
Integrated Formal Modeling and Automated
Analysis of Computer Network Attacks

Dissertation
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
der Universität Dortmund
am Fachbereich Informatik

von
Gerrit Rothmaier

Dortmund
2006

Tag der mündlichen Prüfung: 22.02.2007

Dekan: Prof. Dr. Peter Buchholz

Gutachter: Prof. Dr. Heiko Krumm, Prof. Dr. Joachim Biskup

Abstract

In the field of formal modeling and analysis as related to computer network secu-
rity, existing approaches are highly specialized towards either a protocol, node, or
network view. Typically, they are even further specialized towards a specific subset
of one view (e.g., a certain class of protocols, interactions of local node components,
or network propagation of predefined vulnerabilities). Thus, each approach cov-
ers only a small part of the aspects related to practical computer network attack
scenarios. Often, further restrictions with respect to the dynamics allowed for the
model, properties supported or user guidance required during analysis, have to be
observed. Multiple approaches, and thus models, formalisms, and analysis tools,
need to be employed to provide a more complete view of computer network attack
scenarios. Both the modeling task and the analysis task have to be done multiple
times and it is hard to ensure the consistency of the models and analysis results.
We present a novel approach that comprehensively integrates the protocol, node,
and network view on a middle level of detail. Furthermore, the models are ex-
pressive enough to support dynamic changes. A wide range of properties can be
specified using different mechanisms. As integrated models naturally are of higher
complexity than more specialized models limited to a single view, analysis is par-
ticularly challenging. Generally, automated analysis approaches quickly fail due
to state space explosion effects. Nevertheless, by careful modeling, considering
optimization possibilities at all stages, modeling using an object-oriented and com-
positional yet simple structured language, and employing a state of the art analysis
tool we are able to achieve automated analysis.
Our approach is based on the high-level specification language CTLA 2003, a
framework for modeling computer network attack scenarios, a scheme for trans-
lating CTLA 2003 to PROMELA, the CTLA2PC translation and optimization tool,
and the powerful model checker SPIN. For demonstrating the feasibility of our
approach, the modeling and analysis of three case studies involving multi-node
dynamic network scenarios is presented. In these case studies, precise attack
sequences are automatically predicted as violations of abstract security properties.

Keywords:
Computer Networks, Formal Methods, Integrated Modeling, Automated Analysis,
Protocol, Node, Network, Security, Attacks, SPIN, cTLA

Zusammenfassung

Die vorhandenen Ansätze zur formalen Modellierung und Analyse von Computer-
netzwerksicherheit sind entweder auf eine Protokoll-, Knoten-, oder Netzwerksicht
ausgerichtet. Meist beschränken sie sich sogar auf einen speziellen Teilbereich einer
dieser Sichten (z.B. eine bestimmte Art von Protokollen, die Interaktion zwischen
den lokalen Komponenten eines Knotens, oder die Ausbreitung vordefininierter
Verletzlichkeiten). Insgesamt wird von jedem Ansatz jeweils nur ein kleiner Teil der
Aspekte, die in praktischen Computernetzwerkangriffsszenarien vorkommen, ab-
gedeckt. Hinzu kommen oft weitere Einschränkungen in Bezug auf Unterstützung
dynamischer Änderungen, modellier- und untersuchbare Eigenschaften, benötig-
te Unterstützung der Analyse durch den Benutzer, usw. Um eine vollständigere
Sicht auf Computernetzwerkangriffsszenarien zu erhalten, müssen daher mehrere
Ansätze, und damit auch Modelle, Formalismen und Werkzeuge, eingesetzt wer-
den. Sowohl die Modellierungs- als auch die Analysearbeit fallen damit mehrfach
an und Konsistenz zwischen den verschiedenen Modellen und Analyseergebnissen
lässt sich nur sehr schwer erreichen.
In dieser Arbeit wird ein neuartiger Ansatz vorgestellt, der die Protokoll-, Knoten-
und Netzwerksicht auf mittlerer Detailebene übergreifend integriert. Die Modelle
sind ausdrucksstark genug, um dynamische Änderungen zu beinhalten. Vielfältige
Eigenschaften können über unterschiedliche Mechanismen spezifiziert werden. Da
integrierte Modelle deutlich komplexer als eingeschränkte Modelle für einen Teilbe-
reich sind, ist die Analyse besonders schwierig. Im Allgemeinen schlagen Ansätze
zur automatischen Analyse schnell durch Zustandsraumexplosion fehl. Durch eine
intelligente Modellierung, die Berücksichtigung von Optimierungsmöglichkeiten
auf allen Ebenen, die Modellierung mit einer objektorientieren und kompositiona-
len, aber trotzdem auf einer einfachen Struktur basierenden Sprache, und dem Ein-
satz eines dem aktuellen Stand der Forschung entsprechenden Analysewerkzeuges
sind wir trotzdem in der Lage, erfolgreich automatisiert zu analysieren.
Unser Ansatz basiert auf der Spezifikationshochsprache CTLA 2003, einem
Framework zur Modellierung von Computernetzwerkangriffsszenarien, ei-
nem Übersetzungsschema von CTLA 2003 nach PROMELA, dem CTLA2PC
Übersetzungs- und Optimierungswerkzeug, und dem mächtigen Modellchecker
SPIN. Die Durchführbarkeit unseres Ansatzes wird durch die Modellierung und
Analyse von drei dynamischen Netzwerkszenarien zunehmender Komplexität
aufgezeigt. In diesen Szenarien werden konkrete Angriffsfolgen als Verletzungen
vorgegebener Sicherheitseigenschaften automatisch aufgedeckt.

Schlagwörter:
Rechnernetze, Formale Methoden, Integrierte Modellierung, Automatische
Analyse, Protokoll, Knoten, Netzwerk, Sicherheit, Angriffe, SPIN, cTLA

Acknowledgment

Thanks to my advisor, Prof. Dr. Heiko Krumm, for his support and advice over the
years and the feedback on my thesis work. Furthermore, I am very grateful to Prof.
Dr. Joachim Biskup for the opportunity to present and discuss ideas at the “Kolleg
Sicherheit”.

I also thank Esther Bantle for her cheerful encouragement and proofreading of
this thesis. I am grateful to fellow Ph.D. student Frank Müller for fruitful discus-
sions and pointing me to Jorge Cham’s funny reflections on becoming a Ph.D.

My thesis greatly benefited from collaborations with my graduate students, in-
cluding Andre Pohl, Tobias Kneiphoff, Marc Malik, and Helge Konetzka. Particu-
larly, Andre Pohl spent a lot of time working on the CTLA2PC tool during his
master’s thesis and continuously supported the tool afterwards.

v

Dedicated to Heidrun, Karin, and Esther

Contents

1 Introduction 1
1.1 Background . 1
1.2 Goal Statement . 2
1.3 Thesis Outline . 2
1.4 Publications . 4

2 Related Work 7
2.1 Classification Scheme . 7
2.2 Protocol-Oriented Approaches . 8
2.3 Node-Oriented Approaches . 10
2.4 Network-Oriented Approaches . 12
2.5 Network Security Tools . 16
2.6 Discussion . 18

3 Spin, Promela, TLA, and cTLA 19
3.1 Spin . 19
3.2 Promela . 24
3.3 Temporal Logic of Actions (TLA) . 29
3.4 Compositional Temporal Logic of Actions (cTLA) 31

4 An Integrated, Formal Modeling and Automated Analysis Approach 35
4.1 Objectives . 35
4.2 Implementation . 36
4.3 Workflow . 38
4.4 Modeling Steps . 40

5 The cTLA 2003 Modeling Language 43
5.1 Comparison to cTLA 2000 . 43
5.2 Specification Structure . 46
5.3 Process Types . 51
5.4 Grammar . 56

vii

6 Translation, cTLA2PC, and Eclipse Integration 59
6.1 Motivation . 59
6.2 Translation Scheme . 59
6.3 The cTLA2PC Translation Tool . 68
6.4 Eclipse Integration . 73

7 Computer Network Modeling Framework 78
7.1 Frameworks . 78
7.2 Networking Concepts . 79
7.3 Domain View . 82
7.4 Packages & Elements . 83

8 Optimization Strategies 96
8.1 Motivation . 96
8.2 Scenario . 97
8.3 Model Design . 98
8.4 cTLA Model . 101
8.5 Promela Model . 105
8.6 Verifier Compilation & Run-Time Options 109

9 Case Study: IP-ARP 111
9.1 Introduction . 111
9.2 Modeling . 112
9.3 Analysis . 117
9.4 Discussion . 122

10 Case Study: IP-RIP 125
10.1 Introduction . 125
10.2 Modeling . 126
10.3 Analysis . 132
10.4 Discussion . 136

11 Case Study: IP-OSPF 139
11.1 Introduction . 139
11.2 Modeling . 140
11.3 Analysis . 147
11.4 Discussion . 153

12 Conclusion 157
12.1 Summary of Contributions . 157
12.2 Future Work . 158
12.3 Looking Ahead . 159

viii

Bibliography 160

A cTLA 2003 Grammar 167

B IP-RIP cTLA 2003 Model 179

ix

List of Figures, Tables, and Listings

List of Figures

2.1 Classification Scheme . 7

3.1 Spin Analysis Workflow . 20

4.1 Ideal Workflow of Our Approach 39

5.1 Graphical Representation of System SimpleSys 56

6.1 Transforming a Compositional cTLA System to Promela 60
6.2 cTLA2PC Translation Process . 71
6.3 Plug-in Architecture of the Eclipse Integration 74
6.4 Interactive Simulation of a Translated Specification in Eclipse . . . 76

7.1 Layers of the TCP/IP Reference Model 79
7.2 Threefold Internet Routing Architecture 80
7.3 Large-Scale Network View . 82
7.4 Small-Scale Network View . 83
7.5 Framework overview . 84

8.1 Modeling Stages & Optimizations 97
8.2 Layered Packet Processing and the Activity Thread Approach . . . 100

9.1 IP-ARP Scenario . 111
9.2 Layers and Protocols in the IP-ARP Scenario 112
9.3 Compositional Structure of the IP-ARP Model 116
9.4 Framework and Specific Process Types of the IP-ARP Model 117
9.5 Violating Sequence 1 in the IP-ARP model 121
9.6 Violating Sequence 2 in the IP-ARP model 122

10.1 IP-RIP Scenario . 125
10.2 Layers and Protocols in the IP-RIP Scenario 126
10.3 Compositional Structure of the IP-RIP Model 130

x

10.4 Framework and Specific Process Types of the IP-RIP Model 131
10.5 Example Attack Sequence in the IP-RIP model 136

11.1 IP-OSPF Scenario . 139
11.2 Layers and Protocols in the IP-OSPF Scenario 141
11.3 Process Type OSPFRouter . 143
11.4 Compositional Structure of the IP-OSPF Model 148
11.5 Framework and Specific Process Types of the IP-OSPF Model . . . 149
11.6 Example Attack Sequence in the OSPF model 154

List of Tables

3.1 Promela Built-In Data Types . 25

5.1 cTLA Basic Data Types . 49

9.1 Optimization Effects on State-Vector Size in the IP-ARP Example . . 119

10.1 Initial routing table of R1 . 131
10.2 Optimization Effects on State-Vector Size in the IP-RIP Example . . . 133
10.3 Effects of the Unroll Actions Optimization on a Benchmark Sequence

in the IP-RIP Example . 134

11.1 Initial routing table of R1 . 146
11.2 Optimization Effects on State-Vector Size in the IP-OSPF Example . . 150
11.3 IP-OSPF Model File Size Comparison 151

List of Listings

5.1 cTLA Specification Outline . 47
5.2 cTLA Simple Process Type . 52
5.3 cTLA Extending Process Type . 52
5.4 cTLA Example Extending Process Type (Adding) 53
5.5 cTLA Example Extending Process Type (Constraining) 53
5.6 cTLA Subsystem Process Type . 54
5.7 cTLA Example Subsystem Process Type 55

6.1 Compositional and Expanded Form of a cTLA Action 61
6.2 Generated Promela Specification Outline 69

8.1 snd_h1 cTLA System Action . 101

xi

8.2 Action snd_h1 in the Flat System . 102
8.3 Action snd_h1 After Paramodulation 102
8.4 Equalities After Splitting of Parameter pkt 103
8.5 Action snd_h1b After Paramodulation 103
8.6 Action snd_r1 . 104
8.7 Action snd_r1 After Unroll (Excerpt) 104
8.8 Bit Array Mapping BVSET and BVGET Macros 106
8.9 PacketT with dat Array in the IP ARP Scenario 106
8.10 Assignment Implementation in Promela Without Bit Array Mapping 106
8.11 Assignment Implementation in Promela With Bit Array Mapping . . 107
8.12 Excerpt of Action fwd’s cTLA Guard Expression 107
8.13 Part of Action fwd’s Promela Guard Expression after Macro Expansion108
8.14 Part of Action fwd’s Promela Guard Expression after Macro Expan-

sion, with Reduce Function Nesting Optimization 109

9.1 Assertion 1: IP-ARP Example, Send Actions 118
9.2 Assertion 2: IP-ARP Example, Receive Actions 118
9.3 Spin Verifier Output in the IP-ARP Example (Assertion 1) 121

10.1 Assertion in the IP-RIP Example . 132
10.2 Spin Verifier Output in the IP-RIP Example 135

11.1 Assertion in the IP-OSPF Example . 149
11.2 Spin Verifier Output in the IP-OSPF Example 153

xii

1 Introduction

1.1 Background

In recent years, computer networks have been connected worldwide based on open
standards to form the Internet. Internet-based applications and protocols have been
developed rapidly and found wide-spread use both in the private and public sec-
tors. On the one hand, new possibilities for international information exchange and
collaboration are opening up. On the other hand, attack opportunities are increas-
ing, too. Concepts in the area of IT security seem to be lagging behind, however.
Attack traffic makes up a significant part of all Internet traffic [PYB+04], and the
financial impact of successful attacks is significant [GCH03].

Meaningful countermeasures can only be taken with a proper understanding of
the attack possibilities, sequences and their impact. Formal methods are generally
very well suited in this situation. In the context of computer network attacks, three
views have to be considered. First, the processing of packets according to protocols
(protocol view). Typically, several layered protocols are involved. Second, the nodes
with their local initialization and configuration items (node view). Furthermore, the
nodes may support administrative actions (e.g., change of IP address). Third, topol-
ogy and connectivity aspects of the networks over which the packets are transmit-
ted (network view). These aspects influence packet propagation and routing. Due
to the inherent dynamics of computer networks, even small models often exhibit
significant complexity. Thus, both formal modeling and analysis are hard to do.

Existing approaches related to computer network security are typically restricted
to a single view. Many approaches exist for generic protocol (e.g., [RRCQ03]) and
security protocol verification (e.g., [Mea96]). They cover one single protocol in a
specialized way, but no node or network aspects. Other approaches take a node-
oriented view (e.g., [RS98]), allowing to check for vulnerabilities arising from the
interaction of local system components. The modeling of network or protocol re-
lated aspects is not considered. Recently, approaches for network vulnerability ana-
lysis have appeared (e.g., [OGA05]). These approaches consider attacks combining
predefined vulnerabilities on multiple nodes linked according to a connectivity ma-
trix. Thus, they support both a limited node and network view. The protocol view,
however, is hardly supported at all. Furthermore, the models are largely static and
the analysis is restricted to monotone properties.

Altogether, the approaches lack in flexibility and expressiveness. Particularly,

1

1 Introduction

they are not able to integrate multiple views of a computer network scenario in one
single model. Instead, multiple approaches are required for considering a single sce-
nario. Even worse, the approaches use different formalisms and require multiple
models to be devised. As a result, careful work has to go towards ensuring consis-
tency between the models. Similarly, different tools and mechanisms are necessary
for analysis. Attacks involving multiple views cannot be analyzed and dynamics
is severely restricted. Overall, the efforts required for modeling and analysis are
multiplied at best and the scenario cannot be handled otherwise at all. To sum it
up, existing approaches are not satisfactory.

1.2 Goal Statement

The main goal of this thesis is the development of a new integrated approach for
the formal modeling and automated analysis of computer network attack models.
The approach must accomplish the following subgoals:

• Formal Modeling: Models have to describe systems in a clear and precise way.

• Integration of Multiple Views: Protocol, node, and network views of a sce-
nario have to be integrated in a single, consistent model.

• Executable Models: Models have to be executable so that their behavior can
be traced and validated (e.g., by interfacing with an interactive simulation
tool).

• Support for Dynamics: Both the modeling and the analysis must be able to
cope with dynamic changes (e.g., logical connectivity between nodes is not
static but depends on dynamic routing decisions).

• Automated Analysis: Attack sequences have to be found automatically (i.e.,
by a tool not requiring user input) by checking for violations of properties
specified with the model.

• Ease of Use: The approach shall facilitate both the modeling and analysis task
(e.g., by providing libraries, tool support etc).

Finally, the practical feasibility of the approach will be demonstrated by its applica-
tion to several case studies.

1.3 Thesis Outline

Beginning with the introduction (chapter 1), the thesis is divided into three parts
and twelve chapters. The main part of the thesis introduces our approach for inte-
grated formal modeling and automated analysis of computer network attacks. The

2

1.3 Thesis Outline

approach combines CTLA 2003, a computer network framework, a compiler, op-
timization strategies and the SPIN tool for automated analysis. Furthermore, an
ECLIPSE [OTI03] based modeling and analysis environment and a workflow for
applying the approach is provided.

The first part, chapters 2 and 3, provides background material required for under-
standing the thesis. Chapter 2 classifies the related work into protocol-, node-, and
network-oriented approaches. Selected approaches from each area are considered
with respect to their suitability for integrated modeling and analysis of computer
network attack models.

Chapter 3 gives an overview of SPIN, PROMELA, TLA, and CTLA. SPIN [Hol03]
is a powerful model checker for analyzing models written in PROMELA. PROMELA
TLA [Lam94], and CTLA [HK00] are specification languages for distributed sys-
tems. Furthermore, the underlying machine models defining the semantics of the
specifications are outlined.

The main or second part of the thesis, chapters 4 to 8, describes our integrated
formal modeling and automated analysis approach. Chapter 4 gives a bird’s eye
view of the approach. The chapter details the objectives of our approach, then
outlines implementation, workflow, and modeling steps.

Chapter 5 describes CTLA 2003 [RK03], which we use as the modeling language
for our approach. In contrast to CTLA, CTLA 2003 provides executable specifica-
tions and adds modeling enhancements to foster reuse and to ease the modeling
task. Furthermore, the chapter explains CTLA 2003 specification structure, seman-
tics, and grammar.

Chapter 6 explains the scheme for translating CTLA specifications to the more
low-level PROMELA specifications. Then, the architecture of the CTLA2PC com-
piler tool, which implements the scheme, is described. The chapter concludes with
a brief overview of the ECLIPSE integration we engineered for CTLA2PC and SPIN.

Chapter 7 covers the computer network modeling framework we devised to
greatly simplify the modeling task. After a short introduction to frameworks and
an overview of the networking concepts related to our application domain, the net-
work, node, and protocol views taken by the framework are described. Finally, the
packages and classes of the CTLA framework are presented.

Chapter 8 deals with optimization strategies for models and their implementa-
tion in the approach in order to alleviate state space explosion effects. Optimiza-
tions have to be considered at all stages, from the scenario level to the PROMELA
level.

The third part, chapters 9 to 11, demonstrates the feasibility of our approach. To
this aim, three cases studies following our approach are presented. The case stud-
ies include routing at different levels (cf. section 7.2.2), in order to show that our
approach is able to deal with the inherent dynamics.

Chapter 9 describes the modeling and analysis of a LAN scenario involving se-
veral nodes and the IP and ARP protocols. ARP is a low-level “routing protocol”

3

1 Introduction

employed inside a LAN. The analysis shows an interesting similarity between ARP
attacks and certain administrative actions.

Chapter 10 presents a multi-LAN IP and RIP scenario. RIP is a distance-vector
type routing protocol used for routing between LANs belonging to the same orga-
nization (interior-gateway). The scenario contains multiple LANs, host nodes, and
router nodes. Attack sequences are influenced by the packet propagation which in
turn depends on the network topology.

Chapter 11 applies our approach to the largest scenario so far involving IP and
OSPF. OSPF is a complex link-state interior-gateway routing protocol. The scenario
includes different network and router types supported by OSPF besides the host
nodes. During analysis, we encountered interesting limitations of the SPIN and
GCC tools. Furthermore, to the best of our knowledge, our analysis is the first
formal consideration of OSPF security properties.

The thesis concludes with chapter 12, which summarizes the main contributions.
Furthermore, an outlook for future work is given.

1.4 Publications

Parts of the research and results of this thesis have already been published, in par-
ticular as conference proceedings. In this section, we list the publications and the
respective contributions of the author of this thesis.

cTLA 2003 Description This technical report [RK03], written by the author of this
thesis and Heiko Krumm, contains a preliminary version of the syntax and seman-
tics of CTLA 2003 as well as the relationship to TLA and CTLA 2000. While CTLA
2000 was developed by Peter Herrmann, Heiko Krumm et al. [HK00], the author
invented and contributed the sections on CTLA 2003.

Chapter 5 gives an updated and more detailed description of CTLA 2003. The
relationship to TLA, CTLA 2000 is explained in sections 3.3, 3.4, respectively, of
chapter 3.

Analyzing Network Management Effects with Spin and cTLA The paper [RPK04],
published in collaboration with Andre Pohl and Heiko Krumm, reports on the ap-
plication of an early version of the integrated formal modeling and automated ana-
lysis approach to an IP-ARP LAN scenario. All key parts of the paper, particularly
the description of the approach (cf. section 4)), the generic model structure, the
example scenario and its modeling, optimizations, and analysis, were contributed
by the author. The scheme for translating CTLA to PROMELA (cf. section 6.2) was
devised by the author as well; however, Andre Pohl provided a detailed implemen-
tation of the scheme with the CTLA2PC translation tool.

4

1.4 Publications

Chapter 9 contains a detailed description of the IP-ARP modeling and analysis.
The translation scheme and the CTLA2PC tool are described in chapter 6. Opti-
mizations are summarized and categorized together with those found during the
modeling and analysis of other scenarios in chapter 8.

cTLA Computer Network Specification Framework This online document [Rot04],
written by the author, describes the CTLA computer network modeling framework.
The framework is a refined version of the generic model structure introduced in
[RPK04].

In chapter 7, an updated and extended presentation of the framework together
with the key networking concepts relevant to the application area is given.

Formale Modellierung und Analyse protokollbasierter Angriffe in TCP/IP Netzwer-
ken am Beispiel von ARP und RIP The paper [RK05a] (in German), by the author
and Heiko Krumm, introduces a new IP-RIP scenario and compares its modeling
and analysis to the IP-ARP scenario. Furthermore, a brief overview of the frame-
work is given. As with the IP-ARP scenario, the key parts regarding modeling and
analysis of the scenarios were written by the author.

A detailed description of the IP-RIP scenario is contained in chapter 10.

Using Spin and Eclipse for Optimized High-Level Modeling and Analysis of Com-
puter Network Attack Models The paper [RKK05], written by the author, Tobias
Kneiphoff, and Heiko Krumm, focuses on the optimized translation of CTLA code
to PROMELA as required by the model checker SPIN. Furthermore, the composition
of both the IP-ARP and IP-RIP scenarios from framework types and model-specific
types is shown. Last but not least, the plug-ins for integrating the approach into the
ECLIPSE environment are presented. Again, the author of this thesis contributed the
key parts regarding the translation, optimization, and composition of the scenarios.
Regarding the plug-ins, the author did the initial research on how to integrate SPIN
and CTLA2PC with ECLIPSE. The detailed design and implementation of the plug-
ins, however, were done by Tobias Kneiphoff as part of his master’s thesis [Kne04].

The ECLIPSE integration is outlined in section 6.4. Details of the translation from
CTLA to PROMELA are contained in section 6.2.

A Framework-based Approach for Formal Modeling and Analysis of Multi-Level
Attacks in Computer Networks This paper [RK05b], published in collaboration
with Heiko Krumm, explains the IP-RIP scenario modeling and the framework in
more detail. Furthermore, the new unroll action parameters optimization and its
effect on the scenario are examined. As before, all key parts of the paper were
contributed by the author of this thesis.

5

1 Introduction

The unroll action parameters optimization is described in section 8.4.2. Chap-
ter 10 gives an in-depth view of the IP-RIP scenario.

6

2 Related Work

Several formal modeling and analysis approaches that are related to the context of
computer network security exist. In this chapter, we give an overview of the key
approaches. We begin with a short explanation of our classification scheme. Then,
we outline the related work according to this scheme. After that, we give a short
survey of practical security tools. Finally, we briefly summarize the advantages and
limitations of the existing approaches.

2.1 Classification Scheme

Existing approaches largely differ in the areas covered and level of detail provided
for these areas. To better compare and classify the approaches, we devised a decom-
position into three views naturally related to computer network attack models (cf.
Fig. 2.1).

Network Protocol

Node

Level of detail

Security Protocol
Analysis, e.g.

Meadows

Generic Protocol
Analysis, e.g.

Romano

Local System
Configuration
Analysis , e.g.
Ramakrishnan

Network Vulnerability
Analysis Approaches,

e.g. Amman;
Sheyner; Appel

Our Approach

Local Windows
System DACL

Analysis , e.g. Appel

Figure 2.1: Classification Scheme

First, the protocol view defines the packet processing of the nodes and the types
of packets exchanged between the nodes. Typically, several layered protocols are

7

2 Related Work

running on top of each node. Second, the node view takes into account the local
configuration (e.g., IP address, routing table, services) as well as the initialization
and administration actions (e.g., for setting up interfaces) of a node. Third, the
network view deals with topology and connectivity aspects of the logical or physical
media. These aspects define broadcast zones, influence packet propagation and
routes etc.

We depict these views as sectors of a circle. The different types of approaches are
symbolized by areas inside the circle, which extend inside one or multiple sectors
according to the extent the different views are covered. The distance from the cen-
ter gives a hint about the level of detail that can be provided by an approach. For
example, security protocol analysis approaches can model and analyze security pro-
tocols from a low to a very high level of detail. However, the coverage reached for
aspects related to the network and node views, is very low and highly abstract (i.e.,
low detail). Furthermore, in contrast to generic protocol analysis, security protocol
analysis covers a smaller fraction of all protocols.

Most approaches are very specialized towards one view. Network vulnerability
analysis (NVA) approaches take a broader view. Thus, they are particularly interest-
ing to us and we carefully consider several of them. Our classification scheme helps
to highlight the similarities and differences despite the varying formalisms. Some
approaches even changed formalisms as they evolved. For example, the approach
by Amman et al. [AR00; RON02; JNO03] started with a logical model representa-
tion and the SMV model checker as the analysis tool and turned into an approach
based on a graph based model with a custom analysis engine.

2.2 Protocol-Oriented Approaches

Generally, in protocol verification a protocol is analyzed with respect to a certain pro-
perty (e.g., the reliable delivery of messages) under reasonable assumptions (e.g.,
media loss is bounded). Security protocol verification is specialized on analyzing se-
curity properties of cryptographic protocols (e.g., authentication protocols).

A variety of methods is applied in both fields, including classic logic and al-
gebraic calculi (e.g., [KKN+03]), special calculi (e.g., [BAN90]), and process sys-
tem modeling techniques (e.g., [RRCQ03]). Different kinds of analysis tools are
used, including logic programming environments, expert system shells, theorem
provers, algebraic term rewriting systems, and model checkers. Often, these tools
are highly specialized to support their approach. With respect to our classification,
node and network related aspects are mostly out of scope for protocol verification
approaches.

As there are many approaches and whole conferences dedicated to the subject of
protocol verification, we can only exemplify the work done in this area. We first out-
line a protocol verification approach based on process system modeling, then two

8

2.2 Protocol-Oriented Approaches

security protocol verification approaches combining multiple analysis techniques.

Romano et al.: Protocol Verification Romano et al. [RRCQ03] suggest a protocol
verification approach based on a client, server, and network process for each pro-
tocol command. Modeling is done using the PROMELA specification language; for
analysis the SPIN (cf. section 3.1) model checker is employed. As an example, they
describe the modeling and verification of the sessionless mode of the reliable HTTP
(HTTPR) messaging protocol.

In sessionless mode, no state information is kept between commands. Thus, for
each protocol command an independent PROMELA model can be built. The client
and server processes deal with the processing of the protocol commands; the net-
work process models a lossy channel between client and server. The property con-
sidered is reliable message delivery, i.e., each message is delivered exactly once.
Their analysis is greatly simplified by the sessionless mode: Each command model
can be analyzed separately. Furthermore, all variables not involved in the property
are removed prior to analysis. Using the SPIN model checker, the property is suc-
cessfully verified.

Regarding our classification, the protocol view is covered with a medium to high
level of detail, taking into account packets and protocol commands. Node and
network aspects are covered to a small extent by e.g., representing the network
with a channel.

Meadows (NRL): Cryptographic Protocol Verification Following the approach by
Catherine Meadows [Mea96], cryptographic protocols are specified as FSMs with
algebraic reduction rules. The approach is based on an extended Dolev-Yao [DY83]
model. Analysis is done in an interactive way by combining different analysis tech-
niques using a custom tool, the NRL protocol analyzer. The approach has been suc-
cessfully applied to multiple protocols. For instance, a draft version of the Internet
key exchange protocol (IKE) [HC98] was analyzed and several ambiguities and omis-
sions were found [Mea99].

The NRL tool, written in PROLOG, particularly supports the following tech-
niques:

• Backwards search (interactive and heuristic) from a user specified goal state
(e.g., intruder knows the session key) to find preceding states

• Rewriting based on algebraic reduction rules that capture abstract properties
of cryptographic algorithms, e.g., DK(EK(w)) = w (decrypting and encrypt-
ing based on the same key are inverse operations)

• Pruning of states based on a database (facts) of reachable states

9

2 Related Work

• Pruning of the set of producible words by a user specified language of un-
reachable words. An algorithm that can prove unreachability in many cases
is integrated.

Both the intruder goal and the protocol modeling are more flexible than with the
Dolev-Yao model: Any state can be specified as the intruder goal; and intruder
actions like the decryption and encryption of already known words can be added
as transitions rules to the protocol modeling.

In comparison to the approach by Romano et al., this approach is on the one
hand very specialized on cryptographic protocols and (typically) requires user in-
teraction during analysis. On the other hand, the approach has helped to uncover
flaws in several different cryptographic protocols.

Armando et al. (AVISPA): Security Protocol Verification The automated validation
of Internet security protocols and applications (AVISPA) [ABB+05] project by Armando
et al. is a large-scale public-private partnership, funded by the EU. AVISPA is
based on its own high-level security protocol modeling language, which can be
translated for use with different back-end analysis tools.

The high level protocol specification language (HLPSL) is used to model security pro-
tocols together with their desired security properties. HLPSL supports different
process types (called roles) which can be composed to build the system. Further-
more, special primitives (e.g., hash function, symmetric key) which ease the model-
ing of cryptographic protocols are included. Security properties (called goals) are
defined using predefined constructs (e.g., authentication, secrecy). Using a transla-
tor, HLPSL specifications are transformed to the formalism required by the analysis
back-end. Particularly, different model checkers are supported. A library of secu-
rity problems (i.e., security protocols with properties) analyzed using AVISPA is
available.

In comparison to the approach by Catherine Meadows, AVISPA, on the one hand,
has a more powerful language, is more flexible regarding the choice of the back-
end tool, and provides a higher degree of automation (depending on the back-end).
Common operations of security and cryptographic protocols are supported by built-
in constructs of the modeling language. One the other hand, these high-level con-
structs have to be adequately translated to the formalism used by the respective
back-end. This might not be possible for all back-ends and hinder analysis.

2.3 Node-Oriented Approaches

Node-oriented approaches consider properties like the role (e.g., server, client, at-
tacker), local configuration (e.g., IP address, routing table, installed system com-
ponents or services), initialization and administration actions (e.g., for setting up

10

2.3 Node-Oriented Approaches

interfaces) of a node. They typically check for vulnerabilities arising from the inter-
action of local configuration items.

Ramakrishnan and Sekar: Local System Component Vulnerabilities The work
by Ramakrishnan and Sekar [RS98] describes the analysis of attack sequences re-
sulting from the combined behavior of local system components of a single Unix
host. Modeling is done using a PROLOG variant and analysis is based on the XSB
[SSW+05] logic programming environment.

The system model consists of process models for system components and chan-
nels. Process models for a file system, mail send program, mail display program,
and printer spooler are designed. The user is defined to always execute the se-
quence: read a file, write a file, print, send mail. All process models are very sim-
ple, e.g., the file system model only includes two operations that read or write to a
channel variable after checking the access predicate. The mail display program
has a vulnerability that can be exploited in connection with the mail send program
that allows an attacker to overwrite files (e.g., the passwd file).

Analysis is done by using appropriate queries. For example, a query of the form
fs.write(passwd,_) is resolved to sequences resulting in a write operation on
the passwd file. The queries are analyzed using XSB, a PROLOG programming en-
vironment employing tabled resolution. Tabled resolution improves efficiency and
allows the system to terminate where the depth first search based resolution em-
ployed by standard PROLOG fails.

In [RS02], the approach is slightly extended and described in more detail. This
time, first a high-level model of the system is built (using a custom language based
on CSP). To use the high-level model with XSB, it is translated manually. The com-
position of the system model from the process models is described in more detail.
Furthermore, the process models are extended with further operations. Particularly,
the file system model supports an operation for resolving symbolic links.

The system model describes a single node with a few highly simplified system
components. Furthermore, the model seems quite geared towards the file vulne-
rability. As this is a local vulnerabilities approach, network and protocol related
aspects are not considered.

Appel, Govindavajhala et al.: Local DACL Vulnerabilities Recently, Appel, Govin-
davajhala et al. [GA06] have come up with another approach based on a PROLOG
model and the XSB logic programming environment. Their model deals with spe-
cific rights given by entries of discretionary access control lists (DACLs) on files
and services as defined for Microsoft Windows systems. Analysis is done for local
privilege escalation attacks due to improper ACL configurations.

Their model has a small set of rules (i.e., PROLOG clauses) around the
service_change_config and write_dac rights. A principal with service_-

11

2 Related Work

change_config right on a service may substitute the file executed by the system
to provide the service with its own file. In this case, if the service is run under
a privileged account (i.e., LocalSystem), the principal succeeded in extending
its privileges. The write_dac right allows to give arbitrary rights on a resource
to a principal, especially the service_change_config right. Furthermore, the
model includes a rule stating that if a principal is a member of a group, and the
group has some right, then the principal has the right as well.

Besides the rules, the model contains a set of facts. These facts excerpt the rights
given by the DACLs on services and files. By using a custom scanner tool on a
real Windows XP host, the facts are populated automatically. This allows them to
analyze this specific case of local configuration vulnerabilities easily.

For analysis, some account, e.g., the guest account or an account from
the Authenticated Users group, is assumed to be compromised by the at-
tacker. Then, analysis is done using queries. For example, a query of the form
compromised(localSystem) results in sequences listing steps of how accounts
can gain localSystem access. In the attack graph shown in the paper, these se-
quences appear to be two-step at most: first group membership is applied, then a
privilege escalation through some access control entry.

This approach deals with a very specific case of local system vulnerabilities: im-
proper access control lists. For that case, the approach is highly automated and
quite elegant. It does not cover network or protocol related aspects, however. The
authors state that the DACL approach is a special case of the MulVAL approach
described below (cf. section 2.4). Indeed, both approaches are based on the same
modeling language (PROLOG) and logic programming environment (XSB). Apart
from that, the approaches have little in common, however. Particularly, the models
are quite different and are not based on an integrated set of clauses and facts. Fur-
thermore, the properties stated for MulVAL – multihost and multistage – do not
apply well to a local host DACL approach with few steps for a successful attack.

2.4 Network-Oriented Approaches

Formal network vulnerability analysis (NVA) approaches have emerged quite re-
cently. They try to find sequences of attacks on single nodes that finally lead to the
violation of a security property (e.g., no root access on another node). The attacker
starts from a certain node and may switch to other nodes after a successful attack.

NVA approaches generally take an abstract, global network and node view. Typi-
cally, the network view is reduced to a static connectivity matrix. Physical and log-
ical network layers are not distinguished; the transfer of packets is not considered.
The node view consists of a set of constants symbolizing the services and/or vul-
nerabilities of the node. Moreover, a set of attack or exploit rules depending on the
vulnerabilities contained in the modeling is defined. Regarding protocols, they are

12

2.4 Network-Oriented Approaches

at most “modeled” by a protocol specific constant value in the connectivity matrix.
In short, NVA approaches offer some integration between different views, parti-

cularly network and node. The view is very abstract, however. Furthermore, ana-
lysis can only uncover new combinations of the already known vulnerabilities listed
for each node. In the following paragraphs, we present the most important NVA
approaches to date.

Amman, Ritchie et al.: Model Checking for NVA The approach by Amman,
Ritchie et al. [AR00] was one of the first NVA approaches. Their modeling is
based on a logical representation which is analyzed using the SMV [CMU01] model
checker.

The node modeling consists of a set of booleans indicating which of the prede-
fined vulnerabilities do exist and of an integer representing the attacker access level
(none, user, root) on the node. A boolean connectivity matrix is used to model the
network. To represent the exploitation of a vulnerability, matching exploit rules
have to be included. An exploit rule consists of preconditions (connectivity, existing
vulnerabilities and access level) and effects (increased access level, new vulnera-
bilities). Finally, a security property, e.g., no root access level on a specific node,
is stated and the model is analyzed using SMV. SMV tries possible combinations
of the vulnerabilities defined in the model as allowed by the exploit rules. If the
property is violated, the corresponding attack sequence is put out.

In [RON02], the approach – now called topological vulnerability analysis (TVA) –
is extended and described in more detail. The connectivity matrix underlying the
network model may now contain integer values instead of boolean. These values
symbolize the protocol or service accessible through the connection. The authors
suggest a constant naming scheme for these values with a prefix corresponding to
the layer of the TCP/IP reference model (cf. section 7.2.1) the protocol belongs to.
For example, the constant TRANS_WU_FTPD represents a transport layer connection
to a WUFTP daemon.

Due to the model-checker based analysis, complex properties can be examined.
The simplicity of the model, however, limits the usefulness of complex properties
a bit. A node’s configuration and components are only represented by booleans.
Protocols are symbolized through the values already described in the connectivity
matrix. No sending, receiving, or processing of packets or protocol commands is
modeled. Thus, the level of detail of the protocol modeling is very low. Regarding
network aspects, the connectivity matrix allows modeling on a medium level of
detail, however.

Jajodia, Noel et al.: Dependency Graph Based NVA In [JNO03], Jajodia, Noel et
al. present an extended and partially changed version of the TVA approach. Now, a
specific dependency graph [AWK02] is generated for analysis. Accordingly, instead

13

2 Related Work

of the SMV model checker, a custom graph analysis engine is used. Furthermore,
the modeling is based on XML files which are partially created automatically.

In the dependency graph, exploits (e) and conditions (c) are expressed as vertices,
dependencies as edges. An edge from a c-vertex to an e-vertex is labeled with
the preconditions of the exploit. An edge from a e-vertex to a c-vertex is labeled
with the postconditions (i.e., effects) of the exploit. The graph is generated prior to
analysis by custom translation tools from XML input files.

The network model (connectivity matrix) is encoded in network.xml; the vul-
nerabilities of the nodes are listed in attack.xml and the exploit rules and security
conditions in conditions.xsl. The vulnerabilities file is created automatically
based on the output of the NESSUS network vulnerability scanner. Furthermore,
the network.xml may be created automatically based on the output of network
discovery tools. The exploit rules for the included vulnerabilities and the security
condition, however, still have to be manually defined by an expert.

In comparison, on the one hand, this graph based approach scales better to larger
networks. It has a polynomial run-time. On the other hand, the older model
checker based approach is more expressive. Particularly, the graph-based approach
assumes monotonicity, i.e., if a condition is true once it is assumed that it stays
true forever. Of course this simplifies analysis greatly. Models involving routing
changes, dynamic address assignment or administrator actions disabling services
violate this assumption. Likewise, the old approach allowed security conditions to
involve the full set of mechanism supported by SMV (e.g., temporal properties).
The type of security conditions supported by the new approach is not described in
detail, but seems to be restricted to propositional predicates.

Sheyner, Wing et al.: Attack Graphs for NVA The approach by Sheyner, Wing et
al. [SHJ+02] is based on XML files describing the network model, vulnerabilities
of the nodes, atomic attacks and a security property. These input files are encoded
into a finite state machine (FSM) model. The FSM model is analyzed by a variant of
SMV which automatically generates an attack graph as result. All paths violating
the security property are depicted in the attack graph.

An attack graph is a directed graph where each vertex is labeled with an attack
identifier, source host, and target host. The attack identifier represents an atomic
attack. An atomic attack stands for the exploitation of a vulnerability on the target
host from the source host. The attack graph is both exhaustive and succinct, i.e., it
shows exactly those vertices contributing to the violation of the security property.
Root nodes correspond to atomic attacks possible from the initial state. An edge
between two vertices means that the atomic attacks can be executed in the order
indicated by the edge. Thus, the paths from the root nodes to the leaf nodes are
sequences of atomic attacks finally leading to the violation of the security property.

The network model is similar to the connectivity matrix known from Amman.

14

2.4 Network-Oriented Approaches

Additionally, the node model, i.e., the services running on the nodes are included in
the connectivity matrix as well. Again, attacks consist of preconditions and effects.
From all these elements, the FSM model is generated. It has state variables for the
attack identifier, source host, and target host. During each step, these variables are
nondeterministically set to a value out of the defined values for the model. Then,
if the preconditions for the atomic attack corresponding to the attack identifier are
satisfied, the attack is executed, i.e., the state of the FSM model is changed according
to the effects. This way, all possible combinations of atomic attacks are enumerated.

Due to the use of the SMV model checker, security properties can be more com-
plex than with the graph-based approach by Amman. On the downside, if complex
(e.g., temporal) properties are used, the construction of the attack graph can take
exponential time.

Appel, Govindavajhala et al (MulVAL): Logic Programming for NVA This work
is by the same authors as the Windows DACL local configuration vulnerabilities
approach already described (cf. section 2.3). The approach is called MulVAL
[OGA05], meaning multihost, multistage, vulnerability analysis. The network and
node model are in principle very similar to the NVA approaches described above.
Like in the dependency graph approach by Amman and the Windows DACL ap-
proach, the creation of the node model can be partially automated using a vulne-
rability scanner. Additionally, this approach partially automates the generation of
attack preconditions and effects.

All modeling is done in a PROLOG variant. The node model includes a list (i.e.,
PROLOG facts) of services and vulnerabilities on the node. Vulnerabilities include
two attributes stating the scope (either localExploit or remoteExploit) and
effect (either privilegeEscalation or denialOfService) of a successful ex-
ploit in a very abstract way. The authors provide a modified vulnerability scanner
which can – in most cases automatically – populate the node model. Furthermore,
additional information like client programs can be added. A connectivity matrix is
used for the network modeling. This matrix includes protocol and port constants.

The exploit rules are in more generic form than with the other NVA approaches.
They are not dependent on a specific vulnerability but on the attributes of a vulne-
rability. For example, a remote-code execution rule can be defined for all vulnera-
bilities that have the remoteExploit attribute and are contained in a service that
is running on a host the attacker can access.

Analysis is done using PROLOG queries. Thus, no complex security properties
are possible. Like the dependency graph NVA approach, monotonicity is assumed
and analysis takes polynomial time. The approach has its limitations but is overall
well-rounded. In comparison to Sheyner, Wing et al., the node modeling is more
detailed and highly automated. Furthermore, the attack rules are slightly more
generic.

15

2 Related Work

2.5 Network Security Tools

There is a range of tools for practical network security testing. These tools can be
grouped into different categories: vulnerability scanners, penetration testing tools,
and intrusion detection systems.

Vulnerability Scanners These tools are used to detect known weaknesses (e.g.,
missing patches) on hosts. Typically, vulnerability scanning tools are network-
based. NESSUS [Nes06] is a prime example. Using NESSUS, the scan can be done
from a daemon running on a central server; no host-based agent is required. The
detection capability is realized via plug-ins. NESSUS provides, for instance, a set
of plug-ins corresponding to the security bulletins published by MICROSOFT. This
way, wide-spread vulnerabilities existing on the nodes can be recognized and reme-
died manually (e.g., by patching) later on.

Some NVA approaches (cf. section 2.4) populate their node models using the out-
put of vulnerability scanning tools. Unfortunately, the recognition of weaknesses
is not always reliable. One reason is that the weakness may depend on complex
conditions that are not considered by the vulnerability scanner (e.g., configuration
of the local host or its environment). Furthermore, a reliable scan may impact the
host being scanned too much.

Penetration Testing Tools After possible weaknesses have been identified using
a vulnerability scanner, penetration testing tools can be used to check if these weak-
nesses are indeed exploitable. The METASPLOIT tool [Met06] provides a library of
exploits for common vulnerabilities. These exploits can be combined with payloads
(e.g., remote command shell) depending on the operating system of the target etc.
Some exploits are architecture independent, e.g., routing protocol exploits, and do
not require a payload specific to an operating system.

NEMESIS [NS04] is a more generic tool that, however, requires expert knowledge.
It allows to assemble custom packets (e.g., from the command line or via scripts)
for many different protocols. This is particularly useful for testing protocol-related
weaknesses. Often, sequences of packets containing unusual, reserved, or random
values are used. Besides weaknesses, deviations from the standard may be dis-
covered. Of course, penetration testing tools can only show that a weakness is
exploitable; they cannot prove that a weakness is not exploitable, even if the pene-
tration testing tool fails.

Intrusion Detection Systems (IDS) An IDS typically comprises sensors, a rule en-
gine, and a management console. The sensors generate events which are processed
by the rule engine. If a rule matches, an alert is triggered and displayed on the
management console.

16

2.6 Discussion

IDS can be classified according to the type of event history analysis: attack signa-
tures or anomaly detection. Attack signatures are patterns representing known bad
behavior. They are stored in a library which has to be updated regularly as new
attacks become evident. In order to achieve some flexibility, regular expressions
may be included in the attack signatures. Anomaly detection works by comparing se-
lected properties of the current behavior with previously learned regular behavior.
Typically, to establish the properties of regular behavior, network traffic is recorded
for a certain period of time. The recorded traffic is then analyzed for the type and
distribution of the packets occuring. More advanced methods like machine learn-
ing techniques may be used, too.

Some IDS support both attack signatures and anomaly detection. On the one
hand, IDS supporting anomaly detection have greater chances to recognize that
“something bad” happened. On the other hand, they produce much higher rates
of false positives than attack signature based IDS. A false positive is an alert even
though no attack has occured. Furthermore, performance is a serious concern of
anomaly detection based IDS in high volume environments.

The location and scope of the sensors offers an alternative way to distinguish
three types of IDS: First, network intrusion detection systems (NIDS) use sensors to
watch the network traffic and to monitor multiple hosts. NIDS are the most wide-
spread type of IDS, with SNORT [Sno05] and BRO [LBN04] two well-known open
source implementations exist. Second, host-based intrusion detection systems (HIDS)
employ sensors that are located on the hosts and may watch log files, system files,
and system calls. Third, hybrid intrusion detection systems combine both host and net-
work based sensors and try to correlate the events. In contrast to the tools discussed
above, IDS are typically only able to detect attacks after their occurence. They can-
not be used to analyze certain aspects of a node, network or protocol beforehand.

Intrusion prevention systems (IPS) try to stop attacks before they happen. IPS com-
bine multiple techniques in one system, for instance access control (firewall), intru-
sion detection, and prevention of certain types of buffer overflows. An example of
an IPS with these capabilities is the commercial product BLINK [eEy06] by EEYE.
On the one hand, combining multiple techniques in principle protects against more
attacks than a single technique. On the other hand, this combination of different
techniques into one system greatly increases the complexity. Thus, the IPS has to be
designed and implemented very carefully to not introduce weaknesses of its own.
As Bruce Schneier puts it [Sch00]: Complexity is the worst enemy of security. Secure
systems should be cut to the bone and made as simple as possible.

2.6 Discussion

On the one hand, there are many approaches for modeling and analysis of node,
protocol, or network security aspects. Additionally, tools for practical network se-

17

2 Related Work

curity testing and intrusion detection are available. On the other hand, existing ap-
proaches are very specialized towards one of the node, protocol, or network views.
Thus, these approaches cannot provide an integrated view of computer network
attack scenarios. Depending on the approach, further limitations often apply dur-
ing analysis. The user must, for instance, guide analysis interactively, specify a
somewhat arbitrary goal state as a starting point, or may be restricted to monotone
properties.

Protocol-related approaches (cf. section 2.2) take a very abstract network and
node view. Approaches covering the node view (cf. section 2.3) hardly incorporate
a protocol or network view. NVA approaches (cf. section 2.4) model network (e.g.,
connectivity matrix) and node aspects (e.g., list of services or vulnerabilities), but
only with a low to medium level of detail. The protocol view (e.g., processing of
packets and protocol commands) is hardly modeled at all. The models are largely
static: They do not support dynamic services, routing or firewall rules. Analysis
with logic programming tools is restricted by the monotonicity property and has
to be done using queries. Finally, only new combinations of the already known
vulnerabilities listed for each node are found.

We aim to develop a new approach that integrates the node, protocol, and net-
work views with a medium to high level of detail in a single consistent model and
can predict attack sequences in dynamic scenarios. Analysis shall be automatic and
allow dynamic properties to be specified. None of the existing approaches com-
bines these qualities. For realizing this aim, a general, more expressive modeling
language is required. Of course, the resulting models will be significantly more
complex than models limited to a single view. Analysis of complex models is hard
to achieve due to state space explosion effects. Furthermore, general analysis tools
cannot make use of special case shortcuts that apply to more specialized models.
Automatic analysis not aided by interactive user guidance is even harder. Thus, our
aim is very challenging. Certainly, an eye has to be kept on the scenario size and
attacker verboseness. Moreover, optimization possibilities have to be considered at
all stages.

18

3 Spin, Promela, TLA, and cTLA

In this chapter, we give a brief overview of SPIN, PROMELA, TLA and CTLA. First,
we describe the SPIN model checker. Then, we introduce SPIN’s specification lan-
guage, PROMELA. Finally, we explain the structure and key concepts of TLA and
its compositional variant CTLA 2000.

3.1 Spin

In the following paragraphs, we outline SPIN’s most noteworthy properties. A
comprehensive presentation of SPIN is contained in Holzmann [Hol03].

3.1.1 Overview

SPIN is a tool for the automated verification of distributed software systems, also
called a model checker. Its development started in 1980 at BELL LABS. From 1991 on,
it has been freely available as open source. Throughout the years, SPIN was continu-
ously adapted to new developments and extended with new features. Nowadays,
SPIN is maintained at NASA JPL.

SPIN is widely recognized as one of the most powerful and most popular model
checkers. In 2002, SPIN was decorated with the prestigious ACM SOFTWARE SYS-
TEMS AWARD. Applications of the SPIN tool include mission-critical software and
call processing software. For example, SPIN was used to verify selected algorithms
of NASA space missions. Regarding industrial applications, large parts of LU-
CENT’S PATHSTAR call server software were verified using SPIN.

Analysis Workflow The basic analysis workflow with SPIN (cf. Figure 3.1) is as fol-
lows: First, a system description (or specification) is written in SPIN’s input language,
PROMELA (cf. section 3.2). This description includes claims (cf. section 3.1.3) about
the system. The description is then parsed and checked for syntax errors. If no syn-
tax errors are detected by the PROMELA parser, the specification can be analyzed
using two basic basic modes of operation: simulation and verification.

In simulation mode, the specification is executed by SPIN until no more statements
are executable, an assertion fails, or the simulation is stopped by the user. Executed
statements and current values of global variables are printed to the console. As

19

3 Spin, Promela, TLA, and cTLA

Model-Spec.
ANSI C code

Executable
Verifier (pan)

Counter -
Examples
(trail files)

GCC
C compiler

Promela
Model

Promela
Parser

Syntax Error
Reports

Rand/Guided
Simulation

Verifier
Generator

Verification
Mode

Simulation
Mode

Figure 3.1: Spin Analysis Workflow

SPIN specifications are non-deterministic, there may be several possible (i.e., non-
blocked) statements which could be executed next. Selection between these choices
depends on the specific simulation mode. The user interactively selects the next
statement in interactive simulation mode. In random simulation mode, one of the pos-
sible next statements is selected randomly. Finally, in guided simulation mode, the
statements are chosen according to the sequence stored in a trail file. Typically, trail
files are generated from violating sequences during verification.

In verification mode, SPIN hands the PROMELA specification to the verifier genera-
tor. This module generates the ANSI C code for a verifier. Depending on the given
options (cf. section 3.1.4), a verifier for either exhaustive verification or approxima-
tive verification is generated. The verifier source code is then handed over to the
GCC C compiler. GCC compiles the verifier source code and creates an executable
verifier. This executable verifier is a stand-alone program which does neither depend
on SPIN nor on the PROMELA model specification anymore. By running the verifier,
the original model is checked against its claims.

3.1.2 System Representation & Optimization

SPIN creates an internal representation of the specified system and the claims to be
checked as follows: First, for all processes of the system, SPIN constructs a labeled

20

3.1 Spin

finite state machine Pi (cf. section 3.2). Then, the asynchronous product of the Pi is
calculated yielding the system finite state machine (FSM). An asynchronous product
follows interleaving semantics, i.e., all transitions of the product FSM correspond to a
transition of only one of the component FSMs. All other component FSMs perform
a stuttering step during that transition.

Furthermore, a Büchi automaton is constructed which accepts the negation of the
claims. A Büchi automaton extends the concept of FSMs to accept infinite sequences.
The synchronous product of the system FSM and the Büchi automaton is calculated,
yielding the final automaton. In a synchronous product, all transitions are joint tran-
sitions of the component automata. The final automaton is then analyzed for its
acceptance set. If the acceptance set is non-empty, the claims can be violated.

Partial Order Reduction The generated automatons tend to be very large. SPIN
by default performs partial order reductions to reduce the number of states and
transitions. The basic idea of partial order reduction is that if two adjacent operations
o1, o2 are independent, their execution order does not matter, i.e., both o1, o2 and
o2, o1 yield the same result. Then, any fixed ordering of the operations can be chosen
as a representative and the other one can be removed from the state graph. This idea
can be extended to n operations easily. The main difficulty is to determine which
operations are independent. Operations that are data independent, i.e., do not use
the same variable, are typically independent. The specified claims, however, may
relate the otherwise independent variables. For example, if o1 modifies v1 and o2
modifies v2, they are not independent if a claim contains v1 < v2.

SPIN implements a conservative partial order reduction algorithm which deter-
mines data independence statically. On the one hand, this is advantageous because
the run-time cost of applying the optimization is quite low. On the other hand,
new dynamic partial order reduction techniques maintain to be significantly more
efficient [FG05].

3.1.3 Specifying Claims

Historically, in distributed systems, the distinction between safety and liveness
properties has been made [AS85; Kin94]. As explained by Lamport [Lam77], a
safety property states that something bad will not happen during a system execu-
tion, while a liveness property states that something good must happen eventually. A
typical safety property is mutual exclusion in multi-process systems, i.e., that two
processes will never enter the critical section at the same time. Such properties are
expressed using invariants. Liveness properties particularly concern fairness and
progress requirements, e.g., the absence of starvation. For example, if a packet is
sent it will eventually be received. Fairness properties are only supported in a lim-
ited way by SPIN. SPIN subsumes safety and liveness properties under the notion

21

3 Spin, Promela, TLA, and cTLA

of correctness claims. For specifying correctness claims, PROMELA supports various
methods, e.g., assertions, never claims, and linear time logic (LTL) expressions.

Assertions In PROMELA, assertions take the form assert(expr). The expression
expr gives a boolean expression which evaluates to true. As a PROMELA statement,
the assertion is always executable. If execution reaches the assertion, it is evaluated.
If the expression evaluates to false, the verification (or simulation) is stopped and
the sequence of statements executed up to the assertion is written to a trail file. An
assertion is only evaluated at those points during an execution sequence where the
assertion itself is executed. Thus, to check an invariant after every step, the asser-
tion, for example, has to be inserted in a monitor process which runs concurrently
to the other system processes.

Never Claims For stating more complicated global invariants, SPIN offers never
claims. A never claim describes behavior that should never happen and should be
checked at each execution step. Internally, a never claim corresponds to a Büchi au-
tomaton for the negated property. The Büchi automaton is synchronously factored
into the final automaton describing the system and the claims (cf. section 3.1.2).

Linear Time Logic (LTL) Formulas Directly writing never claims may be tedious
and error-prone. As any Linear Time Logic (LTL) formula can be expressed as a Büchi
automation, SPIN supports the automated conversion to never claims. Using the -f
parameter, SPIN uses its built-in converter to generate a never claim matching the
given LTL expression.

As we are most concerned with security and not with fairness considerations,
we will focus on safety properties for our models. Furthermore, as the interesting
properties are typically related to the exchange of packets (i.e., send and receive
actions), claims can typically be checked using assertions.

3.1.4 Verifier Compilation & Run-Time Options

SPIN recognizes several options that can be given either for verifier compilation or
during verifier run-time. In the following paragraphs, we outline the most impor-
tant options during both stages.

Verifier Compilation Options The source code for the model specific verifier gene-
rated by SPIN contains parts which can be included selectively (C #ifdef symbol
statements) in the compilation by defining the appropriate symbols. Using the GCC
compiler, a symbol is defined by adding a parameter -D<symbol> to its command
line. The following symbols are often useful:

22

3.1 Spin

• -DBFS: By default, SPIN employs depth first search to explore the state-space.
The -DBFS option changes the search algorithm to breadth first search.

• -DSAFETY: By default, SPIN includes code to be able to check for liveness
properties (e.g., no progress cycles). The option -DSAFETY disables that code.
For analysis of safety properties, this results in a smaller and faster verifier.

-DREDUCE This default option includes SPIN’s partial order reduction algo-
rithm. In special cases, partial order reductions can be disabled by giving the
option -DNOREDUCE.

• -DCOLLAPSE=n With the -DCOLLAPSE option, the state-vector is divided
into smaller components. Instead of storing the values of each component,
an index is stored for each one. Every time a new value is encountered, the
index has to be incremented. This works well if the component’s values only
cover their range partially.

• -DMA=n Usually, each state is directly stored in a lookup table. With the -DMA
(deterministic minimized automaton) option, a state descriptor is stored in-
stead. This state descriptor is used as input to a finite state automaton (FSA)
which then outputs the corresponding state. The FSA is dynamically ex-
tended if new states have to be represented. More details about this method
for storing states are described in [HP99].

• -DBITSTATE This option enables approximative verification using super-
trace or bitstate hashing instead of the default exhaustive state space search.

• -DMEMLIM=n Using option -DMEMLIM, the maximum amount of memory to
be allocated by SPIN can be fixed. After the specified amount is exceeded, the
verification halts with an error and SPIN prints statistics concerning search
depth, number of states and transitions etc. This is useful for comparing mo-
dels with different optimizations and SPIN settings.

The set of verifier compilation options typically used for analysis of our models
is described in section 8.6.

Verifier Run-Time Options Verifier run-time options are much less versatile than
the compile time options. Thus, we seldomly use verifier run-time options. The
following options are sometimes helpful, however:

• -mn This option sets the maximum search depth to n. After depth n is ex-
ceeded, the verification halts similar to the -DMEMLIM option.

• -d Using option -d, SPIN outputs its internal state tables for the model repre-
sentation as contained in the verifier.

23

3 Spin, Promela, TLA, and cTLA

3.2 Promela

SPIN comes with its own specification language, called PROMELA (a Process Meta
Language). PROMELA has been developed especially for the description of con-
current process systems. The focus lies on synchronization and communication
aspects, not on implementation or computational aspects. In the following sections,
we first outline the underlying semantics and syntax of PROMELA. Then, we give
an outline of the key PROMELA constructs. A detailed presentation of all PROMELA
constructs is contained in the manual pages section of [Hol03].

Semantics A PROMELA specification describes a set of communicating finite state
machines (cf. [Hol03, ch. 7]). Each PROMELA process (keyword proctype, cf.
section 3.2.2) describes a labeled finite state machine.

A labeled finite state machine (LFSM) is a 5-tuple (S, s0, L, T, F) consisting of a finite
set of states S, an initial state s0 ∈ S, a finite set of labels L, a set of transitions
T ⊂ S × L × S, and a set of final states F ⊂ S.

For each process of the PROMELA specification, the set of states S corresponds
to the control points of the proctype’s body. The initial state corresponds to the
entry point (first statement) of the body of the proctype declaration, the set of
final states is made up of the exit point and the control points corresponding to
statements labeled with the end keyword.

The transitions relation T defines the possible flow of control (e.g., derived from
the statements separated by ;, and the keywords atomic, if, goto etc). Each
transition’s label represents the basic PROMELA statement governing the transition
(e.g. (x > y) or x=x-y). This way, the preconditions and effects of executing the
transition are determined.

Syntax The basic syntax of PROMELA resembles a stripped-down version of the
C programming language combined with non-deterministic control structures (e.g.,
non-deterministic selection). Furthermore, PROMELA adds constructs for defining
process types, processes, communication, and synchronization.

3.2.1 Variables and Types

Variables can be declared using either a built-in data type or a user-defined type.

Variables Local variables are declared inside the context of a process type (cf. sec-
tion 3.2.2). Global variables are declared at specification level. In any case, the
declaration of variables looks like this:

varType simpleVarName;
varType arrayVarName[n];

24

3.2 Promela

The second declaration defines an array variable, i.e., a fixed size ordered collection
of n elements, of data type varType. For data type, both built-in and user-defined
types can be used.

Built-in and User-Defined Types Built-in data types are bit, bool, byte, short,
int, and unsigned. Their typical ranges are illustrated in Table 3.1. However,
depending on the C compiler that is used to translate SPIN generated verifiers, these
ranges may differ.

Type Range
bit { 0, 1 }
bool { true, false }
byte 0 . . . 255
short -32768 . . . 32767
int −231 . . . 231 − 1

Table 3.1: Promela Built-In Data Types

Furthermore, user data types may be defined using keyword typedef. A user-
defined type is a record type, i.e., a fixed size collection of n elements of (possibly)
different types which are accessed via their field name. Consider the following
declaration of a user-defined type:

typedef userType {
type1 fieldName1;
...
typeN fieldNameN;

}

After this declaration userType may be used like a built-in type. Its elements are
accessed using the “.” operator and the field name, i.e.,

userType userVar;
userVar.fieldN = ...

Of course, user-defined types may contain further user-defined types. This way,
complicated types can be recursively assembled.

3.2.2 Process Types and Processes

The behavior of a PROMELA specification is determined by its processes, which are
instantiated from process types.

25

3 Spin, Promela, TLA, and cTLA

Process Types A process type is defined using the keyword proctype:

proctype procTypeName(ppar1:...) {
/* local declarations */
...
/* body statements */
...
}

Furthermore, initialization parameters (ppar1, . . .) can be defined. These formal
parameters have to be replaced with actual parameters (i.e., fixed values) for instan-
tiating the process. Each process type may contain local declarations for variables
and message channels. Furthermore, the process body typically contains PROMELA
statements like control structures (e.g., loops), guards, and assignments.

The process body is monolithic. It is not possible to define multiple procedures or
methods inside the body. After the execution of the last body statement, a process
terminates. Furthermore, in contrast to object-oriented programming languages
and CTLA process types (cf. section 5.3), PROMELA process types cannot be com-
posed.

Processes Processes are created by instantiation of process types. Instantiation
automatically causes the process to be run as well. Multiple processes in a system
are run concurrently following interleaving semantics. Process instantiation and
execution is typically done using the keyword run from the special init process:

init {
run procTypeName(cpar1, ...)
...

}

This causes an anonymous process of process type procTypeName to be instanti-
ated and run.

If only a single instance of a process type is required, no run statement is needed.
In this case, it suffices to add the keyword active to the process type definition:

active proctype procTypeName(ppar1:...) {
...

If all processes can be instantiated using the active keyword, no init process is
required. This is more efficient, as one process is removed from the system.

3.2.3 Communication

For communication between processes, channels and shared global variables can
be used.

26

3.2 Promela

Channels Messages can be passed between processes using a channel. A channel
is defined using the keyword chan:

chan chanName = [chanSize] of { typeName };

This statement creates a channel with a capacity of chanSize elements. Particu-
larly, if the capacity is zero, a synchronous (rendezvous) communication channel
is created. For passing a message over a synchronous channel, a send operation
has to be immediately followed by a receive operation. Non-zero capacities are
used for asynchronous (buffered) communication. A buffered channel works like a
FIFO queue. Messages, i.e., elements of the specified type (e.g., int), are sent to
and received from a channel using special built-in commands: “!” sends and “?”
receives.

Shared Global Variables An alternative and often more efficient method for com-
munication between processes is to use global variables. Global variables are al-
ways shared, they can be accessed by all processes of the system.

A process can read and write a global variable by assignment similar to a local
variable. Single reads and writes of global variables are atomic. No synchronization
(e.g., critical sections) is provided, however.

3.2.4 Synchronization & Atomicity

Synchronization In PROMELA, conceptually, all statements are guarded. That
means they are only executable if they evaluate to true. Otherwise, they block.

For example, the expression x == y is executable if and only if x and y have the
same value. The expression true is always executable and the expression false
(or (0)) always blocks. Assignment statements, e.g., x = y, are always executable.

If guarded statements are used in combination with global variables
(semaphores) between processes, they provide an easy means to build synchro-
nization constructs. For example, busy wait loops can be implemented simply
by stating e.g., (turn != MY_TURN). Channels can be similarly used to build
synchronizers.

Atomicity Single statements are atomic. Statements are separated by “;” or “->”,
both are equivalent. For clarity, however, it is a convention to use “->” after state-
ments that may potentially block (i.e., that are true guards).

Furthermore, PROMELA offers a method for marking a sequence of statements as
an indivisible, atomic unit. This is done by enclosing the statements in atomic as
follows:

atomic { guard; statement2; ...; statementN; }

27

3 Spin, Promela, TLA, and cTLA

The first statement is the guard for the whole sequence. If one of the other state-
ments inside atomic blocks, atomicity is lost, however. The statements are allowed
to make use of non-determinism.

If all statements inside an atomic sequence are deterministic and no statement
will ever block, a d_step sequence can be used instead:

d_step { guard; statement2; ...; statementN; }

In this case, verification can be done much more efficiently than with an atomic
sequence.

3.2.5 Non-Deterministic Control Structures

PROMELA supports non-determinism by non-deterministic control structures.

do-loop The do-loop is a non-deterministic repetition construct. Consider the fol-
lowing outline:

do
:: (guard1) -> ...; // statements for option 1
...
:: (guardN) -> ...; // statements for option n
od;

In this outline, n options are enclosed by the do-loop. The first statement of each
option is taken as the guard for the executability of the option. Each time the loop
is executed, one of the executable options is chosen non-deterministically. The loop
itself is repeated until a break statement is encountered.

if-selection The if-selection construct resembles the do-loop. Consider the follow-
ing outline:

if
:: (guard1) -> ...; // statements for option 1
...
:: (guardN) -> ...; // statements for option n
:: else -> ...
fi;

As in the do-loop, one of the executable options is chosen non-deterministically.
This happens only once, however; after that, the if-selection construct is exited. If
none of the other options is executable, the (optional) else option is executed.

28

3.3 Temporal Logic of Actions (TLA)

3.3 Temporal Logic of Actions (TLA)

The temporal logic of actions (TLA) was developed by Leslie Lamport [Lam94]. It is
a specification logic used for the modeling of discrete event dynamic systems. In a
discrete event dynamic system, the state changes are driven by asynchronous events.
In contrast, in classical system theory, systems are time-driven.

Leslie Lamport derives TLA by combining a custom logic of actions, which for-
malizes the concept of actions, with a linear-time temporal logic, which enables rea-
soning about sequences of states. As this deduction is quite technical, we take a
different approach based on the TLA canonical formula and the correspondence to
state transition systems.

3.3.1 Basics

In TLA systems, the state components of real systems are represented by state vari-
ables. A state variable (or variable in short) has a name (e.g., x), a type (e.g., Nat for
natural numbers), and a current value (e.g., 3). The state of the model is determined
by the current values of all state variables.

A primed variable, e.g., x′, refers to the value of the variable in the next state. If s
refers to the current state and t refers to the next state, and if x has the value a in
state s and value b in state t, then x = a and x′ = b.

An action is a predicate about a pair of states. The predicate is assembled from
variables, primed variables, and constant symbols, e.g., x′ ∗ 2 = y. This predicate
is true for all state pairs (s, t), where the value of x in state t is twice the amount of
the value of y in state s. Thus, an action defines a relation between states.

Furthermore, an action A is called enabled for a state s, if a state t exists so that A
is true for (s, t). In this case, if the state is indeed changed from s to t according to
A, the action is said to be executed.

3.3.2 TLA Canonical Formula

The canonical formula Φ for a TLA system is given by

Φ := Init∧2 [N] f ∧ FA

where

• Init is the initialization predicate, defining the initial states of the system

• 2 [N] f is the always subformula, defining the system steps

• FA specifies fairness requirements for some subset of the actions

29

3 Spin, Promela, TLA, and cTLA

The always subformula, 2 [N] f , is made up of the always operator 2, the next-state
predicate N and the stutter-function f . The next-state predicate N combines the ac-
tions into system steps (e.g., by disjunction). Thus, each system step corresponds to
the execution of one or more actions. To support the composition of a system from
subsystems by conjunction properly, stuttering steps have to be allowed. During a
stuttering step, the state of a (sub)system remains unchanged. Formally, if x1, . . . , xn
are the state variables of the (sub)system, this is realized by defining the stutter-
function f as x1 = x′1 ∨ x2 = x′2 ∨ · · · ∨ xn = x′n. Thus, the subformula makes sure
that always either a system step or a stuttering step occurs.

The optional fairness requirements FA are given as a conjunction of weak fairness
WF(A) and strong fairness SF(A) formulas, whereA is an action. A weak fairness as-
sumption WF(A) assumes that the action A has to be executed in situations, where
the action is enabled and continuously will be enabled until its execution. A strong
fairness assumption SF(A) assumes that the action A has to be executed if the action
will be enabled again and again until its execution.

3.3.3 Correspondence to State Transition Systems

A state transition system (STS) is a 3-tuple STS ::= 〈S, S0, T〉 consisting of a set of
states S, a set of initial states S0 ∈ S, and a set of transitions T ⊂ S × S.

In the case of a TLA system description, the set of states S is spanned by the set
of variables V in the system. The set of initial states S0 is determined by the Init
predicate. The transitions are given implicitly by the always subformula, 2 [N] f ,
which defines a relation between states.

Let STS be a state transition system. Then, the set of all state sequences (so-called
behaviors) of the system is given by:

BSTS ::= {b : b = (s0, s1, . . .) ∈ S∞, s0 ∈ S0, ∀n ∈ N : ((si, si+1) ∈ T ∨ si = si+1)}

As described by Alpern and Schneider [AS85], all properties of the system can be
formulated as intersections of safety and liveness properties. Safety properties can
be checked via reachability analysis in BSTS.

The characteristic of liveness properties is that they cannot be violated by partial
executions of the system (otherwise the partial execution would constitute a “bad
thing” and belong to a safety property, not a liveness property). Instead, there has to
be an infinite execution that always stutters with respect to the action(s) that would
fulfill the liveness property. Liveness properties are expressed by fairness assump-
tions for actions as described above. This way, liveness properties do not contain
unintended safety parts that conflict with the STS. The set BSTS can be restricted to
the behaviors satisfying the fairness assumptions.

30

3.4 Compositional Temporal Logic of Actions (cTLA)

3.4 Compositional Temporal Logic of Actions (cTLA)

CTLA extends TLA with explicit notions of processes, process types and process
composition. Furthermore, canonical parts of specifications are not explicitly writ-
ten down in CTLA. In the following paragraphs, we outline the key properties of
CTLA, version 2000, in relation to TLA. Further details about CTLA 2000 are des-
cribed in [HK00]. The scenarios considered in this thesis (cf. chapters 9 to 11) are
modeled using the refined version CTLA 2003, which is presented in chapter 5.

3.4.1 Processes

CTLA introduces the notion of processes and process types. A process is a state
transition system that is instantiated from a process type. Process types are specified
in a programming language like syntax. The following sections are contained in a
CTLA simple process type specification:

• Header (PROCESS ProcName(ppar1: tpar1; ...)): In this sec-
tion, the name of the process type and a list of generic parameters are given.
Upon instantiation, the generic parameters are replaced with actual parame-
ters.

• Import (IMPORT): The import section is optional and allows the inclusion of
constants, data types, and functions defined in other modules.

• Initialization (INIT): The initial state of the processes instantiated from this
process type is defined through the initialization predicate.

• Variables (VARIABLES): In the variables section, the variables which span the
state space of the process are declared. CTLA variables are private to the
process and cannot be accessed by other processes.

• Actions (ACTIONS): The process body is defined by the actions section. This
section lists the actions of the process type.

Correspondence to the TLA Canonical Formula An instance of a simple pro-
cess is a state transition system directly corresponding to the TLA canonical for-
mula (cf. section 3.3.2). The initialization predicate Init is the initialization pred-
icate INIT of the process. The next-state predicate is given by the disjunction
Next = act1 ∨ act2 ∨ act3 ∨ · · · ∨ actm, where the acti are the actions listed be-
low the ACTIONS keyword. Furthermore, for the actions marked with fairness
requirements, FA has to be set to the conjunction of these markings (i.e., FA =
WF(acti1) ∧ · · · ∧ WF(actik) ∧ SF(actj1) ∧ · · · ∧ SF(actjl)). Finally, the set V of vari-
ables of the state transition system corresponds to the local variables of the process
listed below the VARIABLES keyword.

31

3 Spin, Promela, TLA, and cTLA

Example: Simple Process A CTLA system instantiated from the simple process
type Relais

PROCESS Relais();
VAR

b: Buffer; // state space
INIT ::=

b.c = ST_READY // initial states
ACTIONS
in(m : Mtype) ::= // put message into buffer

b.c = ST_READY
AND b.c’ = ST_BUSY
AND b.b’ = m;

out(m : Mtype) ::= // get message from buffer
b.c = ST_BUSY
AND b.b = m
AND b.c’ = ST_READY
AND b.b’ = b.b; // unchanged(b.b)

END;

corresponds to the TLA formula Φ:

Φ := Init ∧2 [N] f

Init := bc = ST_READY

N := A1 ∨A2

A1 := bc = ST_READY∧ bc′ = ST_BUSY∧ bb′ = m
A2 := bc = ST_BUSY∧ bb = m ∧ bc′ = ST_READY∧ Unchanged(bb)

f := bc′ = bc ∧ bb′ = bb

The Unchanged predicate requires that the value of its arguments remains un-
changed, e.g., Unchanged(x) := x = x′.

3.4.2 Process Types & Process Composition

Besides the simple process type, CTLA supports composed or subsystem process
types. As the name suggests, a subsystem process type is composed of other pro-
cesses.

The constituting processes P1, P2, . . . , Pn are listed in an additional section
(PROCESSES). As the initialization predicate is derived from the initialization of
the constituting processes, the corresponding section is not used. Furthermore, the
actions section lists a special type of actions, system actions.

32

3.4 Compositional Temporal Logic of Actions (cTLA)

System Actions In the context of process composition, system actions are joint
(i.e., synchronous) actions of the constituting processes. They determine the inter-
action between the processes. Each system action couples actions from the pro-
cesses by logical conjunction. Thus, a system action sact has the form sact =
P1.act_j1 ∧ · · · ∧ Pn.act_jn. Each Pi.actji is either a real action of Pi or the pseudo-
action stutter. If a process performs the stutter pseudo-action, all its state
variables remain unchanged during the execution of the system action.

Data communication between processes can also be realized through system ac-
tions and their parameters. For example, if a data item d shall be exchanged bet-
ween two processes P1, P2, a system action can be defined in the following way:
sact(d) ::= P1.act1(d) AND P2.act2(d). Both P1 and P2 are then able to read
d in the respective actions.

Correspondence to the TLA Canonical Formula As with the simple process type,
an instance of a subsystem process type corresponds to the TLA canonical formula.
The correspondence is a bit more complicated, though. For a subsystem process
type S composed of process instances P1, . . . , Pn, the Init predicate is given by the
conjunction of the individual initialization predicates, i.e., Init = P1.Init ∧ · · · ∧
Pn.Init. The next-state predicate is given by the disjunction of the system actions.
The set of variables V is the union of the sets of variables Vi of the Pi. Regarding
fairness, under some restrictions related to the system action coupling, FA is given
by the conjunction P1.FA ∧ · · · ∧ Pn.FA. Thus, an instance of a composed process
type defines a state transition system and is available for further composition.

Example: Subsystem Process A CTLA system instantiated from the subsystem
process type TransferSys – which is composed of three Relais instances –

PROCESS TransferSys
CONTAINS

SR: Relais; // source relais
TR: Relais; // transfer relais
DR: Relais; // destination relais

ACTIONS
put(m: Mtype) ::= // put message into source relais

SR.in(m) AND TR.stutter AND DR.stutter;
send(m: Mtype) ::= // send message from s. to t. relais

SR.out(m) AND TR.in(m) AND DR.stutter;
receive(m: Mtype) ::= // receive message from t. in d. relais

SR.stutter AND TR.out(m) AND DR.in(m);
get(m: Mtype) ::= // get message from destination relais
SR.stutter AND TR.stutter AND DR.out(m);

END;

33

3 Spin, Promela, TLA, and cTLA

corresponds to the TLA formula Ψ:

Ψ := Init ∧2 [N] f

Init := srbc = ST_READY∧ trbc = ST_READY∧ drbc = ST_READY

N := N1 ∨N2 ∨N3 ∨N4

N1 := srbc = ST_READY∧ srbc′ = ST_BUSY∧ srbb′ = m
∧Unchanged(trbc, trbb, drbc, drbb)

N2 := srbc = ST_BUSY∧ srbb = m ∧ srbc′ = ST_READY

∧trbc = ST_READY∧ trbc′ = ST_BUSY∧ trbb′ = m
∧Unchanged(srbb, drbc, drbb)

N3 := trbc = ST_BUSY∧ trbb = m ∧ trbc′ = ST_READY

∧drbc = ST_READY∧ drbc′ = ST_BUSY∧ drbb′ = m
∧Unchanged(srbc, srbb, trbb)

N4 := drbc = ST_BUSY∧ drbb = m ∧ drbc′ = ST_READY

∧Unchanged(srbc, srbb, trbc, trbb, drbb)
f := Unchanged(srbc, srbb, trbc, trbb, drbc, drbb)

Superposition The composition of processes as described above has the character
of superposition, i.e., a property of a subsystem is a property of the system as a whole.
For safety properties, which constrain the initial states and state transitions only, the
superposition property holds. This is due to all state variables being private to their
respective process or subsystem and the logical conjunction used for assembling the
Init predicate and the system actions.

Regarding liveness properties, an action may be blocked due to its environment,
e.g., the coupling with another action in a system action. This may violate the
original action’s fairness requirements. Thus, the fairness requirements in CTLA
are conditional and have to fulfill certain restrictions. They refer to periods of time
where the action is not blocked by its environment.

Under these restrictions, the equivalence between the direct canonical subsystem
formula and the compositional subsystem formula gained from conjugating the
canonical formulas for the Pi can be shown. A detailed examination is contained in
[Her98].

34

4 An Integrated, Formal Modeling and
Automated Analysis Approach

As explained in chapter 2, existing approaches for formal modeling and automated
analysis of computer network models are not sufficient. Particularly, the modeling
formalisms are quite restricted and do not offer integrated modeling of protocol,
node, and network aspects. Furthermore, the models are largely static and the
analysis often assumes monotonicity.

Thus, we develop a new approach based on a high-level modeling language, a
computer network modeling framework, a translator, optimization strategies, and
an analysis tool. In the following sections, we briefly present the objectives, imple-
mentation and workflow of the approach. Furthermore, we give an overview of the
steps required to build a model for a scenario.

4.1 Objectives

The following objectives are key for our integrated formal modeling and automated
analysis approach.

Formal Modeling Systems shall be modeled using a formal language. Formal mo-
deling provides for a clear and precise description of the system. A further advan-
tage is that well-established techniques and tools for transforming and analyzing
formal specifications exist. Thus, we do not have to develop all tools and techniques
from scratch but can adapt the existing ones to our approach.

Integration of Multiple Views Existing approaches are heavily geared towards a
single view (e.g., the node view) and are not expressive enough to integrate aspects
from other views (e.g., the protocol or network view). Our approach shall be able
to integrate the protocol, node, and network view into one consistent model. Thus,
we do not have to use different formalisms, models, and analysis tools for each of
the views. Instead, a single formalism, model, and analysis tool shall support all
three views with a medium to high level of detail.

35

4 An Integrated, Formal Modeling and Automated Analysis Approach

Executable Models The formal system models shall be executable, i.e., an environ-
ment for running the specification needs to be provided. The environment has to
support step-by-step simulation both in an interactive and a guided way. Such an
environment is essential for validating a model, i.e., to make sure that a model re-
flects the “real world” in an adequate way.

Dynamic Models The models shall not be restricted to static views of protocol,
node, and network aspects. Instead, they shall be able to express dynamics like com-
mand dependent replies, node address changes, and network routing updates. Par-
ticularly, physical and logical layers of the network model have to be distinguished,
a connectivity matrix is not enough.

Automated Analysis Automated, tool-supported analysis of properties of a model
shall be possible. The supported mechanisms for stating properties shall range
from simple to complex. Attack sequences have to be found automatically by check-
ing for violation of security properties. No user guidance in the form of supplying
appropriate queries or intermediate lemmas shall be necessary. Furthermore, the
sequences discovered have to correspond to model-level operations, not to a low-
level internal representation dependent on the analysis tool.

Ease of Use The approach shall facilitate all steps of its workflow. Particularly,
both the modeling and the analysis tasks need appropriate support. The formal
language has to enable the reuse and extension of existing models. A concept for
modeling computer networks has to be provided. Regarding the analysis task, suit-
able tool support must be provided for transformation and analysis of models.

Finally, the practical feasibility of the approach shall be demonstrated by several
case studies.

4.2 Implementation

For realizing our objectives (cf. section 4.1), we employ the following languages,
methods, and tools.

Compositional TLA 2003 As a formal modeling language, we use compositional
TLA 2003 (CTLA 2003). CTLA is a based on the formal language TLA (cf. sec-
tion 3.3). In comparison to TLA, CTLA offers support for compositional modeling
based on process types and process composition (cf. section 3.4).

CTLA 2003, a refined version of CTLA, adds a new extending process type that
supports object-oriented modeling and facilitates framework based modeling. Fur-
thermore, CTLA 2003 stresses efficient executability of specifications e.g., by pro-

36

4.2 Implementation

viding finite data types which can be directly mapped to common machine-level
data types. Overall, CTLA 2003’s features are balanced between expressiveness,
abstraction level and implementation efficiency.

Computer Network Modeling Framework To facilitate the modeling task and sup-
port an integrated view of network, node, and protocol-related aspects, we devised
the computer network modeling framework (cf. chapter 7). It evolved from preliminary
models and is used for the case studies described in chapters 9 to 11. The frame-
work is written in CTLA 2003 and provides key elements like media, nodes, and
types for packets, protocols, interfaces etc.

Due to CTLA 2003’s object-oriented features, the existing elements can be ex-
tended and specialized with ease. This allows for framework-based scenario model-
ing, i.e., models largely reuse the framework’s code and only add code as required
for a specific scenario.

Spin Model Checker For the simulation and analysis of our models, we employ
SPIN (cf. section 3.1). SPIN is one of the most well-known and powerful tools
for the automated verification of distributed systems. It has been continuously
adapted to new developments and algorithms. SPIN’s input language, PROMELA
(cf. section 3.2) comprises a restricted subset of the C programming language and
adds constructs for non-determinism as well as communication and synchroniza-
tion between processes. PROMELA is quite a low-level language not supporting e.g.,
process-type composition. Furthermore, PROMELA does not foster a clear model
structure by providing e.g., a concept of actions.

SPIN can both simulate and analyze PROMELA models in a number of different
ways. Regarding simulation, both interactive and guided modes exist. For analysis,
properties can be stated e.g., using a wide range of mechanisms. Analysis models
are translated to executable verifiers using a C compiler which increases verification
performance. The well-known state space explosion problem, however, still makes
the analysis of most models hard.

Translation & cTLA2PC Tool As SPIN supports only PROMELA models, CTLA mo-
dels have to be translated. Thus, we designed a translation scheme (cf. section 6.2)
for transforming CTLA models to PROMELA. Two key steps characterize the trans-
lation from CTLA to PROMELA: First, the process composition is resolved. Second,
actions are embedded and parameters handled.

The CTLA2PC tool (cf. section 6.3) implements the translation scheme and pro-
vides automated translation of CTLA models to PROMELA. Beyond the basic trans-
lation, CTLA2PC offers extended translation options. Particularly, options for map-
ping exist between CTLA level actions and PROMELA statements. This way, we are
able to consider the analysis results on the model-level instead of having to work

37

4 An Integrated, Formal Modeling and Automated Analysis Approach

with the low-level PROMELA representation. Furthermore, various optimizations
can be applied automatically during translation.

Optimization Strategies Computer network models typically consist of several
nodes buffering, processing, and exchanging packets. This leads to a significant
level of complexity even for small models and often to state space explosion effects.
Thus, optimizations are nearly always required prior to the successful analysis of a
model.

During the course of this thesis, particularly while working on the case studies
described in chapters 9 to 11, several optimization ideas were considered and tested.
The optimizations which proved to be most useful are described in chapter 8. They
are structured according to the modeling stage where they are applied. Further-
more, if they can be applied at the CTLA or PROMELA-level, the optimizations
have been integrated into CTLA2PC.

Eclipse Integration We ease the application of our approach by providing an inte-
grated environment for modeling and analysis (cf. section 6.4). The environment is
implemented based on the ECLIPSE workbench.

Particularly, the environment integrates CTLA2PC and SPIN with ECLIPSE’s core
services. Altogether, the environment supports the editing, translation, simulation,
debugging, and verification of models. The debugging feature works in simulation
mode and behaves similar to common programming environments: breakpoints
may be be defined, variable watches added, and the execution can be traced in
single steps.

4.3 Workflow

In the following paragraphs, we describe the stages of the workflow for our ap-
proach. The depicted workflow (cf. Fig. 4.1) reflects the ideal process; when putting
it into practice, however, stages may have to be repeated, e.g., if initial analysis of a
model failed due to state space explosion effects.

Real Network The real network is the background of our modeling. Networks are
usually linked to other networks, consist of subnetworks, contain many elements
which may not be interesting and do not have well-defined borders. Thus, the
modeling of complete networks is often not feasible. Instead, we select a scenario,
containing a typical subset of the real network.

Scenario Diagram We think about the key nodes, protocols, and networks re-
quired. This depends on the setting and the properties we plan to analyze. Gen-

38

4.3 Workflow

Real
Network

abstract
translate,
optimize add claims analyze

map back

cTLA
Model

Promela
Model w
claims

validate

Promela
Model

Scenario
Diagram

model,
use framework

Analysis
Results

Figure 4.1: Ideal Workflow of Our Approach

erally, a network can be simplified by selecting a few representative nodes. Further-
more, not all layers of the network reference model (cf. section 7.2.1) are required
in every case. We consider these facts for devising the scenario diagram.

cTLA Model The CTLA model for the scenario is developed in several steps (fol-
lowing the protocol, node, and network view) as described in section 4.4. The
framework provides the generic structure and common elements for the model.
Thanks to CTLA 2003’s process composition features, specific extensions can be
made based on existing elements. This greatly facilitates the development of a spe-
cific model.

Promela Model Using CTLA2PC, the PROMELA model is automatically genera-
ted from the CTLA model. Furthermore, CTLA2PC supports several optimiza-
tions which can be applied during translation. Optimizations not yet included in
CTLA2PC can be performed manually. Often, the non-compositional, flat system
(cf. section 6.2.1.1), which is optionally produced by CTLA2PC is a good starting
point for manual optimizations. Another possibility is to apply low-level optimiza-
tions to the PROMELA model directly.

The PROMELA model serves another important function: model validation. We
have to make sure that the model relates well to reality; that we are building the
right model. SPIN offers basic interactive and guided simulation of PROMELA mo-
dels. These features are improved with our ECLIPSE integration and CTLA2PC
options for simulation verbosity. By checking both selected predetermined and ran-
dom sequences, we increase our confidence in the model. If unexpected variations
occur, we restart the modeling cycle (i.e., adapt our model and validate it again).

39

4 An Integrated, Formal Modeling and Automated Analysis Approach

Promela Model with Claims As SPIN only supports analysis of PROMELA models,
the claims have to be based on the PROMELA model as well. The claims can be
expressed using various mechanisms (cf. section 3.1.3), particularly assert state-
ments. Depending on the properties we want to analyze and on the modeling of the
claims, one or several of such statements may be required. We then add these state-
ments to the PROMELA model (as generated by CTLA2PC from the CTLA model).

Analysis Results The PROMELA model with claims is analyzed using SPIN. SPIN
supports different analysis modes and search strategies (cf. section 3.1.4). Gen-
erally, however, these options do not make or break the successful analysis of a
model. Successful analysis is much more dependent on the model itself (i.e., the
abstractions and simplifications chosen with respect to the real network) and the
optimizations applied.

If the analysis is successful (i.e., if SPIN neither runs out of memory early nor
runs “forever”) and a sequence of steps violating a claim is found, SPIN writes a
trail file. This file contains an internal encoding of the state sequence leading to
the violation. The mapping back to CTLA model-level operations happens in two
stages: First, SPIN can play back the trail file in guided simulation mode. This
reveals the corresponding PROMELA level sequence. Second, the PROMELA model
generated by CTLA2PC contains trace points outputting the CTLA level actions.

Thus, we mapped back the sequence found by SPIN to the CTLA level. Typically,
we depict the sequence using a sequence diagram showing the processes involved
and actions executed. Finally, the results have to be interpreted and discussed in
the context of the real network. As the correspondence between the CTLA model
and the real network has already been checked during the validation stage, this
should not be too hard.

4.4 Modeling Steps

To design the CTLA model for a scenario, we typically take the steps outlined below
(cf. chapter 9 to 11). These steps correspond to the protocol, node, and network
views plus a system modeling (integration) step.

Furthermore, after translation, the claims are added to the PROMELA model. This
is a PROMELA – not a CTLA – modeling step that may also be considered to be part
of analysis.

Protocol Modeling We examine the protocols involved in the scenario. These
days, most protocols are based on TCP/IP. Thus, the corresponding reference
model (cf. section 7.2.1) is helpful for determining which layers have to be included

40

4.4 Modeling Steps

in the modeling. As we are, for example, not concerned with the encoding of sig-
nals on the physical media, we do not model the physical layer. Furthermore, the
required layers can be modeled using different degrees of abstraction.

A scenario involving low-level attacks, for instance, must include hardware ad-
dressing mechanisms at the network interface layer. However, if we are interested
in attacks on the transport or application level only, this level of detail at the net-
work interface level is counterproductive.

Last but not least, the protocol itself can often be simplified. For example, the
protocol may support the sending of several updates in one packet. Typically, this
has the same effect as sending several packets with one update each. The latter can
often be modeled in an easier way as the packet structure is less complex.

Node Modeling Depending on the scenario, not all nodes may have to be modeled;
instead, a set of representative nodes may suffice (cf. section 8.2.1). For these nodes,
aspects not directly related to rotocol processing have to be considered during node
modeling.

We assign roles to the nodes. Typical roles are e.g., sender, receiver, and attacker.
Roles help to minimize the set of actions required for a node (cf. section 8.2.2). An
attacker, for example, may have additional actions. By designating a certain node
as an attacker, we do not have to include these actions for every node.

Besides the attacker actions, administrative actions may be added to the nodes
during the node modeling step as well. Furthermore, the configuration of the node
needs to be modeled. The initial configuration, e.g., routing tables after boot-up, is
set during node initialization.

Network Modeling The network modeling step deals with representing the net-
work topology. In particular, appropriate zone definitions and the mapping bet-
ween nodes, interfaces, and zones (e.g., through functions) must be defined. The
transmission media has to be modeled. As we do not require sophisticated model-
ing of transmission media characteristics, the simple media type provided by the
framework is usually sufficient.

During system composition, the send and receive system actions have to be de-
fined to follow the network topology. A broadcast receive system action, depending
on its modeling, may require that only receive actions of nodes that are in the same
broadcast zone are coupled.

System Composition During this step, the system process type (cf. section 5.3.3)
is defined. The system process type integrates the instances of all processes that are
required for realizing the system, e.g., the node and media processes. To this aim,
the system actions have to be provided. Each system action couples the actions of
the processes and thus defines the collaboration in the system.

41

4 An Integrated, Formal Modeling and Automated Analysis Approach

Translation & Claims Modeling In contrast to the previous steps, the claims are
not added to the CTLA, but to the PROMELA model. Thus, this step is done after
translation to PROMELA. Typically, we model a claim corresponding to a security
property using assertions. Assertions can be analyzed most efficiently by SPIN, and
they are easy to understand.

42

5 The cTLA 2003 Modeling Language

For our modeling, we employ CTLA 2003 [RK03], a refined version of CTLA 2000
(cf. section 3.4). After a short overview describing the key differences to CTLA
2000, we explain each part of a CTLA 2003 specification in more detail. If no ver-
sion is explicitely stated, in the following chapters CTLA refers to CTLA 2003. We
conclude this chapter with excerpts from the formal grammar for CTLA 2003. The
full grammar is included in Appendix A.

5.1 Comparison to cTLA 2000

CTLA 2003 is designed as an executable subset of CTLA 2000 combined with mo-
deling enhancements. In the following section, we first describe the executable
subset, then the key modeling enhancements.

5.1.1 Executability

In contrast to CTLA 2000, CTLA 2003 specifications are executable. Models can
be efficiently executed using a simulation or analysis tool. This greatly simplifies
model validation and automated analysis.

The notion of executable specifications stems from the field of software engineering.
Instead of having to prove that the implementation meets the specification, the spe-
cification is the implementation. To put it another way, executable specifications
can be seen as a direct implementation of themselves.

Executable Subset of cTLA 2000 To ensure efficient executability of CTLA 2003
specifications, we consider the following subset of CTLA 2000:

E1 all data types, including sets, are finite

E2 all actions follow the standard form

act ::= g1 AND g2 AND . . . AND gn AND e1 AND . . . AND em

where the gi, i = 1, . . . , n are guards and the ej, j = 1, . . . , m are effects

43

5 The cTLA 2003 Modeling Language

E3 the initialization predicate takes the form x1 = c1 AND . . . AND xl = cl,
where the xi, i = 1, . . . , l are the variables occuring in the specification and
the ci, i = 1, . . . , l are constants

The first property implies that all variables and parameters can only take a finite
number of different values. Clearly, as computer systems have only a limited
amount of memory, this property is required for any executable specification. The
second property is required because in CTLA 2000, arbitrary predicates are allowed,
which cannot be efficiently evaluated. The third property makes sure that the ini-
tialization predicate can be efficiently evaluated and uniquely determines the initial
state.

Structure of Guards Guards are negated or non-negated predicates over non-
primed variables, optional parameters, and constants (e.g., v = 3 or NOT v > p).

The OR operator may occur between two guards g1, g2. In this case, we replace
act by two actions actg1, actg2. Then, both actions actgk, k = 1, 2, are in the standard
form: actgk ::= gk AND g3 AND . . . AND gn AND e1 AND . . . AND em, k = 1, 2.

In CTLA 2003, quantified guards are supported, too. Quantified guards are guards
over sets of elements. They can be either of the exists or of the forall type. An
exists-type quantified guard is true if the guard is true for at least one of the elements
of the set. Symmetrically, an forall-type quantified guard is true if the guard is true
for all elements of the set. As sets are finite (E1), the exists, forall-type quantified
guard can be replaced by n simple guards connected by OR, AND, respectively. Thus,
we can inductively transform actions involving quantified guards into the standard
form.

Structure of Effects Effects are assignments, with a primed state variable on the
left and an expression built from non-primed variables and constants on the right
(e.g., v′ = p + 3). Effects may not be combined using OR or include NOT.

The logical operator IF-THEN-ELSE may occur in an action where a simple
guard or effect occurs and combines a guard with an effect: IF g1 THEN e1 ELSE
e2. The operator is a short hand for the logical formula (g1 AND e1) OR (g1 AND e2).
By replacing the action involving the operator with two actions actg1, actg1 as des-
cribed above, the OR is removed. Then, by reordering the guards and effects (which
are all AND-connected), the standard form is restored.

The IF-THEN-ELSE may also be nested. Then, we can transform the action to
the standard form inductively. Consider for example action

act: IF g1 THEN (IF g2 THEN e1,1 ELSE e1,2) ELSE e2
First, the outer IF, then the inner IF are transformed. Finally, act is replaced by
these three actions (in standard form):

actg1 : g1 AND e2

44

5.1 Comparison to cTLA 2000

actg1,g2 : g1 AND g2 AND e1,1
actg1,g2 : g1 AND g2 AND e1,2

Quantified effects are supported in CTLA 2003 with the updateall effect. The up-
dateall effect changes the value for all elements of a set that satisfy a certain condi-
tion. Similar to quantified guards, this does not adversely affect the standard form.

As the described guards and effects can be evaluated efficiently, so can actions
(E2). Furthermore, the initial state can be evaluated efficiently and is uniquely de-
termined (E3). Thus, the efficient executability of CTLA 2003 specifications follows.

Focus on Safety In our models, we aim to analyze security properties. These
properties can be expressed (e.g., using assertions or invariants) as pure safety prop-
erties. Moreover, automated analysis can be done much more efficiently for safety
properties than for fairness properties. Thus, the model checker SPIN, for instance,
requires a special parameter (pan -f) to enable a quite limited form of fairness –
weak fair scheduling on the process level – during analysis.

For these reasons, we focus on safety properties in CTLA 2003. CTLA 2000’s ac-
tion level SF and WF fairness operators are not supported in CTLA 2003. By adding
helper variables and guards, however, the behavior of a model can be restricted to
meet fairness requirements.

5.1.2 Modeling Enhancements

To facilitate the modeling task, CTLA 2003 supports reuse of process types. Further-
more, specifications are simpler to write as canonical parts are left out.

Reuse of Process Types CTLA 2003 introduces a new process type, the extend-
ing process type (cf. section 5.3.2). The extending process type allows to derive new
process types from existing process types. This way, a new process type that adds
own code (i.e. actions, variables, or initializations) to an existing process type can be
defined. Furthermore, actions of the existing process type may be modified by ad-
ditional guards or effects. Only the new code has to be specified in the new process
type; all other code is reused from the existing process type(s). This mechanism to
extend existing process types resembles inheritance as known from object-oriented
programming languages.

Reuse fosters the development of libraries of process types. A set of domain spe-
cific process types together with common data types, enumerations, and functions
lays the foundations for a modeling framework. We developed a computer network
modeling framework for CTLA 2003 (cf. chapter 7) that relies on the extending pro-
cess type and eases the modeling process greatly.

45

5 The cTLA 2003 Modeling Language

Implicit Unchanged in Actions In CTLA 2003, process local variables not occuring
in the effects of an action remain unchanged by the execution of the action. Thus,
unchanged statements (e.g. v′ = v) are neither required nor supported for CTLA
2003 actions.

The implicit unchanged helps to reduce both the red tape and errors in actions.
For example, if a new variable w is added to a process type in CTLA 2000, all actions
not modifying w have to be extended with ∧w′ = w. This is easily forgotten and
leads to the usually unintended effect that the future value of w is random. The
implicit unchanged forces all variables to be explicitly set to a new value. This
ensures efficient executability of actions.

Internal Actions CTLA 2003 introduces the new concept of internal actions. An
internal action defines a set of state transitions in exactly the same way as a normal
action. The difference between both sorts of actions concerns the composition of
systems from processes. When a process instance is employed as a component
in a system, the internal actions of the process cannot be coupled with actions of
other processes. Each internal action is accompanied by stuttering steps of all other
system components.

Typical examples of internal actions are the packet-processing actions of a node
(e.g. rpcs). An action marked as internal is implicitly added to the system actions
as a single action while all other processes stutter. This eases the modeling task,
because the system-level coupling only has to be specified manually for the external
actions.

Actions that are not internal are called external. External actions are typically cou-
pled on the system-level with other actions to model a certain interaction between
processes. For example, the send action (snd) of a node process is coupled with the
in action of a media process to represent packet acceptance by a physical transfer
medium.

5.2 Specification Structure

A CTLA specification consists of six parts (cf. Listing 5.1).
These parts are constants, types (including enumerations and user data types),

functions, predicates, process types, and the system instantiation. In the following
paragraphs, we describe the parts one after another, except for the process types
and system instantiation, which are described in section 5.3.

5.2.1 Constants

The optional constants part allows for the definition of symbolic constants. Three
types of symbolic constants are supported in CTLA: simple constants, enumera-

46

5.2 Specification Structure

CONST /* 1. constants */
constName1=value1;
...

TYPE /* 2. types */
enumType1=(val1, ...); // enumeration
...
userType1=RECORD // user data type

fieldName1: type1;
...

END;
...
FUNCTION func1(x:INT) ::= /* 3. functions */

...
END;
...
PREDICATE pred1(x:BYTE) ::= ...; /* 4. predicates */
...

PROCESS procType1 ...; /* 5. process types */
... // actions

END;
...
SYSTEM sysInstance ...; /* 6. system instantiation */

Listing 5.1: cTLA Specification Outline

tions, and compound constants. While simple and compound constants are listed
in the CONST part, enumerations are listed in the the TYPE part.

Simple Constants A simple constant defines a symbolic name for a fixed value.
In CTLA, the declaration of simple constants looks like this:

CONST
...
simpleConstName1 = value1;
simpleConstName2 = value2;
...

After declaration, simple constants are referred to by their name and may be used
in all places where a variable or parameter value is read (e.g., on the right side of
assignments).

Simple constant declarations are not typed. Our CTLA compiler, CTLA2PC (cf.
section 6.3), infers a type during semantic analysis, however. This is used to flag
invalid assignments during model translation (e.g., assignment of an INT-valued
constant to a BYTE variable).

47

5 The cTLA 2003 Modeling Language

Enumerations An enumeration defines a set of symbolic names. Each symbolic
name is assigned a unique integer from 0 . . . n − 1 where n is the cardinality of the
set of names for the enumeration. In CTLA, enumerations are declared via the
following statements:

TYPE
...
enumName1 = (e1_name1, e1_name2, ..., e1_nameN1);
enumName2 = (e2_name1, e2_name2, ..., e2_nameN2);
...

These statements have two effects. First, variables of the respective enumeration
type can be declared and may take any of the symbolic names as a value. Second,
each of the symbolic names defined by the enumerations may be used like a simple
constant in the specification.

Compound Constants Compound constants are constants of an array or record
type (cf. section 5.2.2). They define an instance of such a data type with a symbolic
name and fixed value. Compound constants are declared in CTLA the following
way:

CONST
...
compConstName1 = arrayTypeName // array type comp. const.

{ [arr_val1, arr_val2, ..., arr_valN] };
compConstName2 = recordTypeName // record type comp. const.

{ {rec_fld1=rec_fld1_val, rec_fld2=rec_fld2_val, ...,
rec_fldN=rec_fldN_val} };

...

While compoundConstName1 declares a compound constant of an array type
(arrayTypeName), compoundConstName2 declares a compound constant of a
record type (recordTypeName). As with simple constants, these compound con-
stants may be used in all places where a variable or parameter value of the corre-
sponding type is read (e.g., on the right side of assignments).

5.2.2 Types

In this section, both the declaration of basic (i.e., built-in) data types and of user
data types is described. This specification part is optional as well, i.e., if no user
data types are required for a model, this part can be left out.

Basic Data Types CTLA supports five basic data types (cf. Table 5.1).
The BOOL, BIT data types hold boolean values in their symbolic, numeric re-

presentation. Furthermore, different ranges for numeric values are covered by the

48

5.2 Specification Structure

Type Range
BOOL { TRUE, FALSE }
BIT { 0, 1 }
BYTE 0 . . . 255
SHORT -128 . . . 127
INT -32768 . . . 32767

Table 5.1: cTLA Basic Data Types

BYTE, SHORT, and INT types. In contrast to programming languages, types for
string and character manipulation are not required.

User Data Types In section 5.2.1, we already explained the declaration of enumer-
ations. Enumerations are a simple example of user-defined types. The CTLA lan-
guage supports more advanced user-defined types as well. These user data types
make use of the ARRAY and RECORD operators.

Arrays are a fixed size collection of elements (a0, . . . , aN−1), where N is the cardi-
nality of the collection, of the same data type. In CTLA, an array user data type is
declared via:

TYPE
...
arrayType = dataType[N];
...

The ith element of an array is selected using the bracket operator on the array with
the parameter i (i.e., a[i]).

Records are a fixed size collection of elements, too. In contrast to arrays, however,
the elements can have different data types. In CTLA, a record user data type is
declared via:

TYPE
...
recordType = RECORD
fieldName1: dataType1;
fieldName2: dataType2;
...
fieldNameN: dataTypeN;

END;
...

Each element of the record type is selected using the dot operator with the field
name. For example, to access the field fieldName2 of the record type, the syntax
recordType.fieldName2 is used.

49

5 The cTLA 2003 Modeling Language

As both array and record operators can be used recursively, complex types can
be built (e.g., a record containing arrays).

5.2.3 Functions

Based on a value table, functions can be declared in CTLA using the FUNCTION
keyword and the IF-THEN-ELSE operator. The generic CTLA template for a func-
tion f (x1, . . . , xm) mapping the input values (vi1, . . . , vim), i = 1 . . . n to the output
scalar yvi1...vim is:

FUNCTION f(x1:INT, ..., xm:INT) ::=
IF ((x1=v11) AND ... AND (xm=v1m)) THEN y_v11...v1m

ELSEIF ((x1=v21) AND ... AND (xm=v2m)) THEN y_v21...v2m
...
ELSEIF ((x1=vm1) AND ... AND (xm=vmm)) THEN y_vm1...vmm
ELSE <undefined value>

END;

Typically, to return a value for the full range of the input variables, a special unde-
fined value is returned for all input values out of the scope of the function. This is
realized using the ELSE statement.

The involved IF-THEN-ELSE operators have a functional meaning in this con-
text. If the first condition is true, the first value is returned. Otherwise, if one of the
ELSEIF branches is true, the corresponding value is returned. Finally, if none of
the conditions matches, the ELSE value is returned.

5.2.4 Predicates

A CTLA predicate is declared as follows:

PREDICATE predName(par1:type1; ... parM:typeM;) ::=
<formula involving par1, ..., parM>

The formula may contain parameters, comparison operators, logical operators,
and functions. In CTLA, the following comparison operators are supported:

<,>,=,!=,<=,>=

Furthermore, the following logical operators may be used:

AND, OR, NOT

After declaration, a predicate can be used everywhere a guard is allowed, particu-
larly in actions. As an extension, the current version of CTLA2PC allows to define
action macros (i.e., including effects) with the PREDICATE keyword as well.

50

5.3 Process Types

5.2.5 Actions

As described in section 5.1.1, CTLA actions are structured into executable guards
and effects, and can be transformed to the standard form shown below:

actionName(apar1:type1, ..., aparN:typeN) ::= // head
guard1 // guards
AND guard2
AND ...
AND guardN
AND effect1 // effects
AND ...
AND effectM;

Actions make up the body of a process type definition (cf. section 5.3). Option-
ally, parameters may be defined in the action head. The parameters are used like
symbolic constants inside the actions. For parameterized actions, the definition of
enabled (cf. section 3.3.1) is extended: the action is enabled, if all guards are satisfied
by the actual values of the parameters in combination with the current values of the
state variables.

5.3 Process Types

Each CTLA specification describes at least one process type, an instance of which
corresponds to a state transition system modeling a process of this type. In contrast
to PROMELA process types (cf. section 3.2.2), CTLA process types may contain
multiple actions. Furthermore, the extending and subsystem process types allow for
the composition of new process types from existing process types.

5.3.1 Simple Process Type

A simple process type definition consists of three sections: local declarations, initial-
ization, and actions (cf. Listing 5.2).

In the local declarations section, the constants and state variables of the process
type are defined. The initialization section consists of a predicate determining the
initial values of the state variables. As the name suggests, the actions section lists the
actions (cf. section 5.2.5) of the process type.

Instances of a process type define a state transition system. For the CTLA simple
process type, the state space of the state transition system is directly spanned by
the local state variables. In the same manner, the transitions are directly given by
the local actions. This is in contrast to the composed CTLA process types: CTLA
extending process type and CTLA subsystem process type.

51

5 The cTLA 2003 Modeling Language

PROCESS simProcType(ppar1:...); // simple process type
/* local declarations */
CONST ...; // local constants
VAR ...; // state variables
/* initialization */
INIT ::= ...; // INIT predicate
/* actions */
ACTIONS // actions

act1(apar1:...) ::= // action
...;

...
INTERNAL ACTIONS // internal actions

iAct1(iapar1:...) ::= // internal action
...;

...
END;

Listing 5.2: cTLA Simple Process Type

5.3.2 Extending Process Type

An extending process type definition is very similar to a simple process type definition
(cf. Listing 5.3). A process extension section is added; all other sections remain
unchanged.

PROCESS ExtProcType(ppar1:...); // extending process type
/* local declarations */
...
/* process extension */
EXTENDS OtherProcType1, ...
/* initialization */
...
/* actions */
...
END;

Listing 5.3: cTLA Extending Process Type

In the process extension section, the process types which are extended by this pro-
cess type (i.e., ExtProcType) are listed. A process type may extend multiple other
process types. This resembles multiple inheritance in object-oriented programming,
where a class inherits variables and behavior from multiple other classes.

The state transition system of an instance of an extending process type is defined

52

5.3 Process Types

as follows: Its state space is spanned by the combined state variables of all extended
process types plus the state variables defined locally. Similarly, the transitions are
given by combining the actions of all extended process types plus the actions de-
fined locally. If multiple definitions exists for the same action, they are merged into
a single new action. The new action results from logical conjunction of all guards
and effects of the previous definition. This way, existing actions can be constrained
and new actions added by an extending process type.

As an example of an extending process type, consider the process type
ActiveHostIpNode (cf. Listing 5.4).

PROCESS ActiveHostIpNode(NID: NodeIdT);
EXTENDS HostIpNode(NID); // extended process types
ACTIONS

snd(pkt: PacketT) ::=
itf.usd = TRUE
AND itf.spa.act = SPA_SND
AND pkt = itf.spa.pkt
AND itf.spa.act’ = SPA_NONE_EMPTY;

END

Listing 5.4: cTLA Example Extending Process Type (Adding)

This process type extends the process type HostIpNode, which does not
define a snd action. The action snd defined by the extending process type
ActiveHostIpNode is added to the actions defined by HostIpNode. Another
example is shown in Listing 5.5.

PROCESS NonPromHostIpNode(NID: NodeIdT);
EXTENDS HostIpNode(NID); // extended process types
ACTIONS

rcv(pkt : PacketT) ::=
pkt.dat_ida = itf.ia;

END

Listing 5.5: cTLA Example Extending Process Type (Constraining)

This time, both process type NonPromHostIpNode and process type
HostIpNode provide definitions for action rcv. In this case, the existing ac-
tion rcv defined by process type HostIpNode is constrained with the additional
guard given in action rcv from the extending process type NonPromHostIpNode.
Similarly, an extra effect could be provided by the extending process type
NonPromHostIpNode and added to action rcv.

53

5 The cTLA 2003 Modeling Language

Initialization of the extending process type is done similar to the merging of
guards for multiple definitions of the same action: All initialization predicates of
the extended process types and the (optional) local initialization predicate are lo-
gically conjugated. As each process type defines its own name space, conflicting
initializations are not possible.

5.3.3 Subsystem Process Type

The subsystem process type realizes CTLA’s process composition concept (cf. sec-
tion 3.4.2). In comparison with the simple process type definition, a section listing
the contained processes is added and the initialization section is removed (cf. List-
ing 5.6). Furthermore, the local declarations part is restricted to constants. This is
not enforced on the grammar level due to parser design considerations, but checked
during semantic analysis.

PROCESS SysProcType(ppar1:...); // (sub)system process type
/* local declarations */
CONST ...;
/* process containment */
CONTAINS instName1: OtherProcType1, ...
/* actions */
...
END;

Listing 5.6: cTLA Subsystem Process Type

The process containment section lists the processes the process type (e.g.,
SysProcType) is composed of. A process type may be composed of several
processes. This is similar to multiple aggregation in object-oriented programming.

Again, the state transition system of an instance of a subsystem process type, is
defined indirectly. Its state space is spanned by the vector of the state variables
of all contained process instances. In contrast to the extending process type, the
transitions are made up of the locally defined actions. As the name suggests, the
subsystem process type is used for the system process. Thus, its actions are called
system actions. The right side of a system action is a conjunction of instances’ ac-
tions. It lists those actions which have to be performed jointly in order to realize
the system action. Each process can contribute to one system action by at most one
process action. If a process does not contribute to a system action, it performs a stut-
tering step. To avoid name clashes, the actions of an instance are prefixed with the
instance name. In effect, only the system actions exist in the system. The instances’
actions are executable only as part of a system action.

54

5.3 Process Types

The initialization predicate of the subsystem process type is derived by conjuga-
tion from the initialization predicates for all contained process instances.

As an example of the subsystem process type, consider process type
SimpleConPT (cf. Listing 5.7).

PROCESS SimpleConPT();
CONTAINS // contained processes

nodeA: Node();
nodeB: Node();
physMedia: Media();

ACTIONS // system-level actions
snd_na(pkt: PacketT) ::=

nodeA.snd(pkt) AND physMedia.in(pkt);
snd_nb(pkt: PacketT) ::= ...
rcv_na(pkt: PacketT) ::=

nodeA.rcv(pkt) AND physMedia.out(pkt);
rcv_nb(pkt: PacketT) ::= ...

END

Listing 5.7: cTLA Example Subsystem Process Type

This process type contains three instances (nodeA, nodeB, physMedia) of two
process types (Node, Media). Furthermore, it defines four system actions (na_snd,
nb_snd, na_rcv, nb_rcv).

5.3.4 System Instantiation

The previously described parts of a CTLA specification provide for constants, types,
functions, predicates and particularly process types. We still have to define which
process type is meant to be instantiated as the relevant state transition system for
the whole system. This process type is then declared in the system part of the
specification as follows:

SYSTEM systemName: procTypeName(const1, ...);

This statement defines the system model to be an instance of process type
procTypeName. If the process type is parameterized, appropriate constant values
have to be supplied.

Typically, the process type used for the system declaration is a subsystem process
type. It contains instances of the other relevant process types for the modeling and
couples their actions on the system-level. Consider the following system declara-
tion, instantiating the subsystem process type SimpleConPT (cf. Listing 5.7):

SYSTEM SimpleSys: SimpleConPT();

55

5 The cTLA 2003 Modeling Language

Figure 5.1 shows the graphical representation of the resulting system
SimpleSys.

SYSTEM SimpleSys

PROC. nodeA: Node

ACTIONS
 snd(pkt)
 rcv(pkt)

PROC. nodeB: Node

ACTIONS
 snd(pkt)
 rcv(pkt)

PROC. physMedia: Media

ACTIONS
in(pkt)
out(pkt)

snd
na

snd
nb

rcv
na

rcv
nb

Figure 5.1: Graphical Representation of System SimpleSys

The three process type instances included and four system actions defined by the
underlying process type SimpleConPT are clearly evident.

5.4 Grammar

CTLA’s grammar is described using the Extended Backus Naur form (EBNF) [ISO96].
The main meta symbols occuring are:

• the quote symbol " for enclosing terminals,

• the start-repeat symbol { and the end-repeat symbol },

• the start-option symbol [and the end-option symbol],

• the start-group symbol (and the end-group symbol),

• the repeat-zero-or-more-times symbol *,

• the repeat-one-or-more-times symbol +.

A preliminary version of the grammar was developed in [RK03], then it was im-
proved and extended in [Poh03; Mal05]. The full and final grammar is included
in Appendix A. In the following paragraphs, we give a brief overview of selected
high-level productions.

56

5.4 Grammar

Start Symbol The start symbol for the CTLA grammar is specification. This
symbol is defined as follows:

specification =
[const_decl_part]
[type_decl_part]
[function_decl_part]
[predicate_decl_part]
process_type_decl_part
system_instantiation_part

;

This production shows the structure of CTLA specifications with the optional
(constants, types, functions, predicates) and required (process types, system instan-
tiation) parts.

Constant Declararation By going three levels deeper into the constants part (sym-
bol const_decl_part), we obtain the following productions:

const_decl_part =
"CONST" { constant_decl ";" }+

;
constant_decl =

constant_identifier "=" constant
;
constant =

simple_constant_value | compound_constant
;

These rules show that at least one constant has to be declared and multiple may
be declared after the CONST keyword. The values are assigned to the identifiers
with “=”. Such values can be either simple or compound constants.

Process Type Declarations The process types (process_type_decl) part is re-
quired in each CTLA specification. Some of the next-level productions for this part
are:

process_type_decl_part =
{ "PROCESS" process_decl "END" }+

;
process_decl =

process_heading
[const_decl_part]
[type_decl_part]
[var_decl_part]
(simple_process_body

57

5 The cTLA 2003 Modeling Language

| extending_process_body
| subsystem_process_body)

;

These productions show the structure of each process type declaration, with re-
quired (process_heading), optional (e.g., const_decl_heading), and alter-
native (simple_process_body, subsystem_process_body, extending_-
process_body) subparts. From the alternative subpart, we recognize the three
process types simple process type, extending process type, and subsystem process
type.

Furthermore, we observe that the productions allow for the derivation of a type
part for a containing process type. This is in contrast to section 5.3.3, which states
that only a constant part should appear in a containing process type. By more
complicated production rules, this problem can be avoided. In this case, like in a
few other cases, however, we determined that it is better to check this restriction
after parsing during semantic analysis. This way, the grammar can be kept simpler
and a higher parsing performance is achieved.

58

6 Translation, cTLA2PC, and Eclipse
Integration

This chapter describes the translation of CTLA 2003 specifications to PROMELA.
After a short introduction motivation, we present the translation scheme. Then,
we report on CTLA2PC, the automated translation tool implementing the scheme.
Finally, we briefly outline our ECLIPSE integration.

6.1 Motivation

On the one hand, we want to employ CTLA 2003’s compositional and object-
oriented modeling features, allowing for easy extension and re-use of modeling
elements (cf. chapter 5). These features lay the groundwork for taking the model-
ing task to another level by providing a custom framework for computer network
models (cf. chapter 7). On the other hand, we aim to analyze our models with
SPIN, one of the most popular and powerful finite-state model checkers (cf. chap-
ter 3.1). Particularly, SPIN includes state of the art reduction algorithms for produc-
ing optimized executable verifiers. Unfortunately, SPIN requires its models to be
specified using PROMELA (cf. section 3.2), a low-level, neither compositional nor
object-oriented language.

To be able to combine the advantages of CTLA for the modeling phase and
the advantages of SPIN for the analysis phase, we have to transform CTLA mo-
dels to PROMELA. Thus, we engineered a translation scheme for CTLA specifica-
tions, which transforms them to PROMELA specification. To provide automated
translation of CTLA specifications, we implemented the CTLA2PC tool based on
the scheme. Furthermore, to ease the application of our approach, we integrated
CTLA2PC together with SPIN into the ECLIPSE workbench.

6.2 Translation Scheme

First, we provide an overview of the translation scheme. Then, we give more details
regarding the translation of selected CTLA language elements.

59

6 Translation, cTLA2PC, and Eclipse Integration

6.2.1 Overall Translation Scheme

Two key phases can be distinguished in the basic translation scheme (cf. Fig. 6.1).
First, the expansion phase creates a simplified CTLA system, which consists of a
single, non-composed process. Second, the code generation phase translates the
simplified CTLA system to PROMELA.

...

ExpSystemType
VAR pt1i1_v1: … // merge vars

pt1i1_v2: … // from
… // process types

INIT
pt1i1_v1 = ... // merge init
pt1i1_v2 = ... // code
…

ACTIONS
sys_a1(param1) ::= …// exp.

… // sys
sys_a2(param2) ::= … // act.

…
...

END

SYSTEM ExpSystemInstance

Compositional cTLA
System

Expanded cTLA System Promela System

PT1

CompSystemType

SYSTEM CompSystemInstance

ExpSystemInstance
active proctype sysinst
{

// instance vars
…
// sys init
...
// action embed.
do {
// ACT: sys_a1(p1)

…
// ACT: sys_a2(p2)

…
od; }

}

Glob Param.
Vars

Inputgen p 1

Inputgen p 2
...

Constants,
Variable
Types etc ...

Expansio
n

PT2 PT2

pt1i1:
PT1

pt2i1:
PT2

pt2i2:
PT2

...

Expansion Action Translation

Figure 6.1: Transforming a Compositional cTLA System to Promela

6.2.1.1 Expansion Phase

A compositional CTLA system (CompSystemInstance) is an instance of a process
type (CompSystemType) subsystem process type instances (e.g., pt1i1, pt2i1, . . .).
Each process type (PT1, PT2, . . .) may contain or extend further process types. Un-
fortunately, PROMELA only supports simple process types (cf. section 3.2.2). In con-
trast to CTLA, these process types may not extend or contain other process types.
Thus, during the expansion phase, we have to transform the compositional CTLA in-
put system to a simplified CTLA system which contains only simple process types.
We call this simplified CTLA system expanded or flat.

Particularly, the system process type has to be resolved. Typically, it contains
process instances for all elements of a scenario and couples their actions to provide
the system actions. As an example, consider the expansion of the action snd_h1
(cf. Listing 6.1) from the IP-ARP model (cf. section 9.2).

The compositional form of the action is given by the coupling of actions from the
contained process type instances h1 (of process type IpArpNode) and med (Media).
The expanded form of the action contains no process type instances. Instead, vari-
ables from the instances are merged in the flat system type (ExpSystemType). Fur-

60

6.2 Translation Scheme

// Original Action as defined in the Compositional System
snd_h1(pkt: PacketT) ::= h1.snd(pkt) AND med.in(pkt);

// Action after Expansion (Flat System)
snd_h1(pkt: PacketT) ::=
// merged guards
pValidIf(pkt.sci, NA_MII)
AND h1_ifs[pkt.sci - 1].usd = TRUE
AND h1_ifs[pkt.sci - 1].spa.usd = TRUE
AND pkt = h1_ifs[pkt.sci - 1].spa.pkt
AND fSrcToZone(pkt.scn, pkt.sci) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(pkt.scn, pkt.sci) - 1].usd = FALSE
// merged effects
AND h1_ifs[pkt.sci - 1].spa.usd’ = FALSE
AND med_buf[fSrcToZone(pkt.scn, pkt.sci) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(pkt.scn, pkt.sci) - 1].pkt’ = pkt;

Listing 6.1: Compositional and Expanded Form of a cTLA Action

thermore, the guards and effects of the coupled actions are conjugated into new
actions. Thus, in the flat system only a single process of a simple process type re-
mains.

6.2.1.2 Action Translation & Promela Code Generation Phase

As the name suggests, this phase deals with handling actions and generating a
PROMELA-level representation of the simple CTLA system resulting from the ex-
pansion phase. This simple CTLA system is instantiated from a single process not
making use of process type composition (e.g., extension or containment). The sim-
ple CTLA system may still contain multiple, parameterized actions. In PROMELA,
processes have a monolithic body (cf. section 3.2.2). Particularly, multiple actions,
far less parameterized actions, are not provided.

Conceptually, we have to translate from the STS view (cf. section 3.3.3) un-
derlying the simple CTLA system to the LFSM view (cf. section 3.2) underlying
PROMELA specifications. From the executability property of CTLA 2003 specifica-
tions (cf. section 5.1.1) a finite state space and unique initial state follows. The end
states required by the LFSM view are only used for liveness properties by SPIN. As
we focus on safety properties, we can define an extra unreachable state as the LFSM
set of end states. Thus, the main task is to translate the CTLA actions to appropriate
PROMELA transition labels.

61

6 Translation, cTLA2PC, and Eclipse Integration

Action Embedding & Code Translation The set of CTLA actions defined in the
simple system are embedded into the body of a PROMELA process type. As actions
have to be executable an arbitrary number of times, they are enclosed in a PROMELA
non-deterministic do selection loop.

The translation of the actions themselves, which are structured into guard and
effect statements, can be done quite easily. Most guards can directly be translated
into PROMELA guarded statements. Quantified guards (CTLA keywords FORALL,
EXISTS) have to be handled by the introduction of local loop blocks which set cor-
responding boolean guard variables. Regarding effects, most can be translated into
simple PROMELA level assignments. Array effects (UPDATEALL) are again trans-
lated into local loop blocks. Following the outlined scheme, the action code can be
translated to PROMELA. The action parameters still have to be handled, however.

Action Parameters According to CTLA semantics, a parameterized action is exe-
cutable, if a parameter setting exists so that the action is executable with this param-
eters (cf. section 5.2.5). We have to reproduce this behavior in PROMELA.

This is done in two steps. First, for each action and each parameter, a global
variable is introduced. The parameter is then removed from the parameter list of
the action and the occurrences of the parameter inside the action are replaced with
the global variable. Second, for all newly introduced global variables, an input
generator PROMELA process is created. The input generator for a variable non-
deterministically assigns a value (out of the range of values for the parameter type)
to the variable. As the input generator runs in its own process, any value can be as-
signed at any time. Particularly, all value assignments corresponding to parameter
settings so that the action is executable, are reachable. As the model checker tries
all reachable paths during verification, this reproduces the behavior of the CTLA
model.

The input generator processes use the randomness non-deterministic if-approach des-
cribed in [Ruy01]. Different actions may (re-)use the same global variables and
input generator processes as long as they have the same parameter types. Thus,
the number of additional variables and processes is reduced. We also tried using
PROMELA’s channel construct instead of global variables. As channels are imple-
mented as FIFO queues, global variables proved to be more efficient.

After the handling of action parameters, the action translation phase is finished.
The described basic translation scheme works well, but is relatively costly in terms
of possible transitions and – to a lesser extent – state space. Thus we developed op-
timizations, especially for more efficient handling of parameterized actions. These
optimizations are described in section 8.4.

62

6.2 Translation Scheme

6.2.2 Translation of Selected Language Elements

In this section, we give more details on the translation of the most important CTLA
language elements (cf. chapter 5) to PROMELA.

6.2.2.1 Constants

Consider a simple, symbolic CTLA constant simpleConstName:

CONST simpleConstName = value;

In PROMELA, symbolic constants are not supported. As PROMELA adopts the C lan-
guage preprocessor, however, symbolic constants can be implemented using pre-
processor (cpp) macros. Thus, the above statement is translated to the macro:

#define simpleConstName value

This macro tells the preprocessor to replace all occurrences of constName in the
PROMELA source with value.

Enumerations are a slightly more complicated case. Given a CTLA enumeration
enumName:

TYPE enumName = {name1, name2, ..., nameN}

In PROMELA this enumeration is realized via:

#define enumName byte
#define name1 0
#define name2 1
...
#define valueN N-1

Of course, if N > 256, then an int type instead of byte is used for mapping
enumName.

Compound constants can be splitted into simple constants for all fields, array
elements. This way, compound constants are reduced to simple constants.

6.2.2.2 Types

The basic data types of CTLA can be mapped to the basic data types of PROMELA
in a straightforward way (BOOL 7→ bool, BYTE 7→ byte, etc).

Furthermore, both CTLA and PROMELA support array types. A CTLA array
declared via

arrayName: ARRAY[size] OF type;

is translated to the PROMELA array

arrayName ptype[size];

63

6 Translation, cTLA2PC, and Eclipse Integration

where ptype is the PROMELA data type corresponding to the TLA data type as
described above.

Basic types and array types can be used to build composed user-defined data
types. In CTLA such a type looks like this:

TYPE userTypeName = RECORD
fieldName1: type1;
fieldName2: type2;
...
fieldNameN: typeN;

END;

By mapping each type1, . . . , typeN as described above, this user type can be real-
ized in PROMELA as follows:

typedef userTypeName {
type1’ fieldName1;
type2’ fieldName2;
...
typeN’ fieldNameN;

}

6.2.2.3 Logical IF-THEN-ELSE Operator

The CTLA logical IF-THEN-ELSE operator (cf. section 5.1.1) combines guards and
effects, for instance:

IF x=4 THEN y’=1
ELSEIF x>2 THEN y’=2
ELSE y’=0
END;

PROMELA supports a selection construct. It allows to define several guarded options.
From the options where the guards are true, one is selected non-deterministically
for execution. Using this construct, the above expression is translated to:

if
:: (x==4) -> y=1;
:: (x!=4) && (x>2) -> y=2;
:: else -> y=0;
fi;

Note the added (x!=4) guard in PROMELA. This is to ensure the CTLA ELSEIF
semantics, i.e., the ELSEIF can only be executed if the IF cannot be executed.

6.2.2.4 Functions

Consider the following CTLA function:

64

6.2 Translation Scheme

FUNCTION func(x:INT) ::=
IF ((x=0) OR (x=1)) THEN 1
ELSEIF (x=2) THEN 3
ELSEIF (x=3) THEN 4
ELSE 0

END;

PROMELA does not support functions. There exists a choice construct, however. The
choice construct has the form c -> v1:v2 and works in the following way: if con-
dition c is true, return value v1, else return value v2. Combined with preprocessor
macros, this allows the above function to be realized in PROMELA via:

#define func(x)\
(((x==0) || (x==1)) -> 1:\
((x==2) -> 3:\
((x==3) -> 4:0)))

Then, an occurrence of func(a) in the CTLA input can be translated by putting
func(a) (i.e., a call of the macro func(x)) in the PROMELA code. Finally, the
preprocessor will replace func(a) with the macro and replace x with a.

6.2.2.5 Predicates

A CTLA predicate is defined like exemplified by the following example:

PREDICATE pred(x:BYTE; y:BYTE) ::= (0 < x) AND (y <= 2);

We transform this predicate into a PROMELA expression using a preprocessor
macro:

#define pred(x, y)((0 < x) \
&& (y <= 2))

Similar to the already described translation of functions, every occurrence of
pred(a,b) is included in the output and finally replaced by the preprocessor.

6.2.2.6 Guards

Simple guards are boolean expressions combined by the logical operators corre-
sponding to the CTLA keywords AND, OR, and NOT. Consider for example the fol-
lowing simple guard:

(array[i].usd = TRUE)
AND ((a > b) OR NOT (c > d))

Assuming the data types and variables have already been mapped, it can be trans-
lated by simply mapping the logical operators between CTLA and PROMELA (AND
7→ &&, OR 7→ ||, NOT 7→ !):

65

6 Translation, cTLA2PC, and Eclipse Integration

(array[i].usd == true)
&& ((a > b) || (!(c > d)))

Quantified guards are a more complicated case. With the keywords EXISTS and
FORALL, CTLA supports quantifications in guards. Consider for example the fol-
lowing CTLA guard expression:

EXISTS i IN {a..b}: [guard(i)] // quantified guard

The guard expression is true, if guard(i) is true for any i between a, b, inclusively.
Similarly, the CTLA guard expression

FORALL i IN {a..b}: [guard(i)] // quantified guard

is true, if guard(i) is true for all i between a, b, inclusively. Quantified guard
expressions are realized in PROMELA by the introduction of loop code blocks and
temporary variables. For example, the above EXISTS guard expression is trans-
lated to:

hidden byte i_EXISTS_L0; // temporary loop variable
i_EXISTS_L0=a; // initialize loop variable
hidden bool i_EXISTS_L0_R=false; // temporary loop result
do
:: (i_EXISTS_L0 <= b) -> // loop until upper bound
if
:: (guard(i) == true) -> // if guard(i) true
i_EXISTS_L0_R=true; break; // save result, exit

:: else -> // guard(i) not true
i_EXISTS_L0++; // increase loop variable

fi;
:: else -> break; // upper bound exceeded
od;

6.2.2.7 Effects

Simple effects are assignment expressions combined by the CTLA keyword AND.
Consider for example the following simple effects where arr is a variable repre-
senting an array of records with a field usd and recvar1, recvar2 are records
with three fields x, y, z:

arr[i].usd’ = TRUE
AND recvar1’ = recvar2

Assuming data type and variable mapping are already done, the PROMELA transla-
tion looks like this:

arr[i].usd=true;
recvar1.x = recvar2.x;

66

6.2 Translation Scheme

recvar1.y = recvar2.y;
recvar1.z = recvar2.z;

Note that the record variable assignment has to be splitted into its parts, because
PROMELA does not directly support multi-field assignments.

Array effects (CTLA keyword UPDATEALL) are a more complicated case. An
effect is applied to each element of an array. Consider the example:

UPDATEALL i IN {a..b}: [effect(arr[i])]

This effect is realized in PROMELA by the introduction of loop code blocks with
temporary variables similarly to the quantified guards described above.

hidden byte i_UPDATEALL_L0; // temporary loop variable
i_UPDATEALL_L0=a; // initialize loop variable
do
:: (i_UPDATEALL_L0 <= b) -> // loop until upper bound
effect(arr[i_UPDATEALL_L0]); // affect element i
i_UPDATEALL_L0++; // increase loop variable

:: else -> break; // upper bound exceeded
od;

6.2.2.8 Actions

CTLA actions are structured into guards and effects. We already described how
guards and effects can be translated to PROMELA. Furthermore, in section 6.2.1.2
we explained the embedding of actions into a non-deterministic do selection loop
and the handling of action parameters via global parameters and input generator
processes.

Taken together, these concepts describe the translation of actions. The generated
PROMELA outline for the actions looks like this:

do // non-determin. action selection loop
:: d_step { // ACTION A1: parameters replaced

... // translated guards

... // translated effects
}

...
:: d_step { // ACTION An: parameters replaced

... // translated guards

... // translated effects
}

...
od;

Furthermore, the input generator process generated for a replaced action parameter
takes the following form:

67

6 Translation, cTLA2PC, and Eclipse Integration

active proctype param_ParameterName_InputGen()
{ do
:: param_ParameterName = ...; // first value
...
:: param_ParameterName = ...; // last value
od;

}

6.2.2.9 System Instantiation

After the expansion phase (cf. section 6.2.1.1), only a single, simple system pro-
cesstype remains. Thus, the system process instantiation can be easily translated
by instantiating and running the PROMELA version of that process. As described
in section 3.2.2, it suffices to add the PROMELA keyword active to the proctype
declaration corresponding to the system process:
// system process
active proctype SysProcType()
{ ... }

We conclude this section with the outline of the PROMELA specification (cf. List-
ing 6.2) that is generated for a typical CTLA model (cf. the CTLA outline in List-
ing 5.1).

Note the PROMELA input generator processes generated for the PacketT data
type which is used as a parameter in action snd_A(pkt:PacketT).

6.3 The cTLA2PC Translation Tool

We devised CTLA2PC, a tool for translating CTLA specifications to PROMELA.
CTLA2PC implements the translation scheme described in section 6.2. Most of
the CTLA2PC’s implementation was done as part of the master theses of Andre
Pohl [Poh03] and Marc Malik [Mal05]. In the following sections, the architecture,
implementation and finally some extended translation options of CTLA2PC are
outlined.

6.3.1 Architecture

The compiler is made up of six key components. These components are:

Scanner and Parser The scanner and parser component builds a syntax tree from
the CTLA input. In a syntax tree, the input file is represented in a tree structure
matching the language’s grammar. Along the way, the syntax of the input file is
checked and errors are flagged. Furthermore, the symbol table is created.

68

6.3 The cTLA2PC Translation Tool

#define H1_I1_ID ... // constants
...
#define H1_ID 1 // enumerations
...
#define fSrcToZone(n,i)\ // functions
...
#define pValidIf(pi,pm)\ // predicates
...
typedef PacketT // typedefs
{ NodeIdT scn;
... }

...
PacketT param_PacketT; // global parameter variables
...
// system process
active proctype SysProcType()
{ ... }

// input generator process for first field scn of PacketT
active proctype param_PacketT_scnInputGen()
{ ... }

// input generator process for other fields and parameters
active proctype param_PacketT_...

Listing 6.2: Generated Promela Specification Outline

Symbol Table A symbol table is a data structure based on an hash table that allows
for quick storing and retrieving of symbols (basically name and type pairs). The
symbol table component provides both the data structure and the operations for
storing and retrieving symbols. This component is called by the parser component
to construct a symbol table matching the syntax tree.

Semantic Analysis During semantic analysis particularly the correctness of ex-
pressions involving types is checked. This includes return values of CTLA func-
tions and inferring of types for constants. Implicit type conversions, e.g., for assigning
a BYTE type to an INT type, are performed as well.

Furthermore, some invalid CTLA expressions can be avoided either by a sophisti-
cated grammar or by simple checks during semantic analysis. In these cases, we opt
for the simpler grammar and perform the checks during semantic analysis instead.
This design decision brings about better translator performance, as the parser per-
formance is related to the grammar’s complexity.

69

6 Translation, cTLA2PC, and Eclipse Integration

Expansion Based on the syntax tree and the symbol table, this component ex-
pands a CTLA system to a simple CTLA system as described in section 6.2.1.1. The
result is a new syntax tree and symbol table for the simple CTLA system.

Code Generation The code generation component uses the modified syntax tree
and symbol table resulting from the expansion phase to build a PROMELA represen-
tation of the input system. For generating the PROMELA representation, the scheme
outlined in 6.2.1.2 is applied. Furthermore, this component allows the use of differ-
ent back-ends for languages other than PROMELA. For example, we integrated a
back-in for CTLA output. This is helpful to study the effects of process type com-
position and optimizations applicable at this level (cf. section 8.4).

Plug-in Interface CTLA2PC is designed with extensibility in mind. Thus, a plug-
in interface is provided which allows easy access to the syntax tree and symbol
table of the simple CTLA system. By developing a small plug-in, a wide range of
additional transformations can be integrated into CTLA2PC’s translation process.
Particularly, optimizations (cf. section 8.4, 8.5) can be realized as plug-ins.

Altogether, a CTLA2PC translation process works as depicted in Figure 6.2.
First, the input CTLA specification is analyzed by the scanner and parser com-

ponents. If syntax errors are encountered, CTLA2PC prints an error message and
the translation halts right after the parsing phase. After scanning and parsing, the
semantic analysis is applied. Semantic analysis adds type checking of action param-
eters, function return values and assignments. Again, errors are flagged and stop
the translation process. Then, the expansion is conducted, followed by optional
optimizations. Finally, the translation is completed with the PROMELA (or CTLA)
code generation phase.

6.3.2 Implementation

CTLA2PC is implemented using the JAVA language. Overall, CTLA2PC’s source
code has about 21,000 lines and is structured in 16 packages (including sub-
packages). In the following paragraphs we give a very brief overview of the im-
plementation of CTLA2PC’s components. Further details implementation are des-
cribed in [Poh03; Mal05].

Scanner and Parser The scanner and parser components are based on the
ANTLR [PQ95] parser construction kit. In section 5.4, we described the EBNF
grammar for CTLA. ANTLR accepts an extended variant of EBNF as input gram-
mar. Consider for example the production from the EBNF grammar dealing with
the constants declaration part:

70

6.3 The cTLA2PC Translation Tool

Scanner
(Lexical Analysis)

Semantic Analysis

Parser
(Syntax Analysis)

Symbol
Table

Expansion

Code Optimization

Front-End

Back-End

Abstract
Syntax
Tree

cTLA Code
Generation

Promela Code
Generation

Syntax Errors

Semantic Errors

cTLA
Specification

Simple, flat cTLA
Specification

Optimized
Promela

Specification

Figure 6.2: cTLA2PC Translation Process

const_decl_part =
"CONST" { constant_decl ";" }+

;

Using ANTLR’s EBNF variant, this production takes the form:

const_decl_part:
"CONST"! (constant_decl)+
(* AST Action *)
{ #const_decl_part =

#([CONST_DECL_PART, "[const_decl_part]"],
#const_decl_part);

}
;

Besides minor syntactical differences, ANTLR allows the inclusion of so-called Ab-
stract Syntax Tree (AST) actions inside the curly brackets ({, }). AST actions have
nothing to do with CTLA actions. Instead, they are used to automatically con-
struct selected subtrees during parsing. For example, the AST action include in

71

6 Translation, cTLA2PC, and Eclipse Integration

the constant_decl production generates a new subtree for token type CONST_-
DECL_PART, names the root node of this subtree [const_decl_part], and re-
turns it.

Furthermore, the grammar has to be of the LL(k) type (i.e., it must not include left
recursive productions) [ASU06]. Then, ANTLR is able to create JAVA source code
for an advanced scanner and parser component for the grammar automatically.

Semantic Analysis For performing the static semantic analysis, the syntax tree
and symbol table are traversed and transformed. We make use of the Visitor de-
sign pattern [GHJV95] which is especially suited to such tasks. This pattern allows
to traverse complex data structures and perform flexible operations on the nodes.
Particularly, the pattern largely separates the operations from the data structures.
Thus, new operations can be introduced or existing operations be extended with-
out having to modify the nodes.

The semantic analysis is done with the help of the class SemanticAnalysis-
Visitor. This class implements a specialized Visitor pattern to traverse the tree.
Particularly, a type check for all assignments is done.

Expansion Like with the semantic analysis component, the expansion component
makes use of the Visitor pattern. Two Visitor classes for renaming and re-
solving actions (NodeRenameVisitor, SubtreeReplacementVisitor) are de-
fined.

Action Handling & Code Generation The action handling and PROMELA code gen-
eration component is implemented using a specific Visitor class as well, this time
the PromelaCodeBuilderVisitor. For the optional flat CTLA code generation,
essentially the existing current tree has to be output.

Plug-Ins The plug-in interface is implemented by providing methods for register-
ing and unregistering plug-ins. Furthermore, the plug-ins themselves are based on
the Visitor pattern again.

6.3.3 Extended Translation Options

Besides implementing the translation scheme (cf. section 6.2) and various optimiza-
tions (cf. section 8.4, 8.5), CTLA2PC supports additional translation options. These
translation options are used for special cases.

Simulation For example, the --simulation option provides a model better
suited to SPIN’s simulation mode. This option includes special code that helps to

72

6.4 Eclipse Integration

check specific sequences during simulation. Particularly, this is useful for model
validation. The special code includes a control flow generator for actions with an
additional guard at the beginning of each action. It allows the execution of the ac-
tion only if the action has been selected by the control flow generator. This enables
scripted testing of execution sequences. Furthermore, we integrate symbolic mtype
action names in the guards. This makes the selection dialogs in SPIN’s interactive
simulation mode much more comprehensible.

Mapping Sequences During SPIN verification, sequences violating security prop-
erties may be found in a model. Such violating sequences are saved in an internal
encoding in a trail file. The trail file can be played back at the PROMELA level using
SPIN’s guided simulation mode. We are interested in the corresponding CTLA-
level sequence, however. Thus, we have to map the PROMELA level statement
sequence back to CTLA level actions. This mapping of sequences is greatly sim-
plified by translating the model with the --trace-points switch. By supplying
this switch code is inserted at the beginning of the PROMELA realization of each
CTLA action that outputs the action name and parameters. Thus, by running a
SPIN guided simulation from the trail file, the CTLA-level action sequence is out-
put as well.

Debugging Support Further options exist that support the debugging of CTLA
specifications from an integrated development environment (IDE). Particularly, the
option --map provides a line by line mapping between the CTLA and PROMELA
version of a model. Based on these options, we engineered an integration of
CTLA2PC into the ECLIPSE platform [Kne04]. This integration is described in the
following section.

6.4 Eclipse Integration

The ECLIPSE workbench is a well-known, widely adopted universal tool platform
[OTI03]. We integrate CTLA2PC together with SPIN and extended debugging fea-
tures into ECLIPSE to provide a comprehensive modeling, translation, and analysis
environment for our approach. In the following paragraphs, the architecture and
features of the integration are described.

6.4.1 Architecture

A modern plug-in architecture [Bol03] allows extension and customization of
ECLIPSE’s functionality. ECLIPSE itself is realized as a set of plug-ins which pro-
vide services. The basic workbench user interface, for instance, is provided by the

73

6 Translation, cTLA2PC, and Eclipse Integration

Workbench .ui plug-in. Plug-ins collaborate using extension points. An extension
point provides several slots through which the extended and extending plug-ins can
communicate by registering callback objects.

The plug-ins are activated by ECLIPSE as follows: During start-up, the plug-in
folder is scanned for MANIFEST-files, typically called plugin.xml. This file is
provided by every plug-in and contains a description of the plug-in indicating
which extension points are implemented. This information is saved in a temporary
database. Thus, the plugin-code itself will only be loaded if necessary.

Our integration makes use of this plug-in architecture. We provide a set of 8
ECLIPSE plug-ins (cf. Fig. 6.3, depicted as a UML component diagram) which are
implemented by 70 JAVA classes, totaling about 12,000 lines of code.

spin

ctlatopromela

ctlatopromela
.ui

cTLA
input

Break
points

spin.core

spin.ui

spin.debug

spin.debug.ui

spin.debug.
core

ctlatopromela
.corectla

editor

promela
editor

Figure 6.3: Plug-in Architecture of the Eclipse Integration

The ctlatopromela plug-in integrates the CTLA2PC translator into ECLIPSE.
User interface elements are implemented by the .ui component, the corresponding
non-graphical functionality is implemented by the .core component.

Except for the promelaeditor and ctlaeditor plug-ins, all plug-ins are se-
parated into a .ui and a .core component. The underlying architectural pat-
tern of the ECLIPSE framework is that different UI implementations can be used
to present the same core functionality. Communication between UI and core com-
ponents is handled via events. As some dependencies exists, the conceptional sep-
aration between different plug-ins cannot always be implemented to the last conse-
quence. As an example, the spin.debug.ui plug-in needs to know the name of
the promelaeditor plug-in in order to register with extensions points for provid-
ing the breakpoint functionality and for not interfering with the other plug-ins.

6.4.2 Features

Taken together, the plug-ins in combination with the ECLIPSE workbench provide
the following key features:

74

6.4 Eclipse Integration

Editing of Specifications CTLA (and PROMELA) specifications can be edited; and
typical capabilities (Search/Replace, Cut/Paste, Open/Save) are provided. Further-
more, syntax highlighting is made available. To support the debugging features des-
cribed in the paragraphs below, breakpoint markers can be set in the editors.

The editing functionality is implemented by two plug-ins (promelaeditor,
ctlaeditor), which both extend the TextEditor class. Thus, most of the editing
capabilities are inherited from ECLIPSE.

Specification Translation Translation of CTLA (and PROMELA) specifications is
supported from within ECLIPSE. The translation options for CTLA2PC can be spe-
cified and saved to or restored from a configuration. During translation, each syn-
tax error creates a new entry in ECLIPSE’s tasks pane. Double-clicking an entry in
the tasks pane scrolls to the corresponding source line in the editor.

These features are implemented by the plug-ins ctlatopromela.ui,
ctlatopromela.core and spin.ui, spin.core, respectively. The .ui plug-
ins contain the dialogs, e.g., for configuring translation options. The .core
plug-ins run the CTLA2PC or SPIN tool in the background and capture the output.
This is done with the help of ECLIPSE’s launching architecture for external tools. For
each tool, an environment is derived from the LaunchConfigurationType
type. This type specifies a method launch which executes the tool with a
given configuration. A Configuration contains a set of parameters as name-
value pairs. Actual tool executions with actual parameter values are instances
of the LaunchConfigurationType type. Default values for source and des-
tination file are derived from the currently selected workspace resource. A
LaunchConfigurationDialog shows the parameter values and allows their
modification prior to the launching of the tool. Furthermore, additional parameters
may be given. The captured output is parsed for translation errors which are then
transferred to the tasks pane using ECLIPSE’s Markers mechanism.

Simulation and Debugging Simulation of translated CTLA specifications is sup-
ported from within ECLIPSE. In random simulation mode, SPIN’s output is simply
captured and transferred to ECLIPSE’s console window. For interactive simulations,
the output is parsed and an interactive selection dialog is displayed for each non-
deterministic choice (cf. Fig. 6.4).

Choices marked by SPIN as “unexecutable” are not displayed in the selection di-
alog. The debugging of translated specifications is supported as well. Breakpoints
can be set in the PROMELA editor. If the corresponding line of the specification is
hit, the simulation will be stopped. The user can then resume the specification sim-
ulation or single step through it. Additionaly, variables can be added to the watch
window. This means that the current value of such a variable is always displayed
by ECLIPSE.

75

6 Translation, cTLA2PC, and Eclipse Integration

Figure 6.4: Interactive Simulation of a Translated Specification in Eclipse

The plug-in spin.core implements the functionality to run the SPIN tool
in the background based on the launching architecture as described above. A
new LaunchConfigurationType is defined for SPIN simulation. The spin.ui
plug-in contains a dialog for setting additional SPIN options based on ECLIPSE’s
LaunchConfigurationDialog and the selection dialog for interactive sim-
ulation. The spin.debug.core plug-in parses SPIN’s output and detects
changes of watched variables, hit breakpoints etc. If breakpoints are defined, a
CodeModifier is applied to the translated specification prior to starting the simu-
lation. It inserts the following code for each breakpoint:

printf("MSC: break?" + nextBreakpoint.getFileName() +
":" + nextBreakpoint.getSourceLineNumber()+ "\\n\");

This simple implementation of breakpoints works as follows: The plug-in captures
SPIN’s output using a buffer of a limited size and scans it for the MSC: marker.
If the marker is found, a breakpoint has been hit. The breakpoint’s file and line
number can be extracted from the extra information after the question mark. This
implementation of breakpoints is similar to XSPIN [Hol03].

76

6.4 Eclipse Integration

Verification Finally, translated specifications can be verified from within ECLIPSE.
Parameters for verifier generation (e.g., -a), verifier compilation (e.g., -DBFS) and
verifier execution (e.g., -m1000) can be modified with a dialog by the user. SPIN’s
verification output is then displayed in ECLIPSE’s console window.

The described functionality is implemented through a further LaunchConfi-
gurationType, LaunchConfigurationDialog in the spin.core, spin.ui
plug-ins, respectively.

Thanks to the core services inherited from ECLIPSE, our integration also covers
further aspects, e.g., aggregation of files related to a specification into a project.

77

7 Computer Network Modeling
Framework

In this chapter, we describe the CTLA computer network modeling framework.
We begin with a short introduction outlining the purpose and application domain
of the framework. Then, we give an overview of key related networking concepts
in the second section. In the third section, we describe the framework from a large-
scale and a small-scale view. Finally, the chapter concludes with a section detailing
the framework’s packages and elements.

7.1 Frameworks

Designing models for computer network scenarios integrating different aspects
(e.g., protocol, node, and network) is an expensive task. Particularly, the right ab-
straction level must be chosen. On the one hand, all key aspects of the scenario
have to be captured. On the other hand, a very detailed model naturally has a state
vector that makes automated analysis very difficult – even after applying advanced
optimizations (cf. chapter 8).

One of the key goals of our approach is ease of use (cf. chapter 4.1). Especially, we
have to ease the modeling task. Our modeling language, CTLA 2003, provides ba-
sic mechanisms like process types, process type extension, and containment. These
mechanisms allow for compositional and reusable models. We aim to facilitate the
modeling task on a higher level, however. The concepts of patterns and frame-
works are well-known from the world of object-oriented programming. As defined by
Gamma [GHJV95, pp. 26]:

The framework dictates the architecture of your application. It will define
the overall structure, its partitioning into classes and objects, the key
responsibilities thereof, how the classes and objects collaborate, and the
thread of control. [. . .] The framework captures the design decisions
that are common to its application domain.

As the definition shows, frameworks facilitate the modeling task on a higher level.
Thus, we decided to carry over the framework concept from object-oriented pro-
gramming to computer network specifications. While designing computer network
specifications for different scenarios, we identified common architectural elements.

78

7.2 Networking Concepts

These elements form the basis of the CTLA computer network modeling frame-
work. It defines both basic structure, i.e., typical elements like nodes, interfaces and
media with their coupling, and basic behavior, i.e., sending and receiving actions,
of computer networks. A specific model has to add its own elements (e.g., nodes
that include processing for a specific protocol, a lossy transfer medium, additional
data types etc), but the overall architecture is given by the framework.

With the rise of the Internet, TCP/IP has become the prevalent networking tech-
nology. For this reason, we choose TCP/IP-based computer network attack models
as the application domain for our framework. In particular, we aim to model and
analyze scenarios involving dynamic routing.

7.2 Networking Concepts

To understand the framework and the case studies (cf. chapters 9, 10, and 11) some
background on networking concepts is required. In this section, we give a brief
overview of the TCP/IP reference model, the Internet routing architecture, and
routing attacks.

7.2.1 TCP/IP Reference Model

The TCP/IP reference model structures protocols into five layers (cf. Fig. 7.1): applica-
tion, transport, internet, network interface, and physical.

Application

Transport

Internet

Network Interface

Physical

e.g. HTTP, FTP

e.g. TCP, UDP

e.g. IP, ARP

e.g. Ethernet

e.g. 100Base-T2

Figure 7.1: Layers of the TCP/IP Reference Model

This contrasts the seven layers of the ISO model. The difference is mainly due
to the topmost layer, application, of the TCP/IP reference model. The layers pre-
sentation and application of the ISO model are both represented by the application
layer in the TCP/IP model. Furthermore the layers session and network of the ISO
model have no direct correspondence in the TCP/IP model. The TCP/IP model
adds the internet layer, however.

Typical examples for protocols in the application layer are the well known web pro-
tocols HTTP and FTP. The transport layer contains protocols like TCP and UDP. On

79

7 Computer Network Modeling Framework

the internet layer the IP protocol with its virtual addressing scheme, the IP addresses,
is defined. Thus IP networks are independent of the actual addressing scheme sup-
ported by the underlying network hardware and can transfer packets between dif-
ferent network technologies (e.g., ATM and Ethernet). Hardware frames can be sent
and received using the network interface layer. The actual encoding of the frames into
electrical signals depending on the transmission media is handled by the physical
layer.

During the development of the framework, the TCP/IP reference model pro-
vided guidance. In the framework, basic implementations of the network interface
to transport layers are provided. On the one hand, concrete scenario models typi-
cally have to extend certain layers (e.g., for adding ARP processing). On the other
hand, typically only a subset of all layers is required for a concrete scenario.

7.2.2 Internet Routing Architecture

Three levels have to be distinguished for routing in the Internet context (cf. Fig. 7.2).
On the lowest level, packets have to be routed between hosts in the same physical
network (typically a LAN). This level of routing is provided by the physical ad-
dressing scheme of the underlying physical network (e.g., Ethernet or Tokenring).
One of the strengths of the TCP/IP protocol suite, however, is the ability to intercon-
nect networks based on different technologies. Thus the address resolution protocol
(ARP) (cf. chapter 9), which encapsulates different physical addressing schemes, is
defined. It allows a unified way of routing inside a physical network based on IP
addresses.

Network
Host

2. Interior-Gateway
Routing

1. Low-Level Routing

Autonomous System

Border Router

3. Exterior-
Gateway Routing

Internal Router

Autonomous System

Figure 7.2: Threefold Internet Routing Architecture

80

7.2 Networking Concepts

The second level deals with routing between physical networks. Various so called
interior-gateway routing protocols are available on this level. The two most popu-
lar interior-gateway routing protocols are the routing information protocol (RIP) (cf.
chapter 10) and the open shortest path first (OSPF) (cf. chapter 11) protocol. Sets
of routers connected by the same instance of an interior-gateway routing protocol
are called autonomous system (AS). A typical example is the set of routers belonging
to the same administrative authority (e.g., an organization or company). Routers
inside an autonomous system are called inside routers.

On the third level, routing between autonomous systems is considered. For this
purpose, exterior-gateway routing protocols are used. A typical example is the rout-
ing between the autonomous system of a company and the autonomous system
of its Internet Service Provider (ISP). Nowadays, almost exclusively, the border gate-
way protocol (BGP) is used for exterior-gateway routing. Usually only one or a few
routers of an autonomous system connect to other autonomous systems. These
routers are called border routers.

7.2.3 Routing Attacks

The aim of routing attacks is to violate security properties by consistently injecting
false route information into the routing process. If the attacker controls a hop on
the route from the source to the destination, this is comparatively easy to achieve.
Even when the attacker is not regularly on the route, however, such an injection is
often possible. For example, the attacker may send out a special crafted update pac-
kets to several hops on the route. Depending on, for instance, the routing protocol,
the network topology, the packet propagation, the existing routing tables, and the
contents of the update packet, the injection may be successful.

If the update packet is accepted by one of the routers involved in the routing pro-
cess, it may spread further, again depending on conditions as described above. The
targeted router then distributes a modified update packet to neighboring routers
(so called triggered update). If several such receive-process-modify-distribute cycles
occur, the attacker may be able to affect routing in several networks.

The effects of such attacks are for example black hole routers, i.e., routers that pull
all nearby packets to themselves but never forward them to any other destination
or man-in-the-middle nodes, i.e., attackers that are able to intercept packets. Even if
the packets are securely encrypted, sensitive information may still be leaked (traffic
analysis). In contrast to a black hole router, the interception is usually not observable
for both original sender and intended receiver of the packets.

81

7 Computer Network Modeling Framework

7.3 Domain View

In this section, we describe the view TCP/IP computer network scenarios taken by
the framework. Particulary, the view has to integrate node, network, and protocol
aspects. First, we describe the large-scale view, mainly capturing network aspects,
then the small scale-view focusing on the individual nodes and their protocol pro-
cessing.

7.3.1 Large-Scale View

The large-scale view of computer network scenarios is exemplified in Figure 7.3.

Host
Node

Host
Node

Host
Node

Host
Node

Host
Node

Host
Node

Host
Node

Host
Node

Host
NodeTransf

er
Node

Zone

Interface

Media

Z1 Z2

Figure 7.3: Large-Scale Network View

All active network elements are modeled by nodes. Nodes are connected by the
physical transfer media, which is partitioned into zones. A zone corresponds to
broadcast zones, i.e., the nodes inside a zone can directly communicate with every
other node in the same zone. Zones can also be interpreted as network segments
or subnets. Nodes communicate using interfaces, which connect to the media. A
node is said to belong to a zone if it has an interface in the media’s zone. Interfaces
transmit and receive packets. A node which is connected to multiple zones (i.e., has
at least two interfaces) is called a transfer node. Transfer nodes (or routers) provide
inter zone communication. A node with just one interface is a host node.

7.3.2 Small-Scale View

The small-scale view focuses on the nodes and the protocol processing. For the
processing actions, we follow techniques from efficient protocol implementation,
particularly the activity thread and integrated layers approach (cf. section 8.3.2).
Packets are sent and received by the node via actions snd and rcv (cf. Fig. 7.4).

82

7.4 Packages & Elements

Node

Top Layer
internal processing actions

Bottom Layer
internal processing actions

rpcs spcs
rcv(pkt)

snd(pkt)in(pkt)

out(pkt)

Media

Pkt Buf
u
s
d

InterfaceAdr
Rcv Pkt

Buf
Snd Pkt

Buf

… Middle Layers ...

… internal processing actions ...

Layers

Zone

Figure 7.4: Small-Scale Network View

The node’s actions snd, rcv are coupled to media’s actions in, out respectively.
Inside the node, the packet processing is structured into layers. A valid packet that
is received from media by an interface is stored in the interface’s receive buffer and
then processed through the layers (action rpcs). A packet which shall be sent is
processed (action spcs) the other way around, down the layers until it has reached
the interface level. The exact layers and processing steps required depend on the
protocols occuring in a scenario model.

If media does not already contain a packet from this zone, it can be sent to the
media. A successful send will move the packet to media’s packet buffer for the zone
and mark the buffer as used (flag usd). The exact layer and address types used in
a node vary depending on the specific node and scenario.

7.4 Packages & Elements

The framework is structured into the three packages Enumerations & Functions,
Data Types, and Process Types (cf. Figure 7.5). In this section, we describe these
packages and their elements.

83

7 Computer Network Modeling Framework

+rcv(in pkt : PacketT)
+rbc(in zid : ZoneIdT, in pkt : PacketT)
+rpcs()

+itf : InterfaceT

HostIpNode (NID: NodeIdT)

+pt
+...
+dat[n]

«type»
PacketT

+UNKNOWN_ZONE
+Z1_ID
+...

«enumeration»
ZoneIdT

+rcv(in pkt : PacketT)

NonPromHostIpNode (NID: NodeIdT)

+snd(in pkt : PacketT)
+spcs()

ActiveHostIpNode (NID: NodeIdT)

+snd_ip(in dia : IpAddressT)

ActiveNonPromHostIpNode (NID: NodeIdT)

+UNKNOWN_NODE
+H1_ID
+...
+R1_ID
+...

«enumeration»
NodeIdT

+in(in zid : ZoneIdT, in pkt : PacketT)
+out(in zid : ZoneIdT, in pkt : PacketT)

+buf : PacketBufT

Media

+usd : bool
+pkt : PacketT

«type»
PacketBufT

+usd : bool
+rpa : RpaSystemBufT
+spa : SpaSystemBufT
+ia : IpAddressT

«type»
InterfaceT

+rcv(in iid : InterfaceIdT, in pkt : PacketT)
+rbc(in zid : ZoneIdT, in pkt : PacketT)
+snd(in iid : InterfaceIdT, in pkt : PacketT)
+rpcs(in iid : InterfaceIdT)
+spcs(in iid : InterfaceIdT)
+fwd(in iid : InterfaceIdT)

+ifs[n] : InterfaceT

RouterIpNode (NID: NodeIdT, MII: InterfaceIdT)

+UNKNOWN_IF
+I1_ID
+I2_ID
+...

«enumeration»
InterfaceIdT

+INVALID_IA
+BC_IA
+H1_I1_IA
+...
+R1_I1_IA
+...

«enumeration»
IpAddressT

+UNKNOWN_HA
+BC_HA
+H1_I1_HA
+...
+R1_I1_HA
+...

«enumeration»
HardwareAddressT

+PT_IP
+PT_RIP
+...

«enumeration»
ProtocolT

+pkt : PacketT
+act : RpaActionT

«type»
RpaSystemBufT

+RPA_NONE_EMPTY
+RPA_RPCS
+...

«enumeration»
RpaActionT

+map(in n : NodeIdT, in i : InterfaceIdT) : ZoneIdT

«function»
fSrcToZone

+map(in n : NodeIdT, in i : InterfaceIdT) : IpAddressT

«function»
fSrcToIa

+map(in n : NodeIdT, in i : InterfaceIdT) : HardwareAddressT

«function»
fSrcToHa

+SPA_NONE_EMPTY
+SPA_SPCS
+...

«enumeration»
SpaActionT

Enumerations & Functions

Data Types

Process Types

+pkt : PacketT
+act : SpaActionT

«type»
SpaSystemBufT

Figure 7.5: Framework overview

7.4.1 Package Enumerations & Functions

The package enumerations & functions is used to define the network topology, initial
address assignment and protocols desired for a model. For example, the enume-
ration ZoneIdT contains the model’s zones; the function fSrcToIa assigns the
initial addresses and the enumeration ProtocolT lists the required protocols.

In the following paragraphs, we describe each element of the enumerations &
functions package in more detail. We begin with the Enumerations.

84

7.4 Packages & Elements

7.4.1.1 Enumerations

Enumerations define symbolic names. Specific models built on the framework usu-
ally extend these enumerations depending on the scenario.

Enumeration ZoneIdT

+UNKNOWN_ZONE
+Z1_ID
+...

«enumeration»
ZoneIdT

As described in section 7.3, zones are used to group sets of nodes which can com-
municate directly with each other. Thus, typically, a physical subnet is equivalent
to a zone.

The ZoneIdT enumeration provides symbolic names for zones. A special name,
UNKNOWN_ZONE, is used to denote an invalid or unknown zone. The first regular
zone is commonly named Z1_ID. Like all enumerations, these symbolic names are
internally represented by integers (cf. section 5.2.1).

The ZoneIdT enumeration is used throughout the framework. Particularly, the
fSrcToZone topology function maps to the ZoneIdT enumeration.

Enumeration NodeIdT

+UNKNOWN_NODE
+H1_ID
+...
+R1_ID
+...

«enumeration»
NodeIdT

In our framework, all active network elements are nodes (cf. section 7.3).
The NodeIdT enumeration is used to assign symbolic names to nodes. An in-

valid or unknown node is assigned the reserved symbolic name UNKNOWN_NODE.
As a naming scheme, we suggest to use Hx_ID, Rx_ID (where x is a unique integer
for each node), for host, router nodes, respectively.

Together with the InterfaceIdT enumeration, the NodeIdT enumeration is
used as the source in the fSrcToHa and fSrcToZone topology functions. A source
is a pair (n, i) of a node and interface identifier.

Enumeration InterfaceIdT

+UNKNOWN_IF
+I1_ID
+I2_ID
+...

«enumeration»
InterfaceIdT

Nodes transmit and receive packets with their interfaces. Host nodes have one
interface; transfer nodes have multiple interfaces.

85

7 Computer Network Modeling Framework

The InterfaceIdT enumeration provides local symbolic names for interfaces.
These names are unique only in the context of a node identifier (cf. enumeration
NodeIdT). Unknown or invalid interfaces are represented by the symbolic name
UNKNOWN_IF. The first regular interface of a node is generally named I1_ID.

As described above, elements from the InterfaceIdT enumeration are typi-
cally used together with node identifiers to represent a source (n, i). The topology
function fSrcToZone maps sources to zones. Further functions (e.g., fSrcToHa
and fSrcToIa) are used to assign attributes like hardware and IP addresses to
interfaces.

Enumeration IpAddressT

+INVALID_IA
+BC_IA
+H1_I1_IA
+...
+R1_I1_IA
+...

«enumeration»
IpAddressT

A key element of TCP/IP based computer networks is the logical Internet protocol
(IP) address. Logical addresses may span different physical networks with different
physical addressing schemes. Each interface is assigned an IP address.

The IpAddressT enumeration provides symbolic names for IP addresses as-
signed to the interfaces used in a model. Two symbolic names are reserved. First,
INVALID_IA is used to denote an invalid IP address. Second, BC_IA is reserved
for the broadcast IP address. It is up to a specific model to define the scope of the
broadcast address in more detail. Regular addresses follow the Hi_Ij_IA, Ri_-
Ij_IA naming scheme for host nodes, router nodes, respectively. For example, the
IP address of the second interface (j = 2) of the first router (i = 1) has the symbolic
name R1_I2_IA.

The IpAddressT enumeration is used, among others, in the fSrcToIa interface
initialization function which is part of node initialization.

Enumeration HardwareAddressT

+UNKNOWN_HA
+BC_HA
+H1_I1_HA
+...
+R1_I1_HA
+...

«enumeration»
HardwareAddressT

The framework provides support for low-level hardware addresses. Hardware ad-
dresses depend on the physical addressing scheme. Typically, each network inter-
face has a unique hardware address.

The HardwareAddressT enumeration provides symbolic names for hardware
addresses. The naming scheme resembles the IpAddressT enumeration: Two

86

7.4 Packages & Elements

names, UNKNOWN_HA and BC_HA, are reserved for unknown and broadcast ad-
dresses, to be defined further by the specific model. Hardware addresses for host
and router nodes follow the Hi_Ij_HA, Ri_Ij_HA naming scheme.

If required by the specific model, the HardwareAddressT enumeration is used,
among others, in the fSrcToHa interface initialization function.

Enumeration ProtocolT

+PT_IP
+PT_RIP
+...

«enumeration»
ProtocolT

In computer networks, different protocols are employed. These protocols are dis-
tinguished on different levels by so-called frame type identifiers.

Enumeration ProtocolT provides an abstract support for such frame type iden-
tifiers. For example, the symbolic name PT_IP marks IP packets. For further pro-
tocols relevant for a scenario, further symbolic names are added to the ProtocolT
enumeration (e.g., PT_RIP for RIP).

The ProtocolT enumeration is particularly used in the nodes’ internal process-
ing actions. It determines according to which protocol a packet should be pro-
cessed.

Enumeration RpaActionT

+RPA_NONE_EMPTY
+RPA_RPCS
+...

«enumeration»
RpaActionT

Received packets are processed by the nodes using internal actions. Regularly, the
processing is done layer-by-layer. Following efficient protocol implementation tech-
niques, however, the processing is done in one integrated, combined action from
the initial processing to the final processing of the packet. Furthermore, copying of
packets into new buffers is avoided as far as possible. Thus, it is necessary to keep
track of the current processing and buffering state.

The enumeration RpaActionT provides symbolic names for this state. Two sym-
bolic names, RPA_NONE_EMPTY, RPA_RPCS, are used to denote the state no current
packet (empty receive buffer), packet ready to be processed, respectively. Depend-
ing on the scenario, further states may be added to the RpaActionT enumeration.

The RpaActionT enumeration is used in the nodes’ internal receive processing
and buffering. The detailed meaning of the different states depends on the specific
model.

87

7 Computer Network Modeling Framework

Enumeration SpaActionT

+SPA_NONE_EMPTY
+SPA_SPCS
+...

«enumeration»
SpaActionT

Similarly to received packets, the current processing and buffering state has to be
kept, for packets which shall be sent.

The SpaActionT enumeration is used to assign symbolic names to this state.
With the symbolic names SPA_NONE_EMPTY, SPA_RPCS, the states no current
packet (empty send buffer), packet ready to be processed, respectively, are ex-
pressed.

As with the RpaActionT enumeration, SpaActionT is used in the nodes’ inter-
nal send processing and buffering. Further details depend on the internal modeling
of a scenario.

7.4.1.2 Functions

Functions provide mappings which are particularly useful for initializing attributes
and defining the network topology. In CTLA, functions are given by value tables
(cf. section 5.2.3).

Function fSrcToZone +map(in n : NodeIdT, in i : InterfaceIdT) : ZoneIdT

«function»
fSrcToZone

Interfaces are connected to the media, which is partitioned into zones (cf. sec-
tion 7.3). Expressed more abstractly, interfaces have to be mapped to zones.

The function fSrcToZone maps a source to its zone, taken from enumeration
ZoneIdT. Of course, the definition of the exact mapping depends on the topology
of the specific scenario. A special symbol, UNKNOWN_ZONE, is used to denote an
unknown (or invalid) zone. This symbol is returned for sources which do not exist
in the scenario.

Function fSrcToZone is used throughout the nodes’ send, receive actions, to
determine the zone of media to which the packet is sent, from which the packed is
received, respectively.

Function fSrcToIa +map(in n : NodeIdT, in i : InterfaceIdT) : IpAddressT

«function»
fSrcToIa

Each interface which is IP enabled has an IP address attribute. This attribute is
initialized according to the fSrcToIa function.

The function fSrcToIa maps a source to its IP address, taken from enumera-
tion IpAddressT. Again, the exact mapping depends on the specific scenario. The
special symbol, UNKNOWN_ZONE, is returned for sources that do not exist.

88

7.4 Packages & Elements

Function fSrcToIa is mainly used during interface initialization which is part
of node initialization.

Function fSrcToHa +map(in n : NodeIdT, in i : InterfaceIdT) : HardwareAddressT

«function»
fSrcToHa

For low-level scenarios, hardware addresses are useful. Hardware addresses are an
attribute of network interfaces.

The function fSrcToHa maps a source to its hardware address, taken from enu-
meration HardwareAddressT. As before, the exact mapping depends on the spe-
cific scenario model. A special symbol, UNKNOWN_HA, is returned for unknown (or
invalid) sources.

As with function fSrcToIa, function fSrcToHa is mainly used during interface
initialization, part of node initialization.

7.4.2 Package Data Types

The package data types contains common data types for interfaces, packets and
buffers used throughout the framework. For instance, the type InterfaceT
combines attributes of an interface; PacketT is used to represent a packet and
PacketBufT defines a buffer for packets.

Data Type PacketT

+pt
+...
+dat[n]

«type»
PacketT

Communication in computer networks is based on packets. Even if higher level
protocols are stream-oriented, they are ultimately broken down to packets. Thus,
PacketT is a key data type. Of course, PacketT has to be modified according to
the specific requirements of a scenario, particularly the supported protocols.

The data type PacketT represents a basic packet. The field pt defines the
packet’s type or the protocol type of the packet. Symbolic names for the pt field
are defined through the ProtocolT enumeration. Essential fields like source and
destination addresses can be added in two ways. Either, they are added as their
own fields (e.g., sha, dha for source and destination hardware addresses), or they
extend the array dat (e.g., dat[DI_SIA], dat[DI_DIA]). In the IP-ARP (cf. chap-
ter 9) and IP-OSPF (cf. chapter 11) scenarios, we add extra fields on their own; in
the IP-RIP scenario (cf. chapter 10), we map them into an extended dat field.

As packets are the basic communication units in computer networks, the data
type PacketT is used as a parameter in the nodes’ send and receive actions.

89

7 Computer Network Modeling Framework

Data Types PacketBufT, Rpa/SpaSystemBufT

+usd : bool
+pkt : PacketT

«type»
PacketBufT

+pkt : PacketT
+act : RpaActionT

«type»
RpaSystemBufT

+pkt : PacketT
+act : SpaActionT

«type»
SpaSystemBufT

Packets are stored “in the media”, by the interface after receive or before send, and
during processing in the node. Thus, appropriate packet data types have to be
provided.

The data types PacketBufT, RpaSystemBufT, and SpaSystemBufT are
packet buffers. All three data types use the field pkt, which is of the previously
defined data type PacketT, to store the packet. They differ in their mechanism for
marking the buffer as empty or in use.

For data type PacketBufT the field usd contains TRUE if the buffer is in use and
FALSE otherwise. The data types RpaSystemBufT, SpaSystemBufT utilize the
field act which is of the enumeration RpaActionT, SpaActionT, respectively.

These packet buffer data types are applied as indicated before: PacketBufT
stores packet in transit (e.g., for process type Media). The data types
RpaSystemBufT, SpaSystemBufT are used by the nodes (i.e., their interfaces) in
order to store received, sent packets, respectively.

Data Type InterfaceT

+usd : bool
+rpa : RpaSystemBufT
+spa : SpaSystemBufT
+ia : IpAddressT

«type»
InterfaceT

Packets are sent to and received from media via network interfaces. A host node
typically has one interface; router nodes usually have at least two interfaces.

The data type InterfaceT represents such an interface. The field usd contains
TRUE if the interface is up and FALSE otherwise. A received packet is stored in
field rpa of the previously defined data type RpaSystemBufT; a packet to be sent
is stored in field spa of data type SpaSystemBufT (i.e., both directions use their
own buffer). The field ia, of data type IpAddressT, contains the symbolic IP
address assigned to this interface.

As described above, all node types contain at least one and possibly multiple
InterfaceT data types.

7.4.3 Package Process Types

The package Process Types contains the core of the framework: process types for
nodes and media. For example, process types HostIpNode, RouterIpNode im-
plement a basic TCP/IP host or router node. Through inheritance, behavior is spe-

90

7.4 Packages & Elements

cialized. ActiveHostIpNode, for instance, adds behavior for the processing and
sending of packets.

In the following paragraphs, we describe the elements of package process types
in more detail.

Process Type Media
+in(in zid : ZoneIdT, in pkt : PacketT)
+out(in zid : ZoneIdT, in pkt : PacketT)

-buf : PacketBufT

Media

Packets are transfered over a physical media. Typically, the physical media is seg-
mented into zones according to the network’s physical structure (cf. section 7.3).

The process type Media represents the transfer media which is used by the nodes
to transfer packets. It is partitioned into zones according to the topology function
fSrcToZone together with the supporting enumeration ZoneIdT. In each zone,
up to one packet can be in transit. Such a packet is stored in the buffer (variable
buf[i]) belonging to the zone or zone buffer in short.

Predefined actions of process type Media are:

• in Accept a packet pkt and store it inside the zone buffer belonging to zone
zid. Only one packet can be stored in the zone buffer at any one time.

• out Retrieve packet pkt from the zone buffer belonging to zone zid.

System-level action coupling between send, receive actions of the nodes and in,
out actions of process type Media, respectively, has to make sure that only nodes
with an interface in a zone can communicate with that zone. This is easily achieved
using the fSrcToZone function.

Process type Media is a key element for the network view of each model. Without
the transfer media, no communication between nodes is possible.

Process Type HostIpNode

+rcv(in pkt : PacketT)
+rbc(in zid : ZoneIdT, in pkt : PacketT)
+rpcs()

+itf : InterfaceT

HostIpNode (NID: NodeIdT)

Host nodes are generally active network elements that receive, process, and send
packets (cf. section 7.3). In contrast to router nodes, host nodes have at most one
interface.

The process type HostIpNode models a passive TCP/IP node, i.e., a node that
only receives and processes, but never sends packets. Packets with an address not
matching the interface’s address are accepted by the receive actions, i.e., the inter-
face is able to work in promiscuous mode. The interface is represented by variable
itf.

Predefined actions of process type HostIpNode are:

91

7 Computer Network Modeling Framework

• rcv Receive a unicast packet from the zone the interface is connected to.

• rbc Receive a broadcast packet from the zone the interface is connected to.

• rpcs Basic processing of a received packet. Specific models usually have to
add their own processing.

The broadcast receive action only accepts packets with a destination address of
BC_IA (cf. enumeration IpAddressT); the unicast receive action never accepts
such packets. Furthermore, to properly model broadcast receive, system-level
broadcast receive actions have to be defined coupling the broadcast receive actions
of all nodes in a zone.

Process type HostIpNode is the key process type for all host nodes in a model.

Process Type NonPromHostIpNode +rcv(in pkt : PacketT)

NonPromHostIpNode (NID: NodeIdT)

Typical host nodes have their interface configured to only receive packets matching
the interface’s address (non-promiscuous). This “constraint” is added in process type
NonPromHostIpNode.

Process type NonPromHostIpNode extends process type HostIpNode. Thus,
it inherits all actions of this process type. Furthermore, it specializes the unicast
receive action of HostIpNode:

• rcv Receive a packet if its destination address matches the interface’s address.

Depending on the abstraction level of the scenario and the packet modeling, the
matching may be either against the hardware or the IP address of the interface.

The process type NonPromHostIpNode is typically used to model hosts with a
receiver role (cf. section 8.2.2).

Process Type ActiveHostIpNode
+snd(in pkt : PacketT)
+spcs()

ActiveHostIpNode (NID: NodeIdT)

Most host nodes actively send packets as well. Process type ActiveHostIpNode
adds this capability to process type HostIpNode.

Process type ActiveHostIpNode extends process type HostIpNode with the
ability to send packets.

Added actions of process type ActiveHostIpNode are:

• spcs Process a packet for sending. Specific models usually have to add their
own processing.

92

7.4 Packages & Elements

• snd Send a packet which has been processed by spcs.

The parameter pkt of action snd is required for appropriate system-level action
coupling: Typically, the snd action of a node is coupled with the in action of the
transfer media to build the system-level send action. As both node’s snd and me-
dia’s in have the pkt parameter, this ensures that the packet is transfered from the
node to the media unchanged.

The process type ActiveHostIpNode is commonly used to derive hosts with
an attacker role.

Process Type ActiveNonPromHostIpNode +snd_ip(in dia : IpAddressT)

ActiveNonPromHostIpNode (NID: NodeIdT)

Both non-promiscuous receive and active send behavior are common
for regular host nodes. These behaviors are combined in process type
ActiveNonPromHostIpNode, which is derived from process type NonProm-
HostIpNode and process type ActiveHostIpNode.

Process type ActiveNonPromHostIpNode extends both NonPromHostIpNode
and ActiveHostIpNode. Thus it inherits the actions of these two process types.

Furthermore process type ActiveNonPromHostIpNode adds the following ac-
tion:

• snd_ip Create a basic IP packet for the specified IP address.

Using actions spcs and snd from process type ActiveHostIpNode, the created
IP packet can be processed and finally sent.

The process type ActiveNonPromHostIpNode is typically used to model a host
with a sender role.

Process Type RouterIpNode

+rcv(in iid : InterfaceIdT, in pkt : PacketT)
+rbc(in zid : ZoneIdT, in pkt : PacketT)
+snd(in iid : InterfaceIdT, in pkt : PacketT)
+rpcs(in iid : InterfaceIdT)
+spcs(in iid : InterfaceIdT)
+fwd(in iid : InterfaceIdT)

+ifs[n] : InterfaceT

RouterIpNode (NID: NodeIdT, MII: InterfaceIdT)

Router nodes are active network elements like host nodes. However, they have at
least two interfaces. These interfaces are connected to different zones. Thus, router
nodes can forward packets between zones.

The process type RouterIpNodemodels a basic IP router node. Its interfaces are
contained in the attribute ifs[n]. The actions are roughly comparable to process
type ActiveHostIpNode. As there are multiple interfaces, however, parameters
specifying the interface or zone have to be added:

93

7 Computer Network Modeling Framework

• rcv Receive an unicast packet via the interface iid.

• rbc Receive a broadcast packet from the zone zid.

• rpcs Basic processing of a received packet. Specific models usually have to
add their own processing.

• fwd Forward a received packet destined for another zone. Specific models
have to properly initialize the routing table (also called forward table) or cal-
culate it dynamically.

• spcs Process a packet for sending. Specific models usually have to add their
own processing.

• snd Send a packet which has been processed by spcs or has been forwarded
(fwd).

As with the host node types, system-level action coupling has to be defined appro-
priately for send and receive actions.

Process type RouterIpNode is the basic process type for all routers in the frame-
work. More specialized router types, e.g., routers running RIP (cf. chapter 10), can
be derived.

7.4.4 Collaboration & Extensions

In this section, we first highlight the cross-package collaboration between the frame-
work’s elements. Then, extensions of the framework for specific models are out-
lined.

7.4.4.1 Collaboration of Framework Elements

Above, we discussed the framework’s elements by package. From a functional
viewpoint, however, all packages usually collaborate to model a conception. For
example, a scenario’s network topology is modeled using functions (particularly
fSrcToZone) together with enumerations (ZoneIdT, NodeIdT, InterfaceIdT).
Additionally, the system-level coupling of the send and receive related actions
(e.g., in, out, snd, rcv) of the process instances (e.g., Media, HostIpNode,
RouterIpNode) has to be defined appropriately.

Another example is packets and their processing. Packets are sent to and re-
ceived from Media by nodes using interfaces. Interfaces are represented through
the InterfaceIdT data type which includes send and receive buffers, data
type PacketBufT. In turn, the PacketBufT data type stores packets using the
PacketT data type. A packet’s interpretation depends on its protocol type
(PacketT.pt), which contains symbolic names from the ProtocolT enumeration.

94

7.4 Packages & Elements

Packets currently processed at a node are stored using the SystemBufT data type.
The processing status is determined via the ActionT enumeration, usually depend-
ing on the protocol type. Similarly, addressing depends on intertwined framework
elements as well: functions (e.g., fSrcToIa), enumerations (e.g., IpAddressT),
data types (e.g., PacketT) and node process types.

7.4.4.2 Extensions

The framework provides for the general architecture, behavior, and collaboration of
derived models. Of course, specific models have to amend and modify the frame-
work according to their needs:

• In the IP-ARP model (cf. section 9.2), the IpArpNode process type is added.
This process type adds low-level ARP layer support to the basic TCP/IP sup-
port provided by the process types derived from HostIpNode.

• For modeling the IP-RIP scenario (cf. section 10.2), two new process types,
RipRouterIpNode and RipAttackerRouterIpNode, are implemented.
These process types extend the basic RouterIpNode process type with sup-
port for the routing information protocol. They differ in the attacker action,
which is available in the RipAttackerRouterIpNode process type only.

• The IP-OSPF model (cf. section 11) includes three new process
types. As in the IP-RIP scenario, two process types OSPFRouter and
AttackerOSPFRouter add support for a new protocol, once with and
once without attacker action. Furthermore, the TimedMedia process type
constrains the Media process type with regard to LSA aging.

In addition to the examples from these case studies, further directions for exten-
sions which seem particularly rewarding are briefly described in the future work
(cf. section 12.2).

95

8 Optimization Strategies

This chapter describes the key optimizations that proved to be most helpful for the
successful analysis of the case studies described in chapters 9 to 11. After a short
motivation and overview of the optimization stages, we explain the optimizations
at each stage.

8.1 Motivation

Model checking is a challenging task. Typically, models either are highly special-
ized and have a very narrow scope or they quickly exceed given time and memory
constraints. Furthermore, marginal model additions can have a strong adverse im-
pact on the performance of the verification tool and cause verification to fail. This
effect is well-known as state space explosion and a very serious problem for practical
model checking. To prevent or alleviate this problem, it is a top priority to consider
the size of the state vector and – to a smaller extent – the number of transitions at
different stages during modeling.

Our aim is to be able to analyze dynamic models which integrate protocol, node,
and network view. Unfortunately, such models tend to have a prohibitively large
state vector. Fortunately, optimizations can significantly reduce the state vector
size. In our experience, it is best to follow an iterative approach to develop new op-
timizations. First, the current CTLA model with the current set of optimizations is
translated to PROMELA. Second, SPIN is used to create the C source code for model
specific verifier. Third, after the generation of the verifier with GCC, a verifier run
with a fixed memory limit (-DMEMLIM=n) is performed. This way, SPIN will out-
put statistics about the state vector size, the search depth reached, the number of
transitions etc. Based on this data, we can then estimate the effects of the current op-
timizations vs. the previous optimizations. This helps to decide whether particular
optimizations are helpful for a particular model.

We consider optimizations at all modeling stages (cf. Fig. 8.1). The stages are
Scenario, Model Design, CTLA Model, PROMELA Model and SPIN/Verifier. They cor-
respond to the stages of the modeling process from the initial consideration of the
scenario over the model design, CTLA model and PROMELA translation to the SPIN
verifier compile and run-time options. Furthermore, our approach supports opti-
mizations at the various levels by different means. The framework’s process types
implement the optimizations of the Model level. Our translator, CTLA2PC, can

96

8.2 Scenario

cTLA2PC

Framework

Scenario

cTLA Model

Promela Model

Spin/Verifier

Model Design

representative hosts
and role assignment

ideas from efficient
protocol impl .

e.g. paramodulation ,
unroll actions params

e.g. bitvector, reduce
nesting depth of
guard expressions

e.g. bit-state hashing,
max search depth

Figure 8.1: Modeling Stages & Optimizations

automatically apply several optimizations from the CTLA and PROMELA levels. In
the following sections, we describe each stage in more detail.

8.2 Scenario

At the scenario stage, we devise the scenario diagram. We start from the real net-
work and sketch its main nodes, networks, and connections. Furthermore, we anno-
tate additional key information required for modeling the scenario, like designated
routers etc (cf. chapter 11). The scenario diagram is crucial for the following devel-
opment of a scenario model. Regarding optimizations, early simplifications often
have the greatest effect on the complexity of the model developed in the later stages.

8.2.1 Representative Nodes

We minimize the number of nodes which have to be modeled later on by using
representative nodes. If there is a set of similar nodes in the same network zone, it is
often sufficient to include only one of them in the modeling. This node is then called
a representative node. We can typically substantiate the use of a representative
node by the fact that the nodes in the set are interchangeable with one another. If
one of the nodes acts in a specific way, any of the other nodes could act in the
same way, too. Thus, we can assume that the acting node is the representative
node. The representative node concept allows us to develop a smaller model which
is still relevant for the originally intended scenario. Of course, this selection of
representative nodes depends on the assigned roles and the circumstances of the
scenario as well. In the IP-ARP scenario (cf. chapter 9), for instance, we select three

97

8 Optimization Strategies

representative nodes in the same network zone instead of only one. This is due to
the fact that each of these nodes has a different role in the scenario.

8.2.2 Role Assignment

Complementary with the representative nodes concept, we can minimize the num-
ber of actions which have to be included in the modeling. Actions are combined
according to roles. Typical roles are e.g., attacker, sender, and receiver. These roles
include basic actions plus specific actions required for the role. By assigning roles
to the nodes we know which actions we have to include. This is implemented by
instantiating the node from a role-specific process type. For example, in the IP-RIP
scenario (cf. chapter 10), the attacking node is instantiated from the role-specific
process type AttackerHostIpNode. This process type is derived from the basic
process type HostIpNode; but it adds the attacker actions. The assignment of roles
via instantiation from a role-specific process type makes it easy to change roles bet-
ween nodes. Thus, models which are identical except for different role assignment
can be modeled with ease.

Especially when utilized together, the representative nodes and the role assign-
ment concepts help us to cut our scenario down to an essential number of nodes
and actions. As the scenario stage is at the beginning of the modeling process, op-
timizations at the scenario stage have a positive effect on all the other stages as
well.

8.3 Model Design

The aim of this stage is to develop a design for a model implementing the scenario.
Thus, we take a more detailed look at the elements of the scenario diagram. We
particularly consider the involved protocols. The design is still independent of a
specific modeling language like CTLA.

8.3.1 Protocol Simplification

The key idea is to either abstract the protocol itself (e.g., by substituting complicated
message types with simpler ones) or to restrict the scope of the model (e.g., by
stating the conditions). Regarding the first case, RIP (cf. section 10.2.1), for example,
allows multiple updates to be contained in a single update packet. This is due to
efficiency reasons, because the packet header is required only once. The effect of
multiple updates in one packet, however, is typically equivalent to multiple update
packets with a single update each. In these cases, without loss of generality, we can
assume each update packet contain exactly one update.

98

8.3 Model Design

Furthermore, we can restrict the scope of our model. Some protocols work in
different phases and we may restrict our model to one of these phases. For example,
the OSPF protocol (cf. chapter 11) distinguishes between a neighbor acquisition or
initialization phase and a following so-called steady phase. By restricting the scope
of our model to the steady phase, we do not have to model the message types and
processing associated with the initialization phase. Alternatively, for each phase an
independent model can be designed.

Beyond this, by making certain assumptions on the environment, we can opti-
mize our protocol modeling as well. OSPF, for example, includes mechanisms to
ensure reliable transport. If we assume a reliable media, we do not have to include
message types and processing associated with acknowledgment or resubmission of
packets.

8.3.2 Efficient Protocol Implementation Techniques

In the course of the upcoming high speed communication protocols, several tech-
niques were invented to implement protocols more efficiently. Particularly, we
make use of the activity thread and the integrated layers approaches for the pro-
tocol modeling of the framework’s node and router types.

Activity Thread Approach The basic idea of the activity thread approach [Svo89] is
to concatenate all actions which handle the same packet into one uninterruptable
execution thread. This encompasses the actions from the initial processing of the
packet to the final processing and removal of the packet. Figure 8.2 depicts con-
ventional layered packet processing on the left and layered packet processing after
application of the activity thread approach on the right.

Initial processing starts due to a stimulating event (e.g., packet receive at the phys-
ical layer). In case of data dependencies, the activity thread approach may have to
be implemented in a less strict way allowing for a small number of interruptions.
The activity thread approach is most suitable for layered protocol implementations.
Its main advantage in comparison to approaches that process packets layer by layer
is that partially processed packets do not have to be stored after each layer. Thus,
the activity thread approach saves on buffers required for packet processing.

Originally, we implemented the basic node and router types of the framework
with layer-by-layer processing using actions of the form spcs_ln, rpcs_ln for
send, receive processing of layer n, respectively. After processing at a layer, the
packet was stored in the send or receive buffer of that layer. Later on, we reimple-
mented the basic node and router types according to the activity thread approach.
Packets are processed through all layers with only one action spcs (send events)
or rpcs (receive events). This saves considerably on the size of the state vector
because only two (send and receive) instead of n buffers are required for packet

99

8 Optimization Strategies

Packet
Received

Final Processing
and Removal

L1

L2

Ln

...

L1_rpcs_1

Packet
Received

L2_rpcs_1
L2_rpcs_2

Ln_rpcs_1

Ln_rpcs_2

Final Processing
and Removal

L2_rpcs_3

L1_rpcs_1

L1_rpcs_2L1_rpcs_2

L2_rpcs_1

L2_rpcs_2

Packet
Received

L1_rpcs_1

L1_rpcs_2

L2_rpcs_1
L2_rpcs_2

Ln_rpcs_1

Ln_rpcs_2

L2_rpcs_3

...

Ln_rpcs_1

Ln_rpcs_2

Final Processing
and Removal

C
om

po
si

te
 A

ct
io

n
Figure 8.2: Layered Packet Processing and the Activity Thread Approach

processing. In the IP-ARP scenario (cf. chapter 9), which was at first modeled with-
out the activity thread approach, the state vector size is nearly halved (from 480
bytes to 250 bytes) by the application of the activity thread approach.

Integrated Layers Approach The key idea of the integrated layers approach [AP93]
is to combine several sequential operations (e.g., read-encrypt-write, read-
calc_checksum-write) on a packet into one operation. Particularly, if n opera-
tions of the form read-manipulate_i-write are required, they are combined into
one operation of the form read-manipulate_1-. . . -manipulate_n-write. If in-
termediate results are required by the protocol layers, however, not all operations
can be combined.

The main advantage of the integrated layers approach is that multiple read-write
cycles are avoided. In many cases, the read-write cycles take more time than the
manipulation operations. Thus, the integrated layers approach can improve the
performance of a protocol stack by up to 50%.

Performance of the modeled protocol stack is less of a concern for us than model
size. In simulation mode, however, during model validation, performance makes
a difference. Furthermore, the integrated layers approach goes along particularly
well with the activity thread approach. Thus, we followed the integrated layers
approach to avoid extra read-write cycles of packet data in framework.

100

8.4 cTLA Model

8.4 cTLA Model

The aim of the CTLA stage is to implement the model design in CTLA. Furthermore,
we consider transforming selected CTLA constructs to better optimized CTLA con-
structs. Action parameters are a particularly promising area for optimizations. In
the following section, we give the key optimizations that proved useful. Using
CTLA2PC (cf. chapter 6), they can be applied automatically.

8.4.1 Paramodulation

CTLA action parameters correspond to existentially quantified value variables (cf.
chapter 5). Due to the coupling of actions in system actions, however, value de-
termining equalities often exist. A typical example are send and receive system
actions. An input parameter of one coupled action is the output parameter of an-
other coupled action. The input parameter can then be removed from the action
head and its occurrences inside the action can be replaced by the output parameter.

We call this action parameter replacement due to equalities paramodulation.
Paramodulation techniques were orginally introduced in theorem proving for first
order logics with equality [RW69].

Basic Paramodulation In the basic case, the equality only includes the parameter
on the left side. In that case, the parameter can be fully replaced. We consider an
example from the IP-ARP scenario (cf. chapter 9). Listing 8.1 contains the snd_h1
CTLA system action. The pkt parameter refers to the packet to be transfered from
the node to the media.

snd_h1(pkt: PacketT) ::= h1.snd(pkt) AND med.in(pkt);

Listing 8.1: snd_h1 cTLA System Action

In the flat system (cf. chapter 6), the process types and their coupling are resolved.
Thus, equalities are clearly visible. For example, the action snd_h1 contains an
equality between the parameter pkt and the send buffer h1_ifs[0].spa.pkt
(cf. Listing 8.2).

The parameter pkt is only read to write to the media buffer med_buf[0].pkt.
Furthermore, it does not occur in expressions on the left side. Thus, the parameter
pkt can be removed from the action head of snd_h1 and replaced inside the action
with h1_ifs[1-1].spa.pkt. The resulting action snd_h1 after paramodulation
is depicted in Listing 8.3.

101

8 Optimization Strategies

snd_h1(pkt: PacketT) ::=
med_buf[1 - 1].usd = FALSE
AND h1_ifs[1 - 1].usd = TRUE
AND h1_ifs[1 - 1].spa.usd = TRUE
AND h1_ifs[1 - 1].spa.psd = TRUE

AND pkt = h1_ifs[1 - 1].spa.pkt // <-- Equality

AND med_buf[1 - 1].usd’ = TRUE
AND med_buf[1 - 1].pkt’ = pkt // <-- Read
AND h1_ifs[1 - 1].spa.usd’ = FALSE;

Listing 8.2: Action snd_h1 in the Flat System

snd_h1()::= // <-- Parameter removed
med_buf[1 - 1].usd = FALSE
AND h1_ifs[1 - 1].usd = TRUE
AND h1_ifs[1 - 1].spa.usd = TRUE
AND h1_ifs[1 - 1].spa.psd = TRUE
AND med_buf[1 - 1].usd’ = TRUE
AND med_buf[1 - 1].pkt’ = h1_ifs[1 - 1].spa.pkt // <-- Replaced
AND h1_ifs[1 - 1].spa.usd’ = FALSE;

Listing 8.3: Action snd_h1 After Paramodulation

Advanced Paramodulation In more complicated cases, the equality involving the
parameter contains parts of the parameter on the right side. Partial paramodulation
may still be possible after parameter splitting.

Let action snd_h1b be like action snd_h1 (cf. Listing 8.2), except that the
equality is pkt = h1_ifs[pkt.sci - 1].spa.pkt instead of pkt = h1_-
ifs[0].spa.pkt. We cannot replace the parameter pkt like in the basic case be-
cause the replacement still contains pkt. The parameter pkt, however, has the type
PacketT, which is a record comprising several fields (scn, sci, sha, ...).
Accordingly, we can split the equality pkt = h1_ifs[pkt.sci - 1].spa.pkt
into its parts (cf. Listing 8.4).

This way, we obtain new equalities for all fields of parameter pkt. Except for
field sci, these new equalities are not self-dependent. Similarly, parameter pkt is
splitted into pkt_scn, pkt_sci, pkt_sha, . . . in the head of action snd_h1. Thus,
we can now apply the basic paramodulation for all new parameters except pkt_-
sci. Only one parameter, pkt_sci, remains in snd_h1 (cf. Listing 8.5).

Both basic paramodulation and advanced paramodulation are implemented in
CTLA2PC (cf. chapter 6.3). Using CTLA2PC’s option --optparamod all system

102

8.4 cTLA Model

pkt.scn = h1_ifs[pkt.sci - 1].spa.pkt.scn // <-- Equality (1)
pkt.sci = h1_ifs[pkt.sci - 1].spa.pkt.sci // <-- Dependency
pkt.sha = h1_ifs[pkt.sci - 1].spa.pkt.sha // <-- Equality (2)
...

Listing 8.4: Equalities After Splitting of Parameter pkt

snd_h1(pkt_sci) ::=
med_buf[1 - 1].usd = FALSE
AND h1_ifs[1 - 1].usd = TRUE
AND h1_ifs[1 - 1].spa.usd = TRUE
AND h1_ifs[1 - 1].spa.psd = TRUE
AND pkt_sci = h1_ifs[pkt_sci - 1].spa.pkt.sci // <-- Remainder
AND med_buf[1 - 1].usd’ = TRUE

AND med_buf[1 - 1].pkt.scn = h1_ifs[pkt_sci - 1].spa.pkt.scn
AND med_buf[1 - 1].pkt.sci = pkt_sci
AND med_buf[1 - 1].pkt.sha = h1_ifs[pkt_sci - 1].spa.pkt.scn
...

AND h1_ifs[1 - 1].spa.usd’ = FALSE;

Listing 8.5: Action snd_h1b After Paramodulation

actions are examined and both basic and advanced paramodulation are applied if
possible. In the IP-ARP scenario (cf. chapter 9), the paramodulation optimization
cuts down the state vector size by about 16% (from 250 Bytes to 210 Bytes).

8.4.2 Unroll Action Parameters

The unroll action parameters technique is another optimization related to parame-
terized actions. It is especially useful after the paramodulation optimization has
been applied. The basic idea is to create fixed value copies of parameterized actions.
This has to be done for all possible parameter values and combinations. Then, the
parameterized action can be removed and only the fixed value copies remain.

Consider for example action snd_r1 (cf. Listing 8.6), which is taken from the
IP-RIP scenario (cf. chapter 10).

After paramodulation, one parameter, iid of type InterfaceIdT, remains. In
the IP-RIP scenario, because the nodes have at most three interfaces, this type
ranges from 0 . . . 3. Thus, the parameter iid can be unrolled by creating four copies
of action snd_r1 and replacing iid with a different fixed value in each (cf. List-
ing 8.7). Of course, the resulting CTLA action code is much larger after unroll. It

103

8 Optimization Strategies

snd_r1(iid: InterfaceIdT) ::= // <-- Parameter iid
fSrcToZone(R1_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R1_ID, iid) - 1].usd = FALSE
AND pValidIf(iid, 3)
AND r1_ifs[iid - 1].spa.act = SPA_SND
AND med_buf[fSrcToZone(R1_ID, iid) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(R1_ID, iid) - 1].pkt’ =
r1_ifs[iid - 1].spa.pkt

AND r1_ifs[iid - 1].spa.act’ = SPA_NONE_EMPTY;

Listing 8.6: Action snd_r1

can be handled more efficiently by SPIN after translation to PROMELA, however.

snd_r1_0() ::= // <-- Replaced iid with first value, 0
fSrcToZone(R1_ID, 0) != UNKNOWN_ZONE
...
AND r1_ifs[0 - 1].spa.act’ = SPA_NONE_EMPTY;

snd_r1_1() ::=
fSrcToZone(R1_ID, 1) != UNKNOWN_ZONE
...
AND r1_ifs[1 - 1].spa.act’ = SPA_NONE_EMPTY;

snd_r1_2() ::=
fSrcToZone(R1_ID, 2) != UNKNOWN_ZONE
...
AND r1_ifs[2 - 1].spa.act’ = SPA_NONE_EMPTY;

snd_r1_3() ::= // <-- Replaced iid with last value, 3
fSrcToZone(R1_ID, 3) != UNKNOWN_ZONE
...
AND r1_ifs[3 - 1].spa.act’ = SPA_NONE_EMPTY;

Listing 8.7: Action snd_r1 After Unroll (Excerpt)

The unroll action parameters optimization is implemented in CTLA2PC. With
CTLA2PC’s option --unrollinputgen, all actions are unrolled. To obtain the
best results, this option should be applied together with --optparamod.

The unroll action parameters optimization does not reduce the state vector size
much. In the IP-RIP scenario (cf. chapter 10), for instance, the reduction is about
5%. Far more significant is a decrease in the search depth required for a specific
sequence after translation to PROMELA. This is due to input generator steps (cf.

104

8.5 Promela Model

chapter 6) which are no longer needed after the application of the unroll action
parameters optimization.

8.5 Promela Model

Because SPIN’s input language is PROMELA, the CTLA model has to be translated
to a PROMELA model. The translation is automated using the CTLA2PC tool. Fur-
thermore, we optimize the PROMELA model by taking peculiarities of SPIN into
account. The PhD thesis by Ruys [Ruy01] provides a comprehensive summary of
low-level PROMELA or SPIN optimization possibilities. Some optimization ideas
implemented in CTLA2PC are based on these ideas. Particularly, our bit array
mapping is a generalized version of Ruys’s bitvector approach.

8.5.1 Bit Array Mapping

A bit array is a data structure which stores a set of n variables {v0, . . . , vn−1}. Each
vi occupies a number of bits which can typically not be divided by eight. Thus,
using a number of bytes (=8 bit) for every vi wastes space and increases the state
vector. Unfortunately, SPIN handles bit arrays by mapping each vi to a number of
bytes. For example, if each vi originally requires one bit, it will require one byte
with SPIN’s bit array mapping, wasting seven bits per byte. Hence, the state vector
may increase up to eightfold in comparison to a more intelligent mapping.

Ruys [Ruy01] first observed a related weakness of SPIN regarding bit arrays
where each vi is a boolean value (i.e., occupies exactly one bit). Following his bitvector
approach, accesses to each boolean vi have to be rewritten using appropriate macros
(e.g., SET_0, SET_1, IS_0, IS_1). These macros map up to eight booleans in
a single byte, ideally wasting no bits at all.

We generalized Ruys’ approach by allowing for arbitrary element sizes instead of
only single bit (i.e., boolean) elements. Basically, we provide macros (cf. Listing 8.8)
which map the element at index idx, where each element has a bit size of esz, into
the integer or byte array type bv. Furthermore, due to the integration in CTLA2PC,
no changes to the CTLA source code are necessary. Particularly, the model designer
does not have to work with special macros, because the rewrite of all accesses is
done automatically by CTLA2PC. With the switch --optbitarrays CTLA2PC
appropriately maps all read and write accesses to bit array elements.

Consider for example the packet type PacketT (cf. Listing 8.9) from the IP-ARP
scenario (cf. chapter 9). In addition to the standard fields, it contains an array dat of
type DataT which contains elements specific to ARP packets. From the rangedef
file supplied with the CTLA model, each DataT element can be restricted to values
between 0 and 4. Thus, dat can be represented as a bit array with an element size
of 3 (23 = 8).

105

8 Optimization Strategies

#define BVSET(bv, esz, idx, val)\
bv = ((bv & (~(((1<<esz)-1) << (idx*esz)))) | (val<<(idx*esz)))

#define BVGET(bv, esz, idx)\
((bv>>(idx*esz)) & ((1<<esz)-1))

Listing 8.8: Bit Array Mapping BVSET and BVGET Macros

PacketT = RECORD
scn: NodeIdT;
sci: InterfaceIdT;
sha: HwAddressT;
...
dat: ARRAY [5] OF DataT;

END;

Listing 8.9: PacketT with dat Array in the IP ARP Scenario

At the CTLA level, the action snd_h1 (cf. Listing 8.5) contains the assignment
med_buf[1 - 1].pkt’ = h1_ifs[1 - 1].spa.pkt. Particularly, the dat
field of pkt has to be read and written. Without the generalized bit vector op-
timization, this statement is realized in PROMELA by simple assignments for the
array elements (cf. Listing 8.10).

med_buf[1 - 1].pkt.dat[0] = bnA_ifs[1 - 1].spa.pkt.dat[0];
med_buf[1 - 1].pkt.dat[1] = bnA_ifs[1 - 1].spa.pkt.dat[1];
med_buf[1 - 1].pkt.dat[2] = bnA_ifs[1 - 1].spa.pkt.dat[2];
med_buf[1 - 1].pkt.dat[3] = bnA_ifs[1 - 1].spa.pkt.dat[3];
med_buf[1 - 1].pkt.dat[4] = bnA_ifs[1 - 1].spa.pkt.dat[4];

Listing 8.10: Assignment Implementation in Promela Without Bit Array Mapping

Using the bit vector optimization, however, each read access is replaced by the
BVGET macro and each write access is replaced with the BVSET macro (cf. List-
ing 8.11). Furthermore, the index position of the element to access and its bit size
have to be specified in the macro. Fortunately, CTLA2PC inserts the macros with
the required parameters automatically.

In both the IP-ARP (cf. chapter 9) and IP-RIP scenario (cf. chapter 10), the bit
array mapping optimization helps to cut down the state vector by about 20%.

106

8.5 Promela Model

BVSET(med_buf[1 - 1].pkt.dat, 3, 0,
BVGET(bnA_ifs[1 - 1].spa.pkt.dat, 3, 0));

BVSET(med_buf[1 - 1].pkt.dat, 3, 1,
BVGET(bnA_ifs[1 - 1].spa.pkt.dat, 3, 1));

BVSET(med_buf[1 - 1].pkt.dat, 3, 2,
BVGET(bnA_ifs[1 - 1].spa.pkt.dat, 3, 2));

BVSET(med_buf[1 - 1].pkt.dat, 3, 3,
BVGET(bnA_ifs[1 - 1].spa.pkt.dat, 3, 3));

BVSET(med_buf[1 - 1].pkt.dat, 3, 4,
BVGET(bnA_ifs[1 - 1].spa.pkt.dat, 3, 4));

Listing 8.11: Assignment Implementation in Promela With Bit Array Mapping

8.5.2 Reduce Nesting Depth of Guard Expressions

As described in section 6.2.2.4, CTLA functions are translated to PROMELA via pre-
processor macros. During preprocessing, these macros are expanded wherever the
function is called. Of course, if multiple function calls are nested, this can lead to
very large, nested expressions in the PROMELA model after preprocessing.

Unfortunately, this may lead to the well-known C compiler GCC failing to gener-
ate the executable verifier (cf. section 3.1.1) for a model. We experienced this effect
in the IP-OSPF scenario (cf. section 11.3.2.4).

Using the reduce nesting depth of guard expressions optimization produces
smaller guard expressions. At the expense of additional helper variables, the nest-
ing level of function calls is reduced. Listing 8.12 shows an excerpt of the CTLA
guard expression for action fwd of the OSPFRouter process type. It combines the
predicate pValidIf with the nested functions fIaToIna ◦ fInaToRtI.

...
AND pValidIf(rt[
fInaToRtI(fIaToIna(ifs[iid].rpa.pkt.ida))
].iid, MII)

...

Listing 8.12: Excerpt of Action fwd’s cTLA Guard Expression

Because of the inline expansion of functions, this causes the PROMELA level
guard to be much larger and complicated (cf. Listing 8.13).

Such guard expressions often occur in more than one action and in more than one
instance of a process type. In the case of process type OSPFRouter, GCC fails. We
analyzed the situation and invented the reduce nesting depth of guard expressions
optimization. After applying the optimization, the guard expression makes use

107

8 Optimization Strategies

...
&& r1_rt[
((r1_ifs[1].rpa.pkt.ida == 1 -> 12:
(r1_ifs[1].rpa.pkt.ida == 2 -> 15:
...
(r1_ifs[1].rpa.pkt.ida == 9 -> 14:
(r1_ifs[1].rpa.pkt.ida == 10 -> 14:
(r1_ifs[1].rpa.pkt.ida == 11 -> 15:0))))))))))) == 12 -> 0:
((r1_ifs[1].rpa.pkt.ida == 1 -> 12:
(r1_ifs[1].rpa.pkt.ida == 2 -> 15:
...
(r1_ifs[1].rpa.pkt.ida == 10 -> 14:
(r1_ifs[1].rpa.pkt.ida == 11 -> 15:0))))))))))) == 13 -> 1:
((r1_ifs[1].rpa.pkt.ida == 1 -> 12:
(r1_ifs[1].rpa.pkt.ida == 2 -> 15:
...
(r1_ifs[1].rpa.pkt.ida == 10 -> 14:
(r1_ifs[1].rpa.pkt.ida == 11 -> 15:0))))))))))) == 14 -> 2:
((r1_ifs[1].rpa.pkt.ida == 1 -> 12:
(r1_ifs[1].rpa.pkt.ida == 2 -> 15:
...
(r1_ifs[1].rpa.pkt.ida == 9 -> 14:
(r1_ifs[1].rpa.pkt.ida == 10 -> 14:
(r1_ifs[1].rpa.pkt.ida == 11 -> 15:0))))))))))) == 15 -> 3:
5))))

].iid < 2
...

Listing 8.13: Part of Action fwd’s Promela Guard Expression after Macro Expansion

of two temporary variables for the two previously nested functions calls (cf. List-
ing 8.14). This way, the main guard expression is reduced to the short statement
(r1_rt[FVAL_2].iid < 2).

This transformation can be done automatically. We implemented a prototypical
PERL script called t2p, which is a front-end for our usual translator CTLA2PC.
It calls CTLA2PC to produce a PROMELA version of the CTLA model and then
transforms the nested functions and predicates.

8.5.3 Further Promela Level Optimizations

Several properties of CTLA allow for further optimizations on the PROMELA level.
For example, the execution of CTLA actions can be arbitrarily interleaved; however,

108

8.6 Verifier Compilation & Run-Time Options

...
FVAL_1 = (r1_ifs[1].rpa.pkt.ida == 1 -> 12:

(r1_ifs[1].rpa.pkt.ida == 2 -> 15:
(r1_ifs[1].rpa.pkt.ida == 3 -> 14:
(r1_ifs[1].rpa.pkt.ida == 4 -> 12:
(r1_ifs[1].rpa.pkt.ida == 5 -> 13:
(r1_ifs[1].rpa.pkt.ida == 6 -> 13:
(r1_ifs[1].rpa.pkt.ida == 7 -> 14:
(r1_ifs[1].rpa.pkt.ida == 8 -> 13:
(r1_ifs[1].rpa.pkt.ida == 9 -> 14:
(r1_ifs[1].rpa.pkt.ida == 10 -> 14:
(r1_ifs[1].rpa.pkt.ida == 11 -> 15:0)))))))))));

FVAL_2 = (FVAL_1 == 12 -> 0:
(FVAL_1 == 13 -> 1:
(FVAL_1 == 14 -> 2:
(FVAL_1 == 15 -> 3:5))));

if
:: (r1_rt[FVAL_2].iid < 2)

...

Listing 8.14: Part of Action fwd’s Promela Guard Expression after Macro Expansion,
with Reduce Function Nesting Optimization

each action is atomic and deterministic. SPIN supports the marking of atomic and
deterministic code blocks with the PROMELA keyword d_step. This helps SPIN to
build a more efficient internal model representation for verification.

The PROMELA system generated by CTLA2PC contains only a single instance
of a process type (the system process type). Thus, a single PROMELA active
proctype statement suffices to instantiate the process type and run it. Usually,
processes are started from the PROMELA init process. In this case, 1 + n, with n
beeing the number of processes in the system, are required.

Temporary variables (e.g., counter variables for loops or partial function results)
which are generated inside actions by CTLA2PC are flagged with the PROMELA
hidden statement. These variables have no relevance outside their local scope and
the actions are atomic. Thus, these variables do not have to be included in the state
vector by SPIN. Marking them with the hidden statement achieves exactly that.

8.6 Verifier Compilation & Run-Time Options

Finally, SPIN supports different options during verifier generation and run-time.
Section 3.1.4 contains an overview of these options. The main choice is between

109

8 Optimization Strategies

exhaustive and approximative verification modes and between breadth first search
and depth first search.

Typically, we use exhaustive verification mode (cf. case studies chapter 9 and 10).
In our experience, using graph encoding for the state vector (-DMA=n) is the best
setting. As we are only interested in safety properties, we give the -DSAFETY op-
tion. Furthermore, we prefer breadth first search (-DBFS) because we are interested
in minimal attack sequences. In certain cases, to estimate the effects of an optimiza-
tion, it makes sense to add the -DMEMLIM=n option. This causes the verifier to stop
after n MB of memory are exhausted. As described above, SPIN after stopping,
gives useful statistics on the number of states explored etc. Verifier run-time op-
tions seldomly are advantageous. As with the -DMEMLIM switch, however, in some
cases -mn is useful. This option stops the verification after depth n is reached.

Furthermore, SPIN is under active development. New reductions and verification
options are added and bugs are fixed on a frequent basis. While the first models for
this PhD thesis were analyzed using SPIN 4.0.7, at the time the final models were
analyzed SPIN 4.2.5 was ready. Thus, the exact version of SPIN employed may have
an influence on state-vector size as well.

In our experience, however, SPIN versions and options offer only modest im-
provements relative to each other and the default settings. Thus, most of the time
the feasibility of automated analysis does not depend on the right choice of veri-
fier and environment level options, but much more on careful optimizations at the
other levels.

110

9 Case Study: IP-ARP

In this chapter, we apply our integrated formal modeling and automated analysis
approach (cf. chapter 4) to the IP-ARP scenario. First, the general setting of the
scenario is introduced, followed by the steps taken to build an appropriate scenario
model covering protocol, network and node view. Afterwards, the security pro-
perty, optimizations, and results of the automated analysis are described. Last but
not least, we give an outline of the experience gained from applying our approach
to the IP-ARP scenario.

9.1 Introduction

In the IP-ARP scenario [RPK04], we consider a switched LAN connecting hosts
running a basic TCP/IP stack including the low-level ARP layer. Three of the hosts,
H1, H2, HA, are chosen as representatives (cf. Fig. 9.1).

Z1

LAN

i1 i1

i1

H2

HA
H1

Figure 9.1: IP-ARP Scenario

Classification ARP is used for routing inside a single, physical network. In con-
trast to higher level routing protocols like RIP and OSPF (cf. chapter 10, 11), ARP
is much simpler. It is a query and reply protocol to map IP to hardware addresses.
This is necessary because the physical networking hardware can only work with
its own addresses. There are no distinguished router nodes, each node answers
queries for its own IP address.

111

9 Case Study: IP-ARP

Attack Ideas & Tools In principle, the generic routing attack ideas described in
section 7.2.3 apply. Due to the simplicity of ARP, there is e.g., no calculation of
a routing table and no distribution of injected packets via triggered updates. The
effects of ARP attacks, however, closely match those in section 7.2.3.

Tools like nemesis-arp from the NEMESIS project [NS04] or arpspoof from
the DSNIFF suite [Son00] provide simple injection of packets with arbitrary source
and destination IP address and IP to hardware mapping. More advanced tools like
ettercap [OV06] support the complete set-up of man-in-the-middle attacks.

To examine the scenario, we first have to compose an appropriate model in CTLA.
The following section describes the modeling steps.

9.2 Modeling

The scenario is modeled based on an early version of the current framework (cf.
chapter 7). We take different views to describe its modeling. The protocol-oriented
view describes the involved protocols and their processing. With the node view we
take a look at the local actions of the nodes, including management actions, and the
attacker actions. Finally, we describe the network modeling and the composition of
the integrated system.

9.2.1 Protocol View

As described in section 7.2.1, our protocol modeling follows the TCP/IP reference
model. For the IP-ARP scenario, the layers network interface and internet layer are
sufficient (cf. Fig. 9.2).

Application

Transport

Internet

Network Interface

Physical

IP, +ARP

Basic Interface
+HW Addressing

Figure 9.2: Layers and Protocols in the IP-ARP Scenario

Nodes can communicate directly on the internet layer with IP packets. This sim-
plifies our modeling, since we do not have to include a transport layer stub allowing
to send UDP or TCP packets. Furthermore, if we are able to mount a man-in-the-
middle attack on internet layer packets, we are able to do so for transport layer
packets (due to the encapsulation of upper layer in lower layer packets).

112

9.2 Modeling

The process type HostIpNode from the framework (cf. chapter 7) supplies a
node type which already supports both a simplified transport layer and internet
layer. Thanks to CTLA’s support for compositional modeling, further layers and
layer extensions can be easily added. For adding hardware addressing to the net-
work interface layer and extending the internet layer with ARP functionality, we
derive a new process type, IpArpNode, from HostIpNode.

9.2.1.1 Internet Layer – Address Resolution Protocol

The process type IpArpNode adds the address resolution protocol (ARP) [Plu82] to the
internet layer. ARP is used to provided unified routing based on IP addresses inside
a physical network (cf. section 7.2.2), no matter what the underlying networking
technology is (e.g., Ethernet or Tokenring). Because the network interface layer can
only handle hardware addresses, ARP maps IP addresses from the internet layer
to hardware addresses. Basically, ARP works as follows: Queries are broadcast to
all hosts in the LAN asking for the hardware address belonging to the contained IP
address. The host that has been assigned the questioned IP address is supposed to
respond with its hardware address. For performance reasons, each host manages
an ARP cache. This cache contains previously resolved IP to hardware mappings.

In the IpArpNode, the ARP protocol is implemented as follows: IP packets re-
ceived from an upper layer are stored in a buffer. The processing action (spcs) on
the internet layer checks the IP destination address of the packet. If the hardware
address for this IP address is available in the cache, the packet will be submitted
to the network interface layer straight away (action spcs_c). Otherwise, an ARP
query for the IP address is created (action spcs_nc). After being processed by the
network interface layer, the query is sent using a hardware broadcast (action snd).
Further processing of the original IP packet is delayed. If a matching ARP reply (or
a query by the sought-after node) is received, it is processed and the ARP cache is
updated (action rpcs). Processing of the IP packet can then be resumed and the
packet can finally be sent (actions spcs, snd).

Additionally, the packet data type (PacketT) is enhanced to be able to represent
both IP and ARP packets. ARP packets include a type attribute and two pairs of
hardware and protocol addresses. In our case, protocol address is synonymous to
IP address. The type can specify either an ARP query (AT_QUERY) or an ARP reply
(AT_REPLY). Regardless of the type, the first hardware and protocol address pair
always belongs to the sender of the ARP packet and the second one to the receiver.

9.2.1.2 Network Interface Layer – Hardware Addressing

The network interface layer is extended with hardware addressing. Both the inter-
face (data type InterfaceT) and the snd and rcv actions of HostIpNode have
to be extended with hardware addresses and associated processing steps.

113

9 Case Study: IP-ARP

Received packets (action rcv) are stored in the interface’s buffer and processed
layer by layer as implied by the TCP/IP reference model. The network interface
layer processing generally only accepts packets with a hardware destination ad-
dress matching the interface’s hardware address. Hardware broadcasts and promis-
cuous mode of the interface are the exceptions. Invalid packets are thrown away
immediately and do not reach the internet layer. Similarly, the send packet process-
ing (action spcs) has been extended to generally set the hardware source address
of the packet to the hardware address of the interface.

Furthermore, the packet data type (PacketT) from the framework has to be aug-
mented for the network interface layer. Besides hardware source and destination
addresses, a frame type attribute is required. The frame type helps to decide which
network level protocol is encapsulated in the frames. For example, if the frame type
matches constant L2_IP, a packet has IP attributes on the internet layer. IP packet
attributes include IP source and destination address. Another constant (L2_ARP) is
used to denote ARP packets.

9.2.2 Node View

All active network elements (hosts, routers etc) in our framework (cf. chapter 7) are
called nodes. In the IP-ARP scenario, all hosts are derived from the IpArpNode
process type. Besides the support for processing the required protocols (see above),
we have to consider further aspects related to the nodes.

9.2.2.1 Representative Nodes & Role Assignment

The hosts, NA, NB, NC, are chosen as representatives for the set of hosts in the LAN
(cf. Fig. 9.1). We assign them roles like receiver, sender (which includes receiver),
and attacker (which includes sender). This way, we only need to consider a subset
of hosts (cf. section 8.2).

For this scenario, we map roles to hosts in the following way: HA 7→ sender, HB
7→ sender, and HA 7→ attacker. Accordingly, all of the hosts can initiate communica-
tions and receive packets, but only HA is equipped with a special “attacker” action.
Because in the IP-ARP example all hosts are modeled using IpArpNode instances,
the “attacker” action is present in all hosts. Through a guard statement nid ==
HA_ID, however, the “attacker” action can only be activated on host HA.

9.2.2.2 Attacker Action

Typical ARP attacks work by cache poisoning. A malicious host, say HB, sends out
an ARP reply or query with another host’s protocol address, say HC, but its own
hardware address. With the right timing, this will cause the wrong protocol to hard-
ware address mapping to be stored in the ARP cache of other hosts, say HA. If HA

114

9.2 Modeling

later prepares an IP packet to HC, HC’s protocol address will be found in the ARP
cache. Thus, no further ARP lookup occurs. Instead, the packet is prepended with
host HB’s hardware address and submitted to the network interface layer. Then, it
will be transmitted to host HB instead of HC, the recipient intended by HA.

ARP issues do not have to be caused by a wrong ARP reply sent by a malicious
host, however. Administrative oversight or misconfigurations may lead to the same
issues. For the scenario model considered here, we focus on such cases. Thus,
our modeling includes a local administrative action (chg_ip) for changing the IP
address of the node with “attacker” role to another IP address.

9.2.2.3 Node Initialization

All attributes of the nodes have to be initialized. The special action INIT defined
locally for each node handles these initializations. Later on, during system compo-
sition, all INIT actions of the nodes in the system are linked to build the system
initialization. The system initialization is always executed before any other action.

In the IP-ARP scenario, the INIT action of the nodes defines send and receive
buffers to be empty. No packets are in transit in the media (i.e., empty zone buffers).
Furthermore, the ARP cache is set to be empty as well, using a symbolic invalid pro-
tocol and hardware address pair. For each node, the network interface is initialized
with an IP and hardware address. These address initializations use appropriately
defined functions fSrcToHa (hardware address initialization) and fSrcToIa (IP
address initialization) from the framework.

9.2.3 Network View

An important aspect to consider in the IP-ARP scenario is that the LAN is switched.
In a non-switched LAN, all hosts connected to the same LAN can physically receive
communications directed at other hosts. The network interface can be set to the so-
called promiscuous mode. In this mode, the interface ignores hardware addresses
and receives any packet it is physically able to receive.

To model the switched LAN, we use a node type which disallows promiscuous
reception. This is realized by a guard in the receive (rcv) action stating that ei-
ther the packet’s destination hardware address has to match that of the receiving
interface or the packet has to be a broadcast packet.

As all nodes are connected to the same LAN, we only require one explicit zone
Z1 for the network view. Through the framework’s ZoneIdT enumeration a spe-
cial unknown or undefined zone (constant UNKNOWN_ZONE) is always included
in models. Furthermore, there are no routers, i.e., nodes with two or more inter-
faces. Taken together, these two properties make the definition of an appropriate
topology function fSrcToZone straightforward. For a node n and interface i, if

115

9 Case Study: IP-ARP

(n, i) ∈ {NA, NB, NC} × {I1} then fSrcToZone(n, i) := Z1 and UNKNOWN_ZONE
otherwise.

The LAN itself is modeled by a Media instance. For each zone, the Media pro-
cess type defines a zone buffer. The zone buffer holds a packet, if and only if it is
currently in transit in the zone. By means of the already described zone definitions
and topology functions, the Media instance in the IP-ARP scenario is configured
to have only one zone Z1 and thus one zone buffer. This buffer is emptied by the
initialization action INIT of Media.

9.2.4 System Composition

Figure 9.3 shows the structure of the IP-ARP CTLA system process type.

SYSTEM IpArpExample

PROCESS med: Media

ACTIONS
out(pkt)
in(pkt)

PROC. h1: IpArpNode

ACTIONS
rcv(pkt)
rbc(pkt)
snd(pkt)

PROC. h2: IpArpNode

ACTIONS
rcv(pkt)
rbc(pkt)
snd(pkt)

PROC. ha: IpArpNode

ACTIONS
rcv(pkt)
rbc(pkt)
snd(pkt)

snd
h1

snd
ha

snd
h2

rcv
h1

rcv
ha

rcv
h2 rbc

Figure 9.3: Compositional Structure of the IP-ARP Model

Processes The system is instantiated from the process type IpArpExample. In
turn, process type IpArpExample contains three IpArpNode process types and

116

9.3 Analysis

one Media process type. As described above, the process type IpArpNode is used
to model the hosts. The LAN is represented by process type Media, with support-
ing functions and zone definitions corresponding to the network topology.

While the process type Media is taken directly from the framework (cf.
Fig. 9.4, depicted as an unfilled box), IpArpNode is a specific process type
(depicted as a filled box). It is derived from the framework process type
ActiveNonPromHostIpNode, however.

Media Active
Non...
IpNode

IpArp
Node

Figure 9.4: Framework and Specific Process Types of the IP-ARP Model

System Actions The collaboration of the process types contained in the system
still has to be defined. In CTLA, this is done via system actions. Internal actions
(typically modeling internal processing of a node) are implicitly added to the sys-
tem actions (cf. chapter 5). Thus, two main classes of system actions determine the
system composition: send actions (snd_X, where X ∈ {H1, H2, HA}) and receive
actions.

Regarding the receive actions, we can distinguish the subclasses of unicast re-
ceive actions (rcv_X) and broadcast receive (rbc) actions. The send actions couple
a node’s snd action with Media’s in. Thus a packet which is sent by a node, is
transmitted into Media’s packet buffer. Similarly, the unicast receive actions cou-
ple a node’s rcv action with Media’s out. This models that, in order to be received,
a packet has to be taken out of Media’s packet buffer. Finally, the broadcast receive
system action couples together the rbc action of all nodes with Media’s out action.
Thus, a broadcast packet is received by all nodes and taken out of Media’s zone
buffer.

9.3 Analysis

In this section we describe the steps taken for automated analysis of the IP-ARP sce-
nario. We begin with the security property the model is checked against. Then, the
optimizations taken and their effect for successful analysis is are described. Finally,
the results of the automated analysis with SPIN are briefly explained.

117

9 Case Study: IP-ARP

9.3.1 Security Property

We aim to analyze our model for attacks on the low-level packet exchange bet-
ween the hosts. Such attacks typically let hosts receive packets that are directed
at other hosts. The corresponding security property is that a node cannot receive
non-broadcast IP packets destined for other nodes. To find such attacks using au-
tomated analysis, we use assertions. SPIN supports the checking of a PROMELA
model for assertion violations. Thus we have to insert the assertions after the trans-
lation of the model to PROMELA.

One way to model the security property via assertions is shown in Listing 9.1. In
the assertion, X ∈ {h1, h2, ha} stands for the node where the assertion is inserted
and Y represents the node which is the intended recipient of the packet. To cover
both possible intended recipients Y1, Y2 ∈ {h1, h2, ha} \ {X} for a node X, the as-
sertion has to be inserted twice. The assertions have to be inserted into the send
actions (snd) of the nodes. Thereby, the assertion will be triggered at the moment a
packet violating the property is sent.

assert(
!(bnX_ifs[1 - 1].spa.pkt.l2t==L2_IP &&

BVGET(bnX_ifs[1 - 1].spa.pkt.dat, 3, DI_IDA) ==
bnY_ifs[1 - 1].ia &&
bnX_ifs[1 - 1].spa.pkt.dha != bnY_ifs[1 - 1].ha)

);

Listing 9.1: Assertion 1: IP-ARP Example, Send Actions

The security property can also be modeled in another way with an assertion (cf.
Listing 9.2) inserted at the end of the non-broadcast receive action (rcv) instead of
the send actions of each node. In this case, the assertion depends only on the node X
where it is inserted into the receive action, and does not have to be inserted multiple
times to cover all cases. As the assertion is triggered one step later (receive instead
of send action), however, more memory is required for checking the model.

assert(
! (bnX_ifs[1-1].rpa.pkt.l2t==L2_IP &&
BVGET(bnX_ifs[1 - 1].rpa.pkt.dat, 3, DI_IDA) !=
bnX_ifs[1 - 1].ia)

);

Listing 9.2: Assertion 2: IP-ARP Example, Receive Actions

The assertion checks that a received IP packet’s destination address equals the IP
address belonging to the interface that received the packet. Thus, if a node manages

118

9.3 Analysis

to receive a packet that is directed at another IP address physically, the assertion
will be violated.

Both assertions are triggered by very similar sequences. Due to the design of
the assertion, sequences violating assertion 2, are one step longer than sequences
violating assertion 1. Furthermore, if (s1, . . . sn−1, sn) violates assertion 2, then
(s1, . . . , sn−1) violates assertion 1. Just as well, if (s1, . . . , sn) violates assertion 1,
then (s1, . . . , sn, rcv_X) violates assertion 2. Thus, violating sequences do not de-
pend on the exact modeling of the confidentiality property with assertion 1 or 2 in
a considerable way.

9.3.2 Optimizations

In the following section, we describe the key optimizations in the IP-ARP scenario.
Table 9.1 gives an overview of the application order and the effects on the state-
vector size of these optimizations. The initial state-vector size of the IP-ARP sce-
nario is about 830 bytes.

Optimization State Vector
(initial version) ∼ 830 Bytes
+ Representative Hosts & Roles ∼ 480 Bytes
+ Activity Thread & Integrated Layers ∼ 250 Bytes
+ Paramodulation ∼ 210 Bytes
+ Bit Array Mapping ∼ 170 Bytes

Table 9.1: Optimization Effects on State-Vector Size in the IP-ARP Example

9.3.2.1 Representative Hosts & Roles

The first optimization taken in the IP-ARP scenario is the selection of representative
hosts (cf. section 9.2.2.1). In the initial version of the model there were five hosts;
after the optimization there are only three (NA, NB, NC). Accordingly, this nearly
halves the state-vector size from about 830 to about 480 bytes.

9.3.2.2 Activity Thread & Integrated Layers Approach

In the initial version of the model, all layers have separate processing actions
and buffers. By redesigning process type IpArpNode so that it is based on
HostIpNode from the framework (cf. chapter 7), we “apply” the activity thread
and integrated layers approaches (cf. section 8.3.2). Thus, we save on buffers and
action steps required for protocol processing. Only one processing action (rcv) and

119

9 Case Study: IP-ARP

one working buffer for each send processing and receive processing of packets re-
mains. This reduces the state-vector size to about 250 bytes mainly due to saved
working buffers.

9.3.2.3 Action Parameter Paramodulation

For the packet related parameters of the snd and rcv system actions in the IP-ARP
scenario, value determining equalities exist in the flat system (cf. section 8.4.1).
These system actions couple together Media and Node process types. Thus, the
packet parameter is either an input parameter of Media’s action and an output
parameter of Node’s action or the other way around.

In these cases, therefore the parameter can be replaced by the corresponding
symbolic output value and removed from the action’s parameter list. Using
CTLA2PC’s built-in switch --paramod for translation of the model, this optimiza-
tion is applied automatically. The state-vector of the “paramodulated” version of
the model is shortened to about 210 bytes.

9.3.2.4 Bit Array Mapping

SPIN has some problems to handle bit arrays in an efficient way. By letting
CTLA2PC encode arrays and replace array operations (cf. section 8.5.1), we can
reduce the state vector to its final size of about 170 bytes.

9.3.3 Results

Attempts for automated analysis with early models of the IP-ARP scenario fail
quickly due to SPIN running out of memory. Using approximative verification
modes prevents the memory exhaustion; however, SPIN produces no results even
after a long time (about 150 hours).

Fortunately, with the optimization steps described above taken, automated ana-
lysis of the IP-ARP scenario with SPIN becomes successful. A series of violating
sequences has been found by SPIN. An example SPIN output, with assertion 1 in-
serted in the model, is shown in Listing 9.3.

The output shows that SPIN found a violation of the security property which, in
this case, is modeled using assertion 1. SPIN writes an internal encoding of the
steps leading to the violation to a trail file. The trail file can be “played back” us-
ing SPIN’s guided simulation mode. This results in the corresponding PROMELA
level sequence of steps. As CTLA2PC integrates print statements for CTLA ac-
tion names and parameters in the generated PROMELA code, the mapping of the
sequence back to the level of CTLA actions follows easily.

120

9.3 Analysis

pan: assertion violated
!(((ha_ifs.rpa.pkt.l2t==1) && (((ha_ifs.rpa.pkt.dat>>(1*3)) &&
((1<<3)-1))!=ha_ifs.ia))) (at depth 12)

pan: wrote ip-arp-....promela.trail
(Spin Version 4.1.0 -- 6 December 2003)

Warning: Search not completed
+ Using Breadth-First Search
+ Partial Order Reduction
...

State-vector 168 byte, depth reached 12, errors: 1

Listing 9.3: Spin Verifier Output in the IP-ARP Example (Assertion 1)

9.3.3.1 Violating Sequence 1

Figure 9.5 shows the attack sequence found by SPIN on the CTLA level. For clarity,
instead of including input generator steps, we give the parameters to the actions
resulting from these steps.

chg_ip

snd_ip(2)

snd_ip(3)

spcs
snd

rbc
rpcs
spcs

IA: 2->3

prep. packet, dia=2

proc. packet, create
ARP-Q (dia=2)

prep. packet, dia=3

send ARP-Q (bc)upd. ARP IA=3: HA

proc. packet (dia=3)
snd

INIT
IA=2

H1 HA

A sends packet IP 3
with hw address of HA
Assertion violated!

recv. ARP-Q

INIT
IA=1IA=3

H2

INIT

rbc

Figure 9.5: Violating Sequence 1 in the IP-ARP model

The sequence starts by Node HA changing its IP address (chg_ip) to 3, but the
ARP cache of the other nodes is unchanged. Especially, a previously received (rbc)
ARP query from node HA still contains the old IP address and node H2 updates its
ARP cache from this query (rpcs) just now. Thus, an already buffered IP packet
for the (now unused) IP address 2 can be processed (spcs) with the cached IP
address to hardware address assignment. The packet is sent to the media with the
destination hardware address of node HA. This violates the assertion included in
the send action, requiring that IP and hardware destination address match.

Interestingly, this sequence closely resembles cache poisoning ARP attacks. In
such an attack, node HA would send an ARP reply with its own hardware address

121

9 Case Study: IP-ARP

as answer for an ARP query for node H2’s protocol address. The second half of the
sequence in Figure 9.5 shows this course of action. The sequence is triggered by an
IP change administrator action, however, and not a deliberate ARP attack. Thus,
this demonstrates the fact that an IP change may lead to the same effects as an ARP
attack. Especially, confidentiality may be violated until all nodes in the subnet have
updated their ARP caches correctly. This is particularly relevant to hosts with static
ARP configurations, since their settings have to be maintained manually.

9.3.3.2 Violating Sequence 2

Another violating sequence is shown in Figure 9.6.

chg_ip
snd_ip(2)

snd_ip(1)
spcs
snd

rbc

rpcs
spcs

IA: 2->3
prep. packet, dia=2

proc. packet, create
ARP-Q (dia=1)

prep. packet, dia=1

send ARP-Q (bc)

proc. old ARP-Q
proc. IP packet

snd

INIT

IA=2H1 HA

HA receives packet
with right hw, wrong
(old) IP address
Assertion violated!

INIT

IA=1 IA=3 H2

INIT

rbc

rcv_B

Figure 9.6: Violating Sequence 2 in the IP-ARP model

As this sequence stems from assertion 2, the violation occurs in a receive action
instead of a send action. In contrast to sequence 1, this sequence does not resemble
an ARP attack. Furthermore, the issue is less confidentiality than availability. The
packet prepared by node H2 (snd_ip(2)) for node HA is indeed transmitted to
node HA (snd). The packet’s and node’s IP address don’t match, however, proba-
bly causing the packet to be thrown away after it has been physically received by
node HA (rcv_B). Thus, this sequence demonstrates that an IP change may lead to
availability problems as well. Again, special care is required for static ARP configu-
rations.

9.4 Discussion

In this section, we summarize the key points learned and offer some discussion
points related to the IP-ARP scenario. We begin with the modeling and analysis,
move to the attack sequences and finish with some measures for improving secu-
rity.

122

9.4 Discussion

Modeling & Analysis

• We successfully modeled a small LAN scenario with three hosts running
TCP/IP, including ARP in the network interface layer and administrator ac-
tions. The modeling is done in CTLA and based on an early version of the
current framework (cf. chapter 7). The ARP-specific behavior is captured in a
new process type, IpArpNode, derived from HostIpNode.

• The size of the CTLA model file is about 15 KB (without comments). After
translation with CTLA2PC, the PROMELA model file size is about 35 KB. Au-
tomatic analysis with SPIN can be tackled after insertion of the security pro-
perty and a series of optimizations.

• Optimizations (cf. chapter 8) are particularly effective in the IP-ARP scenario.
At the time we began to work on the IP-ARP scenario, our tools and the frame-
work were still emerging. Thus, there was more potential for optimizations
than with the current, already heavily optimized versions of the framework
and our tools. From the initial version of the IP-ARP scenario with its state-
vector of about 830 Bytes to the final version with 170 Bytes, significant sav-
ings could be achieved. For current models, achievable savings are typically
smaller.

Attack Sequences

• Practical attack sequences can be found with automatic analysis of our model
using SPIN. Interestingly, these sequences show that ARP attacks can have
very similar effects to administrator actions like IP changes, be they benevo-
lent or malicious.

• Tools for injecting ARP packets like nemesis-arp have existed for a long
time. These tools require a certain level of knowledge, however. Lately, more
advanced tools like ettercap, which allow for man-in-the-middle attacks by
simply selecting the IP address of a host to listen on, have appeared.

Improving Security

• Careful administration helps to prevent errors caused by duplicate IP assign-
ment etc. Deploying DHCP is useful as well but opens up attack possibilities
(e.g., man-in-the-middle attack through rogue DHCP server) of its own.

• ARP supports no authentication at all. Some implementations check that they
actually have sent a query before they accept a reply (they do not accept so
called gratuitous ARP replies or unsolicited responses). This only provides for
partial protection, and may depend on timing in case multiple responses (one

123

9 Case Study: IP-ARP

genuine and one spoofed) are received. Furthermore, some applications, e.g.,
fail-over solutions, require gratuitous ARP replies.

• Static ARP mappings provide protection against most attacks. Particularly,
they are helpful to protect ARP mappings for especially important destina-
tions like the default gateway or critical servers. Using Linux, ARP can be
disabled on a per interface basis using ifconfig <if> -arp. Of course,
static mappings increase the administrative overhead in case of hardware
(e.g., NIC) changes. As already described, some applications might not work
anymore.

• Cryptographically secured versions of ARP have been suggested e.g., by
Bruschi et al [BOR03]. Their version of ARP depends on PKI based pub-
lic/private key cryptography. Because of the high complexity of PKI deploy-
ment and management, it seems doubtful that these approaches will reach
widespread acceptance.

• Advanced switches, namely those from the CISCO CATALYST series, include
features to prevent ARP spoofing (Dynamic ARP inspection). These features
block spoofed ARP packets based on information from DHCP tables. Now
rogue DHCP servers have to be prevented. This can be done with further
switch configuration which requires to list all ports to which trusted DHCP
servers are connected statically. Of course, this somewhat increases adminis-
trative overhead as well.

• Deployment of network intrusion detection systems, e.g., SNORT [Sno05] with
its experimental preprocessor arpspoof, can help to detect ARP spoofing
attacks.

124

10 Case Study: IP-RIP

For the IP-RIP case study, we first introduce the overall background of the scenario.
Then, we describe the modeling task. Afterwards, the steps taken to enable auto-
mated analysis, particularly security property and optimizations, are presented in
detail. Furthermore, the analysis results are explained. Finally, we give a short
summary of the lessons learned from the application of our approach to the IP-RIP
scenario.

10.1 Introduction

In the IP-RIP scenario [RKK05], we examine multiple LANs and hosts connected by
routers as depicted in Figure 10.1. The hosts in the LANs run TCP/IP; the routers
additionally run the routing information protocol (RIP).

Z1

Z3

ZBB12

ZBB13

ZBB23i1

i2
i2

LAN 1

H1
i3

i2

i1

i3

i3

LAN 3

i1

i1

i1

LAN 2

i1

Z2R1

R3

R2

H2

HA

Rx Ry

Figure 10.1: IP-RIP Scenario

Classification RIP is the most popular distance-vector, interior-gateway routing
protocol (cf. section 7.2.2). In a distance-vector protocol, each router maintains a
distance value to all other networks it knows about. Each router sends updates
of the form “I can get to network N in d hops” to its neighbors. Due to technical

125

10 Case Study: IP-RIP

reasons detailed below, RIP is limited to autonomous systems with paths shorter
than 16 hops.

Attack Ideas & Tools The attack ideas described in section 7.2.3 are applicable to
RIP. Tools like nemesis-rip from the Nemesis project [NS04] or srip [Hum00]
allow to send RIP update packets with an arbitrary source IP, destination and metric
to a remote router. As in RIP all routing information is implicitly trusted and the
routers have no full topology information, a single packet injection may suffice to
effect routing permanently.

10.2 Modeling

The framework (cf. chapter 7) supplies the overall structure of our modeling. Like
in the IP-ARP example, we build the IP-RIP CTLA model by taking different views
at the scenario. First, we describe the protocol oriented view, then the node and
finally the network view. The CTLA 2003 source code of the IP-RIP model is con-
tained in Appendix B.

10.2.1 Protocol View

In the IP-RIP scenario, the layers application, transport, internet, and network inter-
face are required to model the contained protocols (cf. Fig. 10.2).

Application

Transport

Internet

Network Interface

Physical

+RIP

+UDP

IP

Basic Interface

Figure 10.2: Layers and Protocols in the IP-RIP Scenario

The framework’s process types HostIpNode and RouterIpNode already sup-
ply adequate internet and network interface layers. Thus, it suffices to implement
RIP on the application layer and its encapsulation on the transport layer.

10.2.1.1 Application Layer – Routing Information Protocol (RIP)

In our modeling, RIP is implemented in the process type RipRouterIpNode
which is based on RouterIpNode. We only give a short overview of RIP here,

126

10.2 Modeling

a more detailed description is contained in [Per99] and the RFC [Hed88].

Each RIP router keeps distance vectors of the form (dst, nho, itf, met) in its
local routing information base (RIB). The field dst contains the IP address of the
destination and nho the IP address of the next-hop, i.e., the next router on the way to
the destination. If the current router is directly connected to the final destination’s
network, this field contains a special value (NHO_DIRECT in our modeling). The
itf field contains the interface connected to the next-hop or the final destination’s
network. The met field is used for storing a cost metric, usually the number of
hops, from the current router to the final destination. A metric of 1 denotes that the
current router is directly connected to the final destination’s network. On the other
hand, a metric of 16 := MET_INF means infinite cost.

RIP works in two stages: input processing and output processing. Input process-
ing handles RIP update packets received from other routers. The critical element of
a RIP update packet is the pair dst’, met’. A RIP update packet may contain several
such pairs. Since the pairs are processed sequentially, we can assume without loss
of generality that all update packets contain only one pair. An update packet with
n pairs is then replaced by n update packets with one pair. The fields describe the
best route (in terms of metric) to the destination as known by the router from which
the packet originated. If the update packet passes basic sanity checks (e.g., met’ <
MET_INF) and – optionally – its IP source address matches a directly connected
network, the packet is considered for updating the router’s RIB.

Two cases have to be distinguished. If a route for the destination is not yet known
by the current router, an entry (dst′, nho, itf, met′ + 1) is added, but only if met′ + 1
is still less than MET_INF, i.e., the new destination is at most 15 hops away. The
field nho is set from the IP source address of the packet, itf is determined through
a lookup in the current routing table.

If a route for the destination contained in the update packet already exists, the RIB
entry is changed only if met′ + 1 < met, i.e., the new route is better than the existing
one. The ’new route is better’ condition does not apply, however, if the packet
originates from the next-hop of the existing route according to the packet’s source
address. If a route in the RIB has been changed (no matter which case applied), its
change flag is set.

Output processing handles the sending of RIP update packets. Update packets can
be sent both periodically (regular update) or because of changes (triggered update).
We only model triggered updates, because we are interested in dynamic behavior
resulting from route changes.

All updates are sent observing the split horizon principle. That means the updates
are sent to the neighboring routers with the exception of the router from which this
route was received (i.e., the next-hop nho).

127

10 Case Study: IP-RIP

10.2.1.2 Transport Layer – UDP

RIP messages are encapsulated in the transport layer user datagram protocol (UDP)
and use a reserved port (520). To simplify our modeling, we simulate this encapsu-
lation using IP packets with a reserved packet type value of PT_RIP. This way, we
do not have to include a transport layer with UDP.

10.2.2 Node View

In the IP-RIP model, all routers are modeled as instances of the RipRouterIpNode
process type. The hosts are modeled by different process types based on
HostIpNode according to their role in the scenario.

10.2.2.1 Representative Nodes & Role Assignment

The selection of representatives and assignment of roles greatly helps with the tran-
sition from a loose scenario to a strict analysis model. We chose one host from
each LAN (cf. Fig. 10.1) as representative for the set of hosts in the LAN. Host H1
represents the hosts from LAN 1, H2 LAN 2, and HA LAN3.

From the routers, we chose to represent only R1, R2, and R3 directly as process
type RipRouterIpNode instances in the model. The routers Rx and Ry, which
may connect further LANs besides connecting router R2 to LAN 2, are not directly
represented. They are implicitly represented in the distance metric of router R2’s
initial RIB, however.

Furthermore, we assign the roles attacker, active and passive communication
partner to the hosts. For the analysis of this scenario, we map the roles to the hosts
in the following way: H1 7→ sender, H2 7→ receiver, HA 7→ attacker. Accordingly,
host H1 is an instance of process type ActiveNonPromHostIpNode, and H2 is an
instance of NonPromHostIpNode. Both process types are taken from the frame-
work (cf. chapter 7).

The attacker host HA is modeled by type RipAttackerHostIpNode which ex-
tends ActiveHostIpNode with a local attacker action.

10.2.2.2 Attacker Action

Typical routing attack tools (e.g., IRPAS [FX01]) allow to inject update packets in the
routing process. Thus, we include a local attacker action snd_ripu in the process
type RipAttackerHostIpNode.

This action creates a RIP update packet and puts it in the local send buffer. For
example, the packet may announce a new route to a certain destination with a short
distance and the local host (i.e., the attacker) as the next-hop.

128

10.2 Modeling

As process type RipAttackerHostIpNode is based on ActiveHostIpNode,
it inherits the snd action. Thus, no additional action for sending the malicious RIP
update packet is required; it can be sent using the default action snd.

10.2.2.3 Node Initialization

The attributes of each node have to be initialized through the local INIT action. As
usual, all send and receive buffers of the nodes (i.e., routers and hosts) are set to be
empty, as well as media’s zone buffers. Furthermore, for all nodes, the network in-
terfaces are set up using the function fSrcToIa from the framework. This function
maps each interface to a symbolic IP address (e.g., the second interface of router R1
is mapped to the symbolic IP address R1_I2_IA).

In the IP-RIP scenario, an additional initialization step remains: setting up the
RIBs. For each router, we start with a fully initialized routing table, not an empty
table. Thus, the routing tables correspond to a stationary state of the system, not to
an empty state immediately after boot-up of a router. As the RIBs depend on the
network topology of the scenario, we describe the routing tables in the following
section.

10.2.3 Network View

We still have to consider the network view. In particular, the network topology,
i.e., the LANs with their connections provided by the interfaces of the nodes and
routers has to be modeled. For the IP-RIP scenario, the LANs (cf. Fig. 10.1) are
modeled by a Media instance with six zones (Z1, Z2, Z3, ZBB12, ZBB13, ZBB23).
While the zones Z1, Z2, Z3 correspond to the host LANs, the zones ZBB12, ZBB13,
ZBB23 represent the backbone networks between the routers. The topology func-
tion fSrcToZone is defined appropriately (e.g., the second interface of router R1
is mapped to ZBB12).

For each router, the routing table entries have the form (dest, nhop, metr, itf)
(cf. section 10.2.1.1). The initial routing tables correspond to the scenario’s network
topology. For example, R1 is directly connected (i.e., metric 1) to zones ZBB12 and
ZBB13 over interfaces 2 respectively 3 (cf. Table 10.1).

It has to be noted that the route from R1 to Z2 via next-hop R2 (interface 2) has
metric 4 (i.e R1, R2, Rx, Ry). As discussed above, this is due to the indirect represen-
tation of routers Rx, Ry in the routing tables only.

10.2.4 System Composition

The IP-RIP CTLA system is composed as depicted in Figure 10.3.

129

10 Case Study: IP-RIP

SYSTEM IpRipExample

PROC. r2: RipRouterIpNode

ACTIONS
 rcv(iid, pkt)

 rbc(zid, pkt)
 snd(iid, pkt)

PROCESS med: Media

ACTIONS
 in(zid, pkt)

 out(zid, pkt)

PROC. r3: RipRouterIpNode

ACTIONS
 rcv(iid, pkt)

 rbc(zid, pkt)
 snd(iid, pkt)

PROC. h1: Act...HostIpNode

PROC. h2: No...HostIpNode

ACTIONS
rcv(pkt)
rbc(zid, pkt)
snd(pkt)

PROC. r1: RipRouterIpNode

ACTIONS
 rcv(iid, pkt)
 rbc(zid, pkt)
 snd(iid, pkt)

ACTIONS
rcv(pkt)
rbc(zid, pkt)
snd(pkt)

PROC. ha: Ri...HostIpNode

ACTIONS
rcv(pkt)
rbc(zid, pkt)
snd(pkt)

snd
h1

snd
h2

snd
ha

snd
r1

snd
r2

snd
r3

rcv
h1

rcv
h2

rcv
ha

rcv
r1

rcv
r2

rcv
r3 rbc

Figure 10.3: Compositional Structure of the IP-RIP Model

130

10.2 Modeling

Destination Next-Hop Metric Interface
Default Direct - 1
ZBB12 Direct 1 2
ZBB13 Direct 1 3
Z1 Direct 1 1
Z2 R2_I2 4 -
Z3 R3_I2 2 -

Table 10.1: Initial routing table of R1

Processes The system is instantiated from the process type IpRipExample.
This process type contains one Media instance representing the LANs, three
RipRouterIpNode instances for the routers, and three instances derived
from HostIpNode (RipAttackerHostIpNode, NonPromHostIpNode, and
ActiveNonPromHostIpNode) for the hosts.

Of the process types only RipRouterIpNode and RipAttackerHostIpNode
are specific to the IP-RIP model (cf. Fig. 10.4, depicted as a filled box).
They are derived from the framework’s process types RouterIpNode and
ActiveHostIpNode, however. All other process types are taken directly from the
framework (depicted as an unfilled box).

Media RouterIp
Node

Active...
HostIp
Node

Rip
Attacker
… Node

NonP...
HostIp
Node

Active
HostIp
Node

NonP...
HostIp
Node

Host
IpNode

Host
IpNode

Host
IpNode

Host
IpNode

Rip
RouterIp

Node

Active
HostIp
Node

Figure 10.4: Framework and Specific Process Types of the IP-RIP Model

System Actions The collaboration of the processes making up the system is de-
fined via system actions. For the IP-RIP system, the same two classes of system
actions as in the IP-ARP system are defined (besides the implicitly added internal
actions): send actions (snd_X, where X is a node or router) and receive actions. The
receive actions are structured into subclasses for unicast receive actions (rcv_X)
and the broadcast receive (rbc) action.

As in the IP-ARP system, the send actions couple a node’s snd action with

131

10 Case Study: IP-RIP

Media’s in and the unicast receive actions couple a node’s rcv action with
Media’s out action. The broadcast receive system action couples together the rbc
action of all nodes in all zones with Media’s out action. Due to the multiple zones
in the IP-RIP scenario, however, the rbc system action takes an extra parameter re-
ferring to the zone where the broadcast reception shall take place. The nodes’ rbc
actions are designed to not block even if no broadcast reception is possible in the
supplied zone. In this case, the execution of a node’s action doesn’t change any
state variables, it is equivalent to a stuttering step of a node. Thus, although all rbc
actions of all nodes are coupled in the rbc system action, it is always executable
and will only take a broadcast packet out of the zone buffer of the supplied zone if
such a packet exists.

10.3 Analysis

In the following section we describe the steps taken towards automated analysis of
the IP-RIP scenario. First, the security property the model is to be checked against
is considered. Then, the optimizations are applied and their effects on state-vector
size are given in detail. Finally, the results of the automated analysis with SPIN are
depicted.

10.3.1 Security Property

We plan to analyze our model for attacks leading to injection of false route informa-
tion (cf. section 10.2.2.2). In the worst case, such injections lead to packets being
routed to the attacker. Thus, we consider the property that an attacker can only
receive packets which are destined for its own IP address.

With the assignment of the roles described earlier, the security property can be
formalized using the assert statement given in Listing 10.1.

assert((ha_itf.rpa.pkt.dat_ida == HA_I1_IA));

Listing 10.1: Assertion in the IP-RIP Example

This statement requires that host HA (which has the attacker role) can receive a
packet only if the packet’s destination IP address matches the symbolic IP address
of HA’s (one and only) interface, H1_I1_IA. After translation of the CTLA model
to PROMELA with CTLA2PC, this assertion is inserted into the PROMELA represen-
tation of the rcv_ha action (i.e., host HA’s non broadcast packet receive action).
Because host HA is a host node and not a router node, we do not have to worry
about unintended violations of the property due to packets received by standard

132

10.3 Analysis

next-hop routing. Furthermore, broadcast packets can not trigger this assertion ei-
ther, because they are received by the rbc action instead of rcv_ha.

10.3.2 Optimizations

In this section, we describe the optimizations applied from the initial version of the
IP-RIP model to the final version. Table 10.2 outlines the order of application and
the state-vector size resulting from the optimizations applied so far.

Optimization State Vector
(initial version) ∼ 720 Bytes
+ Representative Nodes & Roles ∼ 450 Bytes
+ Paramodulation ∼ 430 Bytes
+ Bit Array Mapping & Low-Level Tweaks ∼ 340 Bytes
+ Unroll action parameters ∼ 320 Bytes

Table 10.2: Optimization Effects on State-Vector Size in the IP-RIP Example

The initial state-vector size of the IP-RIP model is about 720 bytes. Surprisingly,
this is smaller than the initial size of the IP-ARP model (830 bytes, cf. chapter 9).
This is due to the fact that even in the initial version of the IP-RIP model the nodes
are already based on the framework. Thus, they integrate the activity thread and
integrated layers (cf. section 8.3.2) approaches and save on actions and buffers for
protocol processing right from the start.

10.3.2.1 Representative Nodes & Roles

The initial version of the model consists of five routers and three hosts. By choosing
representative nodes and fixed roles, only three routers (R1, R2, R3) and three hosts
(H1, H2, HA) with fixed roles remain (cf. section 10.2.2.1). Thus, the state-vector
size is decreased by about 38% from 720 to 450 bytes.

10.3.2.2 Action Parameter Paramodulation

As in the IP-ARP scenario (cf. section 9.3.2.3), due to packet related parameters of
the snd and rcv system actions being input parameters of Media and output pa-
rameters of Node or vice versa, paramodulation can be successfully applied in the
IP-RIP scenario. Using CTLA2PC’s --paramod switch during model translation,
the state-vector shrinks to about 430 bytes.

133

10 Case Study: IP-RIP

10.3.2.3 Bit Array Mapping & Low-Level Tweaks

SPIN maps bit-size variables to bytes. By using a more efficient low-level encoding
in the PROMELA model, the state-vector size can be reduced. Furthermore, we de-
creased the size of the routing tables. In combination, these two optimization save
another 20 bytes in the state-vector.

10.3.2.4 Unroll Action Parameters

Still automated analysis efforts of the scenario described failed, however. In test
runs, the verifier generated by SPIN exceeded available memory (i.e., 3 GB, the
practical x86 per process memory limit) after reaching search depth 23. Thus, we
had to consider further optimization possibilities, especially those which help to re-
duce the depth required for action sequences. By looking at simulation sequences,
we found out that input generator steps (i.e., parameter value settings) were con-
tributing about one third to the depth. Therefore, we focused on optimization pos-
sibilities related to input generator steps.

We developed the unroll actions approach (cf. section 8.4.2) which replaces para-
meterized actions by multiple copies, where in each copy the parameters have been
replaced by fixed values.

Optimization State Vector Stored States Transitions Depth Memory
(previous version) ∼ 340 Bytes 1.19E+06 2.3E+08 14 203 MB
+ Unroll ∼ 320 Bytes 1.99E+04 1.8E+06 11 11 MB

Table 10.3: Effects of the Unroll Actions Optimization on a Benchmark Sequence in
the IP-RIP Example

Clearly, this approach has only a slight effect on the state-vector size. In the
IP-RIP example, the state-vector only decreases by 5% to about 320 Bytes (cf. Ta-
ble 10.3). As however the parameter setting input generator steps are no longer
required, the search depth required for a specific sequence is greatly reduced. A
benchmark sequence’s depth decreased by 20% from 14 to 11 after the application
of the unroll approach. Consequently, memory usage is vastly reduced.

10.3.3 Results

Early attempts for automated analysis of the IP-RIP scenario failed most often be-
cause of SPIN running out of memory. With the development and application of
the optimizations described in section 10.3.2, however, automated analysis became
possible. We analyzed the described modeling for assertion violations using SPIN
on a standard PC system. The corresponding SPIN output is shown in Listing 10.2.

134

10.3 Analysis

pan: assertion violated (ha_itf.rpa.pkt.dat_ida==11) (at depth 21)
pan: wrote ip-RIP-example-veri-flat-para.promela.trail
(SPIN Version 4.2.0 -- 27 June 2004)
...
State-vector 316 byte, depth reached 21, errors: 1
5.5768e+06 states, stored
5.5768e+06 nominal states (stored-atomic)
4.28228e+08 states, matched
4.33804e+08 transitions (= stored+matched)
...
Stats on memory usage (in Megabytes):
1806.883 equivalent memory usage for states
(stored*(State-vector + overhead))

985.366 actual memory usage for states (compression: 54.53\%)
984.081 total actual memory usage

Listing 10.2: Spin Verifier Output in the IP-RIP Example

After about 40min and requiring slightly under 1 GB of RAM, SPIN found an
attack sequence (cf. Listing 10.2) of depth 21 violating the specified confidentiality
property. Using SPIN’s guided simulation feature and mapping the PROMELA level
sequence back to CTLA level (with CTLA2PC’s --trace-points) reveals the
attack sequence depicted in Figure 10.5.

The sequence shows host H1 preparing an IP packet (action snd_ip) for host H2
and transmitting it to the media (snd_h1). As the default gateway of host H1 is
router R1, the packet is received by router R1’s LAN 1 interface (rcv_r1). Next,
attacker HA prepares a RIP update packet advertising a new route to zone Z2 with
metric 1 from HA (snd_ripu) and broadcasts it in zone Z3 (snd_ha). The update
packet is then received (rbc) by router R3, which processes it (rpcs). Meanwhile,
R1 begins to process the IP packet for H2 received from H1 (rpcs). Back to R3,
because the advertised new route to Z2 via HA with metric 2 = HA’s metric + 1
is better than the existing route via R2 with metric 4 (cf. Table 10.1), R3 updates
its routing table (rip_in_...). Furthermore, because of its routing change, R3
prepares updates packets for the routers in the other zones (rip_out). R3 then
broadcasts the triggered update packet in particular to zone ZBB13 (snd_r3). R1
receives (rbc) and processes (rpcs) the triggered update packet. As the advertised
new route to Z2 with metric 3 via R3 is still better than the existing route with metric
4 via R2, R1 updates its routing table (rip_in). Then, R1 forwards (fwd) the packet
from H1 according to the just changed table (next-hop R3) and sends it (snd). R3
receives the packet (rcv_r3), processes it (rpcs), and sets the forward next-hop to
the attacker, HA (fwd). Then, R3 transmits the packet (snd_r3) to the media and
HA receives it (rcv_ha). Thus HA receives a packet from H1 to H2, which violates

135

10 Case Study: IP-RIP

H1 H2 HA R1 R2 R3

snd_h1

rcv_r1(I1)
snd_ripu(Z2,1)

snd_ha
rbc(Z3)

rpcs(I1)
rpcs(I1)

rip_in...(I1)

snd_r3(I2)
rbc(ZBB13)

rpcs(I3)
rip_in...(I3)
fwd(src=I1)
snd_r1(I3)

rcv_r3(I2)
rpcs(I2)

fwd(src=I2)
snd_r3(I1)

rcv_ha(I1)

rip_out

snd_ip(H2)

Send forged RIP update:
new route to Z2 metric 1

Update route to Z2;
next-hop is now HA

Update route to Z2;
next-hop is now R3

Create triggered
update packets

Receive RIP
update packet

Create IP packet for H2

Forward
packet for H2

Receive IP packet for H2

Receive IP packet for H2

Forward packet for H2

HA receives packet for H2
Assertion violated!

Figure 10.5: Example Attack Sequence in the IP-RIP model

the assertion.
Because of the breadth first search the described sequence is minimal. Thus, only

necessary steps are included. Further variants are possible. For example, R3 will
usually broadcast the triggered update packet to R2 as well. As this step is not
required for the violation of the stated confidentiality property, it is not included in
the 21 step sequence.

10.4 Discussion

In this section we briefly recapitulate some of the key points of the IP-RIP scenario.

Modeling & Analysis

• The IP-RIP scenario (cf. Fig. 10.1) involving multiple networks, RIP routers,
and TCP/IP hosts can be modeled based on our framework in an integrated
and object-oriented way using CTLA. During the modeling phase we en-
hanced the framework with the RouterIpNode process type and derived
the specific process type RipRouterIpNode for this scenario.

• The size of the CTLA model file is about 30 KB (without comments). After
translation to PROMELA with CTLA2PC, the model file has a size of about 60

136

10.4 Discussion

KB and a SPIN state vector of about 720 bytes. Automatic analysis with SPIN
can be tackled after insertion of the security property.

• Optimizations (cf. chapter 8) make a big difference in the IP-RIP scenario,
too. The state vector is reduced from its initial size of about 720 Bytes to
about 320 bytes. While contributing to the state vector reduction by only a
small amount, the Unroll Action Parameters optimization proved particularly
helpful (and was invented) during analysis of the IP-RIP scenario. The Unroll
Actions optimization significantly reduces the number of transitions and the
search depth required for the scenario.

Attack Sequences

• Realistic attack sequences can automatically be found by using SPIN to ana-
lyze the scenario model. The attack sequence discovered corresponds nicely
to the routing and tunneling protocol attack ideas from [BHE01].

• Attack sequences depend on the attacker position, update propagation, and
initial routing tables which in turn depend on low-level network topology
aspects.

For example, an attack sequence like the one shown in Figure 10.5 is not pos-
sible in the same way if H2 is connected directly to R2. First, the initial rout-
ing tables have different metrics. Second, the metric of the forged RIP up-
date packet from HA is increased by each router on its way to R3. Thus, the
new route would not be better than the existing route, and R3’s routing table
would not be updated. Using forged source IP addresses for RIP update pac-
kets to pretend letting the next-hop of a route send the update, circumvents
this “topology protection”.

• Practical tools to facilitate attacks on RIP via packet injection are widely avail-
able, e.g., nemesis-rip [NS04]. Some knowledge of RIP and the network
topology is still required, however.

Improving Security

• The main security weakness of RIP is the missing authentication so that in-
jected packets can effect the routing easily. Thus, RIP v2 [Mal98] adds pass-
word authentication. As the authentication mechanisms are incompletely spe-
cified in the RFC, most implementations (e.g., Microsoft [Cor02, p. 78]) for
compatibility reasons support cleartext authentication only. This leaves the
doors for attackers wide open.

137

10 Case Study: IP-RIP

• Cryptographically secured variants of RIP (e.g., S-RIP [WKvO04]) have been
suggested but are rarely deployed. Their widespread deployment is hindered
by the usually required computationally expensive cryptographic operations.
Performance is a very important consideration in routing. Furthermore, inter-
operability is a key requirement in heterogeneous networks, but standardiza-
tion of new protocols is a lengthy process.

• Deployment of an IPsec VPN between the routers (port 520) helps to pro-
tect from injection attacks by external nodes. Nodes regularly involved in
the routing process, however, are still able to inject packets at will. Further-
more, IPsec is a very complex protocol. Thus, it is both very hard to build a
secure IPsec implementation and to manage and configure a running system
correctly [FS99].

• Of course, RIP should be blocked at the border routers. It is an interior gate-
way protocol.

138

11 Case Study: IP-OSPF

This chapter describes the modeling and analysis of the IP-OSPF scenario using
our approach (cf. chapter 4). We begin with a short introduction of the scenario
followed by the key modeling steps, including the different views taken. Then, we
deal with the security property for automated analysis, optimizations taken and
analysis results. Due to the complexity of the scenario, we reach the limits of the
SPIN and GCC tools. Thus, we take a somewhat different approach regarding opti-
mizations than in the previous scenarios. The chapter concludes with the key points
learned from the application of our approach to the IP-OSPF scenario.

11.1 Introduction

In the IP-OSPF scenario [Kon05], we consider four networks N1, N2, N3, N4 con-
nected by routers as depicted in Figure 11.1. The hosts in the networks run TCP/IP,
the routers run the open shortest path first (OSPF) routing protocol.

Z1

i1
i2

i1

R1
H1

i1

Z2 i2

i1

i2i1

Z3

HA

R3

R4
DR N3i1

R2
DR N2

Z4

H2

i1
i2

N1
StubNet

N2
TransitNet N3

TransitNet

N4
StubNet

Figure 11.1: IP-OSPF Scenario

Classification OSPF belongs to the interior gateway routing protocols, i.e., it is
used for routing inside an autonomous system (cf. section 7.2.2), and is the most

139

11 Case Study: IP-OSPF

popular protocol based on link-state routing. In a link-state routing protocol, each
router maintains a link-state database (LSDB) with complete topology information
(i.e., networks, routers and links) for the autonomous system (or area). More pre-
cisely, each router sends updates of the form “I have these links to N1, N2, . . . ; their
cost is c1, c2, . . . ”. This is in contrast to distance-vector routing protocols like RIP
(cf. section 10.1), where each router maintains only partial topology information
(i.e., next-hop and distance) for each destination.

Attack Ideas & Tools As in the case of RIP (cf. chapter 10), the attack ideas des-
cribed in section 7.2.3 are applicable. Tools like nemesis-ospf from the Nemesis
project [NS04] create any OSPF packet, particularly update packets. All values on
the OPSF (e.g., sequence number, age, netmask etc) and IP level (e.g., source and
destination address) can be chosen arbitrarily. Thus, an attacker may inject packets
from, say, a compromised router. As the routers generally have complete topology
information and each router calculates its own routing table, it is more difficult to
effect OSPF routing than RIP routing (cf. chapter 10). Some specific attack ideas
for OSPF, e.g., MaxAge and Seq++, have been described by one of the inventors of
OSPF [JlM04] as well as by the authors of the JINAO IDS [JGS+00]. However, these
descriptions remain vague and informal. To the best of our knowledge, no formal
modeling and analysis of OSPF network scenarios has been published before our
work.

11.2 Modeling

We base our modeling on the framework (cf. chapter 7). As in the previous chap-
ters, we take a protocol, node, and network view at the scenario. By integrating the
views and composing the model’s elements, we then proceed to a system model for
the scenario.

11.2.1 Protocol View

In contrast to RIP, OSPF does not use a transport layer protocol to distribute its
information. Instead, it encapsulates its packets directly on the internet layer, using
its own IP protocol identifier. Thus, inclusion of a transport layer is not required for
the IP-OSPF model. As OSPF makes use of the internet layer, it is usually classified
as part of the transport layer (cf. Fig. 11.2).

The framework’s process types HostIpNode and RouterIpNode already sup-
ply adequate internet and network interface layers. Thus, it suffices to extend them
with OSPF on the transport layer.

140

11.2 Modeling

Application

Transport

Internet

Network Interface

Physical

+OSPF

IP

Basic Interface

Figure 11.2: Layers and Protocols in the IP-OSPF Scenario

11.2.1.1 Transport Layer – Open Shortest Path First (OSPF)

OSPF is quite a complicated protocol with several different message types and sub-
types, options, and additional fields. Thus, we provide a simplified high-level view
of OSPF here; for details we refer to RFC 2328 [Moy98] and [Per99].

OSPF message types The OSPF message types are:

• Hello message: Hello messages are used after router boot-up, to find out neigh-
boring routers.

• Database description message: Database description message are used to initia-
lize the LSDB of a router from neighboring routers.

• Link-state update message: Link-state update messages are the key message
type in OSPF. They are used to distribute topology information.

• Link-state request message: With a link-state request message, specific topology
information can be requested from a router.

• Link-state acknowledgment message: Link-state acknowledgment messages are
used for the reliable transfer of link-state update messages.

For our modeling, we begin with the steady phase with a full neighbor data
structure and initialized interfaces, not on the initialization and neighbor discovery
phase of the routers. Furthermore, we assume a reliable network where message
do not get lost. Thus, it suffices to consider link-state update type messages.

Link-State Update (LSU) Message Each link-state update message contains one
or more link-state advertisements (LSA). The most important LSA types are:

• Router-LSA: LSA describing a router’s link.

141

11 Case Study: IP-OSPF

• Network-LSA: LSA describing a broadcast network. It lists the netmask and
the routers of the network. This type of LSA is only created if a designated
router exists for the network.

• Summary-LSA: LSA summarizing an area. This type of LSA is only created if
OSPF is used with a hierarchical topology. In this case it is send by an area
border router.

Each LSA type has different attributes, however, the age, sequence number,
and advertising router attributes are contained in all types. While age and
sequence number attributes are used for aging of LSAs, advertising router
contains the router that originally created the LSA.

For our modeling, without loss of generality, we allow only one LSA per LSU
message. If a LSU message contains multiple LSAs, it is equivalent to multiple LSU
messages with one LSA each.

Distribution of LSU Messages LSU Messages are distributed both periodically
and due to changes in the topology. Periodic distribution makes use of the age
and sequence number attributes. At the time an LSA is distributed, its age is set
to zero. After a certain time the LSA has to be redistributed; then, the sequence
number attribute is increased by one and the age attribute is reset to zero.

A reliable flooding algorithm is used for distribution of LSU messages. That
means that the LSU messages are sent to all neighboring routers until reception
is acknowledged (by a link-state acknowledgment message).

Calculation of the Routing Table Each router calculates a shortest path tree (SPT),
using Dijkstra’s algorithm, from its LSDB. The SPT contains the shortest path from
the router to all destinations (networks). A route is defined by the next-hop for a
destination. This information follows directly from the SPT.

Designated Routers During OSPF initialization, designated routers are selected
for networks with three or more routers (so called multi-access networks). A desig-
nated router for a network provides concise information about the network through
network-LSAs, thus reducing the amount of routing information exchanged.

For the scenario considered here (cf. Fig. 11.1), we assume the routers R2 and R4
to be the designated routers for networks N2 respectively N3.

Hierarchical Routing To reduce the amount of topology information exchanged,
OSPF allows to divide autonomous systems into areas. With the division of the au-
tonomous system into areas, LSDBs contain information for one area only. Selected
routers, called area border routers, however, contain LSDBs for multiple areas. Most

142

11.2 Modeling

LSA types (with the exception of summary-LSAs) are not flooded over area borders.
Thus, essentially, each area is treated like its own independent autonomous system.

For the scenario considered in this chapter, we do not use hierarchical routing
(i.e., a single area covers the whole autonomous system).

Process type OSPFRouter We implement OSPF with a new process type
OSPFRouter, which is based on RouterIpNode. Figure 11.3 shows the struc-
ture of process type OSPFRouter. External actions (e.g., rcv) are connected to
red dots on the edge of process type OSPFRouter, symbolizing interaction with
external elements; internal actions (e.g., calcRT) are only connected to internal
elements.

PROCESS TYPE OSPFRouter

Link State Database Routing Table

Receive Buffers

IF1 IF2 ...
fwd

rlsa_sendback
rlsa_flood Send Buffers

IF1 IF2 ...

radr rcvraspfr

calcRT

updatetime snd

rlsa_fightback
rlsa_discard

flush_lsa
originate_routerlsa

originate_networklsa

originate_summarylsa
ip_discard

Figure 11.3: Process Type OSPFRouter

Besides send and receive buffers of the interfaces (which are inherited from pro-
cess type RouterIpNode); process type OSPFRouter contains data structures for
representing the LSDB and the routing table. The action calcRT calculates the rout-
ing table based on the data contained in the LSDB. Due to efficiency reasons, action
calcRT is implemented in PROMELA. Only a stub for action calcRT is contained
in the CTLA model, which is replaced by the PROMELA implementation after trans-
lation.

LSAs are received either by the action radr – if the router is a designated router –
or by the action raspfr – for a non-designated router. In any case, they are stored
in the interface’s buffer and handled by further processing actions. These actions
closely follow the different cases described in RFC 2328 [Moy98] for the flooding of
received LSAs:

143

11 Case Study: IP-OSPF

• rlsa_flood: Action for flooding of the LSA to all neighboring routers except
the advertising router.

• rlsa_fightback: The router received an LSA which is marked as newer
than an existing LSA and for which it is the advertising router. Thus, this
router will “fight-back” by removing the LSA and redistributing its own LSA.

• rlsa_sendback: The router received an LSA for which it already has a
newer version in its LSDB. Thus, this router sends the new version of the
LSA back to its originator.

LSAs created by these actions are put into the send buffers of the respective inter-
faces and can then be sent using action snd. We simplify the flooding algorithm by
assuming a reliable transport medium. Thus, we do not have to wait for acknow-
ledgments and do not have to retransmit LSAs.

But LSAs are not only created in reaction to incoming LSAs. After a link-state
change or refresh time expiry, new LSAs have to be prepared as well. These
cases are handled by the orginate_* actions according to the role of the router.
Each router sends router LSAs, designated routers and border routers additionally
send network and summary LSAs. Aging of LSAs is implemented through the
updatetime action, which affects all LSAs contained in the local LSDB.

The process type TimedMedia is derived from the framework’s Media process
type. It adds a constraint for action updatetime, which allows aging only if no
LSAs are currently in transit. This is a simplification that helps to cut down on the
variations between system runs and is especially helpful during validation.

Validation We validated the OSPF modeling described above by checking both
typical and random sequences. For the random sequences, we made use of SPIN’s
random simulation mode. Beforehand, each action was instrumented with a spe-
cial debugging code outputting action name, parameters, and values calculated
(e.g., routing table entries). The resulting logs greatly helped to fix subtle errors
and make sure the behavior of the modeling matches the RFC. For validating the
flooding process, sorting system runs by LSA age have proved useful.

11.2.2 Node View

In the IP-OSPF model, all routers are instances of the OSPFRouter process type.
This process type is capable of both representing designated routers and non-
designated routers. The hosts are modeled with instances derived from process
type HostIpNode.

144

11.2 Modeling

11.2.2.1 Representative Nodes & Role Assignment

The set of nodes (R1, R2, R3, R4, H1, H2, HA) contained in the OSPF scenario (cf.
Fig. 11.1) is already quite minimal. Designated routers occur within multi-access
networks. Thus, with two multi-access networks, and two stub networks, four
routers is the minimum number for the architecture to make sense. Furthermore,
for two communicating hosts and an independent attacker, three host nodes are
required. Thus, for this scenario, there is no point in selecting a smaller subset of
nodes as representative nodes.

The roles to assign for this scenario are designated router, non-designated router,
sender, receiver, passive attacker and active attacker. Active attacker and passive
attacker are collaborating. While the former one actively interferes with the routing
protocols, the later one is the passive beneficiary of the former one’s actions.

Due to the topology dependencies already described, R2 and R4 are designated
routers, R1 and R3 are non-designated routers. The host roles are assigned as fol-
lows: H1 7→ receiver, H2 7→ sender, HA 7→ attacker. Router R2 is assigned the active
attacker role. Accordingly, HA is an instance of the framework (cf. chapter 7) pro-
cess type HostIpNode, while router R2 is an instance of the specific process type
AttackerOSPFRouter.

11.2.2.2 Attacker Action

For the attacker, a specific process type, AttackerOSPFRouter, is derived
from OSPFRouter. It adds two actions, attacking_rlsa_flood and hda_-
change_fwd.

The action attacking_rlsa_flood interferes the flooding process by invali-
dating the current LSA. This invalidation can be done in different ways. We con-
sider the attacks suggested by the authors of the JINAO IDS [JGS+00]. For example,
the MaxAge attack, which is also described in [JlM04], works by setting the age
field to a special value which causes the LSA to be flushed from all routers involved
in the flooding process. After the MaxAge LSA is recognized by the router owning
the LSA, it will “fight back” and issue a new LSA with age 0.

The action hda_change_fwd models the collaboration of the attacker router
with the attacker host. It forwards a received packet to the attacker host. This
way, if the attacker router is able to interfere with the routing process, the attacker
host can benefit as well.

11.2.2.3 Node Initialization

As in the previous examples, the send, receive, and zone buffers, are set to empty.
The interfaces of all nodes are assigned addresses according to fSrcToIa from the
framework.

145

11 Case Study: IP-OSPF

Furthermore, as stated above, our modeling begins with the steady phase and a
full neighbor data structure. Thus, the routing table and LSDB have to be initialized
for all router nodes. Both routing table and LSDB are initialized via functions. The
functions for initializing the routing table have the form fIniSrcRtIToX(n,r),
where n is a node identifier and r is the row of routing table from which value X
is to be retrieved. For example, fIniSrcRtIToNextHopIf(R1_ID,0) gives the
initial interface ID of the next hop of the first row in router R1’s routing table.

Similarly, the functions for initializing the LSDB are of the form fIniSrc-
LsdbIToY(n,r). Thus, function fIniSrcLsdbIToAge(R1_ID,0) returns the
initial age (=0) of the first LSDB entry of router R1. A more detailed example of the
contents of a routing table is given in the following section.

11.2.3 Network View

The example scenario consists of four networks (N1, N2, N3, N4) connected by four
OSPF routers (R1, R2, R3, R4) (cf. Fig. 11.1). This is modeled by a TimedMedia
instance with four zones Z1, Z2, Z3, Z4, where Zi corresponds to network Ni. With
the topology function fSrcToZone, the interfaces of the nodes are assigned to the
appropriate zones (e.g., interface 2 of router 1 is mapped to zone Z2).

For each router, the routing table entries have the form (desttype, area, pathtype,
dest, nexthop-iid, nexthop-ia, dist). As this IP-OSPF scenario uses no hierarchical
routing (i.e., a single area), and only network links, the area (0), pathtype, and dest-
type (=NETWORK_DT) entries are constant. In the steady phase, the entries (dest,
nexthop-iid, nexthop-ia, dist) correspond to the network topology of the scenario.
For example, router R1 choses router R3 (interface 1) as next-hop for packets des-
tined for network 3, and the distance (cost) of this route is 2 (cf. Table 11.1).

dest nexthop-iid nexthop-ia dist
N1 I1 – (direct) 1
N2 I2 – (direct) 1
N3 I2 R3_I1_IA 2
N4 I2 R3_I1_IA 3

Table 11.1: Initial routing table of R1

In the actual implementation for this scenario, the dest field is for efficiency rea-
sons not a part of the routing table but provided via the function fInaToRtiwhich
maps from a destination to a corresponding row of the routing table.

146

11.3 Analysis

11.2.4 System Composition

The CTLA system for the IP-OSPF scenario is composed as depicted in Figure 11.4
(without internal actions).

Processes The system is instantiated from the process type OspfExample,
which contains a TimedMedia instance representing the networks, four instances
derived from OspfRouter (one of these an AttackerOspfRouter instance) for
the routers, and three instances of HostIpNode (two of these ActiveHostIpNode
instances) for the nodes.

Of these process types, OspfRouter, OspfAttackerRouter, and
TimedMedia, are specific to the IP-OSPF scenario (cf. Fig. 11.5). They are, however,
derived from the framework’s process types RouterIpNode and Media.

System Actions The collaboration in the system is determined through the sys-
tem actions which couple the instances’ actions. In addition to the send and re-
ceive classes for system actions known from the previous scenarios (cf. chap-
ter 9, 10), there is another class for advancing time made up of the system action
updatetime (i.e., aging the LSAs). The send system actions are subdivided into
system actions for routers (rXsnd) and hosts (hYsnd) due to an additional param-
eter specifying the interface for the (multi-homed) routers.

For the receive system actions, we set up different subclasses for reception of
generic packets vs. LSA messages. As before, the receive actions for generic pac-
kets distinguish between routers (rXrcv) and hosts (hYrcv). LSA messages are
processed only by routers. We distinguish between LSA messages received by the
designated routers R2, R4 (nNradr, where N specifies the network N2, N3 respec-
tively) and all other routers (nNraspfr, where N ∈ {N2, N3}). Only these actions,
which are possible due to the assigned roles (designated router or non-designated
router), and the neighbor relationship are included. Furthermore, system actions
which are not relevant with respect to the scenario (e.g., broadcast receive, because
the routers use multicast) are removed.

11.3 Analysis

Here, we describe the security property to be checked during automated analysis,
the optimizations taken, and finally the results of the automated analysis with SPIN.
Automated analysis for the IP-OSPF scenario was especially difficult because we
reached the limits of the SPIN and GCC tool chain. This problem will be covered in
the optimizations section.

147

11 Case Study: IP-OSPF

SYSTEM IpOspfExample

PROC. h1: Act...HostIpNode

ACTIONS
rcv(pkt)
snd(pkt)

PROC. r1: OSPFRouter

ACTIONS
 rcv(iid, pkt)

 snd(iid, pkt)
raspfr(iid, pkt)

updatetime()

PROC. h2: Act...HostIpNode

ACTIONS
rcv(pkt)
snd(pkt)

PROC. r2: Att...OSPFRouter

ACTIONS
 rcv(iid, pkt)
 snd(iid, pkt)

raspfr(iid, pkt)
radr(iid, pkt)
updatetime()

PROC. r3: OSPFRouter

ACTIONS
 rcv(iid, pkt)
 snd(iid, pkt)

raspfr(iid, pkt)
updatetime()

PROC. r4: OSPFRouter

ACTIONS
rcv(iid, pkt)
snd(iid, pkt)
radr (iid, pkt)
updatetime()

PROC. ha: HostIpNode

ACTIONS
rcv(pkt)

PROCESS m: TimedMedia

ACTIONS
in(zid, pkt)

out(zid, pkt)
updatetime()

r1rcv r1snd r2rcv r2snd r3rcv r3snd r4rcvr4snd
n2r

aspfr
n2r
adr

n3r
aspfr

n3r
adr h1snd h1rcv h2snd h2rcv harcv

update
time

Figure 11.4: Compositional Structure of the IP-OSPF Model

148

11.3 Analysis

OSPF
Router

RouterIp
Node

Active...
HostIp
Node

NonP...
HostIp
Node

Active
HostIp
Node

Host
IpNode

Host
IpNode

Attacker
OSPF
Router

Timed
Media

Media

Host
IpNode

Router
IpNode

OSPF
Router

Figure 11.5: Framework and Specific Process Types of the IP-OSPF Model

11.3.1 Security Property

As described in section 11.2.2, our modeling begins in the steady phase. The shor-
test route from host H1 to H2 uses the routers R1, R3, R4. In particular, packets
from host H1 (role sender) to H2 (role receiver) are not transmitted over router R2
(role attacker). Thus, the attacker host HA cannot receive packets from H1 over the
collaborating router R2.

We capture this behavior with a security property for host HA. The security pro-
perty states that, if host HA receives a non-broadcast packet, it has to be destined
for HA. In our modeling, this property can be formalized easily using SPIN’s as-
sert statement (cf. Listing 11.1). The assert statement requires that a packet which
is in host HA’s receive buffer has a (final) destination address equal to host HA’s
address.

assert((ha_itf.rpa.pkt.dat_ida == HA_I1_IA));

Listing 11.1: Assertion in the IP-OSPF Example

As we insert the assertion into the non-broadcast receive action of host HA (after
translation of the model to PROMELA), it is not triggered by broadcast packets.

11.3.2 Optimizations

In the following paragraphs we describe the optimizations we applied to the IP-
OSPF model in order to be able to conduct automated analysis. Table 11.2 outlines
the order of application and the state-vector size resulting from the optimizations
applied so far.

Due to its complexity, the IP-OSPF scenario reaches the limits of the GCC tool. We
had to spend a lot of effort to transform the model in such a way that the SPIN and

149

11 Case Study: IP-OSPF

Optimization State Vector
(initial version) ∼ 1080 Bytes
+ Paramodulation ∼ 990 Bytes
+ Unroll action parameters ∼ 980 Bytes

Table 11.2: Optimization Effects on State-Vector Size in the IP-OSPF Example

GCC tool chain could be used at all. Thus, in contrast to the previous scenarios, the
focus of this section lays more on finding ways to work around these limitations
than on reducing the state-vector size.

11.3.2.1 Initial Version

For the network architecture to make sense, the nodes contained in the scenario are
required (cf. section 11.2.2.1). Thus, we do not select a smaller set of representative
nodes for this scenario.

We already assigned roles like attacker, sender, receiver etc. Through this assign-
ment and the intelligent definition of the system actions, we can save on actions
executable at each step. For example, as mentioned above, broadcast receive ac-
tions are not required for this scenario. The state vector size of this initial version is
about 1080 Bytes.

11.3.2.2 Action Parameter Paramodulation

Due to the system action composition (cf. section 11.2.4) in the IP-OSPF scenario,
packet related parameters are typically input parameters for one instance’s action
coupled with another instance’s action, where they are output parameters. Thus,
paramodulation can be successfully applied in the IP-OSPF scenario, too. By trans-
lating our CTLA model with the --paramod switch, the state-vector shrinks by
about 9% to about 990 Bytes.

11.3.2.3 Unroll Action Parameters

The unroll actions approach already proved useful in the IP-RIP scenario (cf. chap-
ter 10). We apply this approach to the IP-OSPF CTLA model as well. Thus, both the
parameter setting input generator and the corresponding parameters are removed
which mainly saves on transitions (search depth). The state vector size is slightly
reduced to about 980 Bytes. Unfortunately, the PROMELA model file size grows
strongly.

The size of the IP-OSPF CTLA model file is about 100 KB (cf. Table 11.3). Without
use of the unroll actions approach (variant 1), the PROMELA model file has a size of

150

11.3 Analysis

about 500 KB after translation. This corresponds to a size blow-up factor of 5 bet-
ween CTLA and PROMELA. This demonstrates the efficiency of the compositional
and object-oriented modeling of CTLA in comparison with PROMELA.

With the application of the unroll actions approach (variant 2), however, the
PROMELA model file’s size is about 875 KB, i.e., we experience a nearly 9-fold size
blow-up. The increased blow-up is due to the copying of actions involved in the
unroll approach.

Model Variant 1 Variant 2 Variant 3
cTLA ∼100 KB (without comments)
Promela ∼ 500 KB ∼ 875 KB ∼ 780 KB
C (Verifier) ∼ 8,060 KB ∼ 11,320 KB ∼ 3,160 KB
Executable ∼ 3,920 KB – (failed) ∼ 870 KB

Table 11.3: IP-OSPF Model File Size Comparison

In both cases, SPIN is used to generate a C representation of the model integrated
with the procedures required to check the security property, i.e., a verifier. Again,
this translation leads to a size blow-up. After translation to C the size of the model
files is about 8,060 KB for variant 1 and 11,320 KB for variant 2. Thus, the size blow-
up from PROMELA to C is even larger, with a factor of about 16 for variant 1 and 13
for variant 2.

Unfortunately, for variant 2, the GCC compiler required for creating an executable
verifier hangs during translation of the verifier C code. Thus, analysis of the model
variant with applied unroll actions approach is not possible with the SPIN and GCC
tool chain at all.

This forced us to consider new directions for optimizations. Due to the limita-
tions of the SPIN and GCC tool chain, we have to focus on reducing the C model
size. Further analysis shows that the pan.m file generated by SPIN is the main con-
tributor to the size of the C model files. In this file, model transitions are contained.
In particular, their guards involve large expressions due to nested function calls
and predicates (e.g., for topology and routing table access).

11.3.2.4 Reduce Nesting Depth of Guard Expressions

Functions in CTLA are defined through value tables (cf. section 5.2.3). As described
in section 6.2.2.4, CTLA functions are translated to PROMELA using inline macros
containing guard and effect statements. Thus, particularly nested function calls can
lead to a PROMELA model with very large guard expressions (cf. section 8.5.2). Such
an expression occurs e.g., in the action fwd of process type OSPFRouter of the IP-
OSPF model. Ultimately, the well-known C compiler GCC hangs during translation
of the verifier created by SPIN.

151

11 Case Study: IP-OSPF

To solve this problem, we developed the reduce nesting depth of guard expres-
sions optimization (cf. section 8.5.2). It simplifies nested guard expressions invol-
ving functions with the help of temporary variables and possible reordering. This
way, a smaller expanded PROMELA and C verifier version of the model (cf. Ta-
ble 11.3, variant 3) is created. The size blow-up from the PROMELA to the C version
of the model is greatly reduced. While the previous blow-up was about factor 13, it
is only factor 4 with the function nesting reduction. Accordingly, the verifier source
code has a size of about 3,160 KB (instead of 11,320 KB).

11.3.3 Results

After application of the optimizations described above, especially the reduce func-
tion nesting optimization, an executable verifier can be built by SPIN and GCC. The
state vector size, however, is still about 980 Bytes due to the complexity of the
IP-OSPF scenario. Verification attempts in exhaustive mode (i.e., full state space
search) run out of memory quickly.

Therefore, in contrast to the previous scenarios, we recompile the verifier with
the option for bit-state hashing mode (-DBITSTATE). This time, execution of the
verifier detected a violation of the specified security property in the IP-OSPF model
(cf. Listing 11.2).

The analysis required about 1,1GB of RAM and took 8 minutes using SPIN 4.2.5
on a Linux machine with two 3,1 GHz Xeon CPUs. From the generated trail file
(OspfASExample.promela.trail) with SPIN’s guided simulation mode, the vi-
olating sequence can be obtained on the PROMELA level. The mapping of the se-
quence back to the level of CTLA actions is easy thanks to CTLA2PC’s option
--trace-points. This reveals the attack sequence depicted in Figure 11.6.

First, router R3 creates a new router LSA (originate_routerlsa) that is sent
to and received by R2, the designated router of network N2 (r1snd, r2radr).
This router is compromised and uses a MaxAge attack to invalidate the LSA
(r2.attacker_rlsa_flood). This LSA is then sent to R4, the designated router
of network N3 (r2snd, r4radr) and flooded in network N2 (r2snd, r1raspfr,
r3raspfr). Router R1 processes the LSA (r1.rlsa_flood) and recalculates its
routing table (r1.calcRT), thereby changing its next-hop for network N2 from
R3 to R2. Next, host H1 prepares and sends an IP packet to host H2 (h1.snd_ip,
h1snd). The packet is received by R1 (r1rcv) and – due to the recent routing table
change – routed to R2 (r1.fwd, r1snd). Router R2 receives the packet (r2rcv) and
forwards it to the collaborating attacker host HA (r2.hda_change_fwd, r2snd).
Thus, host HA can receive the packet (harcv) from host H1 to H2, violating the
security property.

Depending on the scenario model and exact property modeling, various attack
sequences have been found. For example, we also successfully examined attacks

152

11.4 Discussion

pan: assertion violated (ha_itf.rpa.pkt.ida==3) (at depth 19)
pan: wrote OspfASExample.promela.trail
(Spin Version 4.2.5 -- 2 April 2005)
...
State-vector 980 byte, depth reached 19, errors: 1
2.23811e+06 states, stored

2.23811e+06 nominal states (stored-atomic)
7.77519e+07 states, matched
7.999e+07 transitions (= stored+matched)
...
hash factor: 479.754 (best if > 100.)
bits set per state: 3 (-k3)
...
Stats on memory usage (in Megabytes):
2202.301 equivalent memory usage for states
(stored*(State-vector + overhead))

268.435 memory used for hash array (-w30)
854.979 other (proc and chan stacks)
4.391 memory lost to fragmentation
1127.805 total actual memory usage

Listing 11.2: Spin Verifier Output in the IP-OSPF Example

involving multi-area (hierarchical routing) OSPF scenarios.

11.4 Discussion

Here, we give a brief outline of some of the key points encountered in the IP-OSPF
scenario.

Modeling & Analysis

• We successfully modeled the IP-OSPF scenario (cf. Fig. 11.1) involving multi-
ple networks, OSPF Routers, and TCP/IP hosts. The framework contributed
fundamentally to the modeling. The main work during the modeling phase
was the addition of the specific process type OSPFRouter, derived from
RouterIpNode.

• Process type OSPFRouter can represent both designated and non-designated
routers. An instance acts as either a designated or non-designated
router through the system action coupling of the appropriate receive ac-
tion (raspfr or radr). Alternatively, two types DesOSPFRouter and

153

11 Case Study: IP-OSPF

H1 R1 R2

MaxAge Attack:
invalidate LSA

R3 R4
orig...routerlsa(AREA)

snd(I1_ID)
radr(I1_ID)

att...rlsa_flood(I1_ID)

snd(I1_ID)

snd(I2_ID)

raspfr(I2_ID) raspfr(I1_ID)

radr(I1_ID)

rlsa_flood(I2_ID)
calcRT()

invalid LSA
forces new RT;
next hop for net

4 is now R2snd_ip(H2_IA)
snd()

H1 prep.
packet for H2

rcv(I1_ID)
fwd(I1_ID)
snd(I2_ID)

rcv(I1_ID)
hda...fwd(I1_ID)

snd(I2_ID)

attacking router R2
rec. packet for H2

forwards it to HA

HA

rcv()

attacker host receives
packet for H2

Assertion violated!

forwards packet
for H2 to R2

MaxAge Attack:
invalidate LSA

Figure 11.6: Example Attack Sequence in the OSPF model

NonDesOSPFRouter with only one receive action each could have been
derived from OSPFRouter.

• Process type OSPFRouter supports hierarchical OSPF with multiple areas
as well. Several more scenarios, including multi-area scenarios, have been
modeled using OSPFRouter [Kon05].

• The size of the IP-OSPF CTLA model file is about 100 KB. After initial trans-
lation to PROMELA the size is about 500 KB and the SPIN state vector is about
1080 Bytes. In comparison, the IP-RIP scenario (cf. chapter 10) has a state vec-
tor of about 720 Bytes. This shows the much higher complexity of the IP-OSPF
scenario.

• Optimization effects are a bit different in the IP-OSPF scenario. Paramodu-
lation is still useful; a new problem is encountered with the Unroll Action
Parameters optimization: the SPIN and GCC tool chain fails. It turns out that
this is due to nested functions in guard expressions, which are inlined and
expanded greatly during SPIN’s preprocessing and then cause GCC to hang.
After a transformation of such guard expressions, however, the SPIN and GCC
tool chain works again.

154

11.4 Discussion

• Due to a still very large state vector we employed SPIN’s approximative ver-
ification mode (bitstate hashing) instead of the exhaustive mode for analysis
to find attack sequences.

Attack Sequences

• Our work delivers precise attack sequences for the previously only informally
described OSPF attack ideas. The attack sequence (cf. Fig. 11.6) detected by
SPIN follows the MaxAge attack idea. We have also found attack sequences
for other attack ideas, e.g., Seq++. To the best of our knowledge, previous
to our work on OSPF, no formal modeling and analysis related to security
aspects has been published. Instead, previous work chiefly deals with func-
tional aspects and is based on techniques like simulation and test cases.

• From these sequences we can conclude the special importance of securing
designated routers (i.e., routers which provide network LSAs) of a network.
A compromised designated router makes it easy to affect the routing of its
network.

Furthermore, topologies with alternative ways with the same cost (like
(R1,R2,R4) or (R1,R3,R4) in Figure 11.1) are more suspectible for attacks.

• Practical tools for OSPF packet injection, e.g., nemesis-ospf [NS04], exist.
Because of the higher complexity of OSPF, these tools are more difficult to use
than their RIP counterparts.

Improving Security

• In contrast to RIP, OSPF can authenticate packets based on MD5 in a stan-
dardized way. The problems of administrative and computational overhead
remain, however. Furthermore, this authentication does not protect against
attacks by nodes involved in the routing process (i.e., possess the key). Apart
from this, problems have surfaced in the MD5 hash algorithm itself [WFLY04],
deteriorating the security of any MD5 based authentication.

• Extensions to sign OSPF LSAs cryptographically have been suggested by Mur-
phy et al [MBW97]. Again, they do not prevent attacks by nodes involved in
the routing process [Eti00]. Furthermore, these extensions have not found
widespread acceptance.

• OSPF is self-stabilizing because of the periodic flooding of routing informa-
tion and fight-back by the advertising router. For an attack to be effective for
more than a short period of time the attacker has to inject bad packets continu-
ously. Of course, continuous attacks can be detected much better. Thus, OSPF
is inherently more secure than RIP.

155

11 Case Study: IP-OSPF

• With JINAO an experimental IDS for preventing OSPF attacks exists.

• Like RIP, OSPF can be protected by attacks from nodes external to the routing
process using an IPsec VPN. Again OSPF should be blocked at the border
routers.

156

12 Conclusion

In this concluding chapter, the main contributions of the thesis are summarized and
directions for further work are suggested.

12.1 Summary of Contributions

Existing approaches related to computer network security are typically focused on
one of the protocol, node, or network views. This thesis introduced the first ap-
proach that integrates these three views of computer network attack scenarios on
a medium level of detail, allowing for consistent formal modeling and automated
analysis of rich, dynamic, multi-view computer network attack scenarios. In more
detail, the approach delivers:

• a workflow and modeling steps for applying the approach

• CTLA 2003, an expressive, executable, object-oriented, formal modeling lan-
guage based on CTLA

• a modeling framework for the domain of integrated, dynamic computer net-
work attack scenarios

• a scheme for translating CTLA 2003 specifications to PROMELA

• model optimization strategies at different levels to prevent or ease state-space
explosion effects and enable successful analysis

• CTLA2PC, a compiler tool implementing the scheme and optimizations at the
CTLA and SPIN-level providing for automated translation and optimization
of CTLA 2003 specifications

• automated analysis of translated models with the SPIN model checker using
a rich set of security properties (all mechanisms supported by SPIN) and the
mapping of the discovered attack sequences back to the level of CTLA actions

The feasibility of the approach has been demonstrated by application to several
case studies:

157

12 Conclusion

• IP-ARP: a single network scenario involving administrative actions, several
host nodes and low-level IP and ARP protocols [RPK04]

• IP-RIP: a multiple network dynamic distance-vector routing scenario invol-
ving multiple host and router nodes [RKK05]

• IP-OSPF: a multiple network and router types, dynamic routing scenario in-
volving IP and the complex link-state routing protocol OSPF

In these scenarios, precise attack sequences were found automatically. Formerly,
there were only informal attack suggestions. To the best of our knowledge, for
OSPF in particular, only partial modeling and analysis related to functional aspects
and work based on simulation and test cases has been done before. This may be due
to the high complexity of OSPF; we encountered limitations of the powerful SPIN
and GCC tools during the work on the IP-OSPF case study.

12.2 Future Work

While this thesis has provided new answers for formal modeling and analysis of
computer network attack scenarios, rewarding areas for future work still exist. In
the following, we outline these areas briefly.

Implementation By extending CTLA2PC and providing new tools, both the ana-
lysis and modeling can be further facilitated.

• Add a back-end for another model checker, e.g., TLC or SMV, to CTLA2PC.
(Re-)analyze the scenario models from the case studies and evaluate the ana-
lysis possibilities (e.g., time and memory required) vs SPIN.

• Implement the reduce function nesting optimization (cf. section 8.5.2) as a
switch for our regular CTLA2PC translator instead of the PERL script in order
to keep a single translation and optimization tool.

• Build a set of translators for the output of network discovery and scanner tools
and devise a way to automatically produce a basic CTLA model. Particularly,
the model has to reflect the network topology and instantiate matching pro-
cess types to cover a basic network, node, and protocol view.

• Devise a policy resolver tool to derive security properties from policies auto-
matically. Add these properties to the analysis model to provide automated
analysis without having to specify the properties.

• Implement a visualization component to directly output CTLA-level attack
sequence diagrams.

158

12.3 Looking Ahead

Modeling Augmenting the framework with node types supporting further popu-
lar protocols allows to build models for additional scenarios quickly.

• Devise router process types supporting exterior-gateway routing protocols
like the border gateway protocol (BGP). This would top off the existing frame-
work by providing process types for all three levels of the Internet routing
architecture (cf. section 7.2.2).

• Domain name system (DNS) poisoning and denial of service attacks have
gained new attention after incidents in 2005 [SAN05]. Add node process types
for DNS clients and servers to be able to quickly analyze such scenarios.

New Directions Besides computer network attack models, other application do-
mains offer interesting prospects for our approach. As the framework is specific for
computer network models, a new or adapted framework has to be worked out for
new application domains.

• Mobile ad-hoc networks (MANETs) are an emerging area based on wireless, peer-
to-peer, mobile networking. They pose a set of new challenges particularly
in the areas of routing and security. As our approach is expressive enough
to handle highly dynamic node behavior, it is well-suited to MANETs. The
framework has to be reworked significantly to allow for the wireless media,
node mobility etc, however.

• Web services are components that collaborate and communicate over the Inter-
net using open, XML based standards. One of the most challenging problems
of web services is to ensure confidentiality of data exchanged between and
processed by multiple components. As our approach is based on a full mo-
deling language and translation to a powerful model checker, it seems quite
possible to apply it to web services. For that purpose, however, a completely
new framework with notions for web service components and interfaces has
to be developed.

12.3 Looking Ahead

With the advancement of integrated approaches supported by powerful modeling
and analysis tools, the frontiers with respect to scope and size of the considered
scenarios will always be pushed further, and further. Ultimately, the vision of au-
tomated, “push button” modeling and analysis of integrated, large-scale computer
network attack models comes within reach. The approach presented in this thesis
together with its underlying concepts and techniques forms a foundation for future
research to ultimately realize this vision.

159

Bibliography

[ABB+05] Armando, Alessandro; Basin, David; Boichut, Yohan; Chevalier, Yan-
nick; Compagna, Luca; Cuellar, Jorge; Hankes Drielsma, Paul; Heám,
Pierre-Cyrille; Mantovani, Jacopo; Mödersheim, Sebastian; von Oheimb,
David; Rusinowitch, Michaël; Santiago, Judson; Turuani, Mathieu; Vi-
ganò, Luca; Vigneron, Laurent: The AVISPA tool for the automated val-
idation of Internet security protocols and applications. In: Etessami,
Kousha; Rajamani, Sriram K., editors, Proceedings of the 17th International
Conference on Computer-Aided Verification (CAV’05), volume 3576 of Lecture
Notes in Computer Science, pp. 281–285. Springer, 2005. ISBN 3-540-27231-
3.

[AP93] Abbott, Mark B.; Peterson, Larry L.: Increasing network throughput by
integrating protocol layers. In: ACM Transactions on Networking, vol-
ume 1(5):pp. 600–610, 1993. ISSN 1-063-669-2.

[AR00] Ammann, Paul; Ritchey, Ronald: Using model checking to analyze net-
work vulnerabilities. In: Proceedings of the 2000 IEEE Symposium on Secu-
rity and Privacy, pp. 156–165. 2000.

[AS85] Alpern, Bowen; Schneider, Fred B.: Defining liveness. In: Information
Processing Letters, volume 21(4):pp. 181–185, 1985.

[ASU06] Aho, Alfred V.; Sethi, Ravi; Ullman, Jeffrey D.: Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 2006. ISBN 0-321-428-9.

[AWK02] Ammann, Paul; Wijesekera, Duminda; Kaushik, Saket: Scalable, graph-
based network vulnerability analysis. In: Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, pp. 217–224. 2002.

[BAN90] Burrows, Michael; Abadi, Martin; Needham, Roger: A logic of authenti-
cation. In: ACM Transactions on Computer Systems, volume 8(1):pp. 18–36,
1990.

[BHE01] Blackhat Europe Conference: Routing and Tunneling Protocol Attacks,
2001. URL: http://www.blackhat.com/html/bh-europe-01/
bh-europe-01-speakers.html#FX.

160

http://www.blackhat.com/html/bh-europe-01/bh-europe-01-speakers.html#FX
http://www.blackhat.com/html/bh-europe-01/bh-europe-01-speakers.html#FX

Bibliography

[Bol03] Bolour, Azad: Notes on the Eclipse Plug-in architecture,
2003. URL: http://www.eclipse.org/articles/
Article-Plug-in-architecture/plugin_architecture.
html.

[BOR03] Bruschi, Danilo; Ornaghi, Alberto; Rosti, Emilia: S-ARP: a secure address
resolution protocol. In: Proceedings of the 19th Annual Computer Security
Applications Conference (ACSAC’03), pp. 66–75. IEEE Computer Society,
2003. ISBN 0-7695-2041-3.

[CMU01] Carnegie Mellon University Model Checking Group: The SMV System,
2001. URL: http://www.cs.cmu.edu/~modelcheck/smv.html.

[Cor02] Corporation, Microsoft: Windows 2000 Server Internetworking Guide. Mi-
crosoft Press, 2002. ISBN 0-7356-1797-X.

[DY83] Dolev, D.; Yao, A.: On the security of public key protocols. In: IEEE
Transactions on Information Theory, volume 30(2):pp. 198–208, 1983.

[eEy06] eEye Digital Security: Blink Endpoint Vulnerability Protection, 2006. Online
Document, URL: http://www.eeye.com/html/products/Blink/
features.html.

[Eti00] Etienne, Jerome: OSPF with digital signatures against an insider, 2000. On-
line Document, URL: http://off.net/~jme/rfc2154_rem.pdf.

[FG05] Flanagan, Cormac; Godefroid, Patrice: Dynamic partial-order reduction
for model checking software. In: SIGPLAN Not., volume 40(1):pp. 110–
121, 2005. ISSN 0362-1340.

[FS99] Ferguson, Niels; Schneier, Bruce: A Cryptographic Evaluation of IPsec.
Counterpane Internet Security Inc., 1999. Online Document, URL: http:
//www.schneier.com/paper-ipsec.pdf.

[FX01] FX of Phenoelit: Internet Routing Protocol Attack Suite (IRPAS), 2001. URL:
http://www.phenoelit.de/irpas.

[GA06] Govindavajhala, Sudhakar; Appel, Andrew W.: TR-744-06: Windows ac-
cess control demystified. Technical report, Princeton University, 2006.

[GCH03] Garg, Ashish; Curtis, Jeffrey; Halper, Hilary: Quantifying the financial
impact of IT security breaches. In: Information Management and Computer
Security, volume 11(2):pp. 74–83, 2003. ISSN 0968-5227.

161

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
http://www.cs.cmu.edu/~modelcheck/smv.html
http://www.eeye.com/html/products/Blink/features.html
http://www.eeye.com/html/products/Blink/features.html
http://off.net/~jme/rfc2154_rem.pdf
http://www.schneier.com/paper-ipsec.pdf
http://www.schneier.com/paper-ipsec.pdf
http://www.phenoelit.de/irpas

Bibliography

[GHJV95] Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John: Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995. ISBN 0-201-63361-2.

[HC98] Harkins, D.; Carrel, D.: RFC 2409: The Internet key exchange (IKE). Tech-
nical report, Network Working Group, 1998. URL: http://rfc.net/
rfc2409.html.

[Hed88] Hedrick, C.: RFC 1058: Routing information protocol. Technical report,
Network Working Group, 1988. URL: http://rfc.net/rfc1058.
html.

[Her98] Herrmann, Peter: Problemnaher korrektheitssichernder Entwurf von Hochleis-
tungsprotokollen. Ph.D. thesis, Universität Dortmund, 1998.

[HK00] Herrmann, Peter; Krumm, Heiko: A framework for modeling transfer
protocols. In: Computer Networks, volume 34(2):pp. 317–337, 2000.

[Hol03] Holzmann, Gerard J.: The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 1st edition, 2003.

[HP99] Holzmann, Gerard J.; Puri, Anuj: A minimized automaton representation
of reachable states. In: International Journal on Software Tools for Technology
Transfer (STTT), volume 2(3):pp. 270–278, 1999.

[Hum00] Humble (pseudonym): Spoofing RIP (Routing Information Protocol), 2000.
Online Document and Source Code. URL: http://packetstorm.
linuxsecurity.com/groups/horizon/ripar.txt.

[ISO96] International Standards Organization: ISO/IEC 14977:1996: Information
technology — Syntactic metalanguage — Extended BNF, 1996.

[JGS+00] Jou, Y.; Gong, F.; Sargor, C.; Wu, X.; Wu, S.; Chang, H.; Wang, F.: Design
and implementation of a scalable intrusion detection system for the pro-
tection of network infrastructure. In: Proceedings of DARPA Information
Survivability Conference and Exposition, volume 2, pp. 69–83. 2000.

[JlM04] Jones, Emanuele; le Moigne, Olivier: OSPF Security Vulnerability Analysis,
2004. Expired IETF Internet Draft. URL: http://www3.ietf.org/
Proceedings/05mar/IDs/draft-ietf-rpsec-ospf-vuln-01.
txt.

[JNO03] Jajodia, Sushil; Noel, Steven; O’Berry, Brian: Topological analysis of net-
work attack vulnerability. In: Managing Cyber Threats: Issues, Approaches
and Challenges. Kluwer Academic Publisher, 2003.

162

http://rfc.net/rfc2409.html
http://rfc.net/rfc2409.html
http://rfc.net/rfc1058.html
http://rfc.net/rfc1058.html
http://packetstorm.linuxsecurity.com/groups/horizon/ripar.txt
http://packetstorm.linuxsecurity.com/groups/horizon/ripar.txt
http://www3.ietf.org/Proceedings/05mar/IDs/draft-ietf-rpsec-ospf-vuln-01.txt
http://www3.ietf.org/Proceedings/05mar/IDs/draft-ietf-rpsec-ospf-vuln-01.txt
http://www3.ietf.org/Proceedings/05mar/IDs/draft-ietf-rpsec-ospf-vuln-01.txt

Bibliography

[Kin94] Kindler, Ekkart: Safety and liveness properties: A survey. In: Bulletin
of the European Association for Theoretical Computer Science (EATCS), vol-
ume 53:pp. 268–272, 1994.

[KKN+03] Kawauchi, Kiyoto; Kitazawa, Shigeki; Nakano, Hatsumi; Ohkoshi,
Takehiro; Fujii, Seiji; Kawaki, Motokazu: A vulnerability assessment tool
using first-order predicate logic. In: IPSJ SIGNotes Computer SECurity,
volume 19, 2003.

[Kne04] Kneiphoff, Tobias: Prozessunterstützung für die Sicherheits-Analyse vernet-
zter Systeme in der integrierten Entwicklungsumgebung Eclipse. Master’s
thesis, Universität Dortmund, 2004.

[Kon05] Konetzka, Helge: Sicherheitsanalyse komplexer Routingprozesse: Ein Spin-
und Frameworkbasierter Ansatz. Master’s thesis, Universität Dortmund,
2005.

[Lam77] Lamport, Leslie: Proving the correctness of multiprocess programs. In:
IEEE Transactions on Software Engineering, volume 3(2):pp. 125–143, 1977.

[Lam94] Lamport, Leslie: The temporal logic of actions. In: ACM Transactions on
Programming Languages and Systems, volume 16(3):pp. 872–923, 1994.

[LBN04] Lawrence Berkeley National Laboratory: Bro Intrusion Detection System,
2004. URL: http://www.bro-ids.org/.

[Mal98] Malkin, G.: RFC 2453: RIP version 2. Technical report, Network Working
Group, 1998. URL: http://rfc.net/rfc2453.html.

[Mal05] Malik, Marc: Optimierte Transformation von cTLA Modellen zur Spin
basierten Sicherheitsanalyse vernetzter IT Systeme. Master’s thesis, Univer-
sität Dortmund, 2005.

[MBW97] Murphy, S.; Badger, M.; Wellington, B.: RFC 2154: OSPF with digital sig-
natures. Technical report, Network Working Group, 1997. Experimental
RFC. URL: http://rfc.net/rfc1246.html.

[Mea96] Meadows, Catherine: The NRL protocol analyzer: An overview. In: Jour-
nal of Logic Programming, volume 26(2):pp. 113–131, 1996.

[Mea99] Meadows, Catherine: Analysis of the Internet key exchange protocol us-
ing the NRL protocol analyzer. In: Proceedings of the 1999 IEEE Symposium
on Security and Privacy, pp. 216–231. 1999.

[Met06] Metasplot.com: The Metasploit Project, 2006. URL: http://www.
metasploit.com/projects/Framework.

163

http://www.bro-ids.org/
http://rfc.net/rfc2453.html
http://rfc.net/rfc1246.html
http://www.metasploit.com/projects/Framework
http://www.metasploit.com/projects/Framework

Bibliography

[Moy98] Moy, J.: RFC 2328: OSPF version 2. Technical report, Network Working
Group, 1998. URL: http://rfc.net/rfc2328.html.

[Nes06] Nessus.org: Nessus Frequently Asked Questions (FAQ), 2006. URL: http:
//www.nessus.org/plugins/index.php?view=faq.

[NS04] Nathan, Jeff; Stone, Rob J.: The Nemesis Project, version 1.4., 2004. URL:
http://sourceforge.net/projects/nemesis.

[OGA05] Ou, Xinming; Govindavajhala, Sudhakar; Appel, Andrew W.: MulVAL:
A logic-based network security analyzer. In: Proceedings of the 14th
USENIX Security Symposium. 2005.

[OTI03] Object Technology International Inc.: Eclipse Platform Technical Overview
Whitepaper, 2003. URL: http://www.eclipse.org/whitepapers/
eclipse-overview.pdf.

[OV06] Ornaghi, Alberto; Valleri, Marco: ettercap, 2006. URL: http://
ettercap.sourceforge.net/.

[Per99] Perlman, Radia: Interconnections: Bridges and Routers. Addison-Wesley,
2nd edition, 1999. ISBN 0-20163448-1.

[Plu82] Plummer, David C.: RFC 826: An Ethernet Address Resolution Protocol.
Technical report, Network Working Group, 1982. URL: http://rfc.
net/rfc826.html.

[Poh03] Pohl, Andre: Rechnergestützte Analyse von Sicherheitsproblemen verteilter
Systeme mit cTLA und Spin. Master’s thesis, Universität Dortmund, 2003.

[PQ95] Parr, T. J.; Quong, R. W.: ANTLR: A predicated-ll(k) parser generator. In:
Software – Practice and Experience, volume 25(7):pp. 789–810, 1995.

[PYB+04] Pang, Ruoming; Yegneswaran, Vinod; Barford, Paul; Paxson, Vern; Pe-
terson, Larry: Characteristics of Internet background radiation. In: Pro-
ceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, pp.
27–40. 2004.

[RK03] Rothmaier, Gerrit; Krumm, Heiko: cTLA 2003 Description. Tech-
nical report, LS4, FB Informatik, Universität Dortmund, 2003.
URL: http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/
cTLA2003description.pdf.

[RK05a] Rothmaier, Gerrit; Krumm, Heiko: Formale Modellierung und Analyse
protokollbasierter Angriffe in TCP/IP Netzwerken am Beispiel von ARP
und RIP. In: Federrath, Hannes, editor, Sicherheit 2005 - 2. Jahrestagung des

164

http://rfc.net/rfc2328.html
http://www.nessus.org/plugins/index.php?view=faq
http://www.nessus.org/plugins/index.php?view=faq
http://sourceforge.net/projects/nemesis
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://www.eclipse.org/whitepapers/eclipse-overview.pdf
http://ettercap.sourceforge.net/
http://ettercap.sourceforge.net/
http://rfc.net/rfc826.html
http://rfc.net/rfc826.html
http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/cTLA2003description.pdf
http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/cTLA2003description.pdf

Bibliography

Fachbereiches Sicherheit der Gesellschaft für Informatik e.V. (GI), volume 62 of
Lecture Notes in Informatics, pp. 77–88. Springer, 2005. ISBN 3-88579-391-1.

[RK05b] Rothmaier, Gerrit; Krumm, Heiko: A framework based approach for for-
mal modeling and analysis of multi-level attacks in computer networks.
In: Wang, Farn, editor, Formal Techniques for Networked and Distributed Sys-
tems - FORTE 2005, volume 3731 of Lecture Notes in Computer Science, pp.
247–260. Springer, 2005. ISBN 3-540-29189-X.

[RKK05] Rothmaier, Gerrit; Kneiphoff, Tobias; Krumm, Heiko: Using Spin and
Eclipse for optimized high-level modeling and analysis of computer
network attack models. In: Godefroid, Patrice, editor, Model Checking
Software, volume 3639 of Lecture Notes in Computer Science, pp. 236–250.
Springer, 2005. ISBN 3-540-28195-9.

[RON02] Ritchey, Ronald; O’Berry, Brian; Noel, Steven: Representing TCP/IP con-
nectivity for topological analysis of network security. In: Proceedings of
the 18th Annual Computer Security Applications Conference, pp. 25–31. IEEE
Computer Society, 2002.

[Rot04] Rothmaier, Gerrit: cTLA Computer Network Specification Framework,
2004. URL: http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/
framework.html.

[RPK04] Rothmaier, Gerrit; Pohl, Andre; Krumm, Heiko: Analyzing network man-
agement effects with Spin and cTLA. In: Cuppens, Frederic; Deswarte,
Yves; Jajodia, Sushil; Wang, Lingyu, editors, Security and Protection in In-
formation Processing Systems, Proceedings of the IFIP 18th World Computer
Congress (WCC), TC11 19th International Information Security Conference,
pp. 65–81. Kluwer Academic Publishers, 2004. ISBN 1-4020-8142-1.

[RRCQ03] Romano, Paolo; Romero, Milton; Ciciani, Bruno; Quaglia, Francesco:
Validation of the sessionless mode of the HTTPR protocol. In: König,
Hartmut; Heiner, Monika; Wolisz, Adam, editors, Proceedings of the IFIP
23rd International Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE’03), volume 2767 of Lecture Notes in Computer
Science, pp. 62–78. Springer, 2003. ISBN 3-540-20175-0.

[RS98] Ramakrishnan, C. R.; Sekar, R. C.: Model-based vulnerability analysis
of computer systems. In: Proceedings of the 2nd International Workshop on
Verification, Model Checking, and Abstract Interpretation (VMCAI’98). 1998.

[RS02] Ramakrishnan, C. R.; Sekar, R. C.: Model-based analysis of configuration
vulnerabilities. In: Journal of Computer Security, volume 10(1):pp. 189–209,
2002.

165

http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/framework.html
http://ls4-www.cs.uni-dortmund.de/RVS/MA/hk/framework.html

Bibliography

[Ruy01] Ruys, T. C.: Towards Effective Model Checking. Ph.D. thesis, University of
Twente, 2001.

[RW69] Robinson, G.; Wos, L.: Paramodulation and theorem-proving in first-
order theories with equality. In: Proceedings of the 4th Annual Machine
Intelligence Workshop, pp. 135–150. Edinburg University Press, 1969.

[SAN05] SANS Internet Storm Center: March 2005 DNS Poisoning Summary, 2005.
Online Document, URL: http://isc.sans.org/presentations/
dnspoisoning.php.

[Sch00] Schneier, Bruce: Crypto-Gram: Software Complexity and Security, 2000.
URL: http://www.schneier.com/crypto-gram-0003.html#8.

[SHJ+02] Sheyner, Oleg; Haines, Joshua; Jha, Somesh; Lippmann, Richard; Wing,
Jeannette M.: Automated generation and analysis of attack graphs. In:
Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 273–
284. IEEE Computer Society, 2002.

[Sno05] The Snort Project: Snort Users Manual, 2005. Online Doc-
ument, URL: http://www.snort.org/docs/snort_htmanuals/
htmanual_2.4/rc1/.

[Son00] Song, Dug: dsniff Frequently Asked Questions, 2000. URL: http://www.
monkey.org/~dugsong/dsniff/faq.html.

[SSW+05] Sagonas, Konstantinos; Swift, Terrance; Warren, David S.; Freire, Juliana;
Rao, Prasad; Cui, Baoqiu; Johnson, Ernie; de Castro, Luis; Dawson, Steve;
Kifer, Michael: The XSB System Version 2.7.1 Volume 1: Programmers Man-
ual, 2005. Online Document, URL: http://xsb.sourceforge.net/
manual1/manual1.pdf.

[Svo89] Svobodova, L.: Implementing OSI systems. In: IEEE Journal on Selected
Areas in Communications, volume 7(7):pp. 1115–1130, 1989.

[WFLY04] Wang, Xiaoyun; Feng, Dengguo; Lai, Xuejia; Yu, Hongbo: Collisions for
hash functions. MD4, MD5, HAVAL-128 and RIPEMD. Technical report,
Cryptology ePrint Archive 2004/199, 2004. URL: http://eprint.
iacr.org/2004/199.pdf.

[WKvO04] Wan, T.; Kranakis, E.; van Oorschot, P. C.: S-RIP: A secure distance
vector routing protocol. In: Jakobsson, Markus; Yung, Moti; Zhou,
Jianying, editors, Proceedings of Applied Cryptography and Network Security
(ACNS’04), volume 3089 of Lecture Notes in Computer Science, pp. 103–119.
Springer, 2004.

166

http://isc.sans.org/presentations/dnspoisoning.php
http://isc.sans.org/presentations/dnspoisoning.php
http://www.schneier.com/crypto-gram-0003.html#8
http://www.snort.org/docs/snort_htmanuals/htmanual_2.4/rc1/
http://www.snort.org/docs/snort_htmanuals/htmanual_2.4/rc1/
http://www.monkey.org/~dugsong/dsniff/faq.html
http://www.monkey.org/~dugsong/dsniff/faq.html
http://xsb.sourceforge.net/manual1/manual1.pdf
http://xsb.sourceforge.net/manual1/manual1.pdf
http://eprint.iacr.org/2004/199.pdf
http://eprint.iacr.org/2004/199.pdf

A cTLA 2003 Grammar

This appendix contains the EBNF grammar for CTLA 2003. For a description of the
meta symbols cf. section 5.4. The start symbol for the grammar is specification.

(* Top-Level Productions *)
specification =

[const_decl_part]
[type_decl_part]
[function_decl_part]
[predicate_decl_part]
process_type_decl_part
system_instantiation_part

;

const_decl_part =
"CONST" { constant_decl ";" }+

;

type_decl_part =
"TYPE" { type_decl ";" }+

;

function_decl_part =
{ "FUNCTION" function_decl ";" }+

;

predicate_decl_part =
{ "PREDICATE" predicate_decl ";" }+

;

process_type_decl_part =
{ "PROCESS" process_decl "END" }+

;

system_instantiation_part =
"SYSTEM" process_instantiation ";"

;

167

A cTLA 2003 Grammar

type_decl =
type_identifier "=" type

;

function_decl =
function_heading "::=" expression

;

predicate_decl =
predicate_heading "::=" general_expression

;

function_heading =
function_identifier "(" [formal_parameter_list] ")"

;

predicate_heading =
predicate_identifier "(" [formal_parameter_list] ")"

;

(* Productions for Process Types *)

process_decl =
process_heading
[const_decl_part]
[type_decl_part]
[var_decl_part]
(simple_process_body
| extending_process_body
| subsystem_process_body)

;

simple_process_body =
process_init ";"
{ process_action_part }+
[process_internal_action_part]

;

subsystem_process_body =
"CONTAINS"
{ process_instantiation ";" }+
{ subsystem_process_action_part }+

;

168

extending_process_body =
"EXTENDS"
process_extension
[process_init ";"]
[process_action_part]
[process_internal_action_part]
process_extension_part = { process_extension }+

;

process_extension =
process_type_identifier "(" [actual_parameter_list] ")" ";"

;

process_heading =
process_type_identifier "(" [formal_parameter_list] ")" ";"

;

var_decl_part =
"VAR" { var_decl ";" }+

;

var_decl =
identifier_list ":" type

;

process_init =
"INIT" "::=" general_expression

;

process_action_part =
"ACTIONS" { process_action ";" }+

;

subsystem_process_action_part =
"ACTIONS" { subsystem_process_action ";" }+

;

process_internal_action_part =
"INTERNAL" "ACTIONS" { process_action ";" }+

;

process_action =
action_identifier "(" [formal_parameter_list] ")"
"::=" general_expression

169

A cTLA 2003 Grammar

;

subsystem_process_action =
action_identifier "(" [formal_parameter_list] ")"
"::=" action_call { "AND" action_call }

;

action_call =
process_identifier "."
action_identifier "(" [actual_parameter_list] ")"

;

process_instantiation =
process_identifier ":"
process_type_identifier "(" [actual_parameter_list] ")"

;

(* Productions for Expressions (Guards and Effects) *)

general_expression =
m_expression { "OR" m_expression }

;

m_expression =
l_expression { "AND" l_expression }

;

l_expression =
relational_expression
| quantification
| "NOT" l_expression

;

quantification =
universal_quantification
| existential_quantification

;

universal_quantification =
"FORALL"
inner_quantification

;

existential_quantification =

170

"EXISTS"
inner_quantification

;

inner_quantification =
bound_variable_decl { ";" bound_variable_decl }
((":" "[" general_expression "]")
| quantification)

;

bound_variable_decl =
bound_variable { "," bound_variable } bound

;

bound =
simple_bound | range_set_bound

;

simple_bound =
":" scalar_type

;

range_set_bound =
"IN" (expression | linear_range)

;

linear_range =
"{" expression ".." expression "}"

;

relational_expression =
actual_value [relational_operator actual_value]

;

conditional_expression =
"IF" general_expression "THEN" general_expression
{ "ELSEIF" general_expression "THEN" general_expression }
["ELSE" general_expression] "END"

;

expression =
simple_expression
| conditional_expression
| updateall_expression

171

A cTLA 2003 Grammar

;

simple_expression =
term_set_expression
{ addition_operator term_set_expression }

;

term_set_expression =
atom{ (multiplication_operator | set_operator) atom }

;

atom =
actual_variable
| simple_constant_value
| "(" general_expression ")"
| function_predicate_call

;

function_predicate_call =
identifier "(" [actual_parameter_list] ")"

;

actual_parameter_list =
actual_value { "," actual_value }

;

actual_value =
expression
| compound_constant

;

updateall_expression =
"UPDATEALL"
bound_variable_decl
{ ";" bound_variable_decl } ":" "[" general_expression "]"

;

formal_parameter_list =
formal_parameter {";" formal_parameter}

;

formal_parameter =
identifier_list ":" simple_type

;

172

(* Productions for Variables *)

actual_variable =
variable

;

variable =
common_variable ["’"]

;

common_variable =
var_identifier | component_variable

;

component_variable =
var_identifier
(array_index [field_selector] | field_selector)

;

array_index =
"[" expression "]"

;

field_selector =
"." common_variable

;

(* Productions for Constants *)

constant_decl =
constant_identifier "=" constant

;

constant =
simple_constant_value | compound_constant

;

simple_constant_value =
number | hex_number | simple_boolean

;

compound_constant =
constant_type_identifier

173

A cTLA 2003 Grammar

"{" inner_compound_constant "}"
;

inner_compound_constant =
array_set_constant | structured_constant

;

array_set_constant =
"[" unlabeled_constant_field
{"," unlabeled_constant_field} "]"

;

structured_constant =
"{" labeled_constant_field
{"," labeled_constant_field} "}"

;

unlabeled_constant_field =
unlabeled_field | inner_compound_constant

;

labeled_constant_field =
labeled_field | inner_compound_constant

;

labeled_field =
field_identifier "="
(unlabeled_field | inner_compound_constant)

;

unlabeled_field =
simple_constant_value | identifier

;

(* Productions for Types *)

type =
scalar_type
| record_type
| enumeration_type
| array_type
| set_type
| set_enumeration_type
| type_identifier

174

;

simple_type =
scalar_type | type_identifier

;

record_type =
"RECORD" { record_field ";" }+ "END"

;

record_field =
identifier_list ":" type

;

enumeration_type =
"(" identifier_list ")"

;

array_type =
"ARRAY" "[" (unsigned_number | constant_identifier) "]"
"OF" simple_type

;

(* Low-Level Productions *)

bound_variable =
var_identifier

;

identifier_list =
identifier { "," identifier }

;

function_identifier =
identifier

;

predicate_identifier =
identifier

;

system_identifier =
identifier

;

175

A cTLA 2003 Grammar

process_type_identifier =
identifier

;

prefix_identifier =
identifier

;

action_identifier =
identifier

;

process_identifier =
identifier

;

var_identifier =
identifier

;

type_identifier =
identifier

;

field_identifier =
identifier

;

constant_identifier =
identifier

;

constant_type_identifier =
identifier

;

variable_identifier =
identifier

;

set_identifier =
identifier

;

176

identifier =
letter { letter | digit | underscore }

;

number =
signed_number | unsigned number

;

signed_number =
[sign] {digit}+

;

unsigned_number =
{digit}+

;

hex_number =
"0x" { digit | letter }+

;

scalar_type =
"BOOL" | "BYTE" | "INT" | "SHORT" | "BIT"

;

addition_operator =
"+" | "-"

;

multiplication_operator =
"*" | "/"

;

relational_operator =
"<" | ">" | "=" | "!=" | "<=" | ">="

;

simple_boolean =
"TRUE" | "FALSE"

;

sign =
"+" | "-"

;

177

A cTLA 2003 Grammar

underscore =
"_"

;

letter =
"A" | "B" | "C" | "D" | "E" | "F" |
"G" | "H" | "I" | "J" | "K" | "L" |
"M" | "N" | "O" | "P" | "Q" | "R" |
"S" | "T" | "U" | "V" | "W" | "X" |
"Y" | "Z" | "a" | "b" | "c" | "d" |
"e" | "f" | "g" | "h" | "i" | "j" |
"k" | "l" | "m" | "n" | "o" | "p" |
"q" | "r" | "s" | "t" | "u" | "v" |
"w" | "x" | "y" | "z"

;

digit =
"0" | "1" | "2" | "3" | "4" | "5" |
"6" | "7" | "8" | "9"

;

178

B IP-RIP cTLA 2003 Model

This appendix contains the CTLA source code for the IP-RIP model (cf. chapter 10).
For consistency, the (slightly reformatted) original source code, as developed for
the earlier v1.x versions of the CTLA2PC tool, is given. Thus, the syntax differs
slightly from the final CTLA 2003 syntax as described in Appendix A. Further-
more, with the earlier CTLA2PC version, the paramodulation optimization (cf. sec-
tion 8.4.1) had to be done manually based on the generated flat CTLA system (cf.
section 6.2.1.1). The source code shown here is taken after paramodulation, imme-
diately before translation to PROMELA.

Using CTLA2PC version 1.x, the source is translated to PROMELA using the fol-
lowing command (which should be typed without the line breaks):

> ctla2pc.jar
--unrollinputgen --unrollloops --trace-points
--noifguard -r --map --comment --typecheck
--rangedef ip-routing-w-RIP-example-veri-flat-para.rangedef
--outfile ip-routing-w-RIP-example-veri-flat-para.promela
ip-routing-w-RIP-example-veri-flat-para.ctla

To prepare the resulting PROMELA model for automatic analysis with SPIN, asser-
tions must be inserted as described in section 10.3.1. Then, the following commands
have to be entered to create the executable verifier and perform the automatic ana-
lysis:

> spin -a ip-routing-w-RIP-example-veri-flat-para.promela
> gcc -DBFS -DSAFETY -DNOFAIR -DMA=312 -o pan pan.c
> pan -E

The results of the automatic analysis are explained in section 10.3.3.

// ip-routing-w-RIP-example-veri-flat-para
// Flat cTLA 2003 source code for the IP-RIP model,
// after paramodulation
//
// translate with cTLAtoPC v1

// framework’s and model specific constants
CONST

MAXZONES = 6;
MAXRTE = 6;

179

B IP-RIP cTLA 2003 Model

MAXIFS = 3;

RT_DEF = 0;
DST_DEF = 0;
NHO_DIR = 0;
UNKNOWN_IF = 0;

R1_I1_ID = 1;
R1_I2_ID = 2;
R1_I3_ID = 3;
R2_I1_ID = 1;
R2_I2_ID = 2;
R2_I3_ID = 3;
R3_I1_ID = 1;
R3_I2_ID = 2;
R3_I3_ID = 3;
H1_I1_ID = 1;
H2_I1_ID = 1;
HA_I1_ID = 1;

DI_ISA = 0;
DI_IDA = 1;
DI_RDE = 2;
DI_RME = 3;

MAXDTA = 4;
ME_INF = 16;

// framework’s and model specific types
/*
Adaptions to framework’s data types for this model:
- InterfaceIdT: field usd removed

(not required, as usd initialized to true and no action for
deactivating an interface)

- PacketT: fields sha,dha removed
(HW addressing not required for this model)

*/

TYPE
SYS_NIDS = (UNKNOWN_NODE, H1_ID, R1_ID, R2_ID, H2_ID,
R3_ID, HA_ID);

SYS_IAS = (INVALID_IA, BC_IA, R1_I1_IA, R1_I2_IA,
R1_I3_IA, R2_I1_IA, R2_I2_IA, R2_I3_IA, R3_I1_IA,
R3_I2_IA, R3_I3_IA, HA_I1_IA, H1_I1_IA, H2_I1_IA);

180

SYS_HAS = (UNKNOWN_HA, BC_HA);
SYS_ZNS = (UNKNOWN_ZONE, Z1_ID, Z2_ID, Z3_ID, ZBB12_ID,
ZBB13_ID, ZBB23_ID);

NodeIdT = BYTE;
InterfaceIdT = BYTE;
IpAddressT = BYTE;
DataT = BYTE;
ZoneIdT = BYTE;
DstT = BYTE;
MetricT = BYTE;
PrT = (PT_IP, PT_RIP);
PacketT = RECORD

pt: PrT;
dat_isa: BYTE;
dat_ida: BYTE;
dat_rde: BYTE;
dat_rme: BYTE;

END;
PacketBufT = RECORD

usd: BOOL;
pkt: PacketT;

END;
RpaActionT = (RPA_NONE_EMPTY, RPA_RPCS, RPA_RIPIN, RPA_FWD);
RpaSystemBufT = RECORD

act: RpaActionT;
pkt: PacketT;

END;
SpaActionT = (SPA_NONE_EMPTY, SPA_SPCS, SPA_SND);
SpaSystemBufT = RECORD

act: SpaActionT;
pkt: PacketT;

END;
InterfaceT = RECORD

rpa: RpaSystemBufT;
spa: SpaSystemBufT;
ia: IpAddressT;

END;
DtyT = (DT_ZONE, DT_HOST);
RipRouEntryT = RECORD

dty: DtyT;
dst: DstT;
nho: IpAddressT;
met: MetricT;

181

B IP-RIP cTLA 2003 Model

rto: InterfaceIdT;
rcf: BOOL;

END;
RouTableT = RECORD
num: BYTE;
tab: ARRAY [MAXRTE] OF RipRouEntryT;

END;

// (topology) functions
FUNCTION fSrcToIa(n: NodeIdT, i: InterfaceIdT) ::=
IF ((n = R1_ID)
AND (i = R1_I1_ID))

THEN
R1_I1_IA

ELSEIF
((n = R1_ID)
AND (i = R1_I2_ID))

THEN
R1_I2_IA

ELSEIF
((n = R1_ID)
AND (i = R1_I3_ID))

THEN
R1_I3_IA

ELSEIF
((n = R2_ID)
AND (i = R2_I1_ID))

THEN
R2_I1_IA

ELSEIF
((n = R2_ID)
AND (i = R2_I2_ID))

THEN
R2_I2_IA

ELSEIF
((n = R2_ID)
AND (i = R2_I3_ID))

THEN
R2_I3_IA

ELSEIF
((n = R3_ID)
AND (i = R3_I1_ID))

THEN
R3_I1_IA

182

ELSEIF
((n = R3_ID)
AND (i = R3_I2_ID))

THEN
R3_I2_IA

ELSEIF
((n = R3_ID)
AND (i = R3_I3_ID))

THEN
R3_I3_IA

ELSEIF
((n = H1_ID)
AND (i = H1_I1_ID))

THEN
H1_I1_IA

ELSEIF
((n = H2_ID)
AND (i = H2_I1_ID))

THEN
H2_I1_IA

ELSEIF
((n = HA_ID)
AND (i = HA_I1_ID))

THEN
HA_I1_IA

ELSE
INVALID_IA

END;

FUNCTION fSrcToZone(n: NodeIdT, i: InterfaceIdT) ::=
IF ((n = R1_ID)
AND (i = R1_I1_ID))

THEN
Z1_ID

ELSEIF
((n = R1_ID)
AND (i = R1_I2_ID))

THEN
ZBB12_ID

ELSEIF
((n = R1_ID)
AND (i = R1_I3_ID))

THEN
ZBB13_ID

183

B IP-RIP cTLA 2003 Model

ELSEIF
((n = R2_ID)
AND (i = R2_I1_ID))

THEN
Z2_ID

ELSEIF
((n = R2_ID)
AND (i = R2_I2_ID))

THEN
ZBB12_ID

ELSEIF
((n = R2_ID)
AND (i = R2_I3_ID))

THEN
ZBB23_ID

ELSEIF
((n = R3_ID)
AND (i = R3_I1_ID))

THEN
Z3_ID

ELSEIF
((n = R3_ID)
AND (i = R3_I2_ID))

THEN
ZBB13_ID

ELSEIF
((n = R3_ID)
AND (i = R3_I3_ID))

THEN
ZBB23_ID

ELSEIF
((n = H1_ID)
AND (i = H1_I1_ID))

THEN
Z1_ID

ELSEIF
((n = H2_ID)
AND (i = H2_I1_ID))

THEN
Z2_ID

ELSEIF
((n = HA_ID)
AND (i = HA_I1_ID))

THEN

184

Z3_ID
ELSE
UNKNOWN_ZONE

END;

FUNCTION fIaToZone(ia: SYS_IAS) ::=
IF (ia = R1_I1_IA)
THEN
Z1_ID

ELSEIF
(ia = R1_I2_IA)

THEN
ZBB12_ID

ELSEIF
(ia = R1_I3_IA)

THEN
ZBB13_ID

ELSEIF
(ia = R2_I1_IA)

THEN
Z2_ID

ELSEIF
(ia = R2_I2_IA)

THEN
ZBB12_ID

ELSEIF
(ia = R2_I3_IA)

THEN
ZBB23_ID

ELSEIF
(ia = R3_I1_IA)

THEN
Z3_ID

ELSEIF
(ia = R3_I2_IA)

THEN
ZBB13_ID

ELSEIF
(ia = R3_I3_IA)

THEN
ZBB23_ID

ELSEIF
(ia = H1_I1_IA)

THEN

185

B IP-RIP cTLA 2003 Model

Z1_ID
ELSEIF
(ia = H2_I1_IA)

THEN
Z2_ID

ELSEIF
(ia = HA_I1_IA)

THEN
Z3_ID

ELSE
UNKNOWN_ZONE

END;

// predicates
PREDICATE pValidIf(piid: InterfaceIdT, pmii: BYTE) ::=
(UNKNOWN_IF < piid)
AND (piid <= pmii);

PREDICATE pRipPacketIn(b: RpaSystemBufT) ::=
b.act = RPA_RIPIN
AND b.pkt.pt = PT_RIP;

PREDICATE pRipPacketInValid
(b: RpaSystemBufT, n: NodeIdT, i: InterfaceIdT) ::=
b.pkt.dat_rme <= ME_INF
AND fIaToZone(b.pkt.dat_isa) = fSrcToZone(n, i)
AND b.pkt.dat_rde != INVALID_IA;

PREDICATE pRipPacketInMatchesRte
(b: RpaSystemBufT, rt: RouTableT, i: BYTE) ::=

i < rt.num
AND rt.tab[i].dty = DT_ZONE
AND rt.tab[i].dst = b.pkt.dat_rde;

PREDICATE pRipPacketInMsl
(b: RpaSystemBufT, rt: RouTableT) ::=
b.pkt.dat_rme < ME_INF
AND rt.num < MAXRTE;

// pseudo predicate (macro)
PREDICATE pRipPacketClear(b: RpaSystemBufT) ::=

b.act != RPA_NONE_EMPTY
AND b.act’ = RPA_NONE_EMPTY;

186

// system process (flat version, i.e. after expansion!)
/*
Adaptions to framework’s process types before flat system
expansion:
- ActiveHostIpNode: spcs action removed

(replaced by direct send, in derived types as well,
saves one processing step)

Adaptions due to assigned roles & topology:
- ActiveNonPromHostIpNode (H1): snd_ip action parameters adapted
- AttackerHostIpNode (HA): snd_ripu action parameters adapted

*/
PROCESS IpRipRoutingExample ();
CONST
// initial routing tables
R1_RT : RouTableT = {num:6, tab:[
{dty:DT_ZONE, dst:DST_DEF, nho:NHO_DIR, met:0,

rto:1, rcf:false},
{dty:DT_ZONE, dst:ZBB12_ID, nho:NHO_DIR, met:1,

rto:2, rcf:false},
{dty:DT_ZONE, dst:ZBB13_ID, nho:NHO_DIR, met:1,

rto:3, rcf:false},
{dty:DT_ZONE, dst:Z1_ID, nho:NHO_DIR, met:1,

rto:1, rcf:false},
{dty:DT_ZONE, dst:Z2_ID, nho:R2_I2_IA, met:4,

rto:UNKNOWN_IF, rcf:false},
{dty:DT_ZONE, dst:Z3_ID, nho:R3_I2_IA, met:2,

rto:UNKNOWN_IF, rcf:false}]};

R2_RT : RouTableT = {num:6, tab:[
{dty:DT_ZONE, dst:DST_DEF, nho:NHO_DIR, met:0,

rto:1, rcf:false},
{dty:DT_ZONE, dst:ZBB12_ID, nho:NHO_DIR, met:1,

rto:2, rcf:false},
{dty:DT_ZONE, dst:ZBB23_ID, nho:NHO_DIR, met:1,

rto:3, rcf:false},
{dty:DT_ZONE, dst:Z1_ID, nho:R1_I2_IA, met:2,

rto:UNKNOWN_IF, rcf:false},
{dty:DT_ZONE, dst:Z2_ID, nho:NHO_DIR, met:3,

rto:1, rcf:false},
{dty:DT_ZONE, dst:Z3_ID, nho:R3_I3_IA,met:2,

rto:UNKNOWN_IF, rcf:false}]};

R3_RT : RouTableT = {num:6, tab:[

187

B IP-RIP cTLA 2003 Model

{dty:DT_ZONE, dst:DST_DEF, nho:NHO_DIR, met:0,
rto:1, rcf:false},

{dty:DT_ZONE, dst:ZBB13_ID, nho:NHO_DIR, met:1,
rto:2, rcf:false},

{dty:DT_ZONE, dst:ZBB23_ID, nho:NHO_DIR, met:1,
rto:3, rcf:false},

{dty:DT_ZONE, dst:Z1_ID, nho:R1_I3_IA, met:2,
rto:UNKNOWN_IF, rcf:false},

{dty:DT_ZONE, dst:Z2_ID, nho:R2_I3_IA, met:4,
rto:UNKNOWN_IF, rcf:false},

{dty:DT_ZONE, dst:Z3_ID, nho:NHO_DIR, met:1,
rto:1, rcf:false}]};

VAR
med_buf: ARRAY [MAXZONES] OF PacketBufT;
h1_itf: InterfaceT;
h2_itf: InterfaceT;
ha_itf: InterfaceT;
r1_rt: RouTableT;
r1_ifs: ARRAY [3] OF InterfaceT;
r1_fwd_iid: InterfaceIdT;
r1_fwd_rte: IpAddressT;
r2_rt: RouTableT;
r2_ifs: ARRAY [3] OF InterfaceT;
r2_fwd_iid: InterfaceIdT;
r2_fwd_rte: IpAddressT;
r3_rt: RouTableT;
r3_ifs: ARRAY [3] OF InterfaceT;
r3_fwd_iid: InterfaceIdT;
r3_fwd_rte: IpAddressT;

INIT ::=
FORALL med_i:MAXZONES :[med_buf[med_i].usd = FALSE]
AND h1_itf.rpa.act = RPA_NONE_EMPTY
AND h1_itf.spa.act = SPA_NONE_EMPTY
AND h1_itf.ia = fSrcToIa(H1_ID, 1)
AND h1_itf.rpa.act = RPA_NONE_EMPTY
AND h1_itf.spa.act = SPA_NONE_EMPTY
AND h1_itf.ia = fSrcToIa(H1_ID, 1)
AND h2_itf.rpa.act = RPA_NONE_EMPTY
AND h2_itf.spa.act = SPA_NONE_EMPTY
AND h2_itf.ia = fSrcToIa(H2_ID, 1)
AND ha_itf.rpa.act = RPA_NONE_EMPTY
AND ha_itf.spa.act = SPA_NONE_EMPTY

188

AND ha_itf.ia = fSrcToIa(HA_ID, 1)
AND r1_rt = R1_RT
AND FORALL r1_j:3 :[r1_ifs[r1_j].rpa.act = RPA_NONE_EMPTY
AND r1_ifs[r1_j].spa.act = SPA_NONE_EMPTY
AND r1_ifs[r1_j].ia = fSrcToIa(R1_ID, r1_j + 1)]
AND r1_fwd_iid = UNKNOWN_IF
AND r1_fwd_rte = RT_DEF
AND r2_rt = R2_RT
AND FORALL r2_j:3 :[r2_ifs[r2_j].rpa.act = RPA_NONE_EMPTY
AND r2_ifs[r2_j].spa.act = SPA_NONE_EMPTY
AND r2_ifs[r2_j].ia = fSrcToIa(R2_ID, r2_j + 1)]
AND r2_fwd_iid = UNKNOWN_IF
AND r2_fwd_rte = RT_DEF
AND r3_rt = R3_RT
AND FORALL r3_j:3 :[r3_ifs[r3_j].rpa.act = RPA_NONE_EMPTY
AND r3_ifs[r3_j].spa.act = SPA_NONE_EMPTY
AND r3_ifs[r3_j].ia = fSrcToIa(R3_ID, r3_j + 1)]
AND r3_fwd_iid = UNKNOWN_IF
AND r3_fwd_rte = RT_DEF;

ACTIONS // external actions for all nodes & routers

// paramod: med_buf[fSrcToZone(H1_ID, 1) - 1].pkt = pkt
rcv_h1() ::=

fSrcToZone(H1_ID, 1) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(H1_ID, 1) - 1].usd = TRUE
AND med_buf[fSrcToZone(H1_ID, 1) - 1].pkt.dat_ida = h1_itf.ia
AND med_buf[fSrcToZone(H1_ID, 1) - 1].pkt.dat_ida != BC_IA
AND med_buf[fSrcToZone(H1_ID, 1) - 1].usd’ = FALSE
AND h1_itf.rpa.pkt’ = med_buf[fSrcToZone(H1_ID, 1) - 1].pkt
AND h1_itf.rpa.act’ = RPA_RPCS;

// pkt = h1_itf.spa.pkt
snd_h1() ::=

fSrcToZone(H1_ID, 1) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(H1_ID, 1) - 1].usd = FALSE
AND h1_itf.spa.act = SPA_SND
AND med_buf[fSrcToZone(H1_ID, 1) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(H1_ID, 1) - 1].pkt’ = h1_itf.spa.pkt
AND h1_itf.spa.act’ = SPA_NONE_EMPTY;

// med_buf[fSrcToZone(H2_ID, 1) - 1].pkt = pkt
rcv_h2() ::=

fSrcToZone(H2_ID, 1) != UNKNOWN_ZONE

189

B IP-RIP cTLA 2003 Model

AND med_buf[fSrcToZone(H2_ID, 1) - 1].usd = TRUE
AND med_buf[fSrcToZone(H2_ID, 1) - 1].pkt.dat_ida = h2_itf.ia
AND med_buf[fSrcToZone(H2_ID, 1) - 1].pkt.dat_ida != BC_IA
AND med_buf[fSrcToZone(H2_ID, 1) - 1].usd’ = FALSE
AND h2_itf.rpa.pkt’ = med_buf[fSrcToZone(H2_ID, 1) - 1].pkt
AND h2_itf.rpa.act’ = RPA_RPCS;

// pkt = ha_itf.spa.pkt
snd_ha() ::=
fSrcToZone(HA_ID, 1) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(HA_ID, 1) - 1].usd = FALSE
AND ha_itf.spa.act = SPA_SND
AND med_buf[fSrcToZone(HA_ID, 1) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(HA_ID, 1) - 1].pkt’ = ha_itf.spa.pkt
AND ha_itf.spa.act’ = SPA_NONE_EMPTY;

// med_buf[fSrcToZone(HA_ID, 1) - 1].pkt = pkt
rcv_ha() ::=
fSrcToZone(HA_ID, 1) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(HA_ID, 1) - 1].usd = TRUE
AND med_buf[fSrcToZone(HA_ID, 1) - 1].pkt.dat_ida != BC_IA
AND med_buf[fSrcToZone(HA_ID, 1) - 1].usd’ = FALSE
AND ha_itf.rpa.pkt’ = med_buf[fSrcToZone(HA_ID, 1) - 1].pkt
AND ha_itf.rpa.act’ = RPA_RPCS;

// pkt = r1_ifs[iid - 1].spa.pkt
snd_r1(iid: InterfaceIdT) ::=
fSrcToZone(R1_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R1_ID, iid) - 1].usd = FALSE
AND pValidIf(iid, 3)
AND r1_ifs[iid - 1].spa.act = SPA_SND
AND med_buf[fSrcToZone(R1_ID, iid) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(R1_ID, iid) - 1].pkt’ =

r1_ifs[iid - 1].spa.pkt
AND r1_ifs[iid - 1].spa.act’ = SPA_NONE_EMPTY;

// med_buf[fSrcToZone(R1_ID, iid) - 1].pkt = pkt
rcv_r1(iid: InterfaceIdT) ::=
fSrcToZone(R1_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R1_ID, iid) - 1].usd = TRUE
AND pValidIf(iid, 3)
AND r1_ifs[iid - 1].rpa.act = RPA_NONE_EMPTY
AND med_buf[fSrcToZone(R1_ID, iid) - 1].pkt.dat_ida != BC_IA
AND med_buf[fSrcToZone(R1_ID, iid) - 1].usd’ = FALSE

190

AND r1_ifs[iid - 1].rpa.pkt’ =
med_buf[fSrcToZone(R1_ID, iid) - 1].pkt

AND r1_ifs[iid - 1].rpa.act’ = RPA_RPCS;

// pkt = r2_ifs[iid - 1].spa.pkt
snd_r2(iid: InterfaceIdT) ::=

fSrcToZone(R2_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R2_ID, iid) - 1].usd = FALSE
AND pValidIf(iid, 3)
AND r2_ifs[iid - 1].spa.act = SPA_SND
AND med_buf[fSrcToZone(R2_ID, iid) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(R2_ID, iid) - 1].pkt’ =

r2_ifs[iid - 1].spa.pkt
AND r2_ifs[iid - 1].spa.act’ = SPA_NONE_EMPTY;

// med_buf[fSrcToZone(R2_ID, iid) - 1].pkt = pkt
rcv_r2(iid: InterfaceIdT) ::=

fSrcToZone(R2_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R2_ID, iid) - 1].usd = TRUE
AND pValidIf(iid, 3)
AND r2_ifs[iid - 1].rpa.act = RPA_NONE_EMPTY
AND med_buf[fSrcToZone(R2_ID, iid) - 1].pkt.dat_ida != BC_IA
AND med_buf[fSrcToZone(R2_ID, iid) - 1].usd’ = FALSE
AND r2_ifs[iid - 1].rpa.pkt’ =

med_buf[fSrcToZone(R2_ID, iid) - 1].pkt
AND r2_ifs[iid - 1].rpa.act’ = RPA_RPCS;

// pkt = r3_ifs[iid - 1].spa.pkt
snd_r3(iid: InterfaceIdT) ::=

fSrcToZone(R3_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R3_ID, iid) - 1].usd = FALSE
AND pValidIf(iid, 3)
AND r3_ifs[iid - 1].spa.act = SPA_SND
AND med_buf[fSrcToZone(R3_ID, iid) - 1].usd’ = TRUE
AND med_buf[fSrcToZone(R3_ID, iid) - 1].pkt’ =

r3_ifs[iid - 1].spa.pkt
AND r3_ifs[iid - 1].spa.act’ = SPA_NONE_EMPTY;

// med_buf[fSrcToZone(R3_ID, iid) - 1].pkt = pkt
rcv_r3(iid: InterfaceIdT) ::=

fSrcToZone(R3_ID, iid) != UNKNOWN_ZONE
AND med_buf[fSrcToZone(R3_ID, iid) - 1].usd = TRUE
AND pValidIf(iid, 3)
AND r3_ifs[iid - 1].rpa.act = RPA_NONE_EMPTY

191

B IP-RIP cTLA 2003 Model

AND med_buf[fSrcToZone(R3_ID, iid) - 1].pkt.dat_ida != BC_IA
AND med_buf[fSrcToZone(R3_ID, iid) - 1].usd’ = FALSE
AND r3_ifs[iid - 1].rpa.pkt’ =

med_buf[fSrcToZone(R3_ID, iid) - 1].pkt
AND r3_ifs[iid - 1].rpa.act’ = RPA_RPCS;

// med_buf[zid - 1].pkt = pkt
rbc(zid: ZoneIdT) ::=
zid != UNKNOWN_ZONE
AND med_buf[zid - 1].usd = TRUE
AND med_buf[zid - 1].pkt.dat_ida = BC_IA
AND med_buf[zid - 1].usd’ = FALSE
AND
IF (h1_itf.rpa.act = RPA_NONE_EMPTY)

AND (fSrcToZone(H1_ID, 1) = zid)
AND (med_buf[zid - 1].pkt.dat_isa != h1_itf.ia)

THEN
h1_itf.rpa.pkt’ = med_buf[zid - 1].pkt
AND h1_itf.rpa.act’ = RPA_RPCS

END
AND
IF (h2_itf.rpa.act = RPA_NONE_EMPTY)

AND (fSrcToZone(H2_ID, 1) = zid)
AND (med_buf[zid - 1].pkt.dat_isa != h2_itf.ia)

THEN
h2_itf.rpa.pkt’ = med_buf[zid - 1].pkt
AND h2_itf.rpa.act’ = RPA_RPCS

END
AND
IF (ha_itf.rpa.act = RPA_NONE_EMPTY)

AND (fSrcToZone(HA_ID, 1) = zid)
AND (med_buf[zid - 1].pkt.dat_isa != ha_itf.ia)

THEN
ha_itf.rpa.pkt’ = med_buf[zid - 1].pkt
AND ha_itf.rpa.act’ = RPA_RPCS

END
AND
IF EXISTS r1_rbc_i:3 :[

r1_ifs[(r1_rbc_i + 1) - 1].rpa.act = RPA_NONE_EMPTY
AND r1_ifs[(r1_rbc_i + 1) - 1].ia !=

med_buf[zid - 1].pkt.dat_isa
AND fSrcToZone(R1_ID, (r1_rbc_i + 1)) = zid]

THEN
r1_ifs[(r1_rbc_i + 1) - 1].rpa.pkt’ = med_buf[zid - 1].pkt

192

AND r1_ifs[(r1_rbc_i + 1) - 1].rpa.act’ = RPA_RPCS
END
AND
IF EXISTS r2_rbc_i:3 :[

r2_ifs[(r2_rbc_i + 1) - 1].rpa.act = RPA_NONE_EMPTY
AND r2_ifs[(r2_rbc_i + 1) - 1].ia !=
med_buf[zid - 1].pkt.dat_isa

AND fSrcToZone(R2_ID, (r2_rbc_i + 1)) = zid]
THEN

r2_ifs[(r2_rbc_i + 1) - 1].rpa.pkt’ = med_buf[zid - 1].pkt
AND r2_ifs[(r2_rbc_i + 1) - 1].rpa.act’ = RPA_RPCS

END
AND
IF EXISTS r3_rbc_i:3 :[

r3_ifs[(r3_rbc_i + 1) - 1].rpa.act = RPA_NONE_EMPTY
AND r3_ifs[(r3_rbc_i + 1) - 1].ia !=
med_buf[zid - 1].pkt.dat_isa

AND fSrcToZone(R3_ID, (r3_rbc_i + 1)) = zid]
THEN

r3_ifs[(r3_rbc_i + 1) - 1].rpa.pkt’ = med_buf[zid - 1].pkt
AND r3_ifs[(r3_rbc_i + 1) - 1].rpa.act’ = RPA_RPCS

END;

INTERNAL ACTIONS // processing actions for all nodes & routers
h1_snd_ip() ::=
h1_itf.spa.act = SPA_NONE_EMPTY

AND h1_itf.spa.pkt.pt’ = PT_IP
AND h1_itf.spa.pkt.dat_isa’ = h1_itf.ia
AND h1_itf.spa.pkt.dat_ida’ = H2_I1_IA
AND h1_itf.spa.pkt.dat_rde’ = 0
AND h1_itf.spa.pkt.dat_rme’ = 0
AND h1_itf.spa.act’ = SPA_SND;

h1_rpcs() ::=
h1_itf.rpa.act = RPA_RPCS
AND h1_itf.rpa.act’ = RPA_NONE_EMPTY;

h2_rpcs() ::=
h2_itf.rpa.act = RPA_RPCS
AND h2_itf.rpa.act’ = RPA_NONE_EMPTY;

ha_snd_ripu() ::=
ha_itf.spa.act = SPA_NONE_EMPTY

193

B IP-RIP cTLA 2003 Model

AND ha_itf.spa.pkt.pt’ = PT_RIP
AND ha_itf.spa.pkt.dat_isa’ = ha_itf.ia
AND ha_itf.spa.pkt.dat_ida’ = BC_IA
AND ha_itf.spa.pkt.dat_rde’ = Z2_ID
AND ha_itf.spa.pkt.dat_rme’ = 1
AND ha_itf.spa.act’ = SPA_SND;

ha_rpcs() ::=
ha_itf.rpa.act = RPA_RPCS
AND ha_itf.rpa.act’ = RPA_NONE_EMPTY;

r1_rip_in_inv(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r1_ifs[iid - 1].rpa)
AND NOT pRipPacketInValid(r1_ifs[iid - 1].rpa, R1_ID, iid)
AND pRipPacketClear(r1_ifs[iid - 1].rpa);

r1_rip_in_v_ree_nsc_nmb(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r1_rt.num
AND pRipPacketIn(r1_ifs[iid - 1].rpa)
AND pRipPacketInValid(r1_ifs[iid - 1].rpa, R1_ID, iid)
AND pRipPacketInMatchesRte(r1_ifs[iid - 1].rpa, r1_rt, i)
AND r1_rt.tab[i].nho != r1_ifs[iid - 1].rpa.pkt.dat_isa
AND r1_ifs[iid - 1].rpa.pkt.dat_rme < r1_rt.tab[i].met - 1
AND EXISTS j:3 :[i < r1_rt.num
AND fSrcToZone(R1_ID, j + 1) = fIaToZone(r1_rt.tab[i].nho)]
AND r1_rt.tab[i].rto’ = (j + 1)
AND r1_rt.tab[i].met’ = r1_ifs[iid - 1].rpa.pkt.dat_rme + 1
AND r1_rt.tab[i].nho’ = r1_ifs[iid - 1].rpa.pkt.dat_isa
AND r1_rt.tab[i].rcf’ = TRUE
AND pRipPacketClear(r1_ifs[iid - 1].rpa);

r1_rip_in_v_ree_nsc_nmw(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r1_rt.num
AND pRipPacketIn(r1_ifs[iid - 1].rpa)
AND pRipPacketInValid(r1_ifs[iid - 1].rpa, R1_ID, iid)
AND pRipPacketInMatchesRte(r1_ifs[iid - 1].rpa, r1_rt, i)
AND r1_rt.tab[i].nho != r1_ifs[iid - 1].rpa.pkt.dat_isa
AND r1_ifs[iid - 1].rpa.pkt.dat_rme >= r1_rt.tab[i].met - 1
AND pRipPacketClear(r1_ifs[iid - 1].rpa);

194

r1_rip_in_v_ree_fsc(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r1_rt.num
AND pRipPacketIn(r1_ifs[iid - 1].rpa)
AND pRipPacketInValid(r1_ifs[iid - 1].rpa, R1_ID, iid)
AND pRipPacketInMatchesRte(r1_ifs[iid - 1].rpa, r1_rt, i)
AND r1_rt.tab[i].nho = r1_ifs[iid - 1].rpa.pkt.dat_isa
AND r1_rt.tab[i].met’ = r1_ifs[iid - 1].rpa.pkt.dat_rme
AND r1_rt.tab[i].rcf’ = TRUE
AND pRipPacketClear(r1_ifs[iid - 1].rpa);

r1_rip_in_v_nre_msl(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r1_ifs[iid - 1].rpa)
AND pRipPacketInValid(r1_ifs[iid - 1].rpa, R1_ID, iid)
AND FORALL i:r1_rt.num :[pValidIf(iid, 3)
AND NOT pRipPacketInMatchesRte(r1_ifs[iid - 1].rpa, r1_rt, i)]
AND pRipPacketInMsl(r1_ifs[iid - 1].rpa, r1_rt)
AND r1_rt.tab[r1_rt.num].dty’ = DT_ZONE
AND r1_rt.tab[r1_rt.num].dst’ =

r1_ifs[iid - 1].rpa.pkt.dat_rde
AND r1_rt.tab[r1_rt.num].nho’ =

r1_ifs[iid - 1].rpa.pkt.dat_isa
AND r1_rt.tab[r1_rt.num].met’ =

r1_ifs[iid - 1].rpa.pkt.dat_rme
AND r1_rt.tab[r1_rt.num].rto’ = INVALID_IA
AND r1_rt.tab[r1_rt.num].rcf’ = TRUE
AND r1_rt.num’ = r1_rt.num + 1
AND pRipPacketClear(r1_ifs[iid - 1].rpa);

r1_rip_in_v_nre_mns(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r1_ifs[iid - 1].rpa)
AND pRipPacketInValid(r1_ifs[iid - 1].rpa, R1_ID, iid)
AND FORALL i:r1_rt.num :[pValidIf(iid, 3)
AND NOT pRipPacketInMatchesRte(r1_ifs[iid - 1].rpa,

r1_rt, i)]
AND NOT pRipPacketInMsl(r1_ifs[iid - 1].rpa, r1_rt)
AND pRipPacketClear(r1_ifs[iid - 1].rpa);

r1_rip_out(i: BYTE) ::=
i < r1_rt.num
AND r1_rt.tab[i].rcf = TRUE
AND FORALL j:MAXIFS :[

195

B IP-RIP cTLA 2003 Model

(fIaToZone(r1_ifs[j].ia) != fIaToZone(r1_rt.tab[i].nho))
OR (r1_ifs[j].spa.act = SPA_NONE_EMPTY)]

AND UPDATEALL k:MAXIFS :[
(fIaToZone(r1_ifs[k].ia) != fIaToZone(r1_rt.tab[i].nho))
AND r1_ifs[k].spa.act’ = SPA_SND
AND r1_ifs[k].spa.pkt.pt’ = PT_RIP
AND r1_ifs[k].spa.pkt.dat_isa’ = r1_ifs[k].ia
AND r1_ifs[k].spa.pkt.dat_ida’ = BC_IA
AND r1_ifs[k].spa.pkt.dat_rde’ = r1_rt.tab[i].dst
AND r1_ifs[k].spa.pkt.dat_rme’ = r1_rt.tab[i].met]

AND r1_rt.tab[i].rcf’ = FALSE;

r1_rpcs(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND r1_ifs[iid - 1].rpa.act = RPA_RPCS
AND
IF ((r1_ifs[iid - 1].rpa.pkt.dat_ida != r1_ifs[iid - 1].ia)

AND (r1_ifs[iid - 1].rpa.pkt.dat_ida != BC_IA))
THEN

r1_ifs[iid - 1].rpa.act’ = RPA_FWD
ELSE

IF (r1_ifs[iid - 1].rpa.pkt.pt = PT_RIP)
THEN

r1_ifs[iid - 1].rpa.act’ = RPA_RIPIN
ELSE

r1_ifs[iid - 1].rpa.act’ = RPA_NONE_EMPTY
END END;

r1_fwd(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND r1_ifs[iid - 1].rpa.act = RPA_FWD
AND r1_rt.num > 0
AND
IF EXISTS i:r1_rt.num :[r1_rt.tab[i].dty = DT_HOST

AND r1_rt.tab[i].dst = r1_ifs[iid - 1].rpa.pkt.dat_ida]
THEN

r1_fwd_rte’ = i
ELSIF

EXISTS j:r1_rt.num :[
r1_rt.tab[j].dty = DT_ZONE
AND r1_rt.tab[j].dst =

fIaToZone(r1_ifs[iid - 1].rpa.pkt.dat_ida)]
THEN

r1_fwd_rte’ = j

196

ELSE
r1_fwd_rte’ = RT_DEF

END
AND
IF (r1_rt.tab[r1_fwd_rte].nho = NHO_DIR)
THEN

r1_fwd_iid’ = r1_rt.tab[r1_fwd_rte].rto
ELSE

IF EXISTS k:r1_rt.num :[r1_rt.tab[k].dty = DT_HOST
AND r1_rt.tab[k].dst = r1_rt.tab[r1_fwd_rte].nho]

THEN
r1_fwd_rte’ = k

ELSIF
EXISTS l:r1_rt.num :[
r1_rt.tab[l].dty = DT_ZONE
AND r1_rt.tab[l].dst =

fIaToZone(r1_rt.tab[r1_fwd_rte].nho)]
THEN
r1_fwd_rte’ = l

ELSE
r1_fwd_rte’ = RT_DEF

END
AND
IF (r1_rt.tab[r1_fwd_rte].nho = NHO_DIR)
THEN
r1_fwd_iid’ = r1_rt.tab[r1_fwd_rte].rto

END END
AND
IF (r1_fwd_iid != UNKNOWN_IF)

AND (pValidIf(r1_fwd_iid, 3))
AND (r1_ifs[r1_fwd_iid - 1].spa.act = SPA_NONE_EMPTY)

THEN
r1_ifs[r1_fwd_iid - 1].spa.act’ = SPA_SND
AND r1_ifs[r1_fwd_iid - 1].spa.pkt’ =
r1_ifs[iid - 1].rpa.pkt

AND r1_ifs[iid - 1].rpa.act’ = RPA_NONE_EMPTY
END
AND r1_fwd_iid’ = UNKNOWN_IF
AND r1_fwd_rte’ = RT_DEF;

r2_rip_in_inv(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r2_ifs[iid - 1].rpa)
AND NOT pRipPacketInValid(r2_ifs[iid - 1].rpa, R2_ID, iid)

197

B IP-RIP cTLA 2003 Model

AND pRipPacketClear(r2_ifs[iid - 1].rpa);

r2_rip_in_v_ree_nsc_nmb(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r2_rt.num
AND pRipPacketIn(r2_ifs[iid - 1].rpa)
AND pRipPacketInValid(r2_ifs[iid - 1].rpa, R2_ID, iid)
AND pRipPacketInMatchesRte(r2_ifs[iid - 1].rpa, r2_rt, i)
AND r2_rt.tab[i].nho != r2_ifs[iid - 1].rpa.pkt.dat_isa
AND r2_ifs[iid - 1].rpa.pkt.dat_rme < r2_rt.tab[i].met - 1
AND EXISTS j:3 :[i < r2_rt.num
AND fSrcToZone(R2_ID, j + 1) = fIaToZone(r2_rt.tab[i].nho)]
AND r2_rt.tab[i].rto’ = (j + 1)
AND r2_rt.tab[i].met’ = r2_ifs[iid - 1].rpa.pkt.dat_rme + 1
AND r2_rt.tab[i].nho’ = r2_ifs[iid - 1].rpa.pkt.dat_isa
AND r2_rt.tab[i].rcf’ = TRUE
AND pRipPacketClear(r2_ifs[iid - 1].rpa);

r2_rip_in_v_ree_nsc_nmw(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r2_rt.num
AND pRipPacketIn(r2_ifs[iid - 1].rpa)
AND pRipPacketInValid(r2_ifs[iid - 1].rpa, R2_ID, iid)
AND pRipPacketInMatchesRte(r2_ifs[iid - 1].rpa, r2_rt, i)
AND r2_rt.tab[i].nho != r2_ifs[iid - 1].rpa.pkt.dat_isa
AND r2_ifs[iid - 1].rpa.pkt.dat_rme >= r2_rt.tab[i].met - 1
AND pRipPacketClear(r2_ifs[iid - 1].rpa);

r2_rip_in_v_ree_fsc(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r2_rt.num
AND pRipPacketIn(r2_ifs[iid - 1].rpa)
AND pRipPacketInValid(r2_ifs[iid - 1].rpa, R2_ID, iid)
AND pRipPacketInMatchesRte(r2_ifs[iid - 1].rpa, r2_rt, i)
AND r2_rt.tab[i].nho = r2_ifs[iid - 1].rpa.pkt.dat_isa
AND r2_rt.tab[i].met’ = r2_ifs[iid - 1].rpa.pkt.dat_rme
AND r2_rt.tab[i].rcf’ = TRUE
AND pRipPacketClear(r2_ifs[iid - 1].rpa);

r2_rip_in_v_nre_msl(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r2_ifs[iid - 1].rpa)
AND pRipPacketInValid(r2_ifs[iid - 1].rpa, R2_ID, iid)
AND FORALL i:r2_rt.num :[pValidIf(iid, 3)

198

AND NOT pRipPacketInMatchesRte(r2_ifs[iid - 1].rpa,
r2_rt, i)]

AND pRipPacketInMsl(r2_ifs[iid - 1].rpa, r2_rt)
AND r2_rt.tab[r2_rt.num].dty’ = DT_ZONE
AND r2_rt.tab[r2_rt.num].dst’ =

r2_ifs[iid - 1].rpa.pkt.dat_rde
AND r2_rt.tab[r2_rt.num].nho’ =

r2_ifs[iid - 1].rpa.pkt.dat_isa
AND r2_rt.tab[r2_rt.num].met’ =

r2_ifs[iid - 1].rpa.pkt.dat_rme
AND r2_rt.tab[r2_rt.num].rto’ = INVALID_IA
AND r2_rt.tab[r2_rt.num].rcf’ = TRUE
AND r2_rt.num’ = r2_rt.num + 1
AND pRipPacketClear(r2_ifs[iid - 1].rpa);

r2_rip_in_v_nre_mns(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r2_ifs[iid - 1].rpa)
AND pRipPacketInValid(r2_ifs[iid - 1].rpa, R2_ID, iid)
AND FORALL i:r2_rt.num :[

pValidIf(iid, 3)
AND NOT pRipPacketInMatchesRte(r2_ifs[iid - 1].rpa,

r2_rt, i)]
AND NOT pRipPacketInMsl(r2_ifs[iid - 1].rpa, r2_rt)
AND pRipPacketClear(r2_ifs[iid - 1].rpa);

r2_rip_out(i: BYTE) ::=
i < r2_rt.num
AND r2_rt.tab[i].rcf = TRUE
AND FORALL j:MAXIFS :[

(fIaToZone(r2_ifs[j].ia) != fIaToZone(r2_rt.tab[i].nho))
OR (r2_ifs[j].spa.act = SPA_NONE_EMPTY)]

AND UPDATEALL k:MAXIFS :[
(fIaToZone(r2_ifs[k].ia) != fIaToZone(r2_rt.tab[i].nho))
AND r2_ifs[k].spa.act’ = SPA_SND
AND r2_ifs[k].spa.pkt.pt’ = PT_RIP
AND r2_ifs[k].spa.pkt.dat_isa’ = r2_ifs[k].ia
AND r2_ifs[k].spa.pkt.dat_ida’ = BC_IA
AND r2_ifs[k].spa.pkt.dat_rde’ = r2_rt.tab[i].dst
AND r2_ifs[k].spa.pkt.dat_rme’ = r2_rt.tab[i].met]

AND r2_rt.tab[i].rcf’ = FALSE;

r2_rpcs(iid: InterfaceIdT) ::=
pValidIf(iid, 3)

199

B IP-RIP cTLA 2003 Model

AND r2_ifs[iid - 1].rpa.act = RPA_RPCS
AND
IF ((r2_ifs[iid - 1].rpa.pkt.dat_ida != r2_ifs[iid - 1].ia)
AND (r2_ifs[iid - 1].rpa.pkt.dat_ida != BC_IA))

THEN
r2_ifs[iid - 1].rpa.act’ = RPA_FWD

ELSE
IF (r2_ifs[iid - 1].rpa.pkt.pt = PT_RIP)
THEN

r2_ifs[iid - 1].rpa.act’ = RPA_RIPIN
ELSE

r2_ifs[iid - 1].rpa.act’ = RPA_NONE_EMPTY
END END;

r2_fwd(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND r2_ifs[iid - 1].rpa.act = RPA_FWD
AND r2_rt.num > 0
AND
IF EXISTS i:r2_rt.num :[r2_rt.tab[i].dty = DT_HOST

AND r2_rt.tab[i].dst = r2_ifs[iid - 1].rpa.pkt.dat_ida]
THEN

r2_fwd_rte’ = i
ELSIF

EXISTS j:r2_rt.num :[
r2_rt.tab[j].dty = DT_ZONE
AND r2_rt.tab[j].dst =

fIaToZone(r2_ifs[iid - 1].rpa.pkt.dat_ida)]
THEN

r2_fwd_rte’ = j
ELSE

r2_fwd_rte’ = RT_DEF
END
AND
IF (r2_rt.tab[r2_fwd_rte].nho = NHO_DIR)
THEN

r2_fwd_iid’ = r2_rt.tab[r2_fwd_rte].rto
ELSE

IF EXISTS k:r2_rt.num :[r2_rt.tab[k].dty = DT_HOST
AND r2_rt.tab[k].dst = r2_rt.tab[r2_fwd_rte].nho]

THEN
r2_fwd_rte’ = k

ELSIF
EXISTS l:r2_rt.num :[

200

r2_rt.tab[l].dty = DT_ZONE
AND r2_rt.tab[l].dst =

fIaToZone(r2_rt.tab[r2_fwd_rte].nho)]
THEN
r2_fwd_rte’ = l

ELSE
r2_fwd_rte’ = RT_DEF

END
AND
IF (r2_rt.tab[r2_fwd_rte].nho = NHO_DIR)
THEN
r2_fwd_iid’ = r2_rt.tab[r2_fwd_rte].rto

END END
AND
IF (r2_fwd_iid != UNKNOWN_IF)

AND (pValidIf(r2_fwd_iid, 3))
AND (r2_ifs[r2_fwd_iid - 1].spa.act = SPA_NONE_EMPTY)

THEN
r2_ifs[r2_fwd_iid - 1].spa.act’ = SPA_SND
AND r2_ifs[r2_fwd_iid - 1].spa.pkt’ =
r2_ifs[iid - 1].rpa.pkt

AND r2_ifs[iid - 1].rpa.act’ = RPA_NONE_EMPTY
END
AND r2_fwd_iid’ = UNKNOWN_IF
AND r2_fwd_rte’ = RT_DEF;

r3_rip_in_inv(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r3_ifs[iid - 1].rpa)
AND NOT pRipPacketInValid(r3_ifs[iid - 1].rpa, R3_ID, iid)
AND pRipPacketClear(r3_ifs[iid - 1].rpa);

r3_rip_in_v_ree_nsc_nmb(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r3_rt.num
AND pRipPacketIn(r3_ifs[iid - 1].rpa)
AND pRipPacketInValid(r3_ifs[iid - 1].rpa, R3_ID, iid)
AND pRipPacketInMatchesRte(r3_ifs[iid - 1].rpa, r3_rt, i)
AND r3_rt.tab[i].nho != r3_ifs[iid - 1].rpa.pkt.dat_isa
AND r3_ifs[iid - 1].rpa.pkt.dat_rme < r3_rt.tab[i].met - 1
AND EXISTS j:3 :[i < r3_rt.num
AND fSrcToZone(R3_ID, j + 1) = fIaToZone(r3_rt.tab[i].nho)]
AND r3_rt.tab[i].rto’ = (j + 1)
AND r3_rt.tab[i].met’ = r3_ifs[iid - 1].rpa.pkt.dat_rme + 1

201

B IP-RIP cTLA 2003 Model

AND r3_rt.tab[i].nho’ = r3_ifs[iid - 1].rpa.pkt.dat_isa
AND r3_rt.tab[i].rcf’ = TRUE
AND pRipPacketClear(r3_ifs[iid - 1].rpa);

r3_rip_in_v_ree_nsc_nmw(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r3_rt.num
AND pRipPacketIn(r3_ifs[iid - 1].rpa)
AND pRipPacketInValid(r3_ifs[iid - 1].rpa, R3_ID, iid)
AND pRipPacketInMatchesRte(r3_ifs[iid - 1].rpa, r3_rt, i)
AND r3_rt.tab[i].nho != r3_ifs[iid - 1].rpa.pkt.dat_isa
AND r3_ifs[iid - 1].rpa.pkt.dat_rme >= r3_rt.tab[i].met - 1
AND pRipPacketClear(r3_ifs[iid - 1].rpa);

r3_rip_in_v_ree_fsc(iid: InterfaceIdT, i: BYTE) ::=
pValidIf(iid, 3)
AND i < r3_rt.num
AND pRipPacketIn(r3_ifs[iid - 1].rpa)
AND pRipPacketInValid(r3_ifs[iid - 1].rpa, R3_ID, iid)
AND pRipPacketInMatchesRte(r3_ifs[iid - 1].rpa, r3_rt, i)
AND r3_rt.tab[i].nho = r3_ifs[iid - 1].rpa.pkt.dat_isa
AND r3_rt.tab[i].met’ = r3_ifs[iid - 1].rpa.pkt.dat_rme
AND r3_rt.tab[i].rcf’ = TRUE
AND pRipPacketClear(r3_ifs[iid - 1].rpa);

r3_rip_in_v_nre_msl(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r3_ifs[iid - 1].rpa)
AND pRipPacketInValid(r3_ifs[iid - 1].rpa, R3_ID, iid)
AND FORALL i:r3_rt.num :[pValidIf(iid, 3)
AND NOT pRipPacketInMatchesRte(r3_ifs[iid - 1].rpa,

r3_rt, i)]
AND pRipPacketInMsl(r3_ifs[iid - 1].rpa, r3_rt)
AND r3_rt.tab[r3_rt.num].dty’ = DT_ZONE
AND r3_rt.tab[r3_rt.num].dst’ =

r3_ifs[iid - 1].rpa.pkt.dat_rde
AND r3_rt.tab[r3_rt.num].nho’ =

r3_ifs[iid - 1].rpa.pkt.dat_isa
AND r3_rt.tab[r3_rt.num].met’ =

r3_ifs[iid - 1].rpa.pkt.dat_rme
AND r3_rt.tab[r3_rt.num].rto’ = INVALID_IA
AND r3_rt.tab[r3_rt.num].rcf’ = TRUE
AND r3_rt.num’ = r3_rt.num + 1
AND pRipPacketClear(r3_ifs[iid - 1].rpa);

202

r3_rip_in_v_nre_mns(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND pRipPacketIn(r3_ifs[iid - 1].rpa)
AND pRipPacketInValid(r3_ifs[iid - 1].rpa, R3_ID, iid)
AND FORALL i:r3_rt.num :[pValidIf(iid, 3)
AND NOT pRipPacketInMatchesRte(r3_ifs[iid - 1].rpa,

r3_rt, i)]
AND NOT pRipPacketInMsl(r3_ifs[iid - 1].rpa, r3_rt)
AND pRipPacketClear(r3_ifs[iid - 1].rpa);

r3_rip_out(i: BYTE) ::=
i < r3_rt.num
AND r3_rt.tab[i].rcf = TRUE
AND FORALL j:MAXIFS :[

(fIaToZone(r3_ifs[j].ia) != fIaToZone(r3_rt.tab[i].nho))
OR (r3_ifs[j].spa.act = SPA_NONE_EMPTY)]

AND UPDATEALL k:MAXIFS :[
(fIaToZone(r3_ifs[k].ia) != fIaToZone(r3_rt.tab[i].nho))
AND r3_ifs[k].spa.act’ = SPA_SND
AND r3_ifs[k].spa.pkt.pt’ = PT_RIP
AND r3_ifs[k].spa.pkt.dat_isa’ = r3_ifs[k].ia
AND r3_ifs[k].spa.pkt.dat_ida’ = BC_IA
AND r3_ifs[k].spa.pkt.dat_rde’ = r3_rt.tab[i].dst
AND r3_ifs[k].spa.pkt.dat_rme’ = r3_rt.tab[i].met]

AND r3_rt.tab[i].rcf’ = FALSE;

r3_rpcs(iid: InterfaceIdT) ::=
pValidIf(iid, 3)
AND r3_ifs[iid - 1].rpa.act = RPA_RPCS
AND
IF ((r3_ifs[iid - 1].rpa.pkt.dat_ida != r3_ifs[iid - 1].ia)

AND (r3_ifs[iid - 1].rpa.pkt.dat_ida != BC_IA))
THEN

r3_ifs[iid - 1].rpa.act’ = RPA_FWD
ELSE

IF (r3_ifs[iid - 1].rpa.pkt.pt = PT_RIP)
THEN
r3_ifs[iid - 1].rpa.act’ = RPA_RIPIN

ELSE
r3_ifs[iid - 1].rpa.act’ = RPA_NONE_EMPTY

END END;

r3_fwd(iid: InterfaceIdT) ::=

203

B IP-RIP cTLA 2003 Model

pValidIf(iid, 3)
AND r3_ifs[iid - 1].rpa.act = RPA_FWD
AND r3_rt.num > 0
AND
IF EXISTS i:r3_rt.num :[r3_rt.tab[i].dty = DT_HOST

AND r3_rt.tab[i].dst = r3_ifs[iid - 1].rpa.pkt.dat_ida]
THEN

r3_fwd_rte’ = i
ELSIF

EXISTS j:r3_rt.num :[
r3_rt.tab[j].dty = DT_ZONE
AND r3_rt.tab[j].dst =

fIaToZone(r3_ifs[iid - 1].rpa.pkt.dat_ida)]
THEN

r3_fwd_rte’ = j
ELSE

r3_fwd_rte’ = RT_DEF
END
AND
IF (r3_rt.tab[r3_fwd_rte].nho = NHO_DIR)
THEN

r3_fwd_iid’ = r3_rt.tab[r3_fwd_rte].rto
ELSE

IF EXISTS k:r3_rt.num :[r3_rt.tab[k].dty = DT_HOST
AND r3_rt.tab[k].dst = r3_rt.tab[r3_fwd_rte].nho]

THEN
r3_fwd_rte’ = k

ELSIF
EXISTS l:r3_rt.num :[

r3_rt.tab[l].dty = DT_ZONE
AND r3_rt.tab[l].dst =

fIaToZone(r3_rt.tab[r3_fwd_rte].nho)]
THEN

r3_fwd_rte’ = l
ELSE

r3_fwd_rte’ = RT_DEF
END
AND
IF (r3_rt.tab[r3_fwd_rte].nho = NHO_DIR)
THEN

r3_fwd_iid’ = r3_rt.tab[r3_fwd_rte].rto
END END

AND
IF (r3_fwd_iid != UNKNOWN_IF)

204

AND (pValidIf(r3_fwd_iid, 3))
AND (r3_ifs[r3_fwd_iid - 1].spa.act = SPA_NONE_EMPTY)

THEN
r3_ifs[r3_fwd_iid - 1].spa.act’ = SPA_SND
AND r3_ifs[r3_fwd_iid - 1].spa.pkt’ =
r3_ifs[iid - 1].rpa.pkt

AND r3_ifs[iid - 1].rpa.act’ = RPA_NONE_EMPTY
END
AND r3_fwd_iid’ = UNKNOWN_IF
AND r3_fwd_rte’ = RT_DEF;

END

// system instantiation
SYSTEM IpRipRoutingExampleInstance: IpRipRoutingExample();

205

	1 Introduction
	1.1 Background
	1.2 Goal Statement
	1.3 Thesis Outline
	1.4 Publications

	2 Related Work
	2.1 Classification Scheme
	2.2 Protocol-Oriented Approaches
	2.3 Node-Oriented Approaches
	2.4 Network-Oriented Approaches
	2.5 Network Security Tools
	2.6 Discussion

	3 Spin, Promela, TLA, and cTLA
	3.1 Spin
	3.1.1 Overview
	3.1.2 System Representation & Optimization
	3.1.3 Specifying Claims
	3.1.4 Verifier Compilation & Run-Time Options

	3.2 Promela
	3.2.1 Variables and Types
	3.2.2 Process Types and Processes
	3.2.3 Communication
	3.2.4 Synchronization & Atomicity
	3.2.5 Non-Deterministic Control Structures

	3.3 Temporal Logic of Actions (TLA)
	3.3.1 Basics
	3.3.2 TLA Canonical Formula
	3.3.3 Correspondence to State Transition Systems

	3.4 Compositional Temporal Logic of Actions (cTLA)
	3.4.1 Processes
	3.4.2 Process Types & Process Composition

	4 An Integrated, Formal Modeling and Automated Analysis Approach
	4.1 Objectives
	4.2 Implementation
	4.3 Workflow
	4.4 Modeling Steps

	5 The cTLA 2003 Modeling Language
	5.1 Comparison to cTLA 2000
	5.1.1 Executability
	5.1.2 Modeling Enhancements

	5.2 Specification Structure
	5.2.1 Constants
	5.2.2 Types
	5.2.3 Functions
	5.2.4 Predicates
	5.2.5 Actions

	5.3 Process Types
	5.3.1 Simple Process Type
	5.3.2 Extending Process Type
	5.3.3 Subsystem Process Type
	5.3.4 System Instantiation

	5.4 Grammar

	6 Translation, cTLA2PC, and Eclipse Integration
	6.1 Motivation
	6.2 Translation Scheme
	6.2.1 Overall Translation Scheme
	6.2.2 Translation of Selected Language Elements

	6.3 The cTLA2PC Translation Tool
	6.3.1 Architecture
	6.3.2 Implementation
	6.3.3 Extended Translation Options

	6.4 Eclipse Integration
	6.4.1 Architecture
	6.4.2 Features

	7 Computer Network Modeling Framework
	7.1 Frameworks
	7.2 Networking Concepts
	7.2.1 TCP/IP Reference Model
	7.2.2 Internet Routing Architecture
	7.2.3 Routing Attacks

	7.3 Domain View
	7.3.1 Large-Scale View
	7.3.2 Small-Scale View

	7.4 Packages & Elements
	7.4.1 Package Enumerations & Functions
	7.4.2 Package Data Types
	7.4.3 Package Process Types
	7.4.4 Collaboration & Extensions

	8 Optimization Strategies
	8.1 Motivation
	8.2 Scenario
	8.2.1 Representative Nodes
	8.2.2 Role Assignment

	8.3 Model Design
	8.3.1 Protocol Simplification
	8.3.2 Efficient Protocol Implementation Techniques

	8.4 cTLA Model
	8.4.1 Paramodulation
	8.4.2 Unroll Action Parameters

	8.5 Promela Model
	8.5.1 Bit Array Mapping
	8.5.2 Reduce Nesting Depth of Guard Expressions
	8.5.3 Further Promela Level Optimizations

	8.6 Verifier Compilation & Run-Time Options

	9 Case Study: IP-ARP
	9.1 Introduction
	9.2 Modeling
	9.2.1 Protocol View
	9.2.2 Node View
	9.2.3 Network View
	9.2.4 System Composition

	9.3 Analysis
	9.3.1 Security Property
	9.3.2 Optimizations
	9.3.3 Results

	9.4 Discussion

	10 Case Study: IP-RIP
	10.1 Introduction
	10.2 Modeling
	10.2.1 Protocol View
	10.2.2 Node View
	10.2.3 Network View
	10.2.4 System Composition

	10.3 Analysis
	10.3.1 Security Property
	10.3.2 Optimizations
	10.3.3 Results

	10.4 Discussion

	11 Case Study: IP-OSPF
	11.1 Introduction
	11.2 Modeling
	11.2.1 Protocol View
	11.2.2 Node View
	11.2.3 Network View
	11.2.4 System Composition

	11.3 Analysis
	11.3.1 Security Property
	11.3.2 Optimizations
	11.3.3 Results

	11.4 Discussion

	12 Conclusion
	12.1 Summary of Contributions
	12.2 Future Work
	12.3 Looking Ahead

	Bibliography
	A cTLA 2003 Grammar
	B IP-RIP cTLA 2003 Model

