
Computational Aspects of Combinatorial
Pricing Problems

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Universität Dortmund
am Fachbereich Informatik

von

Patrick Briest

.. Dortmund
2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46907943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Tag der mündlichen Prüfung: 20. November 2007
Dekan: Professor Dr. Peter Buchholz

Gutachter: Privatdozent Dr. Piotr Krysta
Professor Dr. Ingo Wegener

Abstract

...... Combinatorial pricing encompasses a wide range of natural optimization problems that arise in the
computation of revenue maximizing pricing schemes for a given set of goods, as well as the design of
profit maximizing auctions in strategic settings. We consider the computational side of several different
multi-product and network pricing problems and, as most of the problems in this area are NP-hard, we
focus on the design of approximation algorithms and corresponding inapproximability results.
...... In the unit-demand multi-product pricing problem it is assumed that each consumer has different
budgets for the products she is interested in and purchases a single product out of her set of alternatives.
Depending on how consumers choose their products once prices are fixed we distinguish the min-buying,
max-buying and rank-buying models, in which consumers select the affordable product with smallest
price, highest price or highest rank according to some predefined preference list, respectively. We prove
that the max-buying model allows for constant approximation guarantees and this is true even in the case
of limited product supply. For the min-buying model we prove inapproximability beyond the known
logarithmic guarantees under standard complexity theoretic assumptions. Surprisingly, this result even
extends to the case of pricing with a price ladder constraint, i.e., a predefined relative order on the product
prices. Furthermore, similar results can be shown for the uniform-budget version of the problem, which
corresponds to a special case of the unit-demand envy-free pricing problem, under an assumption about the
average case hardness of refuting random 3SAT-instances. Introducing the notion of stochastic selection
rules we show that among a large class of selection rules based on the order of product prices the max-
buying model is in fact the only one allowing for sub-logarithmic approximation guarantees.
...... In the single-minded pricing problem each consumer is interested in a single set of products, which
she purchases if the sum of prices does not exceed her budget. It turns out that our results on envy-
free unit-demand pricing can be extended to this scenario and yield inapproximability results for ratios
expressed in terms of the number of distinct products, thereby complementing existing hardness results.
On the algorithmic side, we present an algorithm with approximation guarantee that depends only on
the maximum size of the sets and the number of requests per product. Our algorithm’s ratio matches
previously known results in the worst case but has significantly better provable performance guarantees
on sparse problem instances. Viewing single-minded as a network pricing problem in which we assign
prices to edges and consumers want to purchase paths in the network, it is proven that the problem remains
APX-hard even on extremely sparse instances. For the special case of pricing on a line with paths that are
nested, we design an FPTAS and prove NP-hardness.
...... In a Stackelberg network pricing game a so-called leader sets the prices on a subset of the edges of
a network, the remaining edges have associated fixed costs. Once prices are fixed, one or more followers
purchase min-cost subnetworks according to their requirements and pay the leader for all pricable edges
contained in their networks. We extend the analysis of the known single-price algorithm, which assigns
the same price to all pricable edges, from cases in which the feasible subnetworks of a follower form the
basis of a matroid to the general case, thus, obtaining logarithmic approximation guarantees for general
Stackelberg games. We then consider a special 2-player game in which the follower buys a min-cost
vertex cover in a bipartite graph and the leader sets prices on a subset of the vertices. We prove that this
problem is polynomial time solvable in some cases and allows for constant approximation guarantees in
general. Finally, we point out that results on unit-demand and single-minded pricing yield several strong
inapproximability results for Stackelberg pricing games with multiple followers.

.

Acknowledgements

...... Many people have contributed in various ways to this thesis. First and foremost, I am deeply indebted
to Piotr Krysta for his consistent guidance in my research, his steady support and encouragement as an
always thoughtful advisor and a friend. To Ingo Wegener I want to express my gratefulness not only for
agreeing to serve as a reviewer for my thesis, but for being a great lecturer and sparking my interest in the
theoretical side of computer science in the first place.
...... Science is not a one man show. I want to thank all my co-authors whom I was lucky enough to be
able to collaborate with in the course of my studies, especially Piotr Krysta and Martin Hoefer. I am also
greatly indebted to my colleagues both in Dortmund and Liverpool for stimulating a fantastic research
environment and making the last three years a most enjoyable and memorable time.
...... This thesis would not exist without the financial support of the DFG through grant Kr 2332/1 within
the Emmy Noether program.
...... Last, but not least, I want to thank my parents for their never faltering support throughout the last 28
years, without which none of this would have been possible.

.

Contents

1 Introduction 9
1.1 Pricing for Unit-Demand Consumers . 10

1.1.1 New Results . 12
1.2 Pricing for Single-Minded Consumers . 15

1.2.1 New Results . 16
1.3 Stackelberg Pricing . 17

1.3.1 New Results . 18
1.4 List of Publications . 20

2 Buying Cheap is Expensive: The Min-Buying Model 21
2.1 Preliminaries . 21
2.2 The Single-Price Algorithm . 23
2.3 Hardness of Approximation . 24

2.3.1 Independent Sets and Derandomized Graph Products 25
2.3.2 Reduction to UDP(C)-MIN . 28

2.4 An O(`)-Approximation . 32
2.5 Literature . 33

3 The Other End of the Chart: The Max-Buying Model 35
3.1 Preliminaries . 35
3.2 Hardness of Approximation . 36
3.3 A Local Search Algorithm . 39
3.4 Max-Buying with Price-Ladder Constraint . 41

3.4.1 A PTAS . 41
3.4.2 Strong NP-Hardness . 42

3.5 A Max-Buying Pricing Game . 44
3.6 Literature . 48

4 The Space Between: Stochastic Selection and the Rank-Buying Model 49
4.1 Preliminaries . 50
4.2 Hardness of Stochastic Selection . 50
4.3 Approximability of Rank-Buying . 54
4.4 Literature . 55

5 Uniform Budgets: The Envy-Free Pricing Problem 57
5.1 Preliminaries . 58
5.2 Hardness of Approximation - Overview . 58
5.3 Full Proof of Theorem 5.2.10 . 63

5.3.1 R3SAT?(poly(n))-hardness of Constant Degree BBIS 63

7

Contents

5.3.2 Gap-Amplification for Bounded Degree BBIS . 66
5.3.3 Maximum Expanding Sequences . 66
5.3.4 Reduction to UDP(C)-MIN . 69

5.4 Literature . 70

6 Network Pricing I: The Single-Minded Pricing Problem 71
6.1 Preliminaries . 72
6.2 General Approximability . 72
6.3 The Highway Problem . 74

6.3.1 NP-Hardness . 74
6.3.2 An FPTAS . 75

6.4 The Tollbooth Problem . 77
6.4.1 Full Proof of Theorem 6.4.3 . 80

6.5 An O(log ` + log B)-Approximation . 85
6.6 Literature . 87

7 Network Pricing II: Stackelberg Games 89
7.1 Preliminaries . 90
7.2 General Stackelberg Games and the Single-Price Algorithm - Again 91

7.2.1 Analysis . 92
7.2.2 Tightness . 95

7.3 Bipartite Stackelberg Vertex Cover . 95
7.4 Multi-Follower Stackelberg Pricing . 99

7.4.1 General Unweighted Games . 99
7.4.2 General Weighted Games and the River Tarification Problem 100

7.5 Literature . 101

8 Conclusions and Future Research 103

A Appendix 107
A.1 Complexity Classes, Reductions and Completeness . 107
A.2 Some Basics of Probability Theory . 109

B List of Symbols 111

8

1 Introduction

For the last decade we have been witnessing the enormous growth of the Internet as a global communi-
cation platform and its emergence as the world’s number one market place. Today the Internet acts as a
negotiation platform for various complex business transactions, which can be performed at a high speed
and in a highly automated manner in this environment.

Among the most famous and widely cited examples of how the Internet changes business processes, we
find, e.g., Google’s AdWords program. In this program, the space in the ’sponsored links’ section of the
result page of a web search is sold to companies who wish to have their advertisement placed on the page
whenever a user’s search includes certain keywords. The decision which advertisements are placed on the
page and in which order they will appear is essentially made by running an automated auction mechanism
on companies’ bids whenever the server generates a result page. However, the auction’s outcome does not
only depend on the amount of money each advertiser is willing to spend for a single placement, but also
on a number of other factors, like maximum per day budgets, the actual combinations of keywords that
trigger a certain ad, recorded click-through-rates for specific keywords and many more. As a consequence,
the design of bids for the AdWords program that result in a maximum number of placements at preferably
small cost has become a quite non-trivial task for ad campaigners.

The central problem, however, that arises in this context is the fact that Google and its advertisers do not at
all pursue the same objective. While Google is interested in placing the most relevant ads on each page in
order to keep their website as attractive as possible to potential customers, advertisers seek to optimize the
value for money they receive by snatching as many placements as possible. This means that it might well
be profitable for advertisers to submit bids that do not actually reflect their true preferences to the system
in order to manipulate the outcome in their favor.

From the computer scientist’s point of view, running the above auction is a mere optimization problem that
he - difficult as it may be - is surely able to cope with. However, taking into account the strategic behavior
of the participants, we look at a completely different problem. It is one of the Internet’s essential charac-
teristics that we encounter many of the computational problems we know in a less familiar game-theoretic
terrain. In recent years there has been a vast amount of research aimed both at a better understanding of
how the Internet operates in the absence of any central control and the question how strategic behavior can
be controlled. The classic concept of stability in game theory is that of a Nash equilibrium [Owe95], and
indeed it has been very successfully applied by computer scientists to model how networks can be built and
maintained by selfishly acting users without any sort of control mechanism. In order to control strategic
behavior, e.g., in an auction mechanism, Nash equilibria are somewhat problematic, since pure equilibria
are not guaranteed to exist in general and, even if they do, might be rather difficult to find [FPT04]. The
field of algorithmic mechanism design [NR99] therefore resorts to the stronger notion of dominant strategy
equilibria, which are guaranteed to exist if one allows for some side payments, and ensure that it is always
in all participants’ best interest to reveal their true preferences to the mechanism. Especially the design of
auction mechanisms has received considerable attention lately, as combinatorial auctions (in which several

9

1 Introduction

goods are auctioned simultaneously) [CSS06] essentially capture all the difficulties faced in algorithmic
mechanism design in general and have therefore become the area’s favorite testbed.

Aside from any game-theoretic considerations, the growth of the Internet and its influence on various
aspects of business life have also fueled one of the core areas of computer science - algorithms and com-
plexity. The Internet offers both customers and companies possibilities far beyond the scope of traditional
markets and, as it becomes ever simpler to gather huge amounts of data about the market as a whole, many
problems that have been on the agenda of economists for years now need to be solved efficiently and in
large scale by computers.

Websites like the Product Advisor [Pro], a successor of General Motor’s Auto Choice Advisor web page,
allow customers to compare products and prices across the market in order to make optimal buying deci-
sions. By asking customers about their rating of different products and their budgets, the website generates
large amounts of data about consumer preferences. These data sets are extremely valuable to companies,
as they allow them to streamline their product ranges and apply intelligent pricing schemes tailored to a
specific market.

A problem that appears both in this context and the field of algorithmic mechanism design is that of
combinatorial multi-product pricing. From the point of view of optimization, this problem is quite natural.
Given data about a company’s potential customers, revealing which product they would buy given any
pricing scheme, how should the company set their prices to achieve best possible revenue? The resulting
optimization problems range from very simple versions, in which each consumer is only interested in a
single product, to highly involved ones, in which different products influence each other in quite unforeseen
ways. Thus, multi-product pricing is an area of optimization that has to offer many challenging problems
exhibiting rich combinatorial structures.

The role of multi-product pricing in the context of algorithmic mechanism design is maybe not so obvious.
As mentioned before, a lot of research has been focused on the design of mechanisms for combinatorial
auctions. A drawback of the classic approach of designing truthful mechanisms by applying VCG pay-
ments [CSS06] is the fact, that the implementation in dominant strategies comes at the price of potentially
high side payments. Thus, although the mechanism is guaranteed to produce solutions that are good with
respect to some global social objective, it does not necessarily generate a lot of revenue for the auction-
eer. One way to circumvent this problem, at least in the case of unlimited product supply, is to resort
to so-called random sampling auctions [BBHM05] as an alternative to VCG mechanisms. In this type
of auctions, the participating bidders are randomly partitioned into two equally sized sets. Then revenue
maximizing prices are computed on both sets and the products are offered at these prices to the opposite
set of bidders. In this mechanism, strategic behavior trivially cannot pay off, because a bidder has no in-
fluence on the prices offered to herself, and for a sufficiently large set of bidders the revenue is guaranteed
to be close to the revenue obtainable by selling the products at their optimal fixed prices.

We will focus here on the algorithmic side of multi-product pricing and investigate computational aspects
of some of its combinatorially challenging versions.

1.1 Pricing for Unit-Demand Consumers

Aiming at the objective of using data as acquired by the Product Advisor website to compute intelligent
pricing schemes for a company’s product range, Rusmevichientong [Rus03] and Glynn et al. [GRR06]

10

1.1 Pricing for Unit-Demand Consumers

defined the non-parametric multi-product pricing problem. Consumers are characterized by their budgets
for different products and a selection rule describing how a consumer selects a product among those she
can afford once prices are fixed. Since products in this model constitute pure substitutes and consumers
will buy exactly one product if they can afford it, they are usually referred to as unit-demand. Glynn et
al. propose three different selection rules. In the rank-buying model each consumer has a ranking of all
the products she is interested in. When prices are fixed she buys the highest ranked product with a price
below her respective budget. In the min-buying and max-buying models a consumer buys the product with
lowest or highest price not exceeding her budget, respectively. The objective of the problem is to compute
revenue maximizing prices given a set of consumer samples of the above type, i.e., maximize the sum of
prices of products sold to consumers from the sample under any possible price assignment. In the standard
setting it is assumed that all products are available in unlimited supply.

Maybe a short discussion of our optimization goal is in order. One could argue that a more natural objective
than revenue maximization might be to optimize profit, i.e., the sellers surplus after production costs have
been deducted. However, in the case of unit-demand consumers, on which most of this work will be
focused, these objectives are essentially equivalent, since we can always adjust all budgets by subtracting
the production cost of the respective product and use our algorithms for revenue maximization to compute
the optimal profit margin for each product. Unfortunately, this kind of equivalence does not hold for
other versions of combinatorial pricing, in which products are not pure substitutes. In these cases, it
can sometimes be rewarding to price individual products below their actual production costs in order
to subsidize sales of other profitable products. In our model of computing optimal profit margins this
corresponds to a problem that allows us to assign negative prices, as well, and appears to be significantly
more difficult to handle than revenue maximization. For some initial results on this kind of problem the
reader is referred to [BBCH07].

Rusmevichientong [Rus03] shows that the min-buying model, where each consumer has the same budget
for all products she desires, allows a polynomial time algorithm, assuming a price-ladder constraint, i.e.,
a predefined total order on the prices of all products. Such a constraint is sometimes implied by the set
of products in question. Aggarwal et al. [AFMZ04] present first algorithms with provable approximation
guarantees for all three models: a PTAS for both rank-buying and max-buying with price-ladder, a 1.59-
approximation for max-buying without price-ladder, and a logarithmic approximation in the number of
consumer samples for any of the above models, assuming unlimited supply of the products.

In the more general limited supply case, in which in addition to computing product prices it has to be
decided how to allocate products among consumers, a 4-approximation is derived for max-buying with
price-ladder. There are many practical situations in which it is desirable to be able to handle limited
supply, as well. Besides the obvious point that it might not be possible to increase production capacity
beyond a certain limit, even artificially limiting product supply can sometimes be rewarding. Further
results about unit-demand pricing with limited supply are presented by Guruswami et al. [GHK+05],
who investigate another selection rule, which is inspired by the notion of truthfulness in auction design
and is first mentioned in [AFMZ04]. In the envy-free pricing problem a consumer buys the product that
maximizes her personal utility, i.e., the difference between the product’s price and her respective budget.
A set of prices together with a corresponding allocation of the products is envy-free, if every consumer
indeed receives the product maximizing her utility. Guruswami et al. present an algorithm with logarithmic
approximation ratio for this problem, which essentially combines the result from [AFMZ04] with some
interesting results from economics regarding Walrasian equilibria [KB57].

11

1 Introduction

1.1.1 New Results

So far, there have been large gaps between the lower and upper bounds on the approximability of almost
all versions of unit-demand pricing, the only exceptions being the max-buying model without price-ladder,
for which a constant factor approximation and APX-hardness are known [AFMZ04].

As the main contribution of this work we resolve the question of approximability of most of the above unit-
demand pricing models, putting emphasis on hardness of approximation. In particular we prove near-tight
hardness results for the min-buying and max-buying models, the unit-demand envy-free pricing problem,
and several versions of the rank-buying model. Many of our hardness results show the first non-constant,
logarithmic, and even polynomial inapproximability for those problems. We also give algorithmic results,
which close the gap in approximability of some of those models. Finally, the max-buying model is also
investigated from a game theoretic perspective. Namely, we study the multi-player game obtained by
assuming that the price of every product is determined by a distinct agent trying to maximize her personal
revenue, and present a bound on the price of anarchy (cf. [KP99, Pap01]) in this game.

We will adopt the following unified notation for all considered problem variations. The unit-demand
pricing problem for a set C of consumer samples assuming selection rule s is denoted as UDP(C)-s. Given
a price-ladder constraint, we refer to the corresponding problem as UDP(C)-s-PL.

Min-Buying: We first focus on the min-buying model (UDP(C)-MIN) with unlimited supply. The best
known algorithm for this problem, which simply computes the optimum solution assigning the same
price to every product and is therefore termed single-price algorithm, has an approximation factor of Hm

[AFMZ04], where m denotes the number of consumer samples. Surprisingly, it turns out that this simple
algorithm is essentially best possible, as we prove that there is noO(logε m)-approximation algorithm for
some absolute ε > 0, assuming NP 6⊆ DTIME(nO(log log n)). In fact, an approximability threshold of ∆ε

for the independent set problem in graphs of degree at most ∆ yields the same constant ε in our reduction.
As so far no algorithms with approximation guarantee essentially below ∆ are known for the indepen-
dent set problem, this suggests that UDP(C)-MIN does not allow approximation ratios essentially better
than log m. We emphasize that this inapproximability result holds even in the presence of a price-ladder
constraint (UDP(C)-MIN-PL). This stands in sharp contrast with the restricted version of the min-buying
model in which we assume that each consumer has the same budget for all the goods she desires [Rus03],
where a polynomial time algorithm follows basically by observing that in the presence of a price-ladder
each consumer who is able to buy any product buys the product with smallest price according to the price-
ladder. This reduces the number of products to be considered for each consumer to one and a simple
dynamic programming algorithm yields the result. Remarkably, after very few natural maximization prob-
lems with logarithmic approximation threshold have been known for quite some time (see [FHKS02] for
one of the first examples), UDP(C)-MIN is already the second problem from the field of product pricing
(see Chapter 6 and [DFHS06] for another example) for which such a threshold can be shown.

Applying a number of small modifications our reduction also yields almost tight hardness results when
the approximation ratio is expressed in terms of `, i.e., the maximum number of positive budgets of any
consumer, and n, the number of products. We prove that for every ` ≥ 3 UDP(C)-MIN and UDP(C)-MIN-
PL with at most ` non-zero budgets per consumer are NP-hard to approximate within `ε for some ε > 0.
Furthermore, in general both problems are hard to approximate within O(nε) for some ε > 0, unless NP
⊆ DTIME(2O(nδ)) for all δ > 0. In addition to these lower bounds we derive some new matching algo-
rithmic results. Specifically, there is a trivial O(n)-approximation and an approach of Balcan and Blum

12

1.1 Pricing for Unit-Demand Consumers

[BB06] implies an O(`)-approximation for UDP(C)-MIN without price-ladder. Our hardness results are
based on the classical method of graph products [BS92] to amplify the inapproximability threshold of the
maximum independent set problem in bounded degree graphs. We first slightly extend the derandomized
version of that construction due to Alon et al. [AFWZ95] and parametrize the maximum degree of the
constructed graph product in the number of its vertices. We then encode independence in such graphs by
classes of geometrically increasing budgets in our pricing problem, where vertices correspond to products.
The difficulty here is that independence needs to be enforced in a somewhat asymmetric way. More pre-
cisely, based on a vertex coloring of the given graph, we can define collections of consumers that encode
independence of a vertex from adjacent vertices with colors of smaller index, but we cannot do this in the
opposite direction. The results concerning the min-buying model are found in Chapter 2.

Max-Buying: Among the different selection rules considered in unit-demand pricing, the max-buying
model sets a counterpoint to the min-buying model and, at first glance, it might not appear as practically
relevant as some of the other models. The motivation to study this problem variation stems from its
connection to the economically well motivated rank-buying model, and from the fact that it turns out to be
significantly more tractable than its relatives. Thus, it constitutes a promising testbed for the application
of algorithmic techniques to unit-demand pricing.

The best previous algorithms for the max-buying model (UDP(C)-MAX) are presented by Aggarwal et
al. [AFMZ04]. For UDP(C)-MAX with unlimited product supply they derive a 1.59-approximation based
on a linear programming relaxation and randomized rounding techniques and prove that the problem is
NP-hard to approximate within 16/15. For unlimited-supply UDP(C)-MAX-PL (i.e., given a price-ladder
constraint) they present a PTAS based on a rather involved dynamic programming approach, which we
sketch in Section 3.4.1. However, they leave open the question whether this is the best possible algorithmic
result that can be obtained in the presence of a price-ladder. We answer this question in the affirmative by
proving strong NP-hardness of UDP(C)-MAX-PL.

We then consider the effect of having to deal with limited product supply. The only known result for this
case is a 4-approximation for limited-supply UDP(C)-MAX-PL due to [AFMZ04]. We first have a closer
look at the relation between the maximum supply and the problem’s complexity. We show that without a
price-ladder, limited-supply UDP(C)-MAX can be solved in polynomial time for unit-supply (i.e., given
a single copy of each distinct product) but becomes APX-hard already with maximum supply of only 2.
On the algorithmic side, we analyze the performance of a generic local search algorithm and prove that it
yields a 2-approximation for limited-supply UDP(C)-MAX. This complements our APX-hardness result
for this problem, and in fact it is the first algorithm for the limited-supply case without price-ladder with
provable approximation guarantee. For unlimited supply UDP(C)-MAX our ratio does not match the best
known result, which gives a 1.59-approximation [AFMZ04]. However, the previous algorithm is based
on a rather problem specific LP-formulation and rounding techniques. Local search, on the other hand,
appears to be a quite natural approach to a wide range of pricing problems. Seen in this light, we provide
first evidence that this approach might indeed be promising also for more practical problems.

Finally, we show that our analysis of the local-search algorithm can be extended to bound the price of
anarchy in the related pricing game, in which each product is owned by an individual agent setting its
price. Chapter 3 deals with the max-buying model.

Rank-Buying: Many of the discussed results can be transferred to the rank-buying model. All hardness
results for UDP(C)-MIN with or without price-ladder constraint hold for the rank-buying model (UDP(C)-

13

1 Introduction

RANK) if we allow non-rank-consistent budgets, i.e., if consumers are allowed to assign higher budgets to
products with lower ranks. In addition, all known algorithmic results apply here, too.

If we require rank-consistent budgets and consider the price-ladder case, the problem reduces to UDP(C)-
MAX-PL. We prove strong NP-hardness for UDP(C)-RANK-PL as in the max-buying case, complement-
ing the existing PTAS. Section 4.3 gives an overview of all our results for the rank-buying model.

Stochastic Selection Rules: Given a price-ladder constraint, unit-demand pricing allows a PTAS if con-
sumers buy according to the rank-buying model and have rank-consistent budgets. This is certainly one of
the strongest positive results in the field, since the rank-buying model is widely considered economically
realistic and the approximation guarantee is good enough to make the algorithm applicable in practice.
If the price-ladder assumption is removed, however, the current state of affairs is not satisfactory at all.
On one hand, the max-buying model, which has been shown to allow constant approximation ratios, does
not model rational consumer behavior, as consumers rarely tend to choose the most expensive alternative
available. On the other hand, the min-buying model can be considered more realistic, but turns out to be
intractable beyond logarithmic approximation guarantees, which again renders the model rather unsuitable
for practical purposes. Hence, it is a major open problem to come up with economically realistic versions
of unit-demand pricing that allow reasonable approximation ratios in the no price-ladder scenario. One
natural approach to this task is to define a new selection rule that is sort of in-between max- and min-
buying, in the sense that it is close enough to min-buying to capture rational consumer behavior, but also
close enough to max-buying to be computationally tractable. We prove here that this approach is likely to
fail.

To capture a wide range of selection rules that are based on product prices and are situated between the
max- and min-buying models, we define the notion of order-based stochastic selection rules, which for
each consumer define a probability distribution over the set of affordable products depending only on the
relative order of prices, the problem’s objective becoming maximization of the expected revenue from the
resulting sales. We obtain a class of selection rules that model a wide range of consumer behavior, with
max- and min-buying as the extremes at both ends of the chart. We show that constant approximation
ratios are possible as long as the selection rule is close to max-buying, but become impossible under some
standard complexity theoretic assumptions as soon as we make an essential step towards the min-buying
objective. Especially, even the case in which a consumer chooses one of her affordable products purely
at random (the random-buying model) turns out to be no more tractable than min-buying itself. To prove
inapproximability of unit-demand pricing with stochastic selection rules, we show a probabilistic reduction
from UDP(C)-MIN on a restricted class of (hard) input instances. At the core of the reduction we use a
probabilistic selection procedure that with good probability finds a subset of the products on which revenue
is high enough even under the min-buying objective. Our results on pricing with stochastic selection rules
are found in Chapter 4.

Envy-Free Pricing: The last collection of results on unit-demand pricing considers the aforementioned
special case of UDP(C)-MIN in which each consumer has the same budget for all the products she is inter-
ested in (the uniform-budget case). This problem can be viewed also as a special case of the unit-demand
envy-free pricing problem, since with uniform budgets it is always the product with lowest absolute price
that maximizes a consumer’s utility. In light of the fact that this problem variation is exactly solvable in
polynomial time given a price-ladder constraint, one might feel tempted to hope for improved algorithmic
results in the general case, as well. As we shall see, however, such results are rather unlikely.

14

1.2 Pricing for Single-Minded Consumers

More precisely, we prove that assuming specific hardness of refuting random 3SAT-instances or approx-
imating the balanced bipartite independent set problem (BBIS) in constant degree graphs, even this re-
stricted problem version does not allow approximation guarantees essentially beyond the known loga-
rithmic ratios. The connection between BBIS and uniform-budget UDP(C)-MIN is made via so-called
maximum expanding sequences (MES), which can be interpreted as a combinatorial formulation of the in-
teraction between different price levels in the pricing problem and might also be of independent interest. In
order to show hardness of uniform-budget UDP(C)-MIN we need hardness of very sparse MES instances,
which we obtain from constant degree BBIS (which does not have known inapproximability results) by
applying the technique of derandomized graph products similar to our approach for general UDP(C)-MIN.
To embed this result into a somewhat wider context, we show that it can also be derived from a hypothesis
about the average case complexity of refuting random 3SAT-instances, which is essentially identical to the
one put forward in [Fei02] in a similar context.

Previously, uniform-budget UDP(C)-MIN and unit-demand envy-free pricing have only been known to
be APX-hard [GHK+05] and settling this problem’s approximation complexity is a long standing open
problem. The results on uniform-budget UDP(C)-MIN are found in Chapter 5.

In several places throughout the part of this work dealing with unit-demand pricing we will also consider
a slight extension of the problem, in which consumers are not represented by samples C, but as an explicit
(finite support) distributionD. On one hand, this natural extension will allow for stronger and tighter lower
bounds, while avoiding technicalities that are caused by the sampling-based representation. On the other
hand, this view on the problem is widely spread in economics and is starting to receive attention in the
computer science community, too [CHK07].

The table in Fig. 1.1.1 summarizes most of our results on pricing for unit-demand consumers and how
they relate to previous work.

1.2 Pricing for Single-Minded Consumers

The single-minded pricing problem, which is primarily inspired by the notion of single-mindedness in al-
gorithmic mechanism design, has first been considered by Guruswami et al. [GHK+05]. It varies from the
unit-demand model in that products now act as pure complements rather than substitutes. More formally,
every consumer is interested in a single set of products, which she will buy if the sum of prices of products
in that set does not exceed her budget.

Single-minded pricing (SMP) in general is quite comparable to the unit-demand case as far as its ap-
proximability is concerned. Guruswami et al. [GHK+05] prove that the single-price algorithm yields an
approximation guarantee that is logarithmic in the number m of consumers and the number n of products.
An almost matching lower bound, which shows that the problem is not approximable within O(logε m)
(m and n are interchangeable here) for some ε > 0, unless NP⊆ BPTIME(2O(nδ)) for all δ > 0, is proven
by Demaine et al. [DFHS06].

For most of our discussion of SMP we will adopt a different point of view and consider the special case
of pricing the edges of a network, in which consumers seek to purchase fixed paths connecting their
respective source and target nodes. We can think of single-minded pricing in graphs (G-SMP) as the
problem of setting up tollbooths (and defining tolls) in a privately owned highway system, for which

15

1 Introduction

Variation Previous [Lower] Upper New Lower {Assumption} New Upper
`ε ∀ ` ≥ 3
{P 6= NP} O(`)
Ω(nε) {no PL only}

{NP 6⊆ DTIME(2O(nδ))}UDP(C)-MIN(-PL)

Ω(logε m) O(n)
O(log m)

{NP 6⊆ DTIME(nO(log log n))}
`ε ∀ ` ≥ `0

{R3SAT?(poly(n))-hard}
Ω(nε)

{R3SAT?(2nδ
)-hard}

UDP(C)-MIN [APX-hard]

Ω(logε m)

-
{uniform budgets}

{R3SAT?(poly(n))-hard}
1.59 2UDP(C)-MAX [16/15],

(LP-based)
–

(combinatorial)
UDP(C)-MAX APX-hard {supply ≥ 2}
{limited supply}

[–], –
in P {supply ≤ 1}

2

UDP(C)-MAX-PL

{limited supply}
[–], 4 strongly NP-hard –

UDP(C)-MAX-PL [–], PTAS strongly NP-hard –

Figure 1.1: Our results on unit-demand pricing. Results apply to unlimited supply, unless stated otherwise.
Hardness results with ε and complexity assumptions with δ are assumed to hold for some ε,
δ > 0. For a definition of R3SAT?(t(n))-hardness see Section 5.2.

reason the problem has been termed tollbooth problem in [GHK+05]. Guruswami et al. show that G-
SMP is APX-hard in general and develop polynomial time algorithms for several special cases, e.g., if the
underlying network is a rooted tree and all paths share the root as a common starting point. A special case
that has received a lot of attention is that of networks consisting of a single line, the so-called highway
problem. In [GHK+05] it is shown how to solve this problem optimally when all paths are of constant
length or all budgets are of at most constant size. Improved approximation results for the highway problem
are presented by Balcan and Blum [BB06] and Elbassioni et al. [ESZ07], whose quasi-PTAS is the best
known algorithm for highway pricing to date.

1.2.1 New Results

We will present two types of results on SMP. Guruswami et al. [GHK+05] prove that G-SMP is APX-
hard. However, their reduction creates a problem instance in which some of the products are requested by
a constant fraction of all consumers. From a technical standpoint, this appears quite unavoidable, since an
approximation preserving reduction to G-SMP always brings up the problem that we need to force optimal
(or approximately optimal) solutions to be in a sense integral in order to be able to reconstruct solutions

16

1.3 Stackelberg Pricing

to the combinatorial problem that is our reduction’s starting point. On the other hand, it is certainly
desirable to have hardness results also for sparse instances, especially because it turns out that the number
of requests per product and the maximum number of products requested by any consumer are the most
crucial parameters when it comes to finding good approximations using upper bounding techniques known
so far.

Our first main result is a proof of APX-hardness even if the parameters mentioned above (and several
more) are bounded by a small constant. The result is based on a reduction from MAX-SAT with clauses of
length 2 and essentially requires the design of gadgets for the pricing instance that simulate the behavior
of clauses in the MAX-SAT instance. Along the way we design smaller gadgets that not only model the
behavior of literals, but also enable us to prove a first lower bound for the highway pricing problem, which
turns out to be NP-hard. Interestingly, this holds even on instances in which all requested paths are nested,
i.e., either disjoint or completely contained inside each other. For this restricted version we show how to
obtain an FPTAS based on a dynamic programming approach.

Looking at general SMP we argue that our results on unit-demand envy-free pricing can be extended to
the single-minded case. Specifically, we complement known hardness results by proving that SMP is not
approximable within O(nε) for some ε under our assumption about average case hardness of random
3SAT.

Our second main result is an approximation algorithm for SMP that asymptotically matches the approxi-
mation guarantee of the single-price algorithm in the worst case, but is capable of exploiting the special
structure of sparse problem instances to outperform the single-price approach in these cases. Guruswami
et al. [GHK+05] prove that the single-price algorithm has approximation ratio Hm + Hn. The approxi-
mation guarantee of our algorithm, which is purely combinatorial and based on a partitioning approach, is
O(log ` + log B), where ` is an upper bound on the number of products requested by any consumer and
B denotes the maximum number of consumers interested in any single product. Note, that clearly ` ≤ n
and B ≤ m on any problem instance. Chapter 6 considers pricing for single-minded consumers.

1.3 Stackelberg Pricing

In the last chapter we turn to the most general form of network and multi-product pricing. Chapters
2 through 6 consider pricing for quite restrictive types of consumers, who are interested in purchasing
exactly one product in the pure substitutes or unit-demand case and exactly one subset of products in the
pure complements or single-minded scenario. In general, however, it is easy to imagine that consumers
act according to much more complex preferences and even modelling general consumer behavior seems
quite unachievable. We adopt here the notion of a general bidder from algorithmic mechanism design
that is defined along the lines of utility maximization and is a natural generalization of the unit-demand
envy-free pricing problem. A consumer is characterized by a valuation function that assigns a valuation to
every possible subset of products. Once prices are fixed, each consumer buys the subset of products that
maximizes her utility, i.e., the difference between her valuation for that subset and the sum of prices of
products in the set.

Once again we view the problem as the task of pricing the links (or nodes) in some underlying network, in
which consumers seek to purchase subnetworks according to their requirements. In our setting, a leader
is allowed to assign prices only to a subset of the network links (the pricable edges), the prices of the

17

1 Introduction

remaining (fixed-price) edges are fixed. Once prices have been assigned to all edges by the leader, each
consumer (termed follower) purchases the cheapest subnetwork satisfying her requirements and the leader
receives payments according to the prices of pricable edges bought by the followers. The subnetworks re-
quired by the followers can be paths connecting specific vertices, spanning trees or anything else. The only
assumption that we will make here is that each follower is able to find her cheapest feasible subnetwork in
polynomial time.

This type of pricing problem, in which preferences are implicitly defined in terms of some optimization
problem, is usually referred to as Stackelberg pricing [vS34]. In the standard 2-player form we are given
a leader setting the prices on a subset of the network and a single follower seeking to purchase some kind
of min-cost subnetwork.

It should be pointed out that Stackelberg pricing with multiple followers captures multi-product pricing
with arbitrary valuation functions in full generality, if we drop the assumption that followers are limited
to polynomial time computations but allow general bidders represented by oracles. This is true because
we can encode general valuation functions by using pricable edges as products and fixed-price edges in
combination with the feasibility constraint to encode budgets. We note that all our results on general
Stackelberg games also hold for multi-product pricing among consumers with general valuation functions.

1.3.1 New Results

The single-follower Stackelberg network pricing problem has first been considered for a follower seeking
to purchase a path connecting a fixed pair of vertices [LMS98]. Roch et al. [RSM05] present an approx-
imation algorithm for this problem, which achieves approximation guarantee O(log m), where m is the
number of pricable edges, and relies on a quite problem specific recursive branching approach. Quite re-
cently, Cardinal et al. [CDF+07] investigated the corresponding minimum spanning tree game, in which
the follower buys a min-cost spanning tree when prices are fixed, obtaining a logarithmic approximation
guarantee by applying the single-price algorithm. Moreover, they prove that this algorithm is even more
widely applicable and yields similar approximation guarantees for all matroid based Stackelberg games,
i.e., pricing games in which the feasible subnetworks of the follower form the basis of a matroid.

We present a generalization of this result to general Stackelberg games. The previous limitation to matroids
stems from the difficulty to determine the necessarily polynomial number of candidate prices that can be
tested by the algorithm. We develop a novel characterization of the small set of threshold prices that need
to be tested and obtain a polynomial time (1+ε)Hm-approximation for arbitrary ε > 0. Our analysis turns
out to be perfectly tight for shortest path as well as minimum spanning tree games. This result generalizes
to the case of multiple followers, in which the approximation ratio becomes (1 + ε)(Hm + Hk), where k
denotes the number of followers. This can be shown to be essentially best possible by an approximation
preserving reduction from single-minded pricing.

An even more general version of the problem, which has been considered before by Roch et al. [RSM05]
and Bouhtou et al. [BGvH+04], is the case of multiple weighted followers, which arises naturally in
network settings where different followers come with different routing demands. Here the profit from
selling an edge is defined as the edge’s price multiplied with the demand a follower routes along it. It has
been conjectured before that no approximation essentially better than the number of followers is possible
in this scenario. We disprove this conjecture by presenting an alternative analysis of the single-price

18

1.3 Stackelberg Pricing

algorithm resulting in an approximation ratio of (1 + ε)m2. Additionally, we derive a lower bound of
O(mε) for the weighted player case, which yields instances of the so-called river tarification problem and
resolves a previously open problem from [BGvH+04].

It is a central open question how the type of subnetwork purchased by the follower influences the complex-
ity of the resulting 2-player Stackelberg game. We present a first example in which better than logarithmic
approximation guarantees are achievable by using algorithmic techniques similar to those that yield poly-
nomial time algorithms for the optimization problem solved by the follower. In the 2-player bipartite vertex
cover game, the leader sets prices on a subset of the vertices of a bipartite graph, the follower purchases a
min-cost vertex cover of the graph’s edges. As it turns out, max-flow related techniques yield a polynomial
time algorithm for revenue maximization in this game, if all pricable vertices are on the same side of the
bipartition. We first derive an upper bound on the possible revenue in terms of the min-cost vertex cover
not using any pricable vertices and the minimum portion of fixed cost in any possible cover. Using iterated
max-flow computations, we then determine a pricing with total revenue that eventually coincides with our
upper bound. This algorithm easily extends to a 2-approximation for the general 2-player bipartite vertex
cover game. Our results on Stackelberg pricing are found in Chapter 7.

19

1 Introduction

1.4 List of Publications

This thesis is based on the following publications:

• Buying Cheap is Expensive: Hardness of Non-Parametric Multi-Product Pricing.
Joint work with Piotr Krysta.
In Proc. of 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

Results published in this paper are found in Chapters 2, 3 and the last part of Chapter 4.

• Towards Hardness of Envy-Free Pricing.
ECCC Technical Report TR06-150, 2006.

Results published in this paper are found in Chapter 5.

• Single-Minded Unlimited-Supply Pricing on Sparse Instances.
Joint work with Piotr Krysta.
In Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006.

Results published in this paper are found in Chapter 6.

• Stackelberg Network Pricing Games.
Joint work with Martin Hoefer and Piotr Krysta.
Technical Report ULCS-07-022, The University of Liverpool, 2007.

Results published in this paper are found in Chapter 7.

20

2 Buying Cheap is Expensive: The Min-Buying Model

We start our investigation of algorithmic pricing by looking at the unit-demand case, in which products are
pure substitutes and every consumer seeks to purchase a single product out of a set of alternatives subject
to individual budget constraints. This type of consumer behavior, which was first considered in [Rus03],
constitutes a whole class of pricing problems varying in the way consumers select the product they are
going to buy once prices are fixed.

A natural way to define the selection process is to assume that each consumer simply selects the cheapest
product that does not violate her budget constraint. This version of the problem, which is usually referred
to as unit-demand min-buying, is quite attractive as it essentially corresponds to our intuitive understanding
of rational consumer behavior. However, as we shall see this comes at the price of high approximability
thresholds that pose an insurmountable barrier if one insists on practically relevant algorithmic results in
the general case.

It is therefore necessary to search for restricted problem versions if we want to stand a chance of achieving
near optimal pricing schemes. One such restriction, which has been considered before is the so-called
price-ladder constraint, which imposes a relative order on the prices of all products. While this approach
has been proven to drastically reduce the complexity of some other versions of unit-demand pricing, it
turns out that it is not very successful in the min-buying scenario. Another standard approach to simplify
the problem is to assume that each consumer is only interested in a small number of the available products
and, as we shall see, this is in fact a possibility to achieve improved approximation guarantees in some
cases.

This chapter is organized as follows. In Section 2.1 we give a formal definition of unit-demand pricing
in its most general form, which is then refined to the min-buying model. Section 2.2 introduces one of
the folklore results in algorithmic pricing due to [AFMZ04], the very simple single-price algorithm, in
the context of general unit-demand pricing. The main results of this chapter are found in Section 2.3,
which shows that despite its simplicity the single-price algorithm is in fact essentially best possible for
the min-buying model. Interestingly, the presented reductions yield (near) tight inapproximability results
for quite different parametrizations of the approximation guarantee and hold even under the presence of a
price-ladder constraint. To show tightness of our bounds in the case of sparse problem instances, Section
2.4 sketches how a previously known algorithm can be used to obtain tight approximation ratios expressed
in the number of non-zero budgets per customer. Section 2.5 gives an overview of related literature.

2.1 Preliminaries

In the computer scientist’s Unit-Demand Pricing Problem with unlimited product supply we are given a
universe of products U , |U| = n, and consumer samples C, |C| = m, consisting of budgets b(c, u) ∈ R+

0 ,
where b(c, u) denotes the maximum amount consumer c ∈ C is willing to spend on product u. For a price

21

2 Buying Cheap is Expensive: The Min-Buying Model

assignment p : U → R+
0 we let

Ac(p) =
{
u ∈ U | p(u) ≤ b(c, u)

}

refer to the set of products consumer c can afford to buy and

A(p) =
{
c ∈ C |Ac(p) 6= ∅}

denote the set of consumers that can afford to buy any product under p. Given fixed prices p, a selection
rule

s : C × (U → R+
0) → U ∪ {∅}

assigns to each consumer c the product s(c, p) ∈ Ac(p)∪{∅} she is going to buy under p. If s(c, p) = ∅,
then c does not buy any product. For ease of notation we define p(∅) = 0.

In the computer scientist’s or sampling-based unit-demand pricing problem with selection rule s (denoted
as UDP(C)-s) we want to find prices p that maximize the revenue

rs(p) =
∑

c∈C
p
(
s(c, p)

)
.

A natural extension of the problem is obtained if we assume that our knowledge of consumer preferences
is not obtained from some sampling procedure, but that we know the explicit probability distribution over
the space C∗ of all possible consumers, which is a widely spread assumption in economics. Thus, in
the economist’s or distribution-based unit-demand pricing problem UDP(D)-s we are given probability
distribution D over consumer space C∗. We will mostly focus on lower bounds for this model, in which
case we may w.l.o.g. restrict ourselves to finite support distributions, i.e., we are given a set of consumers
C and a discrete distribution D on C. Our goal is to find prices p maximizing the expected revenue

rs(p) =
∑

c∈C
PrD

(
c
) · p(

s(c, p)
)
.

from a sale to a single consumer drawn according to distribution D.

Choosing as selection rule

smin(c, p) =
{

argmin{p(u) |u ∈ Ac(p)}, if Ac(p) 6= ∅
∅, else

we obtain the min-buying model, in which each customer chooses to purchase the least expensive product
with a price not exceeding her respective budget. We next give a compact formal definition of the sampling-
based unit-demand min-buying problem UDP(C)-MIN. The definition of the distribution-based problem
is analogous.

Definition 2.1.1. Given products U , |U| = n, and consumer samples C, |C| = m, consisting of budgets
b(c, u) ∈ R+

0 , UDP(C)-MIN asks to find a price assignment p : U → R+
0 maximizing

rmin(p) =
∑

c∈A(p)

min
{
p(u) |u ∈ Ac(p)

}
,

with Ac(p) and A(p) as defined above.

22

2.2 The Single-Price Algorithm

Previous literature sometimes considers unit-demand pricing under the restriction of a so-called price-
ladder constraint, i.e., a predefined order of the product prices. Such constraints naturally arise in scenarios
where products are directly comparable and pricing a product above some superior alternative cannot be
profitable. As an example, imagine a company that wants to price their range of MP3-players, which vary
only in hard disc space.

Definition 2.1.2. Given products U = {u1, . . . , un} a price-ladder constraint (PL) π ∈ Sn is a relative
order p(uπ(1)) ≤ · · · ≤ p(uπ(n)) on the product prices. UDP(C)-s-PL asks for a revenue maximizing
price assignment p satisfying this constraint.

2.2 The Single-Price Algorithm

Given a collection of consumer samples it is not difficult to argue that the prices assigned to the products
in an optimal solution are always chosen from the set of distinct budget values. The single-price algorithm
(Algorithm 1), which was originally proposed by Aggarwal et al. [AFMZ04], works by trying the max-
imum budget of each consumer as a price for all the products and returning the best such uniform price
assignment. Theorems 2.2.1 and 2.2.2 analyze the approximation guarantee of Algorithm 1 expressed in
terms of both the number of consumer samples and products. The proof of Theorem 2.2.1 is included for
the sake of completeness.

Algorithm 1: The single-price algorithm for unit-demand consumers.

For each consumer c ∈ C let bc = maxu b(c, u).1

Define price assignment pc : U → R+
0 by pc(u) = bc for all u ∈ U .2

Return the best such price assignment p = argmax{rmin(pc) | pc : c ∈ C}.3

Theorem 2.2.1 ([AFMZ04]). The single-price algorithm computes an Hm-approximation with respect to
optimal revenue for UDP(C)-s and UDP(C)-s-PL. This bound is tight.

Proof: Let consumer samples C = {c1, . . . , cm} be given and assume w.l.o.g. that bc1 ≥ · · · ≥ bcm ,
where bcj = maxu b(cj , u) as in the algorithm. Furthermore, let rmin(p∗) denote the revenue obtained
by the optimal price assignment on this problem instance. It clearly holds that rmin(p∗) ≤

∑m
j=1 bcj ,

since no consumer can buy a product at a price above her maximum budget value. Let then p be the price
assignment returned by the single-price algorithm and observe that rmin(p) ≥ j · bcj for j = 1, . . . , m,
since at price bcj consumers c1, . . . , cj can afford to buy some product. We conclude that

Hm · rmin(p) =
m∑

j=1

rmin(p)
j

≥
m∑

j=1

j · bcj

j

=
m∑

j=1

bcj ≥ rmin(p∗),

which proves the upper bound. Clearly, a price assignment returned by the single-price algorithm trivially
satisfies any price-ladder constraint. To see that the bound is in fact tight, consider an instance with m

23

2 Buying Cheap is Expensive: The Min-Buying Model

consumers c1, . . . , cm, products u1, . . . , um and budgets b(cj , uj) = 1/j, b(cj , uk) = 0 for all j 6= k. The
optimal price assignment p∗(uj) = 1/j yields revenue

∑m
j=1 1/j = Hm, whereas every price assignment

consisting of a single price results in total revenue at most 1. ¤

Theorem 2.2.2. The single-price algorithm computes an n-approximation with respect to optimal revenue
for UDP(C)-s and UDP(C)-s-PL. This bound is tight.

Proof: Given an optimal price assignment p∗, let C∗(u) denote the set of consumers buying product u ∈ U .
Thus, the revenue made by selling u in the optimal solution can be written as |C∗(u)| ·p∗(u). Now observe
that clearly bc ≥ p∗(u) for every c ∈ C∗(u), where bc = maxu b(c, u), and, for c′ = argmin{bc | c ∈
C∗(u)}, we get that rmin(pc′) ≥ |C∗(u)| · bc′ ≥ |C∗(u)| · p∗(u). Summing over all products u yields the
upper bound.

For tightness consider an instance with n products u1, . . . , un. Let k ∈ N. For each product uj we
define a collection of kj customers, each with budget k−j for uj and budget 0 for all other products. It
is straightforward to argue that the optimal price assignment p∗(uj) = k−j results in overall revenue n,
while the single-price algorithm returns price assignment p(uj) = k−n for all j with revenue

rmin(p) =
n−1∑

j=0

k−j =
1− k−n

1− k−1
→ 1

for k → +∞, which finishes the proof. ¤

2.3 Hardness of Approximation

We now leave general unit-demand pricing behind and focus on the min-buying model. Having seen that
as simple an approach as the single-price algorithm is already enough to obtain provable approximation
guarantees, it is a most natural question to ask whether more elaborate algorithmic techniques can be
used to achieve better results for UDP(C)-MIN. Surprisingly, it turns out that this is not the case and the
approximation results presented in Section 2.2 are essentially the best one can hope for.

We will prove hardness results based on an approximation preserving reduction of the Independent Set
Problem (IS).

Definition 2.3.1. Given an undirected graph G = (V,E), the Independent Set Problem (IS) asks for a
maximum cardinality subset of pairwise non-adjacent vertices, i.e., a maximum cardinality subset V ′ ⊆ V
with {v, w} /∈ E for all v, w ∈ V ′. We denote the size of a maximum independent set in G by α(G).

As one of the most fundamental problems in combinatorics, several tight algorithmic and inapproximabil-
ity results are known for both general IS and restricted problem versions, e.g., in bounded degree graphs.
The best known lower bounds include inapproximability withinO(n1−ε), unless P = NP, in general graphs
on n vertices [Zuc06] and inapproximability within ∆/ logO(1) ∆ in graphs of maximum degree ∆ [ST06]
assuming that the unique games conjecture [Kho02] is true.

24

2.3 Hardness of Approximation

The high-level idea of the reduction is as follows. For a graph with vertices v1, . . . , vn we define a corre-
sponding universe of products u1, . . . , un and associate with each product uj a threshold price pj , where
the pj’s essentially form a geometrically increasing sequence. Then, for each product uj , we introduce
a collection of p−1

j consumers with budgets equal to the threshold prices for uj itself and products with
smaller indices corresponding to adjacent vertices. Budgets for all other products are 0. These collections
of consumers encode independence in the sense that consumers associated with product j can generate
reasonable revenue only by buying product uj (their budgets for all other products being too small) and
this is only possible if prices of products corresponding to adjacent vertices are set in a way that does not
allow them to generate any revenue at all.

The above reduction applied to general IS immediately yields hardness of distribution-based UDP(D)-MIN

(see Theorem 2.3.11), since in this case we can express exponentially large collections of identical con-
sumers by a single consumer with appropriate probability in the finite support distribution. This, however,
is not feasible for the sampling-based problem variation, in which we must guarantee that the size of the
consumer sample can be bounded in terms of the size of the graph. Here, the key to success lies in looking
at bounded degree instances of IS, which allow for efficient encoding in terms of small consumer samples
by a simple coloring argument. The main issue is finding the right degree bound in order to obtain tight
hardness results while not letting IS instances grow too dense to be encoded in terms of UDP(C)-MIN.

2.3.1 Independent Sets and Derandomized Graph Products

The theory of inapproximability is based on the fundamental PCP-Theorem [ALM+98]. Loosely speaking,
this theorem in its combinatorial form states that not only is it NP-hard to decide whether a given 3-
SAT formula has a satisfying assignment, but even distinguishing the cases that it is satisfiable or every
assignment satisfies at most a constant fraction of the formula’s clauses is similarly difficult. Using this
as a starting point one obtains NP-hardness results for so-called gap-versions of various other problems,
among them bounded-degree IS [PY91]. Formally, let Ga and Gb be two families of graphs with maximum
degree bounded by 3 and α(G) ≤ an for G ∈ Ga, α(G) ≥ bn for G ∈ Gb.

Proposition 2.3.2 ([PY91]). There exist constants 0 < a < b < 1, such that given G ∈ Ga ∪ Gb it is
NP-hard to decide whether G ∈ Ga or G ∈ Gb.

IS exhibits the interesting property that it allows super-constant hardness of approximation results based
on Proposition 2.3.2 basically by reducing the problem to itself in a clever way, thereby increasing the
gap between yes- and no-instances. The following defines the reduction used to achieve this kind of gap
amplification.

Definition 2.3.3 ([BS92]). Let G = (V,E) be a graph and k ∈ N. We define the k-fold graph product
Gk = (V k, Ek) of graph G by V k = V × · · · × V and {(v1, . . . , vk), (w1, . . . , wk)} ∈ Ek if and only if
{v1, . . . , vk, w1, . . . , wk} is not an independent set in G.

How do graph products help to get stronger inapproximability results for IS? Let a graph G ∈ Ga ∪ Gb

be given and consider Gk for k = Θ(log n). If G ∈ Ga, then the maximum independent set in Gk is
of size (an)k. If G ∈ Gb, then Gk has an independent set of size (bn)k. Thus, the gap has increased to
(bn)k/(an)k = nδ, where δ = log(b/a). Observe that Gk has nk vertices, which is not polynomial in n

25

2 Buying Cheap is Expensive: The Min-Buying Model

for our choice of k. In order to circumvent this problem, one does not construct Gk explicitly, but samples
(1/a)k of its vertices independently at random instead. The resulting so-called randomized graph product
[BS92] is of polynomial size in n and preserves (almost) the same gap with high probability. Thus, given
a polynomial time O(nδ)-approximate algorithm for IS for sufficiently small δ > 0, we can distinguish
the cases G ∈ Ga and G ∈ Gb in polynomial time.

Randomized graph products are a way to show inapproximability of general IS. However, the randomized
nature of the construction does not allow hardness amplification while enforcing a strict degree bound.
The key to bounded-degree instances lies in replacing the randomized sampling procedure and considering
derandomized graph products [AFWZ95] instead. Given graph G = (V,E), we construct a non-bipartite
d-regular Ramanujan graph H , which has the same vertices as G and constant degree d that depends
only on a and b. Vertices of the derandomized graph product DGk are obtained by choosing a vertex of H
uniformly at random and taking a random walk of length k−1 starting at this vertex. For k = O(log n) the
number ndk−1 of such random walks is polynomial and, thus, DGk can be constructed deterministically
in polynomial time. The edges of DGk are defined as before. Now let dA be the (symmetric) adjacency
matrix of H , where λ0 ≥ λ1 ≥ · · · ≥ λn−1 are eigenvalues of matrix A, and let λ = max{λ1, |λn−1|}.
The following theorem gives an upper and lower bound on the size of the maximum independent set in
DGk.

Theorem 2.3.4 ([AFWZ95]). For any graph G and any k it holds that

α(G)dk−1

(
α(G)

n
− λ

)k−1

≤ α(DGk) ≤ α(G)dk−1

(
α(G)

n
+ λ

)k−1

.

Theorem 2.3.5 shows the application of derandomized graph products to obtain hardness of bounded-
degree IS. Although essentially the theorem itself is not new, we include the proof to show that we can
express the super-constant maximum degree of DGk in terms of the number of its vertices, which will be
needed for the reduction to UDP(C)-MIN.

Theorem 2.3.5. For any non-decreasing function f : N −→ R+ with f(n) ≤ n and f(nc) ≤ f(n)c for all
c ≥ 1, n ∈ N, let Gf be the family of graphs G = (V, E), |V | = n, with maximum degree ∆ = O(f(n)).
There exists a constant ε > 0, such that it is NP-hard to approximate α(G) within O(f(n)ε) for G ∈ Gf .

Proof: Let Ga and Gb be defined as above and let G ∈ Ga ∪ Gb, G = (V, E), |V | = n. Choosing
0 < a < b < 1 appropriately it is NP-hard to decide whether G ∈ Ga or G ∈ Gb by Proposition 2.3.2. We
now consider the k-fold derandomized graph product DGk = (DV,DE).

By its construction we have that |DV | = ndk−1. Let (v1, . . . , vk) ∈ DV and assume that there are
indices i and j, such that {vi, vj} ∈ E. In this case it follows that {(v1, . . . , vk), (w1, . . . , wk)} ∈ DE
for all (w1, . . . , wk). Thus, DGk contains a number of vertices of degree ndk−1 − 1. We define the
modified graph mDGk = (mDV, mDE) by removing all these vertices from DGk. We observe that
α(mDGk) = α(DGk). By Theorem 2.3.4 an independent set of size bn in G results in an independent
set of size at least bndk−1(b−λ)k−1 in DGk. If less than this number of vertices are contained in mDGk,
it follows that G ∈ Ga. Thus, w.l.o.g. we may assume that

bndk−1(b− λ)k−1 ≤ |mDV | ≤ ndk−1.

26

2.3 Hardness of Approximation

In mDGk an edge {(v1, . . . , vk), (w1, . . . , wk)} exists only if there are indices i and j, such that {vi, wj} ∈
E. We fix (v1, . . . , vk) and count the maximum number of adjacent vertices. There are k2 possibilities
to select i and j. Fixing indices fixes vi as well and, by the fact that G has maximum degree 3, there
are at most 3 possible choices for wj . Finally, there remain dk−1 possibilities to choose the random walk
generating (w1, . . . , wk). Thus, mDGk has maximum degree ∆ ≤ 3k2dk−1.

It is known that for sufficiently many n and d one can construct d-regular Ramanujan graphs with good
expansion rate or, equivalently, adjacency matrices with small second largest eigenvalue.

Fact 2.3.6 ([HLW06]). For infinitely many values of n and d one can construct a d-regular Ramanujan
graph, such that λ ≤ 2

√
d− 1/d.

For the remainder of the proof, let us assume that d-regular Ramanujan graph H with d ≥ 36/(b− a)2 is
chosen as described in Fact 2.3.6. Furthermore, we choose

k = (1− µ) logd f(n)

for some 0 < µ < 1. We need to show that the resulting derandomized graph product on N vertices has
maximum degree O(f(N)) and the gap is amplified to Ω(f(N)ε) for some constant ε > 0.

Size of mDGk: Note that by construction 3
2b−1 < d, λ ≤ b/3 and c > 1. Thus, the number of vertices N

of mDGk is lower bounded by

N ≥ bndk−1(b− λ)k−1 ≥ bn

(
d

3
2b−1

)k−1

= Ω(n).

On the other hand, by our choice of k we obtain an upper bound of

N < ndk = nf(n)1−µ = O(n2),

where we use that f(n) ≤ n by assumption.

Degree of mDGk: The maximum degree ∆ of mDGk is upper bounded by

∆ ≤ 3k2dk−1 ≤ 3((1− µ) · logd f(n))2f(n)1−µ = O(f(N)),

using that log2 f(n) = o(f(n)µ), N = Ω(n) and f is non-decreasing.

Gap Amplification: By the fact that d ≥ 36/(b− a)2 we have that

λ <
2√
d
≤ 1

3
(b− a).

By Theorem 2.3.4 the gap between the cases that G ∈ Ga and G ∈ Gb is then amplified to

bndk−1(b− λ)k−1

andk−1(a + λ)k−1
≥

(
b− λ

a + λ

)k

>

(
(a + λ) + λ

a + λ

)k

> (1 + λ)k.

Choosing a small enough constant γ, such that (4/λ2)γ ≤ (1 + λ) and using that by Fact 2.3.6 d < 4/λ2,
the gap size is lower bounded by

(1 + λ)k ≥ (4/λ2)γk > dγk.

27

2 Buying Cheap is Expensive: The Min-Buying Model

Plugging in the definition of k and using that N = O(n2) and f(n2) ≤ f(n)2 we get

dγk = dγ(1−µ) logd f(n) = f(n)γ(1−µ) = Ω(f(N)ε),

where ε = γ(1− µ)/2. ¤

2.3.2 Reduction to UDP(C)-MIN

Theorem 2.3.7 introduces a general approximation preserving reduction from IS in graphs of bounded de-
gree O(f(n)) to UDP(C)-MIN with or without price-ladder constraint. Corollaries 2.3.8, 2.3.9 and 2.3.10
derive hardness of approximation results for approximation guarantees expressed in various parameters
under standard complexity theoretic assumptions. Corollary 2.3.11 uses Theorem 2.3.7 to derive an even
stronger inapproximability result for distribution-based UDP(D)-MIN.

Theorem 2.3.7. Let f : N −→ R+ be a non-decreasing function with f(n) ≤ n and f(nc) ≤ f(n)c for
all c ≥ 1. UDP(C)-MIN and UDP(C)-MIN-PL are not approximable in polynomial time within O(f(n)ε)
for some ε > 0 on instances with

• n different products and

• m = O(n4f(n)f(n)f(n)) customers,

• each having O(f(n)) non-zero budgets,

unless NP ⊆ DTIME(nf(n)24f(n)f(n)f(n)).

Proof: Consider the family Gf of graphs G = (V,E), |V | = n, with degree bounded by O(f(n)). By
Theorem 2.3.5 it is NP-hard to approximate α(G) for G ∈ Gf within O(f(n)ε) for some ε > 0. To-
wards a contradiction, we assume that there is a polynomial time algorithm with approximation guarantee
O(f(n)ε) for UDP(C)-MIN-PL. For a given graph G = (V,E) from Gf let ∆ denote its maximum degree.
Clearly, we can compute a (∆ + 1)-coloring of the vertices of G, which we denote by V = V0 ∪ . . .∪ V∆.
For ease of notation let Vi = {vi,j | j = 0, . . . , |Vi| − 1}. Furthermore, by

V(vi,j) = {vk,` | {vi,j , vk,`} ∈ E and k < i}

we refer to the vertices that are adjacent to vi,j and belong to a color class with index smaller than i. We
define a corresponding instance of UDP(C)-MIN-PL as follows.

Products / Price-Ladder Constraint: For every vi,j ∈ V we have a product ui,j , thus, the number of
products in our instance is |U| = n. The price-ladder is defined as

p(u0,0) ≤ p(u0,1) ≤ · · · ≤ p(u0,|V0|−1) ≤ p(u1,0) ≤ p(u1,1) ≤ · · · ≤ p(u∆,|V∆|−1).

Let µ = 4(∆ + 1) and γ = µ−∆−1/n. For every product ui,j we define a corresponding threshold

pi,j = µi−∆ + jγ.

28

2.3 Hardness of Approximation

Observe that thresholds are arranged according to the price-ladder constraint and differ from each other by
at least γ.

Consumers: For every vi,j ∈ V define a collection Ci,j = {ct
i,j | t = 0, . . . , µ∆−i − 1} of identical

consumers with budgets b(ct
i,j , ui,j) = pi,j and b(ct

i,j , uk,`) = pk,` for all k, ` with vk,` ∈ V(vi,j). The
total number of consumers in the instance is

|C| ≤
∆∑

i=0

n−1∑

j=0

(
µ∆−i − 1

)
= n

(∆∑

i=0

µi −∆
)

= n
(µ∆+1 − 1

µ− 1
−∆

)
= O(

n4f(n)f(n)f(n)
)
.

Each consumer has O(f(n)) non-zero budgets, each of which can be stored in space O(f(n)). Thus, the
total size of the instance is O(nf(n)24f(n)f(n)f(n)).

In analogy to the coloring of G we denote the set of all consumers as C = C0∪. . .∪C∆, where Ci =
⋃

j Ci,j .
Note, that all budgets are consistent with the thresholds we just defined. The complete construction is
illustrated in Figure 2.1.

Soundness: Let rmin(p∗) denote the revenue made by an optimal price assignment on the above instance.
We first argue that this defines an upper bound on the size of a maximum independent set in G, i.e.,
rmin(p∗) ≥ α(G). Given an independent set V ′ of G, we can define a price assignment p as follows. If
vi,j ∈ V ′ set p(ui,j) = pi,j , else set p(ui,j) = pi,j + γ. Since the pi,j’s differ by at least γ, this assignment
does not violate the price-ladder constraint.

Now consider vi,j ∈ V ′ and the corresponding consumers Ci,j . Since vk,` /∈ V ′ for all vk,` ∈ V(vi,j), each
consumer ct

i,j can afford to buy product ui,j at its threshold price pi,j , while the prices of all products uk,`

are above their thresholds and, thus, exceed the consumers’ respective budgets. Hence, ui,j is indeed the
product with smallest price that any ct

i,j can afford. It follows that the overall revenue from consumers Ci,j

is at least

|Ci,j | · pi,j = µ∆−i
(
µi−∆ + jγ

) ≥ 1.

Thus, price assignment p results in revenue of at least |V ′| and we conclude that rmin(p∗) ≥ α(G).

Completeness: Assume now that our approximation algorithm returns a price assignment p. By rmin(p)
we refer to the overall revenue of this price assignment, rmin(p | Ci,j) and rmin(p | ct

i,j) denote the revenue
made by sales to consumers in Ci,j and to ct

i,j alone, respectively. First observe that w.l.o.g. the price of
each product ui,j is either pi,j or pi,j + γ. To see this, note, that as long as this is not the case there is
always a price that we can increase up to pi,j or decrease down to pi,j + γ without decreasing the overall
revenue. Define

C+ =
{
ct
i,j | rmin(p | ct

i,j) = pi,j

}

as the set of consumers buying at maximum possible price and C− = C\C+. Clearly, Ci,j ⊆ C+ or
Ci,j ⊆ C− for all i and j, since all ct

i,j’s budgets are identical. We want to show that a large portion of the
solution’s revenue is due to consumers in C+.

29

2 Buying Cheap is Expensive: The Min-Buying Model

Note, that a consumer ct
i,j ∈ C− buys at price at most pi−1,|Vi|−1. Thus, we have:

rmin(p | C−) =
∑

Ci,j⊆C−
rmin(Ci,j) ≤

∑

Ci,j⊆C−
|Ci,j | · pi−1,|Vi|−1

≤
∑

Ci,j⊆C−
µ∆−i(µi−1−∆ + nγ) ≤

∑

Ci,j⊆C−
µ−1 + µ−1

=
∑

Ci,j⊆C−

1
2(∆ + 1)

≤ n

2(∆ + 1)

On the other hand, we obtain an independent set if we pick all vertices of the same color in G and, thus,
α(G) ≥ n/(∆ + 1). Consequently, by the arguments used for completeness of the construction above, it
is straightforward to construct a price assignment resulting in revenue n/(∆ + 1). It follows that we may
assume w.l.o.g. that rmin(p) ≥ n/(∆ + 1) and, thus,

rmin(p | C+) = rmin(p)− rmin(p | C−) ≥ 1
2
rmin(p).

Define V ′ = {vi,j | Ci,j ⊆ C+}. Let vi,j ∈ V ′ and consider the corresponding consumers Ci,j ⊆ C+. The
revenue made by sales to consumers in Ci,j is

|Ci,j | · pi,j = µ∆−i
(
µi−∆ + jγ

) ≤ 1 + µ−i−1 ≤ 2.

We conclude that
|V ′| = |{Ci,j | Ci,j ⊆ C+}| ≥ 1

2
rmin(p | C+).

Finally, observe that V ′ is indeed a feasible independent set in G. To see this, consider vi,j ∈ V ′ and let
vk,` be an adjacent vertex. If k < i, the fact that consumers Ci,j buy ui,j at price pi,j implies that the price
of uk,` is strictly larger than its threshold pk,`. It follows that Ck,` * C+ and, thus, vk,` /∈ V ′. If k > i,
consumers Ck,` can afford to buy product ui,j at price pi,j and again Ck,` * C+.

Finally, observe that the proof goes through without the price-ladder constraint, as well, in which case we
can w.l.o.g. assume that each product’s price is equal to either its threshold price or +∞. ¤

Theorem 2.3.7 yields several tight hardness results for unit-demand pricing in the min-buying model.
Lower bounds for approximation guarantees expressed in terms of different parameters under different
complexity theoretic assumptions are obtained by choosing function f(n) in Theorem 2.3.7 appropriately.
Corollary 2.3.8 establishes a near-tight lower bound for the approximation guarantee of the single-price
algorithm expressed in terms of the number of consumer samples.

Corollary 2.3.8. UDP(C)-MIN and UDP(C)-MIN-PL are not approximable in polynomial time within
O(logε m) for some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

Proof: Choose f(n) = log n. Then logγ m = O(logε n) for any γ ≤ ε/2 and we obtain instances of size
at most O(nO(log log n)). ¤

Under a somewhat stronger complexity theoretic assumption we are able to establish a lower bound corre-
sponding to the alternative analysis of the single-price algorithm in Theorem 2.2.2, as well.

30

2.3 Hardness of Approximation

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

��

��

��

��−∆µ

+2−∆µ

+1−∆µ

C 2C1

��
��
��γ

1,k0,2u

v
2,2

1,k
v

C ∆

u

u

ui,j

i,j

2,2

u2,2

0,2

C

µ

C 0

(2)

(1)2

1
0

v

Figure 2.1: Products are arranged in blocks according to the (∆ + 1)-coloring of G, thresholds in block i
are roughly µ−∆+i. The additional offset γ allows setting prices according to the price-ladder.
Consumers C2,2 belonging to vertex v2,2 have non-zero budgets for u2,2 and products in blocks
with lower numbers corresponding to adjacent vertices. Cases on the right illustrate how price
p(ui,j) is set to indicate that vi,j ∈ V ′ (1), or vi,j 6∈ V ′ (2).

Corollary 2.3.9. UDP(C)-MIN and UDP(C)-MIN-PL are not approximable in polynomial time within
O(nε) for some ε > 0, unless NP ⊆ ⋂

δ>0 DTIME(2O(nδ)).

Proof: We choose f(n) = nδ for arbitrarily small δ > 0. We obtain instances of size O(2O(nγ)) for any
γ > δ that are hard to approximate within nεδ for some ε > 0 ¤

It is natural to ask whether better approximation guarantees can be achieved on sparse problem instances,
e.g., on those in which every consumer is interested in only a small number of products. Applying the
reduction in Theorem 2.3.7 to IS in constant degree graphs yields lower bounds for this type of approxi-
mation. This also proves that both general UDP(C)-MIN and UDP(C)-MIN-PL are not in APX under the
standard assumption of P 6= NP.

Corollary 2.3.10. For every constant ` ≥ 3, UDP(C)-MIN and UDP(C)-MIN-PL with at most ` non-zero
budgets per consumer are not approximable in polynomial time within `ε for some ε > 0, unless P = NP.

Sketch of Proof: The version of Theorem 2.3.5 in [AFWZ95] states that there exists ε > 0, such that for
every constant ∆ ≥ 3 IS in graphs of degree at most ∆ is NP-hard to approximate within a factor of ∆ε.
We construct an instance of UDP(C)-MIN as in the proof of Theorem 2.3.7 with parameters µ = ∆k and
γ = 1/(n∆k−1) for some k ∈ N to be determined later. We obtain an instance of polynomial size with at
most ∆ non-zero budgets per consumer. Given any price assignment of revenue rmin(p) on this instance
the same calculations as before yield rmin(p | C+) ≥ (1 + 1/∆k−1)−1rmin(p) and we can construct a
corresponding independent set of size at least (1 + 1/∆k−1)−1rmin(p | C+). Now fix any 0 < δ < ε. By
choosing constant k ∈ N sufficiently large we have 1 + 1/∆k−1 ≤ ∆δ/2 for arbitrary ∆ and we obtain

31

2 Buying Cheap is Expensive: The Min-Buying Model

inapproximability of UDP(C)-MIN within a factor of

(
1 +

1
∆k−1

)−2

∆ε ≥ ∆ε−δ,

which finishes the proof. ¤

We point out that constant ε in Corollary 2.3.10 is essentially the same as in the corresponding hardness
result for IS in [AFWZ95] and, thus, our approximation preserving reduction is loss-free in this respect.

Finally, let us have a brief look at the distribution-based version of unit-demand pricing. In this setting,
we can encode the collection Ci,j of consumers by a single consumer ct

i,j to which we assign probabil-
ity |Ci,j |/|C| in the finite support distribution. Thus, we can encode general IS in pricing instances of
polynomial size and get tight hardness of approximation results based on [Zuc06].

Corollary 2.3.11. Distribution-based UDP(D)-MIN and UDP(D)-MIN-PL are not approximable in poly-
nomial time within O(n1−ε) for any ε > 0, unless P = NP.

2.4 An O(`)-Approximation

The last part of this chapter is again devoted to some algorithmic question. We will briefly sketch the
application of a simple randomized algorithm, which was originally designed by Balcan and Blum [BB06]
for the single-minded pricing problem, to UDP(C)-MIN, thereby providing the missing upper bound cor-
responding to Corollary 2.3.10. Let us assume that we are given a UDP(C)-MIN instance in which each
consumer has at most ` non-zero budgets.

Algorithm 2: The random-partitioning algorithm for UDP(C)-MIN with at most ` non-zero budgets
per consumer.

Define P ⊆ U by placing each product in P independently with probability 1/`. Set prices of1

products not in P to +∞.
Define C′ ⊆ C as the set of consumers with exactly one non-zero budget for a product in P .2

Compute separately for each product in P its optimal price with respect to consumers in C′.3

The random-partitioning algorithm (Algorithm 2) is based on the idea of partitioning products into U =
P ∪R, where each product is placed in P with probability 1/` and in R with probability 1− 1/`. Let C′
be the set of those consumers that have a non-zero budget for exactly one of the products in P . Consider
some product u ∈ U and assume that consumer c ∈ C buys u under the optimal price assignment. A
simple calculation yields that

Pr
(
u ∈ P and c ∈ C′) ≥ 1

`

(
1− 1

`

)`−1

≥ 1
e`

.

We set the prices of all products inR to +∞ and compute optimal prices for products in P with respect to
consumers in C′. This is possible, because after the partitioning we have to take into account only a single
non-zero budget per consumer. It is then straightforward to argue that the expected revenue from selling

32

2.5 Literature

each product in P to consumers in C′ is at least the revenue made by selling it at the price it is assigned
in the optimal solution to these consumers. Finally, we mention that the algorithm can be derandomized
by the method of small sample spaces [EGL+98]. This yields the following Theorem, which is essentially
due to [BB06].

Theorem 2.4.1. The random-sampling algorithm computes an O(`)-approximation with respect to opti-
mal revenue for UDP(C)-MIN with at most ` non-zero budgets per consumer.

We mention that the techniques used above cannot be applied when a price-ladder constraint is given, since
it is essential that prices of products in R are set to values strictly above the budgets of consumers in C′.
Doing this in the presence of a price-ladder constraint might make it impossible to assign optimal prices
to the products in P .

2.5 Literature

The unit-demand min-buying model was first proposed in [Rus03] and [GRR06]. Here, consumers were
restricted to have the same budget for all products they are interested in (the uniform-budget case, see
Chapter 5). In combination with a price-ladder constraint this problem variation can be solved in poly-
nomial time by a simple dynamic programming approach. The problem version allowing consumers to
have different budgets for different products was first considered in [AFMZ04], where among other results
the single-price algorithm is shown to obtain logarithmic approximation guarantees for general sampling-
based unit-demand pricing.

Hardness of approximation of the independent set problem in graphs of degree 3, the base problem of our
reduction, stems from the PCP theorem [ALM+98] and [PY91], where the problem is shown to be APX-
hard. The concept of randomized graph products is implicit in [Blu91] and made explicit in [BS92]. The
derandomized graph product is found in [AFWZ95], where inapproximability results for the independent
set problem in constant degree graphs are proven. For an overview of the construction of expander graphs
in general and Ramanujan graphs specifically the reader is referred to [HLW06].

The random-sampling algorithm for bounded size consumers is found in [BB06], where its approximation
guarantee is analyzed for the single-minded pricing problem. The new results in this chapter have been
published in [BK07].

33

34

3 The Other End of the Chart: The Max-Buying Model

In the previous chapter we have seen that unit-demand pricing does not allow approximation guarantees
essentially beyond the non-constant ratio obtained by the simple single-price algorithm when consumers
act according to the min-buying selection rule, i.e., if consumers always choose to buy the least expensive
alternative available to them. In this chapter we will have a look at a different selection rule, which can be
considered as the counterpart to min-buying.

In the max-buying model, each consumer selects the most expensive among the products with prices not
exceeding her respective budgets. At first glance, it might appear that max-buying is not a very natural
model to consider, in the sense that consumers rarely tend to choose the most expensive alternative among
substitutable products and, thus, it poorly models rational consumer behavior. However, there are a number
of good reasons to have a closer look at pricing in the max-buying model. Firstly, as we shall see in Chapter
4, under quite reasonable assumptions max-buying is in fact equivalent to the much more realistic rank-
buying model if we are given a price-ladder constraint. Thus, some of the results are directly applicable to
this important model, as well. Secondly, unit-demand pricing in the max-buying model exhibits a problem
structure that is quite different from other selection rules and allows the successful application of various
well-studied algorithmic techniques. Consequently, understanding the max-buying model might be an
important step towards the design of selection rules that allow us to model rational consumer behavior
while still being computationally tractable even in the no-price-ladder case. Thirdly, the max-buying
model allows us to extend algorithmic results even to incorporate the additional complication of limited
product supply, which adds another dimension to the pricing problem.

The rest of this chapter is organized as follows. Section 3.1 gives a formal definition of the max-buying
model and pricing with limited product supply. Section 3.2 proves hardness of approximation results
that hold even for instances with small product supply. In Section 3.3 we analyze a generic local search
algorithm and prove that it achieves approximation factor 2. Section 3.4 considers the case of a price-
ladder constraint, sketches the existence of a PTAS and presents a proof of strong NP-hardness. Section
3.5 extends the analysis of the local search algorithm to bound the price of anarchy in a related pricing
game that is obtained if the price of each product is fixed by an individual agent aiming to maximize her
personal revenue.

3.1 Preliminaries

In the standard unlimited-supply setting the definition of max-buying is completely analogous to Definition
2.1.1 in Section 2.1.

Definition 3.1.1. Given products U , |U| = n, and consumer samples C, |C| = m, consisting of budgets
b(c, u) ∈ R+

0 , UDP(C)-MAX asks for a price assignment p : U → R+
0 maximizing

rmax(p) =
∑

c∈A(p)

max
{
p(u) |u ∈ Ac(p)

}
.

35

3 The Other End of the Chart: The Max-Buying Model

UDP(C)-MAX-PL asks for a revenue maximizing price assignment satisfying a given price-ladder con-
straint π.

In the limited-supply setting, we assume that product u ∈ U is available in supply s(u) ∈ N. In this
situation, specifying the product prices is no longer sufficient, and we additionally have to come up with
some allocation a : C → U of the products among the consumers willing to buy. We have some freedom
of choice about which kinds of allocations to allow. We will say that allocation a is feasible if a(c) ∈
Ac(p)∪{∅} for all c ∈ C and |a−1(u)| ≤ s(u) for all u ∈ U , i.e., if each consumer can afford her allocated
product and the allocation of no product exceeds its supply. Note, that allocation a is not required to obey
consumer preferences as expressed through the selection rule. To capture the selection rule, as well, we
say allocation a is strictly feasible, if a(c) ∈ {s(c, p),∅}, i.e., if every consumer is allocated the product
specified by the selection rule or nothing at all.

Clearly, we could define further variations of feasible allocations, e.g., allocating to each consumer the
product most desirable according to the selection rule among those which are still available. However,
in the case of max-buying most of these variations are essentially captured by the notion of feasibility as
defined above, since the revenue maximizing allocation will always try to sell the most expensive product
still available.

Given prices p, it is not difficult to compute the revenue maximizing allocation. We think of consumers
and products as vertices on opposite sides of a bipartite graph. A vertex corresponding to consumer c is
adjacent to all vertices corresponding to her affordable products Ac(p). An edge is assigned the price of
the incident product vertex as weight. Finally, the vertex corresponding to product u gets degree constraint
s(u), every consumer vertex gets degree constraint 1. The revenue maximizing feasible allocation is equiv-
alent to a maximum weight b-matching in this graph, which can be found in polynomial time [CCPS98].
If we are interested in a strictly feasible allocation, consumer c’s vertex is connected only to the vertex
representing her desired product s(c, p). Given prices p and allocation a we denote by r(p, a) the overall
revenue.

Proposition 3.1.2. Given fixed prices p for products U , a (strictly) feasible allocation a : C → U to
consumers in C maximizing r(p, a) can be found in polynomial time.

3.2 Hardness of Approximation

In [AFMZ04] it is shown how to obtain a 1.59-approximation for UDP(C)-MAX with unlimited supply
based on randomized LP-rounding techniques. The problem is also proven to be APX-hard in general. We
want to investigate here specifically the effect of limited product supply and, more precisely, answer the
question at what maximum supply hardness of approximation kicks in.

In the case of unit-supply we assume that there is exactly one copy of each product available, thus, s(u) = 1
for all u ∈ U . As we have argued before prices can w.l.o.g. be chosen from the set of distinct budget values.
Hence, in the unit-supply case the price of a product is determined solely by the budget of the consumer
who buys it. But then every fixed allocation implies a corresponding price assignment and the problem
reduces to finding the optimal allocation. This, however, is equivalent to solving a weighted matching
problem in a bipartite graph, with vertices on opposite sides of the bipartition representing consumers and

36

3.2 Hardness of Approximation

products, respectively. Non-zero budgets b(c, u) are represented as edges with weight b(c, u) connecting
the vertices of consumer c and product u. We have thus obtained the following result.

Theorem 3.2.1. UDP(C)-MAX with unit-supply can be solved in polynomial time.

The reduction used to prove APX-hardness in [AFMZ04] creates problem instances with maximum supply
that is linear in the number of products. It is then a natural question to ask how the problem complexity
behaves in between these extremes, i.e., for maximum supply that is larger than 1 but still small compared
to the size of the problem instance. Surprisingly, it turns out that even increasing maximum supply to only
2 is sufficient to make the problem APX-hard.

Theorem 3.2.2. UDP(C)-MAX with limited supply 2 or larger is APX-hard.

Proof: We show an approximation preserving reduction from MAXCUT. It is known that MAXCUT is
APX-hard even for graphs with maximum degree 3 (see, e.g., [ACG+99]). Let G = (V, E) have such
bounded degree. We transform G into an UDP(C)-MAX instance as follows. For each vertex v ∈ V we
define products u0

v, . . . , u
5
v available in supply s(u0

v) = s(u2
v) = s(u4

v) = 2, s(u1
v) = s(u3

v) = s(u5
v) = 1

and consumers c0
v, . . . , c

5
v with budget values b(ci

v, u
i
v) = b(ci

v, e
i+1
v) = 1 for i ∈ {0, 2, 4}, b(ci

v, e
i
v) =

b(ci
v, e

i+1 mod 6
v) = 2 for i ∈ {1, 3, 5}. Budgets that are not specified are assumed to be 0. Each edge

e = {v, w} ∈ E can now be associated with unique products ui
v and uj

w, where i, j ∈ {0, 2, 4} and every
product is associated with at most one edge. For edge e we define 2 consumers c0

e and c1
e with budgets

b(c0
e, u

i
v) = b(c0

e, e
j
w) = 1, b(c1

e, u
i
v) = b(c1

e, e
j
w) = 2. This construction is depicted in Figure 3.1.

We start by stating some facts about the solution that an approximation algorithm for UDP(C)-MAX might
return on this instance. First, we observe that we can w.l.o.g. assume that all prices in this solution are
from {1, 2}, since prices above 2 cannot result in any revenue and prices below 2 can always be increased
up to the next budget value. The second important observation relates price assignments to feasible cuts
of the original graph.

Fact 3.2.3. For any price assignment p on the above UDP(C)-MAX instance we can assume w.l.o.g. that
p(u0

v) = p(u2
v) = p(u4

v), p(u1
v) = p(u3

v) = p(u5
v) and p(u0

v) 6= p(u1
v) for all v ∈ V .

We show how any solution in which the above assumption does not hold can be turned into a solution of
no smaller revenue, such that it does. We first consider the case that products u0

v, u2
v and u4

v have not been
assigned identical prices. For reasons of symmetry it is sufficient to consider the situation that product u0

v

has been assigned the wrong price.

First, assume that p(u0
v) = 2, p(u2

v) = p(u4
v) = 1. In this situation, if p(u1

v) = 2, consumer c0
v currently

cannot afford to buy any product, resulting in revenue 0 from this consumer. If p(u1
v) = 1, then consumer

c1
v currently buys at price at most 1. In both cases, the revenue generated by consumers c0

v, . . . , c
5
v is at

most 8. By setting p(u0
v) = p(u2

v) = p(u4
v) = 1, p(u1

v) = p(u3
v) = p(u5

v) = 2 and a(ci
v) = ui

v for all i this
revenue increases to 9. On the other hand, if product u0

v is associated with some edge e, only 1 consumer
from {c0

e, c
1
e} can afford product u0

v at price 2 and, thus, might be buying it. Revenue from this consumer
decreases by no more than 1. Hence, we have transformed our solution without decreasing the overall
revenue.

For the second case, let p(u0
v) = 1, p(u2

v) = p(u4
v) = 2. If p(u5

v) = 2, consumer c4
v cannot afford any

product. If p(u5
v) = 1, consumer c5

v buys at price at most 1. Again setting p(u0
v) = p(u2

v) = p(u4
v) = 2,

37

3 The Other End of the Chart: The Max-Buying Model

u

uv
3

vu 4 uv
5

cv
5

cv
4

cv
3

cv
2

cv
1

0cv

w
5

uw
1

0uw

ce
1

e
0c

0
vu

uv
1

vu 2

22

2 2

22
1

1 1

1

11

22

11

Figure 3.1: Construction from the proof of Theorem 3.2.2. Consumers are depicted as circles, products
as points. Edges between consumers and products are labelled with the respective non-zero
budgets.

p(u1
v) = p(u3

v) = p(u5
v) = 1 and a(ci

v) = ui+1 mod 6
v makes overall revenue from consumers c0

v, . . . , c
5
v

increase by 1. On consumers {c0
e, c

1
e} revenue decreases by at most 1, because consumer c1

e can still buy a
product at price 2 after p(u0

v) is changed.

Finally, assuming that products u0
v, u2

v and u4
v have been assigned the same price, it is straightforward to

argue that overall revenue becomes maximal when products u1
v, u3

v, u5
v are assigned identical prices not

equal to p(u0
v). This proves Fact 3.2.3.

We now argue how any small constant factor approximation on the constructed problem instance yields
a corresponding approximation for the MAXCUT problem. As we have seen we obtain solutions with
prices in {1, 2} as described in Fact 3.2.3 and a corresponding allocation a for all v ∈ V . Thus, overall
revenue from consumers c0

v, . . . , c
5
v is exactly 9 for all v ∈ V . For consumers {c0

e, c
1
e} belonging to some

edge e = {v, w} it is simple to find the optimal allocation given prices p(ui
v), p(uj

w) of the corresponding
products. If p(ui

v) = p(uj
w) = 1 then we can set a(c0

e) = ui
v, a(c1

e) = uj
w. If p(ui

v) = p(uj
w) = 2 then

we let a(c0
e) = ∅, a(c1

e) = ui
v. If p(ui

v) = 1, p(uj
w) = 2 we define a(c0

e) = ui
v, a(c1

e) = uj
w. Thus, total

revenue from consumers c0
e and c1

e is 2 if p(ui
v) = p(uj

w) and 3 if p(ui
v) 6= p(uj

w). We can then write the
value of any such solution to UDP(C)-MAX as 9n+2m+c, where n = |V |, m = |E|, and c is the number
of edges {v, w} such that p(u0

v) 6= p(u0
w). Given this solution we can immediately define a cut (S, T) of

size c in G by setting S = {v | p(u0
v) = 1}, T = V \S. Hence, the optimal solution on our pricing instance

has value 9n + 2m + c∗, where c∗ is the size of a maximum cut in G. Assume now that we can obtain a
(1 − ε)-approximation to the pricing problem. By n ≤ m (assuming G is connected and not a tree) and
c∗ ≥ m/2 we have

(1− ε) ≤ 9n + 2m + c

9n + 2m + c∗
≤ 22c∗ + c

23c∗

and, thus, c/c∗ ≥ (1− 23ε). Choosing ε appropriately small yields any arbitrarily small constant approx-
imation ratio for MAXCUT. ¤

38

3.3 A Local Search Algorithm

3.3 A Local Search Algorithm

We proceed by analyzing the approximation guarantee of a generic local search approach to UDP(C)-
MAX with limited supply. For a given price assignment p let [p | p(u) = p′] refer to the price assignment
obtained by changing the price of u to p′. The local-search algorithm (Algorithm 3) tries to improve its
current price assignment p by checking [p | p(u) = p′] for all u ∈ U , p′ 6= p(u), and terminates with a
solution that cannot be improved by changing a single price.

Algorithm 3: The local-search algorithm for UDP(C)-MAX with limited product supply.

Initialize p arbitrarily and compute the optimal (strictly) feasible allocation a.1

while there exists product u and price p′ 6= p(u) such that2

r(p, a) < r([p | p(u) = p′], a′),

where a′ is the optimal allocation given prices [p | p(u) = p′] do
Set p(u) = p′.3

Aggarwal et al. [AFMZ04] show how to obtain a 1.59-approximation for unlimited-supply UDP(C)-MAX

based on an LP-relaxation and randomized rounding. Due to the probabilistic nature of their algorithm it
appears rather difficult to extend it to general limited-supply scenarios. Apart from this, the algorithm is
based on a somewhat problem-specific LP-formulation. Local search, on the other hand, appears to be a
quite natural approach to a wide range of pricing problems. Seen in this light, we provide first evidence
that this approach might indeed be promising also for more practical problems.

We next show that the total revenue generated by the locally optimal solution returned by the local-search
algorithm lies within a factor of 2 off the globally optimal solution’s value.

Theorem 3.3.1. Let p be the price assignment returned by the local-search algorithm, p∗ an optimal price
assignment and a, a∗ the respective optimal (strictly) feasible allocations. Then r(p∗, a∗)/r(p, a) ≤ 2
and, thus, the local-search algorithm achieves approximation ratio 2 for UDP(C)-MAX with limited or
unlimited supply. Furthermore, this bound is tight.

Proof: Consider price assignment p and allocation a returned by the algorithm. We define Cu = (a∗)−1(u),
Lu = {c ∈ Cu | p(a(c)) < p∗(u)} and ru = p(u)|a−1(u)|, i.e., Cu refers to the set of consumers buying
u in an optimal solution, Lu is the subset of these consumers that buy at a price below p∗(u) in the solu-
tion returned by the local-search algorithm and ru denoted the revenue due to product u in this solution.
Furthermore, we let

∆u =
∑

c∈Lu

(
p∗(u)− p(a(c))

)

refer to the loss of revenue compared to the optimal solution incurred by consumers in Cu. Changing price
p(u) to p∗(u) (or leaving it as it is in case it should happen to be just p∗(u)) defines price assignment
p′ = [p | p(u) = p∗(u)] and corresponding allocation a′. Since we do not know what a′ should look
like we define an alternative allocation a′′ as follows. First, we set a′′(c) = ∅ for all consumers c with
a(c) = u. We then set a′′(c) = u for all c ∈ Lu. For all other consumers we do not change allocation a

39

3 The Other End of the Chart: The Max-Buying Model

and let a′′(c) = a(c). First observe that allocation a′′ does not allocate more copies of any product than
there are available, since |Lu| ≤ |Cu| ≤ s(u) and no product besides u can be sold to more consumers
than in a. Then note that a′′ is (strictly) feasible if this was true for a, since u is now the most expensive
affordable product for all consumers in Lu. It clearly holds that r(p′, a′) ≥ r(p′, a′′) by the optimality of
a′. We observe that

r(p′, a′)− r(p, a) ≥ r(p′, a′′)− r(p, a)

=
∑

c/∈Lu∪a−1(u)

p(a(c)) +
∑

c∈Lu

p∗(u)−
∑

c∈C
p(a(c))

≥
∑

c∈C
p(a(c)) +

∑

c∈Lu

(p∗(u)− p(a(c)))−
∑

c∈a−1(u)

p(a(c))−
∑

c∈C
p(a(c))

= ∆u − ru.

By the fact that r(p, a) cannot be improved by changing a single price p(u) we have that r(p′, a′) −
r(p, a) ≤ 0 and, thus, ru ≥ ∆u. (If price p(u) did not have to be changed because it was already p∗(u) the
same inequality follows from the optimality of allocation a.) Let now r∗u = p∗(u)|Cu| denote the revenue
made by product u in the optimal solution. We can then write that

2 · r(p, a) =
∑

u∈U
ru +

∑

c∈C
p(a(c))

≥
∑

u∈U

(
ru +

∑

c∈Cu

p(a(c))
)

≥
∑

u∈U
(ru + r∗u −∆u)

≥
∑

u∈U
r∗u = r(p∗, a∗).

This completes the first part of the proof. It remains to be shown that our analysis is tight. To this end,
consider a problem instance with 2 products u1, u2 and k + 1 consumers c1, . . . , ck+1. Consumer budgets
are b(c1, u1) = k, b(c1, u2) = k − ε, b(c2, u1) = 0, b(c2, u2) = ε and b(ci, u1) = 1, b(ci, u2) = 0 for
i = 3, . . . , k +1. We assume that products are available in unlimited supply. It is straightforward to verify
that prices p(u1) = k, p(u2) = ε are locally optimal and result in revenue k + ε. Prices p(u1) = 1,
p(u2) = k − ε, however, result in overall revenue of 2k − 1 − ε. Choosing k and ε appropriately shows
that a pure local search approach cannot give any approximation ratio better than 2. ¤

So far, we have argued that the local-search algorithm terminates with a solution that is a 2-approximation
with respect to the optimal revenue. We have not, however, argued about the algorithm’s running time. In
order to obtain polynomial running time, the following small change in the algorithm is fully sufficient.
Instead of choosing any improving step, we need to find in each iteration the new price that will give
maximum increase in revenue. This yields the following theorem.

Theorem 3.3.2. UDP(C)-MAX with limited or unlimited supply and integral budgets can be approximated
in polynomial time within a factor of 2.

40

3.4 Max-Buying with Price-Ladder Constraint

Proof: Assume that we choose in each iteration the new price that will give maximum increase in revenue.
Let r be the revenue of the current solution, r∗ the revenue of an optimal solution and assume that r∗−2r ≥
φ. Using the same notation as in the proof of Theorem 3.3.1 there must exist a product u, such that
ru ≤ ∆u−φ/n, where n denotes the number of products in the instance. It follows that revenue increases
by at least φ/n in each iteration and, thus, after k iterations it must be true that

φ ≤ r∗
(

1− 2
n

)k

,

since in the first iteration it holds that φ ≤ r∗. We assume that all budgets are integral. It follows that the
overall revenue increases by at least 1 in each iteration. Now let ` = n · dln r∗e+ 1. After ` iterations we
have that

φ ≤ r∗
(

1− 2
n

)n·ln r∗

− 1 ≤ r∗ · e− ln r∗ − 1 = 0,

and, thus, we can terminate the algorithm after ` iterations with an approximation guarantee of 2. Note,
that we do not need to know the value of r∗. For (weakly) polynomial running time it is sufficient to upper
bound r∗ by the sum of consumers’ maximum budgets. ¤

The analysis of the local-search algorithm can easily be extended to capture scenarios in which consumers
are described by various types of probability distributions, as long as these distributions can somehow be
accessed efficiently. Especially, this is clearly true for finite support distributions as introduced in Section
2.1 and we obtain the following extension of Theorem 3.3.2.

Theorem 3.3.3. UDP(D)-MAX with limited or unlimited supply and integral budgets can be approximated
in polynomial time within a factor of 2.

Finally, let us briefly discuss the reason why local search can be successfully applied to UDP(C)-MAX.
The max-buying model exhibits an interesting revenue transfer property that separates it from the other
models considered here. Assume that we set the price of a single product u to its optimal value p∗(u) and
a consumer c that buys u in the optimal solution does not select u. Then it must be the case that c buys
another product at an even higher price and, thus, revenue that is made by selling u in the optimal solution
is not lost but transferred to some other product u′.

3.4 Max-Buying with Price-Ladder Constraint

We now return to the case of unlimited product supply and assume that we are given a price-ladder con-
straint. As we point out in Chapter 4 in this situation max-buying is equivalent to a relevant variation of
rank-buying. We first sketch a polynomial time approximation scheme (PTAS) in Section 3.4.1 and then
present a proof of strong NP-hardness in Section 3.4.2.

3.4.1 A PTAS

We briefly sketch the PTAS for UDP(C)-MAX-PL from [AFMZ04], which is based on the following
relaxation of the problem. First, we restrict ourselves to prices that are powers of s = (k + 1)1/k. We then

41

3 The Other End of the Chart: The Max-Buying Model

allow each consumer to buy multiple products, as long as the prices of any two products vary by at least a
factor of (k + 1). This yields an approximation guarantee of (k + 1)1/k(1 + (1/k)) = 1 + (log k/k)(1 +
o(1)), which can be made 1 + ε for any ε > 0 by choosing constant k sufficiently large.

The relaxed problem is solved by the following dynamic programming approach. Assume that we are
given a price-ladder constraint p(u1) ≤ · · · ≤ p(un) and that st+1 > b(c, u) for all c ∈ C, u ∈ U .
Thus, it is sufficient to consider prices s0, . . . , st. By Fi(xi, . . . , xi+k−1) we denote the maximum revenue
considering only products priced at si or higher and xj is the index of the first product with price sj or
higher. Now let C(xi−1, . . . , xi+k−1) denote the number of consumers that cannot afford to buy any of
the products uxj , . . . , uxj+1−1 at price sj for j = i, . . . , i + k− 2, but can afford to buy at least one of the
products uxi−1 , . . . , uxi−1 at price si−1. We then define

Gi−1(xi−1, . . . , xi+k−1) = Fi(xi, . . . , xi+k−1) + si−1C(xi−1, . . . , xi+k−1).

Now, iterating over all values of xi+k−1 one obtains the following recurrence for the F -values:

Fi−1(xi−1, . . . , xi+k−2) = max
xi+k−2≤xi+k−1≤n

Gi−1(xi−1, . . . , xi+k−1).

A simple calculation shows that the size of the dynamic programming table is polynomial for any fixed
constant k.

Theorem 3.4.1 ([AFMZ04]). UDP(C)-MAX-PL allows a PTAS.

3.4.2 Strong NP-Hardness

We proceed by showing that the PTAS presented in the previous section is the best approximation result
one can hope for by a proof of strong NP-hardness. The proof relies on a reduction of MAX-2SAT, where
the main technical difficulty lies in encoding the problem in a way, such that prices can be set according to
a predefined price-ladder. We point out that without significant modifications the proof goes through for
the (more practical) rank-buying model, as well (see Chapter 4).

Theorem 3.4.2. UDP(C)-MAX-PL with unlimited supply is strongly NP-hard, even if each consumer has
at most 2 non-zero budgets.

Proof: We show that MAX-2SAT ≤p UDP(C)-MAX-PL. MAX-2SAT is known to be NP-hard [GJ79].
As a MAX-2SAT instance we are given a collection of disjunctive clauses c1, . . . , cm of length at most 2
over variables x1, . . . , xn and some positive integer s ∈ N. We ask whether there is a truth assignment
t : {x1, . . . , xn} → {0, 1} that simultaneously satisfies s of the clauses. Note, that w.l.o.g. we may
assume that n ≤ m, since variables that appear in only a single clause can be assigned the boolean value
that satisfies this clause and then be removed from the instance. We next describe a polynomial time
reduction to UDP(C)-MAX.

Variable gadgets: For every variable xi we construct a gadget Vi consisting of 2 products ui, ui and the
following collection of consumers:

• αj
i , j = 1, . . . , 4m, with budgets b(αj

i , ui) = 1 + 2i−2
2m2 and b(αj

i , ui) = 1 + 2i−1
2m2 .

42

3.4 Max-Buying with Price-Ladder Constraint

• βj
i , j = 1, . . . , 4m3, with budgets b(βj

i , ui) = 1 + 2i−1
2m2 .

• γj
i , j = 1, . . . , 4m3 + 4m, with budgets b(γj

i , ui) = 1 + 2i
2m2 .

Budgets that are not explicitly stated are assumed to be 0. By rmax(Vi) we refer to the revenue made from
sales to the above consumers. We proceed by calculating the value of rmax(Vi) depending on prices p(ui)
and p(ui). Let r∗i = (4m3 + 4m)(2 + (4i− 2)/(2m2)).

(1) p(ui) = 1 + 2i−2
2m2 , p(ui) = 1 + 2i

2m2 . Consumers αj
i and βj

i buy ui, γj
i buy ui.

rmax(Vi) = (4m3 + 4m)(1 +
2i− 2
2m2

) + (4m3 + 4m)(1 +
2i

2m2
)

= (4m3 + 4m)(2 +
4i− 2
2m2

) = r∗i .

(2) p(ui) = 1 + 2i−1
2m2 , p(ui) = 1 + 2i−1

2m2 . Consumers βj
i buy ui, αj

i and γj
i buy ui.

rmax(Vi) = 4m3(1 +
2i− 1
2m2

) + (4m3 + 8m)(1 +
2i− 1
2m2

)

= (4m3 + 4m)(2 +
4i− 2
2m2

) = r∗i .

(3) p(ui) = 1 + 2i−2
2m2 , p(ui) = 1 + 2i−1

2m2 . Consumers βj
i buy ui, αj

i and γj
i buy ui.

rmax(Vi) = 4m3(1 +
2i− 2
2m2

) + (4m3 + 8m)(1 +
2i− 1
2m2

)

= 4m3(2 +
4i− 3
2m2

) + 4m(2 +
4i− 2
2m2

) = r∗i − 2m.

(4) p(ui) = 1 + 2i−1
2m2 , p(ui) = 1 + 2i

2m2 . Consumers βj
i buy ui, γj

i buy ui.

rmax(Vi) = 4m3(1 +
2i− 1
2m2

) + (4m3 + 4m)(1 +
2i

2m2
)

= 4m3(2 +
4i− 1
2m2

) + 4m(1 +
2i

2m2
) ≤ r∗i − 2m.

We observe that optimal revenue is obtained with prices set as in cases (1) and (2). If prices are set as
in cases (1) and (2) we say that Vi is in state 1 or in state 0, respectively. In our interpretation variable
gadgets in state 0 correspond to variables that are assigned the boolean value 0, variable gadgets in state 1
to variables that are assigned 1. We next describe how to encode clauses.

Clause gadgets: For every clause cj we define a single consumer δj with the following budgets:

• b(δj , ui) = 1 + 2i−2
2m2 , if clause cj contains literal xi.

• b(δj , ui) = 1 + 2i−1
2m2 , if clause cj contains literal xi.

43

3 The Other End of the Chart: The Max-Buying Model

Again, budgets that are not explicitly stated are set to 0. We finally impose a price-ladder constraint that
requires that

p(u1) ≤ p(u1) ≤ p(u2) ≤ p(u2) ≤ · · · ≤ p(un) ≤ p(un)

and let r∗max =
∑

i r
∗
i . For the constructed UDP(C)-MAX instance we now ask whether there exists a price

assignment p that result in overall revenue of at least r∗max + s for s ∈ N as in the MAX-2SAT instance.
The idea of the construction is depicted in Figure 3.2. We proceed by proving the correctness of the above
reduction.

Soundness: Let t be a truth assignment satisfying s of the clauses. If t(xi) = 0 we set variable gadget
Vi to state 0, if t(xi) = 1 to state 1. Clearly, our price assignment is in accordance with the price-ladder
constraint. Consider a satisfied clause cj . If cj contains literal xi and t(xi) = 1, then the corresponding
consumer δj can afford to buy product ui at its price p(ui) = 1 + (2i − 2)/(2m2). On the other hand, if
cj contains xi and t(xi) = 0, then δj can afford ui at price p(ui) = 1 + (2i− 1)/(2m2). In both cases δj

will buy some product at a price of at least 1. Thus, overall revenue is at leat r∗max + s.

Completeness: Let p be a price assignment resulting in revenue at least r∗max + s. We construct a truth
assignment t that satisfies s of the clauses. We first argue that w.l.o.g. each variable gadget Vi is in either
state 0 or state 1.

Observe first that prices p(ui) and p(ui) can w.l.o.g. be assumed to be from the set of distinct budget
values of consumers interested in these products, since, as long as this is not the case, there always exists
some price that can be set to the nearest budget value without decreasing overall revenue or violating the
price-ladder constraint. Assume then that Vi is neither in state 0 nor in state 1 and let k be the number
of consumers of type δj buying ui or ui. By cases (3) and (4) above the total revenue made by selling
products ui and ui is bounded by

r∗i − 2m + k(1 +
2i− 1
2m2

) ≤ r∗i − 2m + k(1 +
1
m

) < r∗i .

On the other hand, setting prices as in state 0 or state 1 will give revenue at least r∗i from selling products
ui and ui to consumers of type αj

i , βj
i and γj

i .

We can then define the obvious truth assignment t by t(xi) = 0 if Vi is in state 0, t(xi) = 1 if Vi is in
state 1. For every consumer δj that can afford to buy a product under price assignment p the corresponding
clause cj is satisfied by t. Since revenue made by sales to consumers of type αj

i , βj
i and γj

i is precisely
r∗max, the number of consumers of type δj buying some product must be at least

⌈
s · (1 +

2m− 1
2m2

)−1

⌉
≥

⌈
s · (1 +

1
m

)−1

⌉
≥ s,

where we use the fact that s ≤ m and consumers δj buy at a price of at most 1 + (2m− 1)/(2m2). This
finishes the proof. ¤

3.5 A Max-Buying Pricing Game

Finally, we are going to show that the analysis of the local-search algorithm from Section 3.3 can be
extended to bound the price of anarchy [KP99], i.e., the worst case ratio between the revenue of an optimal

44

3.5 A Max-Buying Pricing Game

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

u

u u
_

_
uuu

_
u

u
_

δj

2m2
___1+ 2i−2

2m2
___1+ 2i−1

2m2
___1+ 2i 4m3+4m

4m3
γi

j

βi
j

α i
j

γi
j

βi
j

α i
j

xi =0

xi=1

c

ii

i i

2211

4m1

)
_
2xv1x(=j

Figure 3.2: Consumers αj
i , βj

i , γj
i ensure that prices of ui and ui are always in state 0 (xi = 0) or in state 1

(xi = 1), both of which are consistent with the price-ladder constraint. For each clause cj we
have a single consumer δj with non-zero budgets for the products corresponding to the literals
of cj .

solution and any Nash equilibrium, in the pricing game we obtain if we let an individual player fix the
price of each product. Since it can be shown that pure Nash equilibria do not generally exist, we will
work here with the concept of mixed equilibria. Interestingly, the price of anarchy turns out to be 2,
so in order to obtain good revenue in the max-buying scenario not even a global objective seems to be
necessary. First let us introduce some notation to describe mixed strategies. Let P = {1, . . . , n} be a set
of players. Each player j needs to assign a price pj to her product uj , such as to maximize her revenue
from sales to consumers C. Allowing mixed strategies, every player defines a probability distribution
Pj over a set of possible prices for her product uj . For ease of notation we let P = (P1, . . . , Pn),
P−j = (P1, . . . , Pj−1, Pj+1, . . . , Pn) and (P−j , Pj) = P . Observe that we can w.l.o.g. allow only the
budget values as possible prices and, thus, Pj is a discrete distribution. Since every set of fixed prices
defines an optimal feasible allocation, the distributions Pj define a probability distribution also over the
set of allocations. We define Rj to be the random variable that describes the revenue of player j. We can
write that

E
[
Rj

]
=

∑
p,a

PrP
(
pj = p

) · PrP
(
a | pj = p

) · pj |a−1(uj)|.

A set of strategies P eq = (P eq
1 , . . . , P eq

n) are at Nash equilibrium, if for every player j we have that

EP eq

[
Rj

] ≥ E(P eq
−j ,P ′j)

[
Rj

] ∀ P ′
j 6= P eq

j ,

i.e., if no player can increase her expected revenue by unilaterally changing her current strategy P eq
j . Let

prices p∗1, . . . , p
∗
n and allocation a∗ be an optimal (i.e., revenue maximizing) solution to UDP(C)-MAX.

Again, we let Cj = (a∗)−1(uj) refer to the set of consumers that buy product uj in this solution and
define Lj = {ci ∈ Cj | pa(ci) < p∗j}, Hj = Cj\Lj for a fixed allocation a. For the remainder of this
section it will be convenient to refer to players, their products and consumers only by their indices.

45

3 The Other End of the Chart: The Max-Buying Model

We assume that the feasible allocation of products to consumers is always chosen optimally. In order
to apply arguments similar to the proof of Theorem 3.3.1 we need the following property of optimal
allocations.

Lemma 3.5.1. Consider a set of prices p1, . . . , pn with optimal feasible allocation a and let |Lj | = t. If
price pj is changed to p∗j and we recompute the optimal allocation b we have that |b−1(j)| ≥ t.

Proof: Throughout this proof, set Lj is defined with respect to prices p1, . . . , pn and allocation a. Let
us assume now that |b−1(j)| < t. Clearly, there can be no consumer i ∈ Cj with pb(i) < p∗j , since
allocation b is chosen optimally and there are available copies of product j left unsold. It follows that
there must exist a consumer i0 ∈ Lj with b(i0) 6= j and pb(i0) ≥ p∗j . Under this assumption we will show
that allocation b is not optimal. The following chain of conclusions follows solely from the optimality
of a. Since pa(i0) < pb(i0) it must be the case that product b(i0) is sold out under allocation a, i.e.,
|a−1(b(i0))| = s(b(i0)). Then there must be some consumer i1 with b(i1) 6= a(i1) = b(i0). For this
consumer it must be true that either pb(i1) ≤ pa(i0) (including the case that b(i1) = ∅) or product b(i1)
is sold out under a. Otherwise, modifying a by setting a(i0) = b(i0) and a(i1) = b(i1) would result in a
feasible allocation with strictly higher revenue. By repeatedly applying this argument we obtain a chain
i0, i1, . . . , is of consumers with b(ik) = a(ik+1) and pb(is) ≤ pa(i0) (or b(is) = ∅). We can assume
that b(ik) 6= j for all k. To see this, note, that otherwise we could for every consumer i0 ∈ Lj with
b(i0) 6= j find a distinct consumer ik with b(ik) = j, which would in turn imply that |b−1(j)| ≥ t. The
above argument is also depicted in Figure 3.3. We can define a feasible allocation c by going backwards
along the constructed chain of consumers and allocating to each consumer the product she received under
allocation a except for consumer i0, who will now receive product j. Formally, we let c(ik) = a(ik) for
k = 1, . . . , s, c(i0) = j and c(i) = b(i) for all remaining consumers. We observe that

s∑

k=0

pc(ik) = p∗j +
s∑

k=1

pc(ik) = p∗j +
s∑

k=1

pa(ik) = p∗j +
s−1∑

k=0

pb(ik) >

s∑

k=0

pb(ik),

where the last inequality follows from pb(is) ≤ pa(i0) < p∗j , since i0 ∈ Lj . This contradicts the optimality
of allocation b and, thus, finishes the proof. ¤

In analogy to Theorem 3.3.1 we obtain the following bound on the price of anarchy.

Theorem 3.5.2. The price of anarchy in the unit-demand max-buying pricing game is 2.

Proof: Let strategies P eq = (P eq
1 , . . . , P eq

n) define a Nash equilibrium. We want to lower bound the
expected revenue of agent j. We define a (deterministic) strategy P ∗

j for agent j by Pr(pj = p∗j) = 1 and
let P ∗ = (P eq

−j , P
∗
j) denote the modified set of strategies. By the definition of Nash equilibria we have that

E(P eq
−j ,P ∗j)

[
Rj

] ≤ EP eq

[
Rj

]
.

By Lemma 3.5.1 we can lower bound the expected revenue of agent j playing strategy P ∗
j by

E(P eq
−j ,P ∗j)

[
Rj

] ≥
|Cj |∑

t=0

t · p∗j · PrP eq

(|Lj | = t
)
.

46

3.5 A Max-Buying Pricing Game

b(i4) a(i0)
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

i0

1

2

i3

i4

p
j
*

j

i

i

Figure 3.3: A chain of consumers switching to new products as constructed in the proof of Lemma 3.5.1,
where i0 ∈ Lj .

We can then write that

EP eq

[
Rj

]
+ EP eq

[∑

i∈Cj

pa(i)

] ≥ E(P eq
−j ,P ∗j)

[
Rj

]
+ EP eq

[∑

i∈Cj

pa(i)

]

≥
|Cj |∑

t=0

t · p∗j · PrP eq

(|Lj | = t
)

+
|Cj |∑

t=0

t · p∗j · PrP eq

(|Hj | = t
)

=
|Cj |∑

t=0

PrP eq

(|Lj | = t
) · p∗j · |Cj | = p∗j · |Cj |,

where we use the fact that

PrP eq

(|Hj | = t
)

= PrP eq

(|Lj | = |Cj | − t
)
.

Let R denote the revenue of the equilibrium state, r∗ the revenue generated by the optimal solution. By
using linearity of expectation (see Appendix A.2) we have that

2 · EP eq

[
R

]
=

∑

j∈P
EP eq

[
Rj

]
+ EP eq

[∑

i∈C
pa(i)

]

=
∑

j∈P

(
EP eq

[
Rj

]
+ EP eq

[∑

i∈Cj

pa(i)

]) ≥
∑

j∈P
p∗j · |Cj | = r∗.

This gives the desired upper bound on the price of anarchy. We now give a simple corresponding lower
bound. Consider a problem instance with 2 products U = {u1, u2} each of which is available only once,
i.e., s(u1) = s(u2) = 1, and 2 consumers C = {c1, c2} with budgets b(c1, u1) = ε, b(c1, u2) = 1,
b(c2, u1) = 1 and b(c2, u2) = 1 + ε. It is easy to see that the optimal solution generates revenue 2, while
the pure strategies p1 = ε and p2 = 1 + ε define a Nash equilibrium which results in overall revenue
1 + 2ε. Thus, the above bound is tight. ¤

We point out that the situation is quite different in the min-buying or rank-buying models. For both models
it is straightforward to show that the price of anarchy in the pricing game defined as above is unbounded,
which is essentially due to the lack of the revenue transfer property (see Section 3.3).

47

3 The Other End of the Chart: The Max-Buying Model

3.6 Literature

The max-buying model has first been introduced in [Rus03]. The first theoretical results are found in
[AFMZ04]. Here, Aggarwal et al. present an LP-based 1.59-approximation and a proof of APX-hardness
for the general unlimited-supply case and derive the PTAS for the unlimited-supply price-ladder scenario.
It is also shown that the dynamic programming approach can be extended to obtain a 4-approximation for
the case of a price-ladder and limited supply. A better approximation guarantee for the combination of a
price-ladder constraint and limited supply is not known. This is quite interesting, as one would expect the
problem to be more difficult with the price-ladder removed, yet we have seen that local search (which is
not applicable in the presence of a price-ladder constraint) yields a 2-approximation in this case.

Pricing with limited supply is also considered by Guruswami et al. [GHK+05] in the context of unit-
demand envy-free pricing (see Chapter 5). Our definition of strictly feasible allocations is inspired by their
notion of envy-freeness.

A general introduction to non-cooperative games and Nash equilibria as a concept of rational player be-
havior is found, e.g., in [Owe95]. Investigation of the price of anarchy as a measure of the social cost of
lack of coordination in distributed systems has been initiated by Koutsoupias and Papadimitriou in [KP99].
The new results in this chapter are found in [BK07].

48

4 The Space Between: Stochastic Selection and the Rank-Buying
Model

Let us briefly recapitulate our results on unit-demand pricing up to this point. We have seen that the max-
buying model allows us to design algorithms that achieve constant approximation guarantees. Yet, these
results are not completely satisfactory in the sense that slight doubts may prevail as to what extend this
model captures rational consumer behavior. On the other hand, the min-buying model is considered to
be significantly more realistic, but has turned out to be intractable beyond the non-constant approxima-
tion obtained by the single-price algorithm, which unfortunately renders it rather irrelevant for practical
purposes. Consequently, it is a very natural question to ask whether one can come up with economically
realistic versions of unit-demand pricing that allow reasonable approximation ratios. In this chapter we
will investigate two quite different approaches to this task.

Clearly, one could try to define a new selection rule that is sort of in-between max- and min-buying, in the
sense that it is close enough to min-buying to capture rational consumer behavior, but also close enough
to max-buying to be computationally tractable. We will show that this approach cannot be successful.
To capture a wide range of selection rules that are based on product prices and are situated between the
max- and min-buying models, we define the notion of order-based stochastic selection rules, which for
each consumer define a probability distribution over the set of affordable products depending only on the
relative order of prices, the problem’s objective becoming maximization of the expected revenue from
the resulting sales. We obtain a class of selection rules that model a wide range of consumer behavior,
with max- and min-buying as the extremes at both ends of the chart. For the distribution-based problem
version we prove that constant approximation ratios are possible for selection rules that mimic the max-
buying model, while non-constant lower bounds hold for essentially every other order-based selection rule.
Especially, even the case in which a consumer chooses one of her affordable products purely at random
(the random-buying model) turns out to be no more tractable than min-buying itself. These results can be
extended to the sampling-based problem version in a slightly weaker form.

An alternative approach lies in designing selection rules that do not depend on the relative order of product
prices. The rank-buying model assumes that each consumer comes with a personal ranking of the products
she is interested in and purchases the highest ranked affordable product. As it turns out, the rank-buying
model is as intractable as min-buying in general. Yet, a small and natural restriction makes a lot of
difference here. Assuming that a consumer’s budgets are consistent with her ranking, i.e., higher ranked
products are assigned non-smaller budgets, rank-buying reduces to max-buying in the presence of a price-
ladder constraint and, thus, allows a polynomial time approximation scheme.

Section 4.1 contains formal definitions of stochastic selection rules and the rank-buying model. The results
on pricing with stochastic selection rule are found in Section 4.2. The rank-buying model is investigated
in Section 4.3. Section 4.4 points to some related literature.

49

4 The Space Between: Stochastic Selection and the Rank-Buying Model

4.1 Preliminaries

We define stochastic selection as a natural extension of general selection rules that were introduced in
Section 2.1. A stochastic selection rule s is a function that, given fixed prices p, assigns to each pair of
consumer c ∈ C and product u ∈ U the probability s(c, u, p) ∈ [0, 1] of consumer c buying u under
price assignment p. We assume that a consumer never selects a product she cannot afford and always
selects a product if she can afford to do so. Formally, we require that s(c, u, p) = 0 if u /∈ Ac(p), i.e.,
p(u) > b(c, u), and that

∑
u∈Ac(p) s(c, u, p) = 1 if Ac(p) 6= ∅.

Definition 4.1.1. Given products U , consumer samples C consisting of budgets b(c, u) ∈ R+
0 for all c ∈ C,

u ∈ U and stochastic selection rule s, UDP(C)-s asks for a price assignment p maximizing the expected
revenue

rs(p) =
∑

c∈C

∑

u∈U
s(c, u, p) · p(u).

In distribution-based UDP(D)-s with (finite support) distribution D over consumer space C we want to
maximize the expected revenue

rs(p) =
∑

c∈C
PrD(c)

∑

u∈U
s(c, u, p) · p(u)

from a sale to a single consumer drawn from C according to D.

An alternative approach to model consumer behavior is to assume that products are not chosen according
to the relative order of prices, but according to some consumer specific price-independent preferences. In
the rank-buying model, each consumer c is represented by her budgets b(c, u) for different products and a
consumer-specific ranking rc : U → [|U|], where rc(u) 6= rc(u′) for any u 6= u′.

Definition 4.1.2. Given products U , consumer samples C consisting of budgets b(c, u) ∈ R+
0 for all c ∈ C,

u ∈ U and rankings rc : U → [|U|] as described above, UDP(C)-RANK asks for a price assignment p
maximizing

rrank(p) =
∑

c∈A(p)

p
(
argmin

{
rc(u) |u ∈ Ac(p)

})
.

Given a price-ladder constraint π, UDP(C)-RANK-PL asks for a revenue maximizing price assignment
satisfying this constraint.

4.2 Hardness of Stochastic Selection

General stochastic selection rules capture all possible kinds of selection. We are interested in a restricted
class of selection rules, that select products according to their price relative to other affordable alternatives.
Given some consumer c ∈ C and prices p, let πp

c : Ac(p) → [|Ac(p)|] be a ranking such that πp
c (u) ≤

πp
c (u′) iff p(u) ≥ p(u′), i.e., πp

c ranks products in Ac(p) according to their non-increasing prices.

Definition 4.2.1. Stochastic selection rule s is said to be order-based if s(c, u, p) = s(πp
c (u), |Ac(p)|),

i.e., if the probability of c buying u depends only on the number of affordable products and the rank of
product u among them.

50

4.2 Hardness of Stochastic Selection

δ concentrated

max−buyingmin−buying

δ=1 δ=0

−uniform

Figure 4.1: Order-based stochastic selection rules naturally fill the gap between the min- and max-buying
models. The case δ = 0 corresponds to selection rules concentrated around the max-buying
end of the chart, δ = 1 means that consumers choose their products uniformly at random.

The following definition classifies order-based selection rule based on their distance to the max-buying
model. Fig. 4.1 illustrates the relation of these classes to the min- and max-buying models.

Definition 4.2.2. Order-based stochastic selection rule s is called concentrated, if s(1, |Ac(p)|) = Ω(1).
It is called δ-uniform, if s(1, |Ac(p)|) = O(|Ac(p)|−δ) for 0 ≤ δ ≤ 1.

Observe that by our definition above order-based selection rules need not be either concentrated or uniform.
However, many natural selection rules fall into these classes. Intuitively, concentrated selection rules are
very close to the max-buying model, since every consumer acts according to the max-buying model with
some constant probability. On the other hand, in every selection rule modeling rational consumer behavior,
the probability of selecting the most expensive product should decrease as more affordable alternatives
become available. Thus, we would expect every realistic selection rule to be δ-uniform for some δ > 0.
It is a straightforward observation that the known constant factor approximation algorithms for the max-
buying objective yield constant approximation guarantees when applied to UDP(C)-s or UDP(D)-s with
concentrated selection rules as well (see, e.g., Theorems 3.3.2 and 3.3.3).

The interesting question is what can be said about the approximability of the problem with δ-uniform
selection rules. We will focus first on distribution-based UDP(D)-s, for which it turns out that we can get
tight inapproximability results for any value of δ. This shows that among all selection rules based on the
relative order of product prices, constant approximation guarantees are possible only for those essentially
mimicking the max-buying model. The proof of Theorem 4.2.3 is based on a randomized procedure that
given arbitrary solutions to UDP(D)-s detects a selection of products that in expectation generates good
profit under the min-buying objective, as well.

Theorem 4.2.3. Let s be δ-uniform for some 0 < δ < 1. Then UDP(D)-s is not approximable within
O(nδ−ε) for any ε > 0, unless P = NP. On the other hand, if s is concentrated, i.e., δ = 0, then UDP(D)-
s allows constant approximation ratios.

Proof: Let an instance of UDP(D)-MIN as in Corollary 2.3.11 be given. These instances are as defined
in the proof of Theorem 2.3.7 with ∆ = n − 1 and consumers Ci,j represented by a single consumer
ci,j with probability |Ci,j |/|C|. More precisely, we are given products U = {u1, . . . , un} and consumers
C = {c1, . . . , cn}, where each consumer cj has budget value pj for product uj and budgets of at most

51

4 The Space Between: Stochastic Selection and the Rank-Buying Model

µ−1pj for any other product, where µ = 2n. By Corollary 2.3.11 it is NP-hard to approximate UDP(D)-
MIN on these instances within O(n1−ε) for any ε > 0.

Let s be δ-uniform stochastic selection rule. We proceed by introducing some notation that will be used
throughout the remainder of the proof. Given a price assignment p and a consumer c ∈ C we let rmin(p | c)
refer to the expected revenue made by sales at prices p to consumer c under the min-buying objective.
Analogously, we denote the expected profit under selection rule s by rs(p | c). For subsets C′ ⊆ C of
consumers we define rmin(p | C′) =

∑
c∈C′ rmin(p | c) and rs(p | C′) =

∑
c∈C′ rs(p | c). Optimal revenue

under both objectives is denoted by r∗min and r∗s , respectively.

Assume now towards a contradiction that we can approximate UDP(D)-s within O(nδ−ε) for some small
ε > 0 and let p be the corresponding price assignment on the above instance. Thus, we have that

rs(p | C) ≥ 1
O(nδ−ε)

r∗s ≥
1

O(nδ−ε)
r∗min,

where the last inequality follows from the fact that under s each consumer buys at a non-smaller price than
under the min-objective with probability 1.

As in the proof of Theorem 2.3.7 one can argue that at least half the expected revenue rs(p | C) is con-
tributed by consumers cj who can afford to buy their associated product uj , i.e., for which p(uj) ≤ pj .
Let us again refer to these consumers as C+. Let

Aj(p) = {uk | p(uk) ≤ b(cj , uk,)}
refer to the set of products that consumer cj can afford to buy under price assignment p. We partition the
set of consumers into C+ = C0 ∪ . . . ∪ Cν , where

Cq = {cj | 2q ≤ |Aj(p)| < 2q+1}.
Note, that clearly ν = O(log n), since the size of each Aj(p) is trivially upper bounded by n. Fix
0 ≤ r ≤ ν such that rs(p | Cr) ≥ rs(p | Cq) for all q and we obtain by the pigeon hole principle that

rs(p | Cr) ≥ 1
O(nδ−ε log n)

r∗min ≥
1

O(nδ−ε+ρ)
r∗min (4.1)

for any ρ > 0. As in the proof of Theorem 2.3.7 it is w.l.o.g. that p(uj) ∈ {pj , pj + µ} for some
small µ > 0. We now define price assignment p′ by the following random experiment that is repeated
independently for each uj . With probability 2−r−1 we set p′(uj) = p(uj). With probability 1− 2−r−1 we
set p′(uj) = pj + µ.

Consider consumer cj ∈ Cr. After the random experiment, this consumer buys product uj at price pj under
the min-buying objective if its price remains unchanged and the prices of all other affordable products are
set above their threshold prices. Thus, we can write that

Pr
(
cj buys uj at price pj under p′

) ≥ 1
2r+1

(
1− 1

2r+1

)|Aj(p)|−1

≥ 1
e · 2r+1

,

where we use that |Aj(p)| < 2r+1 by the fact that cj ∈ Cr, and obtain an expected contribution of

E
[
rmin(p′ | cj)

] ≥ 1
e · 2r+1

· pj

52

4.2 Hardness of Stochastic Selection

by consumer cj under price assignment p′. It remains to show an upper bound on the expected revenue
made by cj with selection rule s under price assignment p, which follows easily from the δ-uniformity of s.
More precisely, we know that consumer cj buys uj at price pj with probability at most |Aj(p)|−δ < 2−δr.
Other products can be bought at price at most µ−1pj . Now remember that µ = Ω(2r) and we obtain

rs(p | cj) ≤ 2−δrpj + µ−1pj = O(
(

1
2r

)δ

) · pj ,

and, using that 2r ≤ n,

E
[
rmin(p′ | cj)

]
=

1
O(n1−δ)

rs(p | cj). (4.2)

Summing over all cj ∈ Cr this yields that

E
[
rmin(p′ | Cr)

]
=

1
O(n1−δ)

rs(p | Cr), by (4.2)

=
1

O(n1−ε+ρ)
r∗min, by (4.1).

By choosing ρ small enough, we obtain a solution with approximation guaranteeO(n1−ε′) for some fixed
ε′ > 0 for UDP(D)-MIN. Thus, we have shown that UDP(D)-s with δ-uniform selection rule does not
allow approximation guarantees essentially better than nδ, which finishes the first part of the proof.

We have seen before that UDP(D)-MAX can be approximated within constant ratios. It is then straight-
forward to argue that going from the max-buying objective to a concentrated stochastic selection rule, the
overall revenue is reduced by at most a constant factor, since every consumer is still going to buy the most
expensive affordable product with constant probability. ¤

Let us briefly point out in what sense the inapproximability results for UDP(D)-s with δ-uniform s in
Theorem 4.2.3 are tight. The notion of δ-uniformity requires that s(1, |Ac(p)|) = O(|Ac(p)|−δ). Es-
pecially, every γ-uniform selection rule with γ > δ is also δ-uniform. This makes it impossible to get
tight approximation results for UDP(D)-s with δ-uniform selection rules. However, if we require that
s(1, |Ac(p)|) = Θ(|Ac(p)|−δ) instead, we immediately obtain a matching O(nδ)-approximation by a re-
duction to the max-buying model.

So far, we have only considered distribution-based UDP(D)-s. Clearly, the positive results for concentrated
selection rules trivially carry over to sampling-based UDP(C)-s. But what about the lower bounds for the
δ-uniform case? Here we can get similar results only for a certain range of δ-values. This is due to the fact
that our lower bounds for the min-buying model are not perfectly tight. Remember that the single-price
algorithm achieves approximation ratio Hm for UDP(C)-MIN, but our lower bound is only Ω(logε m)
for some ε > 0. In this notation, Theorem 4.2.4 holds for any δ > 1 − ε. It is quite evident that the
gap in Theorem 4.2.4 is an artifact of its current proof and, in fact, Theorem 4.2.3 is likely to hold for
sampling-based UDP(C)-s, as well.

Theorem 4.2.4. Let s be δ-uniform for some sufficiently large 0 < δ < 1. Then UDP(C)-s is not approx-
imable within O(logε m) for some ε > 0, unless NP ⊆ DTIME(nO(log log n)).

53

4 The Space Between: Stochastic Selection and the Rank-Buying Model

4.3 Approximability of Rank-Buying

We next turn to the rank-buying model. As we shall see, several of the results for the min- and max-
buying models can be more or less directly applied to the rank-buying model, giving an almost complete
characterization of this model’s complexity.

Given a price-ladder constraint, it is straightforward to encode any UDP(C)-MIN-PL or UDP(D)-MIN-
PL instance in terms of the rank-buying model. In fact, we just need to define every consumer’s ranking
according to the price-ladder, i.e., rc(u) < rc(u′) whenever p(u) ≤ p(u′) is required by the price-ladder.
Using these rankings, every consumer is going to buy the cheapest product she can afford under any
given price assignment. Hence, all hardness results for UDP(C)-MIN-PL and UDP(D)-MIN-PL carry
over to UDP(C)-RANK-PL and UDP(D)-RANK-PL. It is also straightforward to argue that the proof of
Theorem 2.3.7 works for rank-buying without price-ladder, as well, since in the resulting pricing instance
the relative order of prices remains fixed even without an explicit price-ladder constraint. Consequently,
the same argumentation as before applies and we obtain similar hardness results for UDP(C)-RANK and
UDP(D)-RANK. Theorem 4.3.1 is analogous to Corollaries 2.3.8 through 2.3.10.

Theorem 4.3.1. UDP(C)-RANK and UDP(C)-RANK-PL are not approximable withinO(logε m) for some
ε > 0, unless NP ⊆ DTIME(nO(log log n)). Allowing at most ` ≥ 3 non-zero budgets per consumer it is not
approximable within `ε for some ε > 0, unless P = NP. Furthermore, it is not approximable withinO(nε)
for some ε > 0, unless NP ⊆ ⋂

δ>0 DTIME(2O(nδ)).

In analogy to Corollary 2.3.11 we get inapproximability of the distribution-based problem version.

Theorem 4.3.2. UDP(D)-RANK and UDP(D)-RANK-PL are not approximable within O(n1−ε) for any
ε > 0, unless P = NP.

On the algorithmic side, we have already seen in Section 2.2 that the single-price algorithm can be applied
to all versions of unit-demand pricing, including the rank-buying model. The random-partitioning algo-
rithm can be applied in the rank-buying scenario by the simple observation that the analysis in the proof of
Theorem 2.4.1 counts revenue only from those consumers that can afford exactly one product. Thus, the
selection rule in place is completely irrelevant.

Theorem 4.3.3 ([BB06]). The random-partitioning algorithm (Algorithm 2) computes an (expected)O(`)-
approximation for UDP(C)-RANK with at most ` non-zero budgets per consumer.

In [AFMZ04] a restricted version of the rank-buying model, in which a consumer’s budget values need
to be consistent with her ranking, has been considered. More formally, UDP(C)-RANK with consistent
budgets requires that for every consumer c ∈ C, we have that b(c, u) ≥ b(c, u′) whenever rc(u) < rc(u′)
for all products u, u′ ∈ U . Given a price-ladder constraint, UDP(C)-RANK-PL reduces to the max-buying
model.

Theorem 4.3.4 ([AFMZ04]). UDP(C)-RANK-PL with consistent budgets reduces to UDP(C)-MAX-PL.

Proof: Let an instance of UDP(C)-RANK-PL be given and fix some consumer c. We show that we can
transform the instance into an equivalent instance in which consumer c buys the most expensive affordable
product for any price assignment p.

54

4.4 Literature

Fix prices p, such that c can afford products u and u′ with prices p(u) < p(u′) and assume that c selects
u. Note, that by the price-ladder constraint p(u) ≤ p(u′) must be true for any price assignment. Since c
chooses u, we have that rc(u) < rc(u′). By the fact that budgets are consistent it follows that b(c, u) ≥
b(c, u′). Consequently, whenever c can afford to buy u′ the same is true for u and, thus, c will never
buy product u′. Thus, we obtain an equivalent UDP(C)-RANK-PL instance by setting b(c, u′) = 0 and
assigning the lowest possible rank rc(u′) = n − 1 to u′. (Here the ranks of other products need to be
adapted accordingly.)

The above step decreases the number of on-zero budgets by 1 and, thus, we eventually arrive at an UDP(C)-
RANK-PL instance in which each consumer always chooses to purchase the most expensive affordable
product. ¤

By Theorem 4.3.4 the PTAS from Section 3.4.1 can be applied to the rank-buying model. It is also
straightforward to modify the proof of Theorem 3.4.2 in order to fit rank-buying. We thus obtain a similar
matching lower bound.

Theorem 4.3.5 ([AFMZ04]). UDP(C)-RANK-PL with consistent budgets allows a PTAS.

Theorem 4.3.6. UDP(C)-RANK-PL with consistent budgets is strongly NP-hard, even if each consumer
has at most 2 non-zero budgets.

4.4 Literature

The notion of stochastic selection rules was introduced in [Bri06], where also the results from Section 4.2
are found.

The rank-buying model was first considered by Rusmevichientong in [Rus03]. The notion of consistent
budgets is implicit in [AFMZ04] where Aggarwal et al. prove that rank-buying with consistent budgets
reduces to max-buying in the presence of a price-ladder and derive the PTAS for this problem.

The new results from Section 4.3 have been published in [BK07].

55

56

5 Uniform Budgets: The Envy-Free Pricing Problem

In the previous chapter we have seen that neither stochastic selection rules nor deterministic selection rules
based on external rankings result in algorithmically tractable variations of unit-demand pricing in the no-
price-ladder scenario. We will now investigate a different approach towards this goal, which is based on
remaining true to the min-buying model as our most basic model of rational behavior, yet restricting the
problem in another way.

The negative results on general min-buying in Chapter 2 heavily rely on the fact that consumers can express
preferences over individual products by assigning different budget values. This allowed us to bind groups
of consumers to specific products and encode independence between them. A natural problem restriction
that circumvents this kind of hardness is the uniform-budget case, in which we do not allow consumers to
distinguish between products they are interested in, in the sense that their budgets for all desired products
must be identical.

This problem variation is also interesting for another reason. In economic or game-theoretic settings a
player’s happiness is often measured in terms of her utility, which is commonly defined as the difference
between the player’s valuation for the game’s outcome and the payment she is charged for being allowed
to take part in the game. In the setting of unit-demand pricing, we can view a consumer’s utility as
the difference between her budget for the product she buys and its actual price. This model of consumer
behavior, in which consumers choose the product maximizing their utility, was first proposed in [AFMZ04]
and is usually referred to as max-gain buying in the unlimited-supply setting.

The game-theoretic flavor of this problem variation becomes even more evident in the limited-supply
scenario, when it is not guaranteed that under a given pricing different consumers can simultaneously
receive their preferred products. In [GHK+05], Guruswami et al. propose the unit-demand envy-free
pricing problem. Given a limited supply of products, we need to assign revenue maximizing prices, such
that every consumer can purchase the product maximizing her utility. The additional requirement that
every consumer must receive her most desired product is termed envy-freeness. Note, that envy-freeness
is obviously not an issue in unlimited-supply settings.

In [AFMZ04] it is shown that the single-price algorithm achieves the same approximation guarantees for
max-gain buying as for all other models. In [GHK+05] these results are extended to limited product-
supply. Here, previous work in economics guarantees the existence of envy-free pricings for unit-demand
utility functions and extending these by reserve prices obtained from the single-price algorithm yields the
approximation guarantee.

Does unit-demand envy-free pricing allow better approximation guarantees than those obtained by the
extended single-price algorithm? Clearly, unlimited-supply max-gain buying is a special case of the envy-
free pricing problem. Furthermore, restricting the problem even more and assuming uniform budgets, max-
gain buying coincides with the min-buying model, since in this case it is always the cheapest affordable
product that maximizes a consumer’s utility. Consequently, any lower bound on the approximability of
uniform-budget min-buying yields the same result for unit-demand envy-free pricing.

57

5 Uniform Budgets: The Envy-Free Pricing Problem

We will show here that uniform-budget min-buying is unlikely to be approximable within any better than
the known ratios. More formally, we will derive inapproximability under an assumption about the average
case complexity of refuting random 3SAT-instances.

The rest of this chapter is organized as follows. Section 5.1 contains the formal problem definitions.
Section 5.2 contains a high-level description of the result. The formal proofs are contained in Section 5.3.
Section 5.4 gives an overview of related literature.

5.1 Preliminaries

As described before, we will consider the restriction of UDP(C)-MIN in which each consumer has only
a single non-zero budget for a number of products she is interested in. Formally, for every consumer c
there exist Sc ⊆ U and bc ∈ R+, such that b(c, u) = bc for all u ∈ Sc, b(c, u) = 0 else. For the sake of
completeness we give a formal definition below.

Definition 5.1.1. In uniform-budget UDP(C)-MIN we are given products U and consumer samples C
consisting of budgets bc ∈ R+ and product sets Sc ⊆ U for all c ∈ C. We want to find prices p : U → R+

0

that maximize
rmin(p) =

∑

c∈A(p)

min{p(u) |u ∈ Sc ∧ p(u) ≤ bc},

where again A(p) denotes the set of consumers that can afford any product under p.

Additionally assuming limited product supply and requiring an envy-free allocation of the products, we
get the unit-demand envy-free pricing problem, which is defined next.

Definition 5.1.2. Given products U , each u ∈ U available in supply s(u) ∈ N, and consumer samples C
consisting of budgets b(c, u), the unit-demand envy-free pricing problem asks for prices p : U → R+

0 and
allocation a : C → U , such that

a(c) = argmax
{
b(c, u)− p(u) |u ∈ U ∪ {∅}},

|a−1(u)| ≤ s(u) for all u ∈ U , and the overall revenue
∑

c∈C p(a(c)) is maximized, where by definition
p(∅) = b(c,∅) = 0 for all c ∈ C.

Observe that uniform-budget UDP(C)-MIN is a special case of both max-gain buying and the unit-demand
envy-free pricing problem, since with uniform budgets it is always the product with lowest absolute
price that maximizes a consumer’s utility. Distribution-based UDP(D)-MIN with uniform budgets and
the distribution-based version of envy-free pricing are defined analogously.

5.2 Hardness of Approximation - Overview

Our hardness proof for uniform-budget UDP(C)-MIN works along the lines of Theorem 2.3.7 in Chapter
2. The main similarity is the fact that we will once more resort to the idea of scaling the hardness of the

58

5.2 Hardness of Approximation - Overview

base problem of our reduction to a level that yields inapproximability thresholds of the right magnitude
while still being sparse enough to be encoded in terms of sampling-based unit-demand pricing. Instead of
the independent set problem we will use the Balanced Bipartite Independent Set Problem (BBIS), which
is defined below, as the starting point of our reduction. We give a relatively detailed overview of the
reduction and its implications for uniform-budget UDP(C)-MIN below. The formal proof of the main
result in Theorem 5.2.10 is found in Section 5.3.

Essentially, we show a reduction from BBIS in constant degree bipartite graphs to UDP(C)-MIN with
uniform budgets. This shows that, assuming there are no randomized polynomial time algorithms of
a certain kind approximating constant degree BBIS within arbitrarily small constant factors, there are
no polynomial time algorithms approximating uniform-budget UDP(C)-MIN within O(logε m) for some
ε > 0.

To date, no explicit hardness results have been proven for BBIS in constant degree graphs, although the
problem has been receiving a lot of attention. In [Fei02], Feige shows an interesting connection between
the average case complexity of refuting 3CNF-formulas and the worst case approximation complexity
of several notorious optimization problems including BBIS. To embed our result into a somewhat wider
context, we formulate a slightly stronger version of the hypothesis in [Fei02] and show that this is enough
for our purposes.

Remember that a 3CNF-formula is a conjunction of clauses, each of which is the disjunction of 3 literals
over variables x1, . . . , xn, where a literal is a variable or its negation. Before stating the hypothesis we
need to describe the random sampling procedure used to obtain random 3CNF formulas in [Fei02]. Given
n variables we create formulas consisting of m = ∆n clauses for some large constant ∆ ∈ N. Each literal
of every clause is picked uniformly at random from the set of 2n literals. Thus, every clause consists of 3
(not necessarily distinct) literals that are picked independently at random. When ∆ is large enough, every
truth assignment satisfies roughly (7/8)m clauses of a random 3CNF formula. Thus, a typical random
3CNF formula does not have significantly more than (7/8)m simultaneously satisfiable clauses. On the
other hand, for a sufficiently small ε > 0 formulas with (1 − ε)m simultaneously satisfiable clauses can
be considered exceptional. In fact, this is even true for any fixed ε < 1/8, since the number of satisfiable
clauses is sharply concentrated around its expectation. By choosing ∆ sufficiently large, deviations by
more than a small constant factor can be excluded with overwhelming probability. Hypothesis 5.2.1 states
that it is hard to detect exceptional formulas on average.

Hypothesis 5.2.1. For every fixed ε > 0 and sufficiently large constant ∆ ∈ N, there is no (randomized)
algorithm that runs in time O(t(n)) and, given a random 3CNF formula with n variables and m =
∆n clauses, outputs typical with probability at least 1/2, but outputs exceptional on every formula with
(1− ε)m simultaneously satisfiable clauses with probability at least 1− 1/2poly(n).

Choosing t(n) = poly(n) the only difference between Hypothesis 5.2.1 and the hypothesis in [Fei02]
is that we allow randomized algorithms that have exponentially small error probability when it comes to
detecting exceptional formulas. We need this stronger version as a result of our reduction from BBIS to
uniform-budget UDP(C)-MIN, which is partially based on a random construction that introduces an expo-
nentially small one-sided error probability for detecting large independent sets. We are mostly interested
here in the case of t(n) = poly(n). However, similar to what we have seen in Chapter 2, going to other
subexponential time bounds will allow us to obtain lower bounds for differently parametrized approxima-

59

5 Uniform Budgets: The Envy-Free Pricing Problem

tion goals. In analogy to [Fei02] we define a notion of hardness based on Hypothesis 5.2.1. We use slightly
different notation compared to [Fei02] to reflect the difference in the underlying hypotheses.

Definition 5.2.2. A problem is said to be R3SAT?(t(n))-hard, if having a (randomized) polynomial time
algorithm (with exponentially small failure probability) for it refutes Hypothesis 5.2.1.

Most importantly, R3SAT?(t(n))-hard problems do not allow polynomial time algorithms if we believe
that Hypothesis 5.2.1 is true for the given choice of t(n). As a byproduct of the fact that Hypothesis 5.2.1
also excludes certain randomized algorithms, R3SAT?(t(n))-hardness rules out this type of algorithm, too.
We continue by giving a formal definition of BBIS, the base problem of our reduction.

Definition 5.2.3. In the Balanced Bipartite Independent Set Problem (BBIS) we are given a bipartite
graph G = (V, W,E). We want to find maximum cardinality subsets of vertices V ′ ⊂ V , W ′ ⊂ W with
|V ′| = |W ′|, such that {v, w} /∈ E for all v ∈ V ′, w ∈ W ′.

The first step in our proof of hardness for uniform-budget UDP(C)-MIN is mostly identical to proofs given
in [Fei02], where hardness of general BBIS is derived. We do a slightly more careful analysis and obtain
R3SAT?(poly(n))-hardness of BBIS in constant degree graphs. The proof is found in Section 5.3.1.

We point out that this part of the proof can be replaced by Hypothesis 5.2.4, which states that the gap variant
of BBIS in constant degree graphs does not have randomized polynomial time algorithms with one-sided
error (i.e., the decision variant does not belong to the complexity class RP). More formally, let G(a, d),
G(b, d) be two families of bipartite graphs on 2n vertices with constant degree d ∈ N and maximum BBIS

of size at most an or at least bn, respectively. Given 0 < a < b < 1 and d ∈ N the problem BBIS(a, b, d)
requires deciding whether G ∈ G(a, d) or G ∈ G(b, d) for a given graph G ∈ G(a, d) ∪ G(b, d). For our
purposes Hypothesis 5.2.4 is fully sufficient.

Hypothesis 5.2.4. There exist constants 0 < a < b < 1 and d ∈ N, such that BBIS(a, b, d) /∈ RP.

Without expressing too much of an opinion about the validity of Hypothesis 5.2.4, it should be noted that
it is certainly in accordance with our current knowledge and backed by the fact that strong super-constant
approximability thresholds have been proven for general BBIS. Having hardness of constant degree BBIS

we once more apply the method of derandomized graph products [AFWZ95] to obtain hardness of ap-
proximation within O(f(n)ε) for BBIS in graphs with maximum degree O(f(n)). The application of this
technique to balanced bipartite sets is sketched in Section 5.3.2. The formal proof of Theorem 5.2.5 is
equivalent to the proof given in Section 2.3.1 for the case of regular independent sets.

Theorem 5.2.5. Let f : N −→ R+ be non-decreasing with f(n) ≤ n and f(nc) ≤ f(n)c for all
c ≥ 1, n ∈ N. Let G(a(n), f(n)) and G(b(n), f(n)) be the families of balanced bipartite graphs on
2n vertices, with maximum degree bounded by f(n) and maximum BBIS of size at most a(n)n or at
least b(n)n, respectively. There exist 0 < a(n) < b(n) < 1 with b(n)/a(n) = Ω(f(n)ε) for some
ε > 0, such that given G ∈ G(a(n), f(n)) ∪ G(b(n), f(n)) it is R3SAT?(poly(n))-hard to decide whether
G ∈ G(a(n), f(n)) or G ∈ G(b(n), f(n)).

We proceed by sketching the reduction of BBIS to uniform-budget UDP(C)-MIN. As an intermediate step
we modify the BBIS instance by adding a number of random edges and interpret vertices on one side of
the bipartition as sets. The connection to uniform-budget UDP(C)-MIN is made by considering sequences
of these sets that have a certain expansion property, which is formalized in the following definition.

60

5.2 Hardness of Approximation - Overview

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

���������
���������
���������
���������

���������
���������
���������
���������

b(n)n

b(n)n

(a)

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������

�������
�������
�������
�������

a(n)n+1

a(n)nn−a(n)n

(b)

Figure 5.1: Reducing BBIS to MES. Let 0 < a(n) < b(n) < 1 be defined as in Theorem 5.2.5. The
top vertices are interpreted as sets containing their adjacent vertices from the opposite side
of the bipartition. (a) If the graph has a balanced bipartite independent set of size at least
b(n)n, adding random edges with probability 1/b(n)n each implants an expanding sequence
of expected size Ω(b(n)n). (b) If the maximum balanced bipartite independent set has size
a(n)n, every selection of a(n)n + 1 sets covers at least n − a(n)n elements of the universe.
Since every further set of an expanding sequence must cover an additional element, the length
of the maximum expanding sequence is bounded above by 2a(n)n + 1.

Definition 5.2.6. In the Maximum Expanding Sequence Problem (MES) we are given an ordered collec-
tion S1, . . . , Sm of sets. An expanding sequence φ = (φ(1) < · · · < φ(`)) of length |φ| = ` is a selection
of sets Sφ(1), . . . , Sφ(`), such that

Sφ(j) *
j−1⋃

i=1

Sφ(i)

for 2 ≤ j ≤ `. MES asks for finding such a sequence of maximum length.

We are not aware that MES has been considered explicitly before. Reducing general BBIS, for which
inapproximability results under standard complexity theoretic assumptions have recently been proven by
Khot [Kho04], yields strong hardness results for MES. The main idea of the proof of Theorem 5.2.7 is
illustrated in Figure 5.1.

Theorem 5.2.7. MES is inapproximable withinO(mε) for some ε > 0, unless NP⊆ ⋂
δ>0 BPTIME(2O(nδ)).

In order to reduce MES to uniform-budget UDP(C)-MIN we have to focus our attention on severely re-
stricted problem instances. BBIS instances with maximum degree f(n) yield MES instances that exhibit a
nicely sparse structure. Definition 5.2.8 formalizes our notion of sparse.

Definition 5.2.8. We say that an MES instance S1, . . . , Sm is f(m)-separable if it can be partitioned into
κ = O(f(m)) subsequences C1, . . . , Cκ, such that Cj = {Sk(j), Sk(j)+1, . . . , S`(j)}, where k(1) = 1,
`(κ) = m, k(j + 1) = `(j) + 1 for 1 ≤ j ≤ κ− 1 and each Cj contains only non-intersecting sets.

It is actually not difficult to argue that BBIS instances with maximum degree f(n) yield f(m)2-separable
MES instances. The degree bound implies that both the size of each set and the frequency of each element

61

5 Uniform Budgets: The Envy-Free Pricing Problem

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

S1 S 2 S 3 S 4

2 0

2 1

2 2

2 3

N1

N2

N3

4N

Figure 5.2: Sets S1, S2, S3, S4 form an expanding sequence. Each set Si is transformed into a correspond-
ing selection of consumers on price level 24−i. Defining Ni as the set of elements newly
covered by set Si, maximum profit from all consumers can be extracted by setting the prices
of all elements in Ni to 24−i.

is bounded by f(n). Thus, rearranging the order of the sets appropriately separates the instance into f(n)2

(or f(m)2, n and m being exchangeable in this context) blocks of non-intersecting sets. The proof of
Lemma 5.2.9 is found in Section 5.3.3.

Lemma 5.2.9. There exists ε > 0, such that MES with f(m)-separable instances is R3SAT?(poly(n))-
hard to approximate within O(f(m)ε).

It is relatively straightforward to encode MES in terms of uniform-budget UDP(C)-MIN, since MES nicely
models the dependence between different price levels in the pricing problem. Sets are transformed into
corresponding consumers with exponentially decreasing budgets for the elements contained in the set. For
consumers whose corresponding sets form an expanding sequence we can then find prices that ensure that
they all buy at their budget values. This is depicted in Figure 5.2. The only difficulty lies in ensuring that
the resulting uniform-budget UDP(C)-MIN instances are of polynomial size. It turns out that the notion of
f(m)-separability is the key to this problem, since the non-intersecting sets belonging to a single block in
the MES instance can be encoded on a single price level. Choosing f(m) = log m yields instances with
logarithmically many price levels and, thus, a polynomial number of consumer samples. The formal proof
of Theorem 5.2.10 is found in Section 5.3.4.

Theorem 5.2.10. There exists ε > 0, such that it is R3SAT?(poly(n))-hard to approximate uniform-budget
UDP(C)-MIN within O(logε m). Hardness of approximation holds even under the weaker assumption of
Hypothesis 5.2.4.

Similar to what we have already seen in Chapter 2, the reduction is flexible enough to yield inapproxima-
bility results also in the maximum number ` of non-zero budgets per consumer and, allowing UDP(C)-MIN

instances of subexponential size, we can stretch the construction to the limit and obtain lower bounds in
terms of the number of products n, as well.

Theorem 5.2.11. There exist constants `0 ∈ N and ε > 0, such that for every ` ≥ `0 it is R3SAT?(poly(n))-
hard to approximate uniform-budget UDP(C)-MIN with at most ` non-zero budgets per consumer within

62

5.3 Full Proof of Theorem 5.2.10

`ε. Furthermore, for every δ > 0 there exists ε > 0, such that it is R3SAT?(2O(nδ))-hard to approximate
uniform-budget UDP(C)-MIN within O(nε). Hardness of approximation holds even under the weaker
assumption of Hypothesis 5.2.4.

For the sake of completeness we restate the results for the more general unit-demand envy-free pricing
problem.

Corollary 5.2.12. There exists ε > 0, such that it is R3SAT?(poly(n))-hard to approximate the unit-
demand envy-free pricing problem within O(logε m). There exist constants `0 ∈ N and ε > 0, such that
for every ` ≥ `0 it is R3SAT?(poly(n))-hard to approximate the unit-demand envy-free pricing problem
with at most ` non-zero budgets per consumer within `ε. For every δ > 0 there exists ε > 0, such that it is
R3SAT?(2O(nδ))-hard to approximate the unit-demand envy-free pricing problem withinO(nε). Hardness
of approximation holds even under the weaker assumption of Hypothesis 5.2.4.

Finally, let us consider the distribution-based versions of uniform-budget UDP(D)-MIN and the unit-
demand envy-free pricing problem. As mentioned before, a reduction similar to the one given in the
proof of Lemma 5.2.9 in combination with the known hardness results for general BBIS from [Kho04]
yields a strong hardness result for general MES. Applying the reduction from the proof of Theorem 5.2.10
we obtain inapproximability results for distribution-based uniform-budget UDP(D)-MIN under standard
complexity theoretic assumptions. These immediately extend to the more general unit-demand envy-free
pricing problem.

Theorem 5.2.13. UDP(D)-MIN with uniform budgets is hard to approximate within O(nε) for some
ε > 0, unless NP ⊆ ⋂

δ>0 BPTIME(2O(nδ)). The same hardness holds for the distribution-based unit-
demand envy-free pricing problem.

5.3 Full Proof of Theorem 5.2.10

The proof of Theorem 5.2.10 is organized as follows. Section 5.3.1 proves hardness of constant-degree
BBIS based on Hypothesis 5.2.1. Hardness amplification via derandomized graph products is described in
Section 5.3.2. The reduction from BBIS to MES is found in Section 5.3.3. Finally, Section 5.3.4 contains
the reduction from MES to UDP(C)-MIN.

5.3.1 R3SAT?(poly(n))-hardness of Constant Degree BBIS

We show a reduction from MAX-3AND. Given a collection of clauses, each of which contains 3 (not
necessarily distinct) literals and is satisfied if all 3 literals are assigned the boolean value true, we want
to determine the maximum number of simultaneously satisfiable clauses. The remainder of this part of
the proof is roughly identical to the one in [Fei02], except for the fact that a small change in the reduction
yields graphs of constant degree. Lemma 5.3.1 is explicitly stated in [Fei02] for the case of their underlying
hypothesis and extends easily to our notion of R3SAT?(poly(n))-hardness. We note that if we talk about
random MAX-3AND instances, we assume the sampling procedure as described in Section 5.2.

63

5 Uniform Budgets: The Envy-Free Pricing Problem

Lemma 5.3.1 ([Fei02]). For every fixed ε > 0 and sufficiently large constant ∆ ∈ N, the following
problem is R3SAT?(poly(n))-hard. Given a random 3AND formula with n variables and m = ∆n clauses,
output typical with probability at least 1/2, but output exceptional on every formula with (1/4 − ε)m
simultaneously satisfiable clauses.

We want to show that if we have some good approximation algorithm for BBIS in constant degree graphs,
then we can use it to design a refutation algorithm for MAX-3AND, which contradicts Hypothesis 5.2.1.
Before doing this, we introduce the following technical lemma, which states an upper bound on the prob-
ability of a random variable with bounded range falling far below its expectation, similar to the Markov
inequality (see Appendix A.2).

Lemma 5.3.2. Let X ∈ [0, s] be a random variable with E[X] ≥ ηs for some 0 < η < 1. Then

Pr
(
X ≤ ηs

t

)
≤ 1− η

1− η
t

for any t > 1.

Proof: Towards a contradiction, assume that the claim does not hold. We may then write that

E[X] ≤ Pr
(
X ≤ ηs

t

)
· ηs

t
+ Pr

(
X >

ηs

t

)
· s

<
1− η

1− η
t

· ηs

t
+

(
1− 1− η

1− η
t

)
s

=
η

1− η
t

(
1
t
− η

t
+ 1− 1

t

)
s

= ηs,

a contradiction. ¤

Let us now have a closer look at the random 3AND formulas we are given as an input. Clearly, in expec-
tation each literal will appear (3/2)∆ times in the formula. Now let Vi be a random variable counting the
number of occurrences of literal `i. Applying the Chernoff bound (see Appendix A.2) we have that

Pr
[
(1− δ)

3
2
∆ ≤ Vi ≤ (1 + δ)

3
2
∆

]
≥ 1− 2e−(3/4)δ2∆

for any 0 < δ < 1. For every literal we define an additional random variable Xi ∈ {0, 1} that indicates
whether the above condition is satisfied and let X = X1 + · · · + X2n. By linearity of expectation it
obviously holds that

E [X] ≥
(
1− 2e−(3/4)δ2∆

)
2n.

This implies that
Pr

[
X < (1−

√
2e−(3/8)δ2∆)2n

]
≤
√

2e−(3/8)δ2∆,

by Lemma 5.3.2 with η = 1− 2e−(3/4)δ2∆, t = (1− 2e−(3/4)δ2∆)/(1−√2e−(3/8)δ2∆) and s = 2n. Now
fix any γ > 0 and observe that by choosing ∆ sufficiently large we can ensure that

√
2e−(3/8)δ2∆ ≤ γ.

64

5.3 Full Proof of Theorem 5.2.10

Fact 5.3.3. With probability 1 − γ a (1 − γ)-fraction of the literals appear between (1 − δ)3
2∆ and

(1 + δ)3
2∆ times in a random MAX-3AND formula.

The first step of our refutation algorithm for MAX-3AND consists of checking the above condition. If too
many literals deviate from their expected number of occurrences, the algorithm outputs exceptional. If this
is not the case, we continue by removing the few problematic literals from the formula. More precisely,
we remove every clause that contains a literal appearing more than (1 + δ)(3/2)∆ times.

Let µ = 3(δ + γ). We know that (1 − γ)2n good literals appear at least (1 − δ)(3/2)∆ times within the
formula. Thus, a total number of at least

(1− γ)2n(1− δ)(3/2)∆ ≥ (1− δ − γ)3∆n

literal occurrences belong to good literals. This leaves at most (δ + γ)3∆n = µm literal occurrences be-
longing to bad literals and, consequently, gives an upper bound on the number of clauses that are removed
from the formula. For the rest of the reduction to BBIS we need two more facts. Fact 5.3.5 is explicitly
proven in [Fei02]. Fact 5.3.4 is immediate from the above.

Fact 5.3.4. If the original MAX-3AND formula had (1/4 − ε)m satisfiable clauses, then the number of
satisfiable clauses in our modified formula is bounded below by (1/4− ε− µ)m.

Fact 5.3.5. For every ε > 0, sufficiently large ∆ ∈ N and n large enough, the following holds. With
high probability every set of (1/8 + ε)m clauses in a random MAX-3AND formula with m = ∆n clauses
contains at least n + 1 different literals.

We transform the modified formula into an instance of BBIS as follows. On both sides of the bipartition
we have a vertex for every clause of the formula. Vertices on opposite sides are connected by an edge, if
the corresponding clauses contain conflicting literals, i.e., if some variable appears in positive form in one
clause and in negative form in the other. Thus, two vertices are connected if and only if the corresponding
clauses cannot be satisfied simultaneously.

It is straightforward to argue that (1/4 − ε − µ)m satisfiable clauses result in a balanced bipartite in-
dependent set of at least the same size, since for any given truth assignment we can select the vertices
corresponding to satisfied clauses on both sides of the bipartition as a balanced bipartite independent set.
On the other hand, for random formulas the size of the maximum balanced bipartite independent set is
bounded above by (1/8 + ε)m with high probability, since by Fact 5.3.5 every selection of (1/8 + ε)m
clauses contains at least n + 1 distinct literals with high probability and, thus, is not satisfiable because
one literal must appear in both positive and negative form. Additionally we know that, since every clause
contains 3 literals and every literal appears at most (1 + δ)(3/2)∆ times, the resulting bipartite graph has
a maximum degree of at most (1 + δ)(9/2)∆.

Assume now we had some polynomial time algorithm that can distinguish the two cases with an error prob-
ability exponentially close to 0. By applying this algorithm to the above BBIS instance we immediately
obtain a polynomial time refutation algorithm for MAX-3AND with exponentially small failure probabil-
ity for detecting exceptional formulas. If the BBIS algorithm returns a balanced bipartite independent set
larger than (1/8 + ε)m, we output exceptional. Otherwise, we output typical. The failure probability for
detecting typical formulas is dominated by the probability that the formula has too many literals deviating
from their expected number of occurrences and, thus, can be made an arbitrarily small constant. Hence,
we have shown the following lemma.

65

5 Uniform Budgets: The Envy-Free Pricing Problem

Lemma 5.3.6. Let G(a, d), G(b, d) be the families of bipartite graphs on 2n vertices with maximum degree
bounded by d ∈ N and a maximum balanced bipartite independent set of size at most an or at least
bn, respectively. There exist 0 < a < b < 1 and d ∈ N, such that deciding whether a given graph
G ∈ G(a, d) ∪ G(b, d) belongs to G(a, d) or G(b, d) is R3SAT?(poly(n))-hard.

5.3.2 Gap-Amplification for Bounded Degree BBIS

For a bipartite graph G = (V, W,E), |V | = |W | = n, let α(G) refer to the size of a maximum balanced
bipartite independent set in G. Let G(a, d) and G(b, d) be two families of bipartite graphs with maximum
degree bounded by d and α(G) ≤ an for G ∈ G(a, d), α(G) ≥ bn for G ∈ G(b, d). From the previous
section we know that we can choose constants a, b and d, such that deciding whether a given graph is
from G(a, d) or G(b, d) is hard assuming Hypothesis 5.2.1 holds. The following definition is in analogy to
Definition 2.3.3.

Definition 5.3.7. Let G = (V, W,E), |V | = |W | = n, be a bipartite graph and k ∈ N. The k-fold graph
product Gk = (V k,W k, Ek) is defined by Cartesian products V k, W k and {(v1, . . . , vk), (w1, . . . , wk)} ∈
Ek if and only if {v1, . . . , vk, w1, . . . , wk} is not a bipartite independent set in G.

We briefly describe the application of derandomized graph products [AFWZ95] to bipartite graphs. Given
G = (V, W,E), |V | = |W | = n, we construct a non-bipartite δ-regular Ramanujan graph H on n vertices
with constant degree δ (depending only on constants a and b). Vertices V k and W k of the derandomized
graph product DGk are obtained by choosing a vertex of H uniformly at random and taking a random
walk of length k − 1 starting at this vertex. For k = O(log n) the number nδk−1 of such random walks is
polynomial and, thus, DGk can be constructed deterministically in polynomial time. The edges of DGk

are defined as before.

An analysis similar to the one in the proof of Theorem 2.3.5 yields Theorem 5.2.5. In contrast to the IS

case, Theorem 5.2.5 is formulated in terms of a gap version of BBIS. Note, that it is possible to determine
the necessary values of a(n) and b(n) from the proof of Theorem 2.3.5. We want to remark that by
construction the constant degree graphs obtained by the reduction in Section 5.3.1 are symmetric in the
sense that we can rename vertices V = {v1, . . . , vn} and W = {w1, . . . , wn}, such that {vi, wj} ∈ E if
and only if {vj , wi} ∈ E. This property is not lost during gap amplification, since we can use the same
expander graph to obtain the vertices on both sides of the graph product.

5.3.3 Maximum Expanding Sequences

Let G ∈ G(a(n), f(n)) ∪ G(b(n), f(n)), G = (V, W,E),|V | = |W | = n, with a(n), b(n) and f(n)
as in Theorem 5.2.5 be given. We will reduce the problem of deciding whether G ∈ G(a(n), f(n)) or
G ∈ G(b(n), f(n)) to solving a restricted instance of MES. We start by adding a couple of random edges
to the graph. More precisely, every possible edge is added to G with probability (b(n)n)−1. We do not
allow multiple edges and, thus, edges that have already been present in G will not be duplicated.

Afterwards we remove vertices whose degree has become too high from the graph. In expectation the
random experiment tries to add b(n)−1 new edges to every vertex v ∈ V ∪ W . We remove a vertex v

66

5.3 Full Proof of Theorem 5.2.10

and all its incident edges if more than c · b(n)−1 edges are added to it, where c is some sufficiently large
constant to be determined later. Let Av be the random variable counting the number of edges added to v.
Applying the Chernoff bound (see Appendix A.2) we obtain

Pr(v is removed) = Pr(Av ≥ c · b(n)−1) ≤ e−c/b(n)

for any constant c ≥ 3e − 1. We denote the modified graph by G′ = (V ′,W ′, E′). For every vertex
vi ∈ V ′ we define a corresponding set Si by

Si =
{
wj ∈ W ′ | {vi, wj} ∈ E′} ,

i.e., vertices V ′ will correspond to sets over universe W ′ in our MES instance. In order to obtain a feasible
MES instance we need to define an order on sets Si, which we do next. Observe that vertices in G′ have
degree at most

f ′(n) ≤ f(n) + c · b(n)−1 = O(f(n)),

where we use the fact that bipartite graphs with bounded degree f(n) have a balanced bipartite set of size
at least n/(f(n)+1) and, thus, it must be the case that b(n)−1 = O(f(n)). Furthermore, if the maximum
degree of G′ is f ′(n), then the sets Si can be partitioned into f ′(n)2 many classes, such that sets in each
class do not intersect. To see this, note, that every set contains at most f ′(n) elements, each of which
is contained in at most f ′(n) − 1 further sets. Thus, starting with f ′(n)2 empty classes and adding sets
one by one, the number of classes to which a specific set cannot be added is always bounded above by
f ′(n)(f ′(n)− 1) < f ′(n)2.

Let C1, . . . , Cκ denote the classes of sets obtained in this way and observe that κ = O(f(n)2). We
reorder sets according to the classes and finally obtain an MES instance S1, . . . , Sm for which it holds that
Cj = {Sk(j), Sk(j)+1 . . . S`(j)}, i.e., sets belonging to a single class form a non-interrupted block in the
ordering. Thus, the MES-instance is f(n)2-separable (see Definition 5.2.8). This property is not required
for the remainder of this section, but will be of immense importance for the reduction to uniform-budget
UDP(C)-MIN in Section 5.

Soundness: Let G ∈ G(b(n), f(n)). Assume for the moment that no vertices are removed from G and
let S∗ = {Sφ(1), . . . , Sφ(`)}, ` = db(n)ne, be the sets in the MES instance corresponding to vertices from
V that belong to a maximum balanced bipartite independent set. Analogously, let W ∗ ⊂ W denote the
vertices from W belonging to the balanced bipartite independent set. For 1 ≤ j ≤ `/2 consider set Sφ(j).
We say that Sφ(j) is successful if we can use it to construct a large expanding sequence or, more formally,
if conditions Aj through Dj below are satisfied. When we analyze the success probability of set Sφ(j), a
subtle issue that we need to address is the fact that we have reordered the sets in order to obtain a separable
instance. We resolve this problem by proving a lower bound on the success probability that holds with
respect to any reordering.

A: Condition Aj is satisfied if |Sφ(j) ∩W ∗| = 1.

B: Condition Bj is satisfied if Sφ(j) ∩ Sφ(i) ∩W ∗ = ∅ for all 1 ≤ i ≤ `/2, i 6= j.

C: Condition Cj is satisfied if the vertex corresponding to set Sφ(j) is not removed due to the degree
constraint.

67

5 Uniform Budgets: The Envy-Free Pricing Problem

D: Condition Dj is satisfied if none of the vertices in Sφ(j) ∩ W ∗ are removed due to the degree
constraint.

It is not difficult to check that successful sets belong to the MES-instance and form an expanding sequence,
since their corresponding vertices are not removed from the graph and each set covers a unique element in
W ∗, which yields the necessary expansion property. Let us now determine the probability that set Sφ(j) is
successful. We can write that

Pr(Sφ(j) is successful) = 1− Pr(Aj ∨Bj ∨ Cj ∨Dj)

= 1− Pr(Aj)
−Pr(Bj |Aj) · Pr(Aj)
−Pr(Cj |Aj ∧Bj) · Pr(Aj ∧Bj)
−Pr(Dj |Aj ∧Bj ∧ Cj) · Pr(Aj ∧Bj ∧ Cj).

We first consider event Aj and obtain

Pr(Aj) =
∑

w∈W ∗
Pr

(
Sφ(j) ∩W ∗ = {w}) =

∑

w∈W ∗

1
db(n)ne

(
1− 1

b(n)n

)db(n)ne−1

≈ b(n)n
1

eb(n)n
=

1
e
,

where the above holds with arbitrary precision for large values of n. Let us then consider Pr(Bj |Aj). Sets
Sφ(j) and Sφ(i) contain every element from W ∗ with equal probability 1/b(n)n. Furthermore, Sφ(j) ∩W ∗

and Sφ(j) ∩W ∗ are independent by construction. Thus,

Pr(Bj |Aj) ≤
`/2∑

i=1

∑

w∈W ∗
Pr(w ∈ Sφ(j)) · Pr(w ∈ Sφ(i)) ≤

b(n)n
2

b(n)n
1

(b(n)n)2
=

1
2
.

We have already seen that the probability of any specific vertex being removed due to the degree constraint
is bounded above by e−c/b(n). We conclude that

Pr(Cj |Aj ∧Bj) · Pr(Aj ∧Bj) ≤ Pr(Cj) ≤ e−c/b(n),

and the same estimate obviously holds for Pr(Dj |Aj ∧Bj ∧ Cj) · Pr(Aj ∧Bj ∧ Cj). Finally, this yields

Pr(Sφ(j) is successful) ≥ 1−
(

1− 1
e

)
− 1

2
1
e

−e−c/b(n) − e−c/b(n)

≥ 1
2e
− 2e−c/b(n) ≈ 1

2e

for sufficiently large constant c. Let Y denote the number of successful sets. It obviously holds that
E[Y] ≥ (1/4e)b(n)n and applying Lemma 5.3.2 with η = 1/4e, t = 2 and s = b(n)n we get that

Pr
(
Y ≤ 1

8e
b(n)n

) ≤ 1− 1
8e

.

68

5.3 Full Proof of Theorem 5.2.10

This implies that with probability Ω(1) there exists an expanding sequence of length Ω(b(n)n).

Completeness: Let G ∈ G(a(n), f(n)) and consider any expanding sequence φ in S1, . . . , Sm. Since the
maximum balanced bipartite independent set in G is of size a(n)n, every selection of a(n)n + 1 vertices
from V must be adjacent to all but a(n)n vertices from W . Thus, the first a(n)n + 1 sets from φ leave
at most a(n)n elements uncovered. Since the expansion property requires that every further set in the
sequence must contain a previously uncovered element, it follows that |φ| ≤ 2a(n)n + 1.

We have shown a randomized reduction with constant one-sided error probability. By repeating the algo-
rithm a polynomial number of times, we obtain error probabilities that are exponentially close to 0. This
proves Lemma 5.2.9.

5.3.4 Reduction to UDP(C)-MIN

The final step in the proof of Theorem 5.2.10 consists of reducing f(m)-separable MES to UDP(C)-MIN

with uniform budgets. Let MES instance S1, . . . , Sm be separable into C1, . . . , Cκ with κ = O(f(m)).

For each element e in the universe of the MES instance we have a corresponding product ue. For every set
Si in class Ck we define a collection of 2k−1 identical consumers Ci = {c1

i , c
2
i , . . . , c

2k−1

i }. Each of these
consumers has budget bi = 21−k and is interested in products ue corresponding to elements e ∈ Si. Note,
that the total number of consumer samples in this construction is bounded above by n2O(f(n)).

Soundness: Let φ = (φ(1) < · · · < φ(`)) be an expanding sequence of length `. For every 1 ≤ i ≤ ` let
Nφ(i) denote the elements that are newly covered by Sφ(i). Now we repeat the following for i = 1, . . . , `.
Determine Nφ(i), then set the prices of all products ue corresponding to some e ∈ Nφ(i) to bi. For
consumers Cφ(i) it then holds that p(ue) = bi for all e ∈ Nφ(i), p(ue) > bi for all e ∈ Sφ(i)\Nφ(i). As a
result, all 2k−1 consumers belonging to a set Sφ(i) in the expanding sequence will buy at their budget value
bi = 21−k and contribute profit 1. Thus, overall profit from consumers corresponding to the expanding
sequence is at least `. An illustration of this construction is found in Fig. 5.2.

Completeness: Assume that we are given a price assignment resulting in overall revenue r. First observe
that w.l.o.g. all prices are from the set of distinct budget values, i.e., all prices are powers of 2. Then note
that w.l.o.g. revenue at least r/2 is due to consumers buying at their budget values, since otherwise we
could increase overall revenue by multiplying all prices by 2. Finally, it’s not difficult to see that consumers
buying at their budget values form an expanding sequence. It follows that we obtain an expanding sequence
φ of length at least r/2. This finishes the proof of Theorem 5.2.10.

Finally, we briefly discuss Theorem 5.2.11. R3SAT?(2O(nδ))-hardness of approximating uniform-budget
UDP(C)-MIN within O(nε) follows immediately by choosing f(m) = mε for arbitrarily small ε > 0.

To obtain inapproximability for instances with a bounded number of non-zero budgets per consumer we
have to start from BBIS in constant degree graphs again. As shown in [AFWZ95] for the independent set
problem, BBIS in graphs of degree at most ∆ is R3SAT?(poly(n))-hard to approximate within a factor
of ∆ε for some ε > 0 and all ∆ ≥ ∆0, where ∆0 is constant d from Lemma 5.3.6. We then apply our
reduction as described above and obtain uniform-budget UDP(C)-MIN instances with ` = ∆ non-zero
budgets per consumer and inapproximability within (1/(16e))∆ε, where the factor 1/16e stems from the
fact that the randomized reduction from BBIS to MES might blow up small independent sets by a factor

69

5 Uniform Budgets: The Envy-Free Pricing Problem

of 2 or shrink large independent sets by a factor of 1/8e. Choosing `0 ∈ N sufficiently large ensures that
`ε−δ ≤ (1/(16e))`ε for all ` ≥ `0.

5.4 Literature

The max-gain selection rule for unit-demand pricing with unlimited product supply was originally pro-
posed in [AFMZ04]. Guruswami et al. [GHK+05] first considered the limited-supply version, which they
termed unit-demand envy-free pricing. They show that the problem allows approximation guarantees that
are logarithmic in the number of consumers and prove APX-hardness. Hartline and Koltun [HK05] con-
sider the special case of max-gain and envy-free pricing with only a constant number of different products.
They derive fully polynomial time approximation schemes that run in near-linear time in the max-gain and
near-cubic time in the more involved limited-supply envy-free case. Chawla et al. [CHK07] investigate the
special case of distribution-based max-gain buying, in which consumers are drawn from a product distri-
bution, i.e., their budgets for different products are chosen independently. They prove that in this situation
constant approximation guarantees are possible using concepts from the theory of optimal auction design
[Mye81]. Krauthgamer et al. [KMR07] consider so-called bimodal markets, in which each consumer’s
budget is chosen from a set of only two possible alternatives {1, C}, and show that LP-based randomized
rounding techniques yield approximation guarantee 2− 1/`− (`− 1)/(`C) when consumers have at most
` non-zero budgets.

The first result for general BBIS using a quite moderate complexity theoretic assumption was obtained by
Khot [Kho04]. Previous results by Feige [Fei02] and Feige and Kogan [FK04] are deriving hardness of
BBIS under more specific assumptions. The connection between average-case hardness of random 3SAT
and BBIS is made in [Fei02].

The technique of scaling the hardness of some given base problem to allow sampling-based encoding in
terms of revenue maximizing pricing stems from [BK07]. The first connection between BBIS and a related
pricing problem (see Chapter 6) was made by Demaine et al. [DFHS06]. The results from this Chapter
have been published in [Bri06].

70

6 Network Pricing I: The Single-Minded Pricing Problem

After our investigation of various aspects of unit-demand pricing, we will now turn to another natural
and well-studied pricing problem. In the Single-Minded Pricing Problem, which was first considered in
[GHK+05], we assume that products are pure complements rather than pure substitutes, i.e., each consumer
is interested in purchasing a subset of the available products and will purchase all of them or none at all,
depending on whether her budget constraint is violated by the sum of product prices.

This model of consumer behavior is particularly popular in the context of algorithmic mechanism design,
where a lot of work has been done regarding the design of truthful auctions among single-minded agents.
Consequently, similar interest has been paid to the corresponding pricing problem because of its intrinsic
connection to the problem of revenue maximization in strategic settings.

As far as its general approximability is concerned, single-minded pricing behaves quite similar to unit-
demand pricing. Maybe not very surprisingly, the single-price algorithm turns out to be applicable once
more and yields approximation guarantees that are logarithmic in the number of consumers and products.
On the other hand, single-minded pricing was the first problem from the realm of pricing for which super-
constant and, most importantly, essentially tight inapproximability results could be proven [DFHS06].
We will briefly review these results and point out that the techniques from Chapter 5 yield an interesting
supplement to the known approximation thresholds.

However, for the major part of this chapter we will take a different point of view on the problem. Assume
that instead of pricing abstract products, we are given a network in which we may assign prices to the edges
and consumers aim to purchase fixed paths connecting their terminal pairs. As one possible application,
we can think of the underlying graph as a public transportation network in which we want to price railroad
or flight connections. Similarly, we might be faced with a computer network in which a number of service
providers need to purchase backbone connections between different sites. In both cases, one might hope
that the problem exhibits some kind of structure that allows for better approximation guarantees than are
possible in general. In transportation networks, we would expect the length of the requested paths to be
bounded, since consumers are not interested in connections that result in too many stopovers. If we price
high capacity network links for service providers, we might hope that the number of requests per link is
not too large. Apart from this, we could restrict ourselves to cases where the underlying network itself is
rather sparse.

The results in this chapter are twofold. First, we will see that single-minded pricing remains quite hard,
even if we restrict ourselves to the network setting, and even if we require problem instances to be sparse
in various aspects. On the algorithmic side, we show that improved approximation guarantees are still
possible in some cases. First, we present an FPTAS for the case that the sets desired by consumers have a
specific structure. We then present an algorithm for the general problem whose approximation guarantee
asymptotically matches the ratio of the single-price algorithm in the worst case, yet, which is capable of
exploiting the sparse problem structure of instances in which both the number of products a consumer is
interested in and the number of consumers interested in a specific product are bounded in order to derive
improved ratios.

71

6 Network Pricing I: The Single-Minded Pricing Problem

The rest of this chapter is organized as follows. A formal definition of the single-minded pricing problem
is found in Section 6.1. Section 6.2 presents some results on the approximability of general SMP. Section
6.3 deals with the highway problem, the variation of G-SMP in which the underlying graph is simply a
line. We first give a proof of NP-completeness and then show how to derive an FPTAS for the restricted
case used for the preceding hardness result. Section 6.4 proves APX-hardness of single-minded pricing
in networks which hold even under various strong restrictions. Section 6.5 presents the approximation
algorithm for the problem. An overview of related literature is found in Section 6.6.

6.1 Preliminaries

The unlimited-supply single-minded pricing problem (SMP) has first been formulated in [GHK+05]. Intu-
itively, a consumer specifies the maximum price she is willing to pay for a certain set of products. After a
price has been assigned to each product, consumers decide to buy their sets depending on whether the sum
of prices of goods contained in their sets exceeds their specified budget. As in the case of unit-demand
pricing with uniform budgets we will associate a single-minded consumer with the set she is interested in
and mostly talk of a set and its value rather than a consumer and her budget.

Definition 6.1.1. Given a universe U , |U| = n, of products and a collection S, |S| = m, of subsets of
U with associated values v(S) for all S ∈ S , the unlimited-supply single-minded pricing problem (SMP)
asks for prices p : U → R+

0 maximizing

r(p) =
∑

S∈A(p)

∑

u∈S

p(u),

where A(p) = {S ∈ S | ∑
u∈S p(u) ≤ v(S)}.

By δ(S) = v(S)/|S| we will refer to the price per item of set S. In case of single-minded network pricing,
we assign prices to the edges of a graph and consumers want to connect terminal sets through fixed paths,
which they purchase if the sum of prices of edges on their path does not exceed their budgets. Whenever
the problem is defined on an underlying graph, we slightly adjust our notation to reflect this difference.

Definition 6.1.2. In the SMP problem on graphs (G-SMP) we are given a graph G = (V, E) rather than
a universe of products and a collection P of paths in G with associated values v(P) for all P ∈ P . We
want to find revenue maximizing prices p : E → R+

0 .

As mentioned before, G-SMP nicely models the pricing of direct connections in public transportation
networks and has therefore been termed tollbooth problem in [GHK+05]. If the underlying graph is
simply a line, we can think of this so-called highway problem as pricing segments of some privately
owned highway. In analogy to general SMP we denote |E| = n, |P| = m.

6.2 General Approximability

As mentioned, a lot of work dealing with single-minded pricing and its various applications has been
done. We will briefly summarize the most important results concerning the problem’s approximability.
Guruswami et al. [GHK+05] show that the single-price algorithm can be applied to SMP, choosing as
candidate prices δ(S) for all S ∈ S.

72

6.2 General Approximability

Theorem 6.2.1 ([GHK+05]). The single-price algorithm computes an (Hm + Hn)-approximation with
respect to optimal revenue for SMP. This bound is tight.

Balcan and Blum [BB06] show that the random-partitioning algorithm (Algorithm 2) achieves approxima-
tion guarantee O(`) on instances in which the maximum cardinality of any set is bounded by `.

Theorem 6.2.2 ([BB06]). SMP with sets of maximum cardinality ` can be approximated in polynomial
time within O(`).

Demaine et al. [DFHS06] present the first super-constant lower bound on the approximability of any
pricing problem and prove a near-tight lower bound for approximation guarantees expressed in terms of
the number m of consumers.

Theorem 6.2.3 ([DFHS06]). SMP is hard to approximate within O(logε m) for some constant ε > 0,
unless NP ⊆ ⋂

δ>0 BPTIME(2O(nδ)).

For unit-demand pricing we have seen that we could actually achieve asymptotically better lower bounds
for approximation ratios parametrized in terms of the number of products n. The reduction that is used to
prove Theorem 6.2.3 above yields instances in which v(S) = 1 for every set S. Consequently, it is not
possible to prove better than logarithmic bounds based on this construction. To see this, note, that we can
easily achieve approximation guarantee O(log n) on this type of instance. We simply partition sets into a
O(log n) subclasses Sk according to their cardinality. For sets S ∈ Sk it holds that 2k ≤ |S| < 2k+1 and
by setting p(u) = 1/2k+1 we can realize revenue at least (1/2)|Sk| from this subclass of sets.

Interestingly, our results from Chapter 5 yield an easy way to close this gap. More formally, with some
slight modifications the reduction from MES to uniform-budget UDP(C)-MIN in Section 5.3.4 works for
SMP, as well, and we obtain the following result in analogy to Theorem 5.2.11. Note, that the lower
bounds in Theorem 6.2.4 are essentially tight by Theorem 6.2.2.

Theorem 6.2.4. There exist constants `0 ∈ N and ε > 0, such that for every ` ≥ `0 it is R3SAT?(poly(n))-
hard to approximate SMP with sets of maximum cardinality ` within `ε. Furthermore, for every δ > 0
there exists ε > 0, such that it is R3SAT?(2O(nδ))-hard to approximate SMP within O(nε). Hardness of
approximation holds even under the weaker assumption of Hypothesis 5.2.4.

Proof: We prove the second part of the theorem. Let a given MES instance S1, . . . , Sm be separable
into C1, . . . , Cκ with κ = O(f(m)). For each element e in the universe of the MES instance we have a
corresponding product e. We assume that the MES instance is defined on a universe of size n and n = m.
This is w.l.o.g. due to the reduction in Section 5.3.3. For every set Si in class Cj we define a collection of
(2n)κ−j identical sets Si = {S1

i , S2
i , . . . , S2κ−j

i }. Each of these sets is an exact copy of Si, i.e., Sk
i = Si

for all k. Furthermore, we define vi = (2n)j−κ and let v(Sk
i) = vi for all sets Sk

i . Note, that the total
number of sets in this construction is bounded above by n(2n)O(f(n)).

Soundness: Let φ = (φ(1) < · · · < φ(`)) be an expanding sequence of length `. For every 1 ≤ i ≤ ` let
Nφ(i) denote the elements that are newly covered by Sφ(i). Now we repeat the following for i = 1, . . . , `.
Determine Nφ(i) and let

ξφ(i) =
∑

e∈Sφ(i)\Nφ(i)

p(e)

73

6 Network Pricing I: The Single-Minded Pricing Problem

denote the sum of prices of previously covered elements contained in Sφ(i). Let Sφ(i) ∈ Cj By the fact
that sets from class Cj do not intersect and budgets increase exponentially between different classes, it
follows that every e ∈ Sφ(i)\Nφ(i) has price p(e) ≤ vφ(i)/(2n) and we get that ξφ(i) < vφ(i)/2. Thus,
vφ(i) − ξφ(i) > 0 and by setting the prices of all e ∈ Nφ(i) to

p(e) =
vφ(i) − ξφ(i)

|Nφ(i)|
we extract revenue |Sφ(i)|vφ(i) = (2n)κ−j(2n)j−κ = 1 from sets Sφ(i). Consequently, overall revenue is
at least `.

Completeness: Assume that we are given a price assignment p resulting in overall revenue r. W.l.o.g.
revenue at least r/2 is due to consumers buying at a price that is at least half their budget value, since
otherwise we could increase overall revenue by multiplying all prices by 2.

Consider set Si. For sets Sk with Si ∩ Sk 6= ∅ and k < i it must be true that vk ≤ vi/(2n). Thus, if Si

is contained in the union of sets with smaller indices whose corresponding sets in the SMP instance yield
positive revenue, it follows that p(e) ≤ vi/(2n) for all e ∈ Si. Consequently, revenue from any set Sk

i

in the SMP instance is at most f(n)vi/(2n) < vi/2. Conversely, sets that yield revenue equal to at least
half their budget values must adhere to the expansion property and we obtain an expanding sequence φ of
length at least r/2.

Finally, for any given value of δ > 0 fix δ′ < δ and let f(n) = nδ′ . We obtain MES instances of size
2O(nδ), which are hard to approximate withinO(nε) for some ε > 0. The first part of the theorem follows
similar to our argumentation in Section 5.3.4. ¤

Analogous lower bounds can also be obtained for the distribution-based version of SMP. However, as we
shall be mainly interested in G-SMP and other types of sparse problem instances, we do not formally state
these results at this point.

6.3 The Highway Problem

We start by considering the special case of G-SMP in which the underlying graph structure is simply a
line, usually referred to as the highway problem. Guruswami et al. [GHK+05] give a pseudopolynomial
time algorithm, which can be turned into an FPTAS by standard scaling and rounding techniques, for the
case in which the length of all paths is bounded by a constant. We introduce another special case of the
problem in which we allow paths to have arbitrary lengths but require that they are nested, i.e., given any
two paths P1, P2 ∈ P we have that P1 ⊆ P2, P2 ⊆ P1 or P1 ∩ P2 = ∅. Note, that if sets are nested it does
not make a difference if the problem is defined on a graph or not. In fact, each such SMP instance can be
viewed as being defined on a line by simply ordering the goods appropriately. We will prove NP-hardness
of this problem and show how to derive an FPTAS by a dynamic programming approach.

6.3.1 NP-Hardness

Theorem 6.3.1 proves NP-hardness of the highway problem with nested paths. Hardness holds even if we
do not allow multi-paths, i.e., multiple identical paths in the instance. Interestingly, our reduction yields

74

6.3 The Highway Problem

instances that contain only a single long path, with the length of all other paths being at most 2. So one
could say that it is only a single path that separates us from a matching hardness result for the FPTAS from
[GHK+05] for the case of constant length paths.

Theorem 6.3.1. G-SMP with nested paths (even without multi-paths) is NP-hard.

Proof: We are going to prove NP-hardness by a reduction from the PARTITION problem. Given weights
w1, . . . , wn ∈ R+ we want to find a set S ⊂ {1, . . . , n}, such that

∑
i∈S wi =

∑
i/∈S wi, i.e., find a

partitioning into two sets of identical total weight. PARTITION is known to be NP-hard [GJ79].

For each weight wi we construct a weight gadget Wi as depicted in Figure 6.1(a). On a graph consisting
of 3 vertices vi

1, vi
2, vi

3 and 2 edges ei
1, ei

2 we define the 3 possible different paths P i
1 = {ei

1}, P i
2 = {ei

2},
P i

3 = {ei
1, e

i
2} and let v(P i

1) = v(P i
2) = v(P i

3) = wi. We start with a simple observation about weight
gadgets which turn out to ensure half-integrality of any locally optimal price assignment.

Fact 6.3.2. The maximum revenue obtainable from weight gadget Wi is 2wi. If revenue 2wi is obtained
under price assignment p then p(ei

1) = p(ei
2) = wi or p(ei

1) + p(ei
2) = wi.

Fact 6.3.2 can be seen as follows. If path P i
3 contributes to the revenue, it must be the case that p(ei

1) +
p(ei

2) ≤ wi. P i
1 and P i

2 can never give more revenue than p(ei
1) and p(ei

2), respectively. It immediately
follows that total revenue is at most 2wi. On the other hand, the revenue obtained from each P i

1 and P i
2

is also bounded by wi and so revenue 2wi can also not be exceeded if P i
3 does not contribute. This gives

the first part of the claim. From the above argumentation it follows that revenue 2wi cannot be reached if
p(ei

1) + p(ei
2) < wi, while, e.g., p(ei

1) = p(ei
2) = wi/2 results in full revenue. Now assume that p results

in revenue 2wi but p(ei
1) + p(ei

2) > wi. Then P i
3 obviously contributes 0. It follows that P i

1 and P i
2 must

give revenue wi each and, thus, p(ei
1) = p(ei

2) = wi.

We note that we can make use of the symmetry of a weight gadget by slightly changing the above claim
and requiring w.l.o.g. that p(ei

1) = p(ei
2) = wi/2 instead of p(ei

1) + p(ei
2) = wi. In fact, we will from

now on only consider the price p(Wi) = p(ei
1)+ p(ei

2) that is assigned to weight gadget Wi and implicitly
assume that this price is split evenly among edges ei

1 and ei
2. Revenue r(Wi) from weight gadget Wi as a

function of p(Wi) is depicted in Fig. 6.1(b).

We now define the final G-SMP instance. The weight gadgets W1, . . . ,Wn are assembled into a single
line by identifying vertices vi

3 and vi+1
1 for i = 1, . . . , n − 1. We define one more path P running all the

way from v1
1 to vn

3 and set v(P) = (3/2)
∑n

i=1 wi, as shown in Figure 6.1(a). It is then straightforward
to argue that total revenue (7/2)

∑n
i=1 wi can be reached on this instance if and only if a partitioning S

with
∑

i∈S wi =
∑

i/∈S wi exists. For the one direction we define prices p by p(Wi) = 2wi if i ∈ S and
p(Wi) = wi else. For the other direction one argues that the optimal pricing is of just this form and can
choose S = {i | p(Wi) = 2wi} as the desired partitioning. ¤

We next take a look at the nested paths case from the algorithmic side.

6.3.2 An FPTAS

We present a pseudopolynomial time algorithm for SMP with nested paths which can be turned into an
FPTAS by scaling and rounding the input appropriately. For the description of the dynamic programming

75

6 Network Pricing I: The Single-Minded Pricing Problem

P1
i P2

i
P3

i

v1
i v2

i iv3e1
i e2

i

w i w i

w i

Σwi
i=1

n

v(P)= _3
2

(a)

i
2w

w i

p(W)

2w iw i

i

r(W)

i

(b)

Figure 6.1: (a) A single weight gadget Wi and path P ensuring that maximum revenue can be reached only
if the weights can be 2-partitioned. (b) Revenue from weight gadget Wi as a function of its
total price p(Wi).

approach we assume that all declared prices are integral. By an observation in [GHK+05] this guarantees
the existence of an integral optimal solution. To avoid technicalities, we assume here that every path is
requested only once, i.e., there are no multi-paths. It is, however, not difficult to extend the algorithm
to incorporate this more general case. Given a G-SMP instance with edges E and nested paths P , we
define the set of intervals I as follows. First, each path P defines an interval IP = P . Then we add the
interval IE = E containing all edges. Now consider any interval I and let J be the maximum size interval
contained in I . We then also add K = I\J to I if it is not already contained. Note, that in general K
need not be an interval in the classical sense, since it might contain edges that are situated on the left or
right of J , respectively. It is, however, w.l.o.g. to assume that this is not the case, because we can always
reorder edges to ensure that I and J have the same left border. Conceptually, at this point we view paths
as simply collections of edges and observe that edges can be arranged in a single line, such that paths are
mapped onto intervals. If interval IP is defined by path P we let v(IP) = v(P) be the interval’s value. If
I is defined in a later step (i.e., not defined by a path), we set v(I) = 0. Note, that intervals can naturally
be arranged as a binary tree with root corresponding to the complete line. For any interval I we let AI

b

refer to the maximum revenue that can be obtained from paths fully contained in I under the condition that
the prices assigned to edges in I sum up to exactly b, i.e.,

∑
e∈I p(e) = b. Consider interval I containing

maximum length subintervals J and K. We have

AI
b =

{
maxb′ A

J
b′ + AK

b−b′ + b, if b ≤ v(I)
maxb′ A

J
b′ + AK

b−b′ , else

by the observation that any path which is contained in I is also fully contained in either J or K. For
all minimal intervals I not containing any subintervals it trivially holds that AI

b = b if b ≤ v(I) and
AI

b = 0 else. We now only need to compute maxb AIE
b to find the optimal price assignment by simple

backtracking.

Lemma 6.3.3. The above algorithm finds an optimal solution for any instance of G-SMP with nested paths
and integral valuations in time O(n3B2), where B = maxP∈P v(P).

The pseudopolynomial time algorithm can easily be turned into an FPTAS by standard rounding tech-
niques. To this end, let α = nm/(εB) and define scaled maximum prices v′(P) = bαv(P)c for all paths.

76

6.4 The Tollbooth Problem

Also, define v′′(P) = α−1v′(P) to undo the scaling step without respect to the applied rounding. Since
it immediately follows that v(P)− v′′(P) ≤ α−1 for any P we can compare total revenue of the original
optimal solution p∗ and an optimal solution p′′ under the rounded valuations and get that

r(p∗)− r(p′′) ≤ nmα−1 = ε ·B ≤ ε · r(p∗).
This is due to the fact that we can obtain a solution under the rounded valuations by taking the original
optimal solution and reducing the price of each edge by α−1. In this solution, all paths that give any
revenue in the optimal solution will still do so. On the other hand, each of the n paths contains at most m
edges, bounding our loss on a single path by m · α−1. For polynomial running time observe that after the
scaling step no declaration with value higher than nm/ε exists.

Theorem 6.3.4. For any instance of G-SMP with nested paths the FPTAS described above achieves ap-
proximation ratio (1− ε) in time O(n5m2ε−2).

6.4 The Tollbooth Problem

Guruswami et al. [GHK+05] prove that SMP is APX-hard. However, their reduction creates a problem in-
stance in which some products are contained in a constant fraction of all sets. From a technical standpoint,
this appears quite unavoidable, since an approximation preserving reduction to SMP always brings up the
problem that we need to force optimal (or approximately optimal) solutions to be in some sense well be-
haved (i.e., close to integral) in order to be able to reconstruct solutions to the (combinatorial) problem that
was our reduction’s starting point. On the other hand, it is certainly desirable to have hardness results also
for sparse instances, especially because it turns out that the number of requests per product is one of the
most crucial parameters when it comes to finding good approximations using upper bounding techniques
known so far. In what follows we give a proof of inapproximability for sparse instances of G-SMP. We
prove APX-hardness by a reduction from MAX-2SAT(3), of which we give a detailed outline below. The
technical details of the construction are found in Section 6.4.1.

Remember that the MAX-2SAT problem is defined by a set of variables V = {x1, . . . , xn} and a collection
of m disjunctive clauses of at most 2 literals, where each literal is a variable or negated variable from V .
We want to find a truth assignment t : V → {0, 1} that maximizes the number of satisfied clauses.
MAX-2SAT(3) is the special case in which the number of occurrences of each literal is bounded by 3.
MAX-2SAT(3) is known to be APX-hard [ACG+99].

We make the simplifying assumption that all clauses have length exactly 2. This is w.l.o.g., since we can
replace clauses that consist of only a single literal l by clauses of type (l∨ y)∧ (y∨ y), where y is a newly
added variable. A simple calculation shows that APX-hardness is preserved by this modification.

For each appearance of a literal in the MAX-2SAT(3) instance we define a literal gadget as found in Figure
6.2(a). Literal gadgets are similar to the weight gadgets from the previous section with weight being fixed
as 1. As before we will w.l.o.g. not assign prices to the individual edges of a literal gadget but only to the
gadget itself, assuming that the price is split evenly among the edges. We note that by Fact 6.3.2 a literal
gadget L gives maximum revenue 2 under price assignment p if and only if p(L) = 1 or p(L) = 2. If
two literal occurrences belong to the same clause, their corresponding literal gadgets are combined into
a clause gadget as depicted in Figure 6.2(a). The following lemma states that clause gadgets essentially
model the behavior of clauses in the SAT instance.

77

6 Network Pricing I: The Single-Minded Pricing Problem

e1

e2

e3

L1 L2

333 3 3 3

3

11

1

1 1

111

1

(a)

P2

P3
3 3

1P1 e

L L1 2

i

i i

i

(b)

2

1,8
19

1,6
1

20

y
1,2

21

1,4

1,4

22

1,2

23

1,6x

24

1,8 1

25

2

(c)

Figure 6.2: (a) Two literal gadgets L1 and L2 are combined into a clause gadget C. (b) In addition to the
literal gadgets C contains three copies of the above substructure. (c) Maximum revenue from
a clause gadget as a function of p(L1), p(L2) ∈ [1, 2].

Lemma 6.4.1. Let C be a clause gadget with literal gadgets L1 and L2 and assume that p(L1), p(L2) ∈
[1, 2]. The maximum revenue obtainable from C is 25. Profit 25 is obtained under price assignment p if
and only if p(Li) = 2 and p(Lj) = 1, {i, j} = {1, 2}, or p(L1) = p(L2) = 2. C gives revenue 24 if
p(L1) = p(L2) = 1.

Lemma 6.4.1 follows directly from the following observation. Once the prices of literal gadgets L1 and
L2 are fixed, this determines the revenue maximizing prices for edges e1, e2 and e3 (see Fig. 6.2(a)). This
allows us to express the optimal revenue from clause gadget C as a piecewise linear function of p(L1)
and P (L2). This function is depicted in Fig. 6.2(c), details are found in Section 6.4.1. Why we are only
interested in the case that p(L1), p(L2) ∈ [1, 2] will become clear in a moment.

We will now define the complete G-SMP instance for our reduction. For each variable xi the instance
will contain 3 literal gadgets corresponding to occurences of literal xi and 3 literal gadgets corresponding
to occurences of literal xi, which we denote as L0(xi), L1(xi), L2(xi) and L0(xi), L1(xi), L2(xi). For
every clause ci = (xj ∨ xk) we construct a clause gadget Ci on literal gadgets Lh(xj) and Ll(xk),
h, l ∈ {0, 1, 2}. Literal gadgets that are not part of any clause gadget, because the corresponding literal
occurs less than 3 times, are referred to as dummy literal gadgets. A connected graph is obtained by
merging the literal gadgets belonging to the same variable into a cycle, i.e., for each variable xi we connect
L1(xi) with L1(xi), then L1(xi) with L2(xi) and so on, until we close the cycle by connecting L3(xi)
with L1(xi). Connecting literal gadgets is done by merging their respective start- and end-vertices, where
by convention a literal gadget is connected to its clause gadget via its start-vertex. For dummy literal
gadgets, this decision is arbitrary. Finally, 6 literal exclusion paths P i

1, . . . , P
i
6 for each variable xi are

defined. Every literal exclusion path P contains the 4 edges belonging to two consecutive literal gadgets
that were just joined together and has value v(P) = 3. For an illustration of this part of the construction
see Fig. 6.3.

A price assignment p on the resulting graph is said to be integral if p(L) ∈ {1, 2} for all literal gadgets
L. We say that an integral price assignment is SAT-feasible if p(L0(xi)) = p(L1(xi)) = p(L2(xi)),

78

6.4 The Tollbooth Problem

xi
xixi

_ xi
_

xi
_ xi

......

(a)
xi xi

_

1 1 1 1

11

3
������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

(b)

Figure 6.3: (a) Literal gadgets belonging to literals xi, xi are joined together by merging vertices. (b) A
literal exclusion path spans each adjacent pair of literal gadgets.

p(L0(xi)) = p(L1(xi)) = p(L2(xi)) and p(L0(xi)) 6= p(L0(xi)) for all i. The intuition behind SAT-
feasibility is quite obvious. We can associate a SAT-feasible price assignment p with a truth assignment
t for the original MAX-2SAT(3) instance by setting t(xi) = 1 if p(L0(xi)) = 2 and t(xi) = 0 else. On
the constructed graph SAT-feasible prices result in maximum revenue from all dummy literal gadgets and
literal exclusion paths. Revenue from each clause gadget is 24 or 25 depending on whether at least one of
the contained literal gadgets has price 2. Thus, total revenue of price assignment p is then directly related
to the number of clauses satisfied by t.

The main step towards our hardness result lies in proving that we can transform in polynomial time an
arbitrary price assignment p on the constructed graph into a SAT-feasible price assignment p∗ of no smaller
revenue. This also yields that the optimal price assignment can be assumed to be SAT-feasible and, thus,
gives us an easy way of upper bounding the optimal revenue obtainable on the constructed G-SMP instance.
Given any price assignment p, Algorithm 4 returns a SAT-feasible price assignment p∗.

Lemma 6.4.2. For price assignments p and p∗ as defined by Algorithm 4 it holds that r(p∗) ≥ r(p).

The rather lengthy proof of Lemma 6.4.2 is found in Section 6.4.1. For a given MAX-2SAT(3) instance
with m clauses over n variables the optimal truth assignment can immediately be turned into an optimal
solution for our G-SMP instance with revenue 18n+24m+2d+43v+ϑ∗, where ϑ∗ refers to the maximum
number of satisfiable clauses in the formula, v is the number of variables added due to clauses of length
1 and d denotes the number of dummy literal gadgets in the graph. We note that ϑ∗ ≥ m/2 and, thus,
the expression 18n + 24m + 2d + 43v can be upper bounded by 246ϑ∗ using trivial bounds on n, d and
v. Assume now we had an algorithm with approximation guarantee 1 − ε for G-SMP. We can write the
revenue of any price assignment returned by the algorithm as 18n + 24m + 2d + 43v + ϑ and construct a
corresponding truth assignment satisfying ϑ clauses. By our assumption

1− ε ≤ 18n + 24m + 2d + 43v + ϑ

18n + 24m + 2d + 43v + ϑ∗
≤ 246ϑ∗ + ϑ

247ϑ∗
,

and, thus, ϑ/ϑ∗ ≥ 1 − 247ε. Choosing constant ε sufficiently small yields constant approximation guar-
antees arbitrarily close to 1 for MAX-2SAT(3).

79

6 Network Pricing I: The Single-Minded Pricing Problem

Algorithm 4: Transforming prices p into SAT-feasible prices p∗.
// Step 1: p → p′

for all literal gadgets L do1

if p(L) /∈ [1, 2] then2

Set p′(L) = 1 if p(L) < 1, set p′(L) = 2 if p(L) > 2.3

else4

Set p′(L) = p(L).5

// Step 2: p′ → p′′

Let p′′ = p′.6

for all literal exclusion paths P do7

Let P be connecting literal gadgets L1, L2 and assume p′′(L1) ≤ p′′(L2).8

if p′′(L1) + p′′(L2) > 3 then9

Set p′′(L1) = 1.10

// Step 3: p′′ → p∗

Choose p∗ as the SAT-feasible price assignment that minimizes11

|{L | p′′(L) > 1.75 ∧ p∗(L) = 1}|.

Theorem 6.4.3. G-SMP is APX-hard on instances where

• the length of each path is bounded by a constant ` ≥ 4,

• the valuations for all paths are in {1, 2, 3},

• there is at most a single offer for each possible path,

• the number of paths in which each edge is contained is bounded by a constant B ≥ 8 and

• the underlying graph’s maximum degree is bounded by a constant ∆ ≥ 7.

Considering the underlying graph structure, the above APX-hardness result is in a sense best possible.
Guruswami et al. [GHK+05] present a pseudopolynomial time algorithm for the highway problem with
paths of constant length. This approach also yields an FPTAS and can in fact easily be generalized to the
case of constant degree trees instead of a line. Hence, APX-hardness is lost if we simultaneously require
a tree and a maximum degree bounded by a constant.

6.4.1 Full Proof of Theorem 6.4.3

Below we give all the technical details from the preceding proof of APX-hardness. Lemma 6.4.4 gives a
precise characterization of the revenue obtainable from a clause gadget depending on the prices assigned
to its literal gadgets. This immediately yields Lemma 6.4.1. Lemmas 6.4.5, 6.4.6 and 6.4.7 prove that
Algorithm 4 does not decrease the revenue obtained by the initial price assignment.

80

6.4 The Tollbooth Problem

Proof of Lemma 6.4.1

Lemma 6.4.4 shows how the revenue obtained from a clause gadget can be expressed as a piecewise linear
function that depends solely on the prices assigned to the contained literal gadgets L1 and L2, if these
are within a reasonable range (which is ensured by Step 1 of Algorithm 4). This is due to the fact that
the additional edges e1, e2 and e3 (see Fig. 6.2) are contained only in paths that are part of this gadget
and, thus, their optimal prices are determined by p(L1) and p(L2). Lemma 6.4.1 then follows as a simple
corollary.

Lemma 6.4.4. Let clause gadget C consist of literal gadgets L1, L2. For p(L1), p(L2) ∈ [1, 2] we can
describe the revenue r(C) obtained from clause gadget C as a function of p(L1) and p(L2) as follows:

r(C) = (1) 24, if p(L1) = p(L2) = 1
(2) 24− p(L2), if 1 = p(L1) < p(L2) ≤ 3

2

(3) 15 + 5p(L2), if 1 = p(L1), 3
2 < p(L2)

(4) 18 + 5p(L1)− p(L2), if 1 < p(L1) ≤ p(L2) ≤ 3
2

(5) 9 + 5p(L1) + 5p(L2), if 1 < p(L1) < 3
2 < p(L2) and p(L1) + p(L2) ≤ 3

(6) - (9) symmetric to (2) - (5) with p(L1) > p(L2)
(10) 9 + 4p(L1) + 4p(L2), if p(L1) + p(L2) > 3

Proof: A clause gadget consists of its literal gadgets and three copies of the substructure found in Figure
6.2(b). In order to prove the claim we just need to describe how p(ei) has to be chosen to maximize total
revenue. Consider the substructure in Figure 6.2(b) consisting of edge ei and the paths defined on ei, L1

and L2. For any given p(L1) ≤ p(L2) in [1, 2] there are only two possible prices that can potentially give
maximum revenue. These are p(ei) = 1 or p(ei) = 3− p(L2), respectively. To see this, note, that for any
p(ei) ≤ 1 edge ei will contribute 3p(ei) to the substructure’s total revenue (p(ei) for each path in which
it appears). It follows that any price assignment p with p(ei) < 1 can be improved by setting p(ei) = 1.
Now consider p with p(ei) > 1. For p(ei) ≤ 3− p(L2) edge ei contributes revenue 2p(ei) (being counted
on two paths). Thus, any price assignment p with 1 < p(ei) < 3 − p(L2) can be improved by setting
p(ei) = 3 − p(L2). Especially, since p(L2) ≤ 2, it follows that 2p(ei) ≥ 2. For p(ei) > 3 − p(L2) the
contribution becomes p(ei), since the price for the path containing L2 exceeds its threshold and edge ei is
counted only once on the path containing L1. From p(L1) ≥ 1 it follows that ei can contribute at most 2
on this path and, thus, revenue does not decrease by setting p(ei) = 3− p(L2).

Using this observation it is clear how p(ei) must be chosen in each case with p(L1) ≤ p(L2). We let
p(ei) = 3− p(L2) whenever 2(3− p(L2)) > 3 (or, equivalently, p(L2) < 3/2) and p(ei) = 1 otherwise.
Cases with p(L1) > p(L2) are symmetric, thus, p(ei) = 1 or p(ei) = 3−p(L1). Total revenue from clause
gadget C is then obtained by summing up over 3 copies of the substructure, 2 literal gadgets and path P . ¤

Proof of Lemma 6.4.2

Algorithm 4 in Section 6.4 transform an arbitrary price assignment p into a SAT-feasible price assignment
p∗. Let p′ and p′′ denote the intermediate prices as defined in Algorithm 4. Lemmas 6.4.5, 6.4.6 and 6.4.7
show that the overall revenue does not decrease in any step of the algorithm.

81

6 Network Pricing I: The Single-Minded Pricing Problem

Lemma 6.4.5. It holds that r(p′) ≥ r(p).

Proof: We show that revenue does not decrease on any literal exclusion path, in any clause or dummy
literal gadget. For dummy literal gadgets this is trivial, since revenue from these gadgets becomes maximal
if the assigned price is changed. Let us then fix some clause gadget C with literal gadgets L1 and L2. We
assume w.l.o.g. that p(L1) ≤ p(L2) and consider all possible cases. By r(C) and r′(C) we refer to the
total revenue under p and p′, respectively.

Case (1) p(L1), p(L2) < 1 ⇒ p′(L1) = p′(L2) = 1. The revenue from each substructure (Fig. 6.2(b)) is
bounded by 6, thus,

r(C) ≤ 3 · 6 + 3(p(L1) + p(L2)) ≤ 24 = r′(C),

by summing up over 3 substructures, 2 literal gadgets and the connecting path P .

Case (2) p(L1) < 1 ≤ p(L2) ≤ 2 ⇒ p′(L1) = 1, p′(L2) = p(L2). From the proof of Lemma 6.4.4 we
know that maximum revenue from each substructure is obtained by setting p(ei) = 1 or p(ei) = 3−p(L2)
depending on p(L2). In both cases increasing p(L1) to 1 gives an increase in revenue of 1− p(L1) in each
substructure. Identical observations are easily made for the literal gadgets and path P . It follows that

r(C) ≤ r(C) + 6(1− p(L1)) = r′(C).

Case (3) p(L1) < 1, p(L2) > 2 ⇒ p′(L1) = 1, p′(L2) = 2. By Lemma 6.4.4 revenue from C is maximal
under p′ and the claim follows.

Case (4) 1 ≤ p(L1) ≤ 2 < p(L2) ⇒ p′(L1) = p(L1), p′(L2) = 2. From observations analogous to
those in the proof of Lemma 6.4.4 it follows that under price assignment p it must be p(ei) = 3 − p(L2)
in order to obtain maximum revenue 3 + 2(3− p(L2)) + p(L1) from each substructure. (If p(L2) > 3 we
let p(ei) = 0 and the former is an upper bound on the revenue from each substructure.) Under p′ setting
p′(ei) = 1 leads to revenue 5 + p(L1). With 3 − p(L2) < 1 we can conclude that revenue increases in
each substructure. Literal gadget L2 and path P give revenue 0 under p and, thus, cannot contribute less
under p′.

Case (5) p(L1), p(L2) > 2 ⇒ p′(L1) = p′(L2) = 2. By Lemma 6.4.4 revenue from C is maximal under
p′ and the claim follows.

We then look at a single literal exclusion path P connecting literal gadgets L1 and L2. We have to distin-
guish the following 2 cases.

Case (a) p(L1) + p(L2) ≤ 3. We observe that p(L1) + p(L2) ≤ p′(L1) + p′(L2) ≤ 3 and, since in this
case revenue from P is just the sum of these prices, it follows that revenue under p′ is no smaller than
under p.

Case (b) p(L1) + p(L2) > 3. Then the revenue from P under price assignment p is 0 and can obviously
only increase when going to p′.

Thus, we have shown that r′(C) ≥ r(C). ¤

Lemma 6.4.6. It holds that r(p′′) ≥ r(p′).

82

6.4 The Tollbooth Problem

Proof: Price assignment p′′ is constructed by iterating over all literal exclusion paths and modifying p′

locally. We will consider a single iteration and prove that revenue can only be increased by the modifica-
tions.

Let P be literal exclusion path connecting literal gadgets L1 and L2 and look at the iteration in which
P is considered. If p′(L1) + p′(L2) ≤ 3 then nothing is changed and obviously revenue remains the
same. Assume then that p′(L1) + p′(L2) > 3. We let w.l.o.g p′(L1) ≤ p′(L2) and, thus, will have
p′′(L1) = 1, p′′(L2) = p′(L2). The revenue under p′ and p′′ may differ in the following 3 places: the clause
gadget C in which literal gadget L1 is contained, literal exclusion path P and the second literal exclusion
path Q in which L1 is contained. We refer to the change of revenue in these places as ∆C , ∆P , ∆Q and
note that the total change of revenue caused by changing p′(L1) can be written as ∆ = ∆C + ∆P + ∆Q.
We will bound each summand individually.

Consider clause gadget C that consists of L1 and some other literal gadget L3. We go through all possible
cases and apply Lemma 6.4.4. Note, that p′(L1) > 1.

Case (1) 1 = p′(L3) < p′(L1) ≤ 3/2. Due to the changed price we jump from Case (2) to Case (1) in
Lemma 6.4.4. Hence, ∆C ≥ 24− (24− p′(L1)) ≥ 0.

Case (2) p′(L3) = 1, p′(L1) > 3/2. We jump from (3) to (1), thus, ∆C ≥ 24− (15 + 5p′(L1)) ≥ −1.

Case (3) 1 < p′(L3) ≤ p′(L1) ≤ 3/2. We jump from Case (4) to Case (6), thus,

∆C = (24− p′(L3))− (18 + 5p′(L3)− p′(L1))
= 6− 5p′(L3) ≥ −3/2.

Case (4) 1 < p′(L3) < 3/2 < p′(L1), p′(L1) + p′(L3) ≤ 3. We jump from Case (5) to Case (6), thus,

∆C = (24− p′(L3))− (9 + 5p′(L3) + 5p′(L1))
= 15− 5(p′(L1) + p′(L3))− p′(L3) ≥ −3/2.

Case (5) 1 < p′(L1) ≤ p′(L3) ≤ 3/2. We jump from Case (8) to case (6), thus,

∆C = (24− p′(L3))− (18 + 5p′(L1)− p′(L3))
= 6− 5p′(L1) ≥ −3/2.

Case (6) 1 < p′(L1) < 3/2 < p′(L3), p′(L1) + p′(L3) ≤ 3. We jump from Case (9) to Case (7), thus,

∆C = (15 + 5p′(L3))− (9 + 5p′(L1) + 5p′(L3))
= 6− 5p′(L1) ≥ −3/2.

Case (7) p′(L1) + p′(L3) > 3. If p′(L3) ≤ 3/2 then we jump from Case (10) to Case (6) and have

∆C = (24− p′(L3))− (9 + 4p′(L1) + 4p′(L3))
= 15− 4(p′(L1) + p′(L3))− p′(L3)
≥ 15− 4(2 + 3/2)− 3/2 ≥ −1/2.

83

6 Network Pricing I: The Single-Minded Pricing Problem

If p′(L3) > 3/2 then we jump from Case (10) to Case (7) and have

∆C = (15 + 5p′(L3))− (9 + 4p′(L1) + 4p′(L3))
= 6− 4p′(L1) + p′(L3) ≥ 6− 8 + 3/2 ≥ −1/2.

We conclude that ∆C ≥ −3/2. Consider then literal exclusion path P . Since p′(L1) + p′(L2) > 3
it follows that P gives revenue 0 under price assignment p′. From p′(L1) ≤ p′(L2) we conclude that
p′(L2) ≥ 3/2. With p′′(L1) = 1 path P then gives revenue at least 5/2 under p′′ and we have that
∆P ≥ 5/2. It is p′(L1) − p′′(L1) ≤ 1. Since the revenue on literal exclusion path Q can decrease by no
more than this difference we observe ∆Q ≥ −1. We can then bound the total difference in revenue by

∆ = ∆C + ∆P + ∆Q ≥ −3/2 + 5/2− 1 = 0,

which finishes the proof. ¤

Lemma 6.4.7. It holds that r(p∗) ≥ r(p′′).

Proof: For each variable of the MAX-2SAT(3) instance our G-SMP instance contains 6 corresponding
literal gadgets, which form a cyclic structure as depicted in Fig. 6.3(a). On each such cycle we have 6
literal exclusion paths as found in Fig. 6.3(b).

We first note that the SAT-feasible price assignment p∗ can be constructed locally, i.e., considering only
the literal exclusion paths belonging to one variable at a time. We will also follow this local approach
to show that total revenue does not decrease. For variable xi we define Xi = {L0(xi), L1(xi), L2(xi)},
X i = {L0(xi), L1(xi), L2(xi)} and let

αi = |{L |L ∈ (Xi ∪ X i) ∧ p′′(L) > 1.75 ∧ p∗(L) = 1}|

denote the number of problematic literal gadgets belonging to variable xi. We start by observing that
αi ∈ {0, 1}. Let B = {L |L ∈ (Xi ∪X i) ∧ p′′(L) > 1.75}. If B ⊆ Xi or B ⊆ X i then we can obviously
define a SAT-feasible p∗ such that αi = 0. So let us assume that B ∩ Xi 6= ∅ and B ∩ X i 6= ∅. From the
construction of p′′ we know that B cannot contain 2 literal gadgets that are connected by a literal exclusion
path, since one of the prices would have been set to 1 in Step 2 of the transformation. From the fact that
we are looking at a cyclic structure of length 6 it then follows that |B| = 2 and we can assume w.l.o.g that
B = {L0(xi), L1(xi)}. It is then clear that any SAT-feasible price assignment results in αi = 1.

Let ∆i denote the change in revenue in all literal exclusion paths belonging to variable xi going from
price assignment p′′ to p∗. We will now show that ∆i ≥ αi. To see this, first note that ∆i ≥ 0 is a
trivial observation, since revenue from the literal exclusion paths becomes maximal under p∗. It then
only remains to be shown that ∆i ≥ 1 if αi = 1. We have already argued that we can assume w.l.o.g
that B = {L0(xi), L1(xi)}. Again from the construction of p′′ it follows that p′′(L1(xi)), p′′(L2(xi)),
p′′(L0(xi)) and p′′(L2(xi)) are bounded above by 1.25, since they are connected with one of the literal
gadgets from B through a literal exclusion path. Profit from paths P i

2 and P i
5 under p′′ is then bounded by

2.5 each. Hence, total revenue from the cycle is at most 4 · 3 + 2 · 2.5 = 17 under p′′ and will increase to
its maximum of 18 under p∗, thus, ∆i ≥ 1.

84

6.5 An O(log ` + log B)-Approximation

For the second part of the proof we now consider an arbitrary clause gadget C consisting of some literal
gadgets L1, L2 and let ∆C refer to the relative change of revenue. Under price assignment p∗ each clause
gadget gives at least revenue 24. From Lemma 6.4.4 it follows that revenue from C under p′′ is at most 24
if p′′(L1), p′′(L2) ≤ 1.75. We note that ∆C ≥ 0 in this case. But how can ∆C become negative? This
can happen only if there is a j ∈ {1, 2} such that p′′(Lj) > 1.75 and p∗(L1) = p∗(L2) = 1. It is clear
that ∆C ≥ −1 in this case, since revenue from a clause gadget is at least 24 in any SAT-feasible price
assignment.

The important observation now is that each variable i with αi = 1 can cause at most one clause gadget to
have decreasing revenue. It immediately follows that

∑
C ∆C ≥ −∑

i αi. Finally, we note that revenue
from any dummy literal gadget is maximal under p∗ and, thus, can only be higher than under p′′. Now
let ∆ be the change of revenue in the complete G-SMP instance. From the above argumentation it is
immediately clear that

∆ ≥
n∑

i=1

∆i +
∑

C

∆C ≥
n∑

i=1

αi −
n∑

i=1

αi = 0.

This finishes the proof. ¤

6.5 An O(log ` + log B)-Approximation

In [DFHS06] it is shown that the single-price algorithm cannot be beaten on general SMP. In light of
our results in the previous sections of this chapter it is apparent that the problem remains difficult to
approximate even in very restrictive cases, yet, it should be possible to design algorithms that are capable
of exploiting the special structure of sparse problem instances to obtain constant approximation guarantees
at least in some cases.

We consider SMP in general, i.e., without the assumption of an underlying network, and focus on cases
in which both the maximum size ` of any set and the maximum number B of different sets in which any
single product appears are bounded better than trivially. We present an algorithm with approximation
guarantee O(log ` + log B), which asymptotically matches the single-price algorithm in the worst case,
since obviously ` ≤ n and B ≤ m, but achieves improved ratios on sparse problem instances.

Remember that δ(S) denotes the price per item of set S. Algorithm 5 is based on the idea of partitioning
the sets according to their δ-values.

The crucial step in the analysis of Algorithm 5 consists of showing that we do not lose too much potential
revenue by removing sets in Step 7. This claim is formalized in the following lemma.

Lemma 6.5.1. Let Si and S∗i be defined as in Algorithm 5. Then
∑

S∈S∗i |S|δ
′(S) ≥ ∑

S∈Si\S∗i |S|δ
′(S).

Proof: A set S is removed from S∗i if it intersects with another set S′ whose δ′-value is maximal among
the sets that are still in S∗i . Looking at this the other way around, it means that a set that causes other sets
to be removed from S∗i is never removed itself.

85

6 Network Pricing I: The Single-Minded Pricing Problem

Algorithm 5: An O(log ` + log B)-approximation for SMP.

Let δ′(S) = 2blog δ(S)c for all S ∈ S.1

Partition S into S0, . . . ,St, where2

Si =
{

S ∈ S | δ′(S) ∈ {
2i+j·dlog(`2B)e | j ∈ N0

}}

and t = dlog(`2B)e − 1.
for i = 0, . . . , t do3

Let S∗i = Si.4

while S∗i contains sets S, S′ with S ∩ S′ 6= ∅ and δ′(S) 6= δ′(S′) do5

Let S be such a set with maximum value δ′(S).6

Remove all S′ with S ∩ S′ 6= ∅ and δ′(S′) < δ′(S) from S∗i .7

Define prices pi as pi(u) = δ′(S) if u is still contained in a set S ∈ S∗i and pi(u) = 0 else.8

Return p = argmax{r(pi) | pi, i = 0, . . . , t}.9

For a set S ∈ S∗i let then R(S) ⊂ Si denote the sets that are removed due to their intersection with S.
Clearly, for every S′ ∈ R(S) it must be true that

δ′(S′) ≤ (`2B)−1 · δ′(S),

by our partitioning. On the other hand, S contains at most ` different elements, each of which is contained
in at most B − 1 further sets, thus, |R(S)| ≤ `(B − 1). It follows that

∑

S∈Si\S∗i
|S|δ′(S) =

∑

S∈S∗i

∑

S′∈R(S)

|S′|δ′(S′)

≤
∑

S∈S∗i
`(B − 1)`(`2B)−1δ′(S)

≤
∑

S∈S∗i
|S|δ′(S),

which proves the claim. ¤

Applying Lemma 6.5.1 immediately yields the desired approximation guarantee. We simply argue that
sets are partitioned into O(log ` + log B) many classes and use the sum of values of the sets in any single
class as an upper bound on the maximum revenue obtainable from that class.

Theorem 6.5.2. Algorithm 5 computes an O(log ` + log B)-approximation to SMP with sets of size at
most ` and at most B requests per product.

Proof: We observe that δ′(S) = δ′(T) for any S, T ∈ S∗i with S ∩ T 6= ∅. Therefore, it holds that
r(pi) =

∑
S∈S∗i |S|δ

′(S) for 0 ≤ i ≤ t. Choosing p = argmax{r(pi) | pi, i = 0, . . . , t} and applying

86

6.6 Literature

Lemma 6.5.1 yields

r(p) ≥ 1
t + 1

t∑

i=0

∑

S∈S∗i
|S|δ′(S)

≥ 1
2(t + 1)

t∑

i=0

∑

S∈Si

|S|δ′(S)

=
1

2(t + 1)

∑

S∈S
|S|δ′(S)

≥ 1
4(t + 1)

∑

S∈S
|S|δ(S) ≥ 1

4(t + 1)
r(p∗),

and, since t = O(log ` + log B), the claim follows. ¤

Similar to our argumentation in the proof of Theorem 2.2.1 it is a straightforward observation that using
the sum of values of all sets as an upper bound on the optimal revenue cannot result in an approximation
guarantee better than O(log B). As a tight example consider a single good u and sets S1, . . . , SB with
v(Si) = 1/i and Si = {u} for all i. Any price p(u) = 1/i results in revenue 1 while our upper bounding
technique yields HB = Ω(log B).

6.6 Literature

The single-minded pricing problem was first considered by Guruswami et al. [GHK+05], who prove
that the single-price algorithm achieves approximation guarantee Hm + Hn and prove APX-hardness of
general G-SMP. For the special case of G-SMP in rooted trees where all paths start at the root they provide
a polynomial time algorithm. Considering the highway problem, they derive FPTAS’s for the cases that
all paths are of constant length or all valuations are constant.

Demaine et al. [DFHS06] provide a matching lower bound for the single-price algorithm on general SMP,
which was in fact the first known super-constant lower bound for any combinatorial pricing problem.

Balcan and Blum [BB06] improve the approximation guarantee for the general highway problem to
O(log n). Their algorithm works by partitioning the paths in a clever way and also yields a constant
approximation guarantee if path lengths vary by no more than a constant factor. Furthermore, they present
the random-partitioning algorithm (Algorithm 2) achieving approximation guarantee O(`) for SMP with
sets of bounded size.

The current state-of-the-art algorithm for the highway problem is found in [ESZ07], where Elbassioni et al.
present a quasi-polynomial time PTAS using a quite involved dynamic programming approach originally
proposed by Bansal et al. [BCES06] for the unsplittable flow problem on line graphs.

A number of other special cases of SMP have also received attention. Grigoriev et al. [GvLS+07] investi-
gate SMP with comparable items, i.e., under the restriction that the price of any bundle of products should

87

6 Network Pricing I: The Single-Minded Pricing Problem

be monotone in the size of the bundle. They derive a PTAS for this case and prove strong NP-hardness.
Hartline and Koltun [HK05] present FPTAS’s for SMP with a constant number of distinct products. Balcan
and Blum [BB06] consider the graph vertex pricing problem, in which sets are of size 1 or 2 and, thus,
we can think of consumers as edges in a graph (with self-loops) willing to purchase the incident vertices
subject to some budget constraint. They present a 4-approximation for this problem. Krauthgamer et al.
[KMR07] consider the special case of graph vertex pricing in which all consumers have the same budget
and present a 1.15-approximation based on their work on unit-demand pricing in bimodal markets.

Some work on mechanism design in the single-minded setting is found, e.g., in [AT01], [MN02], or
[BKV05]. The results from this chapter have been published in [BK06].

88

7 Network Pricing II: Stackelberg Games

Our approach to network pricing in Chapter 6 was guided by the idea that consumers behave single-
minded, i.e., consider only a single path to connect their terminals. While single-mindedness is sometimes
arguably a realistic assumption in general multi-product pricing, the network setting immediately brings
up the question why consumers should restrict themselves in this way. Thinking of a public transporta-
tion network, passengers might be interested only in connections that are not significantly longer than
their shortest alternative, but they would certainly be willing to settle for something slightly longer if
this promises to save them considerable money in return. In other words, one would expect consumer
preferences to be somewhat more complex than the cases we have discussed so far.

The modelling of consumer preferences and corresponding protocols allowing consumers to specify what
they are interested in has received considerable attention in the context of algorithmic mechanism design
[NR99] and combinatorial auctions [CSS06]. The established models range from relatively simple bid-
ding languages to bidders that are represented by oracles allowing certain types of queries, e.g., revealing
the desired bundle of items given some fixed set of prices. The latter would be a somewhat problem-
atic assumption in the theory of pricing algorithms, where we usually assume to have access to a rather
large number of potential consumers through some sort of sampling procedure and, thus, are interested in
preferences that allow for a compact kind of representation.

In this chapter we continue our investigation of network pricing and focus on consumers that have non-
trivial preferences, yet can be fully described by their types and budgets and do not require any kind of
oracles. Assume that a company owns a subset of the links in a given network. The remaining edges are
owned by other companies and have fixed publicly known prices and some consumer needs to purchase a
path between two terminals in the network. Essentially, all feasible paths are the same to her and, since
she is acting rational, she is going to buy the cheapest path connecting her terminals. How should we set
the prices on the pricable edges in order to maximize the company’s revenue? What if there is another
consumer, who needs to purchase, e.g., a minimum cost spanning tree?

This type of pricing problem, in which preferences are implicitly defined in terms of some optimization
problem, is usually referred to as Stackelberg pricing [vS34]. In the standard 2-player form we are given
a leader setting the prices on a subset of the network edges and a follower seeking to purchase a min-cost
network satisfying her requirements.

The 2-player shortest path version of this problem has first been considered by Labbé et al. [LMS98].
The first polynomial time algorithm with provable approximation guarantee for this problem is presented
by Roch et al. [RSM05]. Their rather involved recursive algorithm yields an approximation ratio that is
logarithmic in the number of pricable edges. Bouhtou et al. [BGvH+04] extend the problem to multiple
weighted followers, i.e., followers that need to route different demands along their paths, and present
algorithms for a restricted shortest path problem on parallel links, which they term the river tarification
problem. For an overview of most of the initial work on Stackelberg network pricing the reader is referred
to [vH06].

89

7 Network Pricing II: Stackelberg Games

More recently, Cardinal et al. [CDF+07] investigated the corresponding 2-player minimum spanning tree
pricing problem, obtaining a logarithmic approximation guarantee by applying the single-price algorithm
and proving that the problem is APX-hard. Their analysis of the single-price algorithm can be extended to
show that it achieves similar approximation guarantees for any matroid based Stackelberg game.

Our first result is a novel analysis of the single-price algorithm that proves the same tight approximation
guarantee for all Stackelberg pricing problems, independently of the matroid structure. We then consider
a special case of 2-player Stackelberg pricing, in which the follower needs to purchase a vertex cover
in a given bipartite graph. We show that in contrast to all previously investigated versions, this problem
variation allows us to achieve constant approximation guarantees in general and is even polynomial time
solvable in a special case. Finally, we take a look at Stackelberg pricing with multiple followers and obtain
tight bounds for the unweighted case. For weighted followers, we present a lower bound that resolves an
open problem from [BGvH+04] and a novel analysis of the single-price algorithm that yields first evidence
that approximation guarantees independent of the number of followers are possible.

The rest of the chapter is organized as follows. A formal problem definition is found in Section 7.1.
Sections 7.2 through 7.3 contain our results on the single-price algorithm and the bipartite vertex cover
pricing game. The extensions to multiple followers are found in Section 7.4. Section 7.5 reviews some
related literature.

7.1 Preliminaries

We can view Stackelberg pricing as a class of multi-player 1-round games. Let G = (V, E) be a multi-
graph. There are two types of players in the game, one leader and one or more followers. We consider
two classes of edge and vertex games, in which either the edges or the vertices have costs. For most
of this chapter, we will consider edge games, but the definitions and results for vertex games follow
analogously. In an edge game, the edge set E is divided into two sets E = Ep ∪ Ef with Ep ∩ Ef = ∅.
For the set of fixed-price edges Ef there is a fixed cost c(e) ≥ 0 for each edge e ∈ Ef . For the set
of pricable edges Ep the leader can specify a price p(e) ≥ 0 for each edge e ∈ Ep. We denote the
number of pricable edges by m = |Ep|. Each follower i = 1, . . . , k has a set Si ⊂ 2E of feasible
subnetworks. By p(S) =

∑
e∈S∩Ep

p(e) and c(S) =
∑

e∈S∩Ef
c(e) we refer to the total cost due to

pricable or fixed-cost edges in subnetwork S ∈ 2E , respectively. The total weight of a subnetwork is
defined as w(S) = p(S) + c(S).

Throughout the chapter we assume that for any price function p every follower i can in polynomial time
find a subnetwork S∗i (p) of minimum weight. As before, we want to find the price assignment p∗ for the
leader that maximizes the sum of prices of the edges bought by the followers.

Definition 7.1.1. Given a graph G = (V,Ef ∪Ep) with fixed costs c(e) on edges e ∈ Ef and k followers
with feasible subnetworks S1, . . . ,Sk, the Stackelberg Network Pricing Problem (STACK) asks for prices
p : Ep → R+

0 maximizing

r(p) =
k∑

i=1

p(S∗i (p)).

90

7.2 General Stackelberg Games and the Single-Price Algorithm - Again

We again denote the optimal prices as p∗ and let r(p∗) refer to the corresponding maximum revenue. To
guarantee that the maximum revenue is bounded and the optimization problem is non-trivial, we assume
that there is at least one feasible subnetwork for each follower i that is composed only of fixed-price
edges. In order to avoid technicalities, we assume w.l.o.g. that among subnetworks of identical weight
the follower always chooses the one with higher revenue for the leader. It is not difficult to see that in the
2-player case we also need followers with a large number of feasible subnetworks in order to make the
problem interesting.

Proposition 7.1.2. Given follower i and a fixed subnetwork Si ∈ Si, we can compute prices p with
w(Si) = minS∈Si w(S) maximizing p(Si) or decide that such prices do not exist in polynomial time. In
the 2-player game, if |S| = O(poly(m)), revenue maximization can be done in polynomial time.

Proof: Fix follower i and subnetwork Si ∈ Si. We formulate the problem of extracting maximum revenue
from Si as the following LP, where variable xe defines the price of edge e ∈ Ep:

max.
∑

e∈Si∩Ep

xe (7.1)

s.t.
∑

e∈Si∩Ep

xe +
∑

e∈Si∩Ef

c(e) ≤
∑

e∈S∩Ep

xe +
∑

e∈S∩Ef

c(e) ∀S ∈ Si (7.2)

xe ≥ 0 (7.3)

Constraints 7.2 require that Si is the cheapest feasible network for follower i, formally w(Si) ≤ w(S) for
all feasible networks S ∈ Si. Clearly the number of these constraints might be exponential in m. However,
by our assumption we can compute the min-cost subnetwork for any given set of prices and, thus, have a
polynomial time separation oracle.

Now assume that |S| = O(poly(m)) in the 2-player case. By enumerating all S ∈ S and optimizing
revenue for each subnetwork separately, we obtain a polynomial time algorithm. ¤

We briefly mention that our definition of Stackelberg network pricing is essentially equivalent to multi-
product pricing with general valuation functions, a problem that has independently been considered in
[BBM07]. Every general valuation function can be expressed in terms of Stackelberg network pricing on
graphs of polynomial size, if we do not require the optimization problem of the follower to be polynomial
time solvable. Our algorithmic results apply in this setting, as well, if we assume oracle access to the
consumer valuations.

7.2 General Stackelberg Games and the Single-Price Algorithm - Again

We start by considering general Stackelberg pricing with a single follower. Surprisingly, the very simple
single-price algorithm turns out to be successfully applicable once again. Remember that in case of unit-
demand or single-minded consumers, it was straightforward to determine a set of candidate prices to be
checked by the algorithm. This issue turns out to be a little more of a problem now.

Let c0 denote the cost of a cheapest feasible subnetwork for the follower not containing any of the pri-
cable edges. Clearly, we can compute c0 by assigning price +∞ to all pricable edges and simulating the

91

7 Network Pricing II: Stackelberg Games

follower on the resulting network. The single-price algorithm for Stackelberg network pricing proceeds as
follows. For j = 0, . . . , dlog1+ε c0e it assigns price pj = (1 + ε)j to all pricable edges and determines the
resulting revenue r(pj). It then simply returns the pricing that results in maximum revenue. We present a
logarithmic bound on the approximation guarantee of the single-price algorithm.

Theorem 7.2.1. For any ε > 0, the single-price algorithm for Stackelberg network pricing computes an
(1 + ε)Hm-approximation with respect to the optimal revenue r(p∗).

7.2.1 Analysis

The main issue in analyzing the algorithm’s performance guarantee for Stackelberg pricing is to determine
the right set of candidate prices. We first derive a precise characterization of these candidates and then
argue that the geometric sequence of prices tested by the algorithm is a good enough approximation.

Slightly abusing notation, we let p refer to both price p and the assignment of this price to all pricable
edges. If there exists a feasible subnetwork for the follower that uses at least j pricable edges, we let

θj = max
{

p
∣∣∣ |S∗(p) ∩ Ep| ≥ j

}

be the largest price at which such a subnetwork is chosen. If no feasible subnetwork with at least j pricable
edges exists, we set θj = 0. As we shall see, these thresholds are the key to prove Theorem 7.2.1.

We want to derive an alternative characterization of the threshold values θj . For each 1 ≤ j ≤ m we let
cj refer to the minimum sum of prices of fixed-price edges in any feasible subnetwork containing at most
j pricable edges, formally

cj = min
{ ∑

e∈S∩Ef

fe

∣∣∣ S ∈ S : |S ∩ Ep| ≤ j
}

.

Furthermore, for 1 ≤ j ≤ m we define
∆j = c0 − cj ,

and, for ease of notation, let ∆0 = 0. Consider the point set {(0, ∆0), (1, ∆1), . . . , (m,∆m)} on the
plane. By H we refer to a minimum selection of points spanning the upper convex hull of this point set. It
is a straightforward geometric observation that we can define H as follows:

Fact 7.2.2. Point (j,∆j) belongs to H if and only if

min
i<j

∆j −∆i

j − i
> max

j<k

∆k −∆j

k − j
.

We now return to the candidate prices. By definition we have that θ1 ≥ θ2 ≥ · · · ≥ θm. We say that θj

is true threshold value if θj > θj+1, i.e., if at price θj the subnetwork chosen by the follower contains
exactly j pricable edges. Let i1 < i2 < · · · < i` denote the indices, such that θik are true threshold values
and for ease of notation define i0 = 0.

Lemma 7.2.3. θj is true threshold value if and only if (j, ∆j) belongs to H.

92

7.2 General Stackelberg Games and the Single-Price Algorithm - Again

∆ j θ1 θ3

��

��

θ

θ

5

6

1 2 3 4 5 6
16

11

9

s

t

5
4

1

��

��

��

��

Figure 7.1: The follower wants to purchase a path connecting vertices s and t. Solid edges are pricable,
dashed fixed price edges are labeled with their cost. The figure on the right gives a geometric
interpretation of the corresponding (true) threshold values θj .

Proof: ”⇒” Let θj be true threshold value, i.e., at price θj the chosen subnetwork contains exactly j
pricable edges. We observe that at any price p the cheapest subnetwork containing i pricable edges has
weight ci + ip = c0−∆i + ip. Thus, at price θj it must be the case that ∆j − jθj ≥ ∆i− iθj for all i < j
and ∆j − jθj > ∆k − kθj for all j < k. It follows that

min
i<j

∆j −∆i

j − i
≥ θj > max

j<k

∆k −∆j

k − j
,

and, thus, we have that (j, ∆j) belongs to H.

”⇐” Assume now that (j,∆j) belongs to H and let

p = min
i<j

∆j −∆i

j − i
. (7.4)

Consider any k < j. It follows that

∆k − kp = ∆j − jp− (∆j −∆k) + (j − k)p ≤ ∆j − jp,

since p ≤ (∆j −∆k)/(j − k) and, thus, the network chosen at price p cannot contain less than j pricable
edges. Analogously, let k > j. Using p > (∆k −∆j)/(k − j) we obtain

∆k − kp = ∆j − jp + (∆k −∆j)− (k − j)p < ∆j − jp,

and, thus, the subnetwork chosen at price p contains exactly j pricable edges. We conclude that θj is a true
threshold. ¤

It is not difficult to see that the price p defined in equation (7.4) above is precisely the threshold value
θj . We have already seen in the proof of Lemma 7.2.3 that at price p the follower chooses a subnetwork
containing j pricable edges. Hence, we only need to argue that p is indeed maximal. Assume that ` < j
minimizes (7.4), thus, p = (∆j −∆`)/(j − `) and consider any p′ > p. It holds that

∆` − `p′ = ∆j − jp′ − (∆j −∆`) + (j − `)p′ > ∆j − jp′

93

7 Network Pricing II: Stackelberg Games

and, consequently,

c` + `p′ = c0 − (∆` − `p′) < c0 − (∆j − jp′) = cj + jp′.

It follows that at price p′ the cheapest feasible subnetwork contains less than j edges and the claim follows.
Let now θik be a true threshold. Since points (i0, ∆i0), . . . , (i`, ∆i`) define the convex hull we can write
that

min
i<ik

∆ik −∆i

ik − i
=

∆ik −∆ik−1

ik − ik−1
.

We state this important fact again in the following lemma.

Lemma 7.2.4. For all 1 ≤ k ≤ ` it holds that

θik =
∆ik −∆ik−1

ik − ik−1
.

A geometric interpretation of true threshold values is found in Fig. 7.1. From the fact that points
(i0,∆i0), . . . , (i`, ∆i`) define the upper convex hull we know that ∆i` = ∆m, i.e., ∆i` is the largest
of all ∆-values. On the other hand, each ∆j describes the maximum revenue that can be made from a
subnetwork with at most j pricable edges and, thus, ∆m is clearly an upper bound on the revenue made
by an optimal price assignment.

Fact 7.2.5. It holds that r(p∗) ≤ ∆i` .

By definition of the θj’s it is clear that at any price below θik the subnetwork chosen by the follower con-
tains no less than ik pricable edges. Furthermore, for each θik the single-price algorithm tests a candidate
price that is at most a factor (1 + ε) smaller than θik .

Fact 7.2.6. For each θik there exists a price pik with (1 + ε)−1θik ≤ pik ≤ θik that is tested by the
single-price algorithm. Especially, it holds that r(pik) ≥ (1 + ε)−1r(θik).

Finally, we know that the revenue made by assigning price θik to all pricable edges is r(θik) = ikθik . Let
p denote the price returned by the single-price algorithm, r(p) its revenue. We have:

(1 + ε) ·Hm · r(p) = (1 + ε)
m∑

j=1

r(p)
j

= (1 + ε)
∑̀

k=1

ik∑

j=ik−1+1

r(p)
j

≥ (1 + ε)
∑̀

k=1

ik∑

j=ik−1+1

r(pik)
j

≥
∑̀

k=1

ik∑

j=ik−1+1

r(θik)
j

=
∑̀

k=1

ik∑

j=ik−1+1

ikθik

j

≥
∑̀

k=1

(ik − ik−1)
ikθik

ik

=
∑̀

k=1

(∆ik −∆ik−1
) , by Lemma 7.2.4

= ∆i` −∆0 = ∆i` ≥ r(p∗).

This concludes the proof of Theorem 7.2.1.

94

7.3 Bipartite Stackelberg Vertex Cover

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

eje1 em−1 em

m/jm 1

0 0 0 0 0 0

m/(m−1)

s t

Figure 7.2: An instance of Stackelberg network pricing, on which the analysis of the approximation guar-
antee of the single-price algorithm is tight for the shortest path and minimum spanning tree
case. Solid edges are pricable, dashed fixed-price edges are labeled with their cost.

7.2.2 Tightness

The example in Figure 7.2.1 shows that our analysis of the single-price algorithm’s approximation guar-
antee is tight. The follower wants to buy a path connecting vertices s and t. In an optimal solution we
set the price of edge ej to m/j. Then edges e1, . . . , em form a shortest path of cost mHm. On the other
hand, assume that all edges e1, . . . , em are assigned the same price p. If p ≤ 1 the leader’s revenue is
clearly bounded by m, if p > m the shortest path does not contain any pricable edge at all. Let then
m/(j + 1) < p ≤ m/j for some 1 ≤ j ≤ m− 1. It is straightforward to argue that at this price a shortest
path from s to t does not contain any of the pricable edges ej+1, . . . , em and, thus, it contains at most j
pricable edges. It follows that the leader’s revenue is at most j · p ≤ m. Similar argumentation holds if the
follower seeks to purchase a minimum spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg pricing is found in [CDF+07], where APX-hardness
is shown for the minimum spanning tree case. Still, for none of the Stackelberg pricing games considered
so far could better than logarithmic approximation guarantees be proven. We proceed by introducing a
special kind of Stackelberg pricing for which we can break this barrier.

7.3 Bipartite Stackelberg Vertex Cover

Bipartite Stackelberg Vertex Cover Pricing (STACKVC) is a vertex game, in which we may assign prices
to a subset Vp ⊂ V of the vertices of a bipartite graph and players seek to purchase vertex covers for their
respective subsets of edges. In general, the vertex cover problem is hard and, thus, we focus on settings
in which the problem can be solved in polynomial time. In bipartite graphs the problem can be solved
optimally by using a classical and fundamental max-flow/min-cut argumentation [PS98]. In principle, this
does not imply anything for the complexity of the corresponding Stackelberg pricing game, as we will see
in Section 7.4.2. However, when we restrict ourselves to the 2-player case, the pricing problem becomes
tractable.

We first focus on the special case that all pricable vertices are on one side of the bipartition and prove that
this problem is exactly solvable in polynomial time. We then present a natural extension of our algorithm
that yields a 2-approximation in general.

Theorem 7.3.1. If for a bipartite graph G = (A∪B, E) we have Vp ⊆ A, then there is a polynomial time
algorithm computing an optimal price assignment p∗ for 2-player STACKVC.

95

7 Network Pricing II: Stackelberg Games

2 2

2

3

(a)

1/22/2

−/0

−/0 −/3

1/2

−/−

−/−

1/−

1/−

−/−

−/−

(b)

2/22/2

2/2

3/3

2/2

3/−

−/−

−/−

−/−

2/−

2/−

3/3

(c)

Figure 7.3: Solving 2-player STACKVC with pricable vertices in one partition and a single follower.
Shaded vertices are pricable, vertex labels indicate cost, edge labels indicate flows and ca-
pacities. (a) A bipartite graph G. (b) The flow network Gd obtained from G with some initial
flow. Grey parts are source and sink added by the transformation. Bold edges mark an aug-
menting path obtained by increasing the capacity on the leftmost edge. (c) The optimal flow at
the end of the algorithm. Edges corresponding to pricable vertices are tight, the vertices belong
to a minimum cost vertex cover.

We denote n = |Vp| and again use the values cj for 1 ≤ j ≤ n to denote the minimum sum of prices
of fixed-price vertices in any vertex cover containing at most j pricable vertices. Then ∆j = c0 − cj are
again upper bounds on the revenue that can be extracted from a network that includes at most j pricable
vertices and, thus, we have that r(p∗) ≤ ∆n.

Algorithm 6: Solving 2-player STACKVC in bipartite graphs with Vp ⊆ A.

Construct the flow network Gd by adding nodes s and t.1

Set p(v) = 0 for all v ∈ Vp.2

Compute a maximum s-t-flow φ in Gd.3

while there is v ∈ Vp s.t. increasing p(v) yields an augmenting path P do4

Increase p(v) and φ along P as much as possible.5

Suppose all pricable vertices are located in one partition, i.e., Vp ⊆ A, and consider Algorithm 6. Recall
that for a bipartite graph G the LP-dual of the vertex cover problem can be captured by a maximum flow
problem on an adjusted flow network Gd constructed as follows. We add a source s and a sink t to G
and connect s to all vertices v ∈ A with directed edges (s, v), and t to all vertices v ∈ B with directed
edges (v, t). Each such edge gets as capacity the price of the incident vertex, i.e., p(v) for v ∈ Vp or c(v)
if v ∈ Vf . Furthermore, we direct all original edges of the graph from A to B and set their capacity to
infinity. It is well-known that the maximum s-t-flow in this network equals the cost of a minimum cost
vertex cover of the graph G [PS98].

An augmenting path in Gd is a path traversing only forward edges with slack capacity and backward edges
with non-zero flow. Algorithm 6 works by repeatedly increasing the prices of pricable vertices and the
capacity of their incident edges in the flow network in order to create augmenting paths from s to t along
which the flow can be increased. By LP-duality, the optimum vertex cover includes a vertex v ∈ A if the
maximum flow allows no augmenting path from s to v. For an illustration see Fig. 7.3. We denote by V

96

7.3 Bipartite Stackelberg Vertex Cover

the cover calculated by Algorithm 6.

Now consider a run of the algorithm. When computing the maximum flow on Gd holding all p(v) = 0, we
get a flow of cn, the cost of a cheapest vertex cover that may use all pricable vertices for free. We first note
that in the following while-loop we will never face a situation, in which there is an augmenting s-t-path
starting with a fixed-price vertex. We call such a path a fixed path, while an augmenting s-t-path starting
with a pricable vertex is called a price path.

Lemma 7.3.2. Every augmenting path considered in the while-loop of Algorithm 6 is a price path.

Proof: We prove the lemma by induction on the while-loop and by contradiction. Suppose that in the
beginning of the current iteration there is no fixed path. In particular, this is true for the first iteration of
the while-loop. Then, suppose that after we have increased the flow over a price path Pp, a fixed path Pf

is created. Pf must include some of the edges of Pp. Consider the vertex w at which Pf hits Pp. By
following Pf from s to w and Pp from w to t there is a fixed path, which must have been present before
flow was increased on Pp. This is a contradiction and proves the lemma. ¤

Note, that we may include a vertex v ∈ A into the cover V if there is no augmenting path from s to v. In
particular, this means that for a vertex v ∈ A ∩ V the following two properties are fulfilled:

1. The flow over edge (s, v) equals the capacity and

2. there is no augmenting path from s over a different vertex v′ ∈ A that reaches v by decreasing flow
over one of the original edges (v, w) for w ∈ B.

As the algorithm always adjusts the price of a vertex v to equal the current flow on (s, v), we can assume
that there is never any slack capacity on edges (s, v) for any v ∈ Vp. Thus, only the violation of property 2
can force a vertex v ∈ Vp to leave the cover. In particular, such an augmenting path must start with a
fixed-price vertex. We call such a path a fixed v-path.

Lemma 7.3.3. Algorithm 6 creates no fixed v-path for any pricable vertex v ∈ Vp.

Proof: The proof is similar to the proof of the previous lemma. Suppose in the beginning of an iteration
there is no fixed path, and additionally for a vertex v ∈ Vp there is no fixed v-path. Then suppose such
a path P v

f is created by increasing flow over a price path Pp. Note that P v
f cannot include any edge from

Pp, because this would create a fixed path Pf as noted in Lemma 7.3.2. Furthermore, v must be included
in Pp, because otherwise P v

f would have existed initially. Now we can again use the same argument as
before. Create a fixed path by following P v

f from s to v and then Pp from v to t. This yields that a fixed
path must have existed initially, which is a contradiction to the assumption. ¤

As there is no augmenting path from s to any pricable vertex at any time during the execution of the
algorithm, the following lemma is now obvious.

Lemma 7.3.4. V contains all pricable vertices.

97

7 Network Pricing II: Stackelberg Games

Finally, we are ready to prove Theorem 7.3.1 and argue that the computed price assignment is optimal.

Proof of Theorem 7.3.1: Suppose that after the execution of Algorithm 6 we increase price p(v) beyond
φ(s, v) for all pricable vertices v ∈ Vp. As we are at the end of the algorithm, it is not possible to increase
the flow in the same way. Thus, the adjustment creates slack capacity on edge (s, v) for every v ∈ Vp and
causes all pricable vertices to leave V . The new cover must be the cheapest cover that excludes all pricable
vertices. Thus, it must have cost c0. As we have not increased the flow, we know that the cost of V is also
c0. Note, that before starting the while-loop the cover contained all pricable vertices at price 0 and had
cost cn. As all flow increase in the while-loop was made over price paths and all the pricable vertices stay
in the cover, the revenue of V must be c0 − cn = ∆n. This is an upper bound on the optimum revenue
and, hence, the price assignment p computed by the algorithm is optimal. Finally, notice that adjusting
the price of the pricable vertices in each iteration is not necessary. We can start with computing the initial
cover containing all pricable vertices at price 0 and for the remaining while-loop set all prices to +∞. This
will result in the desired flow, which directly generates the final price for every vertex v as flow on edge
(s, v). Hence, we can get optimal prices with an adjusted run of the standard polynomial time algorithm
for maximum flow in Gd. This proves Theorem 7.3.1. ¤

Algorithm 7: A 2-approximation algorithm for 2-player STACKVC in bipartite graphs.

Fix pA(v) = ∞ for all v ∈ Vp ∩B.1

Fix pB(v) = ∞ for all v ∈ Vp ∩A.2

Run Algorithm 6 to determine pA(v) for v ∈ Vp ∩A.3

Run Algorithm 6 to determine pB(v) for v ∈ Vp ∩B.4

Return pA or pB , depending on which one yields higher revenue.5

A natural extension of Algorithm 6 can be used to obtain a 2-approximation for general 2-player STACKVC.
Algorithm 7 works by applying Algorithm 6 to the pricable vertices on each side of the bipartition sepa-
rately in order to extract maximum revenue from one of these subsets.

Theorem 7.3.5. Algorithm 7 is a 2-approximation algorithm for 2-player STACKVC. Furthermore, this
bound is tight.

Proof: Note that by setting pA(v) = ∞ for all pricable vertices in B, we increase their price over the
prices in the optimum solution. This obviously allows us to extract more revenue from the vertices in A
than is possible for p∗. The same argument applies for the vertices in B and pB . Hence, the sum of both
revenues is an upper bound on r(p∗), and our algorithm guarantees a 2-approximation by preserving the
greater of the two.

For a tight example consider a path (v1, v2, v3, v4, v5). The first vertex v1 is a pricable vertex, then there
are two fixed-price vertices v2 and v3 of cost 1 and 0, respectively. Vertex v4 is pricable again, v5 has fixed
cost 1. The optimum prices are p(v1) = p(v3) = 1. This yields the min-cost cover V∗ = {v1, v3, v4}
and generates a revenue of 2. A possible solution returned by the algorithm, however, is p(v1) = 1 and
p(v2) = ∞ (or vice versa), which generates only a revenue of 1. ¤

We next take a look at how the situation changes if we are faced with more than a single follower. Espe-
cially, in Section 7.4.1 we shall see that the complexity of STACKVC increases drastically in this situation.

98

7.4 Multi-Follower Stackelberg Pricing

7.4 Multi-Follower Stackelberg Pricing

Recall that each follower i is characterized by her own collection Si of feasible subnetworks and k denotes
the number of followers. Section 7.4.1 extends the analysis from the single follower case to prove a tight
bound of (1 + ε)(Hk + Hm) on the approximation guarantee of the single-price algorithm and presents a
matching lower bound based on STACKVC with multiple followers. Section 7.4.2 presents an alternative
analysis that applies even in the case of players with different demands and yields approximation guar-
antees that do not depend on the number of followers. Furthermore, it contains a lower bound for the
weighted case based on an instance of the river tarification problem.

7.4.1 General Unweighted Games

Let an instance of Stackelberg network pricing with some number k ≥ 1 of followers be given. We extend
the analysis from Section 7.2 to obtain a similar bound on the single-price algorithm’s approximation
guarantee. Notably, this immediately implies the previously known result for the single-minded case
([GHK+05], cf. Theorem 6.2.1) up to a factor of (1 + ε).

Theorem 7.4.1. The single-price algorithm computes an (1 + ε)(Hk + Hm)-approximation for STACK

with multiple followers with respect to the optimal revenue r(p∗).

Proof: Consider graph G = (V, E), E = Ef ∪Ep with |Ep| = m, and k followers defined by collections
S1, . . . ,Sk of feasible subnetworks. We transform this instance into a single follower pricing game as
follows. Let G1, . . . , Gk be identical copies of G and define G∗ = G1 ∪ . . . ∪Gk. Furthermore, define a
single follower by

S∗ = {S1 ∪ . . . ∪ Sk |S1 ∈ S1 ∩G1, . . . , Sk ∈ Sk ∩Gk} ,

i.e., for every follower i in the original instance our new follower seeks to purchase a subnetwork from Si

in copy Gi of the original graph. Clearly, the maximum possible revenue in the new instance is an upper
bound on the maximum revenue in the multiple follower case, since we can always assign the same price
to every copy of a pricable edge in G1, . . . , Gk. Furthermore, every pricing returned by the single-price
algorithm on G1 ∪ . . . ∪ Gk translates naturally into a corresponding pricing of identical revenue in G,
since again all copies of an edge from G are assigned identical prices. Finally, since the number of prica-
ble edges in G1 ∪ . . . ∪Gk is km, we obtain an approximation ratio of (1 + ε)Hkm by Theorem 7.2.1 as
desired. ¤

The reduction from the multiple to single follower case in the proof of Theorem 7.4.1 relies essentially
on the fact that we are considering the single-price algorithm. More precisely, only the fact that all edges
are assigned identical prices allows us to interpret price assignments on graph G∗ as meaningful price
assignments on the original graph G. Thus, the above does not imply anything about the relation between
the single- and multiple-follower cases in general.

We next show an essentially tight lower bound, which follows immediately from the hardness of single-
minded pricing (see Theorem 6.2.3). We encode SMP in terms of STACKVC with multiple followers.

Theorem 7.4.2. STACK with multiple followers is hard to approximate within O(logε k + logε m) for
some ε > 0, unless NP ⊆ ⋂

δ>0 BPTIME(2O(nδ)). The same holds for STACKVC with multiple followers.

99

7 Network Pricing II: Stackelberg Games

vi

vk

jv
v(S)

(a)

c c

ei

je

ek

bc

0

0

0

0

0
0

s t

(b)

Figure 7.4: (a) Reducing SMP to STACKVC. The fixed-price vertex corresponding to set S = {ui, uj , uk}
is assigned cost v(S) and is adjacent to vertices representing products contained in S. (b)
Reducing uniform-budget UDP(D)-MIN to the river tarification problem. Consumer c with
Sc = {ui, uj , uk} is simulated by a follower routing her demand over one of the corresponding
edges ei, ej , ek. An alternative fixed-price route determines the (uniform) budget bc.

Sketch of Proof: Let an instance of SMP with sets S1, . . . , Sk over universe U = {u1, . . . , um} and
corresponding valuations v(Si) be given. We define an instance of STACKVC as follows. In vertex set
A we have a fixed-price vertex vi for every set Si with cost c(vi) = v(Si). In vertex set B we have a
pricable vertex vj for every product uj ∈ U . Two vertices are connected by an edge if the corresponding
set contains the respective product, formally, (vi, vj) ∈ E if and only if uj ∈ Si. Finally, we have one
follower for very set Si who seeks to purchase a vertex cover of the edges adjacent to vertex vi ∈ A. This
construction is depicted in Fig. 7.4(a). ¤

7.4.2 General Weighted Games and the River Tarification Problem

We now turn to an even more general variation of Stackelberg pricing, in which we allow multiple weighted
followers. This model, which has been previously considered in [BGvH+04], arises naturally in the context
of network pricing games with different demands for each player. Formally, for each follower i we are
given her demand di ∈ R+. For given prices p and optimal subnetworks S∗1(p), . . . , S∗k(p) of the followers,
the leader’s revenue is defined as

r(p) =
k∑

i=1

dip(S∗i (p)).

It has been conjectured before that in the weighted case no approximation guarantee essentially beyond
O(k ·log m) is possible [RSM05]. We show that an alternative analysis of the single-price algorithm yields
ratios that do not depend on the number of followers.

Theorem 7.4.3. The single-price algorithm computes an (1 + ε)m2-approximation for STACK with mul-
tiple weighted followers with respect to the optimal revenue r(p∗).

100

7.5 Literature

Proof: Let graph G = (V, E), E = Ef ∪ Ep with |Ep| = m, and k followers defined by S1, . . . ,Sk and
demands d1, . . . , dk be given and consider the optimal pricing p∗. For each pricable edge, let F (e) refer
to the set of followers purchasing e under price assignment p∗ and denote by r(p∗|e) =

∑
i∈F (e) dip

∗(e)
the corresponding revenue. Clearly,

∑
e∈Ep

r(p∗|e) = r(p∗).

Fix some pricable edge e and define a corresponding price pe = p∗(e)/m. By r(pe) we denote the revenue
from assigning price pe to all pricable edges. Let i ∈ F (e) and assume that follower i buys subnetwork
Si under price assignment p∗. By w∗(Si), we(Si) and c(Si) we refer to the total weight of Si under price
assignments p∗ and pe and the cost due to fixed price edges only, respectively. It holds that

we(Si) ≤ c(Si) + m
p∗(e)
m

= c(Si) + p∗(e) ≤ w∗(Si).

Let c0
i denote the cost of a cheapest feasible subnetwork for follower i consisting only of fixed price edges.

It follows that we(Si) ≤ w∗(Si) ≤ c0
i and, thus, follower i is going to purchase a subnetwork containing

at least one pricable edge under price assignment pe, resulting in revenue at least dipe = dip
∗(e)/m from

this follower. We conclude that r(pe) ≥ r(p∗|e)/m and, thus

m2 max
e∈Ep

r(pe) ≥ m
∑

e∈Ep

r(pe) ≥
∑

e∈Ep

r(p∗|e) = r(p∗).

Finally, observe that for each price pe the single-price algorithm checks some candidate price that is smaller
by at most a factor of (1 + ε), which finishes the proof. ¤

Hardness of approximation of Stackelberg pricing with weighted followers follows immediately by a re-
duction from distribution-based UDP(D)-MIN with uniform budgets (see Theorem 5.2.13). The resulting
Stackelberg pricing game is an instance of the so-called river tarification problem, in which each player
needs to route her demand along one out of a number of parallel links connecting her respective source
and sink pair. One direct fixed price connection determines her maximum budget for purchasing a pricable
link. Theorem 7.4.4 resolves an open problem from [BGvH+04].

Theorem 7.4.4. STACK with multiple weighted followers is hard to approximate within O(mε) for some
ε > 0, unless NP ⊆ ⋂

δ>0 BPTIME(2O(nδ)). The same holds for the river tarification problem.

Sketch of Proof: Let an instance of uniform-budget UDP(D)-MIN with products U = {u1, . . . , um},
consumer space C = {c1, . . . , ck} and finite-support distribution D on C be given. For every product
uj ∈ U we have two vertices v1

j , v2
j and a directed pricable edge (v1

j , v
2
j). For every consumer ci we have

two vertices sc, tc and fixed-price edges (sc, v
1
j), (v2

j , tc) of cost 0 for all uj with uj ∈ Sc. Additionally,
there is a fixed-price edge (sc, tc) with fixed cost bc. Now we introduce a follower i for every ci ∈ C who
wants to route a demand of di = PrD(ci) from sc to tc. The construction is illustrated in Fig. 7.4(b). ¤

7.5 Literature

The original definition of Stackelberg games to model economic processes dates back to the 1930’s and
Heinrich Freiherr von Stackelberg [vS34]. Computer scientists and especially the operations research
community have been studying the problem of Stackelberg pricing in networks for about a decade.

101

7 Network Pricing II: Stackelberg Games

Labbé et al. [LMS98] initiated the study of the shortest path version of the problem from an algorithmic
perspective, which was then continued by Roch et al. [RSM05], who designed the first polynomial time
approximation algorithms. An overview of most of the initial work in this area is found in [vH06].

Inspired by the minimum spanning tree version of Stackelberg pricing, Cardinal et al. [CDF+07] apply the
single-price algorithm to the problem and obtain provable approximation guarantees for all pricing games
that are based on matroids, i.e., those pricing games in which the feasible subnetworks of a follower form
the basis of a matroid. They also prove the first inapproximability result for any 2-player version of Stack-
elberg network pricing by deriving APX-hardness of the minimum spanning tree version. The multiple
follower scenario appears first in [BGvH+04], where also the river tarification problem is formulated.

Independently of our results from Section 7.2, Balcan et al. [BBM07] also analyze the performance of the
single-price algorithm for pricing among consumers with general valuation functions and use this result to
obtain improved guarantees for revenue maximization in some types of combinatorial auctions.

A different line of research has been investigating the application of Stackelberg strategies to network
congestion games in order to obtain low congestion Nash equilibria for sets of selfish followers [CDR03,
Rou04, Swa07]. Here, the leader is allowed to control prices on edges or the behavior of a fraction of the
follower population in order to guarantee socially good Nash equilibria when the followers selfishly route
their demands through the network.

The new results from this chapter have been published in [BHK07].

102

8 Conclusions and Future Research

We have presented results on the approximability of several different combinatorial multi-product and
network pricing problems. For some of the established models the central questions have been answered
to a satisfactory degree, for others the work has just begun.

For unit-demand pricing the current state of affairs leaves a relatively coherent picture of the problem’s
approximation complexity. Most notably, we could establish lower bounds on the approximation threshold
of the well established min-buying model, which prove that the single-price algorithm essentially yields
the best approximation guarantees we can hope for. Moreover, similar bounds appear to hold even in the
uniform-budget case. Combinatorially speaking, this means that even in restricted cases of unit-demand
pricing, all we can achieve is to select a single group of consumers that come with essentially identical
budgets and set prices so as to extract full revenue from this group. The task of finding solutions that
incorporate different groups of consumers and raise revenue across different price levels, however, is out
of reach. In the words of Demaine et al. [DFHS06], this constitutes another example that “combination
can be hard” - and indeed often is - in combinatorial pricing.

Even though quite a number of questions concerning unit-demand pricing have been resolved, still there
are several intriguing open problems left for further research, out of which we will only name a few
here. In Chapter 3 we have seen that the max-buying model with price-ladder constraint allows for a
PTAS due to [AFMZ04], which also applies to rank-buying if we assume that budgets are rank-consistent.
Thus, in the price-ladder scenario one can find arguably realistic selection rules that still allow practically
relevant algorithmic results. It is an important open problem whether similar results can be obtained
without a price-ladder constraint. More formally, what is the approximation threshold of rank-buying with
rank-consistent budgets and without price-ladder? Note, that the important distinction here is “with rank-
consistent budgets”, as without this assumption we have shown that the problem is as hard as min-buying
in Chapter 4. If this problem variation turns out to be hard to approximate, can one come up with new
selection rules that do the trick, i.e., model rational consumer behavior while allowing for reasonably good
(say constant) approximation guarantees? By our results from Chapter 4 we know that such selection rules
cannot be based solely on the relative order of prices, but should be defined along the lines of rank-buying,
in the sense that they incorporate some external description of consumers’ preferences over products.

In Chapter 3 we present a local search algorithm that yields a 2-approximation for the max-buying model
and works even in the more general case of limited product-supply. Aggarwal et al. [AFMZ04] show that
their PTAS for UDP(C)-MAX-PL yields a 4-approximation for the limited-supply case with price-ladder
constraint. Our local search approach is not applicable here, because a price-ladder constraint clearly
restricts the way a solution can be modified locally. Still, in light of all other results on unit-demand
pricing one would expect the price-ladder case to be no more difficult than the version without. Thus, it
would be very interesting to see improved approximation guarantees for UDP(C)-MAX-PL with limited
product supply. On the other hand, does the problem in fact become more difficult if supply is limited?
Maybe it is possible to obtain stronger hardness results than the ones shown in Chapter 3 for unlimited
supply.

103

8 Conclusions and Future Research

Finally, the price-ladder constraint itself has turned out to be quite remarkable in the following sense.
For general unit-demand pricing in the min-buying model we have seen that the presence of a price-
ladder constraint does not have any influence on the problem’s approximation threshold. Formally, both
UDP(D)-MIN and UDP(D)-MIN-PL are hard to approximate withinO(n1−ε) for all ε > 0, unless P = NP.
In contrast, UDP(D)-MIN with uniform budgets has been proven to exhibit a comparable approximation
threshold of O(nε) for some ε > 0 in general, but becomes polynomial time solvable in the presence of a
price-ladder constraint. Thus, a price-ladder can have quite different effects when applied to even slightly
different versions of unit-demand pricing. This raises the following question, which is probably of rather
theoretical interest: Are there versions of unit-demand pricing that are actually harder to approximate with
price-ladder constraint than without? Maybe limited product supply is the key to answer this question.
Apart from this, another natural and certainly relevant question, which is already being pursued in a lot of
recent work, is this: Are there other restrictions than the price-ladder that allow for improved algorithmic
results but capture practically relevant versions of the problem?

For the single-minded pricing problem the current picture is comparable to the unit-demand case. The
question of approximability of the problem in general has essentially been settled. One open problem
in this context is to obtain lower bounds on approximation guarantees in terms of the number of distinct
products under standard complexity theoretic assumptions. We have seen in Chapter 6 that the problem
is hard to approximate within O(nε) for some ε > 0 under some assumption about the average-case
complexity of refuting random 3SAT instances. We have also argued that similar results cannot follow
from the reduction in [DFHS06], which yields pricing instances with only O(log n) different price levels,
which trivially allow for similar approximation guarantees.

Several open problems are left concerning the network pricing version of SMP. Foremost, we have pre-
sented an approximation algorithm that exploits the structure of sparse problem instances to achieve im-
proved approximation guarantees. This algorithm, however, does not make any use of the (sparse) structure
of the underlying network. Can we design algorithms that explicitly use the fact that they are operating on
a network structure? Some results in this direction have been obtained for very specific networks as rooted
trees [GHK+05] or graphs consisting of a single line [ESZ07]. It would be very interesting to see similar
results for more general network topologies.

The situation with Stackelberg pricing is quite different from the above. Some initial results have been
proven both in this thesis and elsewhere, yet, the most central questions remain unanswered and many
intriguing problems in the periphery of Stackelberg pricing games constitute quite promising ground for
further research. As we have seen, the single-price algorithm can be used to achieve a logarithmic approx-
imation guarantee for general 2-player Stackelberg pricing games but complementing lower bounds are
rare. Roch et al. [RSM05] prove NP-hardness for the shortest path case, Cardinal et al. [CDF+07] show
that the Stackelberg minimum spanning tree game is APX-hard. The major open problem in the field is to
prove a super-constant lower bound on the approximability of general 2-player Stackelberg pricing, as it
appears quite unlikely that a constant approximation is possible in general, i.e., with a follower purchasing
an arbitrary kind of subnetwork. Without having any strong opinion on the correctness of this observa-
tion, we mention that our findings so far indicate that the same should be true for the class of matroid
Stackelberg games, in which the follower’s feasible subnetworks form the basis of a matroid.

We have presented an alternative analysis of the single-price algorithm that proved an approximation guar-
antee of O(m2) for the case of multiple weighted followers. We understand this result as somewhat
conceptual, as it shows that contrary to previous conjectures it is possible to achieve approximation guar-

104

antees that do not depend on the number of followers in the game, but in our opinion is probably not a
tight analysis. Thus, the question here is twofold. First, what is the actual approximation guarantee of the
single-price algorithm for general Stackelberg pricing games with multiple weighted followers? Second,
is it possible to achieve approximation ratio O(m)? Note, that this would essentially match our lower
bound for the river tarification problem.

The bipartite Stackelberg vertex cover game has turned out as an example of Stackelberg pricing in which
the 2-player version allows for a constant approximation, and special cases can even be solved exactly
in polynomial time. It is then a natural question to ask whether more such examples can be found. For
example, one might consider games with a follower purchasing a min-cost matching, a min-cost cut, a
min-cost cycle cover or several other natural types of subnetworks in the graph. We briefly mention that
we have been able to obtain a similar result for a follower seeking to buy a min-cost knapsack cover (with
bounded weights), which needs a little imagination to be viewed as a network pricing problem. However,
interestingly the key to solve this problem is to use an extended version of the dynamic programming
approach used to solve the min-knapsack problem itself. This is somewhat similar to the bipartite vertex
cover case, where max-flow arguments were the key to success. More generally, an intriguing question
is the following: Is there any clear connection between the combinatorial structure of the optimization
problem solved by the follower and the complexity of the corresponding 2-player Stackelberg pricing
game? Considering the minimum spanning tree case, it appears that there are cases in which the pricing
problem is quite hard, even though the underlying optimization problem is of a quite well-structured type.

Finally, we have seen that at least for some combinatorial pricing problems local search yields reasonable
approximation results. As we have argued before, local search appears to be a quite natural approach
to multi-product pricing and it would be nice to have more examples of pricing problems to which local
search, or more elaborate versions of it, can be successfully applied.

105

106

A Appendix

A.1 Complexity Classes, Reductions and Completeness

We summarize the definitions of the most important complexity classes. For a comprehensive introduc-
tion the reader is referred to [Pap94] or [Weg05]. The definitions presented here closely follow those in
[Weg05].

Definition A.1.1. A language L ⊆ {0, 1}∗ belongs to the complexity class P (polynomial time), if there
exists an algorithm A that outputs A(x) = 1 if and only if x ∈ L and has running time poly(n) on inputs
of length n.

Definition A.1.2. A language L ⊆ {0, 1}∗ belongs to the complexity class BPP (bounded-error proba-
bilistic polynomial time), if there exists a randomized algorithm A that has running time poly(n) on inputs
of length n and satisfies the following for some constant ε > 0:

1. Pr
(
A(x) = 1

) ≥ 1
2 + ε if x ∈ L

2. Pr
(
A(x) = 1

) ≤ 1
2 − ε if x /∈ L

The complexity classes DTIME(t(n)) and BPTIME(t(n)) are defined just as P and BPP, respectively, with
maximum running time poly(n) being replaced by O(t(n)).

Definition A.1.3. A language L ⊆ {0, 1}∗ belongs to the complexity class RP (random polynomial time),
if there exists a randomized algorithm A that has running time poly(n) on inputs of length n and satisfies
the following for some constant ε > 0:

1. Pr
(
A(x) = 1

) ≥ ε if x ∈ L

2. Pr
(
A(x) = 1

)
= 0 if x /∈ L

There are several equivalent ways to define complexity class NP. Definition A.1.4 follows [Weg05].

Definition A.1.4. A language L ⊆ {0, 1}∗ belongs to the complexity class NP (non-deterministic polyno-
mial time), if there exists a randomized algorithm A that has running time poly(n) on inputs of length n
and satisfies the following:

1. Pr
(
A(x) = 1

)
> 0 if x ∈ L

2. Pr
(
A(x) = 1

)
= 0 if x /∈ L

107

A Appendix

Definition A.1.5. A language L1 ⊆ {0, 1}∗ is polynomial time reducible to a language L2 ⊆ {0, 1}∗,
denoted L1 ≤p L2, if there is a polynomial time computable function f : {0, 1}∗ → {0, 1}∗, such that for
all x ∈ {0, 1}∗ it holds that x ∈ L1 if and only if f(x) ∈ L2.

Definition A.1.6. A language L ∈ NP is said to be NP-complete, if L′ ≤p L for all L′ ∈ NP.

We proceed by reviewing some standard complexity classes for optimization problems. The following
definitions are taken from [Vaz03] and [Weg05]. An optimization problem Π consists of:

• DΠ: The set of valid instances. The size |I| of an instance I ∈ DΠ denotes the number of bits
needed to encode the instance in binary.

• SΠ(I): The set of feasible solutions for instance I ∈ DΠ.

• objΠ: The objective function assigning values objΠ(I, s) to pairs of instances I ∈ DΠ and solutions
s ∈ SΠ(I).

Finally, it has to be specified whether the objective function needs to be minimized or maximized. We let
optΠ(I) denote the minimum or maximum objective function value obtainable on instance I , depending on
whether Π is a minimization or maximization problem. Given optimization problem Π we can define the
corresponding decision problem as the language LΠ = {(I, s) | I ∈ DΠ ∧ s ∈ SΠ(I)}. We say that Π is
an NP-optimization problem if LΠ ∈ P. For a minimization [maximization] problem Π the approximation
ratio rΠ(I, s) of a solution s to instance I is defined as:

rΠ(I, s) =
optΠ(I)

objΠ(I, s)

[
rΠ(I, s) =

objΠ(I, s)
optΠ(I)

]

The approximation ratio (or approximation guarantee) of an algorithm A for optimization problem Π is
defined as

rA(n) = sup{rΠ(I,A(I)) | I : |I| ≤ n}.
In some places rA(n) and rA(n)−1 are used interchangeably for ease of notation. An algorithm with
approximation ratio rA(n) is called an rA(n)-approximation algorithm for Π. Problem Π is said to be
approximable within rA(n) (in polynomial time), if a (polynomial time) rA(n)-approximation algorithm
exists for Π.

Definition A.1.7. An optimization problem Π belongs to the complexity class APX, if there exists an
algorithm A with running time poly(|I|) on input I and a constant c, such that A(I) ∈ SΠ(I) and
rA(n) ≤ c for all I ∈ DΠ.

Definition A.1.8. A PTAS reduction of an optimization problem Π1 to an optimization problem Π2, de-
noted Π1 ≤PTAS Π2 consist of a triple (f, g, α) of functions with the following properties:

1. f(I) ∈ DΠ2 for all I ∈ DΠ1 . Furthermore, f is computable in polynomial time.

2. g(I, s, ε) ∈ SΠ1(I) for all s ∈ SΠ2(f(I)) and ε ∈ Q+.

3. α : Q+ → Q+ is surjective and polynomial time computable.

108

A.2 Some Basics of Probability Theory

4. If rΠ2(f(I), s) ≤ 1 + α(ε), then rΠ1(I, g(I, s, ε)) ≤ 1 + ε.

Definition A.1.9. An optimization problem Π ∈ APX is said to be APX-hard, if Π′ ≤PTAS Π for all Π′ ∈
APX.

Definition A.1.10. An algorithm A for optimization problem Π is called a PTAS (polynomial time approx-
imation scheme), if on input I ∈ DΠ and ε ∈ Q+ it has running time poly(|I|) and produces a solution
A(I) ∈ SΠ(I) with rΠ(I,A(I)) ≤ 1 + ε.

Consequently, if any APX-hard problem Π had a PTAS, the same would be true for any problem in the
class APX. By the PCP-theorem this would be equivalent to P = NP.

Definition A.1.11. An algorithm A for optimization problem Π is called an FPTAS (fully polynomial time
approximation scheme), if on input I ∈ DΠ and ε ∈ Q+ it has running time poly(|I|, ε−1) and produces
a solution A(I) ∈ SΠ(I) with rΠ(I, A(I)) ≤ 1 + ε.

A.2 Some Basics of Probability Theory

We briefly review some basics from probability theory and some important inequalities. For a thorough in-
troduction to the field the reader is referred to [Fri96] or [MR95]. Recall that a probability space (Ω,F, Pr)
consists of a σ-field (Ω,F) (i.e., a sample space Ω and a collection F of subsets of Ω that has ∅ as a member
and is closed under complementation and countable unions) and a probability measure Pr : F → R+

0 .
For an event E ∈ F, Pr(E) denotes its probability. For our purposes it is sufficient to think of F as 2Ω. The
following definitions and inequalities are taken from [MR95].

Definition A.2.1. Let E1, E2 ∈ F. The conditional probability of E1 given E2 is defined as

Pr(E1 | E2) =
Pr(E1 ∩ E2)

Pr(E2)
,

assuming that Pr(E2) > 0.

Definition A.2.2. A random variable X is a real valued function X : Ω → R, such that for all x ∈ R we
have that {ω ∈ Ω |X(ω) ≤ x} ∈ F.

Similar to the probability measure on F a density function describes the distribution of a random variable.
We will restrict ourselves to discrete random variables whose range is either a finite or countably infinite
subset of R.

Definition A.2.3. The density function pX : R → [0, 1] for a random variable X is defined as pX(x) =
Pr(X = x). Similarly, the joint density function pX,Y : R × R → [0, 1] of two random variables X , Y
is defined as pX,Y (x, y) = Pr(X = x ∧ Y = y).

Definition A.2.4. Random variables X and Y are said to be independent if for all x, y ∈ R,

pX,Y (x, y) = Pr(X = x) · Pr(Y = y).

109

A Appendix

Definition A.2.5. The expectation of a random variable X with density function pX is defined as

E[X] =
∑

x

xpX(x).

Lemma A.2.6. Let X1, . . . , Xn be random variables, c1, . . . , cn ∈ R. It holds that

E[
n∑

i=1

ciXi] =
n∑

i=1

ciE[Xi].

This property is referred to as linearity of expectation.

Note that linearity of expectation does not require independence of the random variables. Finally, we state
two important inequalities.

Theorem A.2.7 (Markov Inequality). Let X be a random variable assuming only non-negative values.
Then, for all t ∈ R+, it holds that

Pr(X ≥ t) ≤ E[X]
t

.

Theorem A.2.8 states simplified versions of the Chernoff tail inequalities as used in Chapter 5.

Theorem A.2.8 (Chernoff Bound). Let X1, . . . , Xn ∈ {0, 1} be independent random variables with
Pr(Xi = 1) = pi for 1 ≤ i ≤ n. Then, for X =

∑n
i=1 Xi, µ = E[X] and any 0 < δ ≤ 2e − 1, it

holds that
Pr(X > (1 + δ)µ) ≤ e−

µδ2

4 .

For any δ ≥ 2e− 1 it holds that

Pr(X > (1 + δ)µ) ≤ e−(1+δ)µ.

Similarly, for any 0 < δ ≤ 1 it holds that

Pr(X < (1− δ)µ) ≤ e−
µδ2

2

110

B List of Symbols

.

C a set of unit-demand consumer samples
D a distribution over unit-demand consumers
e the Euler constant

E[X] expectation of the random variable X
ED[X] expectation of the random variable X according to distribution D
G-SMP the single-minded pricing problem on networks

Hk the k’th harmonic number
∑k

i=1
1
i ≈ ln k

MES the maximum expanding sequence problem
N the natural numbers

O(·), Ω(·), o(·), ω(·) standard assymptotic notation
p a price assignment

poly(n) O(nc) for some constant c
Pr(E) probability of event E

PrD(E) probability of event E according to distribution D
Q the rationals
R the reals
R+ the positive reals
R+

0 the positive reals including 0
rs(p) the revenue of price assignment p in unit-demand pricing with selection rule s

R3SAT?(t(n)) see Definition 5.2.2
SMP the single-minded pricing problem
U a universe of products

UDP(C)-s unit-demand pricing with consumer samples C and selection rule s
UDP(D)-s unit-demand pricing with consumer distribution D and selection rule s

UDP(C)-s-PL unit-demand pricing with consumer samples C, selection rule s and price-ladder
UDP(D)-s-PL unit-demand pricing with consumer distribution D, selection rule s and price-ladder

STACK the general Stackelberg pricing game
STACKVC the bipartite Stackelberg vertex cover pricing game

111

112

Bibliography

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi.
Complexity and Approximation. Springer, 1999.

[AFMZ04] G. Aggarwal, T. Feder, R. Motwani, and A. Zhu. Algorithms for Multi-Product Pricing. In
Proc. of 31st International Colloquium on Automata, Languages and Programming (ICALP),
pages 72–83, 2004.

[AFWZ95] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized Graph Products. Com-
putational Complexity, 5(1):60–75, 1995.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and Hardness
of Approximation Problems. Journal of the ACM, 45(3):501–555, 1998.

[AT01] A. Archer and E. Tardos. Truthful Mechanisms for One-Parameter Agents. In Proc. of 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–491, 2001.

[BB06] N. Balcan and A. Blum. Approximation Algorithms and Online Mechanisms for Item Pric-
ing. In Proc. of 7th ACM Conference on Electronic Commerce (EC), pages 29–35, 2006.

[BBCH07] M. Balcan, A. Blum, H. Chan, and M. Hajiaghayi. A Theory of Loss-Leaders: Making
Money by Pricing Below Cost. Technical Report CMU-CS-07-143, Carnegie Mellon Uni-
versity, 2007.

[BBHM05] N. Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism Design via Machine Learning.
In Proc. of 46th IEEE Symposium on Foundations of Computer Science (FOCS), pages 605–
614, 2005.

[BBM07] M. Balcan, A. Blum, and Y. Mansour. Single Price Mechanisms for Revenue Maximization
in Unlimited Supply Combinatorial Auctions. Technical Report CMU-CS-07-111, Carnegie
Mellon University, 2007.

[BCES06] N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A Quasi-PTAS for Unsplittable Flow
on Line Graphs. In Proc. of the 38th ACM Symposium on Theory of Computing (STOC),
pages 721–729, 2006.

[BGvH+04] M. Bouhtou, A. Grigoriev, S. van Hoesel, A. van der Kraaij, and M. Uetz. Pricing Network
Edges to Cross a River. In Proc. of 2nd Workshop on Approximation and Online Algorithms
(WAOA), pages 140–153, 2004.

[BHK07] P. Briest, M. Hoefer, and P. Krysta. Stackelberg Network Pricing Games. Technical Report
ULCS-07-022, The University of Liverpool, 2007.

113

Bibliography

[BK06] P. Briest and P. Krysta. Single-Minded Unlimited-Supply Pricing on Sparse Instances. In
Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1093–1102,
2006.

[BK07] P. Briest and P. Krysta. Buying Cheap is Expensive: Hardness of Non-Parametric Multi-
Product Pricing. In Proc. of 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 716–725, 2007.

[BKV05] P. Briest, P. Krysta, and B. Vöcking. Approximation Techniques for Utilitarian Mechanism
Design. In Proc. of 37th ACM Symposium on Theory of Computing (STOC), pages 39–48,
2005.

[Blu91] A. Blum. Algorithms for Approximate Graph Coloring. PhD thesis, MIT Laboratory for
Computer Science, 1991. MIT/LCS/TR-506.

[Bri06] P. Briest. Towards Hardness of Envy-Free Pricing. Technical Report TR06-150, ECCC,
2006.

[BS92] P. Berman and G. Schnitger. On the Complexity of Approximating the Independent Set
Problem. Information and Computation, 96(1):77–94, 1992.

[CCPS98] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial Optimization.
John Wiley & Sons, 1998.

[CDF+07] J. Cardinal, E. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Weimann.
The Stackelberg Minimum Spanning Tree Game. In Proc. of 10th Workshop on Algorithms
and Data Structures (WADS), pages 64–76, 2007.

[CDR03] R. Cole, Y. Dodis, and T. Roughgarden. Pricing Network Edges for Heterogeneous Selfish
Users. In Proc. of 35th ACM Symposium on Theory of Computing (STOC), pages 521–530,
2003.

[CHK07] S. Chawla, J. Hartline, and R. Kleinberg. Algorithmic Pricing via Virtual Valuations. In
Proc. of 8th ACM Conference on Electronic Commerce (EC), pages 243–251, 2007.

[CSS06] P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT Press,
2006.

[DFHS06] E. Demaine, U. Feige, M. Hajiaghayi, and M. Salavatipour. Combination Can Be Hard:
Approximability of the Unique Coverage Problem. In Proc. of 17th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 162–171, 2006.

[EGL+98] G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic. Efficient Approximation of
Product Distributions. Random Structures and Algorithms, 13(1):1–16, 1998.

[ESZ07] K. Elbassioni, R. Sitters, and Y. Zhang. A Quasi-PTAS for Envy-Free Pricing on Line
Graphs. In Proc. of 15th Annual European Symposium on Algorithms (ESA), 2007. To
appear.

114

Bibliography

[Fei02] U. Feige. Relations between Average Case Complexity and Approximation Complexity. In
Proc. of 34th ACM Symposium on Theory of Computing (STOC), pages 534–543, 2002.

[FHKS02] U. Feige, M. Halldorsson, G. Kortsarz, and A. Srinivasan. Approximating the Domatic
Number. SIAM Journal on Computing, 32(1):172–195, 2002.

[FK04] U. Feige and S. Kogan. Hardness of Approximation of the Balanced Complete Bipartite
Subgraph Problem. Technical Report MCS04-04, Dept. of Computer Science and Applied
Mathematics, The Weizmann Institute of Science, 2004.

[FPT04] A. Fabrikant, C. Papadimitriou, and K. Talwar. The Complexity of Pure Nash Equilibria. In
Proc. of 36th ACM Symposium on Theory of Computing (STOC), pages 604–612, 2004.

[Fri96] B. Fristedt. A Modern Approach to Probability Theory. Birkhäuser, 1996.

[GHK+05] V. Guruswami, J. Hartline, A. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On Profit-
Maximizing Envy-Free Pricing. In Proc. of 16th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1164–1173, 2005.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, 1979.

[GRR06] P. Glynn, P. Rusmevichientong, and B. Van Roy. A Non-Parametric Approach to Multi-
Product Pricing. Operations Research, 54(1):82–98, 2006.

[GvLS+07] A. Grigoriev, J. van Loon, M. Sviridenko, M. Uetz, and T. Vredeveld. Bundle Pricing with
Comparable Items. In Proc. of the 15th Annual European Symposium on Algorithms (ESA),
2007. To appear.

[HK05] J. Hartline and V. Koltun. Near-Optimal Pricing in Near-Linear Time. In Proc. of 9th Work-
shop on Algorithms and Data Structures (WADS), pages 422–431, 2005.

[HLW06] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and Their Applications. Bulletin
of the AMS, 43:439–561, 2006.

[KB57] T. Koopmans and M. Beckmann. Assignment Problems and the Location of Economic Ac-
tivities. Econometrica, 25:53–76, 1957.

[Kho02] S. Khot. On the Power of Unique 2-Prover 1-Round Games. In Proc. of 34th ACM Sympo-
sium on Theory of Computing (STOC), pages 767–775, 2002.

[Kho04] S. Khot. Ruling out PTAS for Graph Min-Bisection, Densest Subgraph and Bipartite Clique.
In Proc. of 45th IEEE Symposium on Foundations of Computer Science (FOCS), pages 136–
145, 2004.

[KMR07] R. Krauthgamer, A. Mehta, and A. Rudra. Pricing Commodities, or How to Sell When
Buyers Have Restricted Valuations. In Proc. of 5th Workshop on Approximation and Online
Algorithms (WAOA), 2007. To appear.

[KP99] E. Koutsoupias and C. Papadimitriou. Worst-Case Equilibria. In Proc. of 16th Symposium
on Theoretical Aspects of Computer Science (STACS), pages 404–413, 1999.

115

Bibliography

[LMS98] M. Labbé, P. Marcotte, and G. Savard. A Bilevel Model of Taxation and its Application to
Optimal Highway Pricing. Management Science, 44(12):1608–1622, 1998.

[MN02] A. Mu’alem and N. Nisan. Truthful Approximation Mechanisms for Restricted Combina-
torial Auctions, 2002. In AAAI (poster), 2002. Also presented at Dagstuhl Workshop on
Electronic Market Design.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[Mye81] R. Myerson. Optimal Auction Design. Mathematics of Operations Research, 6:58–73, 1981.

[NR99] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of 31st ACM Symposium
on Theory of Computing (STOC), pages 129–140, 1999.

[Owe95] G. Owen. Game Theory, 3rd Ed. Academic Press, 1995.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pap01] C. Papadimitriou. Algorithms, Games, and the Internet. In Proc. of 33rd ACM Symposium
on Theory of Computing (STOC), pages 749–753, 2001.

[Pro] http://www.myproductadvisor.com/.

[PS98] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover Publications, 1998.

[PY91] C. Papadimitriou and M. Yannakakis. Optimization, Approximation and Complexity
Classes. Journal of Computer and System Sciences, 43:425–440, 1991.

[Rou04] T. Roughgarden. Stackelberg Scheduling Strategies. SIAM Journal on Computing,
33(2):332–350, 2004.

[RSM05] S. Roch, G. Savard, and P. Marcotte. An Approximation Algorithm for Stackelberg Network
Pricing. Networks, 46(1):57–67, 2005.

[Rus03] P. Rusmevichientong. A Non-Parametric Approach to Multi-Product Pricing: Theory and
Application. PhD thesis, Stanford University, 2003.

[ST06] A. Samorodnitsky and L. Trevisan. Gowers Uniformity, Influence of Variables, and PCPs.
In Proc. of 38th ACM Symposium on Theory of Computing (STOC), pages 11–20, 2006.

[Swa07] C. Swamy. The Effectiveness of Stackelberg Strategies and Tolls for Network Congestion
Games. In Proc. of 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1133–1142, 2007.

[Vaz03] V. V. Vazirani. Approximation Algorithms. Springer, 2003.

[vH06] S. van Hoesel. An Overview of Stackelberg Pricing in Networks. Research Memoranda 042,
METEOR, Maastricht, 2006.

[vS34] H. von Stackelberg. Marktform und Gleichgewicht. Verlag von Julius Springer, Wien, 1934.

116

Bibliography

[Weg05] I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms. Springer,
2005.

[Zuc06] D. Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. In Proc. of 38th ACM Symposium on Theory of Computing (STOC),
pages 681–690, 2006.

117

