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B. M. Möller, M. V. Artemyev, R. Wannemacher, U. Woggon

Spring Meeting of the German Physical Society 2005 (HL 49.3), Berlin, 2005 (oral)

21. Formation of Photonic Molecules in Ensembles of Spherical

Microcavities,
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1. Introduction

Waves always behave in a similar way, whether they are longitudinal or

transverse, elastic or electric. Scientists of the last century always kept this

idea in mind [. . . ]

The invention of linear accelerators lead to the discussion of a variety of

structures yielding a low velocity of propagation for electromagnetic waves.

Most of these structures are periodical. . .

Léon Brillouin, 1946 (taken from ref. [Bri53] )

Spherical microcavities doped with semiconductor nanocrystals represent an artificial

compound system, that attracted significant research interest in recent years, both in

the fields of fundamental and applied physics: Microcavities, confining light to a quasi

zero-dimensional region in space, exhibit discrete energy eigenstates and can concentrate

enormous field strengths inside the cavity. This can therefore enormously enhance light-

matter interaction phenomena, such as low-threshold microlasers [Cha96] and weak and

strong coupling of photonic resonances with electronic resonances [Ush99, Buc03].

At first, atoms and dye molecules have been used as an active material in cavi-

ties, later, research extended to artificial systems like semiconductor quantum dots,

[Gér01, Gay01, Wog03, ] which exhibit increased photostability. Semiconductor quan-

tum dots, constituted by nanometer-sized islands of semiconductor material, drastically

modify the properties of bound electron-hole-complexes, the excitons: The wave functions

of excitons are confined in a three-dimensional nanocavity on a size scale comparable to

the excitonic Bohr radius and let the energy dependence of the density of states col-

lapse into delta-like distributions. Since the confinement of excitons in semiconductor

nanocrystals (or quantum dots, QDs) depends on the quantum dot radius, the excitonic

emission can be tuned easily from the ultraviolet to the far-infrared spectral range simply

by varying the quantum dot size during the synthesis at will.

However, for any approach in the field of light-matter interaction, the incoupling of light

into the individual resonators is a critical issue. A possibility of engineering the transition

dipole moment in quantum dots relative to the photonic modes is highly desired. One

successful approach will be covered in this thesis.

Furthermore, attention is paid to photonic microcavities not only with respect to coupling

these with active emitters, but also to coupling cavities with each other, especially in the

field of optical computation:
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1 Introduction

This interest is inspired by replacing conventional electronic circuits by photonic circuits,

thereby reducing cross-talk between different circuits. However, for any real-life signal

processing, information has frequently to be stored meanwhile, which is currently realized

by converting optical signals into electrical signals, which are read out later. This limits

the potential of circuits at high data rates. To overcome these limitations, activities were

growing to realize slow wave structures, thus replacing information storage by a delayed

transmission of photonic signals.

An impressive slowing down of light down to 17 m/s was demonstrated in 1999 by Hau

et al. [Hau99], who used the effect of electromagnetically induced transparency (EIT) in

a sodium gas, cooled down to nanokelvin temperatures. The sodium atoms exhibit two

electronic ground states and one common excitation level. Here, the interference of a con-

trol and a signal laser tuned to the transition energies to the common excited state leads

to a quantum interference of the two excitation paths and absorbtion can be significantly

suppressed for the signal beam. The opened tiny transmission window is accomplished

with a strong variation of the refractive index, leading to a huge group velocity disper-

sion. Using population oscillations in an EIT-like fashion, these approaches are recently

continued to room temperature in a solid state system. Recently, impressive approaches

towards using coherent phenomena involving excitonic transitions [Pal05, Frö05] have

been reported, e.g., to modify excitation densities for the achievement of Bose-Einstein

condensation. In the frame of optical storage, the parameter space is still quite limited in

these systems, since these effects rely on the presence of a suitable transition frequency

in a concrete realization. Moreover, the application as optical buffers would require a

high fractional delay of light propagation normalized to the applied pulse widths. Recent

reviews [Mat05, Khu05] suggest, that for coherent atomic media fundamental restrictions

for the realization of high fractional delays occur.

In 2004, R. W. Boyd pointed out, that EIT-like effects can be modeled by a wave-optical

analogue: Here, two optical microresonators with degenerate resonances are discretely

attached to a waveguide [Hee02], so that light is subsequently transferred from resonator

to resonator with substantial delay. In another approach [Smi04a], the waveguide is

coupled to a pair of ring resonators in which the loss rates of the individual resonators

have to differ by orders of magnitude. In the waveguide, a small transmission window at

the single-resonator frequency is opened, at which no light from the waveguide is trapped

in the coupled-resonator system. Here again, the transmission window involves a dramatic

group velocity dispersion.

A different concept concerning slow wave structures built-up of almost equally designed

coupled resonators has been proposed independently by Stefanou et al. in 1998 [Ste98]

and Amnon Yariv et al. in 1999 [Yar99]: In their theoretical approach, a waveguide

model is introduced, which consists of a line of coupled resonators itself. The optical

fields of the microcavities are mainly localized in the respective resonator and weakly

coupled to the fields of their next neighbors. The electromagnetic eigenstates of the entire

coupled-resonator optical waveguide (CROW) are modeled in strong analogy to electronic

2



1 Introduction

states in crystalline solids by a Bloch function, treating the single resonators as weakly

coupled photonic atoms. This can be regarded as a tight-binding approach to periodically

modulated dielectrics, opposed to the nearly free-photon approach in photonic bandgap

materials.

However, the current state-of-the-art in realizing CROW structures mainly covers the-

oretical investigations [Hee04], and practical realizations using fairly large microcavities

ranging in sizes of about a tenth millimeter [Pal03b] and explorations of photonic crystal

defects [Alt05a]. A realization in the visible spectral range using cavities with circular

cross section has been less explored. Therefore, this thesis aims to demonstrate several

key features of CROW structures using polymeric microspheres with radii of a few optical

wavelengths∗.

This thesis is organized as follows:

Chapter 2 gives an overview about the basic underlying physical properties of the samples

used. I will briefly review the mode structure of single spherical photonic dots, comment

on wave propagation in materials with a periodically modulated refractive index and

explain how CROWs fit into the classification of photonic materials. I will also give a

brief overview of the electronic processes in semiconductor nanocrystals, which are used

to efficiently illuminate the single and coupled cavity systems. At the end of chapter 2,

we discuss the feasibility of elongated CdSe nanocrystals as ideal dipole emitters, e.g. the

strong polarization of emitted photons. Therefore, the linearly polarized emission of CdSe

nanorods will be discussed with respect to their use for cavity mode control.

In chapter 3, we will examine the incoupling of spontaneously emitted nanocrystal photons

into specific cavity modes. Here, we make use of polarized emitting elongated nanocrys-

tals, which by alignment on the microspheres will efficiently emit into the desired TE mode

polarization. The experimental results will be compared with theoretical calculations and

demonstrate the realization of a three-color TE emitter at room temperature.

Chapter 4 will explore the signatures of coherent coupling of individual cavity light fields.

We investigate the different spectral and spatial overlap conditions of closely arranged

microspheres. Their impact on the mode volume and the resonator quality (Q) will

be discussed. The coherent multisphere coupling is measured applying spatially and

spectrally resolved photoluminescence spectroscopy combined with polarization-sensitive

mode mapping. The mode structures of different one- and two-dimensional arrangements

will be compared.

Chapter 5 will explore the feasibility of the realization of a coupled-resonator optical

waveguide. Here we examine the required key features of a CROW, namely the coherent

coupling between the resonator light fields in an extended structure and the existence of

∗Let me point out — in the Einstein year—, that whispering gallery mode patterns in spherical
cavities designed for the microwave range are currently used for tests of Lorentz-invariance. Additionally,
a proposal for the detection of gravitational waves relies on the realization of a two sphere cavity, where
the individual resonators are coupled by a short waveguide.

3



1 Introduction

multisphere photon states that couple more than simply two spheres at a time. As an ex-

perimental method, I introduce measurements on a multisphere ”hockey stick” geometry.

The successful CROW realization in a bent structure is explored.

In chapter 6, I propose a simplified model of coupled-resonator optical waveguide struc-

tures. The model is based on the similarities of the CROW formalism with the description

of chains of coupled harmonic oscillators. With this model at hand, an extension of the

formalism towards finite structures is presented. The modes confined in a finite CROW

display alternating oscillator strengths along the coupled-resonator structure, which serves

as an additional tool for the demonstration of coherent interresonator coupling. Further-

more, due to the broken translational symmetry, an additional class of mode superposi-

tions is explored, which could be utilized for entanglement transfer via single photons in

the frame of quantum information processing.

The thesis will end with a summary and an outlook gives suggestions for potential future

work.

4



2. Basic Concepts

2.1 Spherical Microresonators

2.1.1 Photonic Dots

In photonic dots the light is trapped in three dimensions comparable to or slightly larger

than the photonic wavelength, analogously to the three-dimensional confinement of the

excitonic wave functions in semiconductor quantum dots, which originally inspired their

name.

Due to the confinement, the density of states in photonic cavity structures is no more a

continuous function like in free space. In photonic microstructures, in general, we obtain

a strong dependence on the dimensionality of the confinement [Yam00]: In free space, we

are faced with the usual quadratic form of the photonic density of states as can be seen in

fig. 2.1 a). If in one dimension a confinement condition is imposed, the density of k-vectors

available to form photon states is reduced in this dimension, leading to a linear energy

dependence of the density of states. When the photon energy rises to values, at which the

decreasing wavelength matches the boundary conditions for additional k-vectors in the

confinement direction, sudden jumps to higher values of the density of states occur (b).

The increase of the photonic density of states in the energy regions between those jumps

can be easily understood regarding the density of states in the k-space and taking into

account the photonic energy dispersion. In k-space, the number of states associated with

a given wave number is proportional to the surface of the volume which is spanned by the

allowed wave vectors. This surface is proportional to kd−1, d being the dimensionality of

the confinement. Since the photon energy is proportional to the wave number, dE ∝ dk

also holds, and the density of states in terms (DOS) of energy simply reads

DOS(E) ∝ Ed−1 . (2.1)

If the photon in a photonic dot is faced with confinement in all three directions, the

density of states reduces further to a series of delta-like peaks at discrete resonances or

cavity eigenmodes. For quasi zero-dimensional structures, the density of states collapses

into a series of delta-like spikes at the respective resonance energies. We will see later,

that this dependence exactly resembles that of the excitonic states in a semiconductor

quantum dot (see sect. 2.3.3). Because of the discrete nature of these cavity eigenmodes,

photonic dots are regarded as photonic atoms with a specific level structure. Therefore,

a similar terminology may be applied, i.e. as to optical selection rules for the excitation

5
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Figure 2.1: Photonic density of states in dependence on energy for different dimensional-

ities. The exponent expression is given by eq. (2.1), taken from ref. [Yam00].

of photonic modes via nanostructures (see chapter 3) or the coupling of photonic atoms

to photonic molecules (as described in chapter 4).

In the following, we will review the mode structure of the light field in spherical photonic

dots. The size regime of the microresonators used throughout this thesis, is determined

by two important properties: First, the sphere size has to be large enough to guarantee an

efficient confinement of light inside our microspheres and thus to lead to delta-like mode

densities. This requires dielectric microspheres to be larger than the optical wavelength.

Second, the spheres have also to be small enough to provide a non-vanishing leakage of

light to the outside world. This latter requirement is essential for two different coupling

mechanisms: For the tuning of the coupling with dopants brought onto the surface (see

chapter 3) and to achieve an efficient coupling of the spherical light field with that of

6



2.1 Spherical Microresonators

neighboring spheres (see section 4 to 6). Thus, the desired microspheres range in sizes of

a few micrometers for optical frequencies, for which neither the limits of geometric optics

(suitable for large spheres, see, e.g., [Zho03, Rol00]), nor Rayleigh-scattering apply.

The treatment of light scattering by dielectric micron-sized spheres has originally been

carried out independently by Debye and Mie in 1908/9 [Deb09, Mie08], and is commonly

referred to as Lorenz-Mie Theory. The ansatz used is the scattering of a plane wave of

light shining on a dielectric sphere placed in a homogenous medium with a lower refractive

index, e.g. vacuum. The solution of this problem is governed by Maxwell’s equations,

which read for the case of absent sources:

∇ · E = 0 ∇ ·H = 0

∇× E = µ0µrḢ ∇×B = −ε0εrĖ ,
(2.2)

and the imposed boundary conditions, which require the matching of the tangential com-

ponents of the internal and external fields separately for both fields E and H at the sphere

surface.

After separation of the harmonic time variation for the fields, Maxwell’s equations result

in the vector wave equations

∇2E + ω2ε0εrµ0µrE = 0 and ∇2H + ω2ε0εrµ0µrH = 0 . (2.3)

Following the derivation of Bohren and Huffman [Boh96], these can be simplified by

expressing the vector solution in dependence on a scalar function in spherical coordinates

M = ∇× (r · ψ) (2.4)

N =
1

k
∇×M , (2.5)

where r denotes the spatial position measured from the sphere origin. Thereby, M and

N are solutions if the scalar function ψ(r, θ, φ) solves the scalar wave equation

∇2ψ + ω2ε0εrµ0µrψ = 0 . (2.6)

A separation ansatz in spherical coordinates for ψ(r, θ, φ) leads to solutions built from

products involving trigonometric functions for φ, associated Legendre-functions Pm
n for

θ, spherical Bessel functions jn(x) of the first kind for the argument r in internal fields

and Hankel functions zn(x) for outgoing fields. The new parameters m and n follow as

separation constants from the separation ansatz and represent the node numbers along

the sphere circumference. With the following abbreviations

πm
n =

Pm
n

sin θ
, τm

n =
dPm

n

dθ
(2.7)

the solutions N and M can be written using unit vectors in spherical coordinates êφ, êθ

and êr,

M{ o
e}1n =

{
cos φ

− sin φ

}
πn(cos θ)zn(ρ)êθ

−
{

sin φ

cos φ

}
τn(cos θ)zn(ρ)êφ , and

(2.8)

7



2 Basic Concepts

N{ o
e}1n =

{
sin φ

cos φ

}
n(n + 1) sin θπn(cos θ)

zn(ρ)
ρ êr

−
{

sin φ

cos φ

}
τn(cos θ)

[ρzn(ρ)]′
ρ êθ

+

{
cos φ

− sin φ

}
πn(cos θ)

[ρzn(ρ)]′
ρ êφ .

(2.9)

The subscripts above, e and o, indicate even and odd functions with respect to the trigono-

metric functions involving φ. Here, for the case of a plane wave excitation, the separation

constant m leads to non-vanishing contributions for the quantum number m = 1 only.

With the above solutions, the Fields E and H can be constructed as series expansions in

the fields M and N, in which the respective expansion coefficients have to be evaluated

according to the boundary conditions. The respective expressions for the fields are then

given by the following superposition

ESca =
∑∞

n=1 = inE0
2n + 1

n(n + 1)
(ianNe1n − bnMo1n) ,

HSca = k
ωµ

∑∞
n=1 inE0

2n + 1
n(n + 1)

(ibnNo1n + anMe1n) .
(2.10)

For the expansion coefficients we get

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
(2.11)

bn =
ψn(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
, (2.12)

with the Riccati-Bessel function

Ψn(x) = xjn(x), and χn(x) = x(jn(x) + iyn(x)) , (2.13)

where jn(x) and yn(x) are the spherical Bessel functions of the fist and second kind,

respectively. Here, the dimensionless quantity x = 2πna
λ

is commonly referred to as the

size parameter and the new parameter m here represents the ratio of the refractive indices

of the dielectric sphere and the surrounding medium. From the equations above, we

readily notice, that microcavity fields dominated by the coefficients bn lead to electric

field vectors with no radial component. Similarly, dominant bn coefficients result in cavity

fields without any radial component in the magnetic field vectors. Therefore, these fields

can be divided into transverse electric modes exhibiting electric fields always tangentially

oriented with respect to the sphere surface and transverse magnetic modes with the same

behavior for the magnetic field. We already point out here, that this classification by

the transverse field character also holds for a quantum electrodynamical treatment, since

the directionality of the field vectors is fully preserved in the quantization calculus. We

will meet this classification again, when we will deal with anisotropic emitters in section

3. As an example of the light localization in dielectric microspheres, a field distribution

will be discussed in chapter 3, where we will treat the resonator mode excitation via

anisotropic nanoemitters. The confinement in the radial dimension can be understood

8



2.1 Spherical Microresonators

by the separated equations for the radial field component. This equation, as discussed

in ref. [Chi96], has a formal similarity with the Schrödinger equation in the presence of

a potential. The solution of this equation can be interpreted as standing waves in the

potential well formed by the spherically shaped dielectric. However, this analogy is not

fully accurate, e.g., the potential is energy dependent.

For the internal field, similar expressions like (2.11) and (2.12) hold true. Since the de-

nominators of the expansion coefficients for the internal field turn out to be exactly equal

to those of the scattered field, we can determine the spherical resonance positions via

calculating the resonance features apparent in the scattered field: One mode dominating

the internal field of the sphere leads to the same set of quantum numbers for the corre-

sponding mode dominating the scattered field outside the sphere. In order to evaluate the

resonance conditions, it is useful to display the scattering efficiency, i.e. the fraction of

energy scattered by the sphere normalized to the energy illuminated on the geometrical

sphere cross section. This can be expressed via the expansion coefficients an and bn as

the scattering efficiency QSca:

QSca =
2

(kR2)

∞∑
n=1

(2n + 1)
∣∣an|2 + |bn|2

)
. (2.14)

We note from the equation above, that the scattering efficiency is composed as a sum over

all mode orders. Since the resonance positions remain essentially unaffected by different

excitation conditions, e.g. light emitted by embedded nanocrystals in a microsphere, we

can make use of equation (2.14) for the determination of the mode orders and polarization

character. For the comparison with experimental spectra, we evaluate (2.14) in depen-

dence on the wavelength, which is contained in the size parameter dependence of the

expansion coefficients an and bn. Since the size parameter is a quantity proportional to

the fraction of the sphere radius and the light wave length, the modification of the spectra

due to size variation of the microspheres can be easily predicted: If we regard a certain size

parameter for a given resonance to be fixed, then an increase of the microsphere radius

is accompanied with a larger light wavelength. Thus, for larger microspheres, resonances

with a given set of quantum numbers shift to the red spectral range. Additional reso-

nances appear, when the size of the microsphere is large enough, so that higher angular

quantum numbers dominate with significant contributions in eqs. (2.11) and (2.12). Sim-

ilar conditions hold for changes of the refractive index, which enlarges the optical path

length inside the cavity, so that their effects are similar to those of an increase of the mi-

crosphere radius. The overview over the spectral modifications is given in fig. 2.2, where

the scattering efficiency is evaluated using a modified routine after [Boh98] for varying

microsphere radii from 1.2 µm to 1.6 µm. The spectral sensitivity of the resonances to

size modifications on the nanometer scale is given in the inset of fig. 2.2, where the micro-

sphere radius has been varied in steps of 1 nm only. The resonances accordingly respond

with a shift of 1.6 nm.

A somewhat simplified picture of the resonance shifts with the resonator size is available

considering the geometrical ray optics picture, which is commonly applied for an accessible

9
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Figure 2.2: Size dependence of cavity resonances in dielectric microspheres. The sphere

radius has been varied from 1.3 µm to 1.5 µm. For the refractive index, the dispersion

of polystyrene has been taken into account for the spectrum evaluation. The inset shows

the sensitivity of the cavity resonances to radius variations in the nanometer scale from

1.391 µm to 1.395 µm.

explanation of the rainbow, trapping mechanisms in optical tweezers and alike. Here, a

resonance is formed by straight optical rays continuously falling onto the resonator rim

in a small angle. Subsequent total internal reflection leads to a closed ray path, giving

the resonance pattern [Lab99]. Thus, a regular polygon is inscribed into the resonator

and the resonance condition for the highest order whispering gallery modes is fulfilled

for wavelengths exactly matching the polygon sizes. This approximation for the N -th

resonance can be written as

N · λ

nref

= 2πR , or N =
2πRnref

λ
, (2.15)

which makes the occurrence of the dimensionless size parameter in the equations (2.11)

and (2.12) above more transparent. A schematic representation of this ray optical ap-

proach is given in fig. 2.3. This mode scaling behavior represents a general characteristic

of microresonators, even with a more complicated shape, see e.g. ref. [Nob04] for the mode

scaling in hexagonally shaped microcavities. Since the length of the optical ray path can

be modified via refractive index changes of the cavity material as well, ansatzes have

been developed to tune cavity resonances by postprocessing treatments of the cavities

[Poo04a] and slight deformations [vK01]. The sensitivity of the cavity resonances to the

10
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Microsphere

Vacuum

l
nref R

Figure 2.3: The size sensitivity of microsphere modes is transparently predicted in the

ray optics model.

optical properties of the environment, like the refractive index, etc. leads to the proposal

of microspheres as sensors [Arn03]. Due to its spectral accuracy, scattering calculations

using Mie theory allow for a precise determination of diameters of dielectric spheres or

thin fibers down to the nanometer scale, see e.g. [War04].

To efficiently engineer the excitation of the cavity field using semiconductor nanocrystals,

we have to optimize the orientation of the transition dipole moment of the semiconductor

nanocrystals with respect to the cavity field. As we already mentioned, the treatment,

which in general has to be worked out including the interplay of quantum mechanics with

quantum electrodynamics, does not impose further difficulties concerning the cavity field.

To make this more evident, let us have a brief look at the quantization procedure for mi-

crospheres. The discussion of mode quantization follows refs. [Chi87b] and [Chi87a]: Here

the dielectric sphere is placed into an imaginary conducting sphere which is considered

to be way larger than the microsphere. The fields E(r, t) and B(r, t) can be generally

written in the form

E =
∑

s
1
ωs

dα
dt

e(s, r)

B =
∑

s α(s, t)b(s, t) ,
(2.16)

with the multi-index s containing the mode quantum numbers l, m, n,
{

e
o

}
. Both fields

then have to satisfy the macroscopic Maxwell’s equations and the additional condition of

a vanishing tangential component of the E-field at the boundary of the large quantization

sphere. The solutions of this geometry for scattered fields, internal fields, etc. coincide

with the solutions of Maxwell’s equations discussed in (2.10), the remaining modification

due to the quantization volume is a limitation of the allowed frequencies, which satisfy the

boundary conditions for the quantization sphere. The functions α(s, t) have to guarantee

in accordance with Maxwell’s equations

d2α(s, t)

dt2
= −ω2

sα(s, t) . (2.17)

11
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This equation of motion (2.17) can be deduced from an effective Lagrangian

L =
∑

s

1

2

{
1

ω2
s

[
d

dt
α

]2

− α(s, t)2

}
(2.18)

with the canonical momenta

π(s, t) =
∂L

∂α̇(s, t)
. (2.19)

Therefore, one can readily construct creation and annihilation operators a† and as for the

mode s:
a†s(t) = 1√

2
[α(s, t)− iωsπ(s, t)]

as(t) = 1√
2

[α(s, t) + iωsπ(s, t)] .
(2.20)

With the operators above, the field operators read

E(r) = − i√
2

∑
s

[
as(0)− a†s(0)

]
e(s, r) and

B(r) = 1√
2

∑
s

[
as(0)− a†s(0)

]
b(s, r) .

(2.21)

As we see from the previous expressions, we might leave the usual formalism for light-

matter-interactions unchanged, whereas the orientation of the fields are solely contained

in the expressions obtained from Maxwell’s equations. Thus, in the light-matter inter-

action term, the directionality of the dipole moment of the nanocrystals attached to the

microspheres remains to be engineered:

Hint = −fp · E(r) , (2.22)

for which we give an example in chapter 3.

2.2 Periodic Structures — Photonic Crystals

As mentioned in the introduction, the largest part of this thesis will deal with periodic

arrangements of photonic atoms to coupled-resonator optical waveguide geometries. This

concept shares some similarities with the well established concept of photonic crystals,

pioneered by Yablonovitch and John in 1987 [Yab87, Joh87], which consist of a periodic

dielectric structure as well. For example, colloidal photonic crystals can be built from

submicrometer sized spheres, made from optically transparent polymers, which are sed-

imented from a solution. However, the size variation of the refractive index inside the

structured dielectric medium exhibits in both structures a different characteristic scale

compared to the wavelength of the guided light. In a photonic crystal, the index mod-

ulation is in the size range of approximately one half of the light wavelength. Thus, in

a single photonic crystal constituent, the confinement is comparatively low. Due to this

low confinement, waveguiding in a photonic crystal can be described via a nearly free

photon approach analogous to the nearly free electron approach in solid state physics.

12
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In a coupled-resonator optical waveguide, as will be discussed in the following sections,

a comparatively weak optical coupling between the constituents is desired, which can be

directly translated into a larger light confinement in a single waveguide unit and — in the

case of dielectric microspheres — leads to the choice of microspheres ranging in size of

several micrometer for the visible spectrum. Due to this fact, a coupled-resonator optical

waveguide and a photonic crystal can be regarded as two complementary concepts, in

which photonic crystals display a weak modulation of an optical wave [Cas96], whereas

the coupled-resonator optical waveguide constitutes the tight-binding limit in a photonic

description [Yar99].

2.3 Semiconductor Nanocrystals

In this section, a short review of the properties of the light emitting species probing the

photonic states, i.e. semiconductor nanocrystals, will follow. This section will not only

cover the respective features of the quantum confined nanocrystal material in an isolated

fashion, but also already focus on the underlying features of the highly crystalline material,

which in turn obeys a nearly perfect periodic structure for the electron propagation. As

we will demonstrate in section 4.1, where we investigate the photon states in photonic

structures, many analogies like Bloch waves and band structure formalism may be adopted

from solid state physics for ready use. Doing as such, we are acting on safe ground and

are prepared for the subsequently discussed photonic experiments.

2.3.1 Semiconductors

The most striking feature in crystals is the formation of electronic bands due to the pe-

riodic potential experienced by electrons in the vicinity of highly ordered lattices. This

periodicity gives rise to the formation of electronic bandstructures. The energetic differ-

ence between the resulting valence band and the conduction band leads to the classification

of metals, semiconductors and insulators. For noninteracting carriers, an ansatz is given

by an Hamiltonian for a single electron in a periodic lattice, the so-called single electron

picture [Ash76]

HΨ(r) =

(
~2

2m
∇2 + Vlattice(r)

)
Ψ(r) = EΨ(r) , (2.23)

with a potential Vlattice, that obeys the spatial periodicity of the underlying lattice by

translation of a lattice vector R

Vlattice(r) = Vlattice(r + R) . (2.24)

According to the Bloch-Floquet theorem, a solution of (2.23) can be generally written as

[Kit96]

Ψk(r) = uke
ikr , with uk(r + R)Ψk+G(r) = Ψk(r) , (2.25)
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where the function uk describes a lattice periodic function and the exponential term

corresponds to an envelope function, which in this case can be assumed to be a free wave

with the wave number k. One approach to find a suitable Bloch function for the solution

of (2.23) constitutes the tight-binding model, in which the Bloch waves can be constructed

as a superposition of the electronic wave functions of the single atoms that constitute

the lattice. Therefore, it is assumed, that the Hamiltonian for an electron single atom is

already solved, leading to a single atom wave function φ. Then, from the Hamiltonian

(2.23), it follows, that the energy dispersion can be evaluated from

E(k) =
〈Ψk |H|Ψk〉
〈Ψk | Ψk〉 . (2.26)

It can be shown, that the expression above leads to higher energy eigenvalues for trial

values, which do not exactly solve (2.23), while the minimum energy is reached for the

exact wave function. This is the basis of the Rayleigh-Ritz principle, which in an analogous

manner can be applied for photonic states in periodic dielectrics. Let us assume, that a

sufficiently good trial function is given as a superposition of the electron wave functions

of single atoms φ. Then Ψ can be written as

Ψk =
∑

n

eikRn · φi(r−Rn) . (2.27)

This superposition now fulfills the requirements of a Bloch function defined above and

the energy dispersion can be obtained from the Ritz expression. For the simple case of

s-type functions in a cubic lattice, the resulting energy dispersion now takes the form

E(k) = Esingle atom − A−B (cos(kxa) + cos(kya) + cos(kza)) , (2.28)

where the parameters A and B, respectively, are given by the matrix elements involving

the atomic wave functions at the same or neighboring sites and the correction potential

of the crystal potential to the single atom potential. A very similar expression will be

obtained for coupled-resonator optical waveguides structures, which will be dealt with in

section 4.1. For small wave-vectors, eq. (2.28) can be approximated by the first elements

of a Taylor-series, written as:

E(k) ≈ E(k = 0) +
~2k2

2meff

. (2.29)

Thus, an electron in a crystal can be approximated as a traveling wave, while the effect

of the periodic lattice is solely contained in an effective mass meff. For small k-values, the

dispersion can be approximated by parabolic expressions. The expression (2.28) describes

the formation of an electronic band. The characteristic bandstructure of semiconductors

is formed by highest fully occupied bands, followed by an initially completely unoccupied

band, the conduction band, which are distanced from each other by a few electronvolts, so

that excitations between both are possible using electrical or optical means. For optical

spectroscopy, especially direct semiconductors are relevant, having the minimum of the
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Figure 2.4: Crystal structure of CdSe, taken
from ref. [Kit96].

Figure 2.5: Crystal lattice of ZnS, taken
from ref. [Kit96].

Figure 2.6: Bandstructure of CdSe, calcu-

lated with a pseudopotential ansatz, after

[LB82].

Figure 2.7: Bandstructure of ZnS, calculated
with a pseudopotential ansatz, after [LB82].

conduction band and the maximum of the valence band at the same wave vector, so that

transitions can efficiently be induced or observed by photon absorption or emission. The

nanocrystals used in this thesis consist of the direct semiconductors CdSe and ZnS. Both

belong to the class of II-VI compound semiconductors, i.e. they are constituted by two

elements of the second and sixth chemical group. Thus, the constituents have metallic and

insulator characteristics, respectively. In both semiconductors the atoms are connected

via tetrahedron bonds to their neighbors. The crystal structure of CdSe is the wurtzite

structure, which can be described by an hexagonally closed-packed anion structure of

the selenium ions, in which every second tetrahedron gap is occupied by cadmium ions.

The wurtzite lattice is depicted in fig. 2.4 and its Brillouin zone is shown in fig. 2.8.

ZnS crystallizes in this case in the zincblende structure. The zincblende structure is

constructed as a combination of two face-centered cubic lattices for both elements, which

are shifted by a quarter of a cubic diagonal against each other [Kit96]. The zincblende

structure is shown in fig. 2.5, and the corresponding Brillouin zone is given in fig. 2.9.
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Figure 2.8: First Brillouin zone of the
wurtzite lattice,taken from ref. [Iba90].

Figure 2.9: First Brillouin zone of the
zincblende lattice, taken from ref. [Iba90].

The tetrahedron bonds in both structures stem from hybridized sp3 orbitals, whose s-

contribution originates from the metal ions, cadmium and zinc, respectively, whereas the

p-character is contributed by the p orbitals from the insulators sulphur or selenium. The

resulting band structures for CdSe and ZnS are given in figs. 2.6 and 2.7. The different

curvature of the valence bands at the Γ points leads to the terminology of light and heavy

holes for optical excitations. Additionally, the degeneracy at the Γ points is removed by

spin-orbit coupling in the case of ZnS and spin-orbit coupling and crystal-field splitting

in the case of CdSe.

2.3.2 Excitons

Transition energies in semiconductors are not completely determined by the energy gap

between the highest occupied bands. The excitation of an electron from the valence band

into the conduction band moreover leads to the creation of a new quasi-particle constituted

by the electron itself and the left net positive charge, formed by one unoccupied state in

the valence band, the hole. The attractive Coulomb interaction between electron and hole

leads to the formation of a bound state, the exciton. These bound states can be modeled as

two oppositely charged particles with effective masses stemming from the band dispersion

and from the Coulomb force, mediated through the crystal with an effective dielectric

background constant ε [Pey93]

(
− ~2

2me

∇2
e −

~2

2mh

∇2
h −

e2

ε |re − rh|
)

Ψ = eΨ . (2.30)

Analogously to the hydrogen atom, this equation can be solved with a separation ansatz.

The resulting energy eigenvalues are given by

EExciton

n = EGap − ERyd · 1

n2
+

~2K2

2 (me + mh)
, (2.31)
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Figure 2.10: Energy levels of excitons in bulk semiconductors. The eigenenergies vary

quadratically with the center-of-mass momentum, after [Uet86].

where n labels the n-th energy state, and ERyd = ~2
(2m−1

e +m−1
h )aBohr

denotes the excitonic

Rydberg energy with the excitonic Bohr radius aBohr = ε~2
(2m−1

e +m−1
h )e2

. The energy here is

calculated from the top of the valence band. Thus, the excitonic energies are reduced by

the Coulomb interaction compared to the bandgap and display a discrete series of energies

in addition to their kinetic energy. A scheme of the resulting energy values for excitons

is given in fig. 2.10. For CdSe, the excitonic Bohr radius is 5.4 nm and thus one order of

magnitude higher than the lattice constant of approximately 0.6 nm, which justifies the

neglection of details in the underlying lattice.

2.3.3 Quantum Confinement

The movement of carriers in nanostructured semiconductor material is significantly mod-

ified compared to the bulk case, leading to quantum confinement for the carrier wave

functions. Analogously to the optical confinement, which we discussed in subsection

2.1.1, quantum confinement leads to a drastic redistribution of the density of states. Sim-

ilarly, this confinement can be classified by the dimensionality, in which the confinement

is applied, leading to quantum wells, quantum wires, and quantum dots [Kli95]. The

carriers — electrons, holes, or excitons — can be treated as traveling waves inside the

semiconductor. In case of bulk material, the density of states follows the common square

root dispersion. If the semiconductor is reduced in one dimension to a size comparable

to the de-Broglie wavelength of the carriers, a quantization condition is imposed on the
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k-vectors of the corresponding carrier waves. In such a two-dimensional confinement, new

states are only available, if the energy crosses a threshold value, at which the small enough

de-Broglie wavelength satisfies the quantization condition, leading to a stepwise increase

of the density of states. Between these steps, the dispersion of the density of states can

be deduced from the density of states in k-space. In a d-dimensional confinement geom-

etry, the number of states is proportional to the surface of the k-volume spanned by the

k-vector under consideration. Thus, the number of states dependent on k is proportional

to kd−1. Since the energy is proportional to the square of the wave number, the energy

interval scales with the wave number interval as dE = kdk. Therefore, if we express

the energetic density of states (DOS) in dependence on the k-vector, the proportionality

follows an exponent reduced by unity as kd−2. This can be expressed in energy terms

solely, using again the quadratic dependence of the energy on the k-vector

DOS(E) ∝ E
d
2
−1 . (2.32)

Here, dealing with semiconductors, the energy is set to zero at the top of the bandgap.

For a quasi zero-dimensional system, like a quantum dot, quantum confinement occurs in

all three dimensions. Thereby, only energy values, that satisfy the quantization condition

are allowed. This concentrates the allowed states to discrete energies. In-between, the

density of states remains zero, resulting in a delta-like distribution. Thus, the density of

states in a zero-dimensional limit of the quantum dot obeys the same function of energy

like we obtained in subsection (2.1.1) for the photonic density of states in a photonic dot.

This again demonstrates the similarity between both concepts. A schematic plot of the

dependence of the density of states on the dimensionality of the confinement can be found

in fig. 2.11

2.3.4 Excitons in Nanocrystals

In nanocrystals, the excitonic states are significantly modified compared to the bulk sys-

tem. The three-dimensional confinement, as discussed in the preceding subsection, leads

to the formation of discrete three-dimensional states whose energies depend on the spatial

extension of the confinement potential, namely the nanocrystal size. The size dependence

of the excitonic states can be understood in comparatively simple terms in the limit of

strong confinement: Here, the nanocrystal is large enough, so that the effective mass

approximation is still valid, and at the same time small enough, so that the imposed

confinement constitutes the dominant energy contribution, whereas the impact of the

Coulomb interaction between electron and hole can be neglected. In this picture, the con-

fined exciton model separates into the confinement of two carriers, which can be treated

separately in an equivalent manner. Strictly speaking — we ignore the Coulomb interac-

tion in this picture — we are in principle dealing with a confinement of an electron-hole

pair, and not with the confinement of an exciton. The nanocrystals dealt with in this

thesis are prepared by wet chemical means in solution, leading to an almost perfect spher-

ical shape. Hence, in the strong confinement limit, the spherical confinement potential
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Figure 2.11: Density of states in confinement geometries of different dimensionality, taken

from ref. [Kli95]

for the individual charge carriers can be written as spherically symmetric. Additionally,

the confinement potential is assumed to be infinite, thus, the charge carriers are ideally

confinement in the nanocrystal. The confinement potential for electron and hole Ve/h can

be written as

Ve/h = 0 for |r| < R, and (2.33)

Ve/h = ∞ for |r| ≥ R , (2.34)

where R denotes the nanocrystal radius. The problem can now be represented by the

Hamiltonian [Bán93]
(
− ~2

2me

∇2
e −

~2

2mh

∇2
e + Ve(re) + Vh(rh))

)
Ψ(re, rh) . (2.35)

Since the problem ignores the Coulomb-interaction between individual charges and is

stated in spherical symmetry, the solution can be obtained by a separation ansatz for the

individual wave functions Ψ(re) and Ψ(rh). The separation into spherical Bessel functions

jl(kr) for the radial part and spherical harmonics for the angular part expresses the

confinement condition — and subsequently the eigenenergy condition — solely through

the radial part of the wave function, which must vanish at the nanocrystal boundary

|r| = R:

jl(kr) = 0 ≡ jl(χn,l) , (2.36)

with χn,l being the roots of the spherical Bessel function. The allowed k-values are

therefore given by the roots of the spherical Bessel function divided by the nanocrystal

radius. The resulting eigenenergies of the charge carriers can accordingly be written as

Ee,nlm =
Eg

2

~2

2me

(χn,l

R

)2

and (2.37)
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Figure 2.12: Level scheme of nonresonant photoluminescence: A laser excites higher

energy states. After phonon assisted relaxation to the excitonic ground state, photons

emitted during radiative recombination to the crystal ground state can be detected.

Eh,nlm =
Eg

2

~2

2mh

(χn,l

R

)2

. (2.38)

In more realistic calculations, the confinement potential is not considered to be infinite.

This can be accounted for by modifications of the confinement conditions by matching

the wave function expansion inside and outside the nanocrystal at the semiconductor

boundary. Furthermore, the Coulomb-interaction can not be completely ignored [Wog97].

However, the electron-pair energies as treated above, serve as suitable basis states for the

expansion of more accurate solutions for the excitonic states. The general trend, however,

especially with respect to the confinement induced blue shift, is still preserved. The energy

expression above indicates a confinement induced blue shift of the electron-hole pair energy

with decreasing nanocrystal size. The excitonic energy can thereby be controlled over a

large range, by changing only the geometric scale of the quantum confinement. For the

case of CdSe nanocrystals, the energy range from far-infrared to ultraviolet can be covered.

The confinement potential can be increased during the chemical synthesis by an additional

surface layer of semiconductor material with a larger bandgap, i.e. ZnS, as used for the

nanocrystals referred to in this thesis.

2.3.5 Polarization-Sensitive Mode Mapping

In the experiments presented in this thesis, we observe the photoluminescence of semicon-

ductor nanocrystals. In order to distinguish between optical signals stemming from the

excitation process and the subsequent emission, we deal with nonresonant photolumines-

cence throughout this thesis. Here, the excitation is performed optically by an Argon-Ion

laser emitting at 488 nm, which is focussed onto the sample. The photon energy is ab-

sorbed by the semiconductor quantum dots by creating electron-hole pairs in energetically

higher excitonic states. These excitonic states are subject to phonon scattering and can

relax to lower energetic exciton states. The electron-hole pair now recombines radiatively
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Figure 2.13: Microphotoluminescence setup: The sample is mounted on the front face

of a glass prism. The excitation of the sample is provided by frustrated total internal

reflection. A microscope objective collects the nonresonant emission from the sample.

and the emitted photons can be detected directly or coupled into photonic dots as a probe

of its photonic levels and detected subsequently. The principle of nonresonant photolu-

minescence is depicted in fig. 2.12. In order to guarantee an efficient excitation of the

sample, it is adhesively mounted onto the hypotenuse facet of a quartz prism and illumi-

nated through one of the back facets. This geometry allows an efficient incoupling of light

into microsphere modes as has been discussed, e.g., in ref. [Gor99]. The exciting laser

light is focussed onto the front facet and coupled into the sample through frustrated total

internal reflection inside the prism. A homogeneous excitation for large regions, e.g. in

the case of spatially resolved spectroscopy on coupled microresonators is achieved using a

spot-size of several tens of microns. The emitted photoluminescence light is collected by

a piezo controlled microscope objective with a numerical aperture of 0.9 NA. According

to the Rayleigh-criterion, we can acquire a spatial resolution of

∆x = 0.61 · λ

NA
, (2.39)

which for emission wavelengths around 580 nm results in a resolution limit of about 0.4

µm.

A subsequent lens images the sample onto a virtual image with 63-fold magnification.

Here, a pinhole can be adjusted relative to the sample in order to spatially filter out the

signals of interest. Spectral filters separate scattered light from the excitation source.

The image is then focussed with a net magnification of 100.8 onto the entrance slit of an

imaging spectrometer and subsequently detected by a CCD camera. An adjustment of the

sample position can be performed via coupling the emission into a video camera, giving

a direct feedback for finding appropriate sample positions. A scheme of the experimental

setup is shown in fig. 2.13.
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Figure 2.14: Scheme of the mode mapping technique: The nonresonant photoluminescence

is spatially and spectrally scanned by shifting the sample image across a spectrometer

slit. For any point of the resulting two-dimensional image a spectrum is measured. The

integrated intensities of the resonances are visualized in a reconstructed spatial matrix.

In order to study the effects of localization and the polarization nature of the micro-

sphere trapped nanocrystal emission, a polarization-sensitive and spatially and spectrally

resolved mode mapping technique has been performed. A scheme of the mode mapping

technique is depicted in fig. 2.14.

The image of single or coupled microspheres is focussed onto the entrance slit of a spec-

trometer as described above. The detected intensity is dispersed in the spectrometer and

falls onto an imaging CCD attached to the exit image plane of the spectrometer. Thus,

the CCD matrix detects a two-dimensional dataset containing the spectral information

in one direction and the spatial information along the slit dimension in the other, i.e.,

for any point along the spectrometer slit a spectrum is obtained. The acquisition of the

spatial information in the dimension perpendicular to the slit direction is performed with

a stepwise movement of the sample image across the spectrometer slit. This is achieved

via an electronic control of the position of the microscope objective, which is mounted

on a x-y-z piezo stage. For any shift of the microscope objective, the CCD information

is read out, resulting in a two-dimensional image, in which for any image point a pho-

toluminescence spectrum is obtained. Additionally, a polarizer can be inserted into the

detection beam path, resulting in an intensity dataset dependent on four parameters.

From this dataset, mode images can be constructed [Möl02, Möl01]: For a given reso-

nance energy and a specific polarizer direction, a spectrum for the two spatial directions

is evaluated. As a measure for the resonance intensity, a spectral window around the reso-

nance peak is fixed, for which the peak integral is computed. Intensity values measured at

neighboring wavelength positions around this spectral window then fix a base line, which
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2.4 Nanostructured Semiconductors

is set as the background for a specific resonance. This background can be subtracted

from the peak integral and plotted for any point of the two-dimensional sample image.

Thus, an analysis of measurements with varied polarizer positions can reveal both the

light localization and the polarization properties of the detected structures.

2.4 Nanostructured Semiconductors

2.4.1 Growth of Semiconductor Nanocrystals

The samples covered in this thesis have been prepared by Dr. M. Artemyev (Belarussian

State University, Minsk) via a wet chemical synthesis. First of all, this method allows

to precisely control the nanocrystal radius, and thereby the extension of the confinement

potential, which according to eqs. (2.37) and (2.38) results in a tunable emission energy.

Not less importantly, the chemical procedure allows for flocculation and re-dissolution

of nanocrystals for chemical functionalization with e.g. surface molecules, which becomes

essential especially for linking to the surface of microresonators. For example, nanocrystals

can be easily linked to or incorporated in polymer or glass-like material, see e.g. [Ols04].

The CdSe nanocrystal growth is performed using a route initially introduced by Mur-

ray et al. [Mur93, Hin96, Tal01]. Cadmium and selenium is added to a TOP/TOPO

(trioctylphosphine/trioctylphosphine oxide) solution in the form of selenium powder and

dimethylcadmium. Heating of the solution leads to a separation of cadmium out of its

organometallic compound and the nucleation of CdSe clusters starts. The agglomerates

are held in solution by the TOPO molecules whose oxygen part can dock with the cad-

mium ions of the nanocrystal, whereas the three octyl ends hinder the flocculation out

of the TOP solution. The nucleation then leads to a nearly spherical crystal shape due

to minimization of the crystal surface. The nanocrystal size can be monitored simul-

taneously by absorption measurements. The size is mainly determined by the growth

duration. The reaction can be stopped via adding continuously methanol, a molecule

with a higher polarity, to the solution, which lowers the solubility of the TOPO capped

nanocrystals. Since the larger nanocrystals leave the solution first, the size can be con-

trolled in a very narrow range, leading to a monodispersity of about 4%. A transmission

electron microscope (TEM) image of a spherical CdSe nanocrystal is given in figure 2.15.

To passivate the nanocrystal surface and to improve the confinement potential, a surface

layer of a compound semiconductor with a larger bandgap, ZnS is finally grown on top.

For this Zinc and Sulphur are added as organometallic compounds to a CdSe nanocrys-

tal solution in TOPO and HDA (hexadecylamine) [Tal01]. Heating of the solution leads

to nucleation of ZnS on the CdSe surface, until the strain due to the lattice mismatch

stops the layer growth after one or two monolayers. The nucleation principle is schemat-

ically displayed in fig. (2.4.1). After surface passivation, the quantum yield of spherical

nanocrystals can reach values of around 70%, even at room temperature. A modified
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RNC = 2.5 nm

Figure 2.15: Transmission electron microscope image of a spherical CdSe nanocrystal.

The nanocrystal radius is approximately 2.5 nm.
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Figure 2.16: Schematic illustration of CdSe nanocrystal synthesis and capping formation.

preparation leads to the formation of elongated CdSe nanorods, as will be discussed in

section 2.4.2.

2.4.2 Growth of Semiconductor Nanorods

The transition from spherical nanocrystals to elongated nanocrystals can be controlled by

a modification of the wet chemical synthesis mentioned in subsection (2.4.1). For gaining

the anisotropic growth, one uses the anisotropy of the hexagonal lattice of CdSe. During

the growth, the c-axis of the crystal (the vector perpendicular to the (001)-facet) is en-

ergetically preferred as growth direction, as was initially discovered by A. P. Alivisatos’

group in 2000 [Pen00]. The proposed growth mechanism assumes a different degree of

passivation of outer cadmium bonds on the different surfaces. According to Manna et
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Figure 2.17: Growth mechanism in the CdSe nanorod synthesis. The different nanocrystal

facets incorporate CdSe with different growth rates due to passivation conditions, taken

from ref. [Man02].

al. [Man02], the nanorod synthesis looks microscopically as follows: The nanorod growth

starts with a nearly spherical nanocrystal, which already determines the radius of the

latter nanorod. Now, hexyl phosphonic acid (HPA) is added to the solution, which pas-

sivates the different facets of the nanocrystal in a distinct way. Figure 2.17 displays the

CdSe lattice together with the crystallographic axes. On the (001) facet, one might find

either a cadmium layer with one dangling bond or a selenium layer. In the former case,

cadmium atoms, which are the more cationic constituents in the compound crystal, can

be easily passivated by the phosphonic acid. In case of a selenium layer on top, which is

not easily passivated by that acid, a subsequent growth of an additional cadmium layer

would start, which finally leads to a termination of the growth in this direction. In the

opposite (00-1) direction, the crystal is terminated with a layer of cadmium with three

dangling bonds or a selenium layer. The three dangling bonds of cadmium can not be

fully coated with the phosphonic acid molecules, so that in that direction the passivation

remains always imperfect. Since the other nanocrystal faces can be completely passivated,

further growth can only proceed in the (00-1) direction.

2.4.3 Nanocrystals as Dipole Emitters

The highly anisotropic shape of CdSe nanorods gives rise for significant changes in the

optical properties compared to spherical nanocrystals. Most importantly in this context,

as has been demonstrated by Hu et al. [Hu01], the nanocrystal emission is highly lin-

early polarized along the rod axis for sufficiently large aspect ratios (fraction of length

to diameter of the nanocrystal), whereas the luminescence energy is mainly determined

by the nanorod radius. The origin of the high degree of linear polarization has been

investigated in various approaches. Hu et al. applied a pseudopotential calculation in
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order to evaluate the change in the electronic states with increasing aspect ratio. The

electronic states have their origin in the 4p electron orbitals of selenium and the 5s orbitals

of cadmium. The energetic degeneracy of the p orbitals is removed by spin-orbit coupling

and crystal field interaction. In a spherical nanocrystal, the highest electronic states have

mainly 4px and 4py character, the 4pz-like states are lower in energy. Since the pz level

has a higher momentum projection in the nanorod axis, this state reacts most sensitively

to a change of the rod length. When exceeding a certain value, the pxpy and pz states

cross, and the pz state becomes the highest electronic state. The major sensitivity of

photoluminescence to these electronic states predicts highly linearly polarized emission.

Recently, analytical calculations covered the regime of one-dimensional excitons [Sha04]

and predicted a polarization degree of 0.6 for pure electronic confinement. More recently,

analytical calculations including Coulomb interaction, exchange interaction and dielectric

confinement in the 1D exciton picture reveal even higher degrees of linear polarization

exceeding 0.8, in close agreement with experiments [LeT05a].

2.5 CdSe Nanorods as Dipole Emitters for Mode

Control

The highly polarized emission from CdSe nanocrystals is evidenced in photoluminescence

spectra obtained from a row of one-dimensionally aligned nanorods, as demonstrated by

Dr. M. V. Artemyev [Art03a]. Here, a nanotemplate has been used for the attachment of

core-shell CdSe nanorods. A one-dimensional alignment has been achieved by choosing

a smaller template diameter than the rod radius. In fig. 2.18 photoluminescence images

are displayed, which compare the polarization properties of the emission from elongated

nanorods and almost spherical nanocrystals. In this image, photoluminescence images and

spectra are taken for nanorod and nanocrystal samples with an analyzer in the detection

system aligned parallel or perpendicular to the ensemble, respectively. The photolumines-

cence data indicate up to 70 % polarized photoluminescence. Likewise, the polarization

degree of single nanocrystals can be determined from single rod measurements and de-

tuning measurements in two-dimensional ensembles.

In the following, we will explore the utilization of the polarized CdSe nanocrystal emission

for mode control in spherical microcavities. Here, we will make use of the interplay of

cavity mode polarization and polarized emitters in an artificial compound system.
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2.5 CdSe Nanorods as Dipole Emitters for Mode Control

Figure 2.18: Polarized photoluminescence of CdSe nanorods in a one-dimensional ensem-

ble compared to the nearly unpolarized nanodot emission. Both spectra and video image

show the different polarization degree of CdSe nanorods, taken from ref. [Art03a].
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3 Mode Control in Spherical Microcavities

3. Mode Control in Spherical Microcavities

In this section, we focus on the coupling of nanoengineered light emitters to dielectric

microspheres∗. An active control of the mode excitation will be presented, which results

in a preferred excitation of modes with a specific polarization (see also subsection 2.1.1).

To achieve this, we make use of both the characteristic properties of the nanoemitter

emission and the light confinement in dielectric microspheres.

In spherical microcavities, the mode spectrum is composed of two mode polarizations

— transverse electric modes and transverse magnetic modes, which are not energetically

degenerate. As discussed previously, the nanocrystal emission can become highly lin-

early polarized, when nanocrystals are synthesized as elongated rod-like crystals. Both

properties can now be combined to a compound system with nanorods attached to the

microsphere surface. Due to the tangential orientation of the electric field vectors in

transverse electric modes, an efficient excitation of TE modes is feasible, if nanorods are

tangentially aligned on the microsphere surface. In other words, the transition dipole

moment of nanocrystals can be engineered to realize an efficient coupling of nanoemitters

to specific microcavity fields. One one hand, this interest is inspired by recent advances

in preparation of strongly coupled emitter-cavity systems. Here, excitonic resonances are

strongly coupled to cavity light fields [LeT05b, Rei04, Yos04, Pet05] and the exciton en-

ergy is coherently exchanged between excitonic states and the cavity light-field, which is

currently investigated in the context of cavity quantum electrodynamics. Since optical

microresonators doped with light-emitting semiconductor quantum dots form an unique

artificial material system for the realization of microlasers as well [Wog03, Kaz04, Rak03],

an optimization of the light-matter interaction and thus an orientation of the dipole mo-

ment with respect to the cavity light field is a similarly important parameter for the

optimization of microlasers.

In earlier work, an engineering of position and orientation of the transition dipole moment

with respect to the cavity field has been suggested in experimental work on dye-doped

microdroplets [Bar96, Arn97, Hil96]. An extension to more stable systems is highly de-

sired, since dye molecules are comparatively sensitive to laser excitation. Nanorods, on

the other hand, exhibit stable photoluminescence and offer a high flexibility to tune the

photoemission to desired wavelengths. Additionally, nanorods show small excitonic emis-

sion linewidths and thus represent an attractive choice as active material in microlasers

∗Parts of the content in this chapter have been published previously as an article:
Appl. Phys. Lett. 83 (16), 2686-2688 (2003), c©2003 American Institute of Physics, ref. [Möl03]
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Figure 3.1: Calculated mode types for different excitation conditions in a spherical res-

onator with Radius R = 1.4 µm and refractive index n = 1.57. In (a) the dipole radiates

tangentially to the surface in x-direction resonant to a TE1
16 mode (λ = 688.5 nm). In (b)

a TM1
16 mode excited by a tangentially aligned dipole (oscillation in z direction) is shown

(λ = 666.9 nm). The whispering gallery mode pattern, typically excited in plane wave

excitation is given in (c). The images show the square of the electric field in the sphere

surface in a linear color scale, calculated by via the multiple multipole (MMP) method

(contributed by Dr. R. Wannemacher, Leipzig, taken from ref. [Möl03]).

[Art01a, Art01b, Pal03a, Fan01]. Moreover, microdroplets as host cavities continuously

evaporate and do not allow for stable arrangements on substrates. Therefore, solid-state

microspheres made from polystyrene are explored here as cavities (the possibility to ar-

range them in symmetrical ways on substrates will be discussed in the next chapters).

In fig. 3.1, numerically calculated microsphere modes are shown for surface aligned dipole

emitters. In fig. 3.1 (a), the dipole is aligned tangentially to the surface of a 1.4 µm sphere

with a horizontal orientation. The dipole oscillation here has been chosen to be resonant

to the TE1
16 mode at a wavelength of λ = 688.5 nm. As apparent from the image, the

emission is mainly localized at the dipole position and radiation into the mode occurs

perpendicular to the dipole axis. Fig. 3.1 (b) shows a radially aligned dipole, which is in

resonance with the TM1
16 mode. In this configuration, the light is isotropically emitted into

a shell-like mode. The intensity is mainly located at the dipole position. For comparison,

image (c) shows a whispering gallery mode excited with a plane wave. Here, the light is

confined to a homogenously bright ring along the sphere equator. A rigorous theoretical

discussion of dielectric microsphere modes excited by single incorporated dipole emitters

can be found in [Che76].

Additionally, the plots shown in figs. 3.1a) and b) yield a second strong field maximum
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3 Mode Control in Spherical Microcavities

in the mirror point of the nanorod position (see also [Möl02]). This may offer interesting

applications in coupling individual nanorods located in the two mirror positions, e.g. to

transport information over distances by cavity photons via Förster energy transfer, which

has been discussed in [And00].

Since the proposal for a cavity mode control relies on the relative orientation of the

nanocrystal axis and the electric field vectors, first a characterization of the cavity mode

polarization has been performed. Polystyrene microspheres with a radius of 1.4 µm have

been doped with a subsurface layer of spherical nanocrystals, whose emission can couple

to both types of polarized modes. As can be shown theoretically, the mode properties are

not significantly affected by incorporation of nanometer sized particles into a dielectric

microsphere [Che03].

3.1 Cavity Mode Characterization

The mode identification has been achieved by applying polarization-sensitive mode map-

ping resonant to the different sphere resonances as discussed in subsection 2.3.5. The

detected mode intensity is mainly localized close to the sphere rim. The polarization

sensitivity is realized by a linear polarizer placed into the detection beam path. The

cavity mode characterization is depicted in fig. 3.2 together with a microsphere photolu-

minescence spectrum. From the detected mode maps (shown as insets in diagram 3.2)

the cavity mode polarization can be unambiguously derived: For all images, the polarizer

is aligned horizontally in the mode diagrams. The intensity of each mode is concentrated

in rings along the microsphere rim. The polarizer in the detection beam path projects

now intensity contributions in accordance with the transverse polarization character of

the microcavity field. The transverse electric mode, for which the electric field is aligned

tangentially to the rim of the sphere, displays now a strong intensity maximum at those

positions, at which the rim is oriented parallel to the polarizer orientation (see, e.g. the

TE1
17 mode in the spectrum). For the transverse magnetic mode, the electric field is almost

radially oriented. The resulting mode maps — with the same polarizer orientation as used

for the TE mode maps — appear now rotated by 90 degrees. As can be seen in fig. 3.2,

the mode polarizations can be determined for all occurring resonances and show an alter-

nating set of TE/TM polarized modes. This mode characterization is cross-checked by a

Mie scattering calculation according to eq. (2.14), which is displayed as the lower curve

in diagram 3.2 together with the calculated mode polarizations and mode orders. The

calculated mode polarizations are in perfect agreement with the measurement.

Since the cavity mode polarization has been unambiguously determined, a preference in

the cavity mode excitation due to the nanorod alignment can be checked. In order to

achieve this goal, microspheres of the same size have been doped with CdSe nanorods

prepared as described in section 2.4.2. First, an electrostatic attachment method has

been used, tangentially aligning a monolayer of nanorods on the microsphere surface. The

alignment method is schematically depicted in fig. 3.3. The electrostatic attachment is
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Figure 3.2: Analysis of cavity mode polarizations. The spectrum in the middle shows

the photoluminescence spectrum of a nanocrystal doped polystyrene sphere. The color-

coded polarization-sensitive mode maps show the experimental classification into trans-

verse electric (TE) and transverse magnetic (TM) modes. The experimental classification

is confirmed by a calculated Mie spectrum (Radius R = 1.4 µm and the refractive index

n = 1.5663 + 0.00785µm2/λ2 + 0.000334µm4/λ4.)

made possible by opposite surface charges attached to the nanorods and the microspheres:

Due to the fabrication process, polystyrene microspheres carry a surface layer of sulphate

groups, which adds a negative surface charge to the microspheres in the suspension.

Nanorods carry a positive surface charge, so that they rods are attached electrostatically to

the microsphere surface leading to a tangential alignment of the nanorods. The averaged

rod size derived from high-resolution transmission electron microscopy (TEM) images is

7 nm in diameter and 35 nm in length.
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ZnS-Monolayer

CdSe-Nanorod

Polystyrene sphere negatively charged

Figure 3.3: Tangential alignment of CdSe nanorods on the surface of polymeric micro-

spheres. The nanorods are positively charged. The polystyrene microspheres contain

negatively charged groups on the surface due to the fabrication process. The attractive

force leads to an almost tangential alignment.

3.2 Mode Control

In order to check the preferential nanorod alignment and a preferential mode excitation

of transverse electric modes, two samples with microspheres of the same size have been

prepared: For one sample almost spherical nanocrystals are attached to the microspheres,

for the other sample elongated nanorods have been used as dopants. The measured cavity

spectra are compared in fig. 3.4.

Here, the spectra on the left hand side show the cavity spectrum excited by spheri-

cal nanocrystals. The spectrum is decomposed into TE and TM contributions with

polarization-sensitive detection. Both mode polarizations are excited and the peak heights

are simply weighted with the envelope of the nanocrystal emission (additionally shown

as upper curve). Cavity quality factors (fraction of the mode energy and mode width) of

about 1000 are observed. On the right hand side of the figure, the spectrum for tangen-

tially aligned nanorods via the method mentioned above is shown. A sensitive comparison

of the mode excitation conditions is possible for this sample, for which the nanorod emis-

sion displays a maximum for the TM mode wavelength. Now, a clear modification of

the excited cavity spectra is noticed: Pronounced TE modes are observed, whereas TM

modes are significantly suppressed. Hence, the spectrum is dominated by three TE modes.

However, the cavity quality factors decrease to values between 200 and 600 because of the

spacer molecule which results in a reduced incoupling.

Additionally, a preferential excitation of TE polarized cavity modes can also be derived

from the pump power dependence of the mode emission as shown in image 3.6. Here,

an alternative method of doping is applied: The nanorods are incorporated into the

polystyrene microcavities beneath the surface, where the cavity mode field reaches its

maximum. The incorporation of nanorods is undertaken in swelling polystyrene micro-

spheres, as schematically depicted in fig. 3.5. Here, the microspheres develop pores, into
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Figure 3.4: Cavity mode spectra excited by spherical and rod-shaped nanocrystals: The

diagram on the left-hand side shows the microphotoluminescence spectrum in case of

a polystyrene sphere doped with spherical nanocrystals. Both mode polarizations (TE

and TM) are apparent in the spectra. The mode intensities are simply weighted with

the nanocrystal emission envelope due to inhomogeneous broadening of the nanorystals

(black line). The diagram on the right-hand side shows the mode excitation by tangen-

tially aligned nanorods. TE-polarized modes show pronounced emission, whereas the TM

polarized modes are significantly suppressed.

which nanorods can penetrate the sphere surface [Han01]. After the pores are closed, the

nanorods are spatially confined in a subsurface layer close to the rim of the microsphere.

Naturally, this method results in an imperfect alignment, however, the nanorod position

is optimized here with respect to the mode field.

As indicated in fig. 3.6, the TE mode intensities exhibit a nonlinear increase in the pump

power dependence for the TE mode at 731 nm, whereas the TM mode intensities remain

almost constant (see inset of fig. 3.6). At sufficiently high pump power, the spectrum

consists of two pronounced TE modes. However, a derivation of a specific threshold

cannot be done, since the nanorods are subject to photo-degradation, so that the number

of nanocrystals participating in the pump power dependence is still not constant.

As a summary of this chapter, the preferential excitation of transverse electric modes uti-

lizing surface aligned CdSe nanorods has been demonstrated. The preferential excitation

results in cavity emission spectra which are dominated by a subset of up to three TE

polarized modes. Therefore, compound systems of nanorods aligned on a microsphere

surface constitute almost completely TE polarized three-color emitters even at room tem-
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ZnS-Monolayer

Polystyrene sphere developing pores

CdSe-Nanorod

Figure 3.5: Incorporation of CdSe nanorods into polystyrene microspheres. The swelling

microspheres develop pores, into which the nanorods can penetrate.
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Figure 3.6: Pump power dependence of the photoluminescence emission. The emission

spectra are normalized to the intensity of the most pronounced mode at 693 nm. The

inset shows the intensity difference of the respective mode compared to the 693 nm mode

dependent on the pump power (Taken from ref. [Möl03] ).
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perature.
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4. Formation of Photonic Molecules

Recently, several possibilities to prepare multisphere agglomerates in a controlled and

symmetric way arose. These include a variety of methods, like the use of microtemplates

[Yin01, Wan04a, Xia00], applying wet chemical means for even heterogeneous structures

[Réc04], symmetrical arrangements in drying droplets [Man03], and optical micromanipu-

lation with optical tweezers [Mac01, Gri03], suggesting the possibility of three-dimensional

photonic molecules and microscale optical manipulation applications.

Photonic molecule formation based on coupling of photonic dots has been reported for

dye-doped polymeric bisphere systems and laterally patterned planar microresonators

containing quantum wells as the optically active medium, [Muk99, Muk99, Bay98]. Lasing

of a coherently coupled bisphere system is recently described [Har03]. Other applications

of coupled resonators include optical filters, see e.g. [Mel02, Oka03], cascade lasers [Bor01]

and coupled microlasers for memory devices [Hil04].

In this section, coherent coupling in small symmetric ensembles of polystyrene microcavi-

ties doped with nanocrystals is explored∗. This study is motivated by the recent proposal

of a new type of optical waveguide, the so-called coupled-resonator optical waveguide

(CROW) [Yar99, Ste98]. The formation of coupled modes in small and finite linear

chains and arrays of exactly size-matched spherical microcavities is characterized with

polarization-sensitive mode mapping. The combination of polarization-sensitive mode

mapping and spectral analysis at characteristic symmetry points of the molecule allows

for the identification of weakly and strongly coupled bonding and antibonding modes and

the determination of the dominant polarization type of the molecule states. Both exper-

iment and theory show strong photon mode coupling with pronounced mode splitting as

well as weak coupling with no significant loss in Q-factor depending on the emitter po-

sition and orientation. The spatial distribution and dominant polarization type of both

the weakly and strongly coupled cavity resonances are studied spectrally and spatially

resolved. The experimental data are compared with a calculation of field distributions

and mode linewidths as a function of dipole orientation and position inside a photonic

molecule. Q-factor conservation along molecule axes for weakly coupled modes is demon-

strated as an important property of coupled-resonator geometries.

As will turn out in the following subsections, the localization of weakly and strongly cou-

pled modes clearly reflects the symmetry of the multisphere configuration. Thereby, the

∗Parts of the content in this chapter have been published previously as an article:
Phys. Rev. B 70 (11), 115323 (2004), c©2004 American Physical Society, ref. [Möl04]
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symmetry dependent features can be regarded as a photonic representation of Neumann’s

principle known from crystal physics, since the spatial symmetries are found in the mode

diagrams as well [Bir66].

These observations provide us with insight concerning the modified light localization,

strong and weak spectral mode splittings and stability in the mode polarization, which

can be used to evidence coherent mode coupling in coupled-resonator chains (these cri-

teria provide the basis for the next chapter, where results of an extended ”hockey stick”

geometry will be presented). A finite chain of three resonators in a linear geometry will

be investigated and the stability of the coupled-mode evolution is shown. Additionally,

measurements on the finite chain introduced in this chapter are used later on for a theoret-

ical discussion of the mode evolution in truncated coupled-resonator optical waveguides.

For the estimation of the dominant mode polarization, the coupled cavity structures are

doped with a subsurface layer of spherical nanocrystals, which can excite both TE and

TM polarized modes.

Interestingly, a symmetrical alignment of microspheres appears to be an attractive way to

realize directional emission in cavity geometries with a circular cross section. Naturally,

spherical microcavities exhibit spherically symmetric emission patterns, which impose

constraints in their practical use, for example in microlasers. In order to realize direc-

tional emission, symmetry axes have been introduced recently into originally isotropic

cavities by shape distortion for deformed microdisks [Gma98, Kim04], by constructing

egg-shaped resonators [Shi01] and by slightly deforming microspheres [Lac03]. More com-

plex coupled-resonator geometries are less studied. Confinement of light in photonic

molecules composed of microspheres might open a way to optimize cavity parameters by

creation of a more complex cavity structure than a single microsphere.

4.0.1 Samples and Experiment

The photonic molecules were prepared by impregnating polystyrene microspheres (Poly-

sciences, Inc., radius R ≈ 1.4 µm, refractive index n ≈ 1.59) with a subsurface layer of

CdSe nanocrystals of RNC = 2.5 nm according to the procedure described in chapter 3.

After synthesis of CdSe nanocrystals described in subsection 2.4.1, the methanolic sus-

pension of microspheres was cast and dried on a quartz substrate thereby forming a great

variety of assemblies.

To achieve coherent photon coupling, exactly size-matched microspheres (< 0.1% size

deviation) have been preselected via their Mie resonances. Due to the weak interaction

required for the realization of a CROW, the dimensions of the microspheres to be utilized

are generally larger than the cavities which are used to build up photonic bandgap mate-

rials (for photonic crystals made from polystyrene spheres, see e.g. [Wos03]). In order to

obtain sufficiently large coupling effects, a radius of 1.4 µm has been chosen. The photonic

molecule modes are studied by microphotoluminescence spectroscopy at the diffraction

limit combined with polarization-sensitive mode mapping. The spectra and the spatial
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intensity distribution are taken with a spatial resolution of 0.4 µm and a spectral res-

olution of 0.2 nm at room temperature as described in subsection 2.3.5. The emitted

light intensity of NC-doped spheres is spectrally and spatially resolved by mapping the

intensity across a sphere on and off resonance to molecule modes for a fixed polarization

direction. Since additional modes are found in the spectra, a polarizer inserted into the

detection beam path selects only signals from nanocrystals that emit components of the

electromagnetic field parallel to the orientation of the polarizer. In that way the the total

mode spectrum detected in small spatial regions of the structure can be decomposed into

subsets of either TE- or TM-like modes for more clarity in the data analysis as described

in 2.3.5. By the narrow spectral window and the chosen polarizer orientation, we intro-

duce a size selection of nanocrystals from the inhomogeneously broadened ensemble that

is exactly in resonance to the investigated cavity mode and has components of the optical

transition dipole moment according to the field orientation defined by the polarizer axis.

4.0.2 Symmetrical Alignment of Microsphere Ensembles

A symmetrical alignment of below ten microspheres can be achieved by a wet chemical

modification of the microsphere deposition onto the substrate [Art02] : The nanocrystal

doped microspheres are dissolved in a methanolic suspension which easily evaporates at

room temperature. The suspension is given onto the substrate, which results in a large

droplet. During evaporation of the methanol, the droplet shrinks in size. Small defects on

the substrate surface introduce inhomogeneities in the droplet boundary, which do not fol-

low the movement into the droplet center direction. Instead, small separated droplets are

formed, containing small numbers of microspheres. A careful control of the microsphere

concentration in the suspension and an adjustment of the suspension amount relative

to the substrate area during the deposition leads to the formation of a large number of

these small droplets on the substrate. The droplets cover a spatial region on the mi-

crometer scale and can contain small numbers of microspheres. During the evaporation

of the methanolic solution, these small droplets slowly shrink, which finally moves the

microspheres towards each other. Since the microspheres are randomly localized in the

suspension droplet, the formation of highly anisotropic agglomerates is rather unlikely,

and thus this method typically results in symmetrically ordered arrangements of touching

microspheres, whereas the ensembles are distanced from each other by several microsphere

diameters. Due to the self-assembly mechanism behind this method, large scale substrates

can be covered with highly ordered ensembles, which allows for a preselection of ensem-

bles with matching sizes that permit coherent coupling of the microsphere light fields. An

interesting variant of this method has been published by Manoharan et al. on the forma-

tion of microsphere agglomerates using toluene droplets [Man03]. A scheme showing the

assembly principle is given in diagram (4.0.2). A collection of selected microscope images

of self-assembled symmetrical microsphere ensembles is shown in figure 4.2.

The demonstration of coherent coupling of sequentially attached microspheres will be

performed by exploring the modification of the emission spectra and its dependence on

38



Figure 4.1: Schematic representation of the preparation of symmetrical microsphere en-

sembles: First, the solution containing doped microspheres is given onto the quartz sub-

strate. During evaporation of the solution, the droplet shrinks. Due to inhomogeneities of

the substrate surface, some parts of the solution do not follow the inwards moving droplet

boundary (left image). Thus, smaller droplets are formed, from which many contain a

small amount of microspheres (middle image). Further evaporation of the solution leads

to a high number of small symmetrical microsphere agglomerates covering the substrate.

Luminescence

R ≈ 1.4 µm

White Light

Figure 4.2: Collection of selected microscope images of self-assembled microsphere agglom-

erates. The images on the left hand side show photoluminescence images of nanocrystal

doped sphere ensembles. On the right hand side, sample structures illuminated with white

light are displayed.
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Figure 4.3: Photoluminescence spectrum of a two-sphere system with large intercavity

distance. The lower curves display the experimentally observed photoluminescence spec-

tra for each sphere (labeled with left and right according to the mode maps). No mode

splittings or mode shifts are observed. The upper curve shows a calculation of the single

sphere scattering efficiency according to equation (2.14). For the narrow resonances with

radial mode number 1 the polarization type and angular quantum numbers are labeled.

The emission wavelengths for later mode maps are indicated with filled dots.

the spatial symmetry of the multisphere arrangement in section 4.0.3. In order to check

the dependence of the observed effects on the intercavity distance and hence the coupling

strength for the observation of coherent coupling in a two-sphere system, we perform mea-

surements on system of two distanced microspheres, where the intercavity separation is

approximately one sphere radius. This will give a suitable comparison for the exploration

of coherently coupled bispheres made of touching constituents.

Since the occurrence of coherent coupling in a two-sphere system does not only require

a sufficient spatial overlap of the evanescent cavity field tails, but also a sufficient spec-

tral overlap of the mode resonances, a pair of spheres has been preselected, for which

the individual microsphere modes are exactly overlapping within the experimental error.

Thereby, the intercavity distance is the only parameter, which can determine the coupling

degree.

The mode resonances for the individual microspheres are detected at the boundary of

each sphere and plotted in fig. 4.3. The microsphere modes are fitted with a Mie theory
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Figure 4.4: Polarization-sensitive mode maps of a double-sphere system with large inter-

cavity distance. Diagram (a) shows the spectrally integrated emission of the two-sphere

system. Diagram (b) shows an intensity map resonant to the TE1
20 mode at 570.3 nm

without polarization decomposition. The diagrams (c) and (d) show polarization-sensitive

mode maps of the same mode with polarizer orientations as marked by arrows. Diagrams

(e) and (f) show the polarization-sensitive mode images for a TM1
20 mode at 554.7 nm.

calculation, which is given below the experimental spectra. From the comparison, no mod-

ification compared to single microsphere spectra can be attributed to the presence of the

second microsphere. We perform now the polarization-sensitive mode mapping introduced

in subsection 2.3.5, and map the mode intensity across the whole two sphere geometry and

compare the results with the single sphere case. The polarizer in the detection beam path

has been chosen to decompose the nanocrystal emission into two polarizations relative to

the spatial two-sphere arrangement: One orientation is directed parallel to the connection

line of the two sphere centers, the other being aligned orthogonally.
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The polarization dependent mode maps are given in fig. 4.4 for two consecutive modes with

TE and TM character, respectively. For comparison, the upper left diagram illustrates

the spectrally integrated intensity of the two-sphere configuration (the geometry of the

configuration has been highlighted with a cartoon). The unpolarized intensity distribution

of a TE1
20 mode at 570.3 nm is displayed on the right hand side. In the second row, the

polarization-sensitive mode map for the same TE1
20 mode for both orthogonal polarization

directions are given (see arrows in the diagrams). The bottom row shows the mode maps

of a TM1
20 mode at 554.7 nm with the same polarizer orientations (see arrows). For both

modes, the emission intensity is concentrated at the rim of the individual spheres. For the

TE modes, the intensity reaches the maximum at positions, where the rim of the sphere

is oriented parallel to the polarizer direction, whereas the TM modes show the orthogonal

behavior. By turning the polarizer to the orthogonal orientation, the intensity stemming

from each sphere simply turns around individually by the same degree. This leads to

the conclusion, that neither spectrally nor with respect to the intensity localization the

distanced two-sphere system behaves differently compared to two isolated microspheres.

Thus, for this configuration a distance of the order of one microsphere radius leads to

almost vanishing signatures of coherent coupling. With this cross-check at hand, the

coherent coupling in systems of touching bispheres can be explored.

4.0.3 Photonic Molecules Formed by two Coupled Microsphere

Cavities

The simplest photonic molecule is a coherently coupled bisphere system which implements

a preferred symmetry axis along the molecule axis. We therefore start with the analysis of

bisphere emission spectra and field intensity distributions, which are excited here by the

emission of CdSe nanocrystals near the surface of the microspheres. Figure 4.5 shows the

emission spectra taken at characteristic detection points of a bisphere molecule, i.e., on-

and off-axis with respect to the bisphere axis. The lower panel shows, for comparison, the

scattering efficiency for a single sphere calculated via Mie theory. The labels TEn
l or TMn

l

denote the polarization character (TE or TM) and the angular (n) and radial (l) quantum

numbers, respectively†. For the analysis of the spectra we select in the following only one

subset of either TE- or TM-type modes by polarization-sensitive detection. For example,

the data in fig. 4.5 are detected as TE-sensitive by orienting the polarizer parallel to the

bisphere axis for off-axis detection at the equator and perpendicular for on-axis detection

at the pole.

For detection points off-axis near the equator (middle panel), the single-sphere TE reso-

nance energies, e.g., the TE modes with n = 1 and l = 17, 18, 19, are well reproduced in

the spectrum of the bisphere system. Because of the negligible spectral shift compared to

the single-sphere TE-resonances, the mode type excited by nanocrystals at off-axis posi-

†For the size parameters used throughout this thesis, the larger quantum number always refers to the
angular quantum number.
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Figure 4.5: Emission spectra taken at characteristic bisphere points in TE-sensitive de-

tection (linear polarizer aligned parallel to the sphere rim in the detection region); upper

panel: red-shifted, bonding resonances measured at the intersection point (uppermost

curve) and weaker, anti-bonding modes taken at the edge position; middle panel: spec-

tra of the spectrally unshifted bisphere modes, taken at detection points apart from the

bisphere axis; bottom panel: Mie-scattering spectrum for a single polystyrene sphere.

tions is called weakly coupled throughout what follows without further classification into

bonding and antibonding modes. Spectra taken at the on-axis detection points (upper

panel) show the characteristic mode splitting caused by coherent mode coupling, as has

been demonstrated in ref. [Muk99].

While the weakly coupled modes show no significant spectral shift compared to the single-

sphere resonances, they cannot be regarded as entirely uncoupled, as will be examined in

the following section. In order to explore the differences with the uncoupled two-sphere

system discussed before, the polarization-sensitive mode mapping is applied to the weakly

coupled modes emerging from the TE19
1 single sphere modes at 596 nm. In order to un-

ambiguously check the polarization behavior for the weakly coupled modes, the polarizer

in the detection beam path has been turned in steps of 10 degrees starting form the bi-
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Figure 4.6: Polarization-sensitive mode maps of a double-sphere system with touching

constituents. The detected TE19
1 mode intensity is shown for different orientations of the

polarizer in the detection beam path. The polarizer is rotated from parallel to orthogonal

orientation with respect to the bisphere axis. The last diagram gives the integrated

photoluminescence for comparison.
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sphere axis orientation towards the perpendicular direction. For each polarizer position,

a two-dimensional mode map has been performed for the weakly coupled modes. The re-

sults are displayed in fig. 4.6 (here the detuning angles are arranged with increasing angle

in rows from right to left and subsequently from top to bottom). For comparison, the

spectrally integrated photoluminescence is given in the last diagram in fig. 4.6 to allow for

the connection of the mode maps with the spatial configuration of the photonic molecule.

As depicted in the first image at 0 degrees detuning, the map of the detected photolu-

minescence reveals at first glance no significant deviation compared to the case of a pair

of uncoupled spheres: The intensity stems mainly from the rim regions of the individual

microspheres, and the polarizer in the parallel configuration selects photoluminescence

components with field vectors parallel to the polarizer, so that the intensity reaches its

maximum at positions where the tangents of the sphere rims are parallel to the main

axis. When the polarizer is further detuned from the molecule axis, the bright intensity

spots initially follow the polarizer rotation as expected from the uncoupled sphere system.

This behavior drastically changes at about 50 degrees detuning: Here, the mode intensity

avoids the main axis of the configuration and bends over to the side regions of the pho-

tonic molecule. This behavior is preserved in all subsequent mode maps and reaches its

maximum contrast for the 90 degree case, in which the polarizer is aligned perpendicular

to the molecule’s main axis. Here, the intensity displays additional minima along the

axis, thus exactly at those spatial positions, which would exhibit intensity maxima for

the case of uncoupled spheres. This behavior perfectly reflects the spatial symmetry of

the bisphere configuration and can therefore be regarded as an unambiguous detection

tool to decide about the occurrence of coherent coupling of the microresonator fields.

Furthermore, it does not necessarily rely on a pronounced splitting of modes, which —

in principle — could originate from various mechanisms, even in the single sphere case,

like deviations from the spherical symmetry of the constituents; instead, it can readily be

performed for spectral regions, where single sphere modes are expected. Because of the

deviations from single mode intensity localization, the modes are labeled weakly coupled,

opposed to simply uncoupled modes. On the other hand, the polarization character of

the weakly coupled modes is not faced with complications due to interresonator coupling,

as shown in fig. 4.6.

Since the interresonator coupling introduces significant changes of the spectrum at the

bisphere axis, we follow here, as an example, the mode evolution at the bisphere intersec-

tion region. In fig. 4.7, the evolution of the weakly coupled modes into strongly coupled

modes is displayed in TE-sensitive detection. Here, the evolution of the TE18
1 mode is

shown for different detection spots shifted perpendicularly to the bisphere axis (see the

horizontal stripe in the inset of figure 4.7). Apart from the main axis, the weakly coupled

modes dominate the spectrum. The closer we approach the intersection region, the more

are the modes shifted towards longer wavelengths, evolving into strongly coupled modes

at the intersection region. Since microspheres, due to their spherical symmetry, confine a

great collection of modes including varying angles with the bisphere axis, several modes

contribute to the transition of weakly and strongly coupled modes. These modes exhibit
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Figure 4.7: Transition from weakly to strongly coupled TE modes at varying distance

from the bisphere axis. A strong splitting is observed at the touching point.

a different degree of field overlap, so that apparently there is a smooth transition of the

weakly coupled modes towards the strongly split modes, as is illustrated in fig. 4.7.

Analogous effects are observed for the coupling of TM modes as we will discuss later for

a linear three-sphere geometry.

These strongly coupled resonances can be classified into bonding or antibonding modes

with the help of the intensity maps and by comparing the absolute intensity at the inter-

section region of the bisphere with the intensity at its end positions (see fig. 4.8). The

redshifted mode at 627 nm (uppermost curve in fig. 4.5) represents a pronounced bonding

character because of its high intensity signal at the intersection point compared to the

upper and lower on-axis detection points and is referred to as a strongly bonding mode

in what follows.

The polarization-sensitive and spectrally resolved intensity maps of both the spectrally

unshifted, weakly coupled modes are shown in fig. 4.8. To extract the dominant polariza-

tion of the respective mode type, the intensity maps are again decomposed in TE and TM
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 Figure 4.8: Polarization-sensitive intensity maps of a bisphere photonic molecule with

touching constituents. Diagram (a) shows the spectrally integrated intensity distribution

for comparison. In (b) the intensity map resonant to a weakly coupled TE19 resonance

is plotted. The polarizer is aligned along the main axis (see arrow). The corresponding

mode map for the perpendicular orientation is shown in image (c). In (c), the intensity

pattern of a strongly coupled TE18-resonance is shown for the polarizer orientation like

in (d) (s. arrows).

contributions by changing the orientation of the linear polarizer in the detection beam

path. We find that in a linearly aligned sphere geometry the single-sphere polarization

character of the discrete photon modes survives to a major extent. The color-coded maps

show the polarization-sensitively detected spatial intensity distributions in resonance to

a weakly coupled [fig. 4.8 (b) and 4.8 (c)] and a strongly coupled, bonding TE-like mode

mode [fig. 4.8 (d)]. In case of the weakly coupled modes, the detected signal is almost

vanishing along the bisphere axis, indicating a weak cavity field at these regions originat-

ing from intersphere coupling. The intensity map for the strongly coupled mode, on the

other hand, (here spectrally shifted by 5 nm, see fig. 4.5) exhibits the inverse intensity

distribution compared to fig. 4.8 (c), showing a signal only at those positions where the
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Figure 4.9: Emission spectra (offset) and electric field distributions in a photonic molecule

calculated with the multiple multipole method (MMP) for horizontally aligned dipoles in

a distance of 1.2 µm from the sphere center, located (a) on the equator position (see

inset), and (b) on the bisphere axis. The field distributions show |E|2 in a logarithmic

scale covering 40 dB, taken from ref. [Möl04].

weakly coupled modes have no intensity. By comparing to fig. 4.5 we see that the corre-

sponding spectra show no significant broadening in case of the weakly coupled modes of

figs. 4.8 (b) and 4.8 (c) and significantly split-off, spectrally broader peaks for the strongly

coupled mode of fig. 4.8 (d).

In order to understand the influence of coherent photon coupling on the cavity field dis-

tribution and mode line shape, a comparative calculation of a bisphere system has been

performed using the semianalytical multiple multipole (MMP) technique with systematic

variation of dipole position, frequency, and orientation by Priv.-Doz. R. Wannemacher
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(Leipzig) [Wan04b]. The field distribution and spectra are displayed in fig. 4.9 for bi-

sphere parameters of R = 1.3895 µm radius and refractive index n = 1.58876. Here, a

single dipole emitter is modeled, aligned in x-direction and located (a) at r = 1.2 µm from

the center of the lower microsphere at the equator and (b) on the bisphere axis (see scheme

in the inset of fig. 4.9). The calculation for the bisphere system identifies the measured

vanishing field intensity along the bisphere axis as a real, spatial, single-mode modification

in a weakly coupled bisphere system without a significant spectral mode shift and broad-

ening [fig. 4.9, case (a), marked in red] compared to the single-sphere spectrum. Likewise,

also theory shows for the strongly bonding modes a significant increase in linewidth due

to the additional loss mechanism caused by the strong intersphere coupling and a con-

centration of the electric field intensity along the bisphere axis [fig. 4.9, case (b), marked

in blue]. As can be seen from figs. 4.5, 4.8 and 4.9, the experimental mode mapping

for weakly coupled (off-axis points) and strongly coupled (on-axis points) mode pictures

reveal identical characteristics with the calculated electromagnetic field intensity |E|2 for

tangential dipole orientation. The calculated spectra confirm the observation of coher-

ent cavity coupling for resonant modes in exactly size-matched microcavities. Hence, the

Q-factor conservation for weakly coupled modes, strong mode splitting for the strongly

coupled modes, and complementary modifications of the field intensity along the bisphere

axis for both mode types are a clear signature for coherent cavity coupling, reflecting the

spatial symmetry of the configuration.

Furthermore, the coherent coupling of microresonators might be utilized in the frame of

quantum computing, as will be discussed more detailed in section 6.6. Currently, the

possibility of using coupled microcavities for quantum information processing is met with

growing interest [Bos04, Li04]. To illustrate this, let us consider a coupled mode extended

over two microspheres. While entangled states are often discussed for two-particle systems,

they can be realized with single quantum systems, e.g. a photon, only (see, for example,

[Lee00]). In our case, a single photon in a coherently coupled mode among two cavities

can be regarded as a superposition state [Bar03]:

1√
2

(|1>Cavity 1 |0>Cavity 2 +|0>Cavity 1 |1>Cavity 2) . (4.1)

As will be discussed later, such a superposition state could also be impregnated into

a chain of coupled microcavities, where the superposition states can be subsequently

transferred to the other end, which will lead us to the proposal of coupled cavities as an

entanglement transfer line.

4.0.4 Linear Chain Geometries of Coupled Microsphere Cavities

The study of linear structures with more than two coupled cavities is motivated by the in-

terest in waveguiding through weak coupling between high-Q optical cavities (the so-called

CROW structure: coupled-resonator optical waveguide) [Yar99]. This type of waveguid-

ing might replace waveguiding by total internal reflection and waveguiding through Bragg
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Figure 4.10: Polarization-sensitive mode maps of a linear three-sphere structure with

touching constituents. The TE1
19 mode intensity at λ = 591.8 nm is shown, while the

analyzer in the detection beam path is rotated stepwise from parallel to perpendicular

direction with respect to the three-sphere axis.
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reflection from a periodic structure. A particularly appealing feature of the CROW is the

possibility of lossless and reflectionless bends. The experimental realization has been

proposed using polar geometries, such as microdisks or microspheres. Hence, we discuss

in the following the coherent coupling in a linear three-resonator configuration without

significant Q-factor degrading.

A class of polarization-sensitively detected spectra taken at characteristic detection points

in a linear three-sphere geometry is shown in fig. 4.11. At positions at the individual

microsphere rims far off the three-sphere axis (indicated in the lower image of fig. 4.11),

the mode energies agree closely with the theoretically predicted mode resonances of a

single sphere. For the detection of the cavity modes at the axis points, the spectra show

— similarly to the bisphere system — a splitting of the modes into red- and blue-shifted

modes. Since the number of strongly split modes does not obviously increase, we are faced

with the question, whether all cavities participate in a coherent mode evolution or only

pairwise coupling between two neighboring spheres occurs.

In order to clarify a coherent mode evolution along the three-sphere line, we first perform

a similar analysis of the mode intensity of the weakly coupled TE modes in the three-

sphere geometry. The results are displayed in fig. 4.10, where the polarizer orientation

has been varied in steps of 10 degrees, starting with a polarizer orientation parallel to

the dimension of the sphere alignment towards the perpendicular orientation. As can

bee seen in fig. 4.10, a similar turn of the detected intensity is found, in particular, the

weakly coupled modes display an almost vanishing mode intensity at all on-axis points

of the three-sphere axis. This behavior we already identified as a characteristic feature

for bisphere systems. Thereby, we conclude, that the condition of coherent three-sphere

coupling holds as well for this geometry. In order to complete the picture, we compare in

the following the obtained intensity images with those of the strongly coupled modes in

this geometry. As can be observed in fig. 4.12, the mode images of the strongly coupled

modes show even in the case of three coupled microresonators a complementary behav-

ior: The strongly coupled red-shifted bonding modes display their maximum intensity at

the boundary locations matching the three-sphere axis. Thus, this trend of the different

light localization of strongly coupled modes and weakly coupled modes with respect to

the axis in one-dimensional systems can be introduced as a suitable criterion for coherent

intersphere coupling. We already note here, that a third criterion concerning the number

of split modes and variation of oscillator strengths in adjacent resonators will be estab-

lished in the later sections, in which we develop a theoretical approach for the weakly

coupled modes. As will turn out, in finite structures a mode splitting with even less peaks

per sphere than the number of resonators in a chain is observed, although all resonators

participate in the coherent mode evolution. The more intuitive expectation of n peaks

per sphere in a chain of n coupled resonators is demonstrated to be invalid, since the

finiteness of a free CROW (e.g., no periodic boundary conditions can be applied) breaks

the translational symmetry of the Bloch modes, leading to varying oscillator strengths in

adjacent resonators.
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As we note from fig. 4.12, a linear chain consisting of three touching spheres shows exactly

the characteristics found before in the bisphere system: Weakly coupled TE-type modes

have vanishing intensity along the trisphere axis while strongly coupled TE bonding modes

exhibit strongest emission at touching points and split in red- and blueshifted modes

(spectra not shown here). For the weakly coupled modes (off-axis positions), no significant

change in the Q-factor (Q ≈ 1000) is measured for either the bisphere or the linear three-

sphere configuration, which is a promising result with respect to future application in

weakly coupled, high-Q CROW-structures.

4.0.5 Two-dimensional Geometries of Coupled Microsphere

Cavities

Next, we study the effect of next-neighbor and long-distance coupling by analyzing several

two-dimensional sphere geometries. We focus on the stability of the photonic molecule

formation while continuously including further constituents. This procedure can be con-

sidered as a bottom-up approach to a two-dimensional photonic structure and results in

symmetrical three- and four-sphere geometries. Fig. 4.13 shows the spatially resolved

emission intensity of a molecule state for two 2D-sphere configurations. As the main dif-

ference with respect to one-dimensional, linear chain geometries, a redistribution of field

intensity within the array towards the air gaps is observed. As shown in fig. 4.13, the

strongest emission is detected close to the air-gap positions and not at the intersection

points — in contrast to the strongly coupled resonances in linear three-sphere geometries

discussed in the preceding subsections. This strong intensity localization at positions

apart from the intersection points is only observed for geometries which deviate from the

linear chain. An explanation of the pronounced intensity patterns at the air-gap posi-

tions in the multisphere configurations of fig. 4.13 requires the assumption of coherent

three-sphere coupling: An argument for a complete coherent three-sphere coupling is the

fact, that an incoherent intensity sum would never vanish at the intersection points. The

addition of a fourth sphere does not significantly modify the spatial confinement at the

center of the molecule. These findings strongly support the term tight-binding coupling in

which next-neighbor species have necessarily to be all included in the molecule formation,

but distant objects have negligible effects. This fact, combined with the spectral features,

highlights the feasibility of this photonic chemistry approach for new cavity designs.

The strong field intensity modification for molecules is evaluated more quantitatively

by integrating the mapped intensity patterns in agglomerates and comparing it with

the single-sphere case. We discuss now the interesting case of weak coupling because

the spatial modification of the emission intensity here is not accompanied with a large

spectral broadening. The measured intensity distribution is integrated for maps of such

weakly coupled modes taken at identical excitation and detection conditions for the same

TE-type resonance. For off-axis positions Q-values of 1200, 920, and 1000 are measured

for the single-sphere, bisphere and 2D trisphere geometry, respectively. For the latter
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Figure 4.11: Three-sphere emission spectra taken at characteristic detection points (see

image). The spectra show the features of weakly and strongly coupled modes in a similar

manner as observed for the bisphere configuration. All spectra are taken in TE-sensitive

detection. For comparison and determination of the corresponding mode numbers, a

calculation of the single-sphere scattering efficiency is plotted in the bottom curve.
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Figure 4.12: Polarization-sensitive mode maps of weakly and strongly coupled TE modes

(a-c) and TM modes (d-f). The wavelengths are given in the diagrams and the polarizer

orientations are marked by arrows.

configuration, the spectra at three symmetry-relevant positions are shown in fig. 4.14,

with the sharpest mode observed at the detection point C. The experimentally determined

integrated mapped intensities normalized to the single-sphere case are Vintegr from 1 (single

sphere) to 1.42 (bisphere) and 1.66 (2D trisphere).

4.0.6 Summary

In conclusion, the photonic molecule formation in one- and two-dimensionally coupled

exactly size-matched microspheres is demonstrated and the spatial dependence and

polarization type of both the weakly coupled and strongly coupled resonances have been

studied. The comparison of different molecule geometries clearly shows a tight-binding
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coupling signature of the bonding photon states. The interference effects of the weakly

coupled modes might be used to build a new type of structured cavity with easily

modified light concentration in highly tunable systems. Both experiment and theory

show that weak coupling, e.g., of three coupled resonators, with no significant loss in the

Q-factor can be achieved as well as strong coupling with strong field concentration along

the molecule axes. Since the dominating polarization type survives to a large extent,

an additional control of photons via alignment of nanorods, as demonstrated for single

microspheres in chapter 3, might be feasible.

The similarity of the spectral and spatial features apparent in the linear two- and three-

sphere geometries, although apparently giving a compact description of linear coupled

cavity structures, will be investigated in more details in the next sections. First, we

address the issue, whether additional coupled resonances are apparent in the spectra for

a coherently coupled three-sphere system compared to a bisphere system. Additionally,

differences in the individual oscillator strengths in systems with more than two coupled

resonators will be explored. This provides us with additional experimental criteria for the

formation of extended multiresonator photon states and an comprehensive understanding

of the mode formation via an harmonic oscillator analogy.

However, for strongly coupled modes in linear geometries detected at the resonator inter-

section points, additional intermixing of modes with higher radial order is likely to occur

due to the changes in the boundary conditions compared to single microspheres. Thereby,

these broadened coupled modes prevent us from the direct observation of a possible band

structure formation, for which additional splittings might be hidden, and do not exhibit

ideal parameters for waveguiding mechanisms. Here, low loss modes are favored and the

splitting due to interresonator coupling is desired to be kept as small as possible. Hence,

the weakly coupled modes are most promising for these approaches. As we will see in the

next section, modifications of the group velocity of light is one inspiring property, which

obeys a reciprocal relation with the coupling constant.

4.1 Periodic Structures — Coupled-Resonator Opti-

cal Waveguides (CROWs)

Since we will deal in the following with the CROW mode evolution both experimentally

and theoretically, a brief description of the formalism is given below.

In 1999, the possibility to construct optical waveguides built from resonators exhibiting

whispering-gallery like mode structures was noticed by Amnon Yariv [Yar99]. This pro-

posal suggests a way to transfer energy via weakly coupled resonator fields and thus to

bend light around angles on the micrometer scale according to the whispering-gallery

mode symmetries. Furthermore, it might be feasible to modify the dispersion relation of

the coherently coupled light-fields involved. This proposal is inspired by the tight-binding
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Figure 4.13: Polarization-sensitive intensity characteristics of strongly coupled bonding

resonances of TE character in two-dimensional triple (left) and quadruple (right) sphere

configurations. The geometry of the structures is shown in the first row, which displays

the spectrally integrated intensity distribution. The other images show the intensity

distributions for different orthogonal polarizer orientations as indicated by arrows.

approach commonly used in solid state physics and gained a lot of interest especially from

the side of theory and simulation, covering ways to slow down the group velocity of light

by orders of magnitude [Khu05], and to even time-reverse optical signals [Yan04a] which

could lead to enhanced performance of possible devices for all-optical networks and highly

sensitive biosensors [Alt05b].

This structure is commonly referred to as a coupled-resonator optical waveguide (CROW)

and a brief derivation following Yariv’s proposal of the dispersion relation will be given
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 Figure 4.14: Emission spectra taken at different symmetry relevant detection points in a

two-dimensional three-sphere system for adjusted polarizer orientations (see inset). Like

in the linear bisphere and three-sphere case, the evolution of the single microsphere modes

into collective bonding and antibonding modes is apparent. Both TM and TE modes are

visible in the spectra, because of the threefold symmetry of the structure.

below. Let me point out here already, that the proposed structure leads to relations which

are mathematically identical to a simple model of coupled oscillators, as I will demonstrate

later on in this section. Via this analogy, we can estimate the important properties of

more complicated structures even for cases, in which exact numerical field calculations

would become overwhelmingly difficult.

We consider a row of whispering-gallery mode resonators with the field modes EΩ(r) and

an individual eigenfrequency Ω linearly aligned at positions z = n · R. A scheme of a

coupled-resonator optical waveguide is depicted in fig. 4.15. The CROW mode is then

considered to be a linear superposition of the single resonator modes

ECROW

K (r, t) = E0 exp(iωKt)
∑

n

exp(−inKR) · ECROW

Ω (r− nRez) (4.2)

and represents a photonic Bloch function with the wave vector K ∈ [− π
R

. . . π
R

[
. The field

modes of the entire structure must solve Maxwell’s equations

∇× (∇× ECROW

K ) = ε(r)
ω2

K

c2
ECROW

K (4.3)
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Figure 4.15: Schematic representation of a coupled-resonator optical waveguide (CROW).

The individual resonators are assumed to be degenerate in their individual eigenfrequen-

cies. The optical fields of the resonators are coupled through their evanescent field com-

ponents and constitute Bloch wave functions (after [Yar99]).

for the eigenfrequency ωK , ε(r) being the dielectric constant for the whole CROW struc-

ture.

An expression for the frequency can be obtained via multiplication of the wave equation

from the left with the single resonator field EΩ and subsequent integration over the whole

space. This integration can be greatly simplified by assuming the limit of tight-binding

coupling, so that the overlap integrals of resonators can be neglected for all but next

neighbors, i.e.

αn =

∫
d3rε(r)EΩ(r) · EΩ(r− nRez), n 6= 0, (4.4)

βn =

∫
d3rε0(r− nRez)EΩ(r) · EΩ(r− nRez), n 6= 0, (4.5)

can be treated as zero for n 6= 0,±1. Additionally, the coupling of next neighbors ex-

pressed in the coupling constant κ1 can be treated as comparatively weak, i.e.

κ1 = β1 − α1 =

∫
d3r [ε0(r−Rez)− ε(r−Rez)]× EΩ(r) · EΩ(r−Rez) (4.6)

is a small quantity κ1 ¿ 1. If we additionally take the resonator field to be concentrated

to a large extend inside the resonators, e.g.

∆α =

∫
d3r [ε(r)− ε0(r)]EΩ(r) (4.7)

with ∆α ¿ 1 as well, the frequency dispersion reads

ωK = Ω

[
1− ∆α

2
+ κ1 cos(KR)

]
(4.8)

and the group velocity dispersion is readily obtained

vg(K) =
∂ωK

∂K
= −ΩRκ1 sin(KR) . (4.9)
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4.1 Periodic Structures — Coupled-Resonator Optical Waveguides (CROWs)

Thus, dependent on the choice of frequency, one ends up with a huge variation of the group

velocity, which could be used for buffering of optical signals by delaying the propagation

of a signal track.

Hereby, we can formulate the essential key features for any successful realization of CROW

structures: First, the one-dimensional waveguide-like structures must consist of suffi-

ciently equal-sized microresonators. Second, the light fields of the microcavities must

be shown to exhibit coherent intercavity coupling and third, additional modes should be

observed, corresponding to the formation of extended modes due to multisphere coupling

in accordance to Bloch’s theorem. The aim of the next section is to demonstrate these

key features for microspheres aligned in one-dimensional rows.
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5 Extended Photonic Molecule Chains

5. Extended Photonic Molecule Chains

In this chapter, linearly assembled microsphere resonators doped with semiconductor

quantum dots are explored as building blocks for coupled-resonator optical waveguides∗.
The evolution of single cavity modes into collective waveguide modes is studied using

polarization-sensitive microphotoluminescence spectroscopy. The formation of coupled-

resonator waveguide modes is demonstrated, using vertex-shaped resonator arrays for the

experimental proof of coherently coupled multisphere photon states as an experimental

method.

As an introduction to the samples under consideration, a white-light microscope image

of the bent coupled-resonator structure is given in fig. 5.1, for comparison, a spectrally

integrated photoluminescence image is given below.

Since microresonators with circular geometrical cross sections of a few optical wave-

lengths such as microdisks or microspheres (which we deal with here) confine the light

in whispering-gallery-like modes, these cavities have been proposed as flexible building

blocks for CROWs [Yar99, Ste98, Smi04a, Ast04].

As already mentioned previously, waveguiding in CROW structures is realized by weak

coupling of single cavity photon fields, analogous to the tight-binding description of elec-

tronic states in solids. Possible applications of CROW structures are currently discussed

concerning almost loss-less propagation and reflectionless bending of light, slowing down

its group velocity, as model systems for all-optical phenomena such as coupled-resonator

induced transparency (CRIT) [Smi04a], and time reversal of light [Yan04a]. Currently,

many theoretical efforts are devoted to the design of CROW structures [Poo04b]. An

experimental realization utilizing circular microcavities, however, has been less studied.

Thus, polymeric microspheres doped with semiconductor nanocrystals are studied here

as building blocks for CROW structures. Microspheres appear to be a flexible choice,

since their isotropic shape intrinsically opens the way towards even three-dimensional

waveguide applications.

Polystyrene microspheres with radii of about R ≈ 2.25 µm and a refractive index 1.59 are

subsurface impregnated with CdSe nanocrystals of Radius RNC = 2.5 nm according to the

method described in chapter 3. After synthesis of CdSe nanocrystals following subsection

2.4.1, the methanolic suspension of microspheres was cast and dried on a quartz substrate

in the vicinity of a removable microtemplate, leading to linear and vertex-shaped chains

∗Parts of the content in this chapter have been published previously as an article:
Opt. Lett. 30 (16), 2116 (2005), c©2005 Optical Society of America, ref. [Möl05b]
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Figure 5.1: White-light microscope image of a nanocrystal doped bent CROW structure

forming a vertex of about 30 degrees (the individual spheres 2.25 µm in radius). The

upper image shows the structure illuminated with white light, the lower diagram displays

the dopant luminescence excited via laser excitation (filtered).

of touching microspheres. The slightly larger size of the microspheres utilized here allows

for a reproducible alignment route as described below.

5.0.1 Preparation of Linear Microsphere Chains

The preparation of linear chains of microspheres requires an anisotropic modification of

the synthesis described in subsection 4.0.2. This can be achieved by attaching a remov-

able linear microtemplate onto the substrate before adding the methanolic microsphere

suspension [Art03b]: The microtemplate used here is realized by a small glass rod with an

outer diameter of 100 µm, that can be easily attached to the substrate without additional

microfabrication techniques. The microsphere suspension is added around the template

and forms a meniscus between the glass rod and substrate surfaces. During the drying

process, the droplet shrinks and moves towards the meniscus due to capillary forces. With

a suitable concentration of microspheres in the solution enough microspheres are carried

within the shrinking droplet area. At a certain time, the liquid is nearly completely con-

fined in the meniscus angle and not enough liquid is available at the outer rim to tow

the microsphere ensemble further towards the touching point between the glass rod and
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Figure 5.2: Schematic illustration of the preparation of linear microsphere arrays: First, a

microcapillary is placed onto the quartz substrate. Subsequently, a droplet of the solution

containing nanocrystal doped microspheres is applied onto the configuration (left image).

During the evaporation of the solution, the droplet boundary moves towards the capillary

(middle image). In the vicinity of the capillary, the droplet forms a meniscus between the

capillary and the substrate. Further evaporation of the solution tows the microspheres

towards the touching point of the capillary with the substrate. When the solution is almost

dried, the microspheres can not be carried further towards the capillary and remain in

highly ordered lines of about ten microspheres (right image).

the substrate. Thereby, the microspheres are left behind, ideally forming linear chains of

touching microspheres. This way of preparation is illustrated in the cartoon 5.2.

Again, exactly size-matched microspheres with smallest variations of radii (< 0.1 %)

have been preselected by their Mie resonances to guarantee efficient coherent resonator

coupling. The study of coupled resonators, arranged in extended one-dimensional chains

and arrays, covers resonators with radii around R ≈ 4λ.

5.1 Coherent Coupling in Bent Microsphere Chains

We examine the following key features that inevitably are desired for any realization of

CROWs: i) the coherent coupling (see chapter 4) of the individual resonator light fields,

which requires exactly mode matched cavities and ii) the signature of extended photon

states that evolves over more than two cavities opposed to an incoherent superposition of

simply pairwisely coupled cavity fields. The coherence is shown by the modification of the

nanocrystal emission at the intersection points of a CROW consisting of six microspheres.

The extended multicavity coupling will be demonstrated both by the occurrence of ad-

ditional splitting of the weakly coupled modes and by analyzing the spatial distribution

of the mode intensities across a CROW which exhibits a vertex-like geometry. With this
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Figure 5.3: First order modes in the coupled-resonator chain with varying splits across

the main axis. The intensity is significantly weaker compared to the pronounced mode

emission of the second order modes.

experimental method, one can compare the results with the superposition of the vertex

arms.

As in the case of photonic molecules, the evolution of single cavity modes into coher-

ently coupled CROW modes is studied via microphotoluminescence spectroscopy at the

diffraction limit combined with polarization-sensitive mode mapping (see section 4 and

subsection 2.3.5). The spatial distribution and dominant polarization type of weakly and

strongly coupled waveguide modes are studied spectrally resolved.

As apparent in the resulting spectra, not only modes with radial quantum number 1, but

also modes with a radial number 2 display a locally varying mode splitting in the spectra.

For demonstration, a spectral window with varying spectra along the CROW structure

extension is shown in diagrams 5.3 and 5.4 for both radial mode types. Since both modes

display a different light confinement condition for a single sphere, the occurrence of modes

with differing radial quantum number could be utilized for realizing a set of different

coupling constants for each mode type in one and the same coupled-resonator geometry.

This could lead to a spectral tuning method in a single CROW structure. For this, larger

spheres might be utilized, for which more pronounced modes enter the spectrum (see also

section 2.1.1.)

In the discussion of the coupled modes in this section, we will focus on the modes with
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Figure 5.4: The most pronounced photoluminescence intensity is given by the second order

modes with pronounced splits across the main axis. These modes are further analyzed by

polarization-sensitive mode mapping.

radial number 2 due to their larger spectral width leading to more pronounced intensity

patterns in the mode maps.

In fig. 5.5 we show characteristic spectra taken at specific detection points of a CROW

structure forming an 30 degree vertex. For comparison, the calculated scattering spectrum

for a single polymer sphere of radius 2.25 µm is displayed, too, giving the respective single

sphere quantum numbers. In order to correctly identify the modes in the experimental

spectra, only TE polarized modes are shown in the first two diagrams by applying the

sensitive polarized detection scheme. Thus we can reduce the total mode spectrum into

groups of either TE- or TM-like modes (see chapter 4). The curve in fig. 5.5 (a) displays a

typical spectrum taken at an off-axis position on the left hand side of the chain (the used

detection geometry is shown in the scheme in the insets). Here, the observed TE peaks

are not accomplished with any spectral shift compared to the theoretical single sphere

spectrum. Therefore, these modes are called weakly coupled CROW modes, which are

of interest for possible CROW applications. In contrast, the spectrum 5.5 (b)), which is

detected exactly at the on-axis points, shows a pronounced mode splitting into redshifted

bonding and blueshifted antibonding modes, which are referred to as strongly coupled

CROW modes here. A third set of spectra resulting from a narrow region slightly shifted

apart from the on-axis points (see inset) are shown in fig. 5.5 (c)): These spectra show

an additional and significantly smaller splitting of the modes, which is not apparent in

coupled two-sphere systems and can therefore not be explained by a simple superposition

of pairwisely coupled spheres. Of interest for the extended multisphere coupling are the
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Figure 5.5: Spectra of a six-resonator CROW structure detected at selected spatial regions

(see exemplary drawing in the insets): (a) Weakly coupled TE-polarized CROW modes

detected at off-axis positions. (b) Strongly coupled CROW modes detected at on-axis

positions, showing a pronounced mode splitting. (c) Fine splitting of modes detected

slightly apart from the on-axis positions. (d),(e) Modes split in more than two peaks for

detection on or close to the axis. (f) Spectra detected at an off-axis position like in (a).

The bottom diagrams show the calculated scattering efficiency after eq. (2.14) of a single

sphere. The mode polarization is determined via polarization-sensitive detection.

spectra at the bent-off sphere region at the right-hand side of the structure. The spectrum

in 5.5 (d)) gives the corresponding spectrum with a pronounced weight of the strongly

coupled mode at the intersection point.

A smaller splitting of the coupled modes can be observed also in the surrounding area

of the intersection points of the bent-off sphere attached to the vertex (see fig. 5.5 (e))

Therefore, one can deduce an extended multisphere coupling even at the vertex position.

This explanation of an extended coupling will be further supported by the mode intensity

maps discussed below. Fig. 5.6 shows spectrally and spatially resolved intensity maps of

both weakly and strongly coupled modes. These diagrams reveal clear modifications of the

emission characteristics of uncoupled spheres after arranging them to CROWs: Individual

spheres show bright emission located isotropically at the individual sphere boundary (see
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Figure 5.6: Polarization-sensitive mode maps of a six-sphere CROW structure. forming

an angle of 30 degrees: (a) Spectrally integrated photoluminescence. (b) Mode map for a

weakly coupled TM mode at 565 nm detected without polarization sensitivity: The van-

ishing mode intensities along the chain axis indicates coherent coupling. (c) Unpolarized

mode map of a weakly coupled TE mode at 557 nm. (d),(e) Polarization-sensitive decom-

position of the weakly coupled TE mode shown in (c) into two polarization directions.

Polarizer orientations are displayed in the inset. (f) Strongly coupled TE mode detected

at 559 nm with vertical polarizer orientation. The intensity spots follow the geometry

with two spots in the apex sphere, indicating extended multisphere coupling.

chapter 4). In the case of CROWs, in contrast, the corresponding spectrally resolved

intensity maps resonant to a single resonator mode demonstrate the modification due to

CROW formation: The collective weakly coupled modes in CROWs appear now with the

signature of vanishing field intensity along the CROW axis, as plotted for a TM mode in

fig. 5.6 b) and a TE mode in 5.6 c)

Naturally, since even pairwisely coupled spheres would exhibit vanishing mode intensities

for the weakly coupled modes at the intersection points, the distinction between pairwise

coupling and extended multisphere states is not clear beforehand.

Thus, the explanation via extended multisphere coupling as given above is here further

more supported by the intensity map of the sphere in the CROW vertex. As depicted in

the maps, both the weakly and strongly coupled modes show the signature of vanishing

intensity only at the bent intersection points, which can be only explained by means of an

extended intersphere coupling. For the TE mode at 557 nm, this feature is displayed in the
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5.1 Coherent Coupling in Bent Microsphere Chains

diagram 5.6 d) and e) for the decomposition into two orthogonal detection polarizations.

The polarizer axis is given in the inset. For a simple superpositon of pairwisely coupled

spheres, the lack of mode intensity in the vertex sphere would occur at both prolonged

arms of the angle, leading to four minima in the intensity distribution.

For the demonstration of extended photon states, also the strongly coupled CROW modes

can be utilized as a probe, which, in contrast to the weakly coupled modes, exhibit pro-

nounced mode emission concentrated along the CROW axis (the polarization-sensitive de-

tection scheme ensures a correctly determined mode polarization). Here, the pronounced

mode intensity would in case of a superposition of two-sphere states occur at four spatial

positions in the vertex sphere lying on the prolonged arms of the angle. As can be seen in

the map 5.6 f), the enhanced emission intensity occurs only at the two intersection points

of the sphere chain. Therefore, the mode structure of the CROW needs to be interpreted

in terms of extended intersphere coupling.

Summarizing the results, we have realized and investigated the formation of CROW struc-

tures built from nanocrystal doped polymeric microspheres. We observed the coherent

coupling of the cavity fields in a row consisting of six microspheres. The extended multi-

sphere coupling has been shown by the occurrence of additional splitting and the analysis

of the spatial and spectral distribution of the mode intensity in a vertex-shaped configu-

ration. The spatial distribution and polarization nature are explored.
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6 Simplified Model for arbitrary CROW Structures

6. Simplified Model for arbitrary CROW

Structures

. . . there are basically two ways to solve problems in physics.

One is to reduce the problem to harmonic oscillators, and the other is to

formulate the problem in terms of two-by-two matrices.

If two oscillators are coupled, the problem combines both two-by-two matrices

and harmonic oscillators . . .

Y. S. Kim and M. E. Noz (taken from abstract of ref. [Kim04])

6.1 CROWs and Coupled Harmonic Oscillators

After having experimentally examined the formation of coherently coupled photon states,

we have now a closer look on the theoretical description of realistic coupled-resonator

systems. In this chapter, the tight-binding model for infinite structures will be extended

to finite and perturbed systems∗.

The dispersion relation given in (4.8) reminds us of the dispersion of coupled harmonic

oscillators. The aim of this section is to make this similarity more transparent, which

allows us to extract important properties, like varying oscillator strengths in coherently

coupled-resonator systems as a general feature without the expense of exact numerical

field computation. For this goal, we will first reformulate the problem in a more intu-

itive description using the dispersion relation and the Bloch wave amplitudes from the

description of the infinite structure.

Therefore, we start from the dispersion relation (4.8) given by Yariv’s proposal. Let us

now introduce a vector Ψ as follows:

Ψ =




...

Ψ−2

Ψ−1

Ψ0

Ψ1

Ψ2

...




=




...

e2iKR · ψt

e1iKR · ψt

e0 · ψt

e−1iKR · ψt

e−2iKR · ψt

...




. (6.1)

∗Parts of the content in this chapter have been previously submitted for publication and are meanwhile
published as an article:
J. Opt. A: Pure Appl. Opt. 8 (2006), S113-S121, c©2006 Institute of Physics
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6.2 Finite Coupled-Resonator Optical Waveguides

This vector Ψ now contains the Bloch amplitudes of a given resonator and the time

harmonic modulation ψt as its components. We multiply now the squared dispersion

relation from both sides with Ψ and omit the contribution quadratic in κ:

ω2
KΨ = [Ω (1 + κ1 cos(KR))]2 ·Ψ ≈ (

Ω2 + 2κ1Ω
2 cos(KR)

) ·Ψ . (6.2)

Thanks to the structure of the chosen Ψ, which is inspired by the solution of coupled

harmonic oscillators, we can now simply rewrite the cosine term to a term which couples

entries Ψn with the next precedent and subsequent entries Ψn−1 and Ψn+1:

2κ1Ω
2 cos(KR)Ψ = κ1Ω

2 ·




...

eiKRΨ−1 + e−iKRΨ−1

eiKRΨ0 + e−iKRΨ0

eiKRΨ1 + e−iKRΨ1

...




= κ1Ω
2 ·




...

Ψ−2 + Ψ0

Ψ−1 + Ψ1

Ψ0 + Ψ2

...




.

(6.3)

Replacing the cosine expression and letting ψt be a time-harmonic function, eq. (6.2)

reads now in component form

−
(

1− ω2

Ω2
+ 2κ

)
Ψn = κ (Ψn+1 −Ψn)− κ (Ψn −Ψn−1) . (6.4)

As we can see from eq (6.4), we end up with the well-known relationships for a system of

coupled linear harmonic oscillators, when we treat the single resonator eigenfrequencies as

shifted frequencies of the harmonic oscillators and use a coupling constant of κ1Ω
2. This

model is helpful for the estimation of the effects of perturbation in the system, especially

for extended structures with deviations of the frequency of a single resonator, where the

solution of the full set of Maxwell’s equations turns out to be fragile and time-consuming

and the impact on the ideal dispersion relation is not obvious. An application follows in

section (6.4), when we investigate the formation of Bloch modes and introduce shorthand

modeling.

From the expression of the coupling term in eq. (6.4), we note that the extension of this

equivalency to differently sized cavities exhibiting slightly detuned resonance frequencies

is not clear beforehand. We expect the coupling term involving neighboring cavities to

be symmetric in the frequencies, but the concrete expression still has do be deduced.

Therefore, the goal to the final expression is to find this equivalency explicitly involving

the desired coupling terms also for detuned cavities.

6.2 Finite Coupled-Resonator Optical Waveguides

In this section, we will investigate, how the CROW relationships change, when we move

over from the infinite to finite systems, whose we will always be faced with in reality.

Although the Bloch formalism cannot be immediately applied in finite systems, it will be
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6 Simplified Model for arbitrary CROW Structures

Figure 6.1: In current literature published in the years 2003 to 2005, we face the con-

ventional wisdom, which states, that Yariv’s tight-binding model would give less insight

for finite and disordered structures [Din04, Ye04, Poo04c, Che04, Hap03, Mol05a]. This

topic will be thoroughly discussed here in the frame of a simplified reformulation of the

tight-binding model. We will show in this section, how the key properties of finite and

disordered structures can instead be fully deduced from that model.

discovered in the following, that the formalism can be kept in close analogy to that of

the preceding section. Offering a quite general treatment, the findings might be useful as

an overall framework for discovering more complicated CROW geometries. For instance,

questions arose [Che04], whether Yariv’s treatment can be applied for CROW structures

consisting of three cavities in the microwave regime [Bay00]. This is especially important,

as the topic of finite CROWs is increasingly debated in current literature of the last

two years. Here, a conventional wisdom has been established, that Yariv’s treatment is

useful for a general motivation of coupled-resonator systems and the hypothetical case

of degenerate and infinite structures, namely, less applicable for realistic systems [Din04,

Ye04, Poo04c, Che04, Hap03, Mol05a]. A collection of current statements in literature

is given in figure 6.1. A common way out is often seen in dealing with more specific

geometries, where the coupling conditions are well known, e.g. the treatment of microrings

and Fabry-Perot-like resonators. To overcome these limitations, the treatment should

involve now finite CROWs in a general frame, where no immediate dependence on the

resonator type is incorporated. As will turn out, the objections which have been suggested
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6.3 Finite CROW Structures

against early work, do not hold in this case. Furthermore, this classification allows a

complete picture with respect to slightly different work on coupled resonators, e.g. the

type proposed by R. W. Boyd. We will see, that this field of coupled-resonator phenomena

can be ordered into a quite compact picture.

6.3 Finite CROW Structures

The most important difference in the matrix formalism for finite systems of coupled res-

onators lies in the change of the boundary conditions, i.e., in a CROW consisting of N

cavities, the first and the N -th resonators are coupled to one single neighbor only. As a

consequence, the system is governed by a finite N×N matrix with the first normalized sin-

gle resonator frequency located in the upper left and the N -th single resonator frequency

in the lower right position, if the eigenstate vector Ψ contains the Bloch amplitude of

the n-th resonator in the component Ψn. For simplicity, we keep the single resonator

resonances degenerate in this discussion, which provides us with the possibility to exactly

diagonalize the system matrix without further matrix computation for arbitrary N . In

what follows, the time harmonic dependence is omitted for compactness. We arrive at

the following eigenvalue equation




1 κ 0 . . . . . . . . . . . 0

κ 1 κ 0 . . . . . . . 0

0 κ 1 κ
. . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 . . . . . . . 0 κ 1 κ

0 . . . . . . . . . . . 0 κ 1







Ψ1

...

...

Ψn

...

...

ΨN




=
ω2

K

Ω2




Ψ1

...

...

Ψn

...

...

ΨN




. (6.5)

The system matrix in (6.5), has a symmetric and tridiagonal structure, however, the first

and last elements are apparently breaking the symmetry in the component equations. In

other words, we are dealing with a special type of boundary conditions, which affects the

usual Bloch formalism. The solution of the eigenvalue equation relies on two assumptions:

First, we seek for solutions with a wave-like behavior, which keeps the connection to the

Bloch formalism as close as possible. For the eigenvector components, we accordingly

decide for an ansatz for Ψ in dependence on a specific ki

Ψ with components Ψn = cos(nkiR + φ) , (6.6)

in which we allow for initially unfixed parameters ki analogous to the Bloch wave vector

in infinite systems and a phase φ. Both quantities will be fixed due to the requirement

that ansatz (6.6) indeed solves our problem (6.5).

Second, let us assume as an educated guess, that the preceding expression of the eigenvalues

(4.8) for the infinite case will still hold in the finite case, so that the finiteness of the
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6 Simplified Model for arbitrary CROW Structures

problem results in a modification and discretization of the allowed Bloch vectors and the

eigenfrequencies can be derived from the modified Bloch vectors in a forminvariant way:

ω2
K

Ω2
= 1 + 2κ cos(kiR) . (6.7)

It will turn out in the following, that this initial assumption is indeed justified. For the

internal values, i.e. the n-th component equations with 1 6= n 6= N , we have now the

condition

Ψn + κΨn+1 + κΨn−1

= cos(nkR + φ) + κ cos((n + 1)kR + φ) + κ cos((n− 1)kR + φ)

= [1 + 2κ cos(kR)] cos(nkR + φ)

= [1 + 2κ cos(kR)] Ψn ,

which is obviously satisfied for any choice of parameters ki and φ. More restrictions on the

general solution (6.15) are imposed by the two boundary conditions for the first and N -th

resonator: For the first case, we require the first component equation to be satisfied,which

can be rewritten using relations for sums in the argument of the cosine function:

Ψ1 + κΨ2 = cos(kR + φ) + κ cos(2kR + φ)

= cos(kR + φ) + κ cos(kR) cos(kR + φ)− κ sin(kR) sin(kR + φ)
!
= 2κ cos(kR) cos(kR + φ) + cos(kR + φ)

= (1 + 2κ cos(kR)) Ψ1 . (6.8)

Thus, this condition leads to

⇔ − sin(kR) sin(kR + φ) = cos(kR) cos(kR + φ) . (6.9)

This condition fixes the phase in eq. (6.6) to

⇒ φ = ±π

2
. (6.10)

Thus, the boundary condition can only be fulfilled for a sine-like function. We choose

φ = −π

2
(6.11)

for the Bloch phase, since its sign only determines the sign of the sine-function and does

not provide an independent solution to the eigenvalue equation. The boundary condition

for the N -th resonator leads to the remaining component equation:

κΨN−1 + ΨN = κ sin((N − 1)kR) + sin(NKR)
!
= (2κ cos(kR) + 1) sin(NkR) = (1 + 2κ cos(kR)) ΨN . (6.12)
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6.3 Finite CROW Structures

With addition theorems for the arguments, we achieve with straightforward manipulation

⇒ κ sin(NkR) cos(kR)− κ cos(NkR) sin(kR)
!
= 2κ cos(kR) sin(NkR)

⇔ − cos [(N + 1)kR− kR] sin(kR)
!
= cos(kR) sin [(N + 1)kR− kR]

⇒ sin((N + 1)kR)
(
cos2(kR) + sin2(kR)

)
= 0

⇒ (N + 1)kR = i · π
⇒ k =

i · π
(N + 1) ·R = ki . (6.13)

Thereby, the component equation for the n-th resonator fixes the absolute value of the

wave vector.

From (6.13) and (6.11) it follows, that the N ×N matrix equation (6.5) is solved with N

different eigenvalues and N related eigenvectors. From the theory of matrix diagonaliza-

tion it follows, that the complete solution for the finite CROW structure is found, given

below in a concise manner:




1 κ 0 . . . . .

κ 1 κ
. . .

. . . . . . . . .

. . . κ 1 κ

· · · 0 κ 1



·




sin(1kiR)
...

sin(nkiR)
...

sin(NkiR)




= (1 + 2κ cos(kiR))·




sin(1kiR)
...

sin(nkiR)
...

sin(NkiR)




, (6.14)

with the dispersion relation

(1 + 2κ cos(kiR)) =
ω2

K

Ω2
and (6.15)

and the wave vector ki

ki =
i · π

(N + 1)R
, with i = 1, . . . , N . (6.16)

In the case of small coupling constants κ, the dispersion relation 6.15 can be simplified as

ωki

Ω
=

√
1 + 2κ cos(kiR) ≈ 1 + κ cos(kiR) . (6.17)

From the Bloch phases, the intensity distribution patterns can be easily evaluated. Since

we get the relative intensity as the square of the Bloch amplitude for a given resonator,

we end up with a mirror symmetry of the intensity patterns around the single resonator

frequency:

sin2

(
iπ

N + 1

)
= sin2

(
(N − i + 1)

N + 1

)
. (6.18)
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Figure 6.2: Schematic representation of the CROW Bloch envelopes in a finite resonator

chain. The finiteness results in boundary conditions allowing standing wave patterns.

For a CROW with odd resonator number, one finds a Bloch-mode at the single resonator

frequency, while for even resonator CROW no Bloch-mode is found. Thus, one gets

a manifold of N+1
2

different intensity patterns for uneven N and N
2

different intensity

patterns for the even case. This result is in close agreement with more specific field

computations in coupled microrings, e.g. [Che04].

As we see from above relations, the eigenmodes of a finite CROW can be described as

standing Bloch waves, each exhibiting a sine-like envelope. Accordingly, a finite CROW

can be regarded as a single cavity for the envelope waves, whose node points approach

the position of the first and last resonators the better, the larger the number of resonators

involved.

An illustration of this relation is given in fig. 6.2. Here, for comparison, standing Bloch

waves in finite structures consisting of five resonators are plotted for the allowed wave

numbers in dependence of the individual resonator position. The amplitude of the Bloch

wave gives the strength of the electric field at an individual resonator position (plotted

in vertical direction). The wave numbers are arranged in ascending order on the vertical

axis, which corresponds to smaller energies for positive coupling parameters according

to eq. (6.18). As illustrated in the Bloch amplitudes, the Bloch waves can be classified

into symmetric and antisymmetric modes, alternating with ascending wave numbers. For

uneven structures, a CROW generally obeys antisymmetric modes at specific CROW

frequencies. Hence in the case of uneven CROWs we can find nodes of the Bloch waves at
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RPhotonic Molecule
Unit Cell

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2

Figure 6.3: Scheme of a perturbed coupled-resonator optical waveguide. In order to

explore the modified coupling conditions, the perturbation is assumed to be periodical,

so that the Bloch-ansatz can still be applied.

the center position, or at resonator positions, which are symmetrically arranged around

the center resonator and thus display a vanishing oscillator strength. In the case of an even

number of resonators, the nodes never match with a resonator position, and vanishing

oscillator strengths do not occur.

It should be noted, that the strength of the coupling parameter is only contained explicitly

in the eigenfrequencies. The Bloch vectors, responsible for the intensity response of the

system, are independent on the coupling parameter, as long as it deviates from zero. This

might play an important role for a CROW classification, since the intensity distribution

can be treated as an independent quantity and a general property of a CROW candidate.

Therefore, we can use this feature for the discussion of the fine structure of the weakly

coupled modes, whose mode maps have been demonstrated in subsection 4.0.4. The

individual Bloch intensities can thus serve as an independent additional check for coherent

interresonator coupling. While the discussion of the mode maps in the previous chapter

mainly focussed on the apex sphere in a hockey stick geometry, including both neighboring

resonators (and thus explaining the mode maps by at least a full three-sphere coupling in

a bent geometry) the formation of Bloch states are strictly connected to all resonators in

a CROW structure and represent the remaining proof for interresonator coupling across

a whole CROW.

6.4 Simplified Model for Detuning in CROW Struc-

tures

In order to achieve a simplified model for detuning in a crow structure, we extend Yariv’s

model which is formulated for a periodic arrangement of single resonators to an periodic

arrangement of next-neighbor coupled photonic molecules, each consisting of two different

cavities with resonance frequencies Ω1 and Ω2. This model is depicted in diagram 6.3.

This appears to be a proper choice, because in the spirit of tight-binding coupling, all

coupling terms contained in this system exhibit a mixture of the same two resonance
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6 Simplified Model for arbitrary CROW Structures

frequencies. Thus the validity of Yariv’s model requiring the solution to be expressed

in a Bloch-mode formulation is preserved, since still the periodicity, now for photonic

molecules, is kept in this problem.

This different arrangement suggest now a modified Bloch-ansatz with the periodicity of a

photonic molecule, whose electric field can be expressed as

EK = E0e
iωKt · (

∑
n

e−i·2n·KRA1EΩ1(r− 2n ·Rez)

+
∑

n

e−i·(2n+1)·KRA2EΩ2(r− (2n + 1) ·Rez)) . (6.19)

To evaluate the impact of different eigenfrequencies we perform an analogous calculation

like in the single resonator case. Both terms appearing in Maxwell’s equations (4.3) are

now multiplied with either the field EΩ1 or EΩ2 , and subsequent spatial integration leads

to the expression

ω2
K =

Ω2
1A1 + 2Ω2

2A2 cos (KR) · β1

A1 + 2A2 cos (KR) · α1

, (6.20)

where the indices above apply for the choice of multiplication with field EΩ1 . The same

expression holds for multiplication with the field EΩ2 if the indices 1 and 2 are exchanged

for the quantities Ω and A. We keep the constants α1 and β1 unchanged for the case

of small detunings. For nanometer sized size deviations the spatial mode profile, natu-

rally on the micrometer scale, and accordingly the overlap integral is not much affected,

but might be accompanied with a shift of eigenresonances well exceeding the resonance

linewidth. While in general the coupling constant is decreasing exponentially, e.g, with

the intercavity distance [Guv05], the coupling constant is quite insensitive to size vari-

ations or gap developments in the nanometer range. For whispering gallery modes in

microcylinders, the stability of the coupling constants for small parameter deviations has

been demonstrated, e.g., in [Den05]. Assuming again, that the quantities α1 are small

compared to unity, we end up with

ω2
K = Ω2

1 + 2
A2

A1

(
Ω2

2 cos KRβ1 − Ω2
1 cos KRα1

)
. (6.21)

Since we expect to end with coupling terms symmetric in the frequencies Ω1 and Ω2, we

rewrite the terms multiplied with cos(KR) in a symmetric manner:

Ω2
2β1 − Ω2

1α1 =
Ω2

1 + Ω2
2

2
(β1 − α1)− Ω2

2 − Ω2
1

2
(β1 + α1) . (6.22)

For small frequency detuning of the resonator eigenfrequencies and small quantities α1,

β1, the contribution of the last term on the right-hand side of eq. (6.22) can be omitted.

Thus, we get now the coupled equations for the frequency of the whole system ωK

ω2
K = Ω2

1 + 2
A2

A1

(
Ω2

2 cos KRβ1 − Ω2
1 cos KRα1

)
(6.23)

≈ Ω2
1 + 2

A2

A1

Ω2
1 + Ω2

2

2
κ1 for the (2n)-th resonator and (6.24)
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ω2
K ≈ Ω2

2 + 2
A1

A2

Ω2
1 + Ω2

2

2
κ1 for the (2n + 1)-th resonator. (6.25)

To map the CROW problem onto the harmonic oscillator problem, we multiply the above

system of equations with a vector

Ψ =




...

A1e
i·2n·KR

A2e
i·(2n+1)·KR

...




, (6.26)

with alternating prefactors A1 and A2. The replacement of the cosine terms — as we did

already in the case of identical resonators — leads us to the following system of equations:

ω2
KΨ2n =

(
Ω2

1 + 2
(
Ω2

1 + Ω2
2

)
κ1

)
Ψ2n + 2

Ω2
1 + Ω2

2

2
κ1 (Ψ2n+1 + Ψ2n−1 − 2Ψ2n) (6.27)

ω2
KΨ2n+1 =

(
Ω2

2 + 2
(
Ω2

1 + Ω2
2

)
κ1

)
Ψ2n+1 + 2

Ω2
1 + Ω2

2

2
κ1 (Ψ2n+2 + Ψ2n − 2Ψ2n+1) .

(6.28)

This system of equations describes a system of coupled harmonic oscillators with alter-

nating single oscillator frequencies and coupling constants scaling symmetrically with the

frequencies of neighboring oscillators. Since systems of coupled harmonic oscillators are

commonly solved by applying matrix diagonalization techniques, we have all necessary

relations at hand to formulate a matrix model to describe an arbitrary CROW structure.

The related eigenvectors, which we introduced to map the problem on that of coupled har-

monic oscillators, we may interpret as a brightness vector, since it would coincide with the

CROW solution, if we assume, that the field intensity related to the n-th single resonator

is mostly determined by the contribution EΩi
(r − nRez).

We note here one important difference between quantum confined semiconductor quantum

dots and periodic arrangements of photonic dots: In electronic crystals, the confinement

in nanostructured semiconductors occurs for the envelope function of the electrons and the

Bloch part of the electronic wave acts as a perturbation on a smaller subscale. In coupled-

resonator optical waveguides, however, the confinement in photonic dots is realized on

the smaller single resonator subscale, whereas the Bloch part of the photonic wave can be

considered as a new envelope. Thus, a more exact comparison to a crystalline solid state

material would be a semiconductor hetero-structure, used e.g. in quantum cascade lasers.

In the case of small disorder, the limit of slightly different single-resonator frequencies,

the governing eigenvalue problem is formulated as



Ω2
1

Ω2
1+Ω2

2

2
κ 0 . . . . . . . . . . . . . . . . . . . . .

Ω2
1+Ω2

2

2
κ Ω2

2 κ · Ω2
2+Ω2

3

2

. . .
. . . . . . . . .
. . .

Ω2
N−2+Ω2

N−1

2
κ Ω2

N−1

Ω2
N−1+Ω2

N

2
κ

· · · 0
Ω2

N−1+Ω2
N

2
κ Ω2

N



·Ψ = ω2

i Ψ . (6.29)
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6 Simplified Model for arbitrary CROW Structures

In this equation, the modified eigenfrequencies and the related Bloch vectors can be solved

for numerically.

The modified system matrix of detuned CROWs can be described as a perturbation of

the system matrix of an ideal CROW, if the squared single resonator frequencies are

incorporated as the diagonal of a perturbation matrix P̂ :

P̂ =




Ω2
1 0 . . . . . . . 0

0 Ω2
2 0 . . 0

...
. . . . . . . . .

...
...

. . . . . . . . . 0

0 . . . . . . . 0 Ω2
N




. (6.30)

Labelling the system matrix for the fully degenerate finite CROW system according to

section 6.2 as T̂

T̂ =




1 κ . . . . . . . 0

κ 1 κ . . 0
...

. . . . . . . . .
...

...
. . . κ 1 κ

0 . . . . . . . κ 1




, (6.31)

the perturbed system matrix Ŝ reads in a more compact formulation

Ŝ =
1

2

(
T̂ · P̂ + P̂ · T̂

)
. (6.32)

From this formulation, we can readily estimate the asymptotic limits of vanishing and

large detuning, respectively:

For the case of vanishing detuning of the single resonator frequencies, the perturbation

matrix becomes simply the square of the single resonator frequency times a unity matrix

and the model is described as discussed in section 6.2. For large detunings, an estimation

of the detuning dependence of the coupling constant becomes more difficult and involves

detailed computations of the cavity mode overlaps. However, in general, the coupling

constant becomes smaller with increasingly large detunings (see e.g., [Ast04]). In parallel

it is obvious, that for large detunings the actual value of the coupling constant becomes

less important. From the asymptotic behavior of large detunings it is understood, that

the modes can be described as uncoupled isolated systems. In this case, we can neglect

the coupling constant in eq. (6.31) by setting it to zero without introducing a significant

error to the resulting eigenfrequencies. Thus, the matrix T̂ becomes the unity matrix.

Accordingly, the system matrix can be described as a diagonal matrix with the individual

squared cavity resonances as entries, which represents an entirely uncoupled system. An

overview of the different perturbation regimes is summarized in the following tabular 6.1:
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6.5 Standing Bloch Waves in Coupled Microspheres

Table 6.1: Overview of the different perturbation regimes in a coupled-resonator optical

waveguide:

Perturbation Regime System Equation

No Perturbation Ω2
ResonatorT̂ ·ΨBloch = ω2

CROW ·ΨBloch

Small Perturbation 1
2

(
T̂ P̂ + P̂ T̂

)
·ΨBloch = ω2

CROW ·ΨBloch

Large Perturbation P̂ ·ΨBloch = ω2
CROW ·ΨBloch

Thus, all important limits in the discussion of finite coupled-resonator optical waveguides

can be described in a very general manner in the frame of the tight-binding approach.

This again motivates the evaluation of disordered CROWs, theoretically developed in the

preceding subsection, since in an extended CROW with fully degenerate single resonator

frequencies the boundary conditions imply, that the first and last resonator in a CROW

only contain a small fraction of the Bloch wave energy. Thus, incoupling of light would

result in a difficult task. Since the CROW mechanism itself may be subject to disorder,

one way might be to introduce defects intentionally.

6.5 Standing Bloch Waves in Coupled Microspheres

In order to check the splitting of the weakly coupled modes, we turn now to the three-

sphere system already discussed in section 4.0.4 with respect to the localization of weakly

and strongly coupled modes.

For illustration, the corresponding Bloch waves in a three-sphere structure are displayed

in fig. 6.4. In this case, two different intensity patterns occur due to the discussions of

eq. (6.18). The central mode degenerate with the single sphere resonance displays a node

at the center resonator, thus the light is localized only at the edge resonators. The up- and

downwards split Bloch modes display intensity maxima at the center resonator position.

Next, we examine the Bloch-mode formation in a three-resonator system. Since the

spectral shift of weakly coupled modes is comparatively small, a mode mapping is now

performed with a significantly reduced spectral window. As we expect from the discussion

in section 6.1, a three-resonator CROW mode should consist of a pronounced splitting

of modes at the center resonator, whereas the end resonator should be dominated by the

frequency of an isolated resonator. The detected intensity variation for a three-sphere

chain is displayed in fig. 6.5.

The obtained intensity maps have been measured with a significantly reduced spectral

detection window in order to resolve different Bloch states separately. As given in fig. 6.5,

for the weakly coupled mode centered around 591.7 nm the emission is mainly confined in

the center sphere. For a slightly different detection wavelength at 592.15 nm, the emission

stems mainly from the edge resonators. Thus, the weakly coupled modes can — detected

with a fine resolution — be decomposed into modes with alternating oscillator strengths,
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Figure 6.4: Standing Bloch waves for a triple resonator chain.

which establishes an additional criterion for coherent mode evolution in finite coupled

resonator systems. Combing the criteria for coherent mode coupling in coupled-resonator

optical waveguides, we can summarize: (i) the evolution of a fine structure consisting of n

peaks in a chain of n coupled resonators (ii) the redistribution of the light emitted into a

CROW into modes resembling the symmetry of the linear alignment with respect to the

chain axis. (iii) the variation in the oscillator strength in adjacent resonators in a CROW.

The evolution of CROW modes in a resonator chain of six resonators is displayed in dia-

gram 6.6. Here, the sixth resonator is initially uncoupled to the remaining five resonator

chain (uppermost diagram). In the subsequent diagram, the coupling constant is varied

from zero coupling to full coupling in linear steps. That way, we can follow the evolution of

CROW modes from a degenerate five resonator chain towards a six resonator chain. Here,

the square of the Bloch-amplitude is plotted as gray-scale coded stripes centered around

the resonator positions for all CROW frequencies in the horizontal axis. The vertical

axis displays the associated CROW frequency, which has been normalized to the eigen-

frequency of an isolated resonator. For the case of an initially uncoupled sixth resonator,

diagram a) displays the Bloch-mode pattern for an uneven number of resonators. As

apparent in the diagram, only a subset of modes dominates the CROW spectra at a cho-

sen resonator position, varying along the CROW. The square of the Bloch modes, which

can be regarded as a measure of the mode intensity, display a mirror symmetry centered

around the middle resonator. If the coupling strength of the sixth resonator is increased,

a new mode is formed by a splitting of the CROW mode at the center frequency, whereas
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Figure 6.5: Polarization-sensitive mode maps resonant to the three-sphere fine structure.

At the center resonance (592.15 nm), the intensity stems from the edge spheres. At a

slightly smaller wavelength (591.7 nm) compared to the map above, the luminescence is

detected at the center position only. The map is detected TE-sensitively.

the outer frequency modes are slightly shifted away from the center frequency. The field

intensity from the sixth resonator is transferred to the other resonators in a symmetry

breaking manner: CROW modes, which initially have spatially symmetric Bloch-nodes

at certain resonator numbers, gain now in mode intensity, but with different growth. The

node resonators next to the additionally coupled sixth resonator are significantly preferred

in the additional oscillator strength. When the coupling constant is further increased, the

pattern acquires the spatial symmetry of an even number CROW. Here, the the mirror

plane is located at half distance between the two center resonators. Here again, the vast

contrast in the CROW modes for a given resonator leads to a subset of modes, which

dominates the corresponding spectrum. Of particular interest is now the case of an al-
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Figure 6.6: Scheme of alternating oscillator strengths in a 5 resonator chain. The subse-

quent diagrams show the modifications, when a sixth resonator is added. The coupling

constant is varied in equal steps from zero coupling to full coupling (from left to right and

from top to bottom).
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Figure 6.7: The coupling of multiple cavities leads to a pronounced splitting of resonances

across the chain direction not observed in single microspheres.

most fully coupled resonator in diagram e): There, the broken spatial symmetry of the

CROW pattern displays modes, which show an almost vanishing oscillator strength for a

single resonator only without a mirror symmetric counterpart (see the two center modes

at resonator number two). Thus, such a mode pattern might serve as a tool for the de-

termination of CROW mode formation in case of slightly asymmetric CROW structures.

An example is be given for the bent CROW mode discussed previously in fig. 6.8.

With the results obtained in the previous section, we are now able to schematically classify

the relationships between different concepts concerning coupled-resonator phenomena and

their analogous physical counterparts. Diagram 6.9. proposes one possible schematization:

The coupled-resonator optical waveguide, as has been proposed in its idealization of de-

generate and infinitely extended structures by Yariv et al. in 1999 in close analogy to the

tight-binding model formalism in solid-state physics is displayed on the left-hand side.

In the previous section, we demonstrated, that this formalism of coupled resonators can

be traced back further to the model of coupled harmonic oscillators. The model allows

the truncation of the coupled resonator structure and therefore the generalization to the

case of structures with arbitrary resonator numbers. For the case of perturbed CROWs

with slightly detuned resonators, we have first used the tight-binding model for an infinite
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Figure 6.8: Polarization-sensitive intensity map of the bent microcavity chain (see chapter

5), resolving the fine structure of a TE2
30 mode. The second resonator remains almost field

free.
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Figure 6.9: Various coupled-resonator effects together with their solid state analogies and

their overall relationship with coupled harmonic oscillators.

structure of coupled photonic molecules. This calculation resulted in an expression for

the modifications of the coupling terms, which could in turn be mapped onto the related

modification of the coupling matrix in the coupled harmonic oscillator model.

On the right-hand side, the proposed concept of coupled resonators with different line-

widths has been included. This proposal, worked out by Boyd et al. in 2004 and commonly

labeled as CRIT (coupled-resonator induced transparency) has been introduced with an

solid-state analogy as well, here related to the phenomenon of electromagnetically induced
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6.6 Entanglement Swapping in Finite Coupled-Resonator Chains

transparency (EIT). Interestingly, as a second classical analogy for EIT phenomena, the

coupling of classical harmonic oscillators has been suggested independently by Litvak et

al. and Alzar et al. in 2002 [Lit02, Alz02]. Therefore, we obtain the analogy between

coupled-resonator induced transparency and related transmission phenomena in a set of

two coupled harmonic oscillators as well, mediated by their relation to EIT.

Thereby, CRIT phenomena and CROW phenomena can be described by harmonic os-

cillator models as their common basis. Here, the CROW end of the harmonic oscillator

picture represents coupled oscillators with almost equal losses, in contrast to the CRIT

side of the harmonic oscillators picture, where extremely different losses are required. One

could also view the CROW- and CRIT-like regimes in terms of splittings in solid-state

physics, where the CROW-regime of the harmonic oscillator fundament can be regarded

as the Rabi-like regime, whereas the CRIT-regime of the model represents the Autler-

Townes-like regime. The analogy of coupled two-cavity system with Rabi-splitting has

been noted e.g. by Opatrny et al. [Opa01] and Smith [Smi04b].

6.6 Entanglement Swapping in Finite Coupled-

Resonator Chains

Another possible application might be a slow entanglement transfer in a CROW structure.

This will be examined in a three-cavity system as already discussed in subsection 4.0.4.

Here, the set of cavity eigenstates can be expressed as

[k1, k2, k3] =







sin(π
4
)

sin(π
2
)

sin(3π
4

)


 ,




sin(π
2
)

sin(π)

sin(3π
2

)


 ,




sin(3π
4

)

sin(3π
2

)

sin(π
4
)





 (6.33)

=







1√
2

1
1√
2


 ,




1

0

−1


 ,




1√
2

−1
1√
2





 . (6.34)

While, in general, the dispersion relation in finite structures (6.15) does not deviate from

Yariv’s original proposal for infinite structures (4.8), the slow and coherent propagation

of gaussian pulses is not severely affected by the finiteness condition. However, another

class of field evolution additionally occurs in finite structures: A type of signal propagation

in a CROW we explore now involves all present frequencies derived from the dispersion

relation, but exhibits strongly spatially peaked signals in the initial conditions:

Explicitly, the problem is described in a three-resonator system as follows: The light

field is initially localized in two resonators at one end only (similar statements hold for

the initial excitation of one resonator only, but two excited cavities will offer the use of

coherently coupled cavities for slow entanglement transfer). Here, the eigenvectors have

been normalized to the situation of two excited cavities, so that the absolute square of

any of the vectors results in two. Now, we regard the initial condition, where two cavities

85



6 Simplified Model for arbitrary CROW Structures

are equally excited at one CROW end. This condition can be expressed as a superposition

of the CROW eigenstates noted above as

a · k1 + b · k2 + c · k3 =




1

1

0


 , with (a, b, c) =

(
1

2
+

1

2
√

2
,

1

2
, − 1

2
+

1

2
√

2

)
. (6.35)

Including the harmonic time dependence for the individual eigenvectors, which obey

slightly differing eigenfrequencies, the full time-dependent amplitude vector normalized

to the individual cavity fields reads now

Ψ(t) = eiΩt ·







1
2

0

−1
2


 + cos

(
κ√
2
Ωt

) 


1
2

1
1
2


 + i · sin

(
κ√
2
Ωt

)



1√
2

1√
2

1√
2





 . (6.36)

This amplitude vector is governed by two frequencies: An oscillating term with the oscil-

lation frequency of a single resonator, and second, a slowly varying term, whose oscillation

frequency scales linearly with the interresonator coupling constant κ. As we see from this

expression, after a time evolution corresponding to a phase shift of π in the slowly varying

amplitude arguments, we end up with a shifted CROW state:

Ψ(t = π) = −



0

1

1


 . (6.37)

This lights up the slow light transfer mechanism in a finite CROW structure. As can be

noted from the time evolution after eq. (6.36), the fields in a finite CROW first dephase,

and after a phase shift of π the fields undergo a rephasing at the other side of the coupled-

resonator structure.

This might be — besides slowing down information transfer — of practical use for the

field of quantum information processing. The practical usefulness of CROWs for quantum

information processing has been theoretically suggested if ref. [Ang04] for the implemen-

tation of quantum gates; as I will discuss in this subsection, coupled-resonator optical

waveguides could be utilized for slow entanglement transfer in a quantum network as

well: Let us now have a closer look at the chosen initial condition in eq. (6.35). As we

did already in the bisphere case in subsection 4.0.3, we can treat this initial condition —

in the limit of a single photon impregnated in the superposition state of the two cavities

— as a system of two entangled cavity Fock-states. If a superposition, e.g. a qubit is

encoded in such Fock states, the time evolution of a finite CROW transfers the superpo-

sition state towards the other end of the CROW, and after a π evolution, the opposite

pair of resonators contains — apart from a phase factor common to both cavities — the

same entangled superposition state. Explicitly, we end up with an entanglement swapping

relation
1√
2

(|1>Cavity 1 |0>Cavity 2 +|0>Cavity 1 |1>Cavity 2) · |0>Cavity 3

⇒ 1√
2
|0>Cavity 1 · (|1>Cavity 2 |0>Cavity 3 +|0>Cavity 2 |1>Cavity 3) . (6.38)

86



6.6 Entanglement Swapping in Finite Coupled-Resonator Chains

Another interesting approach for entanglement transfer has been worked out by Christandl

et al., which utilizes chains of next-neighbor coupled electron spins [Chr04], and the

possibility to obtain quantum state mirrors with spin chains has been theoretically shown

[Kar05]. Hence, the scheme presented here can be regarded as a photonic realization of

entanglement transfer chains using single photons only in an otherwise passive device.

In general, this type of time evolution in a finite CROW consisting of N resonators can

be described in a similar manner. In the following, I would like to briefly discuss the

necessary calculation techniques required for the time evolution in a coupled-resonator

structure of arbitrary length:

Let us now introduce a vector, which contains the electromagnetic field strength as initial

conditions in a linear chain consisting of N resonators, Finitial.

Then, we can express the formation of the initial conditions in terms of the eigenfunctions

along a finite CROW:

Finitial = a1 ·




sin( 1π
N+1

)

sin( 2π
N+1

)
...

sin( Nπ
N+1

)


 + a2 ·




sin( 2π
N+1

)

sin( 4π
N+1

)
...

sin(2·Nπ
N+1

)


 + . . . + aN ·




sin( Nπ
N+1

)

sin(2·Nπ
N+1

)
...

sin( N2π
N+1

)




= a1 · v1 + a2 · v2 + . . . + aN · vN , (6.39)

where the vectors vj label the corresponding eigenvectors and the numbers aj the indi-

vidual expansion coefficients. This can now be written as a matrix equation as follows:

Finitial =




sin( 1·π
N+1

) sin( 2·π
N+1

) . . . sin( N ·π
N+1

)

sin( 2·π
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) sin( 4·π
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N+1

)
...

...
. . .

...

sin( N ·π
N+1

) . . . . . . . . . . . . . sin(N2·π
N+1

)


 ·




a1

a2

...

aN




=
(

v1 v2 . . . vN

) ·




a1

a2

...

aN


 . (6.40)

From the theory of the diagonalization of matrices we know, that the matrix(
v1 v2 . . . vN

)
constitutes an orthogonal matrix. Thus, we can estimate the ex-

pansion coefficients with ease through matrix inversion, where simply a normalization

constant of (N + 1)/2 comes into play:




a1

a2

...

aN


 =

N + 1

2
·




sin( 1·π
N+1

) sin( 2·π
N+1

) . . . sin( N ·π
N+1

)

sin( 2·π
N+1

) sin( 4·π
N+1

) . . . sin(2·N ·π
N+1

)
...

...
. . .

...

sin( N ·π
N+1

) . . . . . . . . . . . . . sin(N2·π
N+1

)


 · Finitial . (6.41)
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The time evolution of a CROW consisting of N resonators can thus be written as

F(t) =
N∑

j=1

aj · vj · eiΩN
Kt , (6.42)

where the coefficients aj are determined by eq. (6.41).
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7. Summary

The work covered in this thesis is devoted to coupling mechanisms in single microsphere

resonators and resonator ensembles doped with semiconductor nanocrystals.

The influence of the elongation of the nanocrystals leading to semiconductor nanorod

structures has been investigated. The resulting highly polarized emission identified semi-

conductor nanorods as ideal artificial dipole emitters. As such, elongated nanocrystals

have been used as active light-emitting material with a specific orientation in polymeric

microspheres ranging around R = 2λ in size. An active mode control has been achieved via

a tangential alignment of nanorods on the microsphere surface resulting in pronounced TE

field emission and significant TM mode suppression. Hence, these findings demonstrate

a clear optimization of the coupling efficiency of excitonic resonances with microsphere

modes, which very recently has been applied in light-matter interaction studies [LeT05b].

The interresonator coupling of microsphere modes in various ensembles has been studied

in the frame of recently proposed novel optical composite materials like photonic molecules

and coupled-resonator optical waveguides and their possible application for molding the

flow of light on the micrometer scale. Utilizing spherical nanocrystals as a local field probe,

coherent coupling of microresonator fields has been demonstrated initially for a bisphere

system, being reflected both in its spectral features and polarization-sensitive mode maps.

Symmetry dependent signatures for the light localization of strongly and weakly coupled

modes have been obtained, which allow for a convenient and unambiguous determina-

tion of coherent interresonator coupling. These symmetry dependent features establish a

further criterion for coherent interresonator coupling. The polarization dependence have

been determined according to the mode polarization of the single resonator modes of the

constituents, leading to an unambiguous assignment of the obtained strongly split modes.

The successful extension to one- and two-dimensional geometries and the correspond-

ing modification of light localization strongly supported the tight-binding description of

photon modes in coupled resonators.

Due to their weak broadening and the comparatively small split, the weakly coupled modes

have been identified as promising candidates for a bottom-up approach to a waveguide

structure utilizing coupled microsphere resonators.

Yariv’s proposal concerning coupled-resonator optical waveguides (CROWs), originally

established for hypothetically infinite systems, has been reexamined for its use in practical,

thus finite systems. Unlike the conventional wisdom apparent in current literature, the

conclusions derived in Yariv’s proposal are applicable to finite systems to a large extent,
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if quantization conditions due to finiteness are accounted for. A compact matrix model

has been derived from the tight-binding description, which could trace back the CROW

problem to the simplified picture of coupled harmonic oscillators. The theoretical analysis

indicated the formation of modes with varying oscillator strengths for different resonators

in finite coupled-resonator systems. An experimental verification of the predicted splitting

has been successfully performed by measurements on a three-sphere system, which consists

of the minimum number of resonators leading to an oscillator strength variation.

Yariv’s model has been extended towards the case of perturbed finite resonator chains

by integrating the photonic molecule picture. This offers a compact calculation method

for arbitrary multiresonator systems without the expense of exact field computations.

Thus, this approach could be regarded as a complementary approach for a CROW design,

for which the properties can be roughly estimated applying this simplified model before

performing an exact numerical computation of the whole structure.

With this simple formulation at hand, a connection to another approach for group velocity

modification relying on coupled resonators — coupled-resonator induced transparency

(CRIT) — has been drawn. Due to a common physical structure of CRIT phenomena

and EIT effects, recent proposals for simplified model systems for EIT can be used in

turn to model CRIT structures. It turned out, that for both CROW and CRIT effects,

coupled harmonic oscillators could be regarded as a common language resulting in an

unified description.

A first realization of a CROW structure, formed by a linear array of six microsphere

resonators has been presented. The formation of coherently coupled extended multires-

onator photon states has been evidenced both by the occurrence of weakly split modes

with varying split energies and the application of a polarization-sensitive mode mapping

technique. The distinction of the weakly coupled CROW modes from a superposition

of simply pairwisely coupled two-sphere states was demonstrated. Investigations covered

coupled resonators forming a bent CROW array with an angle of 30 degrees. The spa-

tial localization of light both for the weakly coupled and strongly coupled modes exactly

reflected the CROW geometry, which has been established as an additional criterion for

CROW formation. A theoretical modeling of a six resonator structure predicted a par-

ticular resonator to remain free of intensity. A similar feature has been found in the

experiment. This feature should remain even in the case of further modifications of a

CROW dispersion in the presence of both higher order and lower order modes. Thus, the

formation of Bloch modes with different oscillator strengths might serve as a convenient

detection tool for successful CROW mode formation.

As a whole, the findings above demonstrate the successful realization of coupled-resonator

structures and constitute a convenient tool box of experimental criteria and a concise and

numerically inexpensive calculation frame, which allows for an experimental determination

and a direct physical understanding of coherent mode evolution in coupled-resonator

geometries. The successful realization and modeling, together with subsequently obtained

experimental parameters, suggest an enormous potential of microsphere resonators for
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slowing down light in an entirely passive linear optical device.
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8. Outlook

For further investigations in this topic, an enhanced and reproducible fine control of the

spatial arrangement of microsphere resonators is desired. To achieve this, two experimen-

tal methods sound very promising: One way might be the arrangement of spheres into

microtemplates, which are directly impregnated into the sample substrate. This could

be realized by wet chemical etching of micronsized V-shaped grooves [Har03], [Har05],

so called V-grooves, in which the microspheres can be trapped by selfassembly in a dry-

ing droplet. The accuracy of the microtemplate could potentially lead to more extended

microsphere assemblies. Even more curious arrangements might become feasible. A fur-

ther impact of this method could concern a detailed study of the contact points between

microspheres and the substrate. On a flat substrate, there naturally exists just one con-

tact point, while in a V-groove, the microsphere sits on both sidewalls of the templated

substrate. This might give a detailed insight in the optimization of losses due to the

substrate.

A second applicable technique would be the use of so called optical tweezers. Here, a

laser beam is strongly focussed into a spot of nearly resolution limited size. Because

of the strong spatial field gradient of the tweezing laser field, a micronsized dielectric

particle, ideally a microsphere, experiences a spatial gradient in the radiation pressure

when the particle is slightly off-focussed. The resulting total force pulls the microsphere

towards the focal point, i.e. tweezes. Optical tweezing of microspheres exhibiting sizes

of just a few micrometers has been demonstrated and even the transport of individual

microspheres over ranges of about 100 µm has been realized recently [Ben05]. This might

give the opportunity to realize extended coupled microsphere structures in a directly

controllable way. Furthermore, the possibility to move microspheres over large distances

on a substrate appears to be useful for an efficient size selective sorting of microspheres, if

luminescence spectra could be performed synchronously. Configurations, which open up

this possibility, have been very recently reported, e.g. [Li05]. A fine size control is highly

desirable for studies extending to disorder phenomena and photonic defect states. Being

equally important, this could way enhance the monodispersity of the available microsphere

ensemble and lead to quite accurate structures.

Possibly a combination of both methods might be useful, since a highly monodisperse start

ensemble would also be attractive for arrangements in V-grooves, and a pre-patterned

substrate in turn helps avoiding the agglomeration of multisphere ensembles in an optical

tweezer.
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Figure 8.1: Scheme for a purely linear meta-CROW. Since the single resonator chains

constitute itself resonators for the Bloch waves, a linear cascade of CROW structures

might be feasible.

Furthermore, one could eliminate the residual losses in microsphere resonators applying

different methods of coating. Spherical Bragg-reflectors grown in an onion-like fashion

onto the microsphere surface have been theoretically discussed with respect to highly

efficient optical confinement [Kal01], however, an experimental realization is still missing.

One complementary possibility to evaluate the transmission characteristics of coupled-

resonator waveguides would be the utilization of a time-resolved SNOM technique, as has

been applied recently for the pulse propagation in waveguides [Bal01], dispersive media

[Ger03], and microresonators [Ger04]. Here, the investigation could be extended to explore

dispersion relations in the direct time-regime of coupled-microresonator waveguides.

For the application direction, one could also explore the tuning possibility via nonlinear

resonator materials or dopants [Mae05] and check for the transmission around ultra-sharp

angles.

Possibly, the formalism developed here could be extended to the coupling of surface plas-

mons in arrays of metallic nanodots. Such arrays are currently debated for guiding light

in nanometer dimensions, see e.g. [Cit05], [Ata04].

Additionally, one other interesting application would be the modification of spontaneous

emission of active emitters incorporated into an extended long-range CROW, as has been

recently discussed in theory [Yan04b], allowing for a modification with external tuning

possibilities. This could be viewed as an extension to the so-called Purcell effect [Pur46],

which has been shown for single cavities, see e.g. ref. [Art01b].

One more remote goal would be to investigate the question, whether and how CROW

structures can be scaled to metastructures: As suggested by Yariv in his 1999 paper, one

could build ring resonators from CROW lines. For example, one could not only think

of conventional resonators as building blocks for a CROW construction, but merely of

ring resonators consisting of a CROW structure itself. The impact of this appears to be a

drastically reduced eigenfrequency, and thus to a multiplication of the CROW effect, which

appears to be nearly impossible to achieve in a natural solid state. As turns out from the
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8 Outlook

discussion in chapter 6, even purely linear arrays do already constitute a supercavity with

the ability to slow down light. Therefore, the construction of scaled coupled-resonator

optical waveguides could possibly be performed using strictly linear geometries, which

might allow to keep size requirements small, when the coupling conditions are solely

engineered by interresonator distances. This proposal for a modified meta-CROW is

depicted in fig. 8.1.
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Escape from Nearly Spherical Optical Resonators , Phys. Rev. Lett. 91 (3),

033902 (July 2003)

[LB82] Landolt-Börnstein: Neue Serie, Gruppe III , in Zahlenwerte und Funktionen

aus Naturwissenschaft und Technik , volume 17 b, Springer-Verlag, Berlin, Hei-

delberg, New York (1982)

100



Bibliography

[Lee00] H.-W. Lee and J. Kim: Quantum teleportation and Bell’s inequality using

single-particle entanglement , Phys. Rev. A 63 (1), 012305 (December 2000)
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V. Anikeyev, and O. Schöps: Dot-in-a-dot: electronic and photonic confine-

ment in all three dimensions , Appl. Phys. B 77, 469–484 (September 2003)

[Wos03] K. Wostyn, Y. Zhao, B. Yee, K. Clays, A. Persoons, G. de Schaetzen, and

L. Hellemans: Optical properties and orientation of arrays of polystyrene

spheres deposited using convective self-assambly , J. Chem. Phys. 118 (23),

10752–10757 (June 2003)

[Xia00] Y. Xia, B. Gates, Y. Yin, and Y. Lu: Monodispersed Colloidal Spheres: Old

Materials with New Applications , Adv. Mater. 12 (10), 693–713 (2000)

[Yab87] E. Yablonovitch: Inhibited Spontaneous Emission in Solid-State Phyics and

Electronics , Phys. Rev. Lett. 58 (20), 2059–2062 (May 1987)

[Yam00] Y. Yamamoto, T. Tassone, and H. Cao: Semiconductor Cavity Quantum Elec-

trodynamics , volume 169 of Springer Tracts in Modern Physics , Springer-

Verlag (2000)

[Yan04a] M. F. Yanik and S. Fan: Time Reversal of Light with Linear Optics and Mod-

ulators , Phys. Rev. Lett. 93 (17), 173903 (October 2004)

[Yan04b] V. Yannopapas: Spontaneous emission through heavy photon bands , J. Opt. B

6, 283–288 (April 2004)

[Yar99] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer: Coupled-resonator optical waveg-

uide: a proposal and analysis , Opt. Lett. 24 (11), 711–713 (June 1999)

[Ye04] Y.-H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang: Finite-size

effect on one-dimensional coupled-resonator optical waveguides , Phys. Rev. E

69, 056604 (May 2004)

[Yin01] Y. Yin and Y. Xia: Self-Assembly of Monodispersed Spherical Colloids

into Complex Aggregates with Well-Definded Sizes, Shapes, and Structures ,

Adv. Mater. 13 (4), 267–271 (February 2001)

[Yos04] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper,

C. Ell, O. B. Shchekin, and D. G. Deppe: Vacuum Rabi splitting with a single

quantum dot in a photonic crystal nanocavity , Nature 432, 200–203 (November

2004)

[Zho03] X. Zhou, S. Li, and K. Stamnes: Geometrical-optics code for computing the

optical properties of large dielectric spheres , Appl. Opt. 42 (21), 4295–4306

(July 2003)

105



Acknowledgements

This work has been made possible with help and support from many colleagues, friends

and my family:

First of all, I want to thank Prof. Dr. Ulrike Woggon for her scientific guidance, her

support and encouragement. Thank you as well for the opportunity to work on this

fascinating subject and for various possibilities to communicate the results.

I cordially thank Prof. Dr. Klaus Wille for kindly accepting to referee this thesis.

I gratefully thank Drs. Michail Artemyev and Yuri Fedutik for the preparation of excellent

samples, for many scientific discussions and for the open and kind working atmosphere in

the labs.

I would like to thank Priv.-Doz. Dr. Reinhold Wannemacher for kindly discussing his

MMP calculations.

I would like to thank all former and current members of the group EII, especially

Dr. Stephan Schneider, Dr. Nicolas LeThomas, Dr. Vasili Temnov, Oliver Schöps, Vi-
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