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A note on the choice of the number of slices

in sliced inverse regression

CLAUDIA BECKER∗1 and URSULA GATHER2

Abstract

Sliced inverse regression (SIR) is a clever technique for reducing

the dimension of the predictor in regression problems, thus avoiding

the curse of dimensionality. There exist many contributions on vari-

ous aspects of the performance of SIR. Up to now, few attention has

been paid to the problem of choosing the number of slices within the

SIR procedure appropriately. The aim of this paper is to show that

especially the estimation of the reduced dimension can be strongly

influenced by the chosen number of slices.
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1 Introduction

In his fundamental article, [18] Li (1991) proposed the method of sliced in-

verse regression (SIR) as a means to reduce the dimension of the predictor in

a regression setting. The usual regression assumption Y = g(X1, . . . , Xd)+ε,

for some real-valued random variables Y,X1, . . . , Xd and some error ε inde-

pendent of X = (X1, . . . , Xd)
T , is replaced by the simpler model

Y = f(βT
1 X, . . . ,βT

KX, ε), (1)

where β1, . . . ,βK denote the dimension reducing directions, K ≤ d. If K <

d, a dimension reduction of the regressor space is achieved, implying that

the relevant information on Y only depends on a projection of the original

X onto a K-dimensional subspace. While most nonparametric methods for

estimating the regression function fail in situations where d is large, due

to the so-called ‘curse of dimensionality’ ([2] Bellman, 1961; [12] Friedman,

1994; [13] Gather and Becker, 2001), they may work well on the reduced

space, if K is small enough. Sliced inverse regression provides a method

which estimates the space B spanned by β1, . . . ,βK , where we assume that

B equals the central subspace in the sense of [6],[7] Cook (1994, 1996). The

main idea is to use the inverse regression curve E(X|Y ) which under certain

conditions gives information on the space spanned by β1, . . . ,βK . Based on a

sample (yi,x
T
i )T , i = 1, . . . , n, a crude estimate of E(X|Y ) can be obtained.
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Firstly, a so-called slicing of the y-observations is done, then the x-data are

also splitted into a certain number of disjoint subsets (slices) according to the

ranks of corresponding y’s. The SIR procedure is described in more detail

in Section 2. The performance of SIR has been investigated extensively with

respect to various aspects such as its ability of detecting special structures

([8] Cook, 1998; [9] Cook and Weisberg, 1991; Rejoinder in [18] Li, 1991;

[19] Li, 1992), its asymptotics ([17] Hsing and Carroll, 1992; [20] Saracco,

1997; [24] Zhu and Fang, 1996; [25] Zhu and Ng, 1995), the determination of

the dimension of B ([3],[4] Bura and Cook, 2001a,b; [10] Cook and Weisberg,

1994, ch. 8; [11] Ferré, 1998; [18] Li, 1991; [21] Schott, 1994; [23] Velilla,

1998), and its robustness ([14],[15] Gather, Hilker, and Becker, 2001, 2002;

[22] Sheather and McKean, 1997). Since the dimension K of the reduced

space B in model (1) is usually unknown, estimating K is a crucial part of the

procedure. [15] Gather, Hilker, and Becker (2002) show that the procedure

proposed by [18] Li (1991) for estimating K can be influenced severely by

outliers in the X-space.

Less attention has been paid to the question of how many slices should be

chosen in the slicing step of the procedure. Most articles consider this as a

minor problem, although some authors comment on the choice of the number

of slices ([3],[4] Bura and Cook, 2001a,b; [5] Chen and Li, 1998; [10] Cook

and Weisberg, 1994; [11] Ferré, 1998; [18] Li, 1991). However, the results
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of SIR can be influenced strongly by the number of slices, as is shown by

the results of the simulation study described below, where we concentrate

on the estimation of the reduced dimension as proposed by [18] Li (1991).

This leads to the recommendation to interprete the outcomes of SIR always

accompanied by some sort of diagnostics as proposed by [5] Chen and Li

(1998), thus checking the correctness of the reduced dimension. On the other

hand, this complicates the integration of SIR into an automatic procedure for

dimension reduction and estimating the functional relationship. Therefore,

a detailed investigation of the effect the number of slices has on estimating

the reduced dimension will be helpful in further use of SIR.

This article is organized as follows. In Section 2 we briefly introduce the

SIR method together with a procedure to estimate the reduced dimension K,

following [18] Li (1991). An example of the variability of estimated values

of K is discussed in Section 3. Section 4 contains the results of a simulation

study, where the performance of the estimator K̂ is investigated under dif-

ferent choices of the number of slices in the procedure. We finish with some

concluding remarks.
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2 Sliced inverse regression

As mentioned above, in the regression setting [18] Li (1991) assumes that

Y ∈ IR depends on X ∈ IRd only via K linear combinations βT
1 X, . . . ,βT

KX,

yielding model (1). Here, βi ∈ IRd, f : IRK+1 → IR and K are un-

known. The SIR method yields an estimation of the reduced regressor space

B = span[β1, . . . ,βK ], the so-called central subspace. This can be seen

as a first step, possibly followed by estimating f , defined on this lower di-

mensional space (if K < d), thus avoiding the curse of dimensionality (see

[1] Becker, 2001). Under some conditions on X, the centred inverse regres-

sion curve E(X|Y ) − µ almost surely falls into span[Σβ1, . . . ,ΣβK ], where

µ = E(X),Σ = Cov(X) ([18] Li, 1991). Using the information given by

E(X|Y ) − µ leads to estimators of β1, . . . ,βK .

Let (yi,x
T
i )T , i = 1, . . . , n, xi ∈ IRd, yi ∈ IR be a sample of (Y,XT )T .

SIR proceeds in the following five steps:

1. Standardize the xi by zi = Σ̂
−1/2

(xi − x), i = 1, . . . , n, where Σ̂ =

∑n
i=1(xi − x)(xi − x)T /n, x =

∑n
i=1 xi/n.

2. Split z1, . . . ,zn into H slices Sh, h = 1, . . . , H, according to the size of

the corresponding values of y1, . . . , yn; let nh be the number of obser-

vations in slice Sh. In the most common version of the procedure, the

sample size n is distributed evenly onto the slices: nh ≈ n/H.
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3. Calculate the slice means: m̂h =
∑

Sh
zi/nh, h = 1, . . . , H.

4. Carry out a (weighted) principal components analysis for the slice

means: ŜIR =
∑H

h=1 nhm̂h m̂T
h /n yielding eigenvalues λ̂1 ≥ . . . ≥ λ̂d,

and normalized eigenvectors η̂1, . . . , η̂d, respectively.

5. Estimate the dimension reducing directions βk by β̂k = Σ̂
−1/2

η̂k, k =

1, . . . , K.

The eigenvectors of ŜIR corresponding to the K largest eigenvalues yield the

estimated directions β̂k. As the dimension K of the reduced regressor space

will usually be unknown, it has to be estimated as well. Several authors

propose methods for estimating K (e.g. [3], [4] Bura and Cook, 2001a,b;

[11] Ferré, 1998; [18] Li, 1991; [21] Schott, 1994; [23] Velilla, 1998). We will

use Li’s original method here. The dimension K is estimated by successively

testing Hk
0 : K = k vs. Hk

1 : K > k, starting with k = 0. The number k

for which Hk
0 is not rejected for the first time gives the estimated dimension

K̂ = k. The test statistics used in these tests are given by tk := n(d −

k)λ(d−k), where λ(d−k) =
∑d

i=k+1 λ̂i/(d − k) denotes the mean of the (d − k)

smallest eigenvalues of ŜIR. For normally distributed X, we have λ(d−K) ∼

χ2
(d−K)(H−K−1) asymptotically ([18] Li, 1991, p. 321). Thus, Hk

0 is rejected if

tk exceeds a certain quantile of χ2
(d−k)(H−k−1).

Recommendations with respect to the choice of H are barely given. [18] Li

6



(1991, p. 320) states that “the choice of the number of slices may affect the

asymptotic variances of the output estimate. However, the difference is not

significant for practical sample sizes in our simulation study.” The sample

sizes in his simulations are n = 100 and n = 400. [5] Chen and Li (1998,

p. 292) find that “the SIR estimates [. . .] are not sensitive to the number

of slices used.” Both comments refer to the estimation of the dimension

reducing directions and are not addressing the problem of determining the

reduced dimension itself. This topic is treated by [11] Ferré (1998) who

assumes that H is chosen “greater than d, to avoid artificial reduction of

the dimensionality” (p. 134). He also gives an example where for d = 10,

n = 2 000, and H = 10 his method yields an estimated dimension which is too

small, whereas the result improves for H = 50. He concludes that “this might

be explained by the fact that taking too few slices leads to oversmoothing”

(p. 138). This stands in contrast to the comment by [5] Chen and Li (1998,

p. 298) who state that “although in theory we can use as many as H = n/2

slices [. . .], practically we find no obvious advantage in using large H.” For a

modified version of [18] Li’s (1991) procedure, [3] Bura and Cook (2001a, p.

1002) find “[...] that the number of slices for the weighted chi-squared test

should not be more than 5%-7% of the sample size to keep test levels from

being much larger than the nominal level.” The same authors see the problem

of choosing H appropriately: “Most importantly, SIR can be ambiguous
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about the estimate of the dimension as the latter depends sometimes crucially

on the choice of the number of slices. As a result, all methods that depend

on a tuning constant related to the choice of the number of slices suffer from

the same ambiguity in estimation[...]” ([4] Bura and Cook, 2001b, p. 396).

In none of these contributions we find a detailed investigation of this problem

nor general recommendations. We consider an example.

3 The Boston housing data

Example 1 The Boston housing data ([16] Harrison and Rubinfeld, 1978)

consists of d = 13 regressor variables concerning housing conditions, and

socio-economic and environmental factors in the census tracts of Boston

standard metropolitan statistical areas. The dependent variable is the me-

dian value of owner-occupied homes. The data set contains n = 506 ob-

servations. Applying SIR to these observations, concentrating only on the

estimated value of the reduced dimension K, leads to the following results. If

we choose H = 55, we get K̂ = 4, but for H = 57 we find K̂ = 3, whereas

taking 66 slices yields K̂ = 2. Figure 1 summarizes the behavior of K̂ depend-

ing on the choice of H for all possibilities of H = 2, . . . , n/2. Although for

the majority of possible choices of H the estimation procedure yields K̂ = 3,

there are also a lot of cases with K̂ = 2. [5] Chen and Li (1998) report
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Figure 1: Estimated reduced dimension for the Boston housing data, depend-
ing on the choice of H
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the application of SIR on this data, mentioning that there is a group of ob-

servations that seems to influence the estimation of the dimension reducing

directions. Hence, they analyze the data without this group of observations.

Following their suggestions, we leave the corresponding observations out and

recalculate K̂ for the various choices of H. The results are shown in figure

2. Although we would estimate the reduced dimension to be 2 most time, the

result is not convincingly unique.

The example shows that estimating the reduced dimension K may be

sensitive to the number of slices chosen in the SIR procedure. In the following

section, we discuss the results of a simulation study where the influence of
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Figure 2: Estimated reduced dimension for the modified Boston housing
data, depending on the choice of H
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the choice of H on the estimation of K is investigated in more detail.

4 Studying the influence of H

We investigate the influence of the choice of H on estimating K as follows.

For certain choices of n and d, 1 000 data sets are generated according to

each of the models specified in table 1. Models A and B were originally used

by [18] Li (1991) to illustrate the performance of SIR, model C is taken from

[11] Ferré (1998). We use each model in an exact version (A1-C1) as well as

in a version including an error term (A2-C2). The results are presented here

for the special choice of d = 5 and n = 100, 500. Using other combinations
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Table 1: Simulation models with X ∼ N (0, I); ε ∼ N(0, 0.01)

Model K

A1 Y = X1 1

A2 Y = X1 + ε 1

B1 Y = X1/(0.5 + (1.5 + X2)
2) 2

B2 Y = X1/(0.5 + (1.5 + X2)
2) + ε 2

C1 Y = X1 + 0.5X2 + (X2 + X3 + X4 + X5)
2 2

C2 Y = X1 + 0.5X2 + (X2 + X3 + X4 + X5)
2 + ε 2

of n and d essentially leads to the same results. For a given model, we apply

the SIR method to each data set for different values of H ∈ {2, . . . , n/2} and

estimate the dimension K, carrying out each test on a 5% level. The results

are summarized in figures 3-8 for a sample size of n = 100, showing stacked

barplots of the counts of K̂ = 0, . . . , 4 for each choice of H; bars belonging

to the true K are shaded in black.

First of all, we can see that the ability of SIR to find the true dimension

varies strongly with the structure of the functional relationship. In model A,

the results are quite satisfying: we get K̂ = 1 for almost all of the simulated

data sets. For model B, the procedure still estimates the true value of K in

most cases. In contrast to this, the results are less convincing for model C,

11



Figure 3: Results for model A1 for n = 100: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 2, . . . , n/2; true K = 1
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Figure 4: Results for model A2 for n = 100: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 2, . . . , n/2; true K = 1
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Figure 5: Results for model B1 for n = 100: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 2, . . . , n/2; true K = 2
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Figure 6: Results for model B2 for n = 100: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 2, . . . , n/2; true K = 2
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Figure 7: Results for model C1 for n = 100: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 2, . . . , n/2; true K = 2
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Figure 8: Results for model C2 for n = 100: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 2, . . . , n/2; true K = 2
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where we get K̂ = 2 only for less than 20% of the samples for each choice of

H. As can be expected, for the data generated according to models A2-C2,

the performance of K̂ becomes slightly worse than for data from the exact

models A1-C1, but the results do not differ much. We thus restrict to the

exact models in further investigations.

It can be seen immediately from the figures that, even if the estimated

dimension reducing directions may not be affected much by the number of

slices ([18] Li, 1991; [5] Chen and Li, 1998), the situation is different for the

estimated dimension. We see that, even in model A, where the estimator

of K behaves best, taking a very large number of slices increases the risk

of estimating the wrong dimension. In both models A and B we find the

tendency to underestimate K for large values of H. Taking only two slices

is not appropriate either, looking at the results of models B and C.

For a sample size which is larger compared to the dimension, the esti-

mation of K generally improves and becomes less dependent on the choice

of H. Figures 9-11 give the stacked barplots for models A1-C1 for n = 500

and choices of H = 5(5)250. We see that for A1 and B1 and large H we

still have a greater risk to estimate K wrongly. In contrast to the case of

n = 100, the procedure now tends to overestimate K for a large number of

slices. The same general effect can be seen with C1, where also for large

values of H the dimension is estimated to be larger. Contrary to models
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Figure 9: Results of model A1 for n = 500: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 5(5)n/2; true K = 1
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A1 and B1, in this case the effect seems to result in a better estimation of

K. But it is well known that SIR is not able to detect the quadratic part of

the structure in model C1, hence the visible improvement here is merely due

to the coincidence of a tendency to overestimate K with the non-ability of

detecting one essential dimension.

To get further insight into the performance of the tests about K, we

look at the distributions of the corresponding test statistics, depending on

the choice of the number H of slices. Figures 12 and 13 show how these

distributions vary with H for model B1. Recall that the true value is K = 2

here, hence when testing for K = 0 and for K = 1 the distributions of the
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Figure 10: Results of model B1 for n = 500: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 5(5)n/2; true K = 2
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test statistics should lie well separated and to the right of the respective χ2

distributions. This is indeed the case for the test for K = 0 with smaller

values of H (see figure 12), but the larger H is chosen, the larger becomes

the overlap between the two distributions. The effect is much stronger for

the test concerning K = 1 (see figure 13). Here, from H = 30 on, we see

a substantial overlap between the two distributions. The consequence is a

clear loss in power of the test. The effects for models A1 and C1 are similar.

Figure 14 shows the situation for model C1 when checking K = 0.

To illustrate further the dependence of K̂ on the number H of slices, we

look at the performance of K̂ for selected data sets from the simulations
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Figure 11: Results of model C1 for n = 500: Counts of K̂ = 0, . . . , 4 in 1 000
simulated samples for H = 5(5)n/2; true K = 2
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Figure 12: Results of model B1 for n = 100, H = 10(10)50: Histogram of
simulated distribution of t0 when testing for K = 0 compared to densities of
χ2; df = 45, 95, 145, 195, 245, critical values = 61.6562, 118.7516, 174.1010,
228.5799, 282.5115, respectively
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Figure 13: Results of model B1 for n = 100, H = 10(10)50: Histogram of
simulated distribution of t1 when testing for K = 1 compared to densities of
χ2; df = 32, 72, 112, 152, 192, critical values = 46.1943, 92.8083, 137.7015,
181.7702, 225.3288, respectively
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Figure 14: Results of model C1 for n = 100, H = 10(10)50: Histogram of
simulated distribution of t0 when testing for K = 0 compared to densities of
χ2; df = 45, 95, 145, 195, 245, critical values = 61.6562, 118.7516, 174.1010,
228.5799, 282.5115, respectively
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Figure 15: Dataset from model A1, n = 100: estimated K depending on the
choice of H; true K = 1
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(figures 15-16). The figures show how K̂ varies for one data set when

choosing different values of H. Figure 15 shows an example for a data set

generated by model A1. The estimated values K̂ vary between 1 and 4.

Figure 16 shows the situation of an ‘extreme’ data set from model B1 where

K is estimated wrongly for more than 40 of the possible 49 choices of H

(n = 100). Table 2 summarizes the information on this aspect of performance

for n = 100. For each of the exact models we count in how many of the 1 000

simulated data sets K is estimated wrongly for more than 40, 30, 20, and 10

of the possible choices of H, respectively. We observe again the variability

of the results due to the different structures of the models. Apart from this,
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Figure 16: Dataset from model B1, n = 100: estimated K depending on the
choice of H; true K = 2
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Table 2: Performance of K̂ for n = 100 and H = 2, . . . , n/2

K̂ 6= K for more than

. . . choices of H

40 30 20 10

Model A1 (K = 1) 0 7 28 98

Model B1 (K = 2) 2 48 221 592

Model C1 (K = 2) 835 952 990 1 000
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we see that for all models a quite considerable part of the data sets leads to

K being estimated wrongly for more than 10 of the possible 49 choices of H.

Even in model A1, where K̂ behaves best, this is the case for almost 10% of

the data sets.

5 Concluding remarks

In investigations on sliced inverse regression and its various modifications,

the choice of the number of slices has not been paid much attention to yet.

Our simulation results show that the choice of this ‘tuning parameter’ may

influence the outcome of SIR quite strongly, when considering the estimated

dimension of the reduced regressor space. Hence, the choice of H should be

carefully done. First impressions from the simulation results lead to the con-

clusion that the performance of SIR with respect to the estimated dimension

is best if H is chosen to be not too large. More precisely, values of H ≈ 0.1n

seems to be a reasonable choice. Altogether, the development of a possible

best choice of H seems worth further investigations.
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