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Abstract

We propose a completely kernel based method of estimating the call price function
or the state price density of options. The new estimator of the call price function fulfills
the constraints like monotonicity and convexity given in Breeden and Litzenberger (1978)
without necessarily estimating the state price density for an underlying asset price from
its option prices. It can be shown that the estimator is pointwise consistent and asymptot-
ically normal. In a simulation study we compare the new estimator to the unconstrained
kernel estimator and to the estimator given in Aı̈t-Sahalia and Duarte (2003).

Keywords: Call pricing function, constrained nonparametric estimation, monotone rearrange-
ments, state price density

1 Introduction

Research about estimating probability density functions (PDF) implied in option prices has
been an ongoing topic since the pioneering work of Breeden and Litzenberger (1978). They
observed that by expressing the call price C as the discounted expectation under the equivalent
martingale measure Q of the payoff function at expiration time T of the option, i.e.

C(t, T, St, K, rt,T , dt,T ) = e−rt,T (T−t)
EQ[max(ST − K, 0)]

= e−rt,T (T−t)

+∞
∫

K

(ST − K) pQ(ST ) dST , (1)

and differentiating this equation two times with respect to K, the following relationship between
call price and PDF holds,

∂2C(t, T, St, K, rt,T , dt,T )

∂K2 = e−rt,T (T−t)pQ(K). (2)
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Here, K denotes the strike of the option, t the valuation time and pQ the PDF related to the
equivalent martingale measure, which is also named state price density (SPD). The risk free rate
rt,T and the dividend yield dt,T are assumed to be deterministic continuous rates, dependent on
the valuation time t and the maturity T .

Many approaches perform a parametric fit to the SPD or to the implied volatility function from
which the call prices can be computed by (1) or by the Black-Scholes equation, respectively. In
the latter case, which was first introduced by Shimko (1993), the Black-Scholes equation is used
only for transformation, i.e. the returns of the underlying asset price process are not assumed
to be log-normally distributed. For a comprehensive review of parametric methods we refer
to Jackwerth (2004). These approaches have in common that they assume a functional form
at some stage of the estimation procedure. Since there are no generally accepted parametric
forms for asset price dynamics, for volatility surfaces or for call and put price functions, the
use of parametric models for estimating the implied PDF bears the risk of introducing sys-
tematic errors. The nonparametric approach of estimating SPDs tries to overcome this risk of
misspecification. Aı̈t-Sahalia and Lo (1998) use a nonparametric kernel estimator of Nadaraya-
Watson type for the SPD with the 5-dimensional design space consisting of spot, strike, time
to maturity, interest rate and dividend yield. Since kernel estimators become very data in-
tensive when the number of dependent variables is large (so called ”curse of dimensionality”,
cf. Fan and Gijbels (1996)) this approach requires sample sizes which can only be achieved
by using historical data, which in turn requires the questionable assumption of i.i.d. sample
points for the considered period. Several dimension reduction techniques are also discussed by
Aı̈t-Sahalia and Lo (1998) to overcome this problem, e.g. the semiparametric estimator based
on the Black-Scholes formula except that the implied volatility function is a nonparametric
function of forward price, strike and time to maturity.
Aı̈t-Sahalia and Duarte (2003) consider the call price (1) as a 1-dimensional function of the
strike alone, by using only options with equal time to maturity and assuming that interest
rate and dividend yield are deterministic functions of t and T . This reduction to only one
dimension has two major advantages: First, the method becomes even applicable to marked-
to-market option valuation, because no historical data is needed in the estimation procedure.
Second, no-arbitrage conditions (in the direction of the strike) can be incorporated in the
estimation procedure more easily (see section 2.2). On the other hand, there are basically two
consequences of the imposed restrictions in relation to the full nonparametric approach given
in Aı̈t-Sahalia and Lo (1998). First, since every SPD related to a certain option maturity has
to be estimated seperately, one does not get a density surface, but only slices of particular
SPDs or call price functions respectively. This is not a major disadvantage because even in
the case of time to maturity as a dependent variable the values for times between two market
maturities are interpolated by the kernel method and it is not assured that the corresponding
call price function is arbitrage-free. Second, interest rates and dividend yields are assumed to
be deterministic functions of valuation time t and time to maturity T , which is apparently not
a realistic assumption. This implies that an estimated SPD is only valid as long as the funtions
rt,T and dt,T have not changed.

Aı̈t-Sahalia and Duarte (2003) estimate the call pricing function by applying a constrained least
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squares procedure in a first step and smoothing the result in a second step using local polyno-
mials. Recently, Yatchew and Härdle (2006) introduced a further constrained nonparametric
least squares estimator. They also assume the call price to be a function only depending on the
strike price. Different from the method described in Aı̈t-Sahalia and Duarte (2003) they use a
nonparemtric least squares approach which directly yields a two times differentiable estimator.
There exist many other nonparametric approaches different from kernel methods and for a more
complete overview we refer to Fengler (2005) and Jackwerth (2004).

In this paper we propose a further nonparametric estimator of the 1-dimensional call pricing
function (1) with strike as dependend variable and the other arguments fixed. Kernel methods
– regression as well as density estimation – are the building blocks of a method for convex
regression estimation proposed by Birke and Dette (2007). This method relies on a monotoniz-
ing procedure described in Dette, Neumeyer and Pilz (2006) which is applied to the derivative
of an unconstrained estimator. We slightly change this method to satisfy further restrictions
imposed by the no-arbitrage condition. Our approach allows to estimate the call price function
without calculating the corresponding SPD, i.e. the second derivative of the call price func-
tion. When only an interpolation between observed call prices is needed this technique might
be advantageous, because estimation becomes more cumbersome when higher order derivatives
have to be estimated. Furthermore it is also possible to estimate the SPD from our approach
(see Remark 3.1).

The rest of this paper is organized as follows: In section 2 we review a few details about
nonparametric kernel estimators which are required for our approach. We also discuss there how
the no-arbitrage conditions can be formulated in an adequate way for our estimator. In section
3, we define our estimator of the call pricing function and discuss its asymptotic properties.
As a main result Theorem 3.3 states asymptotic normality of our estimator. A finite sample
simulation is given in section 4. Further, we compare our estimator to the estimator proposed
by Aı̈t-Sahalia and Duarte (2003), which is comparable to our estimator in the sense that they
also use kernel methods for construction. Finally, section 5 gives a short conclusion of the
results. The proofs are deferred to the appendix.

2 Preliminaries: Kernel estimators and no-arbitrage con-

ditions

2.1 Local polynomial estimation

In this subsection we give an introduction to the concepts of kernel estimators since they are
building blocks for our approach given in section 3. For a detailed and comprehensive treatment
of nonparametric kernel methods we refer to Fan and Gijbels (1996).
Consider a nonparametric regression model

Y = C(X) + σ(X)ε

and a bivariate sample {Xi, Yi}1≤i≤n of independent observations from that model. It is assumed
that X has a positive twice continuously differentiable density f with compact support D.
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The random variables εi are i.i.d. with E[εi] = 0 and Var(ε2
i ) = 1, i = 1, . . . , n, and finite

fourth moment. The variance function σ : D → R
+ and the regression function C : D → R

are assumed to be continuous and twice continuously differentiable, respectively. Therefore,
the equation E[Y |X = x] = C(x) holds and approximating this value locally for z in a
neighbourhood of x gives

C(z) ≈
p

∑

k=0

C(k)(x)

k!
· (z − x)k.

The unknown values αk(x) ≡ C(k)(x)/k! of the regression function can be estimated from the
sampled data by a weighted least squares method, that is by minimizing

n
∑

i=1

{

Yi −
p

∑

k=0

αk(x) · (Xi − x)k
}2

· Kh(Xi − x), (3)

where the kernel function Kh(X − x) ≡ K((X − x)/h)/h integrates to one and the expansion
of the neighbourhood around x included in the estimate is controlled by the bandwidth h. If
α̂k ≡ α̂k(x) denotes the estimated coefficients, estimated values for the regression function and
their derivatives are given by

Ĉ(k)(x) ≡ Ĉk,p(x) ≡ k! α̂k(x). (4)

Let A denote the design matrix of (3), y the vector of observed function values and α̂p(x) the
vector of estimated coefficients,

A =







1 (X1 − x) · · · (X1 − x)p

...
...

...
1 (Xn − x) · · · (Xn − x)p






, y =







Y1
...

Yn






, α̂ =







α̂0
...

α̂p






.

Further, let W be the diagonal matrix of weights determined by the bandwidth and kernel
function,

W = diag(Kh(X1 − x), · · · , Kh(Xn − x)).

Then the general solution of (3) is given by weighted least squares theory,

α̂ = (AT WA)−1AT Wy,

where the superscript T denotes transposition of a matrix. In particular, for p = 0 the function
fitted locally around x in (3) is constant and the resulting estimator

Ĉ0,0(x) =

n
∑

i=1

Kh(Xi − x)Yi

n
∑

i=1

Kh(Xi − x)

is called Nadaraya-Watson estimator.
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Remark 2.1 Note that by equation (4) for a local polynomial estimate with order p all deriva-
tives of the regression function up to order p are part of the estimate. But they are usually
different from the derivatives of the estimate Ĉ0,p, i.e. in general

∂kĈ0,p

∂xk
(x) 6= Ĉk,p(x).

2.2 Monotonicity and convexity as no-arbitrage constraints

The representation (1) of the call price function by the expectation under the equivalent mar-
tingale measure is established by the fundamental work of Cox and Ross (1976) and Harrison
and Kreps (1979). Differentiation in (1) with respect to the strike K yields

∂C(t, T, St, K, rt,T , dt,T )

∂K
= −e−rt,T (T−t)

+∞
∫

K

pQ(ST ) dST .

By setting K to 0 and +∞, respectively, the boundaries

−e−rt,T (T−t) ≤ ∂C(t, T, St, K, rt,T , dt,T )

∂K
≤ 0

follow. Taking the partial derivative with respect to K again results in equation (2) from which
the condition

∂2C(t, T, St, K, rt,T , dt,T )

∂K2
≥ 0

is derived. Since we deal only with derivatives with respect to K we write these two conditions
for short by

−e−rt,T (T−t) ≤ C ′(K) ≤ 0, (5)

C ′′(K) ≥ 0. (6)

For the option pricing function no-arbitrage bounds

max(0, Ste
−dt,T (T−t) − Ke−rt,T (T−t)) ≤ C(K) ≤ Ste

−dt,T (T−t) (7)

have to be satisfied. When the constraints (5) and (6) are already satisfied, (7) reduces to

C(0) = Ste
−dt,T (T−t) (8)

C(K) ≥ 0 ∀K ∈ [0, +∞). (9)

Indeed, (5) and (6) imply that C is a convex and monotone decreasing function of K, hence
together with (8) and (9) the inequalities 0 ≤ C(K) ≤ Ste

−dt,T (T−t) hold. To see, that also

Ste
−dt,T (T−t) − Ke−rt,T (T−t) ≤ C(K)
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is true, note that (8) can be written as

C(0) − e−rt,T (T−t)(K − 0) + Ke−rt,T (T−t) = Ste
−dt,T (T−t).

Because of (5) we get for any ξ > 0

C(0) + C ′(ξ)(K − 0) + Ke−rt,T (T−t) ≥ Ste
−dt,T (T−t),

this also holds for that ξ with

C(K) = C(0) + C ′(ξ)(K − 0)

and therefore yields
C(K) + Ke−rt,T (T−t) ≥ Ste

−dt,T (T−t).

Remark 2.2 Aı̈t-Sahalia and Duarte (2003) derive a different representation of (7). By using
relationship (2) they show that these constraints can be expressed by

+∞
∫

0

C ′′(K) dK = e−rt,T (T−t) (10)

+∞
∫

0

KC ′′(K) dK = e−rt,T (T−t)F (t, T ), (11)

where F (t, T ) is the forward with maturity T . Since we want to keep the opportunity to
estimate the option price function without using the second derivative C ′′ we have chosen the
representations (8) and (9).

The construction of our estimator is accomplished in the next section by the following steps.
First an estimator Ĉ ′(K) will be defined that satisfies conditions (5) and (6). From this es-
timator either the SPD can be estimated by further differentiation or the call price function
can be derived by integration. In both cases the estimator will be modified with respect to
the remaining condition (7), either by using (10) and (11), or by using (8) and (9) in a way
specified in the following section.

3 Constrained Estimation of Price Functions and State

Price Densities

In this section we introduce a completely kernel based estimator of the call price function which
fulfills the restrictions stated in section 2.2. The method is a modification of the convex kernel
estimator of a regression function C which has recently been proposed by Birke and Dette
(2007). The authors use the fact that a differentiable function C is convex if and only if its
first derivative is increasing. Therefore they apply a monotonizing procedure given in Dette,
Neumeyer and Pilz (2006) to the first derivative of an unconstrained kernel estimator of the
regression function. The primitive of this isotonization is the convex estimator of the regression
function.
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3.1 Monoton rearrangements of estimators

First we shortly introduce the monotonizing procedure mentioned above. If U is a uniformly
distributed random variable on the interval [0, 1] and g is a strictly increasing differentiable
function, then g(U) has the density

(g−1)′(u)I[g(0),g(1)](u) (12)

and its distribution function is given by

∫ t

−∞

(g−1)′(u)I[g(0),g(1)](u)du =

∫ 1

0

I{g(z) ≤ t}dz = g−1(t)

for t ∈ [g(0), g(1)].
For a positive kernel Kd of order 2 and a bandwidth hd

1

hd

∫ 1

0

Kd

(g(v) − u

hd

)

dv

is a smoothed version of the density in (12) and the corresponding distribution function is given
by

1

hd

∫ 1

0

∫ t

−∞

Kd

(g(v) − u

hd

)

dudv (13)

which is, by the argumentation above, also an approximation of the inverse g−1 of the function
g. If the function g is not increasing, the functions

φ(g)(t) =

∫ 1

0

I{g(z) ≤ t}dz

and

φhd
(g)(t) =

1

hd

∫ 1

0

∫ t

−∞

Kd

(g(v) − u

hd

)

dudv

are still increasing because they are distribution functions and their generalized inverses are
increasing approximations of the function g. This method of obtaining an increasing function
from an arbitrary one is also called increasing rearrangement (see e.g. Bennett and Sharpley,
1988).
In the context of convex function estimation we need in a first step an increasing rearrangement
of the derivative of a regression estimate. If Ĉ is a consistent and differentiable estimator of
the regression function C and Ĉ ′(x) = (∂/∂x)Ĉ(x) denotes its first derivative, then

φhd
(Ĉ ′)(t) =

1

hd

∫ 1

0

∫ t

−∞

Kd

(Ĉ ′(v) − u

hd

)

dudv (14)

is an increasing estimator of C ′−1. The increasing estimator φhd
(Ĉ ′)−1(t) of the derivative C ′

is then obtained by inversion. Because Ĉ is a consistent estimator of the regression function
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which is convex, the unconstrained estimator Ĉ ′ of the derivative should be nearly increasing if
the sample size n is large enough and should therefore only differ slightly from the increasing
estimator φhd

(Ĉ ′)−1(z). A convex estimator of the regression function C is then given by

C̃hd
(x, a) =

∫ x

a

φhd
(Ĉ ′)−1(z)dz + Ĉ(a) (15)

for any a ∈ [0, 1]. Birke and Dette (2007) show that the so defined convex regression estimator
has asymptotically the same and in finite samples a very similar behavior as the unconstrained
estimator Ĉ one starts with. For the setting of estimating a call price function it is important
that, in addition to the convexity, the derivative of the estimator fulfills the boundary conditions
described in section 2.2. This is not guaranteed by using the estimator C̃hd

(x, a). By cutting
the derivative of the regression estimate or its isotone rearrangement at the bounds it can be
forced to fulfill these conditions. So, if cl and cu denote the lower and upper bound of C ′ in (5),

C̆hd
(x, a) =

∫ x

a

φhd
(C̆ ′)−1(z)dz + Ĉ(a) (16)

with
C̆ ′(x) = Ĉ ′(x)I{cl ≤ Ĉ ′(x) ≤ cu} + clI{Ĉ ′(x) < cl} + cuI{cu < Ĉ ′(x)}

and

Ĉhd
(x, a) =

∫ x

a

φ̃hd
(Ĉ ′)−1(z)dz + Ĉ(a) (17)

with

φ̃hd
(Ĉ ′)−1(z) = φhd

(Ĉ ′)−1(z)I{cl ≤ φhd
(Ĉ ′)−1(z) ≤ cu}

+clI{φhd
(Ĉ ′)−1(z) < cl} + cuI{cu ≤ φhd

(Ĉ ′)−1(z)}dz

for all x ∈ [0, 1] and any fixed lower integration bound a ∈ [0, 1] are two reasonable estimates
of the call price function. It has proven to be more manageable for the asymptotic consider-
ation to cut after the isotonization but both methods result in nearly the same estimate. As
described in Birke and Dette (2007) the choice of the lower integral bound a is irrelevant for
the asymptotic behavior of the estimator but plays an important role in finite sample settings
if the unconstrained estimator is not convex. Therefore we now define L2-optimal estimators
of the call price function, that means, convex estimators that minimize the L2-distance to the
unconstrained estimator Ĉ.

Theorem 3.1 Let Φhd
denote a function with (Φhd

)′ = φhd
(C̆ ′)−1 or (Φhd

)′ = φ̃hd
(Ĉ ′)−1,

respectively. The point a∗ ∈ [0, 1] minimizes the L2-distance

∫ 1

0

(Ĉ(x) − C̆hd
(x, a))2dx

or
∫ 1

0

(Ĉ(x) − Ĉhd
(x, a))2dx
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if and only if it fulfills

Ĉ(a∗) − Φ̆hd
(a∗) =

∫ 1

0

(Ĉ(a) − Φ̆hd
(a))da.

Then we have

C̆hd
(x, a∗) =

∫ 1

0

C̆hd
(x, a)da.

and

Ĉhd
(x, a∗) =

∫ 1

0

Ĉhd
(x, a)da

Remark 3.1 A reasonable estimator of the SPD can be obtained by differentiating φhd
(C̆ ′)−1,

that is

e−rt,T (T−t)p̂Q(x) =
∂

∂x
φhd

(C̆ ′)−1(x)

=
1

φhd
(C̆ ′)′(φhd

(C̆ ′)−1(x))

and

p̂Q(x) =
hde

rt,T (T−t)

∫ 1

0
Kd

(

C̆′(v)−φhd
(C̆′)−1(x)

hd

)

dv
.

Because φ̃hd
(Ĉ ′)−1 is not differentiable we cannot use this for estimating the SPD.

3.2 Asymptotic behavior

Birke and Dette (2007) show that the convex estimator defined there has the same asymptotic
behavior as the unconstrained one, that is, both are consistent estimates for C and have asymp-
totically the same normal distribution. The aim of this section is to proof an analog result for
the estimate Ĉhd

(x, a), a ∈ (0, 1) by tracing it back to the situation in Birke and Dette (2007).
For the sake of completeness the theorem given there is again stated in this section. During
the whole section we restrict ourselves to the case of a local constant estimate as unconstrained
estimator of the regression function, that is

Ĉ(x) =

∑n
i=1 Kr

(

x−Xi

hr

)

Yi

∑n
i=1 Kr

(

x−Xi

hr

) (18)

with kernel Kr and bandwidth hr.

Theorem 3.2 (Birke and Dette, 2007) Assume that Kd is a two times continuously differ-

entiable kernel of order 2 and Kr is a three times continuously differentiable kernel of order 3.

Let the bandwidths fulfill

hd, hr → 0, nhd, nhr → ∞, hd/h
3/2
r → 0,

nh7
r = O (1) and (log h−1

r )3/2/nh5
rhd = o (1) .
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If the regression function C is strictly convex and three times continuously differentiable, then

we have for any x ∈ (0, 1) with C
′′

(x) > 0 and any a ∈ (0, 1)

C̃hd
(x, a) − C (x) = Ĉ (x) − C (x) + oP

(

1√
nhr

)

The proof of this theorem strongly relies on the fact that the first derivative of the unconstrained
estimator Ĉ is still two times continuously differentiable. This is not the case for the convex
estimate C̆hd

(x, a) where we start with C̆ ′ as an estimator of the derivative of C. Therefore

we cannot use Theorem 3.2 to show its asymptotic normality. The estimate Ĉhd
(x, a) has the

advantage that its unconstrained estimator is still three times continuously differentiable and
hence, we state the following theorem for Ĉhd

(x, a).

Theorem 3.3 Let Kd be a two times continuously differentiable kernel of order 2, Kr be a

three times continuously differentiable kernel of order 3 and let the bandwidths fulfill

hd, hr → 0, nhd, nhr → ∞, hd/h
3/2
r → 0, h2

r/hd → 0,

nh7
r = O (1) and (log h−1

r )3/2/nh5
rhd = o (1) .

If the regression function C is strictly convex and three times continuously differentiable, then

we have for any x ∈ (0, 1) with C ′′(x) > 0 and any a ∈ (0, 1)

Ĉhd
(x, a) − C(x) = Ĉ(x) − C(x) + oP

(

1√
nhr

)

.

Theorem 3.3 yields that the constrained estimator Ĉhd
of the call pricing function is consistent

if the unconstrained estimator is consistent. Moreover, we obtain the following corollary about
its asymptotic distribution.

Corollary 3.1

√

nhr

(

Ĉhd
(x, a) − C (x) − bn (x)

)

D→ N (0, γ (x))

for any x, a ∈ (0, 1), where the bias and asymptotic variance are given by

bn (x) = h3
rκ3 (Kr)

(Cf)(3) − Cf (3)

f
(x) ,

γ (x) =

∫ 1

−1

K2
r (y) dy

(σ2

f

)

(x) ,

respectively and κ3(Kr) = 1/3!
∫ 1

−1
u3Kr(u)du.

Because Theorem 3.3 and Corollary 3.1 hold for every a ∈ (0, 1) their assertions are also true
for the L2-optimal estimator of the call price function.
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4 Finite Sample Behavior

4.1 The estimator of Aı̈t-Sahalia and Duarte

We will give a brief review of the estimator proposed by Aı̈t-Sahalia and Duarte (2003) which we
will compare in the following simulation study to the estimator defined in the previous section.
The method is a modification of the classical constrained least squares regression problem (see
e.g. Brunk, 1970, Wright, 1982 or Dykstra, 1983) combined with a smoothing step. Assume
that the sampled data of strikes and option prices {Xi, Yi}1≤i≤n is already ordered with respect
to increasing strike prices, i.e. Xi ≤ Xj for 1 ≤ i < j ≤ n. In the first step the option prices
Yi of the sampled data are substituted by values mi which are calculated by the constrained
least squares regression due to Dykstra (1983) (see also Appendix A in Aı̈t-Sahalia and Duarte
(2003) for the application of Dykstra’s algorithm in this context). The algorithm consists in
finding values {mi}1≤i≤n by minimizing

n
∑

i=1

(mi − Yi)
2,

over all tupels (m1, . . . ,mn) ∈ IRn subject to the constraints motivated by conditions (5) and
(6),

−e−rt,T (T−t) ≤ mi+1 − mi

Xi+1 − Xi
≤ 0 for all 1 ≤ i ≤ n − 1,

mi+2 − mi+1

Xi+2 − Xi+1
≥ mi+1 − mi

Xi+1 − Xi
for all 1 ≤ i ≤ n − 2.

In the second step, a local linear estimator is applied to the transformed data {Xi,mi}1≤i≤n,

i.e. Ĉ(1) = Ĉ1,1 is calculated as in (4), but for the estimation of the SPD the true derivative

Ĉ(2) = Ĉ ′
1,1 is taken (instead of Ĉ2,p with some p ≥ 2 for example). This construction enables

us to state, that not only the transformed data mi but also the estimates satisfy the constraints
−e−rt,T (T−t) ≤ Ĉ1,1(x) ≤ 0 and Ĉ ′

1,1(x) ≥ 0 (see Proposition 1 in Aı̈t-Sahalia and Duarte, 2003).
Finally, the conditions given in (7) are satified by modifications of the estimators subject to
(10) and (11). An estimator of the call price function is obtained from Ĉ ′

1,1 by using equations
(1) and (2), that is

ĈAD(K) =

∫ ∞

K

(ST − K)Ĉ ′
1,1(ST )dST .

4.2 Simulation Study

We consider a log-normal SPD,

ϕlog(x) =
1√

2πνx
exp

{

−1

2

( ln(x) − µ

ν

)2}

.

It is well known that in the Black, Scholes and Merton framework (see Black and Scholes, 1973
and Merton, 1973), the price of a call option,

C(K) ≡ C(t, T, St, K, rt,T , dt,T ) = e−dt,T (T−t) St N(d1) − K e−rt,T (T−t) N(d2),
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where N(·) denotes the standard normal distribution function, s the (annualized) volatility of
the log-returns of the underlying asset price and

d1 =
ln(St/K) + (rt,T − dt,T + 1

2
s2)(T − t)

s
√

T − t
, d2 = d1 − s

√
T − t,

induces a lognormal SPD for the random variable ln(ST /St) with mean µ = (rt,T − dt,T −
1
2
s2)(T − t) and variance ν2 = s2(T − t). For simplicity we have set the interest rate rt,T and the

dividend yield dt,T equal to zero and the other parameters to common values (except µ which
calculates from the relation above),

St = 100.0, µ = 4.5851, ν = 0.2 and T − t = 1.

In practice, not for every considerable strike in the interval [0, +∞] of the underlying asset
options are traded, but typically only for some certain strikes in a range [a, b] around the actual
spot value St. If the underlying asset trades in a bullish regime the actual spot St will be closer
to b, and if it trades in a bearish regime it will be closer to a. To depict this we assume that we
can observe n = 51 tradeable call prices with strikes equally spaced within the intervall [50, 170].
Due to different liquidity of the options, the existence of bid/ask spreads and transactions costs,
the observed call prices do not exactly match the theoretical prices of the call price function.
Therefore, the model for the observed call prices is

Yi = C(Ki) + εi (i = 1, . . . , 51 = n), (19)

with i.i.d. εi ∼ N(0, σ2) and σ = 1.5. Note that this model does not exclude sampled call prices
which are negative and thus allow for arbitrage. In our opinion the model is still appropriate,
if a heteroscedastic variance function is used, i.e. Var(εi) = σ2(Ki) for all strikes. The variance
function σ2 must then reflect what can be observed in practice, namely that the variance of
the sampled call prices tends to zero, when strikes increase and call prices get close to zero,
respectively. Since we want to compare the estimator proposed in the previous section to the
unconstrained kernel estimator, we refrain to model the variance homoscedastically to make
the differences more clearly, which arise from the two approaches.
Figure 1 shows from left to right the true call price function with one of the simulated samples,
the derivative of the call price function and the SPD.

The estimator is now constructed in three steps. First, for 80 equidistant values a in the
interval [50, 170] estimators Ĉhd

(x, a) are computed as given in (17). According to theorem

3.1 the expression Ĉhd
(x) ≡ Ĉhd

(x, a∗) = 170−50
80

∑80
i=1 Ĉhd

(x, ai) is calculated in a second step.
Finally, to satisfy the conditions (8) and (9) different corrections can be adopted. Aı̈t-Sahalia
and Duarte (2003) propose (see section 3.6 in their paper) to adjust their estimate Ĉ(2)(x) of
the SPD by

e−rt,T (T−t)Ĉ(2)(x − z)
/

∫ +∞

0

Ĉ(2)(u) du, (20)

for an appropriate translation parameter z, to fulfill conditions (10) and (11) in Remark 2.2
(or conditions (2.8) and (2.9) in their paper, respectively). This method can also be applied to
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our estimator p̂Q(x) given in Remark 3.1. This suggests to replace the integral boundaries by
a and b, respectively, if calls are only observed for strikes in [a, b], which in turn implies that
values of the SPD outside the interval must be zero. This of course is not true in general.
Since our estimator Ĉhd

(x) is constructed without using the corresponding SPD, we choose to

modify it with respect to conditions (8) and (9) by making an affine transformation Ĉmod(x) ≡
α + β · Ĉhd

(x). Here α and β are determined by minimizing ℓ(α, β) = α2 + (1 − β)2 under the

constraints Ĉmod(a) = Ste
−dt,T (T−t) − ae−rt,T (T−t) and Ĉmod(b) = 0. Again, these constraints

imply that the SPD outside the interval [a, b] is zero.
The bandwidth hr is chosen by using the estimator σ̃ for the integrated variance proposed by
Rice (1984). Therefore let (K(i), Y[i]) (i = 1, . . . , n) denote the sample of strikes in increasing
order with their corresponding call prices. Then the integrated variance is estimated by

σ̃2 =
1

2(n − 1)

n−1
∑

i=1

(Y[i+1] − Y[i])
2,

from which the bandwidth for the regression step

hr = (b − a) ·
( σ̃2

n

)γr

and the bandwidth for the density step

hd = hγd
r .

are calculated. In this finite sample simulation study we set γr = 2/3 and γd = 3.0.

In Figure 2 the mean call price function from 500 simulations and its mean derivative are plottet
against the true functions (solid line). The estimator proposed in this paper is represented by
the dashed line, and the estimator of Aı̈t-Sahalia and Duarte (2003) by the dotted line. It can
be seen that both estimators lie very close to the true function.
Bias, variance and mean squared error (MSE) are shown in Figure 3. For comparison we have
also plotted these functions for the unconstrained local polynomial kernel estimator applied
to the sample data directly. It can be seen that for bias, variance and MSE the constrained
estimator performs better than the unconstrained estimator in almost all regions of the interval
[50, 170]

5 Conclusion

As already pointed out in the introduction, there are several arguments for estimating the call
price function nonparametrically. In this paper we propose a completely kernel based estimate
of the call price function which fulfills all constraints given by the no-arbitrage principle. One
of the major advantages of our method is that we do not have to estimate the state price
density first which is essentially the second derivative of the call price function and can only be
estimated with a worse rate than the call price function in kernel regression. Our estimator is

13
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Figure 1: Left: True call price function (solid line) with one of the 500 samples (crosses).
Middle: Derivative of the true call price function. Right: State price density.
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Figure 2: Left: The true call price function (solid line) and the mean of the estimated call
price functions (dashed line: the estimator proposed in this paper, dotted line: the estimator of
Aı̈t-Sahalia and Duarte, 2003). Right: The mean derivative of our estimated call price function
(dashed line) and that of Aı̈t-Sahalia and Duarte (2003) (dotted line) and the true derivative
(solid line).

14



40 60 80 100 120 140 160 180

−0.5

0

0.5

1
Bias C(X)

Strike
40 60 80 100 120 140 160 180

−0.04

−0.02

0

0.02

0.04

Bias C’(X)

Strike

40 60 80 100 120 140 160 180

0.2

0.4

0.6

0.8

1

Variance C(X)

Strike
40 60 80 100 120 140 160 180

0

0.5

1

1.5
x 10

−3 Variance C’(X)

Strike

40 60 80 100 120 140 160 180
0

0.5

1

1.5
Mean Squared Error C(X)

Strike
40 60 80 100 120 140 160 180

0

0.5

1

1.5

2

2.5
x 10

−3 Mean Squared Error C’(X)

Strike

Figure 3: Left Column: Bias, variance and MSE for the estimated call price function with
constraints (dashed line) and for the unconstrained local polynomial kernel estimator (dotted
line). Right Column: Bias, variance and MSE for the derivative of the call price function with
constraints .
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asymptotically normal with the same bias and variance as the unconstrained estimate one starts
with. Also in finite samples both have a very similar behavior but we see slight advantages
for the constrained estimator in the MSE. The results for our estimator are also comparable
with those of Aı̈t-Sahalia and Duarte (2003). However, in contrast to the procedure proposed
by these authors,the method suggested in this paper does not require constrained optimization
techniques which might be computationally extensive.
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Appendix: Proofs

Proof of Theorem 3.1. If ∆(x) represents the difference Ĉ(x) − Φhd
(x) with (Φhd

)′ =

φhd
(C̆ ′)−1 or (Φhd

)′ = φ̃hd
(Ĉ ′)−1 respectively, we have to compute

min
a∈[0,1]

∫ 1

0

(∆(a) − ∆(x))2dx = min
g∈∆([0,1])

∫ 1

0

(g − ∆(x))2dx

while the last equality holds because of the continuity of ∆ in both cases. From that it follows
that

arg min
g∈∆([0,1])

∫ 1

0

(g − ∆(x))2dx =

∫ 1

0

∆(x)dx.

By again using the continuity of ∆ there has to exist at least one point a∗ ∈ [0, 1] such that

∫ 1

0

∆(x)dx = ∆(a∗).

Then the difference between the L2-optimal convex and the unconstrained estimator has the
representation

∆(a∗) − ∆(x) =

∫ 1

0

∆(a)da − ∆(x) =

∫ 1

0

(∆(a) − ∆(x))da

which is equal to
∫ 1

0
C̆hd

(x, a)da or
∫ 1

0
Ĉhd

(x, a)da respectively. �

Sketch of Proof for Theorem 3.2. For the sake of completeness and to show the necessity
of a two times continously differentiable unconstrained estimator mentioned in section 3.2 we
present the essential steps of the proof here and refer for a detailed proof to Birke and Dette
(2007) or Birke (2007).
In a first step we express the increasing rearrangement of the unconstrained estimator by its
distribution function using a functional taylor expension of the operator which maps a function
to its quantile.
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This yields for the estimate C̃hd
in (15) the representation

C̃hd
(x, a) − C (x) =

∫ x

a

(

φhd
(Ĉ ′)−1 (z) − C ′ (z)

)

dz +
(

Ĉ (a) − C (a)
)

(21)

=

∫ x

a

An (z) dz +
1

2

∫ x

a

Bn,λ∗ (z) dz +
(

Ĉ (a) − C (a)
)

for

An (t) = −φhd
(Ĉ ′) − C ′−1

(

C ′−1
)′ ◦ C ′ (t) , (22)

a remainder Bn,λ∗(z) and some λ∗ ∈ [0, 1].
We now treat the two terms in this expansion separately. Recalling the definition of An(t) we
have

An =

∫ x

a

An(z)dz = An,1 + An,2 + An,3 (23)

with

An,1 =
1

hd

∫ 1

0

∫ C′(x)

C′(a)

Kd

(C ′(v) − t

hd

)

dt(Ĉ(v) − C(v))′dv

An,2 =
1

h2
d

∫ 1

0

∫ C′(x)

C′(a)

K ′
d

(ξ(u, v) − t

hd

)

(Ĉ ′(v) − C ′(v))2dvdt

An,3 = −
∫ C′(x)

C′(a)

(φhd
(C ′)(t) − C ′−1(t))dt

and |ξ (u, v) − C ′ (v)| <
∣

∣

∣
Ĉ ′ (v) − C ′ (v)

∣

∣

∣
. For the first term we have (observing that the in-

equality 0 < a < x < 1 implies C ′(a) < C ′(x))

An,1 (x) =
1

hd

∫ 1

0

∫ C′(x)

C′(a)

Kd

(C ′ (v) − t

hd

)

dt
(

Ĉ (v) − C (v)
)′

dv

=

∫ C′−1(C′(x)−hd)

C′−1(C′(a)+hd)

∫ 1

−1

Kd (t) dt
(

Ĉ (v) − C (v)
)′

dv

+

∫ C′−1(C′(a)+hd)

0

∫
C′(v)−C′(a)

hd

−1

Kd (t) dt
(

Ĉ (v) − C (v)
)′

dv

+

∫ 1

C′−1(C′(x)−hd)

∫ 1

C′(v)−C′(x)
hd

Kd (t) dt
(

Ĉ (v) − C (v)
)′

dv

= ∆(1.1)
n (x) + ∆(1.2)

n (x) + ∆(1.3)
n (x) , (24)

where the last line defines the terms ∆
(1.j)
n (j = 1, 2, 3), Ĉ(x) denotes the Nadaraya-Watson

estimate of the regression function defined in (18) and we have used the fact that our construc-
tion is based on Ĉ ′(x) = ∂ Ĉ(x)/∂x as an estimate for the derivative of the regression function.
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The term ∆
(1.1)
n can be estimated as

∆(1.1)
n (x) = m̂(x) − m(x) − (m̂(a) − m(a)) + oP

( 1√
nhr

)

by using another taylor expansion of order 2. A straight forward but tedious calculation shows
in a similar way that the terms ∆

(1.j)
n , An,j, j = 2, 3 and

∫ x

a
Bn,λ∗ (z) dz are of order oP (1/

√
nhr).

For details of this calculation see Birke and Dette (2007) or Birke (2007). Therefore, an at least
two times continously differentiable unconstrained estimator is essential to obtain the asymp-
totic behavior of the constrained estimator. �

Proof of Theorem 3.3. In addition to (17) Ĉhd
(x, a) can be written as

Ĉhd
(x, a) − C(x) =

∫ x

a

φhd
(Ĉ ′)−1(z)dz + Ĉ(a) − C(x)

+

∫ x

a

(cl − φhd
(Ĉ ′)−1(z))I{φhd

(Ĉ ′)−1(z) ≤ cl}dz

+

∫ x

a

(cu − φhd
(Ĉ ′)−1(z))I{φhd

(Ĉ ′)−1(z) ≥ cu}dz

= C̃hd
(x, a) − C(x) + R1 + R2. (25)

On the first part of the right hand side of (25) we can apply Theorem 3.2. The proof is complete
if we are able to show that both remainders R1 and R2 are of order oP (1/

√
nhr). Because of

the similarity of both remainders we only discuss R2 here. The estimation of R1 follows in a
similar way. It is

|R2| ≤
∫ x

a

|cu − φhd
(Ĉ ′)−1(z)|I{φhd

(Ĉ ′)−1(z) ≥ cu}dz

=

∫ x

a

|C ′(1) − φhd
(Ĉ ′)−1(z)|I{φhd

(Ĉ ′)−1(z) ≥ cu}dz

≤
∫ x

a

(|C ′(1) − C ′(z)| + |C ′(z) − φhd
(Ĉ ′)−1(z)|)I{φhd

(Ĉ ′)−1(z) ≥ cu}dz

=

∫ x

a

(O(1) + |C ′(z) − φhd
(Ĉ ′)−1(z)|)I{φhd

(Ĉ ′)−1(z) ≥ cu}dz. (26)

The estimate Ĉ ′ is uniformly consistent with convergence rate O(log h−1
r /nh3

r)
1/2 (similar proof

as in Mack and Silverman, 1982). With Theorem 3.1 in Neumeyer (2006) and the conditions
h2

r/hd → 0 and (log h−1
r )3/2/nh5

rhd → 0 we almost surely obtain

|C ′(z) − φhd
(Ĉ ′)−1(z)| = O

(( log h−1
r

nh3
r

)1/2

+
1

hd

log h−1
r

nh3
r

+
1

h3
d

( log h−1
r

nh3
r

)3/2

+ h2
d

)

= o(1)

uniformly for every z ∈ [a, x], which means that the estimate φhd
(Ĉ ′)−1(z) is uniformly consis-

tent for C ′. Therefore the estimation in (26) can be continued as

|R2| ≤
∫ x

a

(O(1) + |m′(z) − φhd
(Ĉ ′)−1(z)|)I{φhd

(Ĉ ′)−1(z) ≥ cu}dz
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= OP (1)

∫ x

a

I{φhd
(Ĉ ′)−1(z) − C ′(z) ≥ cu − C ′(z)}dz. (27)

Note that φhd
(Ĉ ′)−1(z) ≥ C ′(z) holds for every z ∈ [a, x] with φhd

(Ĉ ′)−1(z) ≥ cu. We then
obtain by using the Markov inequality

E
[

∫ x

a

I{φhd
(Ĉ ′)−1(z) − C ′(z) ≥ cu − C ′(z)}dz

]

=

∫ x

a
P

(

|φhd
(Ĉ ′)−1(z) − C ′(z)| ≥ cu − C ′(z)

)

dz

≤
∫ x

a
P

(

|φhd
(Ĉ ′)−1(z) − C ′(z)| ≥ C ′(1) − C ′(x)

)

dz

≤
∫ x

a

MSE(φhd
(Ĉ ′)−1(z))

(C ′(1) − C ′(x))2
dz = O

( 1

nh3
r

)

because the first derivative of C is strictly increasing and therefore the denominator in the
Markov inequality is bigger then 0. The estimation of R2 now results in

R2 = OP

( 1

nh3
r

)

= oP

( 1√
nhr

)

which concludes the proof of Theorem 3.3. �
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