thought of as special type of module. It
contains:

• Unique identifier
Making the service unique in the whole simulation runtime.

• State
Data that describes the current state of the service.

• Main Port
Defines an interface to the service.

• Handler Methods
Processes the messages received on the main port.

For an easier understanding how these things work together, figure 4.5 shows a simple
scenario. Service A has a main port at which it supports the messages X and Y (Because
only for these messages it contains the appropriate handlers). When a service B sends a
message X to the main port of A, the message is forwarded to the handler of X, which
processes it and does the proper actions (e.g. changing the state).

In case of the used robot service, the state’s data consists of joint angles and connection
information on its main port. It supports the Connection and Motion Request messages.
Both are sent to the robot service by the simulation environment service.
As mentioned in the beginning of this section, the robot service is responsible for con-
nection management, robot movement and the sensors. These aspects will be explained
more detailed in the following paragraphs.

• Connection management and networking
To establish a connection between a simulated robot and the robotcode, the simu-
lation environment sends a Connection Request message with the IP address and
port number as parameters to the robot service. This urges the connection request
handler to try to establish a TCP/IP connection to the robotcode.
The main purpose of the communication with the robotcode is sending the proper
joint-angle values.

54

4.1 Simulator

Figure 4.5: Simplified service architecture

So the top-level protocol is a simple XML file formatted as following:

<JointAngles>
<J0>-0.000000</J0>
<J1>1.270796</J1>
(...)
</JointAngles>

The angles values are sent by the robotcode at about 50Hz, which is absolutely
sufficient.

• Motion
The robot movement is also initiated by the simulation environment. It sends a
Motion Request (a parameterless message) 50 times per second telling the robot
service, that it has to read out the joint angles from the robotcode-connection
buffer and update the joint positions. 50Hz are absolutely adequate for a smooth
movement.
Moving the joints in MSRS is very easy: the right joint has to be picked from the
physical engine and the right angle has to be set:

((PhysicsJoint)joints[i]).SetAngularDriveOrientation(targetAngle);

• Walking
The first version of the Robot Service was supposed to only test the joint move-
ments, so it did not receive motion requests from the robotcode, but simply

55

4 Software

played preanimated moves. The sourcecode for this functionality is based on the
animation-control code from Laurent Lessieux (originally developed for a simu-
lated Kondo). After adapting it, the robot was able to do push-ups and some
cheer-moves. But since the aim was to have a walking robot, the robot service
was rewritten for gaining the ability to connect to the robotcode and receive the
joint angles from the walking engine. The first tests were really surprising as the
simulated robot walked almost stable with the same parameter set as the real
robot. Only the step timing had to be adapted, so the movements ran slightly
slower and the robot walked. Of course, there were also many problems - mainly
through the wobbliness of the joints: under force impact they simply broke the
axis. So it were effectively 4-DOF joints with one rotational axis and three trans-
lational axes which was quite bad, but on the other hand it somehow simulated
the bending process of real brackets - even though a bit too much. Fortunately, in
the MSRS Forums one of the developers presented a solution for this problem and
the translational problem could be fixed with custom degree of correctness. As a
result of the improvement, the walk became more stable and the joint wobbliness
was pretty realistic if only a little bit of the translational freedom was left.
With the current walking engine the simulated robot can walk omnidirectional,
although the rotation causes some troubles - like on the real robot. So the core of
the problem is on the one side probably the walking engine itself, but on the other
also the friction is likely to cause some problems.

• Sensors The next step after having a walking robot was naturally to have a full-
featured simulated robot including especially simulated sensors.
– Camera

The main sensor of the real robot. The hitch in simulating the camera is the
fact, that an omnivision camera is used: it features a horizontal 360° view
with a vertical opening angle of 120°. But since MSRS cannot capture such
images, a workaround was needed to be able to get omnidirectional images.
In the old simulator such a workaround already existed by computing the
omnidirectional image from four normal cameras. Three cameras with 120°
FOV are aligned horizontally (three yellow planes on figure 4.6) and one
camera is pointing downwards.
Unfortunately acquiring the images from the simulated cameras did not work
properly. At that time no usable documentation existed to troubleshoot this
problem, so it was postponed. These troubles were although really problem-
atic, since everything in the framework is based on the camera: self- and
ball-localization, as well as the obstacle localization, which are then again of
vital importance for behaviour planning.

– Oracle
For the behaviour planning at least two things are needed: the position of the
robot and the ball position. Since they cannot be extracted from the image
processor by now, a workaround has been made by "oracling" them. This

56

4.1 Simulator

Figure 4.6: Simulatied omnivision camera

means taking their absolute positions directly from the simulator and sending
them to the robotcode. This is indeed a good alternative for first rough
sketches of the behaviour. A further improvement would be adding noise,
which could deliver quite realistic results for more sophisticated behaviour
testing.

– Gyroscope, Acceleration, Inclination
Though these sensors are needed for balancing and fall detection in the real
robot, in the simulator they would be needed mainly for the fall detection.
But they have been not followed up in the current simulator.

4.1.8 Multiple robot simulation

Having a simulated robot being able to walk and to localize itself, a multiple-robot
simulation was going to be tested. The main problem is that every simulated robot
needs one instance of the robotcode - and one instance of the robotcode and simulator
running together on one machine (at least on a 2.8GHz P4 HT with ATI Readon X1600)
is an absolute maximum. But due to the simulator and framework design it has not
really been a problem. As the connection to the robotcode is established via TCP/IP,
the code can also run on other machines across the network. So, on the last days before
Robocup 2007 a simulation with three robots was tested and it ran fine at about 15-20
fps, which is an absolutely acceptable result.

4.1.9 Summary

The first months of using MSRS were more experimentation and exploration of the
limits of the Microsoft Robotics Studio than real development work. Although, the
simulator could be already used in some situations: inverse kinematics, walking engine
debugging and behaviour planning. After some improvements it will surely become a
great simulation environment for a humaniod robot.

57

4 Software

4.2 Framework

The motivation for developing a new software framework for the biped soccer robot were
the experiences made with the old one during theGerman Open 2007. The old framework
is based on the German Team’s AIBO platform and was ported to Windows XP with
all bugs and relics. The biggest disadvantage of the old framework was the inability
to run concurrency on a multicore platform. So the implementation of a new software,
which supports multi-core CPUs and which is designed for Windows XP Embedded, was
started.

4.2.1 Design

Because the new framework should be able to use multicore CPUs, a threading technol-
ogy, which is supported by Windows XP and which can flexibly assign certain tasks to a
specified core, was needed. At the first attempt the OpenMP Framework for creating and
managing the different threads was tested. The threading class design allows a simple
change of the underlying threading technology. Later in the course of development, the
threading was switched to Windows Threads because it is more flexible than OpenMP
in stopping, suspending and awaking threads. Furthermore the multi threading capabil-
ities of the new framework should be really modular. Therefore it was split into three
parts according to the parts’ functionality. The parts are the Main Program (see chapter
4.2.2), the Shared Library (see chapter 4.2.3) and the ThreadObjects (see chapter 4.2.4).

4.2.2 Main Program

The main program implements and manages the threads, called Processes, for certain
tasks. The main class to mention is the ThreadManager which task is to create, configure,
startup and destroy threads. The ThreadBase is the base class for all Processes. It is
designed to handle the inter-process communication (IPC) (see chapter 4.2.3) and to
manage the ThreadObjects which are encapsulated and dynamically loaded with the
help of the ObjectList.

4.2.3 Shared Library

This library is a static library that contains everything that has to be shared between
the different parts of the framework.

Threading

All the threading functionality is combined in the Thread-class. Every thread has to
inherit from this class and is dedicated to a process type, so they can differ from each
other. All threads are event based i.e. they are only executed when a certain event occurs
otherwise they are sleeping. These events can be anything. At the moment only timer-
based and message-based triggering of the Processes is used. The MotionProcess for

58

4.2 Framework

example is triggered by a timer-event every 20ms. Beside time triggering, also message-
based triggering is used which means that some Processes are started only when a
specified message has been received. Message-based triggering guarantees that those
threads are only executed when needed.

Inter-Process Communication

Every thread has a receiver list specifying which processes will receive the sent messages.
Every receiver needs an incoming queue for received messages. The first implementation
used a normal queue, but since the queue had to be a multiple-writer single-reader
queue, a lot of work for synchronizing different read and write events was necessary.
This synchronization caused a lot of blocking and slowed down the whole framework.
The slow-down expressed itself mainly in a stuttering motion since the timing could
not be guaranteed. That’s why a complete non-blocking system was demanded. To
achieve this, the framework now uses ring buffers instead of normal queues. The IPC
is realized by a messaging system which is implemented via several non-blocking single
reader/writer ring buffers. Every Process has one ring buffer for each other Process that
sends it messages (see chapter 4.2.3). When a Process is triggered it collects all readable
data from the ring buffer and puts them into its internal legacy queue.

ThreadMessages

ThreadMessage-objects are the only objects which can be used for IPC and network
communication. Any data structure or class that is generated in one thread and is used
by another one inherits from the abstract class ThreadMessage. This class deals with
features like thread safety and reference counting (see figure 4.7).

Figure 4.7: ThreadMessage

The ThreadMessages are dynamically generated and destroyed objects. Dynamically
destroyed means that they have an internal reference counter and as soon as this refer-
ence counter reaches zero the message is destroyed automatically. This really simplifies
the memory management since all a program has to do is counting up and down the

59

4 Software

references. It must not be aware of the time to destroy the object. Furthermore, all
ThreadMessages can be serialized (see chapter 4.2.3), which makes it comfortable to
send them over the network or save them on harddisk.

Serialization

In a huge software framework it is useful to have the ability to save configuration files
for several settings and parameters making recompilation of the whole framework un-
necessary. To implement this functionality a flexible serialization scheme was designed.
It should be independent from how the data is saved to memory or harddisk, so it is
split into two parts, the Serializable- and the Serializer-class. Both classes are abstract.
The Serializable-class defines the data of a certain object that should be serialized and
the Serializer-class defines how this is actually done. For now, there are three serializers
implemented. One for saving into a XML-File Format, which is primary used for con-
figuration files. A second one saves into a network stream format. The last one is a text
serializer that dumps everything into a human readable format for onscreen debugging
or logging.

Singletons

The framework contains some data structures that should be accessible from everywhere
in the framework. This can be done by using either static classes or singletons. Singletons
were chosen because they can be initialized with different values and are only created
if they are needed. When dealing with singletons in multithreading environments, it
must be guaranteed that only one instance of the specific singleton class will be created.
Therefore the code in listing 4.1 is used.

Listing 4.1: Singleton with Double-Check-Idiom
1
2 S ing l e ton ∗ S ing l e ton : : the Ins tance = 0 ;
3 volat i le LONG Sing l e ton : : instanceLock = 0 ; //means no ins tance ye t
4 S ing l e ton& S ing l e ton : : g e t In s tance ()
5 {
6 while (the Ins tance == 0) // check 1 , non t h r ead sa f e
7 {
8 i f (InterlockedCompareExchangeAcquire(&instanceLock , 1 , 0) == 0) //

check 2 , t h r ead sa f e
9 {
10 the Ins tance = new S ing l e ton () ;
11 } ;
12 }
13 return ∗ the Ins tance ;
14 }

60

4.2 Framework

Process Types

For all tasks running concurrently or partially parallel, a special process type exists.
The following types are the ones needed for the robot. The communication between this
threads is shown in figure 4.8.

Figure 4.8: Communication between the threads

• Image Processor
One of the main software parts is the image processing. In this thread the images
from the two cameras are processed and all percepts will be generated from these
images. Most of the calculation time is used by this process.

• Motion Processor
The motion is a time critical thread, because it controls the servos of the robot.
To get smooth motions an 50Hz update frequency is needed. This was one of the
hardest challenges in designing the framework. Windows XP Embedded is not a
real time operating system, so no guarantee for a 50Hz scheduling of this thread is
given. Every time this thread sleeps, it might take longer than 20ms for awaking it
again. One reason for this problem is the synchronization between several threads
and another reason are blocking calls to the I/O interfaces by the image and the
sensor processor. The best actual solution for now is dealing with a failure rate up
to 4 percent i.e. in one second the time limit of 20ms is missed twice at most. To

61

4 Software

achieve this performance, ring buffers were implemented for the message system
and are given a higher priority.
It is very important to use no debug commands in one of the motion modules,
because they effect a blocking situation.

• Sensor Processor
A reason to put the sensor readings and processings in their own thread is the
blocking call for reading the sensor values.

• Behavior Processor
The behavior engine does not need an update frequency as high as the motion and
it can run concurrently with the image processor.

• Selflocator and Balllocator
These are the processes creating the world models based on the percepts the image
processor has generated. While the Selflocator and the Balllocator update their
models, the image processing can run in parallel.

• Debug Processor
The debug thread is responsible for the network communication to RobotControl
XP.

4.2.4 ThreadObjects

The framework provides several threads called process which run concurrently and com-
municate with each other. A modular concept was created for implementing software
solutions. Each module is a separate DLL containing a class inheriting from the Thread-
Object-class. It is assigned to a process type and is given one of the following types.
Possible types are module, sensor and actuator. Many modules can be assigned to
each process. Furthermore a sequence number can be assigned to each ThreadObject
to determine the execution order which is important to solve dependencies between the
modules.

Sensors

Sensors are the modules, which are called first by the thread in each cycle. All modules
which have an input from the environment via an hardware device are sensors for exam-
ple cameras or the acceleration sensor. These modules create ThreadMessages containing
the values read from the sensors and put it into the message queue.

Module

The modules are the processing units of the different threads. For example, the Walkin-
gEngine is a module. The first thing that is done by a module is filtering out all
ThreadMessage-objects in the queue which are not used in the module. From needed
ThreadMessage-objects a backup is kept by the module, because it is possible that a

62

4.3 The Walking Engine

certain ThreadMessage-object is not received in every cycle. In this case the module
operates on the backup messages instead.

Actuators

All modules that control an hardware output device are actuators. For example, the
servo controller is an actuator. It is responsible for building the servo command out of
the target angles delivered from the motion and for sending it to the hardware device.

4.2.5 Calibration

The servos are controlled by pulse length signals. Calibrating the servos means to
associate pulse lengths and joint angles properly. For the calibration it is assumed, that
the relation between the pulse length and the joint angle is linear. The first approach
was to store the pulse length of two opposite angles (±90◦) and to interpolate linearly
between them. To set the proper zero position after the servo is attached to the robot,
an offset angle could be defined. The signs of the angles could be set with an additional
parameter. The problem with this kind of calibration is, that after the servos are built
into the robot, most of them are not able to reach the ±90◦ positions at all. This means,
it is necessary to somehow guess the maximal pulse lengths. Additionally, whenever
one of the parameters is changed, the zero position offset has to be recalibrated as
well. To make the calibration more reliable and to make it possible to calibrate the
assembled robot a separate referenceAngle was defined for every joint. This reference
angle can be chosen so that it is easy to reach and measure it for every joint. For
each reference angle, the referenceAnglePulseLength is stored. The zero position is
no longer defined using an angle offset, but by defining the zeroPositionPulseLength
directly. The referenceAnglePulseLength and the zeroPositionPulseLength can be
determined independently. An algebraic sign parameter is no longer necessary, because
it is implicitly specified in the sign of the reference angle. The pulse length of a given
angle α is calculated as follows

pulseLength(α) = referenceAnglePL− zeroPositionPL
referenceAngle

· α+ zeroPositionPL

To make it easier and more accurate to determine the calibration pulse lengths, a cal-
ibration device was designed (see figure 4.9). It is possible to attach the robot firm to
this device, so that markers on the sides of the device can be used to bring the joints in
the appropriate zero or reference angle positions. With the help of the new calibration
method and the calibration device, it is now possible to calibrate the robot in less than
one hour.

4.3 The Walking Engine

The walking engine used by the DohBots has been developed by Ralf Kosse in 2006 as
a part of his diploma thesis. For a detailed description see [Kos06]. This walking engine

63

4 Software

Figure 4.9: The calibration device for the robots

calculates in every frame the value t ∈ [0; 1],

t := currentT ime()%StepDuration
StepDuration

where StepDuration is a parameter. Then it sets the joint angles of each leg according
to a predefined trajectory function.

JointAngles = trajectory(t)

The function trajectory() is of a kind, that let the foot move straight backward if
t ∈ [0; 0.5] and forward on an adjustable curve if t ∈ [0.5; 0]. This works vice versa for
the other foot. To calculate the actual joint angles from the trajectories, the function
trajectory() uses a concept of inverted kinematics. For details on the inverted kinematics
see section 4.5. For the arm movements the shoulder joints are set using the sinus
function (see figure 4.10). After this calculation, offsets are added to some hip and
foot joints to adjust the movement of the body. Beside StepDuration, the additional
parameters are:

• StepHeight
The distance between the highest point of the foot trajectory and the lowest.

64

4.3 The Walking Engine

Figure 4.10: Feet and arms of the robot moving along trajectories

• StepLength
The length of each step.

• ArmAmplitudeX
The amplitude of the arm movement in x direction.

• ArmPhaseX
The phase of the arm movement in x direction relative to the movements of the
feet.

• ArmAmplitudeY
The amplitude of the arm movement in y direction.

• ArmPhaseY
The phase of the arm movement in y direction relative to the movements of the
feet.

• BodyAmplitudeX
The amplitude of the body movement in x direction.

• BodyPhaseX
The phase of the body movement in x direction relative to the movements of the
feet.

• BodyAmplitudeY
The amplitude of the body movement in y direction.

65

4 Software

Figure 4.11: Angle of one of the rotational hip joints during one step cycle

• BodyPhaseY
The phase of the body movement in y direction relative to the movements of the
feet.

• YOffset
The distance between the feet.

• ZOffset
The whole foot trajectory is moved closer to the robots body by this value.

• footTiltX
Constant offset added to the foot joints to tilt the robot in x direction.

• footTiltY
Constant offset added to the foot joints to tilt the feet inward or outward.

• AccelerationPerStep
Instead of setting the StepLength at once, the StepLength is increased by this value
each frame, to make the movement of the robot smoother during acceleration.

As this walking engine was initially designed for a robot that had no joint to rotate the
leg around the z axis, it does not provide a move that rotates the robot. To approximate
the movement of a robot that turns around, the rotational hip joint of the robot is moved
in a position during the time the foot is on the ground (t ∈ [0; 0.5]) and moved back
during the time, the foot is in the air (t ∈ [0.5 : 1]) and vice versa for the other foot (see
figure 4.11). The advantage of this kind of parametrized walking engine is, that the walk
movement can be influenced easily by adjusting the parameters. To be more flexible,
the following additional parameters were added during the development of the walking
engine:

66

4.4 Special Actions, Kick, Standup

• StepLengthLeft and StepLengthRight
Separate StepLength for the left and the right foot.

• ZOffsetLeft and ZOffsetRight
Separate Z-Offsets for the left and the right foot.

• BodyYOffset
Offset to constantly move the body a bit to the left or the right.

• FootScaleFactor
A factor multiplied to the movement the foot joints. This makes the foot a bit
more (or less) tilt during the time the foot is lifted.

• bodyXOffset
Offset to tilt the body forward or backward.

• footSpread
Offset to spread the feet in a V-like manner.

4.3.1 Problems of the walking engine

A number of problems with this walking engine were experienced. First, it is very time
consuming to adjust the walking movement if it is wanted to change something on the
walk where there is no parameter to do that, because the only way to do this is to add
a new parameter directly to the walking engine. Second, this walking engine does not
use any sensor information to stabilize the walk. To solve this, a balancing engine was
developed (see section 4.6). Third, this walking engine does not know anything about
other moves which are performed, for example by the special actions engine. This is a
problem as the transitions from and to other movement types (for example kicks) are
not controlled and the robot loses stability often.

4.4 Special Actions, Kick, Standup

The Special action engine is responsible for implementing different movements (special
actions). Walking is excluded, because it is controlled by the walking engine.
The special action engine had experienced several evolution stages. The old engine con-
sisted of a set of special action files (mof), which had to be described in the source code
and a build-in compiler, which created one file (specialaction.dat) out of these mof files.
Each new file (new movement) had to be explicitly described in the source code and
in a description file (extern.mof). Each change in the files resulted in the necessity of
recompiling, because the compiler was build-in. The MOF files could be edited with an
text editor, what was sometimes complicated due to the structure of these files.

Each special action file consists of the following parts:

67

4 Software

Figure 4.12: MOF file examaple: jesus.mof

• motion id
The unique identification of the file (motion) in the source code and in the descrip-
tion file (extern.mof). It is used for calling certain special actions (e.g. kickLeft).

• Short movement description
For example "‘kick the ball with left foot"’. All lines beginning with quotation
marks are comments. So the description is optional and can be removed.

• Movement definition
It consists of a set of numbers. The first 18 are joint angles (in degrees). Three
angles are for the left arm (AL1 to AL3), followed by three for right arm (AR1
to AR3), then six angles for the left leg (LL1 to LL6) and for the right leg (LR1
to LR6). The last two numbers are interpolation (values between 1 and 3) and
duration (in milliseconds) parameters.

To create new movements or edit one, it was necessary to work with each joint sepa-
rately. Afterwards the whole SpecialActionEngine had to be recompiled. That is the
reason why the motion compiler was separated from the SpecialActionEngine and the
MotionDesigner was integrated into RobotControlXP (see figure 4.13).
The stand-alone motion compiler allows to recompile only specialaction.dat after a move-
ment was edited. It takes less time than before and can be done on the fly (e.g. if it is
necessary to change some parameters for kicking).
The MotionDesigner made working with movements a little bit more comfortable. Ad-
ditionally it includes some functions from the KinematikEngine, so that it can calculate
joint angles out of foot positions. Therefore it has to set the relative foot position (x,
y and z). It is also possible to send movements directly to the robot without compiling
any special action files.
The last changes made within the SpecialActionEngine was porting the files to XML
standard and creating seperate movements for each robot, so that the movements can
be optimized individually for the robots.

4.4.1 Kick

The current kick offers 5 different possibilities:

68

4.4 Special Actions, Kick, Standup

Figure 4.13: MotionDesigner

• kickLeft
A slow kick with the left foot.

• kickLeftHard
A fast and a strong kick with the left foot.

• kickRight
A slow kick with the right foot.

• kickRightHard
A fast and a strong kick with the right foot.

• kneeKick
Very fast and a very strong kick with one of both knees.

kickLeft and kickRight consist of 4 steps:

1. Shift torso to the side

2. Raise kicking foot

3. Kick

4. Move foot back and align

With kickLeftHard and kickRightHard an additional step was inserted:

1. Shift torso to the side

2. Raise kicking foot

3. Bring foot behind

69

4 Software

4. Kick

5. Move foot back and align

The weight of the robot and the instability of the joints lead to the fact that it is
very difficult to let the robot stand on one foot. Particularly when implementing the
kick movement, the robot often fell down. Especially after the robot has walked it was
necessary to adapt the kicks. The only solution for this problem was the use of kneeKick.
This kick consists of a very fast movement downward (kneel). It hits the ball with the
knee and pushes it forward.
In order to have a better and more stable kick in the future, it is important to improve
the stability of the robots. In the first place it would be an improvement to lower the
robot weight.

4.4.2 Stand up

A stand up movement is very important, because according to rules each robot has to
be able to stand up within 45 seconds, otherwise it is penalized. When rising, one can
differentiate two movements: standUpFront (if the robot lies on the chest) and standUp-
Back (if the robot lies on the back).
With standUpBack the robot moves the feet under its hips. So the center of mass is
shifted into the center. Afterwards it stands up and tries to keep balance by stabilizing
arm movements. With this kind of standup, the knees’ servos have a very high load.
Thus it is not recommended to repeat the standup movement many times in a short
period of time.
With the first version of the robot, it was possible to make standUpFront movement
the same way. For the second version it was necessary to change this movement due
to the following constructional restrictions. The Degrees of freedom at the knees are
forward limited, so that it is not possible for standUpFront to move the feet under the
hips. Therefore the standUpFront movement turns the robot on the back. Afterwards
the standUpBack movement is triggered.

That has some disadvantages in the comparison with normal stand up movements:

• Standing up from front takes now twice the time as before.

• It leads to a higher power consumtion.

• During turning on the back, the robot falls down and could be damaged.

• During turning on the back, the robot shifts its body to the side. If there is not
enough free space, the movement can not be proceeded.

In order to be able to improve these movements in the future, it is necessary to make
some changes to the construction of the robot (e.g. less weight, longer arms, better
knees).

70

4.5 Inverted Kinematics

4.5 Inverted Kinematics

Inverted kinematics means the problem of calculating the angle positions α1, ..., αn of
a robots arm or leg from a desired foot or hand position ~x. Be aware, that ~x can
consist beside the space coordinates x, y and z of more degrees of freedom describing
the orientation of the hand or foot in space. The walking engine used by the Doh’Bots
uses an approach to calculate the leg angle values from the foot position directly, using
the sinus and cosinus theorem. By nature, this way of calculation is very fast. The
disadvantage is, that in this calculation it is assumed, that the foot is parallel to the x, y
plane of the robots coordinate system and that the foot is not rotated around the z axis.
Because of this, it was necessary to design and implement algorithms, that calculate the
angle values of a foot position in an iterative way. Starting from an initial set of joint
angles ~α = α1, ..., αn the foot position

f(~α)

is calculated using forward kinematics and from this position a new set of angle values
~α′ is calculated, so that its related foot position is closer to the desired position ~x0.

||f(~α′)− ~x0|| < ||f(~α)− ~x0||

This step is repeated, until the reached foot position is ”close enough” to the desired
one. In the next section the method to calculate the forward kinematic is described.
The next two sections describe the two algorithms to find ”better” angle values from a
given set of angle values.

4.5.1 Forward kinematics

To calculate the foot position from the joint angles the affine transformation is consid-
ered, that transfers vectors from the foot coordinate system Σ′ to the robot coordinate
system Σ.

ϕ : Σ′ → Σ

ϕ(~x′) = ~x

~x = A(~x′) +~b

Where A is a rotational matrix and ~b a vector. Another way to write it down is:

T :=


a11 a12 a13 x
a21 a22 a23 y
a31 a32 a33 z
0 0 0 1

 =
(
A ~b
0 1

)

(
~x
1

)
= T

(
~x′

1

)

71

4 Software

T =


1 0 0 0
0 cosα1 − sinα1

1
2 lengthBetweenLegs

0 sinα1 cosα1 0
0 0 0 1




cosα6 − sinα6 0 0
sinα6 cosα6 0 0

0 0 1 −hipLength
0 0 0 1




cosα2 0 sinα2 0
0 1 0 0

− sinα2 0 cosα2 −upperLegLength
0 0 0 1




cosα3 0 sinα3 0
0 1 0 0

− sinα3 0 cosα3 −lowerLegLength
0 0 0 1




cosα4 0 sinα4 0
0 1 0 0

− sinα4 0 cosα4 −upperFootHeigth
0 0 0 1




1 0 0 1
2footLength− footCenterToRear

0 cosα5 − sinα5 footCenterToOuter − 1
2footWidth

0 sinα5 cosα5 −lowerFootHeight
0 0 0 1



Figure 4.14: The transformation, that transfers coordinates from the left foot coordinate
system to the robot coordinate system

To write this transformation down, it is enough to write down the matrices Tα1 , ..., Tα6

of the single joints and calculate:

T = Tα1Tα6Tα2Tα3Tα4Tα5

There are many ways to parametrise the matrix A and the vector~b. For example rotation
matrices, Denavit-Hartenberg, Euler angles, RPY-angles, etc. Because rotation matrices
have a very simple form, if they describe a rotation around one of the coordinate system
axes and the joints of the robot all rotate around one of them, the decision was made to
use simple rotation matrices. For the left leg of the robot the transformation is written
down in figure 4.14. Compare with figure 4.16. The transformation for the right leg
looks very similar. The x, y and z coordinates of the foot can now be calculated:

~x = ϕ(~0) = ~b

72

4.5 Inverted Kinematics

The matrix A gives information about the orientation of the foot. Compare it with the
transformation matrix of the RPY-transformation:

ARPY =

 cosβ cos γ sinα sin β cos γ − cosα sin γ cosα sin β cos γ + sinα sin γ
cosβ sin γ sinα sin β sin γ + cosα cos γ cosα sin β sin γ − sinα cos γ
− sin β sinα cosβ cosα cosβ


and see, that the rotations around x, y and z axes α, β and γ can be calculated as
follows

β = arcsin−a31

α = arcsin
(

a32
cos(arcsin−a31)

)
γ = arcsin

(
a21

cos(arcsin a−31)

)

In section 4.5.2 the Jacobi matrix of the function:

f : U ⊆ R6 7→ R6

f(~α) =



f1
f2
f3
f4
f5
f6


:=



x
y
z
α
β
γ


is needed. The partial derivatives of f :

∂f1
∂αi

= ∂x
∂αi

∂f2
∂αi

= ∂y
∂αi

∂f3
∂αi

= ∂z
∂αi

∂f4
∂αi

=
∂a32
∂αi

cos(arcsin−a31)+a32a31
∂a31
∂αi

1√
1−a2

31√
1−
(

a32
cos(arcsin−a31)

)2
cos2(arcsin−a31)

∂f5
∂αi

= −∂a31
∂αi

1√
1−a2

31

∂f6
∂αi

=
∂a21
∂αi

cos(arcsin−a31)+a21a31
∂a31
∂αi

1√
1−a2

31√
1−
(

a21
cos(arcsin−a31)

)2
cos2(arcsin−a31)

are calculated.

73

4 Software

In all cases, the partial derivatives of the members of A and ~b are needed. The matrix
∂T
∂αi

of the partial derivatives of the members of T can be calculated.

∂T

∂αi
= T1...Ti−1

∂Ti
∂αi

Ti+1...T6

All these calculations are only possible, if α, β and γ are not equal ±90◦. If these angles
are close to ±90◦ the algorithm gets unstable as well. If for example an angle γ of around
±90◦ is needed, it should be calculated like this. 14

γ = arccos
(

a11
cos(arcsin−a31)

)

∂f6
∂αi

= −
∂a11
∂αi

cos(arcsin−a31) + a11a31
∂a31
∂αi

1√
1−a2

31√
1−

(
a11

cos(arcsin−a31)

)2
cos2(arcsin−a31)

To reach a desired foot position ~x as close as possible, it is necessary to define what a
”distance” in the 6-dimensional position space means. Consider the function

||f || : U ⊆ R6 7→ R
||f(~α)||

with || · || being a six dimensional norm. As for the robot, joint angles are measured in
radians and the robots dimensions in mm, the decision was made to use the following
norm. ∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣



f1
f2
f3
f4
f5
f6



∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
:=
√

[f2
1 + f2

2 + f2
3] + 180 · [f2

4 + f2
5 + f2

6] (4.1)

This norm weights a rotation angle of 0, 1 radians equal to a distance of 18mm. In
chapter 4.5.3 the gradient of this function is needed. To calculate it, let us write down
the partial derivatives of ||f ||.

∂||f ||
∂αi

= 1
||f ||

[
f1
∂f1
∂αi

+ f2
∂f2
∂αi

+ f3
∂f3
∂αi

+ 180
(
f4
∂f4
∂αi

+ f5
∂f5
∂αi

+ f6
∂f6
∂αi

)]

14 The standard C library supports a method atan2(x, y), that does such case switches by default. It
is possible to calculate the angles the following way:

β = atan2(−a31,
√
a2

11 + r2
21)

α = atan2
(

a21

cos(β) ,
a11

cos(β)

)
γ = atan2

(
a32

cos(β) ,
a33

cosβ

)

74

4.5 Inverted Kinematics

The partial derivatives of the fi are calculated as above.

4.5.2 Newton algorithm

To calculate a ”better” set of angles ~α′ of a given set ~α, the decision was made to use
the so called Newton algorithm. First, calculate the function f and the Jacobi matrix J
of the function f at the position ~α (see section 4.5.1). Assuming that f is nearly linear
close to the desired foot position ~x0 and the current position f(~α) is not too far away
from this position, it is possible to calculate a new set of angles by solving the following
linear equation system.

f(~α) + J(~α′ − ~α) = ~x0

As f is not really linear, the new position f(α′) is not exactly the desired position and
it is necessary to repeat this step until the position is ”good enough”.

||f(α′)− ~x0|| < ε

For the robot ε = 0, 1 was chosen. This means a maximal deviation of 0, 1mm or about
5 · 10−4 radians. This small tolerance was necessary, because the distances between
foot positions of two frames are off this order. This calculation is not possible, if J is
singular, what is for example the case, if the knee is completely stretched (the knee angle
is zero). Also, this algorithm fails, when the desired position is not reachable at all, or
if limitations for one ore more angles need to be exceed to reach the desired position. If
this is the case, a so called quasi-Newton Algorithm is used instead.

4.5.3 Quasi-Newton algorithm

When minimizing the function ||f || (see equation 4.1), it is no longer possible to assume
that it is linear, because the gradient vanishes close to a minimum. Beside the gradient
now consider the Hesse-matrix at the position ~α.

||f(~α′)|| ≈ ||f(~α)||+ (~α′ − ~α)∇||f(~α)||+ 1
2
(~α′ − ~α)TH(~α)(~α′ − ~α)

To find the minimum of this approximating function, calculate the gradient and set it
to zero.

∇||f(~α′)|| ≈ ∇||f(~α)||+H(~α)(~α′ − ~α) = 0

⇒ ~α′ = ~α−H−1(~α)∇||f(~α)||

The chosen way to improve this result was to take ~r(~α) := H−1(~α)∇||f(~α)|| as search
direction and minimize the now one dimensional function

g(t) := ||f(~α− t · ~r(~α))||

using the bisection method. The problem is to determinate the inverted Hessian matrix
of the function ||f ||. To solve this, the decision was made to use an approximated
inverted Hessian matrix starting with the unity matrix instead, and try to improve

75

4 Software

Figure 4.15: Modify the search range and direction in case of exceeding angle limits.

the approximation of the inverted Hesse matrix in every step of the iteration. There
are many ways to calculate a approximated Hessian matrix. The Broyden-Fletcher-
Goldfarb-Shanno method was found to be sufficient. In every step the inverted Hessian
matrix is updated:

H−1′ =
(
E − ~s~yT

~yT~s

)
H−1

(
E − ~y~sT

~yT~s

)
+ ~s~sT

~yT~s

With E being the unity matrix, ~s := ~α′ − ~α and ~y := ∇||f(~α′)|| − ∇||f(~α)||

For the robot, the joint angles can not reach all values. For every joint angle αi there
are αmini and αmaxi so that

αmini ≤ αi ≤ αmaxi

To make sure, that the joint angles calculated by this algorithm are in these boundaries,
there is a check in every step, if the new position

α′i = αi − t · ri(α)

fits this limitations. If not, reduce t until α′i = α
min/max
i .

t′ = α
min/max
i − αi

ri(~α)

See figure 4.15 left. If a limit is reached in one step, a search direction which does not
lead us back into the allowed region in the next step would stuck us at the boarder.
In this case it is necessary to change the search direction. By setting the appropriate
component of the search direction to zero, the minimum is searched along the border of
the search space (see figure 4.15 right).

4.6 BalancingEngine

The SpecialActionEngine and the WalkingEngine were designed as non-feedback con-
trollers, this means the engines only use the current internal state (consisting of time,

76

4.6 BalancingEngine

Figure 4.16: The anatomy of the robots.

77

4 Software

motion request and other information) and its model of the system to control the system.
This works, if the endogenous interferences and exogenous influences (e.g. pushing) are
tolerable.

Figure 4.17: Block diagram of a feedback controller (image source Wikipedia)

A feedback controller (see figure 4.17) can be used to increase the stability (or other char-
acteristics) of the system by using sensor information to correct discrepancies between
the desired reference and the real reference.
A separate BalancingEngine was created to support motion engines that do not use
sensor information. The target was to increase stability and robustness of the moving
robot.

4.6.1 PID based BalancingEngine

This BalancingEngine uses a PID controller (see figure 4.18) to control a reference signal.
The supported reference signals are angular rate and inclination, which should be set
accordingly (e.g. derived from an internal model) by the currently active motion engine.
There are two separate PID controllers for the value around the x-axis (roll) and y-axis
(tilt) of the upper body.
The proportional-integral-derivative (PID) controller is a widely used controller. A PID
controller uses an error signal e(t) to calculate a correction value u(t) using the given
formula

u(t) = Kpe(t) +Ki

∫
e(τ)dτ +Kd

de

dt

where Kp, Ki and Kd are the proportional, integral and derivative gain which are used
to configure the controller.
The desired reference used by the controller can be set by the motion engines. If the val-
ues are not set then it is assumed that the upper body should be vertical (no inclination)
or the angular rate should be zero.
The mapping of the roll and tilt correction values to the joints is done by multiplying the
correction value with a joint specific factor and then adding the new correction to the

78

4.6 BalancingEngine

Figure 4.18: Block diagram of the PID controller (image source Wikipedia)

reference joint angles. This realizes the feedback loop. The factors are created manually
and are chosen depending on the motion request and the estimated base foot.
The BalancingEngine was mainly tested using the Bosch SMB 380 acceleration sensor
to estimate the inclination. The estimated inclination was therefore depending on the
measured acceleration, which itself depends on the gravity and the other forces acting
on the robot, therefore it was expected to be a good reference signal for the balancing
task.
There are, however, a few problems using this input signal. There are distortions due
to the elastic link-joint structure, leading to unpredictable aberrations to the reference
signal. The integral part was not used, because the error is inconstant, changing fast
and heavily dependent on the motion. These problems are amplified if the reference
signal is not set by the motion engine and therefore a static reference signal is used.
Another problem is that the servo controllers in the joints permanently try to correct
the position of the mechanical system. This results in "shaking" of the robot. The
acceleration sensor is very sensitive to this "shaking". This leads to an oscillation in the
error signal and can make the robot swing, which gets increased by the corrections of
the PID controller. This is especially the case if the other forces acting on the robot are
small.
To solve the last problem a set of functions, called "attenuation functions", can be used
to decrease the reaction for small correction values and react normal or amplified to
higher correction values. The attenuation functions turned out to solve this problem.
An example for an attenuation function is

a(x) =
{
sign(x) ∗ |x|exp ∗ factor, if |x|exp ∗ factor ≤ max
max, if |x|exp ∗ factor > max

where x is an angle given in radiance, factor is a scaling factor, exp is the main parameter
to control the function and chosen exp > 1. max defines a switch between the two cases,

79

4 Software

it also restricts the reaction in this variant. Another variant is to switch to another
function (e.g. id), if |x|exp ∗ factor > max is true, then attention should be laid on the
scaling factor to create a smooth transition between the two cases.

4.6.2 Conclusion

Overall it is to say that it is a complex task to find a parameter set for the PID based
BalancingEngine. The usage of the attenuation functions solved one problem, but lead
to even more parameters that have to be considered. To find a configuration that works
in all situations is problematic, e.g. a solution for walking can lead to swinging while
standing. The parameters highly depend on the underlying motion engine and any
change there interferes with the parameter set. Even minor changes in a motion engine
can lead to the requirement of a new parameter set. Whereas more robust parameter
sets have only a very limited positive influence on stability.
For the future it is recommended to replace the direct control of the joint angles and
replace it by controlling a suitable value (e.g. Center of Mass (CoM), velocity of CoM)
and indirectly controlling the joint angles (e.g. calculate the joint angle configuration
to fit the desired CoM position). Therefore the creation of an underlying model was
started and BLAS/LAPACK was added to provide a fast linear algebra solution for the
upcoming more complex calculations.
There is a need to find good objective measures to evaluate the effect of balancing engines.
The subjective visual evaluation turned out problematic and the tuning of parameters
could be improved using systematic methods based on objective measures.

4.7 SensorDataProcessor

The used robot platform offers a variety of sensors. A possible sensor configuration uti-
lizes one 3-axis inclination sensor, two 1-axis angular rate sensors, one 3-axis acceleration
sensor and four force sensors per foot.
The inclination, angular rate and acceleration sensors are positioned in the upper body
of the robot. The SensorDataProcessor gets the raw data, which needs to be converted
to common units in the corresponding drivers, from all connected sensors. It has the
tasks to combine the redundant information, apply basic filtering and basic calculations
on the provided data.

4.7.1 Sensor fusion

The information from the inclination, angular rate and acceleration sensors are corre-
lated. In fact the angular rate is the first derivative of the inclination and the acceleration
is approximately equal to the first derivative of the angular rate. This can be used to
suppress noise from single information sources by combining these information.
The acceleration sensor can be used to directly calculate an approximation for the in-
clination. It is assumed that gravity, when averaged over a certain time interval, is

80

4.7 SensorDataProcessor

the main force acting on the robot, thus the measured acceleration points to the earth
center, indicating the inclination of the robots upper body.
All these values can be used to calculate the inclination using an affine combination, the
weights of the affine combination can be set in the configuration file.

4.7.2 Falldetection

One of the main tasks of the SensorDataProcessor is the falldetection. It has to detect
whether the robot is standing or lying and if the robot is lying then on which side. This
is important to enable the behaviors to trigger the specific stand-up movement.
Multiple falldection variants were created to support different sensor combinations:

• Inclination sensor only

• Acceleration sensor only

• Acceleration sensor and force sensors

The force sensors are used to detect whether at least one foot of robot is touching the
ground or not. The force sensors are the only sensors which are able to provide this
information.
The inclination sensor has a special characteristic which had to be considered. The
sensor has a fix measurement range and if the real value leaves the supported interval
then the minimum imin respectively maximum imax value of this interval is delivered,
disturbed by a small amount of noise. If the robot is lying then the measured value v
is v ≤ imin + ε or v ≥ imax − ε over a longer time interval. This characteristic is used
to detect that the robot is lying. The measured values are then used to detect on which
side it is lying. ε can be set in the configuration file with respect to the noise.
The acceleration based falldetection first checks if the measured acceleration on the z-
Axis is over a specified threshold (e.g. -0.5g), this can only happen if the inclination of
the robots upper body exceeds a value, which depends on the threshold, or if the robot
accelerates upwards. If this is the case, then the robot is assumed to have fallen down
and the side on which the robot is lying is calculated using the gravity.
The falldetection uses own filters to smooth the measured values over a relatively long
time. Working solutions used average filters over a timespan between one and two
seconds.

4.7.3 Center of Pressure calculation

The SensorDataProcessor supports the calculation of the Center of Pressure (CoP). For
the application the center of pressure and the Zero Moment Point (ZMP) are equal
(see [Gos99]), the term Center of Pressure is used here, because it describes exactly the
performed calculation.
Due to the nature of the force sensors only the normal forces (see figure 4.19) are mea-
sured, this means that no information about tangential forces are available, but the

81

4 Software

Figure 4.19: Normal and tangential forces affecting a foot (image was modified from
[Gos99])

normal forces are sufficient to calculate the position of the CoP inside the support poly-
gon. The support polygon is the convex hull of the points of the robot that have contact
with the ground, in this case only contact between feet and ground is considered. In this
case the ZMP and the CoP deliver equal information.
Let fni be the measured normal force at force sensor i. n is the number of force sensors
in the feet. Rn =

∑
fni is the (normal) force resultant at the CoP. A force resultant can

be calculated for each foot by only considering the sensor information delivered from
sensors in one foot, this information can be used to detect the base foot. Let pi be the
position of sensor i in the robot coordinate system. The position of the force sensors in
the robot coordinate system pi can be calculated using forward kinematic, if the position
of the force sensors under the feet is given.
The position of the CoP pcop can then be calculated as:

pcop = 1
Rn

n∑
i=1

fni ∗ pi

4.7.4 Calculation of the camera matrix

Another main task is the calculation of the camera matrix which is later used and refined
by the ImageProcessor . The camera matrix calculation uses the angles which are read
out of the joint servos. The reference target joint angles are used as approximation, if
the servo feedback is unavailable.
The camera matrix is calculated using the robot dimensions, information about the
link-joint structure and the current joint angles using affine transformations (forward

82

4.7 SensorDataProcessor

kinematic). The base foot, which is important for the previous kind of calculation, can
be detected comparing the force resultants of both feet. The foot with the higher force
resultant is assumed to be the base foot. If the force sensors are unavailable, then the
foot with the lowest translation on the z-Axis is assumed to be the base foot.

83

4 Software

4.8 Behaviour State Machine

4.8.1 XTC

As the old framework was used at first, the formerly used behaviour concept based on
the XTC Language, had to be migrated to the new project. This had the advantage
of being used before in the AIBO framework, it just had to be slightly adapted. Addi-
tionally, there were lots of experiences with this concept of modelling behaviour state
machines.
But with the change to the new framework (see 4.2.2) after the German Open 2007, a
lot of difficulties with porting and implementing the basis of XABSL-Engine15 and XTC
occurred. For this reason, it was decided to discard the XTC engine and to implement
a new state machine concept.

4.8.2 Behaviour Module

Since migrating to the new framework, the state machine for the behaviour is now in-
tegrated directly into the framework. Therefore, behaviours are now written in C++
instead of a special purpose language like XABSL or XTC. These concepts also save a
lot of overhead, which was necessary to compile and use XABSL based state machines,
like special language parsers, a compiler to create an intermediate code which could
then be interpreted by the XABSL-Engine, creating a link to the robots’ framework and
embedding it to the Robot.exe. This concept makes it necessary for everything to be
known at compile time.
Now, a state machine is compiled to a dynamic link library, as any other module is too,
allowing flexibility and fast exchanges of the behaviour, especially during matches for
altering whole tactics or adapting behaviours.

Link To Framework

As the state machine needs access to lots of data, which is generated or processed by
different modules and afterwards gathered in certain models, a way was needed to access
or alter these in a fast and easy manner to keep the state machine’s and the robot’s data
synchronized. This is a time critical part, as it influences the robot’s reaction time to
alter game or field situations or own states as well. By that, the whole way of playing,
which could decide about important advantages is influenced. A problem is the modu-
larity of the new framework and the resulting encapsulated data, which has to be either
received or updated.
To keep the state machine simple and reusable, it was decided to use a message pass-
ing concept. Any module providing data or being influenced, has to send or receive

15 www2.informatik.hu-berlin.de/ki/XABSL/

84

4.8 Behaviour State Machine

messages. During an update phase the current data is exchanged between the modules
in every frame of the state machine. Internally, the processable data is then stored in
symbols.

General Structure

As mentioned above, all the information coming from or going to the outside of the
behaviour module has to be represented internally. For this reason, every accessed
module is represented as a model containing symbols within the state machine. The
symbols are actually functions, contrary to variables in the old concept, which map to
the messages.
For this reason and to keep the idea of a modular concept, every accessed module has to
be declared as a separate symbol class. Within these, any data, which is wanted to be
read or altered, has to be explicitly registered as a function and then be implemented
by mapping the needed message to the symbol function. This has also the advantage
of providing some symbols internally and some information additionally by returning
preprocessed data from different information sources.
These symbols can then be used in the states to trigger transitions or to initiate actions.
The states themselves consist of three parts

• STATE_INIT
The entry point to the state. It can be used to do some preprocessing or initializing
local data.

• STATE_DECISION
In this part, all outgoing transitions and their conditions are declared. The tran-
sition itself takes effect after executing the third part.

• STATE_ACTION
Within this part, the active reactions are declared, which will then control the
robot’s actuators in result.

A single state machine is then just built by declaring and implementing the necessary
states and switching them together.

Behaviour Structure

As a single state machine, for the whole behaviour, would be much to big and very
difficult to keep track of, a behaviour consists of many different state machines. This
modular concept also allows to just exchange or adapt partial behaviour without hav-
ing significant unwanted side effects on other behaviours. It is better to arrange many
different state machines in an hierarchical way to achieve a circle free decision tree.
Due to this concept, a top level behaviour as root of the decision tree has to be designed.
In every frame this will be the entry point of the complete behaviour state machine and

85

4 Software

should therefore contain the state machine consisting of the most important and critical
decisions. Beneath this, theoretically infinite hierarchy levels could be arranged. Nor-
mally, the second level should be the behaviour, processing the instructions given from
the game controller and by this, following the referee’s decisions, controlling the match.
From the third level downwards, the state machines, which then actually control the
team’s tactic, are arranged. But most states of the state machines can choose to make
decisions and not to invoke any actions of the robots.
This is mostly done at the bottom level, the leaves, of the decision tree. The states here
contain some basic actions like walking to a certain direction, kicking or something else.
For this reason, some basic behaviours, consisting of simple actions up to small state
machines, are implemented, which can then be reused in every state machine without
always having to code completely down to the bottom level. But these basic behaviours
must not be underestimated. Because of their wide use, they have a significant effect on
the whole behaviour and gameplay.
As mentioned above, the whole decision tree is executed in every frame, from the top
level behaviour down to a leave invoking an action. This ensures that in every frame
the hierarchy is followed and allows faster reaction to altered game situations. The con-
cept itself is pretty similar to other concepts for behaviour state machines such as the
formally used XABSL.
So after planning the hierarchy of the decision tree one has to plan the decisions at
which the different transitions are followed. This is a bit tricky, as one has to keep in
mind that the used information is noisy which makes a hard switching condition hard to
define on one hand; and hard switching of behaviours - as well as of states within a single
behaviour - should be avoided as it would lead to a clattering-problem as occuring with
the use of simple two-position regulators. Therefore it is useful and recommended to
have different decision criteria for entering and leaving a behaviour or state which must
not overlap but have a certain clearance between them. The clearance’s extensiveness
influences how fast a decision tree can react to altered values, but also the sensitivity
to noises and errors and has to be considered very well. This principle is called state
hysteresis.
When implementing a hierarchy or a single behaviour this has to be done manually by
the designer, which demands a certain carefulness but gives also the possibility to adapt
the state machines to special needs, tactics or improved information through reduced
noise, as well as totally different hardware platforms. Therefore this is an important
design parameter and can be very powerful if carefully planned.

86

4.9 Robot Control XP

Figure 4.20: Hierarchy Of Example-Behaviour

4.9 Robot Control XP

In this chapter Robot Control XP will be presented. In the first part, the key features and
mechanisms of Robot Control will be discussed, based on the descriptions in [Spr06]. In
the second part, the most important problems encountered and changes made to Robot
Control XP when modifying it towards humanoid robots will be presented. The last part
focuses on the network connection, which enables Robot Control XP to communicate with
the robot’s software framework.

4.9.1 Robot Control XP in a Nutshell

Robot Control XP is the third version of a debugging software and part of the debugging
architecture, featuring data visualization, data modification, debug switches and remote

87

4 Software

control.

It was introduced by the German Team, an AIBO robot soccer team which the uni-
versity of Dortmund was part of. RCXP provides a graphical user interface (GUI) for
several debugging mechanisms introduced with the underlying debugging architecture,
and thus relieves developers from the task of writing their own complex testing and
debugging routines. This lowers the amount of time spent with parameter tuning and
other adjustments because there is no need to recompile and restart the robot code for
each parameter change.

Figure 4.21: Screenshot of Robot Control XP showing some of the available controls

In combination with the old framework the debug switching, visualization and variable
modifying was done by using the available debugging macros defined in the framework.
The macros can be used everywhere in the robot code. Below some of these macros are

88

4.9 Robot Control XP

listed and their functionality is shortly described.

• DEBUG_RESPONSE(id, code)
This is the most fundamental debug macro. It switches the given code on or off
and is identified by an unique id.

• DECLARE_DEBUGDRAWING(id, type, description)
This macro declares a debug drawing by specifying a unique id, a type and a
description. Possible type values are "drawOnFrontImage", "drawOnOmniImage"
and "drawOnField". They define the drawing target as webcam image, omnivision
image or virtual field view.

• CIRCLE(id, x, y, radius, penWidth, penStyle, penColor)
This macro defines an elementary part of the debug drawing which is declared as
id. The macro draws a circle with specified radius, pen style, pen width and pen
color around the coordinates x, y when the debug drawing is activated. In addition
to circles more primitives such as lines or ellipses are available.

• MODIFY(id, object)
This macro modifies the given object which can either be an instance of a class or
a basic variable like an integer. The data is identified by the specified unique id.

The new framework reduces the number of macros because the debugger has issues with
following the control flow while using macros. That is why all debugging functionalities
are implemented as functions. The old framework’s behaviour is emulated, so that the
changes to Robot Control XP are minimized. Below the functions corresponding to
the above macros are listed. To implement a debug response, the return value of a
debugResponse function serves as condition for an if statement. The switchable code
has to be inserted in the if statement’s body.

• bool debugResponse(const char* response)

• void beginDrawing(const char* idName, const char* typeName,
const char* description)

• void drawCircle(const char* idName, int center_x, int center_y, int radius,
char penWidth, char penStyle, char penColor)

• template<class T>
void modify(const char* name, T* t)

Debug responses are the foundation of the debugging system. Nearly all other debugging
functionalities make use of them to switch on or off specific code parts. Debug responses
can be polled by Robot Control XP which means, that Robot Control XP sends a poll
message and all debug responses answer with a message indicating their existence and
availability. In this way Robot Control XP is informed about the supported debugging

89

4 Software

capabilities.
Debug drawings can be drawn either on a two dimensional representation of the robot
soccer field or on one of the robot’s camera images. Debug drawings offer an intuitive
visualization of data like ball, player and obstacle positions, the field of view or the free
angle towards the opponent’s goal. This simplifies testing and debugging, for example,
of the visual perception algorithms. A wide variety of drawing primitives such as lines,
circles, arrows or points is offered for this purpose.
The value of an object or variable made modifiable by a MODIFY macro can be viewed in
and modified from within Robot Control XP. This functionality is especially useful to try
different parameter sets without recompiling or even restarting the code. Furthermore, it
is possible to send debug images, e.g. for checking an image filter’s effect on the camera
image or the actual color table’s segmentation qualities. Image visualization is a very
important feature because the robots use cameras as their prior sensors.
The old framework is organized in modules, one for each task, e.g. image processing or
behaviour control. For each module a variety of interchangeable solutions is possible.
The actual solution can be switched at run time. This switching can also be done via
Robot Control XP’s GUI. The new framework does not support switching of modules at
run time.
Besides the possibility to display live data, the received message stream can also be
recorded for later analysis. This is, for example, very useful when creating color tables
for the robot. Color tables map colors to color classes, so that image areas with specific
color ranges can be classified and associated to objects, e.g. the ball. Instead of assign-
ing the color classes while the robot is moved around the field, a set of images can be
recorded providing a basis for later color table generation. This proceeding enables the
user to navigate through the image sequence including rewinding.

Forming a front end and GUI to the underlying debugging architecture, Robot Control
XP provides several visualization and modification dialogs:

Standard visualization tasks:

• Image Viewer for Bitmap or JPEG camera images and segmented images. Debug
drawings can be shown as overlays.

• Field View for 2D field representation. Displays debug drawings on field positions
in a top view.

Special visualization:

• 3D view of the classified color space.

• value-over-time-plot

Control:

• Hardware buttons GUI

90

4.9 Robot Control XP

• Robot motion remote control

Modification:

• Modification View (Debug Data)

Productive:

• Color Table Tool for color table creation.

• Motion Designer for robot movement design.

The dialogs are handled by managers, where each domain (e.g. image viewing) has its
own manager.
Besides the possibility of using Robot Control XP with the real robot, it can also be
connected to a simulated robot in the simulator as both use the same interface. Thus,
it makes no difference for Robot Control XP with whom it is communicating.

4.9.2 Modifications in Robot Control XP

As this software was originally designed for the AIBO robots, some parts had been
altered due to the different needs of humanoid robots and four legged robots. Some
changes directly result from the physical differences between the robots, others result
from modified or exchanged software. These changes will be pointed out in this chapter.

Hardware motivated modifications

This chapter presents the hardware motivated modifications made.

Besides the change from a four legged robot to a biped robot, the most apparent change
is the vision system. It changed from the integrated AIBO camera with a resolution
of 208 by 160 pixels to an omnivision camera and an auxiliary front camera for kick
assistance. The omnivision camera has a resolution of 1024 by 768 pixels. The auxiliary
camera is a standard webcam with a resolution of 320 by 240 pixels.

In contrast to the AIBO’s camera, which uses YUV color space, both humanoid cameras
now natively use the RGB color space. Thus, parts like the color table tool, the color
space viewer and the image viewer were modified to work completely in RGB space to
prevent unnecessary conversion between the color spaces.
As the omnivision image’s size is about 24 times as big as the AIBO camera image’s
size, it was important to speed up image processing. This includes:

• Dropping a rather complex image type, which needed combination of the R, G and
B channels for every frame arriving at Robot Control

• Speed up image color classification in the color table tool by use of faster classifi-
cation code: This was achieved by directly reading from the image array.

91

4 Software

• Some smaller changes concerning the viewing of big images

The performance problem is to some extent compensated and the GUI is adequately
applicable.

In theAIBO framework, two different color tables ("128-colortables" = "2 64-colortables")
have been used for near and far object classification. As this is not applicable on the
humanoid robot’s vision concept, all code concerning those 128-colortables has been
dropped. Color tables for the front camera and the omnivision camera are saved sepa-
rately, as this eases combining different color tables for the two cameras.

The Hardware Button Control has been dropped, as the humanoid robot has no software
switchable buttons yet. The Remote Control Tool ("ucremote") has been stripped down
to the humanoid robots movement directions, this especially means the removal of head
movement controls, as the head remains fixed.
A new control, called Angle Control, allows editing every joint’s angle with sliders and
offers the possibility to save the angle positions to a calibration file. The motivation for
calibration and a more detailed depiction of this topic is done in chapter 4.2.5.

Also, there exists a new control for plotting one dimensional data over time (Plotcontrol)
and a control visualizing the foot sensor data (Center of pressure and support polygon).

In Chapter 4.4, the development of the motion control is described.

Some minor modifications, especially concerning the visual appearance of Robot Control
XP, has been done which will not be discussed here in detail.

Robot’s framework motivated modifications

As Robot Control XP has not been used for humanoid robots before, the original Robot
Control XP for the AIBO robots was modified to work with the already existent hu-
manoid framework. This especially concerns communication between the robot frame-
work and Robot Control XP. For example, the code for the robot connection and receiving
of several data types like images and other debug data had to be adapted.

Due to the complete redesign of the robot framework and its evolution in the last months
of the project group (see section 4.2), some changes had to be made, again in particular
in the communication part. This reaches from messages header changes to a redesign of
parts of the debug communication (4.9.3).

Bugfixes

Even though Robot Control proved to be a good debugging tool, it still suffers from some
bugs. Even though bugfixing covered a big part of the robot control developers work, it

92

4.9 Robot Control XP

will not be discussed here in detail.

4.9.3 Network connection

This chapter gives a brief introduction of the network communication between Robot
Control XP and the framework. The communication is divided into two parts. The first
part is an UDP connection, which broadcasts basic debug informations like the robot’s
position. The other part is a TCP connection, which can be established to receive more
advanced debug informations like pictures and drawings. There are two versions of net-
work code, one for each of the framework versions.

Old framework

The first version of the software framework was based on the framework of team BreDo-
Brothers, which participated in the RoboCup humanoid league in 2006 with a humanoid
robot manufactured by Kondo. This framework was again based on an rudimentary
version of the software framework developed by the Microsoft Hellhounds for their four
legged AIBO robots.
The BreDoBrothers framework contained no network code at all. So the first step to run
Robot Control XP in conjunction with the framework and to use its debug capabilities
was to port the network code from a more advanced version of the Microsoft Hellhounds’
framework to the BreDoBrothers framework.
The porting of the network code was straightforward, except for parts using features of
the AIBO framework, which were not implemented or often not even reasonable in the
current framework. In such cases adaptations were necessary.
The framework is structured into three threads performing dedicated tasks. Besides a
motion and a cognition thread, the thread performing all network communication is the
debug thread. Other threads write their data into a queue and the debug thread sends
it over the network. The debug thread is responsible for both network connections. It
always broadcasts debug information via UDP and it manages the TCP connection,
when Robot Control XP is connected to the robot.
Finally, the network communication was running and the debugging could be done as
easy as on the AIBOs.

New framework

When the implementation of a new software framework for the robots was started, a
new implementation of the network code was inevitable. The implementation had to
be compatible with Robot Control XP and it had to comply with the modular, message
based architecture of the new framework.
The network communication in the new framework is handled by an dedicated thread,
just like it was done in the old framework. The thread is called "DebugProcess". For

93

4 Software

different ways of debugging, for example, a simple text output instead of Robot Control
XP, different modules can be loaded into this debug thread. The module communicat-
ing with Robot Control XP is simply called "RobotControlXP". This module directly
performs all tasks necessary to communicate with Robot Control XP via TCP. If not
connected, it listens for incoming connections, otherwise it checks its message queue for
debug messages to send over the network, and receives messages to put them into its
message queue.
In the new framework the thread, which is responsible for the debug connection to Robot
Control XP, receives all messages from all other threads because every thread should
be able to use the debugging functionalities. To avoid overloading the network, it is
not possible to send all data received internally. For example, images of the omnivi-
sion camera should only be transferred to Robot Control XP, if the user is watching
them. Otherwise, huge amounts of bandwidth would be wasted. Therefore, some kind
of flag is needed to distinguish between messages, that should be transferred over the
network and messages, that should not. It was decided to use a wrapper class called
"DebugMessage" to mark network messages. Now, the module simply has to check the
message type of its incoming messages and transfer all messages with the message type
"ThreadMessage::MsgDebug" over the network.
For debugging purposes Robot Control XP supports three fundamental mechanisms,
which are introduced in 4.9.1:

• Debug response

• Debug data

• Debug drawing

As mentioned above, debug responses are simple switches, which can enable or disable
code blocks. Debug data is a mechanism, which streams variables or instances of classes
over the network and enables the user to watch their values. This streaming works
bidirectional, so that the user can also change variable values over the network. Debug
drawings enable the developer to visualize debug information graphically on images or
on a virtual field.
Usages of these mechanisms are spread all over the code, but as there is only one in-
stance of Robot Control XP communicating over one connection with the framework,
it makes sense to manage these mechanisms centrally. Therefore three singletons were
implemented, which basically hold a list of usages of their corresponding mechanism and
manage the communication with Robot Control XP.
The UDP connection is handled by an actuator running within the debug thread. The ac-
tuator is called "RCXPBroadcast". It simply stores an up-to-date version of "RobotPose"
and "BallModel" messages and broadcasts their content, which is the current position of
the robot and the current estimated position of the ball, over the network.

94

5 Conclusion and Outlook

5.1 Conclusion

In this project group a humanoid robot was built, which already proved its competi-
tiveness. Even though the DohBots team did not manage to win the preliminary round
at the Robocup 2007 in Atlanta, it showed a good performance considering that the
DohBots’ robots were designed and built within less than a year.
Compared to some other teams the DohBots’ robots were quite active on the field. The
robot demonstrated good performance in ball recognition at far distances and in motion.
Unfortunately, some flaws prevented the team from getting into the quarter finals, in
particular an imprecise kick alignment resulting in some unused scoring chances. The
main reasons for the imprecise alignment seem to be a quite small opening angle of the
front camera and inaccurate odometry.
A lot has been achieved in the project group’s year. The group managed to create
a completely revised robot body design, which was adapted several times during the
last year. Own reliable board designs were created in limited time (e.g. the power
board and the carrier board). Sensors were attached to the robot (e.g. the foot sensors
and acceleration sensors) and appropriate software was written in order to use these
sensors (e.g. the balancing engine). The robot framework was completely redesigned
and extended in many points such as the ability to run concurrency on a multicore
platform. The use of computer vision with the help of an omnivision camera yields an
important advantage over other teams in ball and landmark recognition. A new faster
and more flexible robot simulator was introduced and customized. Revised and extended
debug possibilities, as well as a gait with spot turn capabilities, are also important
improvements.
It can be concluded that a promising platform has been built, which led to a remarkable
gain in experience both in hardware and software, and which can serve as a groundwork
for subsequent project groups.

5.2 Outlook

The project group had been working on many things such as a new robot body, newly
designed electronic parts, using Microsoft Windows XP as the robot’s operating system
for the first time and a partially new designed software framework. As a result of the
huge amount of tasks there are some parts that are not completely finished. Some parts
have not been used, because there were interdependencies between tasks that could
not always be solved in time. Some other parts have been used and are working, but
could be enhanced in several ways. For example, the foot sensors development could be
continued to make new data sources available for the behaviours (e.g. detection which

95

5 Conclusion and Outlook

foot is standing on the ground) and also the gyroscopes could be integrated.
The time for parameter tuning of the kick alignment was apparently too short. Due
to the fact that the DohBots’ robots missed most good scoring chances, because of the
incorrect alignment and an unpredictable kick, it is recommended to focus more attention
on this topics. A better kick alignment and kick could result in a huge leap forward.
To reduce the load for the servos, it should be tried to reduce the weight of the robot.
This could also increase the standard kick stability. A slight redesign of the knee joints
could make stand-up moves for both sides possible, so that the robot would not have
to turn on the back first. The Microsoft Robotics Studio does a good job, but has some
problems which should be solved in the future, especially the creation of camera images
in the simulator itself and the creation of sensor data (e.g. inclination, angular rate and
acceleration).

96

List of Figures

1.1 Conga-X945 . 3
1.2 Carrier Board Revision 1.0 . 5
1.3 USB circuit with protecion . 6
1.4 Serial port and Debug circuit . 7
1.5 Front-Side of the carrier board . 9
1.6 Fan-Connectors . 10
1.7 Backside of the carrier board . 12
1.8 Debugboard . 13
1.9 Power board and security board in sandwich technique 14
1.10 Schematic of power board . 15
1.11 Battery protection . 16
1.12 Crowbar circuit . 17
1.13 Schematic . 20
1.14 USB-I2C converter . 21
1.15 Protocol . 21
1.16 ADXRS300 gyroscope . 22
1.17 Two gyroscopes mounted on a metal cube 22
1.18 Rate out . 23
1.19 Pin header . 23
1.20 Acceleration sensor with filter at 50 Hz . 25
1.21 Acceleration sensor with filter at 1500 Hz 25
1.22 Scheme of the robot’s foot . 26
1.23 Scheme of the foot sensor controller board 27

2.1 Damaged gearwheel . 30
2.2 Upper body (exploded view) . 31
2.3 Old Hip Design . 32
2.4 New Hip Design . 33
2.5 New Torso Design . 34
2.6 Comparison Torso Design . 35
2.7 Battery Holder . 36
2.8 Comparision of new and old foot design 36
2.9 Old Hip Design . 37
2.10 Leg Design (2) . 37
2.11 Arm Designs . 38

3.1 Target Designer . 42
3.2 Component Designer . 43

97

List of Figures

3.3 Layer view of the FBWF . 46

4.1 Simulator architecture . 49
4.2 Simulation scene . 50
4.3 Robot model in single parts . 51
4.4 Graphical, physical and wireframe representation 52
4.5 Simplified service architecture . 55
4.6 Simulatied omnivision camera . 57
4.7 ThreadMessage . 59
4.8 Communication between the threads . 61
4.9 The calibration device for the robots . 64
4.10 Feet and arms of the robot moving along trajectories 65
4.11 Angle of one of the rotational hip joints during one step cycle 66
4.12 MOF file examaple: jesus.mof . 68
4.13 MotionDesigner . 69
4.14 The transformation, that transfers coordinates from the left foot coordi-

nate system to the robot coordinate system 72
4.15 Modify the search range and direction in case of exceeding angle limits. . 76
4.16 The anatomy of the robots. 77
4.17 Block diagram of a feedback controller . 78
4.18 Block diagram of the PID controller . 79
4.19 Normal and tangential forces acting on a foot 82
4.20 Hierarchy Of Example-Behaviour . 87
4.21 Screenshot of Robot Control XP showing some of the available controls . 88

98

Bibliography

[Cor] Corporation, Atmel ; Atmel Corporation (Hrsg.): ATTINY-26 8-
BIT AVR MICROCONTROLLER WITH 2K BYTES IN-SYSTEM PRO-
GRAMMABLE FLASH. Atmel Corporation, www.atmel.com

[Cor06] Corporation, Atmel ; Atmel Corporation (Hrsg.): 8-BIT AVR MI-
CROCONTROLLER WITH 128K BYTES IN-SYSTEM PROGRAMMABLE
FLASH. Atmel Corporation, 2006

[Cza07] Czarnetzki, Stefan: Umsetzung eines catadioptrischen Kamerasystems mit
Weltmodellierung für einen mobilen autonomen Roboter, Universität Dort-
mund, Diplomarbeit, 2007

[Dep] Department, VISHAY S.A. I. ; VISHAY S.A. International Depart-
ment (Hrsg.): 3/4 rectangular multiturn cement trimmer. VISHAY S.A.
International Department

[Dev06] Devices, Analog ; Analog Devices (Hrsg.): ADM213EARZ EMI/EMC-
Compliant RS-232 Line Drivers/Receivers. Analog Devices, 9 2006

[Gos99] Goswami, Ambarish: Postural stability of biped robots and the foot rota-
tion indicator (FRI) point. In: International Journal of Robotics Research 18
(1999), S. 523–533

[Inc] Inc., Bothhand E. ; Bothhand Enterprise Inc. (Hrsg.): SINGLE RJ45
CONNECTOR MODULE WITH INTEGRATED 10/100 BASE-TX MAG-
NETICS. http://www.bothhand.com.tw: Bothhand Enterprise Inc.

[Int] International Electronics Engeneering (Hrsg.): IEE FSR Sensoren,
Daten, Eigenschaften und Hinweise zur Handhabung. International Electronics
Engeneering

[KKC04] KONDO KAGAKU CO., LTD. ; KONDO KAGAKU CO.,LTD. (Hrsg.):
Hardware Manual KHR-1. 1.0. KONDO KAGAKU CO.,LTD., 9 2004

[Kos06] Kosse, Ralf: Planung und Implementierung eines evolutionären Ansatzes zur
Steuerung eines zweibeinigen Roboters, Universität Dortmund, Diplomarbeit,
2006

[MIC] MICREL ; MICREL (Hrsg.): MIC 2026 Dual-Channel Power Distribution
Switch. MICREL

[Mol] Molex ; Molex (Hrsg.): Molex 53048 1.25mm Pitch Wire-to-Board Header.
Molex

99

www.atmel.com

Bibliography

[Pro99] Products, Maxim I. ; Maxim Integrated Products (Hrsg.): RS-232
Transceivers with AutoShutdown. Maxim Integrated Products, 1999

[Rec04] Rectifier, International ; International Rectifier (Hrsg.): IRLR371
HEXFET Power MOSFET. International Rectifier, 12 2004

[Rec05] Rectifier, International ; International Rectifier (Hrsg.): IRU3037
8-PIN SYNCHRONOUS PWM CONTROLLER. International Rectifier, 10
2005

[SEM] SEMTECH ; SEMTECH (Hrsg.): SR05 RailClamp Low Capacitance TVS
Diode Array. SEMTECH

[Sem97] Semiconductors, Philips ; Philips Semiconductors (Hrsg.): PCF8574
REMOTE 8-BIT I/O EXPANDER FOR I2C-BUS. Philips Semiconductors,
04 1997

[Sem98] Semiconductors, Philips ; Philips Semiconductors (Hrsg.): PCF8591
8-BIT A/D AND D/A CONVERTER. Philips Semiconductors, 07 1998

[Spr06] Spranger, Michael: An Architecture supporting Research and Education in
Robotics, Humboldt-Universität Berlin, Diplomarbeit, 2006

100

	1 Electronics
	1.1 Embedded Board
	1.2 Carrier Board
	1.2.1 Revision 1
	1.2.2 Revision 2

	1.3 Debug Board
	1.4 Power Board
	1.4.1 Sandwich Technique
	1.4.2 Power Board Operation

	1.5 Security Board
	1.5.1 Acoustical LiPo Saver
	1.5.2 Crowbar Circuit

	1.6 USB-I2C Converter
	1.6.1 Motivation
	1.6.2 Features
	1.6.3 Realization
	1.6.4 Protocol

	1.7 Sensors
	1.7.1 Gyroscope
	1.7.2 Acceleration
	1.7.3 Foot sensors

	2 Hardware
	2.1 Servos
	2.2 Accumulators
	2.3 Upper Body Design
	2.3.1 Hip
	2.3.2 Torso

	2.4 Battery Holders
	2.5 Foot Design
	2.6 Leg Design
	2.7 Arm Design

	3 Operating System
	3.1 General
	3.2 Configuration
	3.3 Components / Drivers
	3.4 File Based Write Filter
	3.4.1 FBWF Installation and Configuration
	3.4.2 FBWF In Detail
	3.4.3 FBWF Features
	3.4.4 The FBWF Tool

	4 Software
	4.1 Simulator
	4.1.1 Previous simulator
	4.1.2 Requirements for the new simulator
	4.1.3 The candidates and their features
	4.1.4 MSRS Simulator - architecture overview
	4.1.5 Simulation Environment
	4.1.6 Robot Entity
	4.1.7 Robot Service
	4.1.8 Multiple robot simulation
	4.1.9 Summary

	4.2 Framework
	4.2.1 Design
	4.2.2 Main Program
	4.2.3 Shared Library
	4.2.4 ThreadObjects
	4.2.5 Calibration

	4.3 The Walking Engine
	4.3.1 Problems of the walking engine

	4.4 Special Actions, Kick, Standup
	4.4.1 Kick
	4.4.2 Stand up

	4.5 Inverted Kinematics
	4.5.1 Forward kinematics
	4.5.2 Newton algorithm
	4.5.3 Quasi-Newton algorithm

	4.6 BalancingEngine
	4.6.1 PID based BalancingEngine
	4.6.2 Conclusion

	4.7 SensorDataProcessor
	4.7.1 Sensor fusion
	4.7.2 Falldetection
	4.7.3 Center of Pressure calculation
	4.7.4 Calculation of the camera matrix

	4.8 Behaviour State Machine
	4.8.1 XTC
	4.8.2 Behaviour Module

	4.9 Robot Control XP
	4.9.1 Robot Control XP in a Nutshell
	4.9.2 Modifications in Robot Control XP
	4.9.3 Network connection

	5 Conclusion and Outlook
	5.1 Conclusion
	5.2 Outlook

	Bibliography

