Integrated Formal Modeling and Automated
Analysis of Computer Network Attacks

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Universitat Dortmund
am Fachbereich Informatik

von
Gerrit Rothmaier

Dortmund
2006

Tag der miindlichen Priifung: 22.02.2007
Dekan: Prof. Dr. Peter Buchholz
Gutachter: Prof. Dr. Heiko Krumm, Prof. Dr. Joachim Biskup

Abstract

In the field of formal modeling and analysis as related to computer network secu-
rity, existing approaches are highly specialized towards either a protocol, node, or
network view. Typically, they are even further specialized towards a specific subset
of one view (e.g., a certain class of protocols, interactions of local node components,
or network propagation of predefined vulnerabilities). Thus, each approach cov-
ers only a small part of the aspects related to practical computer network attack
scenarios. Often, further restrictions with respect to the dynamics allowed for the
model, properties supported or user guidance required during analysis, have to be
observed. Multiple approaches, and thus models, formalisms, and analysis tools,
need to be employed to provide a more complete view of computer network attack
scenarios. Both the modeling task and the analysis task have to be done multiple
times and it is hard to ensure the consistency of the models and analysis results.
We present a novel approach that comprehensively integrates the protocol, node,
and network view on a middle level of detail. Furthermore, the models are ex-
pressive enough to support dynamic changes. A wide range of properties can be
specified using different mechanisms. As integrated models naturally are of higher
complexity than more specialized models limited to a single view, analysis is par-
ticularly challenging. Generally, automated analysis approaches quickly fail due
to state space explosion effects. Nevertheless, by careful modeling, considering
optimization possibilities at all stages, modeling using an object-oriented and com-
positional yet simple structured language, and employing a state of the art analysis
tool we are able to achieve automated analysis.

Our approach is based on the high-level specification language CTLA 2003, a
framework for modeling computer network attack scenarios, a scheme for trans-
lating CTLA 2003 to PROMELA, the CTLA2PC translation and optimization tool,
and the powerful model checker SPIN. For demonstrating the feasibility of our
approach, the modeling and analysis of three case studies involving multi-node
dynamic network scenarios is presented. In these case studies, precise attack
sequences are automatically predicted as violations of abstract security properties.

Keywords:
Computer Networks, Formal Methods, Integrated Modeling, Automated Analysis,
Protocol, Node, Network, Security, Attacks, SPIN, cTLA

Zusammenfassung

Die vorhandenen Ansétze zur formalen Modellierung und Analyse von Computer-
netzwerksicherheit sind entweder auf eine Protokoll-, Knoten-, oder Netzwerksicht
ausgerichtet. Meist beschridnken sie sich sogar auf einen speziellen Teilbereich einer
dieser Sichten (z.B. eine bestimmte Art von Protokollen, die Interaktion zwischen
den lokalen Komponenten eines Knotens, oder die Ausbreitung vordefininierter
Verletzlichkeiten). Insgesamt wird von jedem Ansatz jeweils nur ein kleiner Teil der
Aspekte, die in praktischen Computernetzwerkangriffsszenarien vorkommen, ab-
gedeckt. Hinzu kommen oft weitere Einschrankungen in Bezug auf Unterstiitzung
dynamischer Anderungen, modellier- und untersuchbare Eigenschaften, benotig-
te Unterstiitzung der Analyse durch den Benutzer, usw. Um eine vollstindigere
Sicht auf Computernetzwerkangriffsszenarien zu erhalten, miissen daher mehrere
Ansédtze, und damit auch Modelle, Formalismen und Werkzeuge, eingesetzt wer-
den. Sowohl die Modellierungs- als auch die Analysearbeit fallen damit mehrfach
an und Konsistenz zwischen den verschiedenen Modellen und Analyseergebnissen
lasst sich nur sehr schwer erreichen.

In dieser Arbeit wird ein neuartiger Ansatz vorgestellt, der die Protokoll-, Knoten-
und Netzwerksicht auf mittlerer Detailebene {ibergreifend integriert. Die Modelle
sind ausdrucksstark genug, um dynamische Anderungen zu beinhalten. Vielfltige
Eigenschaften konnen iiber unterschiedliche Mechanismen spezifiziert werden. Da
integrierte Modelle deutlich komplexer als eingeschrankte Modelle fiir einen Teilbe-
reich sind, ist die Analyse besonders schwierig. Im Allgemeinen schlagen Ansétze
zur automatischen Analyse schnell durch Zustandsraumexplosion fehl. Durch eine
intelligente Modellierung, die Beriicksichtigung von Optimierungsmoglichkeiten
auf allen Ebenen, die Modellierung mit einer objektorientieren und kompositiona-
len, aber trotzdem auf einer einfachen Struktur basierenden Sprache, und dem Ein-
satz eines dem aktuellen Stand der Forschung entsprechenden Analysewerkzeuges
sind wir trotzdem in der Lage, erfolgreich automatisiert zu analysieren.

Unser Ansatz basiert auf der Spezifikationshochsprache CTLA 2003, einem
Framework zur Modellierung von Computernetzwerkangriffsszenarien, ei-
nem Ubersetzungsschema von CTLA 2003 nach PROMELA, dem CTLA2PC
Ubersetzungs- und Optimierungswerkzeug, und dem maéchtigen Modellchecker
SPIN. Die Durchfiihrbarkeit unseres Ansatzes wird durch die Modellierung und
Analyse von drei dynamischen Netzwerkszenarien zunehmender Komplexitit
aufgezeigt. In diesen Szenarien werden konkrete Angriffsfolgen als Verletzungen
vorgegebener Sicherheitseigenschaften automatisch aufgedeckt.

Schlagworter:
Rechnernetze, Formale Methoden, Integrierte Modellierung, Automatische
Analyse, Protokoll, Knoten, Netzwerk, Sicherheit, Angriffe, SPIN, cTLA

Acknowledgment

Thanks to my advisor, Prof. Dr. Heiko Krumm, for his support and advice over the
years and the feedback on my thesis work. Furthermore, I am very grateful to Prof.
Dr. Joachim Biskup for the opportunity to present and discuss ideas at the “Kolleg
Sicherheit”.

I also thank Esther Bantle for her cheerful encouragement and proofreading of
this thesis. I am grateful to fellow Ph.D. student Frank Miiller for fruitful discus-
sions and pointing me to Jorge Cham’s funny reflections on becoming a Ph.D.

My thesis greatly benefited from collaborations with my graduate students, in-
cluding Andre Pohl, Tobias Kneiphoff, Marc Malik, and Helge Konetzka. Particu-
larly, Andre Pohl spent a lot of time working on the CTLA2PC tool during his
master’s thesis and continuously supported the tool afterwards.

Dedicated to Heidrun, Karin, and Esther

Contents

[1__Introduction|
(I.1 Background| oo o oo
1.2 | mentl

1.4 Publications|

2 Related Work
2.1 Classification Scheme|.
2.2 Protocol-Oriented Approaches|
2.3 Node-Oriented Approaches|
R.4 Network-Oriented Approaches|
2.5 Network Security Tools|.
26 Discussion]

pin, Promela, ,and c
B.1 Spinl.
B2 Promelal. oo o
3.3 Temporal Logic of Actions (ILA)[.
3.4 Compositional Temporal Logic of Actions (CTLA)|

[4 An Integrated, Formal Modeling and Automated Analysis Approach|
@1 Objectives]

5 ec odeling Language
p.1 ComparisontocILA2000]
.2 Specification Structure| o Lo
p.3 Processlypes| o oo L.

NN R =

S

19
19
24
29
31

35
35
36
38
40

43
43
46
51
56

vii

|6 Translation, cILA2PC, and Eclipse Integration| 59
6.1 Motivation] 59
6.2 Translation Schemel 59
6.3 The cI'LA2PC Translation Tooll 68
0.4 Eclipse Integration|, 73

[7 Computer Network Modeling Framework| 78
/.1 Fram ksl .. 78
[7.2 Networking Concepts| 79
3 DomainViewl e 82
[/4 Packages & Elements| 83

[8 Optimization Strategies| 96

1 wvationl L L e e 96
[8.2 Scenariol e 97
B.3 ModelDesign| 98
B4 _cTLAModell e 101
8.5 PromelaModell 105
(8.6 Verifier Compilation & Run-Time Options|. 109

[0 Case Study: IP-ARP] 111
9.1 Introductionl 111
P2 Modeling|. 112
0.3 Analysis| 117
9.4 Discussionl 122

[10 Case Study: IP-RIP| 125
10.1 Intr 1I00] e e 125
102 Modeling|. 126
10.3 Analysis| 132
[10.4 Discussionl e 136

11 Case Study: IP- 139
11.1 Intr 10N] . . o o e 139
11.2 Modeling|. 140
113 Analysis| 147
1.4 Discussionl v v v it e 153

12 Conclusion| 157
12.1 Summary of Contributions|. 157
12.2 Future Workl 158
(12.3 Looking Ahead| 159

viil

BID 0 pny| 160

A _cTLA 2003 Grammar 167

B 1P-RIP cTLA 2003 Model 179

iX

List of Figures, Tables, and Listings

List of Figures

.1 lassification Schemel,

B.1 Spin Analysis Workflow|

@.1 Ideal Worktlow of Our Approach|

p.1 Graphical Representation of System SimpleSys|.

6.1 Transforming a Compositional cTLA System to Promela]
6.2 cTLA2PC Translation Process|
0.3 Plug-in Architecture of the Eclipse Integration|
6.4 Interactive Simulation of a Translated Specification in Eclipse] . . .

[7.1 Layers of the TCP/IP Reference Model|
[72 Threefold Internet Routing Architecture].
[73 TLarge-Scale Network View]
74 Small-Scale Network View]

8.1 Modeling Stages & Optimizations|
B.2 Layered Packet Processing and the Activity Thread Approach| . . .

1 IP-ARP Scenariol L Lo
0.2 Layers and Protocols in the IP-ARP Scenario|
.3 Compositional Structure of the I>-ARPModel
0.4 Framework and Specific Process Types of the I>-ARP Model
0.5 Violating Sequence Tin the IP-ARPmodel]
0.6 Violating Sequence 2 in the IP-ARPmode]

101 IP-RIPScenariol
10.2 Layers and Protocols in the IP-RIP Scenariof.
10.3 Compositional Structure of the IP-RIP Model].

10.4 Framework and Specific Process Types of the [P-RIP Model| 131

10.5 Example Attack Sequence in the IP-RIPmodel 136
1.1 IP-OSPFScenariolo ot 139
[11.2 Layers and Protocols in the IP-OSPF Scenariof 141
1.3 Process Type OSPFRouter] 143
11.4 Compositional Structure of the IP-OSPF Model| 148
11.5 Framework and Specific Process Types of the IP-OSPF Model| . . . 149
11.6 Example Attack Sequence in the OSPFmodel| 154
List of Tables

3.1 Promela Built-In Data Types| 25
p.1 cILABasicDataTypes| 49

9.1 Optimization Effects on State-Vector Size in the IP-ARP Example] . . 119

10.1 Initial routing tableof RT|. 131
10.2 Optimization Effects on State-Vector Size in the IP-RIP Examplel . . . 133
10.3 Effects of the Unroll Actions Optimization on a Benchmark Sequence |

in the IP-RIP Example| 134
11.1 Initial routing table of RT|. 146
11.2_ Optimization Effects on State-Vector Size in the IP-OSPF Example] . . 150
11.3 IP-OSPF Model File Size Comparison| 151

List of Listings

p.1 cILA Specification Outline|. 47
b2 ¢TLA Simple Process Type| 52
b.3 cTLA Extending Process Type] 52
b.4 cTLA Example Extending Process Type (Adding)]. 53
b.5 TLA Example Extending Process Type (Constraining)] 53
b.6 cTLA Subsystem Process Type]. 54
b.7 cTLA Example Subsystem Process Type] 55
6.1 Compositional and Expanded Form of a cTLA Action| 61
6.2 Generated Promela Specification Outline| 69
8.1 snd_hl cITLA System Action|. 101

X1

8.2 Actionsnd_hl in the Flat System| 102

8.3 Action snd_h1 After Paramodulation|. 102
8.4 Equalities After Splitting of Parameterpkt/. 103
8.5 Action snd_hlb After Paramodulation| 103
8.6 Actionsnd rl| 104
8.7 Action snd_rl After Unroll (Excerpt)| 104
8.8 Bit Array Mapping BVSET and BVGET Macros| 106
8.9 DPacketT with dat Array in the IP ARP Scenario| 106

8.10 Assignment Implementation in Promela Without Bit Array Mapping| 106
8.11 Assignment Implementation in Promela With Bit Array Mapping| . . 107
8.12 Excerpt of Action fwd’s cILA Guard Expression| 107
.13 Part of Action fwd’s Promela Guard Expression after Macro Expansion[108
[B.14 Part of Action fwd’s Promela Guard Expression after Macro Expan- |

| sion, with Reduce Function Nesting Optimization| 109
9.1 Assertion 1: IP-ARP Example, Send Actions|. 118
|9_.2 Assertion 2: [P-ARP Example, Receive Actions| 118
0.3 Spin Verifier Output in the IP-ARP Example (Assertion T)]. 121
[10.1 Assertion in the IP-RIP Example] 132
[10.2 Spin Verifier Output in the IP-RIP Example] 135
11.1 Assertion in the IP-OSPF Example] 149
11.2 Spin Verifier Output in the I>-OSPF Example] 153

xii

1 Introduction

1.1 Background

In recent years, computer networks have been connected worldwide based on open
standards to form the Internet. Internet-based applications and protocols have been
developed rapidly and found wide-spread use both in the private and public sec-
tors. On the one hand, new possibilities for international information exchange and
collaboration are opening up. On the other hand, attack opportunities are increas-
ing, too. Concepts in the area of IT security seem to be lagging behind, however.
Attack traffic makes up a significant part of all Internet traffic [PYB¥04]], and the
financial impact of successful attacks is significant [GCHOJ].

Meaningful countermeasures can only be taken with a proper understanding of
the attack possibilities, sequences and their impact. Formal methods are generally
very well suited in this situation. In the context of computer network attacks, three
views have to be considered. First, the processing of packets according to protocols
(protocol view). Typically, several layered protocols are involved. Second, the nodes
with their local initialization and configuration items (node view). Furthermore, the
nodes may support administrative actions (e.g., change of IP address). Third, topol-
ogy and connectivity aspects of the networks over which the packets are transmit-
ted (network view). These aspects influence packet propagation and routing. Due
to the inherent dynamics of computer networks, even small models often exhibit
significant complexity. Thus, both formal modeling and analysis are hard to do.

Existing approaches related to computer network security are typically restricted
to a single view. Many approaches exist for generic protocol (e.g., [RRCQO03]) and
security protocol verification (e.g., [Mea9€]]). They cover one single protocol in a
specialized way, but no node or network aspects. Other approaches take a node-
oriented view (e.g., [RS98]]), allowing to check for vulnerabilities arising from the
interaction of local system components. The modeling of network or protocol re-
lated aspects is not considered. Recently, approaches for network vulnerability ana-
lysis have appeared (e.g., [OGAQT]). These approaches consider attacks combining
predefined vulnerabilities on multiple nodes linked according to a connectivity ma-
trix. Thus, they support both a limited node and network view. The protocol view,
however, is hardly supported at all. Furthermore, the models are largely static and
the analysis is restricted to monotone properties.

Altogether, the approaches lack in flexibility and expressiveness. Particularly,

1 Introduction

they are not able to integrate multiple views of a computer network scenario in one
single model. Instead, multiple approaches are required for considering a single sce-
nario. Even worse, the approaches use different formalisms and require multiple
models to be devised. As a result, careful work has to go towards ensuring consis-
tency between the models. Similarly, different tools and mechanisms are necessary
for analysis. Attacks involving multiple views cannot be analyzed and dynamics
is severely restricted. Overall, the efforts required for modeling and analysis are
multiplied at best and the scenario cannot be handled otherwise at all. To sum it
up, existing approaches are not satisfactory.

1.2 Goal Statement

The main goal of this thesis is the development of a new integrated approach for
the formal modeling and automated analysis of computer network attack models.
The approach must accomplish the following subgoals:

e Formal Modeling: Models have to describe systems in a clear and precise way.

e Integration of Multiple Views: Protocol, node, and network views of a sce-
nario have to be integrated in a single, consistent model.

e Executable Models: Models have to be executable so that their behavior can
be traced and validated (e.g., by interfacing with an interactive simulation
tool).

e Support for Dynamics: Both the modeling and the analysis must be able to
cope with dynamic changes (e.g., logical connectivity between nodes is not
static but depends on dynamic routing decisions).

e Automated Analysis: Attack sequences have to be found automatically (i.e.,
by a tool not requiring user input) by checking for violations of properties
specified with the model.

e Ease of Use: The approach shall facilitate both the modeling and analysis task
(e.g., by providing libraries, tool support etc).

Finally, the practical feasibility of the approach will be demonstrated by its applica-
tion to several case studies.

1.3 Thesis Outline

Beginning with the introduction (chapter [I), the thesis is divided into three parts
and twelve chapters. The main part of the thesis introduces our approach for inte-
grated formal modeling and automated analysis of computer network attacks. The

1.3 Thesis Outline

approach combines CTLA 2003, a computer network framework, a compiler, op-
timization strategies and the SPIN tool for automated analysis. Furthermore, an
ECLIPSE based modeling and analysis environment and a workflow for
applying the approach is provided.

The first part, chapters P]and B} provides background material required for under-
standing the thesis. Chapter 2| classifies the related work into protocol-, node-, and
network-oriented approaches. Selected approaches from each area are considered
with respect to their suitability for integrated modeling and analysis of computer
network attack models.

Chapter [gives an overview of SPIN, PROMELA, TLA, and CTLA. SPIN [Hol03]
is a powerful model checker for analyzing models written in PROMELA. PROMELA
TLA [Lam94], and CTLA are specification languages for distributed sys-
tems. Furthermore, the underlying machine models defining the semantics of the
specifications are outlined.

The main or second part of the thesis, chapters [f to B describes our integrated
formal modeling and automated analysis approach. Chapter [f gives a bird’s eye
view of the approach. The chapter details the objectives of our approach, then
outlines implementation, workflow, and modeling steps.

Chapter [describes CTLA 2003 [RK03]|, which we use as the modeling language
for our approach. In contrast to CTLA, CTLA 2003 provides executable specifica-
tions and adds modeling enhancements to foster reuse and to ease the modeling
task. Furthermore, the chapter explains CTLA 2003 specification structure, seman-
tics, and grammar.

Chapter [f] explains the scheme for translating CTLA specifications to the more
low-level PROMELA specifications. Then, the architecture of the CTLA2PC com-
piler tool, which implements the scheme, is described. The chapter concludes with
a brief overview of the ECLIPSE integration we engineered for CTLA2PC and SPIN.

Chapter [/] covers the computer network modeling framework we devised to
greatly simplify the modeling task. After a short introduction to frameworks and
an overview of the networking concepts related to our application domain, the net-
work, node, and protocol views taken by the framework are described. Finally, the
packages and classes of the CTLA framework are presented.

Chapter [8| deals with optimization strategies for models and their implementa-
tion in the approach in order to alleviate state space explosion effects. Optimiza-
tions have to be considered at all stages, from the scenario level to the PROMELA
level.

The third part, chapters P]to[11} demonstrates the feasibility of our approach. To
this aim, three cases studies following our approach are presented. The case stud-
ies include routing at different levels (cf. section[/.2.2), in order to show that our
approach is able to deal with the inherent dynamics.

Chapter [describes the modeling and analysis of a LAN scenario involving se-
veral nodes and the IP and ARP protocols. ARP is a low-level “routing protocol”

1 Introduction

employed inside a LAN. The analysis shows an interesting similarity between ARP
attacks and certain administrative actions.

Chapter [10] presents a multi-LAN IP and RIP scenario. RIP is a distance-vector
type routing protocol used for routing between LANs belonging to the same orga-
nization (interior-gateway). The scenario contains multiple LANs, host nodes, and
router nodes. Attack sequences are influenced by the packet propagation which in
turn depends on the network topology.

Chapter [11]| applies our approach to the largest scenario so far involving IP and
OSPFE. OSPF is a complex link-state interior-gateway routing protocol. The scenario
includes different network and router types supported by OSPF besides the host
nodes. During analysis, we encountered interesting limitations of the SPIN and
GccC tools. Furthermore, to the best of our knowledge, our analysis is the first
formal consideration of OSPF security properties.

The thesis concludes with chapter[12} which summarizes the main contributions.
Furthermore, an outlook for future work is given.

1.4 Publications

Parts of the research and results of this thesis have already been published, in par-
ticular as conference proceedings. In this section, we list the publications and the
respective contributions of the author of this thesis.

cTLA 2003 Description This technical report [RKO3|], written by the author of this
thesis and Heiko Krumm, contains a preliminary version of the syntax and seman-
tics of CTLA 2003 as well as the relationship to TLA and CTLA 2000. While CTLA
2000 was developed by Peter Herrmann, Heiko Krumm et al. [HKOQ], the author
invented and contributed the sections on CTLA 2003.

Chapter | gives an updated and more detailed description of CTLA 2003. The
relationship to TLA, CTLA 2000 is explained in sections respectively, of

chapter

Analyzing Network Management Effects with Spin and cTLA The paper [RPK04],
published in collaboration with Andre Pohl and Heiko Krumm, reports on the ap-
plication of an early version of the integrated formal modeling and automated ana-
lysis approach to an IP-ARP LAN scenario. All key parts of the paper, particularly
the description of the approach (cf. section [)), the generic model structure, the
example scenario and its modeling, optimizations, and analysis, were contributed
by the author. The scheme for translating CTLA to PROMELA (cf. section [6.2) was
devised by the author as well; however, Andre Pohl provided a detailed implemen-
tation of the scheme with the CTLA2PC translation tool.

1.4 Publications

Chapter [J] contains a detailed description of the IP-ARP modeling and analysis.
The translation scheme and the CTLA2PC tool are described in chapter [f} Opti-
mizations are summarized and categorized together with those found during the
modeling and analysis of other scenarios in chapter |

cTLA Computer Network Specification Framework This online document [Rot04]],
written by the author, describes the CTLA computer network modeling framework.
The framework is a refined version of the generic model structure introduced in
[RPKO4].

In chapter [/} an updated and extended presentation of the framework together
with the key networking concepts relevant to the application area is given.

Formale Modellierung und Analyse protokollbasierter Angriffe in TCP/IP Netzwer-
ken am Beispiel von ARP und RIP The paper [RK05a] (in German), by the author
and Heiko Krumm, introduces a new IP-RIP scenario and compares its modeling
and analysis to the IP-ARP scenario. Furthermore, a brief overview of the frame-
work is given. As with the IP-ARP scenario, the key parts regarding modeling and
analysis of the scenarios were written by the author.

A detailed description of the IP-RIP scenario is contained in chapter 10}

Using Spin and Eclipse for Optimized High-Level Modeling and Analysis of Com-
puter Network Attack Models The paper [RKKO3], written by the author, Tobias
Kneiphoff, and Heiko Krumm, focuses on the optimized translation of CTLA code
to PROMELA as required by the model checker SPIN. Furthermore, the composition
of both the IP-ARP and IP-RIP scenarios from framework types and model-specific
types is shown. Last but not least, the plug-ins for integrating the approach into the
ECLIPSE environment are presented. Again, the author of this thesis contributed the
key parts regarding the translation, optimization, and composition of the scenarios.
Regarding the plug-ins, the author did the initial research on how to integrate SPIN
and CTLA2PC with ECLIPSE. The detailed design and implementation of the plug-
ins, however, were done by Tobias Kneiphoff as part of his master’s thesis [Kne04].

The ECLIPSE integration is outlined in section[6.4] Details of the translation from
CTLA to PROMELA are contained in section[6.21

A Framework-based Approach for Formal Modeling and Analysis of Multi-Level
Attacks in Computer Networks This paper [RKO5D], published in collaboration
with Heiko Krumm, explains the IP-RIP scenario modeling and the framework in
more detail. Furthermore, the new unroll action parameters optimization and its
effect on the scenario are examined. As before, all key parts of the paper were
contributed by the author of this thesis.

1 Introduction

The unroll action parameters optimization is described in section [8.4.2] Chap-
ter[10| gives an in-depth view of the IP-RIP scenario.

2 Related Work

Several formal modeling and analysis approaches that are related to the context of
computer network security exist. In this chapter, we give an overview of the key
approaches. We begin with a short explanation of our classification scheme. Then,
we outline the related work according to this scheme. After that, we give a short
survey of practical security tools. Finally, we briefly summarize the advantages and
limitations of the existing approaches.

2.1 Classification Scheme

Existing approaches largely differ in the areas covered and level of detail provided
for these areas. To better compare and classify the approaches, we devised a decom-
position into three views naturally related to computer network attack models (cf.

Fig. 2.1).
Security Protocol
Analysis, e.g.
Meadows

Generic Protocol
Analysis, e.g.
Romano

Our Approach

Network Vulnerability Network

Analysis Approaches,
e.0. Amman;
Sheyner; Appel

o l Systt_em Local Windows
Configuration

; System DACL
Analysis, e.g. .
Ramakrishnan Analysis, e.g. Appel

Figure 2.1: Classification Scheme

First, the protocol view defines the packet processing of the nodes and the types
of packets exchanged between the nodes. Typically, several layered protocols are

2 Related Work

running on top of each node. Second, the node view takes into account the local
configuration (e.g., IP address, routing table, services) as well as the initialization
and administration actions (e.g., for setting up interfaces) of a node. Third, the
network view deals with topology and connectivity aspects of the logical or physical
media. These aspects define broadcast zones, influence packet propagation and
routes etc.

We depict these views as sectors of a circle. The different types of approaches are
symbolized by areas inside the circle, which extend inside one or multiple sectors
according to the extent the different views are covered. The distance from the cen-
ter gives a hint about the level of detail that can be provided by an approach. For
example, security protocol analysis approaches can model and analyze security pro-
tocols from a low to a very high level of detail. However, the coverage reached for
aspects related to the network and node views, is very low and highly abstract (i.e.,
low detail). Furthermore, in contrast to generic protocol analysis, security protocol
analysis covers a smaller fraction of all protocols.

Most approaches are very specialized towards one view. Network vulnerability
analysis (NVA) approaches take a broader view. Thus, they are particularly interest-
ing to us and we carefully consider several of them. Our classification scheme helps
to highlight the similarities and differences despite the varying formalisms. Some
approaches even changed formalisms as they evolved. For example, the approach
by Amman et al. [AROQ; INOO3] started with a logical model representa-
tion and the SMV model checker as the analysis tool and turned into an approach
based on a graph based model with a custom analysis engine.

2.2 Protocol-Oriented Approaches

Generally, in protocol verification a protocol is analyzed with respect to a certain pro-
perty (e.g., the reliable delivery of messages) under reasonable assumptions (e.g.,
media loss is bounded). Security protocol verification is specialized on analyzing se-
curity properties of cryptographic protocols (e.g., authentication protocols).

A variety of methods is applied in both fields, including classic logic and al-
gebraic calculi (e.g., [KKNT03]), special calculi (e.g., [BAN90]), and process sys-
tem modeling techniques (e.g., [RRCQO3]|). Different kinds of analysis tools are
used, including logic programming environments, expert system shells, theorem
provers, algebraic term rewriting systems, and model checkers. Often, these tools
are highly specialized to support their approach. With respect to our classification,
node and network related aspects are mostly out of scope for protocol verification
approaches.

As there are many approaches and whole conferences dedicated to the subject of
protocol verification, we can only exemplify the work done in this area. We first out-
line a protocol verification approach based on process system modeling, then two

2.2 Protocol-Oriented Approaches

security protocol verification approaches combining multiple analysis techniques.

Romano et al.: Protocol Verification Romano et al. [RRCQO3]| suggest a protocol
verification approach based on a client, server, and network process for each pro-
tocol command. Modeling is done using the PROMELA specification language; for
analysis the SPIN (cf. section [3.T) model checker is employed. As an example, they
describe the modeling and verification of the sessionless mode of the reliable HTTP
(HTTPR) messaging protocol.

In sessionless mode, no state information is kept between commands. Thus, for
each protocol command an independent PROMELA model can be built. The client
and server processes deal with the processing of the protocol commands; the net-
work process models a lossy channel between client and server. The property con-
sidered is reliable message delivery, i.e., each message is delivered exactly once.
Their analysis is greatly simplified by the sessionless mode: Each command model
can be analyzed separately. Furthermore, all variables not involved in the property
are removed prior to analysis. Using the SPIN model checker, the property is suc-
cessfully verified.

Regarding our classification, the protocol view is covered with a medium to high
level of detail, taking into account packets and protocol commands. Node and
network aspects are covered to a small extent by e.g., representing the network
with a channel.

Meadows (NRL): Cryptographic Protocol Verification Following the approach by
Catherine Meadows [Mea9€], cryptographic protocols are specified as FSMs with
algebraic reduction rules. The approach is based on an extended Dolev-Yao [DY83]
model. Analysis is done in an interactive way by combining different analysis tech-
niques using a custom tool, the NRL protocol analyzer. The approach has been suc-
cessfully applied to multiple protocols. For instance, a draft version of the Internet
key exchange protocol (IKE) [HC98|] was analyzed and several ambiguities and omis-
sions were found [Mea99].

The NRL tool, written in PROLOG, particularly supports the following tech-
niques:

e Backwards search (interactive and heuristic) from a user specified goal state
(e.g., intruder knows the session key) to find preceding states

e Rewriting based on algebraic reduction rules that capture abstract properties
of cryptographic algorithms, e.g., Dx(Ex(w)) = w (decrypting and encrypt-

ing based on the same key are inverse operations)

e Pruning of states based on a database (facts) of reachable states

2 Related Work

e Pruning of the set of producible words by a user specified language of un-
reachable words. An algorithm that can prove unreachability in many cases
is integrated.

Both the intruder goal and the protocol modeling are more flexible than with the
Dolev-Yao model: Any state can be specified as the intruder goal; and intruder
actions like the decryption and encryption of already known words can be added
as transitions rules to the protocol modeling.

In comparison to the approach by Romano et al.,, this approach is on the one
hand very specialized on cryptographic protocols and (typically) requires user in-
teraction during analysis. On the other hand, the approach has helped to uncover
flaws in several different cryptographic protocols.

Armando et al. (AVISPA): Security Protocol Verification The automated validation
of Internet security protocols and applications (AVISPA) [ABBT05] project by Armando
et al. is a large-scale public-private partnership, funded by the EU. AVISPA is
based on its own high-level security protocol modeling language, which can be
translated for use with different back-end analysis tools.

The high level protocol specification language (HLPSL) is used to model security pro-
tocols together with their desired security properties. HLPSL supports different
process types (called roles) which can be composed to build the system. Further-
more, special primitives (e.g., hash function, symmetric key) which ease the model-
ing of cryptographic protocols are included. Security properties (called goals) are
defined using predefined constructs (e.g., authentication, secrecy). Using a transla-
tor, HLPSL specifications are transformed to the formalism required by the analysis
back-end. Particularly, different model checkers are supported. A library of secu-
rity problems (i.e., security protocols with properties) analyzed using AVISPA is
available.

In comparison to the approach by Catherine Meadows, AVISPA, on the one hand,
has a more powerful language, is more flexible regarding the choice of the back-
end tool, and provides a higher degree of automation (depending on the back-end).
Common operations of security and cryptographic protocols are supported by built-
in constructs of the modeling language. One the other hand, these high-level con-
structs have to be adequately translated to the formalism used by the respective
back-end. This might not be possible for all back-ends and hinder analysis.

2.3 Node-Oriented Approaches

Node-oriented approaches consider properties like the role (e.g., server, client, at-
tacker), local configuration (e.g., IP address, routing table, installed system com-
ponents or services), initialization and administration actions (e.g., for setting up

10

2.3 Node-Oriented Approaches

interfaces) of a node. They typically check for vulnerabilities arising from the inter-
action of local configuration items.

Ramakrishnan and Sekar: Local System Component Vulnerabilities The work
by Ramakrishnan and Sekar [RS98]| describes the analysis of attack sequences re-
sulting from the combined behavior of local system components of a single Unix
host. Modeling is done using a PROLOG variant and analysis is based on the XSB
[m logic programming environment.

The system model consists of process models for system components and chan-
nels. Process models for a file system, mail send program, mail display program,
and printer spooler are designed. The user is defined to always execute the se-
quence: read a file, write a file, print, send mail. All process models are very sim-
ple, e.g., the file system model only includes two operations that read or write to a
channel variable after checking the access predicate. The mail display program
has a vulnerability that can be exploited in connection with the mail send program
that allows an attacker to overwrite files (e.g., the passwd file).

Analysis is done by using appropriate queries. For example, a query of the form
fs.write (passwd,_) is resolved to sequences resulting in a write operation on
the passwd file. The queries are analyzed using XSB, a PROLOG programming en-
vironment employing tabled resolution. Tabled resolution improves efficiency and
allows the system to terminate where the depth first search based resolution em-
ployed by standard PROLOG fails.

In [RSQOZ]], the approach is slightly extended and described in more detail. This
time, first a high-level model of the system is built (using a custom language based
on CSP). To use the high-level model with XSB, it is translated manually. The com-
position of the system model from the process models is described in more detail.
Furthermore, the process models are extended with further operations. Particularly,
the file system model supports an operation for resolving symbolic links.

The system model describes a single node with a few highly simplified system
components. Furthermore, the model seems quite geared towards the file vulne-
rability. As this is a local vulnerabilities approach, network and protocol related
aspects are not considered.

Appel, Govindavajhala et al.: Local DACL Vulnerabilities Recently, Appel, Govin-
davajhala et al. [[GAOO] have come up with another approach based on a PROLOG
model and the XSB logic programming environment. Their model deals with spe-
cific rights given by entries of discretionary access control lists (DACLs) on files
and services as defined for Microsoft Windows systems. Analysis is done for local
privilege escalation attacks due to improper ACL configurations.

Their model has a small set of rules (i.e., PROLOG clauses) around the
service_change_configand write_dac rights. A principal with service_-

11

2 Related Work

change_config right on a service may substitute the file executed by the system
to provide the service with its own file. In this case, if the service is run under
a privileged account (i.e., LocalSystem), the principal succeeded in extending
its privileges. The write_dac right allows to give arbitrary rights on a resource
to a principal, especially the service_change_config right. Furthermore, the
model includes a rule stating that if a principal is a member of a group, and the
group has some right, then the principal has the right as well.

Besides the rules, the model contains a set of facts. These facts excerpt the rights
given by the DACLs on services and files. By using a custom scanner tool on a
real Windows XP host, the facts are populated automatically. This allows them to
analyze this specific case of local configuration vulnerabilities easily.

For analysis, some account, e.g.,, the guest account or an account from
the Authenticated Users group, is assumed to be compromised by the at-
tacker. Then, analysis is done using queries. For example, a query of the form
compromised (localSystem) results in sequences listing steps of how accounts
can gain localSystem access. In the attack graph shown in the paper, these se-
quences appear to be two-step at most: first group membership is applied, then a
privilege escalation through some access control entry.

This approach deals with a very specific case of local system vulnerabilities: im-
proper access control lists. For that case, the approach is highly automated and
quite elegant. It does not cover network or protocol related aspects, however. The
authors state that the DACL approach is a special case of the MulVAL approach
described below (cf. section2.4). Indeed, both approaches are based on the same
modeling language (PROLOG) and logic programming environment (XSB). Apart
from that, the approaches have little in common, however. Particularly, the models
are quite different and are not based on an integrated set of clauses and facts. Fur-
thermore, the properties stated for MulVAL — multihost and multistage — do not
apply well to a local host DACL approach with few steps for a successful attack.

2.4 Network-Oriented Approaches

Formal network vulnerability analysis (NVA) approaches have emerged quite re-
cently. They try to find sequences of attacks on single nodes that finally lead to the
violation of a security property (e.g., no root access on another node). The attacker
starts from a certain node and may switch to other nodes after a successful attack.
NVA approaches generally take an abstract, global network and node view. Typi-
cally, the network view is reduced to a static connectivity matrix. Physical and log-
ical network layers are not distinguished; the transfer of packets is not considered.
The node view consists of a set of constants symbolizing the services and/or vul-
nerabilities of the node. Moreover, a set of attack or exploit rules depending on the
vulnerabilities contained in the modeling is defined. Regarding protocols, they are

12

2.4 Network-Oriented Approaches

at most “modeled” by a protocol specific constant value in the connectivity matrix.

In short, NVA approaches offer some integration between different views, parti-
cularly network and node. The view is very abstract, however. Furthermore, ana-
lysis can only uncover new combinations of the already known vulnerabilities listed
for each node. In the following paragraphs, we present the most important NVA
approaches to date.

Amman, Ritchie et al.: Model Checking for NVA The approach by Amman,
Ritchie et al. was one of the first NVA approaches. Their modeling is
based on a logical representation which is analyzed using the SMV model
checker.

The node modeling consists of a set of booleans indicating which of the prede-
tfined vulnerabilities do exist and of an integer representing the attacker access level
(none, user, root) on the node. A boolean connectivity matrix is used to model the
network. To represent the exploitation of a vulnerability, matching exploit rules
have to be included. An exploit rule consists of preconditions (connectivity, existing
vulnerabilities and access level) and effects (increased access level, new vulnera-
bilities). Finally, a security property, e.g., no root access level on a specific node,
is stated and the model is analyzed using SMV. SMYV tries possible combinations
of the vulnerabilities defined in the model as allowed by the exploit rules. If the
property is violated, the corresponding attack sequence is put out.

In [RONO2||, the approach — now called topological vulnerability analysis (TVA) —
is extended and described in more detail. The connectivity matrix underlying the
network model may now contain integer values instead of boolean. These values
symbolize the protocol or service accessible through the connection. The authors
suggest a constant naming scheme for these values with a prefix corresponding to
the layer of the TCP/IP reference model (cf. section the protocol belongs to.
For example, the constant TRANS_WU_FTPD represents a transport layer connection
toa WUFTP daemon.

Due to the model-checker based analysis, complex properties can be examined.
The simplicity of the model, however, limits the usefulness of complex properties
a bit. A node’s configuration and components are only represented by booleans.
Protocols are symbolized through the values already described in the connectivity
matrix. No sending, receiving, or processing of packets or protocol commands is
modeled. Thus, the level of detail of the protocol modeling is very low. Regarding
network aspects, the connectivity matrix allows modeling on a medium level of
detail, however.

Jajodia, Noel et al.: Dependency Graph Based NVA In [[NOOJ], Jajodia, Noel et
al. present an extended and partially changed version of the TVA approach. Now, a
specific dependency graph [[AWKO0Z2] is generated for analysis. Accordingly, instead

13

2 Related Work

of the SMV model checker, a custom graph analysis engine is used. Furthermore,
the modeling is based on XML files which are partially created automatically.

In the dependency graph, exploits (e) and conditions (c) are expressed as vertices,
dependencies as edges. An edge from a c-vertex to an e-vertex is labeled with
the preconditions of the exploit. An edge from a e-vertex to a c-vertex is labeled
with the postconditions (i.e., effects) of the exploit. The graph is generated prior to
analysis by custom translation tools from XML input files.

The network model (connectivity matrix) is encoded in network.xml; the vul-
nerabilities of the nodes are listed in at t ack . xm1 and the exploit rules and security
conditions in conditions.xsl. The vulnerabilities file is created automatically
based on the output of the NESSUS network vulnerability scanner. Furthermore,
the network.xml may be created automatically based on the output of network
discovery tools. The exploit rules for the included vulnerabilities and the security
condition, however, still have to be manually defined by an expert.

In comparison, on the one hand, this graph based approach scales better to larger
networks. It has a polynomial run-time. On the other hand, the older model
checker based approach is more expressive. Particularly, the graph-based approach
assumes monotonicity, i.e., if a condition is true once it is assumed that it stays
true forever. Of course this simplifies analysis greatly. Models involving routing
changes, dynamic address assignment or administrator actions disabling services
violate this assumption. Likewise, the old approach allowed security conditions to
involve the full set of mechanism supported by SMV (e.g., temporal properties).
The type of security conditions supported by the new approach is not described in
detail, but seems to be restricted to propositional predicates.

Sheyner, Wing et al.: Attack Graphs for NVA The approach by Sheyner, Wing et
al. is based on XML files describing the network model, vulnerabilities
of the nodes, atomic attacks and a security property. These input files are encoded
into a finite state machine (FSM) model. The FSM model is analyzed by a variant of
SMYV which automatically generates an attack graph as result. All paths violating
the security property are depicted in the attack graph.

An attack graph is a directed graph where each vertex is labeled with an attack
identifier, source host, and target host. The attack identifier represents an atomic
attack. An atomic attack stands for the exploitation of a vulnerability on the target
host from the source host. The attack graph is both exhaustive and succinct, i.e., it
shows exactly those vertices contributing to the violation of the security property.
Root nodes correspond to atomic attacks possible from the initial state. An edge
between two vertices means that the atomic attacks can be executed in the order
indicated by the edge. Thus, the paths from the root nodes to the leaf nodes are
sequences of atomic attacks finally leading to the violation of the security property.

The network model is similar to the connectivity matrix known from Amman.

14

2.4 Network-Oriented Approaches

Additionally, the node model, i.e., the services running on the nodes are included in
the connectivity matrix as well. Again, attacks consist of preconditions and effects.
From all these elements, the FSM model is generated. It has state variables for the
attack identifier, source host, and target host. During each step, these variables are
nondeterministically set to a value out of the defined values for the model. Then,
if the preconditions for the atomic attack corresponding to the attack identifier are
satisfied, the attack is executed, i.e., the state of the FSM model is changed according
to the effects. This way, all possible combinations of atomic attacks are enumerated.

Due to the use of the SMV model checker, security properties can be more com-
plex than with the graph-based approach by Amman. On the downside, if complex
(e.g., temporal) properties are used, the construction of the attack graph can take
exponential time.

Appel, Govindavajhala et al (MulVAL): Logic Programming for NVA This work
is by the same authors as the Windows DACL local configuration vulnerabilities
approach already described (cf. section R.3). The approach is called MulVAL
[OGAQY], meaning multihost, multistage, vulnerability analysis. The network and
node model are in principle very similar to the NVA approaches described above.
Like in the dependency graph approach by Amman and the Windows DACL ap-
proach, the creation of the node model can be partially automated using a vulne-
rability scanner. Additionally, this approach partially automates the generation of
attack preconditions and effects.

All modeling is done in a PROLOG variant. The node model includes a list (i.e.,
PROLOG facts) of services and vulnerabilities on the node. Vulnerabilities include
two attributes stating the scope (either 1ocalExploit or remoteExploit) and
effect (either privilegeEscalation or denialOfService) of a successful ex-
ploit in a very abstract way. The authors provide a modified vulnerability scanner
which can — in most cases automatically — populate the node model. Furthermore,
additional information like client programs can be added. A connectivity matrix is
used for the network modeling. This matrix includes protocol and port constants.

The exploit rules are in more generic form than with the other NVA approaches.
They are not dependent on a specific vulnerability but on the attributes of a vulne-
rability. For example, a remote-code execution rule can be defined for all vulnera-
bilities that have the remoteExploit attribute and are contained in a service that
is running on a host the attacker can access.

Analysis is done using PROLOG queries. Thus, no complex security properties
are possible. Like the dependency graph NVA approach, monotonicity is assumed
and analysis takes polynomial time. The approach has its limitations but is overall
well-rounded. In comparison to Sheyner, Wing et al., the node modeling is more
detailed and highly automated. Furthermore, the attack rules are slightly more
generic.

15

2 Related Work

2.5 Network Security Tools

There is a range of tools for practical network security testing. These tools can be
grouped into different categories: vulnerability scanners, penetration testing tools,
and intrusion detection systems.

Vulnerability Scanners These tools are used to detect known weaknesses (e.g.,
missing patches) on hosts. Typically, vulnerability scanning tools are network-
based. NESSUS [Nes06] is a prime example. Using NESSUS, the scan can be done
from a daemon running on a central server; no host-based agent is required. The
detection capability is realized via plug-ins. NESSUS provides, for instance, a set
of plug-ins corresponding to the security bulletins published by MICROSOFT. This
way, wide-spread vulnerabilities existing on the nodes can be recognized and reme-
died manually (e.g., by patching) later on.

Some NVA approaches (cf. section[2.4) populate their node models using the out-
put of vulnerability scanning tools. Unfortunately, the recognition of weaknesses
is not always reliable. One reason is that the weakness may depend on complex
conditions that are not considered by the vulnerability scanner (e.g., configuration
of the local host or its environment). Furthermore, a reliable scan may impact the
host being scanned too much.

Penetration Testing Tools After possible weaknesses have been identified using
a vulnerability scanner, penetration testing tools can be used to check if these weak-
nesses are indeed exploitable. The METASPLOIT tool [Met0f] provides a library of
exploits for common vulnerabilities. These exploits can be combined with payloads
(e.g., remote command shell) depending on the operating system of the target etc.
Some exploits are architecture independent, e.g., routing protocol exploits, and do
not require a payload specific to an operating system.

NEMESIS [NSO4] is a more generic tool that, however, requires expert knowledge.
It allows to assemble custom packets (e.g., from the command line or via scripts)
for many different protocols. This is particularly useful for testing protocol-related
weaknesses. Often, sequences of packets containing unusual, reserved, or random
values are used. Besides weaknesses, deviations from the standard may be dis-
covered. Of course, penetration testing tools can only show that a weakness is
exploitable; they cannot prove that a weakness is not exploitable, even if the pene-
tration testing tool fails.

Intrusion Detection Systems (IDS) An IDS typically comprises sensors, a rule en-
gine, and a management console. The sensors generate events which are processed
by the rule engine. If a rule matches, an alert is triggered and displayed on the
management console.

16

2.6 Discussion

IDS can be classified according to the type of event history analysis: attack signa-
tures or anomaly detection. Attack signatures are patterns representing known bad
behavior. They are stored in a library which has to be updated regularly as new
attacks become evident. In order to achieve some flexibility, regular expressions
may be included in the attack signatures. Anomaly detection works by comparing se-
lected properties of the current behavior with previously learned regular behavior.
Typically, to establish the properties of regular behavior, network traffic is recorded
for a certain period of time. The recorded traffic is then analyzed for the type and
distribution of the packets occuring. More advanced methods like machine learn-
ing techniques may be used, too.

Some IDS support both attack signatures and anomaly detection. On the one
hand, IDS supporting anomaly detection have greater chances to recognize that
“something bad” happened. On the other hand, they produce much higher rates
of false positives than attack signature based IDS. A false positive is an alert even
though no attack has occured. Furthermore, performance is a serious concern of
anomaly detection based IDS in high volume environments.

The location and scope of the sensors offers an alternative way to distinguish
three types of IDS: First, network intrusion detection systems (NIDS) use sensors to
watch the network traffic and to monitor multiple hosts. NIDS are the most wide-
spread type of IDS, with SNORT [Sno05] and BrRO [LBNO4] two well-known open
source implementations exist. Second, host-based intrusion detection systems (HIDS)
employ sensors that are located on the hosts and may watch log files, system files,
and system calls. Third, hybrid intrusion detection systems combine both host and net-
work based sensors and try to correlate the events. In contrast to the tools discussed
above, IDS are typically only able to detect attacks after their occurence. They can-
not be used to analyze certain aspects of a node, network or protocol beforehand.

Intrusion prevention systems (IPS) try to stop attacks before they happen. IPS com-
bine multiple techniques in one system, for instance access control (firewall), intru-
sion detection, and prevention of certain types of buffer overflows. An example of
an IPS with these capabilities is the commercial product BLINK by EEYE.
On the one hand, combining multiple techniques in principle protects against more
attacks than a single technique. On the other hand, this combination of different
techniques into one system greatly increases the complexity. Thus, the IPS has to be
designed and implemented very carefully to not introduce weaknesses of its own.
As Bruce Schneier puts it [SchO0]: Complexity is the worst enemy of security. Secure
systems should be cut to the bone and made as simple as possible.

2.6 Discussion

On the one hand, there are many approaches for modeling and analysis of node,
protocol, or network security aspects. Additionally, tools for practical network se-

17

2 Related Work

curity testing and intrusion detection are available. On the other hand, existing ap-
proaches are very specialized towards one of the node, protocol, or network views.
Thus, these approaches cannot provide an integrated view of computer network
attack scenarios. Depending on the approach, further limitations often apply dur-
ing analysis. The user must, for instance, guide analysis interactively, specify a
somewhat arbitrary goal state as a starting point, or may be restricted to monotone
properties.

Protocol-related approaches (cf. section take a very abstract network and
node view. Approaches covering the node view (cf. section[2.3) hardly incorporate
a protocol or network view. NVA approaches (cf. section model network (e.g.,
connectivity matrix) and node aspects (e.g., list of services or vulnerabilities), but
only with a low to medium level of detail. The protocol view (e.g., processing of
packets and protocol commands) is hardly modeled at all. The models are largely
static: They do not support dynamic services, routing or firewall rules. Analysis
with logic programming tools is restricted by the monotonicity property and has
to be done using queries. Finally, only new combinations of the already known
vulnerabilities listed for each node are found.

We aim to develop a new approach that integrates the node, protocol, and net-
work views with a medium to high level of detail in a single consistent model and
can predict attack sequences in dynamic scenarios. Analysis shall be automatic and
allow dynamic properties to be specified. None of the existing approaches com-
bines these qualities. For realizing this aim, a general, more expressive modeling
language is required. Of course, the resulting models will be significantly more
complex than models limited to a single view. Analysis of complex models is hard
to achieve due to state space explosion effects. Furthermore, general analysis tools
cannot make use of special case shortcuts that apply to more specialized models.
Automatic analysis not aided by interactive user guidance is even harder. Thus, our
aim is very challenging. Certainly, an eye has to be kept on the scenario size and
attacker verboseness. Moreover, optimization possibilities have to be considered at
all stages.

18

3 Spin, Promela, TLA, and cTLA

In this chapter, we give a brief overview of SPIN, PROMELA, TLA and CTLA. First,
we describe the SPIN model checker. Then, we introduce SPIN’s specification lan-
guage, PROMELA. Finally, we explain the structure and key concepts of TLA and
its compositional variant CTLA 2000.

3.1 Spin

In the following paragraphs, we outline SPIN’s most noteworthy properties. A
comprehensive presentation of SPIN is contained in Holzmann [Hol03].

3.1.1 Overview

SPIN is a tool for the automated verification of distributed software systems, also
called a model checker. Its development started in 1980 at BELL LABS. From 1991 on,
it has been freely available as open source. Throughout the years, SPIN was continu-
ously adapted to new developments and extended with new features. Nowadays,
SPIN is maintained at NASA JPL.

SPIN is widely recognized as one of the most powerful and most popular model
checkers. In 2002, SPIN was decorated with the prestigious ACM SOFTWARE SYS-
TEMS AWARD. Applications of the SPIN tool include mission-critical software and
call processing software. For example, SPIN was used to verify selected algorithms
of NASA space missions. Regarding industrial applications, large parts of LU-
CENT’S PATHSTAR call server software were verified using SPIN.

Analysis Workflow The basic analysis workflow with SPIN (cf. Figure[3.1) is as fol-
lows: First, a system description (or specification) is written in SPIN’s input language,
PROMELA (cf. section[3.2). This description includes claims (cf. section [3.1.3) about
the system. The description is then parsed and checked for syntax errors. If no syn-
tax errors are detected by the PROMELA parser, the specification can be analyzed
using two basic basic modes of operation: simulation and verification.

In simulation mode, the specification is executed by SPIN until no more statements
are executable, an assertion fails, or the simulation is stopped by the user. Executed
statements and current values of global variables are printed to the console. As

19

3 Spin, Promela, TLA, and cTLA

Promela
Model
____________ —_———
Syntax Error Promela \I
Reports Parser |
- Rand/Guided Verifier :)
Simulation Generator |
e T —— I—_—— = #__._-"
Model-Spec.

)) ANSI C code .
Simulation < % > Verification
Mode Mode

GCC
Counter- C compiler
Examples %
(trail files) Executable
_ Verifier (pan))

Figure 3.1: Spin Analysis Workflow

SPIN specifications are non-deterministic, there may be several possible (i.e., non-
blocked) statements which could be executed next. Selection between these choices
depends on the specific simulation mode. The user interactively selects the next
statement in interactive simulation mode. In random simulation mode, one of the pos-
sible next statements is selected randomly. Finally, in guided simulation mode, the
statements are chosen according to the sequence stored in a trail file. Typically, trail
files are generated from violating sequences during verification.

In verification mode, SPIN hands the PROMELA specification to the verifier genera-
tor. This module generates the ANSI C code for a verifier. Depending on the given
options (cf. section3.1.4), a verifier for either exhaustive verification or approxima-
tive verification is generated. The verifier source code is then handed over to the
Gcc C compiler. GCC compiles the verifier source code and creates an executable
verifier. This executable verifier is a stand-alone program which does neither depend
on SPIN nor on the PROMELA model specification anymore. By running the verifier,
the original model is checked against its claims.

3.1.2 System Representation & Optimization

SPIN creates an internal representation of the specified system and the claims to be
checked as follows: First, for all processes of the system, SPIN constructs a labeled

20

3.1 Spin

finite state machine P; (cf. section3.2). Then, the asynchronous product of the P; is
calculated yielding the system finite state machine (FSM). An asynchronous product
tollows interleaving semantics, i.e., all transitions of the product FSM correspond to a
transition of only one of the component FSMs. All other component FSMs perform
a stuttering step during that transition.

Furthermore, a Biichi automaton is constructed which accepts the negation of the
claims. A Biichi automaton extends the concept of FSMs to accept infinite sequences.
The synchronous product of the system FSM and the Biichi automaton is calculated,
yielding the final automaton. In a synchronous product, all transitions are joint tran-
sitions of the component automata. The final automaton is then analyzed for its
acceptance set. If the acceptance set is non-empty, the claims can be violated.

Partial Order Reduction The generated automatons tend to be very large. SPIN
by default performs partial order reductions to reduce the number of states and
transitions. The basic idea of partial order reduction is that if two adjacent operations
01,07 are independent, their execution order does not matter, i.e., both 01,02 and
02,01 yield the same result. Then, any fixed ordering of the operations can be chosen
as a representative and the other one can be removed from the state graph. This idea
can be extended to n operations easily. The main difficulty is to determine which
operations are independent. Operations that are data independent, i.e., do not use
the same variable, are typically independent. The specified claims, however, may
relate the otherwise independent variables. For example, if 0; modifies v; and o,
modifies v,, they are not independent if a claim contains v; < v,.

SPIN implements a conservative partial order reduction algorithm which deter-
mines data independence statically. On the one hand, this is advantageous because
the run-time cost of applying the optimization is quite low. On the other hand,
new dynamic partial order reduction techniques maintain to be significantly more

efficient [EGO7).

3.1.3 Specifying Claims

Historically, in distributed systems, the distinction between safety and liveness
properties has been made [AS85} [Kin%4]. As explained by Lamport [Lam77], a
safety property states that something bad will not happen during a system execu-
tion, while a liveness property states that something good must happen eventually. A
typical safety property is mutual exclusion in multi-process systems, i.e., that two
processes will never enter the critical section at the same time. Such properties are
expressed using invariants. Liveness properties particularly concern fairness and
progress requirements, e.g., the absence of starvation. For example, if a packet is
sent it will eventually be received. Fairness properties are only supported in a lim-
ited way by SPIN. SPIN subsumes safety and liveness properties under the notion

21

3 Spin, Promela, TLA, and cTLA

of correctness claims. For specifying correctness claims, PROMELA supports various
methods, e.g., assertions, never claims, and linear time logic (LTL) expressions.

Assertions In PROMELA, assertions take the form assert (expr). The expression
expr gives a boolean expression which evaluates to true. Asa PROMELA statement,
the assertion is always executable. If execution reaches the assertion, it is evaluated.
If the expression evaluates to false, the verification (or simulation) is stopped and
the sequence of statements executed up to the assertion is written to a trail file. An
assertion is only evaluated at those points during an execution sequence where the
assertion itself is executed. Thus, to check an invariant after every step, the asser-
tion, for example, has to be inserted in a monitor process which runs concurrently
to the other system processes.

Never Claims For stating more complicated global invariants, SPIN offers never
claims. A never claim describes behavior that should never happen and should be
checked at each execution step. Internally, a never claim corresponds to a Biichi au-
tomaton for the negated property. The Biichi automaton is synchronously factored
into the final automaton describing the system and the claims (cf. section[3.1.2).

Linear Time Logic (LTL) Formulas Directly writing never claims may be tedious
and error-prone. As any Linear Time Logic (LTL) formula can be expressed as a Biichi
automation, SPIN supports the automated conversion to never claims. Using the - f
parameter, SPIN uses its built-in converter to generate a never claim matching the
given LTL expression.

As we are most concerned with security and not with fairness considerations,
we will focus on safety properties for our models. Furthermore, as the interesting
properties are typically related to the exchange of packets (i.e., send and receive
actions), claims can typically be checked using assertions.

3.1.4 Verifier Compilation & Run-Time Options

SPIN recognizes several options that can be given either for verifier compilation or
during verifier run-time. In the following paragraphs, we outline the most impor-
tant options during both stages.

Verifier Compilation Options The source code for the model specific verifier gene-
rated by SPIN contains parts which can be included selectively (C #ifdef symbol
statements) in the compilation by defining the appropriate symbols. Using the GcC
compiler, a symbol is defined by adding a parameter ~-D<symbol> to its command
line. The following symbols are often useful:

22

3.1 Spin

-DBF S: By default, SPIN employs depth first search to explore the state-space.
The -DBF'S option changes the search algorithm to breadth first search.

-DSAFETY: By default, SPIN includes code to be able to check for liveness
properties (e.g., no progress cycles). The option ~-DSAFETY disables that code.
For analysis of safety properties, this results in a smaller and faster verifier.

-DREDUCE This default option includes SPIN’s partial order reduction algo-
rithm. In special cases, partial order reductions can be disabled by giving the
option -DNOREDUCE.

-DCOLLAPSE=n With the ~-DCOLLAPSE option, the state-vector is divided
into smaller components. Instead of storing the values of each component,
an index is stored for each one. Every time a new value is encountered, the
index has to be incremented. This works well if the component’s values only
cover their range partially.

-DMA=n Usually, each state is directly stored in a lookup table. With the —-DMA
(deterministic minimized automaton) option, a state descriptor is stored in-
stead. This state descriptor is used as input to a finite state automaton (FSA)
which then outputs the corresponding state. The FSA is dynamically ex-
tended if new states have to be represented. More details about this method
for storing states are described in [HP99].

-DBITSTATE This option enables approximative verification using super-
trace or bitstate hashing instead of the default exhaustive state space search.

-DMEMLIM=n Using option ~-DMEMLIM, the maximum amount of memory to
be allocated by SPIN can be fixed. After the specified amount is exceeded, the
verification halts with an error and SPIN prints statistics concerning search
depth, number of states and transitions etc. This is useful for comparing mo-
dels with different optimizations and SPIN settings.

The set of verifier compilation options typically used for analysis of our models
is described in section 8.6

Verifier Run-Time Options Verifier run-time options are much less versatile than
the compile time options. Thus, we seldomly use verifier run-time options. The
following options are sometimes helpful, however:

-mn This option sets the maximum search depth to n. After depth n is ex-
ceeded, the verification halts similar to the ~-DMEMLIM option.

-d Using option —d, SPIN outputs its internal state tables for the model repre-
sentation as contained in the verifier.

23

3 Spin, Promela, TLA, and cTLA

3.2 Promela

SPIN comes with its own specification language, called PROMELA (a Process Meta
Language). PROMELA has been developed especially for the description of con-
current process systems. The focus lies on synchronization and communication
aspects, not on implementation or computational aspects. In the following sections,
we first outline the underlying semantics and syntax of PROMELA. Then, we give
an outline of the key PROMELA constructs. A detailed presentation of all PROMELA
constructs is contained in the manual pages section of [Hol03]|.

Semantics A PROMELA specification describes a set of communicating finite state
machines (cf. [Hol03] ch. 7]). Each PROMELA process (keyword proctype, cf.
section [3.2.2)) describes a labeled finite state machine.

A labeled finite state machine (LFSM) is a 5-tuple (S, so, L, T, F) consisting of a finite
set of states S, an initial state sy € S, a finite set of labels L, a set of transitions
T C S xL xS,and a set of final states F C S.

For each process of the PROMELA specification, the set of states S corresponds
to the control points of the proctype’s body. The initial state corresponds to the
entry point (first statement) of the body of the proctype declaration, the set of
final states is made up of the exit point and the control points corresponding to
statements labeled with the end keyword.

The transitions relation T defines the possible flow of control (e.g., derived from
the statements separated by ;, and the keywords atomic, if, goto etc). Each
transition’s label represents the basic PROMELA statement governing the transition
(e.g. (x > y) or x=x-y). This way, the preconditions and effects of executing the
transition are determined.

Syntax The basic syntax of PROMELA resembles a stripped-down version of the
C programming language combined with non-deterministic control structures (e.g.,
non-deterministic selection). Furthermore, PROMELA adds constructs for defining
process types, processes, communication, and synchronization.

3.2.1 Variables and Types

Variables can be declared using either a built-in data type or a user-defined type.

Variables Local variables are declared inside the context of a process type (cf. sec-
tion 3.2.2). Global variables are declared at specification level. In any case, the
declaration of variables looks like this:

varType simpleVarName;
varType arrayVarName[n];

24

3.2 Promela

The second declaration defines an array variable, i.e., a fixed size ordered collection
of n elements, of data type varType. For data type, both built-in and user-defined
types can be used.

Built-in and User-Defined Types Built-in data types are bit, bool, byte, short,
int, and unsigned. Their typical ranges are illustrated in Table However,
depending on the C compiler that is used to translate SPIN generated verifiers, these
ranges may differ.

Type | Range

bit {0,1}

bool | { true, false }
byte | 0...255

short | -32768 ...32767
int | —23...23 -1

Table 3.1: Promela Built-In Data Types

Furthermore, user data types may be defined using keyword typedef. A user-
defined type is a record type, i.e., a fixed size collection of n elements of (possibly)
different types which are accessed via their field name. Consider the following
declaration of a user-defined type:

typedef userType {
typel fieldNamel;

typeN fieldNameN;
}

After this declaration userType may be used like a built-in type. Its elements are

1" 4

accessed using the “.” operator and the field name, i.e.,

userType userVar;
userVar.fieldN = ...

Of course, user-defined types may contain further user-defined types. This way,
complicated types can be recursively assembled.

3.2.2 Process Types and Processes

The behavior of a PROMELA specification is determined by its processes, which are
instantiated from process types.

25

3 Spin, Promela, TLA, and cTLA

Process Types A process type is defined using the keyword proctype:

proctype procTypeName (pparl:...) {
/* local declarations =*/

/* body statements x/

}

Furthermore, initialization parameters (pparl, ...) can be defined. These formal
parameters have to be replaced with actual parameters (i.e., fixed values) for instan-
tiating the process. Each process type may contain local declarations for variables
and message channels. Furthermore, the process body typically contains PROMELA
statements like control structures (e.g., loops), guards, and assignments.

The process body is monolithic. It is not possible to define multiple procedures or
methods inside the body. After the execution of the last body statement, a process
terminates. Furthermore, in contrast to object-oriented programming languages
and CTLA process types (cf. section[5.3), PROMELA process types cannot be com-
posed.

Processes Processes are created by instantiation of process types. Instantiation
automatically causes the process to be run as well. Multiple processes in a system
are run concurrently following interleaving semantics. Process instantiation and
execution is typically done using the keyword run from the special init process:
init {
run procTypeName (cparl, ...)

}

This causes an anonymous process of process type procTypeName to be instanti-
ated and run.

If only a single instance of a process type is required, no run statement is needed.
In this case, it suffices to add the keyword active to the process type definition:

active proctype procTypeName (pparl:...) {

If all processes can be instantiated using the active keyword, no init process is
required. This is more efficient, as one process is removed from the system.

3.2.3 Communication

For communication between processes, channels and shared global variables can
be used.

26

3.2 Promela

Channels Messages can be passed between processes using a channel. A channel
is defined using the keyword chan:

chan chanName = [chanSize] of { typeName };

This statement creates a channel with a capacity of chanSize elements. Particu-
larly, if the capacity is zero, a synchronous (rendezvous) communication channel
is created. For passing a message over a synchronous channel, a send operation
has to be immediately followed by a receive operation. Non-zero capacities are
used for asynchronous (buffered) communication. A buffered channel works like a
FIFO queue. Messages, i.e., elements of the specified type (e.g., int), are sent to
and received from a channel using special built-in commands: “!” sends and
receives.

IIr)I/

Shared Global Variables An alternative and often more efficient method for com-
munication between processes is to use global variables. Global variables are al-
ways shared, they can be accessed by all processes of the system.

A process can read and write a global variable by assignment similar to a local
variable. Single reads and writes of global variables are atomic. No synchronization
(e.g., critical sections) is provided, however.

3.2.4 Synchronization & Atomicity

Synchronization In PROMELA, conceptually, all statements are guarded. That
means they are only executable if they evaluate to true. Otherwise, they block.

For example, the expression x == vy is executable if and only if x and y have the
same value. The expression true is always executable and the expression false
(or (0))always blocks. Assignment statements, e.g., x = vy, are always executable.

If guarded statements are used in combination with global variables
(semaphores) between processes, they provide an easy means to build synchro-
nization constructs. For example, busy wait loops can be implemented simply
by stating e.g., (turn != MY_TURN). Channels can be similarly used to build
synchronizers.

1" 7”7 4
.

Atomicity Single statements are atomic. Statements are separated by “; ” or “~>",
both are equivalent. For clarity, however, it is a convention to use “~>" after state-
ments that may potentially block (i.e., that are true guards).

Furthermore, PROMELA offers a method for marking a sequence of statements as
an indivisible, atomic unit. This is done by enclosing the statements in atomic as
follows:

atomic { guard; statement2; ...; statementN; }

27

3 Spin, Promela, TLA, and cTLA

The first statement is the guard for the whole sequence. If one of the other state-
ments inside at omic blocks, atomicity is lost, however. The statements are allowed
to make use of non-determinism.

If all statements inside an atomic sequence are deterministic and no statement
will ever block, a d_step sequence can be used instead:

d_step { guard; statement2; ...; statementN; }

In this case, verification can be done much more efficiently than with an atomic
sequence.

3.2.5 Non-Deterministic Control Structures

PROMELA supports non-determinism by non-deterministic control structures.

do-loop The do-loop is a non-deterministic repetition construct. Consider the fol-
lowing outline:

do
(guardl) -> ...; // statements for option 1

(guardN) -> ...; // statements for option n
od;

In this outline, n options are enclosed by the do-loop. The first statement of each
option is taken as the guard for the executability of the option. Each time the loop
is executed, one of the executable options is chosen non-deterministically. The loop
itself is repeated until a break statement is encountered.

if-selection The if-selection construct resembles the do-loop. Consider the follow-
ing outline:

if
(guardl) -> ...; // statements for option 1
(guardN) -> ...; // statements for option n
:: else —>
fi;

As in the do-loop, one of the executable options is chosen non-deterministically.
This happens only once, however; after that, the if-selection construct is exited. If
none of the other options is executable, the (optional) else option is executed.

28

3.3 Temporal Logic of Actions (TLA)

3.3 Temporal Logic of Actions (TLA)

The temporal logic of actions (TLA) was developed by Leslie Lamport [Lam94]. It is
a specification logic used for the modeling of discrete event dynamic systems. In a
discrete event dynamic system, the state changes are driven by asynchronous events.
In contrast, in classical system theory, systems are time-driven.

Leslie Lamport derives TLA by combining a custom logic of actions, which for-
malizes the concept of actions, with a linear-time temporal logic, which enables rea-
soning about sequences of states. As this deduction is quite technical, we take a
different approach based on the TLA canonical formula and the correspondence to
state transition systems.

3.3.1 Basics

In TLA systems, the state components of real systems are represented by state vari-
ables. A state variable (or variable in short) has a name (e.g., x), a type (e.g., Nat for
natural numbers), and a current value (e.g., 3). The state of the model is determined
by the current values of all state variables.

A primed variable, e.g., x', refers to the value of the variable in the next state. If s
refers to the current state and t refers to the next state, and if x has the value a in
state s and value b in state t, then x = g and x’ = b.

An action is a predicate about a pair of states. The predicate is assembled from
variables, primed variables, and constant symbols, e.g., x' %2 = y. This predicate
is true for all state pairs (s, t), where the value of x in state f is twice the amount of
the value of y in state s. Thus, an action defines a relation between states.

Furthermore, an action A is called enabled for a state s, if a state t exists so that A
is true for (s, t). In this case, if the state is indeed changed from s to t according to
A, the action is said to be executed.

3.3.2 TLA Canonical Formula

The canonical formula ® for a TLA system is given by
@ := Init A O[N], A FA
where
e Init is the initialization predicate, defining the initial states of the system
o O[N] 7 is the always subformula, defining the system steps

o FA specifies fairness requirements for some subset of the actions

29

3 Spin, Promela, TLA, and cTLA

The always subformula, O [N] f» is made up of the always operator O, the next-state
predicate NV and the stutter-function f. The next-state predicate N” combines the ac-
tions into system steps (e.g., by disjunction). Thus, each system step corresponds to
the execution of one or more actions. To support the composition of a system from
subsystems by conjunction properly, stuttering steps have to be allowed. During a
stuttering step, the state of a (sub)system remains unchanged. Formally, if x1, ..., x,
are the state variables of the (sub)system, this is realized by defining the stutter-
function f as x; = x] V xp = x5 V- - - V x, = x;,. Thus, the subformula makes sure
that always either a system step or a stuttering step occurs.

The optional fairness requirements FA are given as a conjunction of weak fairness
WF(.A) and strong fairness SF(.A) formulas, where A is an action. A weak fairness as-
sumption WF(.A) assumes that the action A has to be executed in situations, where
the action is enabled and continuously will be enabled until its execution. A strong
fairness assumption SF(A) assumes that the action A has to be executed if the action
will be enabled again and again until its execution.

3.3.3 Correspondence to State Transition Systems

A state transition system (STS) is a 3-tuple STS = (S, Sy, T) consisting of a set of
states S, a set of initial states Sy € S, and a set of transitions T C S x S.

In the case of a TLA system description, the set of states S is spanned by the set
of variables V in the system. The set of initial states Sy is determined by the Init
predicate. The transitions are given implicitly by the always subformula, O [N] fr
which defines a relation between states.

Let STS be a state transition system. Then, the set of all state sequences (so-called
behaviors) of the system is given by:

Bgts := {b b= (S(),Sl,.) € 5%,50 € Sp,Vn € N : ((Si/Si—H) eTVs; = Si+1)}

As described by Alpern and Schneider [AS85], all properties of the system can be
formulated as intersections of safety and liveness properties. Safety properties can
be checked via reachability analysis in Bgrs.

The characteristic of liveness properties is that they cannot be violated by partial
executions of the system (otherwise the partial execution would constitute a “bad
thing” and belong to a safety property, not a liveness property). Instead, there has to
be an infinite execution that always stutters with respect to the action(s) that would
fulfill the liveness property. Liveness properties are expressed by fairness assump-
tions for actions as described above. This way, liveness properties do not contain
unintended safety parts that conflict with the STS. The set Bstg can be restricted to
the behaviors satisfying the fairness assumptions.

30

3.4 Compositional Temporal Logic of Actions (cTLA)

3.4 Compositional Temporal Logic of Actions (cCTLA)

CTLA extends TLA with explicit notions of processes, process types and process
composition. Furthermore, canonical parts of specifications are not explicitly writ-
ten down in CTLA. In the following paragraphs, we outline the key properties of
CTLA, version 2000, in relation to TLA. Further details about CTLA 2000 are des-
cribed in [HKQQ]. The scenarios considered in this thesis (cf. chapters []to are
modeled using the refined version CTLA 2003, which is presented in chapter[f}

3.4.1 Processes

CTLA introduces the notion of processes and process types. A process is a state
transition system that is instantiated from a process type. Process types are specified
in a programming language like syntax. The following sections are contained in a
CTLA simple process type specification:

e Header (PROCESS ProcName (pparl: tparl; ...)): In this sec-
tion, the name of the process type and a list of generic parameters are given.
Upon instantiation, the generic parameters are replaced with actual parame-
ters.

e Import (IMPORT): The import section is optional and allows the inclusion of
constants, data types, and functions defined in other modules.

e Initialization (INIT): The initial state of the processes instantiated from this
process type is defined through the initialization predicate.

e Variables (VARIABLES): In the variables section, the variables which span the
state space of the process are declared. CTLA variables are private to the
process and cannot be accessed by other processes.

e Actions (ACTIONS): The process body is defined by the actions section. This
section lists the actions of the process type.

Correspondence to the TLA Canonical Formula An instance of a simple pro-
cess is a state transition system directly corresponding to the TLA canonical for-
mula (cf. section [3.3.2). The initialization predicate Init is the initialization pred-
icate INIT of the process. The next-state predicate is given by the disjunction
Next = act; V act, V actz V --- V act,;, where the act; are the actions listed be-
low the ACTIONS keyword. Furthermore, for the actions marked with fairness
requirements, FA has to be set to the conjunction of these markings (i.e.,, FA =
WF(acti1) A - - - A WF(acty) A SF(actj;) A - - - A SF(act;;)). Finally, the set V of vari-
ables of the state transition system corresponds to the local variables of the process
listed below the VARIABLES keyword.

31

3 Spin, Promela, TLA, and cTLA

Example: Simple Process A CTLA system instantiated from the simple process
type Relais

PROCESS Relais();

VAR
b: Buffer; // state space
INIT ::=
b.c = ST_READY // initial states
ACTIONS
in(m : Mtype) ::= // put message into buffer
b.c = ST_READY
AND b.c’ = ST_BUSY
AND b.b’ = m;
out(m : Mtype) ::= // get message from buffer
b.c = ST_BUSY
AND b.b = m
AND b.c’ = ST_READY
AND b.b’ = b.b; // unchanged (b.b)
END;

corresponds to the TLA formula &®:

@ = Init AO [N,
Init := bc = ST_READY
N = A VA
Ay = bc=ST_READYAbc = ST_BUSYAbY =m

Ay bc = ST_BUSY Abb = m A b’ = ST_READY A Unchanged(bb)
f = b =bcAbb =bb

The Unchanged predicate requires that the value of its arguments remains un-
changed, e.g., Unchanged(x) := x = x'.

3.4.2 Process Types & Process Composition

Besides the simple process type, CTLA supports composed or subsystem process
types. As the name suggests, a subsystem process type is composed of other pro-
cesses.

The constituting processes Py, P,,..., P, are listed in an additional section
(PROCESSES). As the initialization predicate is derived from the initialization of
the constituting processes, the corresponding section is not used. Furthermore, the
actions section lists a special type of actions, system actions.

32

3.4 Compositional Temporal Logic of Actions (cTLA)

System Actions In the context of process composition, system actions are joint
(i.e., synchronous) actions of the constituting processes. They determine the inter-
action between the processes. Each system action couples actions from the pro-
cesses by logical conjunction. Thus, a system action sact has the form sact =
Py.act_j; A -+ A Ppact_j,. Each P.act;; is either a real action of P; or the pseudo-
action stutter. If a process performs the stutter pseudo-action, all its state
variables remain unchanged during the execution of the system action.

Data communication between processes can also be realized through system ac-
tions and their parameters. For example, if a data item d shall be exchanged bet-
ween two processes P, P, a system action can be defined in the following way:
sact (d) ::= Pl.actl(d) AND P2.act2 (d). Both P; and P, are then able to read
d in the respective actions.

Correspondence to the TLA Canonical Formula As with the simple process type,
an instance of a subsystem process type corresponds to the TLA canonical formula.
The correspondence is a bit more complicated, though. For a subsystem process
type S composed of process instances P, ..., P, the Init predicate is given by the
conjunction of the individual initialization predicates, i.e., Init = Pp.Init A--- A
P, .Init. The next-state predicate is given by the disjunction of the system actions.
The set of variables V is the union of the sets of variables V; of the P;. Regarding
fairness, under some restrictions related to the system action coupling, FA is given
by the conjunction P;.FA A --- A P,.FA. Thus, an instance of a composed process
type defines a state transition system and is available for further composition.

Example: Subsystem Process A CTLA system instantiated from the subsystem
process type TransferSys — which is composed of three Relais instances —

PROCESS TransferSys

CONTAINS
SR: Relais; // source relais
TR: Relais; // transfer relais
DR: Relais; // destination relais
ACTIONS
put (m: Mtype) ::= // put message into source relais
SR.in(m) AND TR.stutter AND DR.stutter;
send(m: Mtype) ::= // send message from s. to t. relais
SR.out (m) AND TR.in (m) AND DR.stutter;
receive(m: Mtype) ::= // receive message from t. in d. relais
SR.stutter AND TR.out (m) AND DR.in (m);
get (m: Mtype) ::= // get message from destination relais
SR.stutter AND TR.stutter AND DR.out (m);
END;

33

3 Spin, Promela, TLA, and cTLA

corresponds to the TLA formula ¥:

¥ o= Init AD [NV,
Init := srbc = ST_READY A trbc = ST_READY Adrbc = ST_READY
N = M VNoVN3V Ny
N, := srbc = ST_READY Asrbc’ = ST_BUSY Asrbb' =m
AUnchanged(trbc, trbb, drbc, drbb)
N, := srbc = ST BUSY Asrbb = m Asrbc’ = ST_READY

Atrbc = ST_READY A trbc’ = ST_BUSY A trbb' = m
AUnchanged(srbb, drbc, drbb)

N3 := trbc = ST_BUSY A trbb = m A trbc’ = ST_READY
Adrbc = ST_READY Adrbc’ = ST_BUSY Adrbb’ = m
AUnchanged(srbc, srbb, trbb)

Ny := drbc = ST_BUSY Adrbb = m Adrbc’ = ST_READY
AUnchanged(srbc, srbb, trbe, trbb, drbb)

f = Unchanged(srbc, srbb, trbc, trbb, drbc, drbb)

Superposition The composition of processes as described above has the character
of superposition, i.e., a property of a subsystem is a property of the system as a whole.
For safety properties, which constrain the initial states and state transitions only, the
superposition property holds. This is due to all state variables being private to their
respective process or subsystem and the logical conjunction used for assembling the
Init predicate and the system actions.

Regarding liveness properties, an action may be blocked due to its environment,
e.g., the coupling with another action in a system action. This may violate the
original action’s fairness requirements. Thus, the fairness requirements in CTLA
are conditional and have to fulfill certain restrictions. They refer to periods of time
where the action is not blocked by its environment.

Under these restrictions, the equivalence between the direct canonical subsystem
formula and the compositional subsystem formula gained from conjugating the
canonical formulas for the P; can be shown. A detailed examination is contained in

[Her98].

34

4 An Integrated, Formal Modeling and
Automated Analysis Approach

As explained in chapter 2] existing approaches for formal modeling and automated
analysis of computer network models are not sufficient. Particularly, the modeling
formalisms are quite restricted and do not offer integrated modeling of protocol,
node, and network aspects. Furthermore, the models are largely static and the
analysis often assumes monotonicity.

Thus, we develop a new approach based on a high-level modeling language, a
computer network modeling framework, a translator, optimization strategies, and
an analysis tool. In the following sections, we briefly present the objectives, imple-
mentation and workflow of the approach. Furthermore, we give an overview of the
steps required to build a model for a scenario.

4.1 Objectives

The following objectives are key for our integrated formal modeling and automated
analysis approach.

Formal Modeling Systems shall be modeled using a formal language. Formal mo-
deling provides for a clear and precise description of the system. A further advan-
tage is that well-established techniques and tools for transforming and analyzing
formal specifications exist. Thus, we do not have to develop all tools and techniques
from scratch but can adapt the existing ones to our approach.

Integration of Multiple Views Existing approaches are heavily geared towards a
single view (e.g., the node view) and are not expressive enough to integrate aspects
from other views (e.g., the protocol or network view). Our approach shall be able
to integrate the protocol, node, and network view into one consistent model. Thus,
we do not have to use different formalisms, models, and analysis tools for each of
the views. Instead, a single formalism, model, and analysis tool shall support all
three views with a medium to high level of detail.

35

4 An Integrated, Formal Modeling and Automated Analysis Approach

Executable Models The formal system models shall be executable, i.e., an environ-
ment for running the specification needs to be provided. The environment has to
support step-by-step simulation both in an interactive and a guided way. Such an
environment is essential for validating a model, i.e., to make sure that a model re-
flects the “real world” in an adequate way.

Dynamic Models The models shall not be restricted to static views of protocol,
node, and network aspects. Instead, they shall be able to express dynamics like com-
mand dependent replies, node address changes, and network routing updates. Par-
ticularly, physical and logical layers of the network model have to be distinguished,
a connectivity matrix is not enough.

Automated Analysis Automated, tool-supported analysis of properties of a model
shall be possible. The supported mechanisms for stating properties shall range
from simple to complex. Attack sequences have to be found automatically by check-
ing for violation of security properties. No user guidance in the form of supplying
appropriate queries or intermediate lemmas shall be necessary. Furthermore, the
sequences discovered have to correspond to model-level operations, not to a low-
level internal representation dependent on the analysis tool.

Ease of Use The approach shall facilitate all steps of its workflow. Particularly,
both the modeling and the analysis tasks need appropriate support. The formal
language has to enable the reuse and extension of existing models. A concept for
modeling computer networks has to be provided. Regarding the analysis task, suit-
able tool support must be provided for transformation and analysis of models.

Finally, the practical feasibility of the approach shall be demonstrated by several
case studies.

4.2 Implementation

For realizing our objectives (cf. section 1), we employ the following languages,
methods, and tools.

Compositional TLA 2003 As a formal modeling language, we use compositional
TLA 2003 (CTLA 2003). CTLA is a based on the formal language TLA (cf. sec-
tion3.3). In comparison to TLA, CTLA offers support for compositional modeling
based on process types and process composition (cf. section [3.4).

CTLA 2003, a refined version of CTLA, adds a new extending process type that
supports object-oriented modeling and facilitates framework based modeling. Fur-
thermore, CTLA 2003 stresses efficient executability of specifications e.g., by pro-

36

4.2 Implementation

viding finite data types which can be directly mapped to common machine-level
data types. Overall, CTLA 2003’s features are balanced between expressiveness,
abstraction level and implementation efficiency.

Computer Network Modeling Framework To facilitate the modeling task and sup-
port an integrated view of network, node, and protocol-related aspects, we devised
the computer network modeling framework (cf. chapter[/). It evolved from preliminary
models and is used for the case studies described in chapters] to The frame-
work is written in CTLA 2003 and provides key elements like media, nodes, and
types for packets, protocols, interfaces etc.

Due to CTLA 2003’s object-oriented features, the existing elements can be ex-
tended and specialized with ease. This allows for framework-based scenario model-
ing, i.e., models largely reuse the framework’s code and only add code as required
for a specific scenario.

Spin Model Checker For the simulation and analysis of our models, we employ
SPIN (cf. section B.I). SPIN is one of the most well-known and powerful tools
for the automated verification of distributed systems. It has been continuously
adapted to new developments and algorithms. SPIN’s input language, PROMELA
(cf. section comprises a restricted subset of the C programming language and
adds constructs for non-determinism as well as communication and synchroniza-
tion between processes. PROMELA is quite a low-level language not supporting e.g.,
process-type composition. Furthermore, PROMELA does not foster a clear model
structure by providing e.g., a concept of actions.

SPIN can both simulate and analyze PROMELA models in a number of different
ways. Regarding simulation, both interactive and guided modes exist. For analysis,
properties can be stated e.g., using a wide range of mechanisms. Analysis models
are translated to executable verifiers using a C compiler which increases verification
performance. The well-known state space explosion problem, however, still makes
the analysis of most models hard.

Translation & cTLA2PC Tool As SPIN supports only PROMELA models, CTLA mo-
dels have to be translated. Thus, we designed a translation scheme (cf. section[6.2)
for transforming CTLA models to PROMELA. Two key steps characterize the trans-
lation from CTLA to PROMELA: First, the process composition is resolved. Second,
actions are embedded and parameters handled.

The CTLA2PC tool (cf. section implements the translation scheme and pro-
vides automated translation of CTLA models to PROMELA. Beyond the basic trans-
lation, CTLA2PC offers extended translation options. Particularly, options for map-
ping exist between CTLA level actions and PROMELA statements. This way, we are
able to consider the analysis results on the model-level instead of having to work

37

4 An Integrated, Formal Modeling and Automated Analysis Approach

with the low-level PROMELA representation. Furthermore, various optimizations
can be applied automatically during translation.

Optimization Strategies Computer network models typically consist of several
nodes buffering, processing, and exchanging packets. This leads to a significant
level of complexity even for small models and often to state space explosion effects.
Thus, optimizations are nearly always required prior to the successful analysis of a
model.

During the course of this thesis, particularly while working on the case studies
described in chapters[9]to[11] several optimization ideas were considered and tested.
The optimizations which proved to be most useful are described in chapter|8 They
are structured according to the modeling stage where they are applied. Further-
more, if they can be applied at the CTLA or PROMELA-level, the optimizations
have been integrated into CTLA2PC.

Eclipse Integration We ease the application of our approach by providing an inte-
grated environment for modeling and analysis (cf. section[6.4). The environment is
implemented based on the ECLIPSE workbench.

Particularly, the environment integrates CTLA2PC and SPIN with ECLIPSE’s core
services. Altogether, the environment supports the editing, translation, simulation,
debugging, and verification of models. The debugging feature works in simulation
mode and behaves similar to common programming environments: breakpoints
may be be defined, variable watches added, and the execution can be traced in
single steps.

4.3 Workflow

In the following paragraphs, we describe the stages of the workflow for our ap-
proach. The depicted workflow (cf. Fig. reflects the ideal process; when putting
it into practice, however, stages may have to be repeated, e.g., if initial analysis of a
model failed due to state space explosion effects.

Real Network The real network is the background of our modeling. Networks are
usually linked to other networks, consist of subnetworks, contain many elements
which may not be interesting and do not have well-defined borders. Thus, the
modeling of complete networks is often not feasible. Instead, we select a scenario,
containing a typical subset of the real network.

Scenario Diagram We think about the key nodes, protocols, and networks re-
quired. This depends on the setting and the properties we plan to analyze. Gen-

38

4.3 Workflow

validate

GRS

CcTLA Promela
Model

Promela
Model w
claims

Scenario
Diagram

Real
Network

Analysis
Results

translate,

optimize add claims

abstract analyze

use framework

map back

Figure 4.1: Ideal Workflow of Our Approach

erally, a network can be simplified by selecting a few representative nodes. Further-
more, not all layers of the network reference model (cf. section|/.2.1) are required
in every case. We consider these facts for devising the scenario diagram.

cTLA Model The CTLA model for the scenario is developed in several steps (fol-
lowing the protocol, node, and network view) as described in section The
framework provides the generic structure and common elements for the model.
Thanks to CTLA 2003’s process composition features, specific extensions can be
made based on existing elements. This greatly facilitates the development of a spe-
cific model.

Promela Model Using CTLA2PC, the PROMELA model is automatically genera-
ted from the CTLA model. Furthermore, CTLA2PC supports several optimiza-
tions which can be applied during translation. Optimizations not yet included in
CTLA2PC can be performed manually. Often, the non-compositional, flat system
(cf. section[6.2.1.1), which is optionally produced by CTLA2PC is a good starting
point for manual optimizations. Another possibility is to apply low-level optimiza-
tions to the PROMELA model directly.

The PROMELA model serves another important function: model validation. We
have to make sure that the model relates well to reality; that we are building the
right model. SPIN offers basic interactive and guided simulation of PROMELA mo-
dels. These features are improved with our ECLIPSE integration and CTLA2PC
options for simulation verbosity. By checking both selected predetermined and ran-
dom sequences, we increase our confidence in the model. If unexpected variations
occur, we restart the modeling cycle (i.e., adapt our model and validate it again).

39

4 An Integrated, Formal Modeling and Automated Analysis Approach

Promela Model with Claims As SPIN only supports analysis of PROMELA models,
the claims have to be based on the PROMELA model as well. The claims can be
expressed using various mechanisms (cf. section [3.1.3), particularly assert state-
ments. Depending on the properties we want to analyze and on the modeling of the
claims, one or several of such statements may be required. We then add these state-
ments to the PROMELA model (as generated by CTLA2PC from the CTLA model).

Analysis Results The PROMELA model with claims is analyzed using SPIN. SPIN
supports different analysis modes and search strategies (cf. section 3.1.4). Gen-
erally, however, these options do not make or break the successful analysis of a
model. Successful analysis is much more dependent on the model itself (i.e., the
abstractions and simplifications chosen with respect to the real network) and the
optimizations applied.

If the analysis is successful (i.e., if SPIN neither runs out of memory early nor
runs “forever”) and a sequence of steps violating a claim is found, SPIN writes a
trail file. This file contains an internal encoding of the state sequence leading to
the violation. The mapping back to CTLA model-level operations happens in two
stages: First, SPIN can play back the trail file in guided simulation mode. This
reveals the corresponding PROMELA level sequence. Second, the PROMELA model
generated by CTLA2PC contains trace points outputting the CTLA level actions.

Thus, we mapped back the sequence found by SPIN to the CTLA level. Typically,
we depict the sequence using a sequence diagram showing the processes involved
and actions executed. Finally, the results have to be interpreted and discussed in
the context of the real network. As the correspondence between the CTLA model
and the real network has already been checked during the validation stage, this
should not be too hard.

4.4 Modeling Steps

To design the CTLA model for a scenario, we typically take the steps outlined below
(cf. chapter [0 to[1I). These steps correspond to the protocol, node, and network
views plus a system modeling (integration) step.

Furthermore, after translation, the claims are added to the PROMELA model. This
isa PROMELA —not a CTLA —modeling step that may also be considered to be part
of analysis.

Protocol Modeling We examine the protocols involved in the scenario. These
days, most protocols are based on TCP/IP. Thus, the corresponding reference
model (cf. section|/.2.1)) is helpful for determining which layers have to be included

40

4.4 Modeling Steps

in the modeling. As we are, for example, not concerned with the encoding of sig-
nals on the physical media, we do not model the physical layer. Furthermore, the
required layers can be modeled using different degrees of abstraction.

A scenario involving low-level attacks, for instance, must include hardware ad-
dressing mechanisms at the network interface layer. However, if we are interested
in attacks on the transport or application level only, this level of detail at the net-
work interface level is counterproductive.

Last but not least, the protocol itself can often be simplified. For example, the
protocol may support the sending of several updates in one packet. Typically, this
has the same effect as sending several packets with one update each. The latter can
often be modeled in an easier way as the packet structure is less complex.

Node Modeling Depending on the scenario, not all nodes may have to be modeled;
instead, a set of representative nodes may suffice (cf. section[8.2.T). For these nodes,
aspects not directly related to rotocol processing have to be considered during node
modeling.

We assign roles to the nodes. Typical roles are e.g., sender, receiver, and attacker.
Roles help to minimize the set of actions required for a node (cf. section[8.2.2). An
attacker, for example, may have additional actions. By designating a certain node
as an attacker, we do not have to include these actions for every node.

Besides the attacker actions, administrative actions may be added to the nodes
during the node modeling step as well. Furthermore, the configuration of the node
needs to be modeled. The initial configuration, e.g., routing tables after boot-up, is
set during node initialization.

Network Modeling The network modeling step deals with representing the net-
work topology. In particular, appropriate zone definitions and the mapping bet-
ween nodes, interfaces, and zones (e.g., through functions) must be defined. The
transmission media has to be modeled. As we do not require sophisticated model-
ing of transmission media characteristics, the simple media type provided by the
framework is usually sufficient.

During system composition, the send and receive system actions have to be de-
fined to follow the network topology. A broadcast receive system action, depending
on its modeling, may require that only receive actions of nodes that are in the same
broadcast zone are coupled.

System Composition During this step, the system process type (cf. section[5.3.3)
is defined. The system process type integrates the instances of all processes that are
required for realizing the system, e.g., the node and media processes. To this aim,
the system actions have to be provided. Each system action couples the actions of
the processes and thus defines the collaboration in the system.

41

4 An Integrated, Formal Modeling and Automated Analysis Approach

Translation & Claims Modeling In contrast to the previous steps, the claims are
not added to the CTLA, but to the PROMELA model. Thus, this step is done after
translation to PROMELA. Typically, we model a claim corresponding to a security
property using assertions. Assertions can be analyzed most efficiently by SPIN, and
they are easy to understand.

42

5 The cTLA 2003 Modeling Language

For our modeling, we employ CTLA 2003 [[RK03], a refined version of CTLA 2000
(cf. section[3.4). After a short overview describing the key differences to CTLA
2000, we explain each part of a CTLA 2003 specification in more detail. If no ver-
sion is explicitely stated, in the following chapters CTLA refers to CTLA 2003. We
conclude this chapter with excerpts from the formal grammar for CTLA 2003. The
full grammar is included in Appendix[A]

5.1 Comparison to cTLA 2000

CTLA 2003 is designed as an executable subset of CTLA 2000 combined with mo-
deling enhancements. In the following section, we first describe the executable
subset, then the key modeling enhancements.

5.1.1 Executability

In contrast to CTLA 2000, CTLA 2003 specifications are executable. Models can
be efficiently executed using a simulation or analysis tool. This greatly simplifies
model validation and automated analysis.

The notion of executable specifications stems from the field of software engineering.
Instead of having to prove that the implementation meets the specification, the spe-
cification is the implementation. To put it another way, executable specifications
can be seen as a direct implementation of themselves.

Executable Subset of cTLA 2000 To ensure efficient executability of CTLA 2003
specifications, we consider the following subset of CTLA 2000:

E1 all data types, including sets, are finite
E2 all actions follow the standard form
act::=g; AND ¢p AND ... AND g, AND e; AND ... AND ey

where the g;,i = 1,...,n are guards and the e,j=1,...,mare effects

43

5 The cTLA 2003 Modeling Language

E3 the initialization predicate takes the form x; = ¢; AND ... AND x; = ¢,
where the x;,i = 1,...,] are the variables occuring in the specification and
thec;,i =1,...,1 are constants

The first property implies that all variables and parameters can only take a finite
number of different values. Clearly, as computer systems have only a limited
amount of memory, this property is required for any executable specification. The
second property is required because in CTLA 2000, arbitrary predicates are allowed,
which cannot be efficiently evaluated. The third property makes sure that the ini-
tialization predicate can be efficiently evaluated and uniquely determines the initial
state.

Structure of Guards Guards are negated or non-negated predicates over non-
primed variables, optional parameters, and constants (e.g., v = 3 or NOT v > p).

The OR operator may occur between two guards g1, g>. In this case, we replace
act by two actions acte, acter. Then, both actions actg, k = 1,2, are in the standard
form: actey ::=gx AND g3 AND ... AND gy AND e; AND ... AND ey, k=1,2.

In CTLA 2003, quantified guards are supported, too. Quantified guards are guards
over sets of elements. They can be either of the exists or of the forall type. An
exists-type quantified guard is true if the guard is true for at least one of the elements
of the set. Symmetrically, an forall-type quantified guard is true if the guard is true
for all elements of the set. As sets are finite (E1), the exists, forall-type quantified
guard can be replaced by n simple guards connected by OR, AND, respectively. Thus,
we can inductively transform actions involving quantified guards into the standard
form.

Structure of Effects LEffects are assignments, with a primed state variable on the
left and an expression built from non-primed variables and constants on the right
(e.g., v' = p + 3). Effects may not be combined using OR or include NOT.

The logical operator IF-THEN-ELSE may occur in an action where a simple
guard or effect occurs and combines a guard with an effect: IF g; THEN ¢; ELSE
ez. The operator is a short hand for the logical formula (g; AND e;) OR (g1 AND ep).
By replacing the action involving the operator with two actions acty;, act;y as des-
cribed above, the OR is removed. Then, by reordering the guards and effects (which
are all AND-connected), the standard form is restored.

The IF-THEN-ELSE may also be nested. Then, we can transform the action to
the standard form inductively. Consider for example action

act: IF g3 THEN (IF g» THEN ej;; ELSE ejp) ELSE e
First, the outer IF, then the inner IF are transformed. Finally, act is replaced by
these three actions (in standard form):

actgf1 : 81 AND e

44

5.1 Comparison to cTLA 2000

acle1¢2: g1 AND g2 AND ey

aCtg1’g7 181 AND g_2 AND eqp

Quantified effects are supported in CTLA 2003 with the updateall effect. The up-
dateall effect changes the value for all elements of a set that satisfy a certain condi-
tion. Similar to quantified guards, this does not adversely affect the standard form.

As the described guards and effects can be evaluated efficiently, so can actions
(E2). Furthermore, the initial state can be evaluated efficiently and is uniquely de-
termined (E3). Thus, the efficient executability of CTLA 2003 specifications follows.

Focus on Safety In our models, we aim to analyze security properties. These
properties can be expressed (e.g., using assertions or invariants) as pure safety prop-
erties. Moreover, automated analysis can be done much more efficiently for safety
properties than for fairness properties. Thus, the model checker SPIN, for instance,
requires a special parameter (pan -f) to enable a quite limited form of fairness —
weak fair scheduling on the process level — during analysis.

For these reasons, we focus on safety properties in CTLA 2003. CTLA 2000’s ac-
tion level SF and WF fairness operators are not supported in CTLA 2003. By adding
helper variables and guards, however, the behavior of a model can be restricted to
meet fairness requirements.

5.1.2 Modeling Enhancements

To facilitate the modeling task, CTLA 2003 supports reuse of process types. Further-
more, specifications are simpler to write as canonical parts are left out.

Reuse of Process Types CTLA 2003 introduces a new process type, the extend-
ing process type (cf. section[5.3.2). The extending process type allows to derive new
process types from existing process types. This way, a new process type that adds
own code (i.e. actions, variables, or initializations) to an existing process type can be
defined. Furthermore, actions of the existing process type may be modified by ad-
ditional guards or effects. Only the new code has to be specified in the new process
type; all other code is reused from the existing process type(s). This mechanism to
extend existing process types resembles inheritance as known from object-oriented
programming languages.

Reuse fosters the development of libraries of process types. A set of domain spe-
cific process types together with common data types, enumerations, and functions
lays the foundations for a modeling framework. We developed a computer network
modeling framework for CTLA 2003 (cf. chapter[7) that relies on the extending pro-
cess type and eases the modeling process greatly.

45

5 The cTLA 2003 Modeling Language

Implicit Unchanged in Actions In CTLA 2003, process local variables not occuring
in the effects of an action remain unchanged by the execution of the action. Thus,
unchanged statements (e.g. v’ = v) are neither required nor supported for CTLA
2003 actions.

The implicit unchanged helps to reduce both the red tape and errors in actions.
For example, if a new variable w is added to a process type in CTLA 2000, all actions
not modifying w have to be extended with Aw’ = w. This is easily forgotten and
leads to the usually unintended effect that the future value of w is random. The
implicit unchanged forces all variables to be explicitly set to a new value. This
ensures efficient executability of actions.

Internal Actions CTLA 2003 introduces the new concept of internal actions. An
internal action defines a set of state transitions in exactly the same way as a normal
action. The difference between both sorts of actions concerns the composition of
systems from processes. When a process instance is employed as a component
in a system, the internal actions of the process cannot be coupled with actions of
other processes. Each internal action is accompanied by stuttering steps of all other
system components.

Typical examples of internal actions are the packet-processing actions of a node
(e.g. rpcs). An action marked as internal is implicitly added to the system actions
as a single action while all other processes stutter. This eases the modeling task,
because the system-level coupling only has to be specified manually for the external
actions.

Actions that are not internal are called external. External actions are typically cou-
pled on the system-level with other actions to model a certain interaction between
processes. For example, the send action (snd) of a node process is coupled with the
in action of a media process to represent packet acceptance by a physical transfer
medium.

5.2 Specification Structure

A CTLA specification consists of six parts (cf. Listing [5.1).

These parts are constants, types (including enumerations and user data types),
functions, predicates, process types, and the system instantiation. In the following
paragraphs, we describe the parts one after another, except for the process types
and system instantiation, which are described in section

5.2.1 Constants

The optional constants part allows for the definition of symbolic constants. Three
types of symbolic constants are supported in CTLA: simple constants, enumera-

46

5.2 Specification Structure

CONST /* 1. constants */
constNamel=valuel;

TYPE /* 2. types */

enumTypel=(vall, ...); // enumeration
userTypel=RECORD // user data type

fieldNamel: typel;

END;

FUNCTION funcl (x:INT) ::= /* 3. functions */
END;
PREDICATE predl (x:BYTE) ::= ...; /* 4. predicates */
PROCESS procTypel ...; /* 5. process types */
... // actions
END;
SYSTEM sysInstance ...; /* 6. system instantiation #*/

Listing 5.1: ¢cTLA Specification Outline

tions, and compound constants. While simple and compound constants are listed
in the CONST part, enumerations are listed in the the TYPE part.

Simple Constants A simple constant defines a symbolic name for a fixed value.
In CTLA, the declaration of simple constants looks like this:

CONST

simpleConstNamel = valuel;
simpleConstName?2

value?2;

After declaration, simple constants are referred to by their name and may be used
in all places where a variable or parameter value is read (e.g., on the right side of
assignments).

Simple constant declarations are not typed. Our CTLA compiler, CTLA2PC (cf.
section [6.3), infers a type during semantic analysis, however. This is used to flag
invalid assignments during model translation (e.g., assignment of an INT-valued
constant to a BYTE variable).

47

5 The cTLA 2003 Modeling Language

Enumerations An enumeration defines a set of symbolic names. Each symbolic
name is assigned a unique integer from 0...n — 1 where 7 is the cardinality of the
set of names for the enumeration. In CTLA, enumerations are declared via the
following statements:

TYPE
enumNamel = (el_namel, el_name2, ..., el_nameNl);
enumName?2 = (e2_namel, e2_name2, ..., e€2_nameN2);

These statements have two effects. First, variables of the respective enumeration
type can be declared and may take any of the symbolic names as a value. Second,
each of the symbolic names defined by the enumerations may be used like a simple
constant in the specification.

Compound Constants Compound constants are constants of an array or record
type (cf. section5.2.2). They define an instance of such a data type with a symbolic
name and fixed value. Compound constants are declared in CTLA the following
way:

CONST

compConstNamel = arrayTypeName // array type comp. const.
{ [arr_vall, arr_val2, ..., arr_valN] };
compConstName2 = recordTypeName // record type comp. const.
{ {rec_fldl=rec_fldl_val, rec_fld2=rec_fl1d2_val, ...,
rec_fldN=rec_fldN_val} };

While compoundConstNamel declares a compound constant of an array type
(arrayTypeName), compoundConstName2 declares a compound constant of a
record type (recordTypeName). As with simple constants, these compound con-
stants may be used in all places where a variable or parameter value of the corre-
sponding type is read (e.g., on the right side of assignments).

5.2.2 Types

In this section, both the declaration of basic (i.e., built-in) data types and of user
data types is described. This specification part is optional as well, i.e., if no user
data types are required for a model, this part can be left out.

Basic Data Types CTLA supports five basic data types (cf. Table5.1).
The BOOL, BIT data types hold boolean values in their symbolic, numeric re-
presentation. Furthermore, different ranges for numeric values are covered by the

48

5.2 Specification Structure

Type Range

BOOL | { TRUE, FALSE }
BIT {0,1}

BYTE |0...255

SHORT | -128...127

INT -32768 ...32767

Table 5.1: cTLA Basic Data Types

BYTE, SHORT, and INT types. In contrast to programming languages, types for
string and character manipulation are not required.

User Data Types In section we already explained the declaration of enumer-
ations. Enumerations are a simple example of user-defined types. The CTLA lan-
guage supports more advanced user-defined types as well. These user data types
make use of the ARRAY and RECORD operators.

Arrays are a fixed size collection of elements (ay, . ..,an_1), where N is the cardi-
nality of the collection, of the same data type. In CTLA, an array user data type is
declared via:

TYPE

arrayType = dataType[N];

The ith element of an array is selected using the bracket operator on the array with
the parameter i (i.e.,, a[1]).

Records are a fixed size collection of elements, too. In contrast to arrays, however,
the elements can have different data types. In CTLA, a record user data type is
declared via:

TYPE
recordType = RECORD

fieldNamel: dataTypel;
fieldName2: dataType?2;

fieldNameN: dataTypeN;
END;

Each element of the record type is selected using the dot operator with the field
name. For example, to access the field fieldName2 of the record type, the syntax
recordType.fieldName?2 is used.

49

5 The cTLA 2003 Modeling Language

As both array and record operators can be used recursively, complex types can
be built (e.g., a record containing arrays).

5.2.3 Functions

Based on a value table, functions can be declared in CTLA using the FUNCTION
keyword and the IF-THEN-ELSE operator. The generic CTLA template for a func-
tion f(x1,..., %) mapping the input values (vj1,...,v;y,), i = 1...n to the output
scalar vy, .. v, is:

FUNCTION f (x1:INT, ..., xm:INT) ::=

IF ((x1=v1ll) AND ... AND (xm=vlm)) THEN y_vl1l...vlm
ELSEIF ((x1=v21l) AND ... AND (xm=v2m)) THEN y_v21l...v2m
ELSEIF ((xl=vml) AND ... AND (xm=vmm)) THEN y_vml...vmm
ELSE <undefined value>

END;

Typically, to return a value for the full range of the input variables, a special unde-
fined value is returned for all input values out of the scope of the function. This is
realized using the ELSE statement.

The involved IF-THEN-ELSE operators have a functional meaning in this con-
text. If the first condition is true, the first value is returned. Otherwise, if one of the
ELSEIF branches is true, the corresponding value is returned. Finally, if none of
the conditions matches, the ELSE value is returned.

5.2.4 Predicates
A CTLA predicate is declared as follows:

PREDICATE predName (parl:typel; ... parM:typeM;) ::=
<formula involving parl, ..., parM>

The formula may contain parameters, comparison operators, logical operators,
and functions. In CTLA, the following comparison operators are supported:

< >p=p = <= 0=
Furthermore, the following logical operators may be used:
AND, OR, NOT

After declaration, a predicate can be used everywhere a guard is allowed, particu-
larly in actions. As an extension, the current version of CTLA2PC allows to define
action macros (i.e., including effects) with the PREDICATE keyword as well.

50

5.3 Process Types

5.2.5 Actions

As described in section CTLA actions are structured into executable guards
and effects, and can be transformed to the standard form shown below:

actionName (aparl:typel, ..., aparN:typeN) ::= // head
guardl // guards
AND guard?2
AND ...
AND guardN
AND effectl // effects
AND ...
AND effectM;

Actions make up the body of a process type definition (cf. section [5.3). Option-
ally, parameters may be defined in the action head. The parameters are used like
symbolic constants inside the actions. For parameterized actions, the definition of
enabled (cf. section[3.3.1)) is extended: the action is enabled, if all guards are satisfied
by the actual values of the parameters in combination with the current values of the
state variables.

5.3 Process Types

Each CTLA specification describes at least one process type, an instance of which
corresponds to a state transition system modeling a process of this type. In contrast
to PROMELA process types (cf. section B.2.2), CTLA process types may contain
multiple actions. Furthermore, the extending and subsystem process types allow for
the composition of new process types from existing process types.

5.3.1 Simple Process Type

A simple process type definition consists of three sections: local declarations, initial-
ization, and actions (cf. Listing[5.2).

In the local declarations section, the constants and state variables of the process
type are defined. The initialization section consists of a predicate determining the
initial values of the state variables. As the name suggests, the actions section lists the
actions (cf. section[5.2.5) of the process type.

Instances of a process type define a state transition system. For the CTLA simple
process type, the state space of the state transition system is directly spanned by
the local state variables. In the same manner, the transitions are directly given by
the local actions. This is in contrast to the composed CTLA process types: CTLA
extending process type and CTLA subsystem process type.

51

5 The cTLA 2003 Modeling Language

PROCESS simProcType (pparl:...); // simple process type
/+ local declarations =/
CONST ...; // local constants
VAR ...; // state variables
/% initialization #*/
INIT ::= ...; // INIT predicate
/% actions */
ACTIONS // actions
actl (aparl:...) ::= // action
-7
INTERNAL ACTIONS // internal actions
iActl (iaparl:...) ::= // internal action
-7
END;

Listing 5.2: cTLA Simple Process Type

5.3.2 Extending Process Type

An extending process type definition is very similar to a simple process type definition

(cf. Listing 5.3). A process extension section is added; all other sections remain
unchanged.

PROCESS ExtProcType (pparl:...); // extending process type
/+ local declarations */

/* process extension */
EXTENDS OtherProcTypel,
/* initialization =/
/* actions */
END;
Listing 5.3: cTLA Extending Process Type

In the process extension section, the process types which are extended by this pro-
cess type (i.e.,, Ext ProcType) are listed. A process type may extend multiple other
process types. This resembles multiple inheritance in object-oriented programming,
where a class inherits variables and behavior from multiple other classes.

The state transition system of an instance of an extending process type is defined

52

5.3 Process Types

as follows: Its state space is spanned by the combined state variables of all extended
process types plus the state variables defined locally. Similarly, the transitions are
given by combining the actions of all extended process types plus the actions de-
fined locally. If multiple definitions exists for the same action, they are merged into
a single new action. The new action results from logical conjunction of all guards
and effects of the previous definition. This way, existing actions can be constrained
and new actions added by an extending process type.

As an example of an extending process type, consider the process type
ActiveHostIpNode (cf. Listing[5.4).

PROCESS ActiveHostIpNode (NID: NodeIdT);
EXTENDS HostIpNode(NID); // extended process types
ACTIONS
snd(pkt: PacketT) ::=

itf.usd = TRUE

AND itf.spa.act = SPA_SND

AND pkt = itf.spa.pkt

AND itf.spa.act’ = SPA_NONE_EMPTY;
END

Listing 5.4: cTLA Example Extending Process Type (Adding)

This process type extends the process type HostIpNode, which does not
define a snd action. The action snd defined by the extending process type
ActiveHostIpNode is added to the actions defined by Host IpNode. Another
example is shown in Listing

PROCESS NonPromHostIpNode (NID: NodeIdT);
EXTENDS HostIpNode(NID); // extended process types
ACTIONS
rcv(pkt : PacketT) ::=
pkt.dat_ida = itf.ia;
END

Listing 5.5: cTLA Example Extending Process Type (Constraining)

This time, both process type NonPromHostIpNode and process type
HostIpNode provide definitions for action rcv. In this case, the existing ac-
tion rcv defined by process type Host IpNode is constrained with the additional
guard given in action rcv from the extending process type NonPromHost IpNode.
Similarly, an extra effect could be provided by the extending process type
NonPromHost IpNode and added to action rcv.

53

5 The cTLA 2003 Modeling Language

Initialization of the extending process type is done similar to the merging of
guards for multiple definitions of the same action: All initialization predicates of
the extended process types and the (optional) local initialization predicate are lo-
gically conjugated. As each process type defines its own name space, conflicting
initializations are not possible.

5.3.3 Subsystem Process Type

The subsystem process type realizes CTLA’s process composition concept (cf. sec-
tion3.4.2). In comparison with the simple process type definition, a section listing
the contained processes is added and the initialization section is removed (cf. List-
ing [5.6). Furthermore, the local declarations part is restricted to constants. This is
not enforced on the grammar level due to parser design considerations, but checked
during semantic analysis.

PROCESS SysProcType (pparl:...); // (sub)system process type
/% local declarations #*/
CONST ...;

/% process containment */
CONTAINS instNamel: OtherProcTypel,
/% actions */

END;
Listing 5.6: cTLA Subsystem Process Type

The process containment section lists the processes the process type (e.g.,
SysProcType) is composed of. A process type may be composed of several
processes. This is similar to multiple aggregation in object-oriented programming.

Again, the state transition system of an instance of a subsystem process type, is
defined indirectly. Its state space is spanned by the vector of the state variables
of all contained process instances. In contrast to the extending process type, the
transitions are made up of the locally defined actions. As the name suggests, the
subsystem process type is used for the system process. Thus, its actions are called
system actions. The right side of a system action is a conjunction of instances” ac-
tions. It lists those actions which have to be performed jointly in order to realize
the system action. Each process can contribute to one system action by at most one
process action. If a process does not contribute to a system action, it performs a stut-
tering step. To avoid name clashes, the actions of an instance are prefixed with the
instance name. In effect, only the system actions exist in the system. The instances’
actions are executable only as part of a system action.

54

5.3 Process Types

The initialization predicate of the subsystem process type is derived by conjuga-
tion from the initialization predicates for all contained process instances.

As an example of the subsystem process type, consider process type
SimpleConPT (cf. Listing[5.7).

PROCESS SimpleConPT();
CONTAINS // contained processes
nodeA: Node () ;
nodeB: Node () ;
physMedia: Medial();
ACTIONS // system—level actions
snd_na (pkt: PacketT) ::=
nodeA.snd(pkt) AND physMedia.in(pkt);
snd_nb (pkt: PacketT) ::=
rcv_na(pkt: PacketT) ::=
nodeA.rcv(pkt) AND physMedia.out (pkt);
rcv_nb (pkt: PacketT) ::=
END

Listing 5.7: cTLA Example Subsystem Process Type

This process type contains three instances (nodeA, nodeB, physMedia) of two
process types (Node, Media). Furthermore, it defines four system actions (na_snd,
nb_snd, na_rcv, nb_rcv).

5.3.4 System Instantiation

The previously described parts of a CTLA specification provide for constants, types,
functions, predicates and particularly process types. We still have to define which
process type is meant to be instantiated as the relevant state transition system for
the whole system. This process type is then declared in the system part of the
specification as follows:

SYSTEM systemName: procTypeName(constl, ...);

This statement defines the system model to be an instance of process type
procTypeName. If the process type is parameterized, appropriate constant values
have to be supplied.

Typically, the process type used for the system declaration is a subsystem process
type. It contains instances of the other relevant process types for the modeling and
couples their actions on the system-level. Consider the following system declara-
tion, instantiating the subsystem process type SimpleConPT (cf. Listing[5.7):

SYSTEM SimpleSys: SimpleConPT();

55

5 The cTLA 2003 Modeling Language

Figure shows the graphical representation of the resulting system
SimpleSys.

snd snd rcv rcv
na nb na nb

PROC. nodeA: Node PROC. nodeB: Node

ACTIONS ACTIONS

snd(pkt):—0 ® snd(pkt)
rcv(pkt) o0 : rcv(pkt)

PROC. physMedia: Media

ACTIONS
[3 in(pkt)
O—Q—Iout(pkt)

SYSTEM SimpleSys

Figure 5.1: Graphical Representation of System SimpleSys

The three process type instances included and four system actions defined by the
underlying process type SimpleConPT are clearly evident.

5.4 Grammar

CTLA’s grammar is described using the Extended Backus Naur form (EBNF) [ISO96]|.
The main meta symbols occuring are:

e the quote symbol " for enclosing terminals,

the start-repeat symbol { and the end-repeat symbol },

the start-option symbol [and the end-option symbol],

the start-group symbol (and the end-group symbol),

the repeat-zero-or-more-times symbol x,

the repeat-one-or-more-times symbol +.

A preliminary version of the grammar was developed in [RK03], then it was im-
proved and extended in [Poh03} Mal05]. The full and final grammar is included
in Appendix[A] In the following paragraphs, we give a brief overview of selected
high-level productions.

56

5.4 Grammar

Start Symbol The start symbol for the CTLA grammar is specification. This
symbol is defined as follows:

specification =
[const_decl_part]
[type_decl_part]
[function_decl_part]
[predicate_decl_part]
process_type_decl_part
system_instantiation_part
This production shows the structure of CTLA specifications with the optional
(constants, types, functions, predicates) and required (process types, system instan-
tiation) parts.

Constant Declararation By going three levels deeper into the constants part (sym-
bol const_decl_part), we obtain the following productions:

const_decl_part =
"CONST" { constant_decl ";" }+
constant_decl =
constant_identifier "=" constant
constant =
simple_constant_value | compound_ constant
These rules show that at least one constant has to be declared and multiple may
be declared after the CONST keyword. The values are assigned to the identifiers
with “=". Such values can be either simple or compound constants.

Process Type Declarations The process types (process_type_decl) part is re-
quired in each CTLA specification. Some of the next-level productions for this part

are:

process_type_decl_part =

{ "PROCESS" process_decl "END" }+
process_decl =

process_heading

[const_decl_part]

[type_decl_part]

[var_decl_part]

(simple_process_body

57

5 The cTLA 2003 Modeling Language

| extending_process_body
| subsystem_process_body)

These productions show the structure of each process type declaration, with re-
quired (process_heading), optional (e.g., const_decl_heading), and alter-
native (simple_process_body, subsystem process_body, extending_-
process_body) subparts. From the alternative subpart, we recognize the three
process types simple process type, extending process type, and subsystem process
type.

Furthermore, we observe that the productions allow for the derivation of a type
part for a containing process type. This is in contrast to section [5.3.3] which states
that only a constant part should appear in a containing process type. By more
complicated production rules, this problem can be avoided. In this case, like in a
few other cases, however, we determined that it is better to check this restriction
after parsing during semantic analysis. This way, the grammar can be kept simpler
and a higher parsing performance is achieved.

58

6 Translation, cTLA2PC, and Eclipse
Integration

This chapter describes the translation of CTLA 2003 specifications to PROMELA.
After a short introduction motivation, we present the translation scheme. Then,
we report on CTLA2PC, the automated translation tool implementing the scheme.
Finally, we briefly outline our ECLIPSE integration.

6.1 Motivation

On the one hand, we want to employ CTLA 2003’s compositional and object-
oriented modeling features, allowing for easy extension and re-use of modeling
elements (cf. chapter[5). These features lay the groundwork for taking the model-
ing task to another level by providing a custom framework for computer network
models (cf. chapter [/). On the other hand, we aim to analyze our models with
SPIN, one of the most popular and powerful finite-state model checkers (cf. chap-
ter 3.1). Particularly, SPIN includes state of the art reduction algorithms for produc-
ing optimized executable verifiers. Unfortunately, SPIN requires its models to be
specified using PROMELA (cf. section [3.2), a low-level, neither compositional nor
object-oriented language.

To be able to combine the advantages of CTLA for the modeling phase and
the advantages of SPIN for the analysis phase, we have to transform CTLA mo-
dels to PROMELA. Thus, we engineered a translation scheme for CTLA specifica-
tions, which transforms them to PROMELA specification. To provide automated
translation of CTLA specifications, we implemented the CTLA2PC tool based on
the scheme. Furthermore, to ease the application of our approach, we integrated
CTLA2PC together with SPIN into the ECLIPSE workbench.

6.2 Translation Scheme

First, we provide an overview of the translation scheme. Then, we give more details
regarding the translation of selected CTLA language elements.

59

6 Translation, cTLA2PC, and Eclipse Integration

6.2.1 Overall Translation Scheme

Two key phases can be distinguished in the basic translation scheme (cf. Fig.[6.1).
First, the expansion phase creates a simplified CTLA system, which consists of a
single, non-composed process. Second, the code generation phase translates the
simplified CTLA system to PROMELA.

Compositional cTLA

System Expanded cTLA System Promela System
ExpSystemType
VAR ptlil_vl:... // merge vars
ptlil v2: /Il from ExpSysteminstance | Glob Param.

Z% Z} Il process types active proctype sysinst | V.
INIT e putgen pl
PT1 ||{PT2{||j PT2 - ptlil vl=..

ptlil_v2 =... Inputgen pZ/

CompSystemType

ACTIONS
sys_al(paraml) :

Cor)stants
L) Variable

sys_.é.Z(param2) ::

thil: [{pt2il:|ipt2i2: Types etc...
o el |l /I ACT: sys _ﬁz(pz)
END
‘ * od; }
\ \ }
SYSTEM Com[\JSystemInstance ‘ ‘ SYSTEM ExpSysterAlnstance

Figure 6.1: Transforming a Compositional cTLA System to Promela

6.2.1.1 Expansion Phase

A compositional CTLA system (CompSystemInstance)isan instance of a process
type (CompSystemType) subsystem process type instances (e.g., ptlil, pt2il, ...).
Each process type (PT1, PT2, ...) may contain or extend further process types. Un-
fortunately, PROMELA only supports simple process types (cf. section[3.2.2). In con-
trast to CTLA, these process types may not extend or contain other process types.
Thus, during the expansion phase, we have to transform the compositional CTLA in-
put system to a simplified CTLA system which contains only simple process types.
We call this simplified CTLA system expanded or flat.

Particularly, the system process type has to be resolved. Typically, it contains
process instances for all elements of a scenario and couples their actions to provide
the system actions. As an example, consider the expansion of the action snd_h1l
(cf. Listing [6.T) from the IP-ARP model (cf. section.2).

The compositional form of the action is given by the coupling of actions from the
contained process type instances h1 (of process type IpArpNode) and med (Media).
The expanded form of the action contains no process type instances. Instead, vari-
ables from the instances are merged in the flat system type (ExpSystemType). Fur-

60

6.2 Translation Scheme

// Original Action as defined in the Compositional System
snd_hl(pkt: PacketT) ::= hl.snd(pkt) AND med.in(pkt);

// Action after Expansion (Flat System)
snd_hl (pkt: PacketT) ::=
// merged guards
pvValidIf (pkt.sci, NA_MIT)
AND hl_ifs[pkt.sci - 1].usd = TRUE
AND hl_ifs[pkt.sci - 1].spa.usd = TRUE
AND pkt = hl_ifs[pkt.sci - 1].spa.pkt
AND fSrcToZone (pkt.scn, pkt.sci) != UNKNOWN_ZONE
AND med_buf[fSrcToZone (pkt.scn, pkt.sci) - 1].usd = FALSE
// merged effects
AND hl_ifs[pkt.sci - 1].spa.usd’ = FALSE
AND med_buf[fSrcToZone (pkt.scn, pkt.sci) - 1].usd’ = TRUE
AND med_buf[fSrcToZone (pkt.scn, pkt.sci) - 1].pkt’ = pkt;

Listing 6.1: Compositional and Expanded Form of a cTLA Action

thermore, the guards and effects of the coupled actions are conjugated into new
actions. Thus, in the flat system only a single process of a simple process type re-
mains.

6.2.1.2 Action Translation & Promela Code Generation Phase

As the name suggests, this phase deals with handling actions and generating a
PROMELA-level representation of the simple CTLA system resulting from the ex-
pansion phase. This simple CTLA system is instantiated from a single process not
making use of process type composition (e.g., extension or containment). The sim-
ple CTLA system may still contain multiple, parameterized actions. In PROMELA,
processes have a monolithic body (cf. section [3.2.2). Particularly, multiple actions,
far less parameterized actions, are not provided.

Conceptually, we have to translate from the STS view (cf. section (3.3.3) un-
derlying the simple CTLA system to the LFSM view (cf. section underlying
PROMELA specifications. From the executability property of CTLA 2003 specifica-
tions (cf. section a finite state space and unique initial state follows. The end
states required by the LFSM view are only used for liveness properties by SPIN. As
we focus on safety properties, we can define an extra unreachable state as the LFSM
set of end states. Thus, the main task is to translate the CTLA actions to appropriate
PROMELA transition labels.

61

6 Translation, cTLA2PC, and Eclipse Integration

Action Embedding & Code Translation The set of CTLA actions defined in the
simple system are embedded into the body of a PROMELA process type. As actions
have to be executable an arbitrary number of times, they are enclosed in a PROMELA
non-deterministic do selection loop.

The translation of the actions themselves, which are structured into guard and
effect statements, can be done quite easily. Most guards can directly be translated
into PROMELA guarded statements. Quantified guards (CTLA keywords FORALL,
EXISTS) have to be handled by the introduction of local loop blocks which set cor-
responding boolean guard variables. Regarding effects, most can be translated into
simple PROMELA level assignments. Array effects (UPDATEALL) are again trans-
lated into local loop blocks. Following the outlined scheme, the action code can be
translated to PROMELA. The action parameters still have to be handled, however.

Action Parameters According to CTLA semantics, a parameterized action is exe-
cutable, if a parameter setting exists so that the action is executable with this param-
eters (cf. section5.2.5). We have to reproduce this behavior in PROMELA.

This is done in two steps. First, for each action and each parameter, a global
variable is introduced. The parameter is then removed from the parameter list of
the action and the occurrences of the parameter inside the action are replaced with
the global variable. Second, for all newly introduced global variables, an input
generator PROMELA process is created. The input generator for a variable non-
deterministically assigns a value (out of the range of values for the parameter type)
to the variable. As the input generator runs in its own process, any value can be as-
signed at any time. Particularly, all value assignments corresponding to parameter
settings so that the action is executable, are reachable. As the model checker tries
all reachable paths during verification, this reproduces the behavior of the CTLA
model.

The input generator processes use the randomness non-deterministic if-approach des-
cribed in [RuyOI]. Different actions may (re-)use the same global variables and
input generator processes as long as they have the same parameter types. Thus,
the number of additional variables and processes is reduced. We also tried using
PROMELA’s channel construct instead of global variables. As channels are imple-
mented as FIFO queues, global variables proved to be more efficient.

After the handling of action parameters, the action translation phase is finished.
The described basic translation scheme works well, but is relatively costly in terms
of possible transitions and — to a lesser extent — state space. Thus we developed op-
timizations, especially for more efficient handling of parameterized actions. These
optimizations are described in section 8.4}

62

6.2 Translation Scheme

6.2.2 Translation of Selected Language Elements

In this section, we give more details on the translation of the most important CTLA
language elements (cf. chapter[f) to PROMELA.

6.2.2.1 Constants

Consider a simple, symbolic CTLA constant simpleConstName:
CONST simpleConstName = value;

In PROMELA, symbolic constants are not supported. As PROMELA adopts the C lan-
guage preprocessor, however, symbolic constants can be implemented using pre-
processor (cpp) macros. Thus, the above statement is translated to the macro:

#define simpleConstName value

This macro tells the preprocessor to replace all occurrences of constName in the
PROMELA source with value.

Enumerations are a slightly more complicated case. Given a CTLA enumeration
enumName:

TYPE enumName = {namel, name2, ..., nameN}
In PROMELA this enumeration is realized via:

#define enumName byte
#define namel O
#fdefine name2 1
#fdefine valueN N-1

Of course, if N > 256, then an int type instead of byte is used for mapping
enumName.

Compound constants can be splitted into simple constants for all fields, array
elements. This way, compound constants are reduced to simple constants.

6.2.2.2 Types

The basic data types of CTLA can be mapped to the basic data types of PROMELA
in a straightforward way (BOOL + bool, BYTE — byte, etc).

Furthermore, both CTLA and PROMELA support array types. A CTLA array
declared via

arrayName: ARRAY[size] OF type;
is translated to the PROMELA array

arrayName ptypel[sizel;

63

6 Translation, cTLA2PC, and Eclipse Integration

where ptype is the PROMELA data type corresponding to the TLA data type as
described above.

Basic types and array types can be used to build composed user-defined data
types. In CTLA such a type looks like this:

TYPE userTypeName = RECORD
fieldNamel: typel;
fieldName2: type2;

fieldNameN: typeN;
END;
By mapping each typel, ..., typeN as described above, this user type can be real-
ized in PROMELA as follows:
typedef userTypeName {

typel’ fieldNamel;
type2’ fieldName?2;

typeN’ fieldNameN;

6.2.2.3 Logical IF-THEN-ELSE Operator

The CTLA logical IF-THEN-ELSE operator (cf. section5.1.1) combines guards and
effects, for instance:
IF x=4 THEN y'=1
ELSEIF x>2 THEN y’=2
ELSE y’=0
END;
PROMELA supports a selection construct. It allows to define several guarded options.
From the options where the guards are true, one is selected non-deterministically
for execution. Using this construct, the above expression is translated to:
if
(x==4) —> y=1;
(x!=4) && (x>2) —-> y=2;
:: else —> y=0;
fi;
Note the added (x!=4) guard in PROMELA. This is to ensure the CTLA ELSEIF
semantics, i.e., the ELSEIF can only be executed if the IF cannot be executed.

6.2.2.4 Functions

Consider the following CTLA function:

64

6.2 Translation Scheme

FUNCTION func (x:INT) ::=
IF ((x=0) OR (x=1)) THEN 1
ELSEIF (x=2) THEN 3
ELSEIF (x=3) THEN 4
ELSE 0
END;

PROMELA does not support functions. There exists a choice construct, however. The
choice construct has the form ¢ -> v1:v2 and works in the following way: if con-
dition c is true, return value v1, else return value v2. Combined with preprocessor
macros, this allows the above function to be realized in PROMELA via:

#define func (x)\
(((x==0) || (x==1)) -> 1:\
((x==2) -> 3:\
((x==3) —> 4:0)))

Then, an occurrence of func (a) in the CTLA input can be translated by putting
func (a) (i.e., a call of the macro func (x)) in the PROMELA code. Finally, the
preprocessor will replace func (a) with the macro and replace x with a.

6.2.2.5 Predicates

A CTLA predicate is defined like exemplified by the following example:
PREDICATE pred(x:BYTE; y:BYTE) ::= (0 < x) AND (y <= 2);

We transform this predicate into a PROMELA expression using a preprocessor
macro:

#idefine pred(x, y) ((0 < x) \
&& (y <= 2))

Similar to the already described translation of functions, every occurrence of
pred (a,b) isincluded in the output and finally replaced by the preprocessor.

6.2.2.6 Guards

Simple guards are boolean expressions combined by the logical operators corre-
sponding to the CTLA keywords AND, OR, and NOT. Consider for example the fol-
lowing simple guard:

(array[i] .usd = TRUE)

AND ((a > b) OR NOT (c > d))

Assuming the data types and variables have already been mapped, it can be trans-
lated by simply mapping the logical operators between CTLA and PROMELA (AND
— &&, OR +— | |, NOT — !):

65

6 Translation, cTLA2PC, and Eclipse Integration

(array[i] .usd == true)
&& ((a > Db) |1 (f(c > d)))

Quantified guards are a more complicated case. With the keywords EXISTS and
FORALL, CTLA supports quantifications in guards. Consider for example the fol-
lowing CTLA guard expression:

EXISTS i IN {a..b}: [guard(i) 1 // quantified guard

The guard expression is true, if guard (1) is true for any i between g, b, inclusively.
Similarly, the CTLA guard expression

FORALL i IN {a..b}: [guard(i) 1 // quantified guard

is true, if guard (1) is true for all i between a,b, inclusively. Quantified guard
expressions are realized in PROMELA by the introduction of loop code blocks and
temporary variables. For example, the above EXISTS guard expression is trans-
lated to:

hidden byte i_EXISTS_LO; // temporary loop variable
i_EXISTS_LO=a; // initialize loop variable
hidden bool i_EXISTS_LO_R=false; // temporary loop result

do

(1_EXISTS L0 <= b) —> // loop until upper bound
if
(guard (i) == true) -—> // 1if guard (i) true
i_EXISTS_LO_R=true; break; // save result, exit
else —> // guard (i) not true
i_EXISTS_LO++; // increase loop variable
fi;
else -> break; // upper bound exceeded
od;

6.2.2.7 Effects

Simple effects are assignment expressions combined by the CTLA keyword AND.
Consider for example the following simple effects where arr is a variable repre-
senting an array of records with a field usd and recvarl, recvar2 are records
with three fields x, y, z:

arr[i] .usd’ = TRUE
AND recvarl’ = recvar?2

Assuming data type and variable mapping are already done, the PROMELA transla-
tion looks like this:

arr[i] .usd=true;
recvarl.x = recvarl2.x;

66

6.2 Translation Scheme

recvarl.y = recvar2.y;

recvarl.z recvar2.z;

Note that the record variable assignment has to be splitted into its parts, because
PROMELA does not directly support multi-field assignments.

Array effects (CTLA keyword UPDATEALL) are a more complicated case. An
effect is applied to each element of an array. Consider the example:

UPDATEALL i IN {a..b}: [effect(arr[i])]

This effect is realized in PROMELA by the introduction of loop code blocks with
temporary variables similarly to the quantified guards described above.

hidden byte i_UPDATEALL_LO; // temporary loop variable
i_UPDATEALL_LO=a; // initialize loop variable
do
(1_UPDATEALL_LO <= b) -—> // loop until upper bound
effect (arr[i_ UPDATEALL_LO]); // affect element 1
i_UPDATEALL_LO++; // increase loop variable
else -> break; // upper bound exceeded
od;

6.2.2.8 Actions

CTLA actions are structured into guards and effects. We already described how
guards and effects can be translated to PROMELA. Furthermore, in section
we explained the embedding of actions into a non-deterministic do selection loop
and the handling of action parameters via global parameters and input generator
processes.

Taken together, these concepts describe the translation of actions. The generated
PROMELA outline for the actions looks like this:

do // non-determin. action selection loop
d_step { // ACTION Al: parameters replaced

// translated guards

// translated effects

}

:: d_step { // ACTION An: parameters replaced
// translated guards
// translated effects

od;

Furthermore, the input generator process generated for a replaced action parameter
takes the following form:

67

6 Translation, cTLA2PC, and Eclipse Integration

active proctype param_ParameterName_InputGen ()
{ do
:: param_ParameterName = ...; // first value

:: param_ParameterName = ...; // last value
od;

6.2.2.9 System Instantiation

After the expansion phase (cf. section [6.2.1.T), only a single, simple system pro-
cesstype remains. Thus, the system process instantiation can be easily translated
by instantiating and running the PROMELA version of that process. As described
in section[3.2.2} it suffices to add the PROMELA keyword active to the proctype
declaration corresponding to the system process:

// system process

active proctype SysProcType ()

{ ...}

We conclude this section with the outline of the PROMELA specification (cf. List-
ing that is generated for a typical CTLA model (cf. the CTLA outline in List-
ing 5.1).

Note the PROMELA input generator processes generated for the PacketT data
type which is used as a parameter in action snd_A (pkt :PacketT).

6.3 The cTLA2PC Translation Tool

We devised CTLA2PC, a tool for translating CTLA specifications to PROMELA.
CTLA2PC implements the translation scheme described in section Most of
the CTLA2PC’s implementation was done as part of the master theses of Andre
Pohl [Poh03] and Marc Malik [Mal09]. In the following sections, the architecture,
implementation and finally some extended translation options of CTLA2PC are
outlined.

6.3.1 Architecture

The compiler is made up of six key components. These components are:
Scanner and Parser The scanner and parser component builds a syntax tree from
the CTLA input. In a syntax tree, the input file is represented in a tree structure

matching the language’s grammar. Along the way, the syntax of the input file is
checked and errors are flagged. Furthermore, the symbol table is created.

68

6.3 The cTLA2PC Translation Tool

#define H1_T1_1ID ... // constants
#aéfine H1 _ID 1 // enumerations
#aéfine fSrcToZone (n,1)\ // functions
#Aéfine pvalidIf (pi,pm)\ // predicates

typedef PacketT // typedefs
{ NodeIdT scn;
}

PacketT param_PacketT; // global parameter variables

// system process
active proctype SysProcType ()
{ ... 1}

// input generator process for first field scn of PacketT
active proctype param_PacketT_scnInputGen ()

{ .0}

// input generator process for other fields and parameters
active proctype param PacketT_...

Listing 6.2: Generated Promela Specification Outline

Symbol Table A symbol table is a data structure based on an hash table that allows
for quick storing and retrieving of symbols (basically name and type pairs). The
symbol table component provides both the data structure and the operations for
storing and retrieving symbols. This component is called by the parser component
to construct a symbol table matching the syntax tree.

Semantic Analysis During semantic analysis particularly the correctness of ex-
pressions involving types is checked. This includes return values of CTLA func-
tions and inferring of types for constants. Implicit type conversions, e.g., for assigning
a BYTE type to an INT type, are performed as well.

Furthermore, some invalid CTLA expressions can be avoided either by a sophisti-
cated grammar or by simple checks during semantic analysis. In these cases, we opt
for the simpler grammar and perform the checks during semantic analysis instead.
This design decision brings about better translator performance, as the parser per-
formance is related to the grammar’s complexity.

69

6 Translation, cTLA2PC, and Eclipse Integration

Expansion Based on the syntax tree and the symbol table, this component ex-
pands a CTLA system to a simple CTLA system as described in section[6.2.1.1} The
result is a new syntax tree and symbol table for the simple CTLA system.

Code Generation The code generation component uses the modified syntax tree
and symbol table resulting from the expansion phase to build a PROMELA represen-
tation of the input system. For generating the PROMELA representation, the scheme
outlined in [6.2.1.2)is applied. Furthermore, this component allows the use of differ-
ent back-ends for languages other than PROMELA. For example, we integrated a
back-in for CTLA output. This is helpful to study the effects of process type com-
position and optimizations applicable at this level (cf. section [8.4).

Plug-in Interface CTLA2PC is designed with extensibility in mind. Thus, a plug-
in interface is provided which allows easy access to the syntax tree and symbol
table of the simple CTLA system. By developing a small plug-in, a wide range of
additional transformations can be integrated into CTLA2PC’s translation process.
Particularly, optimizations (cf. section 8.4 can be realized as plug-ins.

Altogether, a CTLA2PC translation process works as depicted in Figure

First, the input CTLA specification is analyzed by the scanner and parser com-
ponents. If syntax errors are encountered, CTLA2PC prints an error message and
the translation halts right after the parsing phase. After scanning and parsing, the
semantic analysis is applied. Semantic analysis adds type checking of action param-
eters, function return values and assignments. Again, errors are flagged and stop
the translation process. Then, the expansion is conducted, followed by optional
optimizations. Finally, the translation is completed with the PROMELA (or CTLA)
code generation phase.

6.3.2 Implementation

CTLA2PC is implemented using the JAVA language. Overall, CTLA2PC’s source
code has about 21,000 lines and is structured in 16 packages (including sub-
packages). In the following paragraphs we give a very brief overview of the im-
plementation of CTLA2PC’s components. Further details implementation are des-

cribed in Mal05].

Scanner and Parser The scanner and parser components are based on the
ANTLR parser construction kit. In section we described the EBNF
grammar for CTLA. ANTLR accepts an extended variant of EBNF as input gram-
mar. Consider for example the production from the EBNF grammar dealing with
the constants declaration part:

70

6.3 The cTLA2PC Translation Tool

CTLA
Specification

Scanner
(Lexical Analysig

* Synta

Parser [
| (Syntax Analysis) S
~ * Semantic EFI’O&"S.

1

Errors

X

e,

Semantic Analysis Abstract

Symbol | _.eeee==""]
Table *
"\\\ T Expansion p==" / ";

&

o,
Front-End % .,
S

___________ L L
Back-End '\ :\ + y ;/"' 'f-
R \\‘ Code Optimization ‘,, /"
) g s
i
poee” = X
CTLA Code Promela Code
Generation Generation

Optimized
Promela
Specification

Simple, flat cTLA
Specification

Figure 6.2: cTLA2PC Translation Process

const_decl_part =
"CONST" { constant_decl ";" }+
Using ANTLR’s EBNF variant, this production takes the form:

const_decl_part:
"CONST"! (constant_decl)+
(AST Action %)
{ #const_decl_part =
([CONST_DECL_PART, "[const_decl_part]"],
#const_decl_part);

Besides minor syntactical differences, ANTLR allows the inclusion of so-called Ab-
stract Syntax Tree (AST) actions inside the curly brackets ({, }). AST actions have
nothing to do with CTLA actions. Instead, they are used to automatically con-
struct selected subtrees during parsing. For example, the AST action include in

71

6 Translation, cTLA2PC, and Eclipse Integration

the constant_decl production generates a new subtree for token type CONST_ -
DECL_PART, names the root node of this subtree [const_decl_part], and re-
turns it.

Furthermore, the grammar has to be of the LL(k) type (i.e., it must not include left
recursive productions) [ASUOQ6]. Then, ANTLR is able to create JAVA source code
for an advanced scanner and parser component for the grammar automatically.

Semantic Analysis For performing the static semantic analysis, the syntax tree
and symbol table are traversed and transformed. We make use of the Visitor de-
sign pattern [GHJV95] which is especially suited to such tasks. This pattern allows
to traverse complex data structures and perform flexible operations on the nodes.
Particularly, the pattern largely separates the operations from the data structures.
Thus, new operations can be introduced or existing operations be extended with-
out having to modify the nodes.

The semantic analysis is done with the help of the class SemanticAnalysis-—
Visitor. This class implements a specialized Visitor pattern to traverse the tree.
Particularly, a type check for all assignments is done.

Expansion Like with the semantic analysis component, the expansion component
makes use of the Visitor pattern. Two Visitor classes for renaming and re-

solving actions (NodeRenameVisitor, SubtreeReplacementVisitor) are de-
fined.

Action Handling & Code Generation The action handling and PROMELA code gen-
eration component is implemented using a specific Visitor class as well, this time
the PromelaCodeBuilderVisitor. For the optional flat CTLA code generation,
essentially the existing current tree has to be output.

Plug-Ins The plug-in interface is implemented by providing methods for register-
ing and unregistering plug-ins. Furthermore, the plug-ins themselves are based on
the Visitor pattern again.

6.3.3 Extended Translation Options

Besides implementing the translation scheme (cf. section|p.2) and various optimiza-
tions (cf. section[8.4}[B.5), CTLA2PC supports additional translation options. These
translation options are used for special cases.

Simulation For example, the ——simulation option provides a model better
suited to SPIN’s simulation mode. This option includes special code that helps to

72

6.4 Eclipse Integration

check specific sequences during simulation. Particularly, this is useful for model
validation. The special code includes a control flow generator for actions with an
additional guard at the beginning of each action. It allows the execution of the ac-
tion only if the action has been selected by the control flow generator. This enables
scripted testing of execution sequences. Furthermore, we integrate symbolic mt ype
action names in the guards. This makes the selection dialogs in SPIN’s interactive
simulation mode much more comprehensible.

Mapping Sequences During SPIN verification, sequences violating security prop-
erties may be found in a model. Such violating sequences are saved in an internal
encoding in a trail file. The trail file can be played back at the PROMELA level using
SPIN’s guided simulation mode. We are interested in the corresponding CTLA-
level sequence, however. Thus, we have to map the PROMELA level statement
sequence back to CTLA level actions. This mapping of sequences is greatly sim-
plified by translating the model with the --trace-points switch. By supplying
this switch code is inserted at the beginning of the PROMELA realization of each
CTLA action that outputs the action name and parameters. Thus, by running a
SPIN guided simulation from the trail file, the CTLA-level action sequence is out-
put as well.

Debugging Support Further options exist that support the debugging of CTLA
specifications from an integrated development environment (IDE). Particularly, the
option —--map provides a line by line mapping between the CTLA and PROMELA
version of a model. Based on these options, we engineered an integration of
CTLA2PC into the ECLIPSE platform [Kne04]. This integration is described in the
following section.

6.4 Eclipse Integration

The ECLIPSE workbench is a well-known, widely adopted universal tool platform
[OTIOJ]. We integrate CTLA2PC together with SPIN and extended debugging fea-
tures into ECLIPSE to provide a comprehensive modeling, translation, and analysis
environment for our approach. In the following paragraphs, the architecture and
features of the integration are described.

6.4.1 Architecture

A modern plug-in architecture allows extension and customization of
ECLIPSE’s functionality. ECLIPSE itself is realized as a set of plug-ins which pro-
vide services. The basic workbench user interface, for instance, is provided by the

73

6 Translation, cTLA2PC, and Eclipse Integration

Workbench . ui plug-in. Plug-ins collaborate using extension points. An extension
point provides several slots through which the extended and extending plug-ins can
communicate by registering callback objects.

The plug-ins are activated by ECLIPSE as follows: During start-up, the plug-in
folder is scanned for MANIFEST-files, typically called plugin.xml. This file is
provided by every plug-in and contains a description of the plug-in indicating
which extension points are implemented. This information is saved in a temporary
database. Thus, the plugin-code itself will only be loaded if necessary.

Our integration makes use of this plug-in architecture. We provide a set of 8
ECLIPSE plug-ins (cf. Fig. depicted as a UML component diagram) which are
implemented by 70 JAVA classes, totaling about 12,000 lines of code.

% spin
% spin.debug % ctlatopromela
% ctla spin.debug. % spin.core CTLA EI__FI::I ctlatopromela
editor % core _|n_pu_t> core
% Break % ctlatopromela
ptraodrirt]s:a épgn_ts_ % spin.debug .ui % spin.ui ul

Figure 6.3: Plug-in Architecture of the Eclipse Integration

The ctlatopromela plug-in integrates the CTLA2PC translator into ECLIPSE.
User interface elements are implemented by the . ui component, the corresponding
non-graphical functionality is implemented by the . core component.

Except for the promelaeditor and ctlaeditor plug-ins, all plug-ins are se-
parated into a .ui and a .core component. The underlying architectural pat-
tern of the ECLIPSE framework is that different Ul implementations can be used
to present the same core functionality. Communication between UI and core com-
ponents is handled via events. As some dependencies exists, the conceptional sep-
aration between different plug-ins cannot always be implemented to the last conse-
quence. As an example, the spin.debug.ui plug-in needs to know the name of
the promelaeditor plug-in in order to register with extensions points for provid-
ing the breakpoint functionality and for not interfering with the other plug-ins.

6.4.2 Features

Taken together, the plug-ins in combination with the ECLIPSE workbench provide
the following key features:

74

6.4 Eclipse Integration

Editing of Specifications CTLA (and PROMELA) specifications can be edited; and
typical capabilities (Search /Replace, Cut/Paste, Open/Save) are provided. Further-
more, syntax highlighting is made available. To support the debugging features des-
cribed in the paragraphs below, breakpoint markers can be set in the editors.

The editing functionality is implemented by two plug-ins (promelaeditor,
ctlaeditor), which both extend the TextEditor class. Thus, most of the editing
capabilities are inherited from ECLIPSE.

Specification Translation Translation of CTLA (and PROMELA) specifications is
supported from within ECLIPSE. The translation options for CTLA2PC can be spe-
cified and saved to or restored from a configuration. During translation, each syn-
tax error creates a new entry in ECLIPSE’s tasks pane. Double-clicking an entry in
the tasks pane scrolls to the corresponding source line in the editor.

These features are implemented by the plug-ins ctlatopromela.ui,
ctlatopromela.core and spin.ui, spin.core, respectively. The .ui plug-
ins contain the dialogs, e.g., for configuring translation options. The .core
plug-ins run the CTLA2PC or SPIN tool in the background and capture the output.
This is done with the help of ECLIPSE’s launching architecture for external tools. For
each tool, an environment is derived from the LaunchConfigurationType
type. This type specifies a method launch which executes the tool with a
given configuration. A Configuration contains a set of parameters as name-
value pairs. Actual tool executions with actual parameter values are instances
of the LaunchConfigurationType type. Default values for source and des-
tination file are derived from the currently selected workspace resource. A
LaunchConfigurationDialog shows the parameter values and allows their
modification prior to the launching of the tool. Furthermore, additional parameters
may be given. The captured output is parsed for translation errors which are then
transferred to the tasks pane using ECLIPSE’s Markers mechanism.

Simulation and Debugging Simulation of translated CTLA specifications is sup-
ported from within ECLIPSE. In random simulation mode, SPIN’s output is simply
captured and transferred to ECLIPSE’s console window. For interactive simulations,
the output is parsed and an interactive selection dialog is displayed for each non-
deterministic choice (cf. Fig.[6.4).

Choices marked by SPIN as “unexecutable” are not displayed in the selection di-
alog. The debugging of translated specifications is supported as well. Breakpoints
can be set in the PROMELA editor. If the corresponding line of the specification is
hit, the simulation will be stopped. The user can then resume the specification sim-
ulation or single step through it. Additionaly, variables can be added to the watch
window. This means that the current value of such a variable is always displayed
by ECLIPSE.

75

6 Translation, cTLA2PC, and Eclipse Integration

7 Debug - broadcast-ping.promela - Eclipse Platf: =] 3]
File Edit Mavigate Search Project Rum Window Help £ Non-deterministitn il
= | R 2 P
J) J ﬁ * E:k J ® J ¢ 0! other process
E & Debug e] | % 5 @ 2 v x || ¢= Variables 12 NEXT_ACTION = SND_A =
[;h E|3'(§ Spin Interactive Debug Simulation (1) [Spin Simulation] & param_PacketT.scn=10 £ 20 NEXT_ACTION = SND._B -
i -6 Spin DEBUG @ param_PacketT.sci=0 ’ - -
% B8 Thread [SpinThread] (Running) & param_PacketT.sha =0 3 MEXT_ACTION = SHD_C
1)';3 . broadcast-ping. pramela [line: 9339] param_PacketT.dha =0 £ 4 NEXT ACTION = SHD D
s.',j & Spin param_PacketT.dt =0 - -
= & param_InterfaceldT =0 € 5: NEXT_ACTION = SND_E
@ MEXT_ACTION =0 61 NEXT_ACTION = RCY_A =
I T N S A,
" 7: MEXT_ACTION = RCY_B =
4 5 NEXT_ACTION = RCY_C »
‘fariables JBreakpU\nts |Expression: {9 NEXT_ACTION = RCY_D
.hrnadcast-ping.prnmela x broadcast-ping.ctla ' 10: NEXT_ACTION = RCY_E '3
112 NEXT_ACTION = REC
active proctype controlFlowlnputGenerator
P ¥e P ot € 12; NEXT_ACTION = ElA_PCS
[€7 13: MEXT_ACTION = BNA_P_SHD
i atomic { 7 14: NEXT_ACTION = BME_PCS
(NEXT ACTICN == 0] ->
iE " 15: NEXT_ACTION = BNE_P_SHD
¢ NEXT ACTION = GND A; © 16: NEXT_ACTION = BNC_PCS
i NEET ACTICN = SND_E;
: NEXT ACTION = SND_€; € 17: NEXT_ACTION = BNC_P_SHD
1| T T B | v O 18 NEXT_ACTION = BND_PCS
B Console [Spin DEBUS] £ 19: NEXT_ACTION = END_P_SMD' J.-- %
THETINY PHESH PRCKEC] OASIAPUCGER WITH PId 4 = 20; NEXT_ACTION = BME_PCS -
Srarting parsm PacketT deInputGen with pid 5 ~
Starting parsm InterfaceldTInputGen with pid 6 2l RIERT el = (e E 1P ShiD
Starting controlFlowInputGenerator with pid 7
A »
Console | Tasks

Figure 6.4: Interactive Simulation of a Translated Specification in Eclipse

The plug-in spin.core implements the functionality to run the SPIN tool
in the background based on the launching architecture as described above. A
new LaunchConfigurationType is defined for SPIN simulation. The spin.ui
plug-in contains a dialog for setting additional SPIN options based on ECLIPSE’s
LaunchConfigurationDialog and the selection dialog for interactive sim-
ulation. The spin.debug.core plug-in parses SPIN’s output and detects
changes of watched variables, hit breakpoints etc. If breakpoints are defined, a
CodeModifier is applied to the translated specification prior to starting the simu-
lation. It inserts the following code for each breakpoint:

printf ("MSC: break?" + nextBreakpoint.getFileName () +
":" + nextBreakpoint.getSourceLineNumber ()+ "\\n\");

This simple implementation of breakpoints works as follows: The plug-in captures
SPIN’s output using a buffer of a limited size and scans it for the MSC: marker.
If the marker is found, a breakpoint has been hit. The breakpoint’s file and line
number can be extracted from the extra information after the question mark. This
implementation of breakpoints is similar to XSPIN [[Hol03].

76

6.4 Eclipse Integration

Verification Finally, translated specifications can be verified from within ECLIPSE.
Parameters for verifier generation (e.g., —a), verifier compilation (e.g., -DBF'S) and
verifier execution (e.g., —-m1000) can be modified with a dialog by the user. SPIN’s
verification output is then displayed in ECLIPSE’s console window.

The described functionality is implemented through a further LaunchConfi-
gurationType, LaunchConfigurationDialog in the spin.core, spin.ui
plug-ins, respectively.

Thanks to the core services inherited from ECLIPSE, our integration also covers
further aspects, e.g., aggregation of files related to a specification into a project.

77

7 Computer Network Modeling
Framework

In this chapter, we describe the CTLA computer network modeling framework.
We begin with a short introduction outlining the purpose and application domain
of the framework. Then, we give an overview of key related networking concepts
in the second section. In the third section, we describe the framework from a large-
scale and a small-scale view. Finally, the chapter concludes with a section detailing
the framework’s packages and elements.

7.1 Frameworks

Designing models for computer network scenarios integrating different aspects
(e.g., protocol, node, and network) is an expensive task. Particularly, the right ab-
straction level must be chosen. On the one hand, all key aspects of the scenario
have to be captured. On the other hand, a very detailed model naturally has a state
vector that makes automated analysis very difficult — even after applying advanced
optimizations (cf. chapter|g).

One of the key goals of our approach is ease of use (cf. chapter[d.1)). Especially, we
have to ease the modeling task. Our modeling language, CTLA 2003, provides ba-
sic mechanisms like process types, process type extension, and containment. These
mechanisms allow for compositional and reusable models. We aim to facilitate the
modeling task on a higher level, however. The concepts of patterns and frame-
works are well-known from the world of object-oriented programming. As defined by

Gamma pp. 26]:

The framework dictates the architecture of your application. It will define
the overall structure, its partitioning into classes and objects, the key
responsibilities thereof, how the classes and objects collaborate, and the
thread of control. [...] The framework captures the design decisions
that are common to its application domain.

As the definition shows, frameworks facilitate the modeling task on a higher level.
Thus, we decided to carry over the framework concept from object-oriented pro-
gramming to computer network specifications. While designing computer network
specifications for different scenarios, we identified common architectural elements.

78

7.2 Networking Concepts

These elements form the basis of the CTLA computer network modeling frame-
work. It defines both basic structure, i.e., typical elements like nodes, interfaces and
media with their coupling, and basic behavior, i.e., sending and receiving actions,
of computer networks. A specific model has to add its own elements (e.g., nodes
that include processing for a specific protocol, a lossy transfer medium, additional
data types etc), but the overall architecture is given by the framework.

With the rise of the Internet, TCP/IP has become the prevalent networking tech-
nology. For this reason, we choose TCP/IP-based computer network attack models
as the application domain for our framework. In particular, we aim to model and
analyze scenarios involving dynamic routing.

7.2 Networking Concepts

To understand the framework and the case studies (cf. chapters 9} [10} and [IT) some
background on networking concepts is required. In this section, we give a brief
overview of the TCP/IP reference model, the Internet routing architecture, and
routing attacks.

7.2.1 TCP/IP Reference Model

The TCP/IP reference model structures protocols into five layers (cf. Fig.[7.1): applica-
tion, transport, internet, network interface, and physical.

Application e.g. HTTP, FTP
Transport e.g. TCP, UDP
Internet e.g. IP, ARP
Network Interface e.g. Ethernet
Physical e.g. 100Base-T2

Figure 7.1: Layers of the TCP/IP Reference Model

This contrasts the seven layers of the ISO model. The difference is mainly due
to the topmost layer, application, of the TCP/IP reference model. The layers pre-
sentation and application of the ISO model are both represented by the application
layer in the TCP/IP model. Furthermore the layers session and network of the ISO
model have no direct correspondence in the TCP/IP model. The TCP/IP model
adds the internet layer, however.

Typical examples for protocols in the application layer are the well known web pro-
tocols HTTP and FTP. The transport layer contains protocols like TCP and UDP. On

79

7 Computer Network Modeling Framework

the internet layer the IP protocol with its virtual addressing scheme, the IP addresses,
is defined. Thus IP networks are independent of the actual addressing scheme sup-
ported by the underlying network hardware and can transfer packets between dif-
ferent network technologies (e.g., ATM and Ethernet). Hardware frames can be sent
and received using the network interface layer. The actual encoding of the frames into
electrical signals depending on the transmission media is handled by the physical
layer.

During the development of the framework, the TCP/IP reference model pro-
vided guidance. In the framework, basic implementations of the network interface
to transport layers are provided. On the one hand, concrete scenario models typi-
cally have to extend certain layers (e.g., for adding ARP processing). On the other
hand, typically only a subset of all layers is required for a concrete scenario.

7.2.2 Internet Routing Architecture

Three levels have to be distinguished for routing in the Internet context (cf. Fig.[7.2).
On the lowest level, packets have to be routed between hosts in the same physical
network (typically a LAN). This level of routing is provided by the physical ad-
dressing scheme of the underlying physical network (e.g., Ethernet or Tokenring).
One of the strengths of the TCP /IP protocol suite, however, is the ability to intercon-
nect networks based on different technologies. Thus the address resolution protocol
(ARP) (cf. chapter[J), which encapsulates different physical addressing schemes, is
defined. It allows a unified way of routing inside a physical network based on IP
addresses.

1. Low-Level Routing

(\ 3. Exterior-

SO
; Network
Host @
2. Interior-Gateway

Autonomous System Routing

) Borger Router

Autonomous System

Figure 7.2: Threefold Internet Routing Architecture

80

7.2 Networking Concepts

The second level deals with routing between physical networks. Various so called
interior-gateway routing protocols are available on this level. The two most popu-
lar interior-gateway routing protocols are the routing information protocol (RIP) (cf.
chapter [I0) and the open shortest path first (OSPF) (cf. chapter [TT) protocol. Sets
of routers connected by the same instance of an interior-gateway routing protocol
are called autonomous system (AS). A typical example is the set of routers belonging
to the same administrative authority (e.g., an organization or company). Routers
inside an autonomous system are called inside routers.

On the third level, routing between autonomous systems is considered. For this
purpose, exterior-gateway routing protocols are used. A typical example is the rout-
ing between the autonomous system of a company and the autonomous system
of its Internet Service Provider (ISP). Nowadays, almost exclusively, the border gate-
way protocol (BGP) is used for exterior-gateway routing. Usually only one or a few
routers of an autonomous system connect to other autonomous systems. These
routers are called border routers.

7.2.3 Routing Attacks

The aim of routing attacks is to violate security properties by consistently injecting
false route information into the routing process. If the attacker controls a hop on
the route from the source to the destination, this is comparatively easy to achieve.
Even when the attacker is not regularly on the route, however, such an injection is
often possible. For example, the attacker may send out a special crafted update pac-
kets to several hops on the route. Depending on, for instance, the routing protocol,
the network topology, the packet propagation, the existing routing tables, and the
contents of the update packet, the injection may be successful.

If the update packet is accepted by one of the routers involved in the routing pro-
cess, it may spread further, again depending on conditions as described above. The
targeted router then distributes a modified update packet to neighboring routers
(so called triggered update). If several such receive-process-modify-distribute cycles
occur, the attacker may be able to affect routing in several networks.

The effects of such attacks are for example black hole routers, i.e., routers that pull
all nearby packets to themselves but never forward them to any other destination
or man-in-the-middle nodes, i.e., attackers that are able to intercept packets. Even if
the packets are securely encrypted, sensitive information may still be leaked (traffic
analysis). In contrast to a black hole router, the interception is usually not observable
for both original sender and intended receiver of the packets.

81

7 Computer Network Modeling Framework

7.3 Domain View

In this section, we describe the view TCP/IP computer network scenarios taken by
the framework. Particulary, the view has to integrate node, network, and protocol
aspects. First, we describe the large-scale view, mainly capturing network aspects,
then the small scale-view focusing on the individual nodes and their protocol pro-
cessing.

7.3.1 Large-Scale View

The large-scale view of computer network scenarios is exemplified in Figure

Q‘Media
=l {— Zone Host
| Sost] | Mest_ Transf| \ Host | | Nod
7| Node Node =717 €3
/ \ er 4_\ Node >~
/ A R l N
/ e // Node R Host
| 1 o—

\ _» N — ! \(N?de
\\ Host HOSt/// Z1 z2\ ! a
“Nade | | Node ~<]_ Host | Hest

_J NGde|~~| Node

Interface

Figure 7.3: Large-Scale Network View

All active network elements are modeled by nodes. Nodes are connected by the
physical transfer media, which is partitioned into zones. A zone corresponds to
broadcast zones, i.e., the nodes inside a zone can directly communicate with every
other node in the same zone. Zones can also be interpreted as network segments
or subnets. Nodes communicate using interfaces, which connect to the media. A
node is said to belong to a zone if it has an interface in the media’s zone. Interfaces
transmit and receive packets. A node which is connected to multiple zones (i.e., has
at least two interfaces) is called a transfer node. Transfer nodes (or routers) provide
inter zone communication. A node with just one interface is a host node.

7.3.2 Small-Scale View

The small-scale view focuses on the nodes and the protocol processing. For the
processing actions, we follow techniques from efficient protocol implementation,
particularly the activity thread and integrated layers approach (cf. section [8.3.2).
Packets are sent and received by the node via actions snd and rcv (cf. Fig.[7.4).

82

7.4 Packages & Elements

Media Node Zone

"’ kD) Top Layer \

T internal processing actions

... Middle Layers ...

<__

<__

—
U @ T ... internal processing actions ...
s| Pkt Buf @ |
d ® Bottom Layer
A internal processing actions
rpcs spcs
out(pkt)\ v pki) v
Rcv Pkt Snd Pkt
Adr BUf Interface BUf

Figure 7.4: Small-Scale Network View

The node’s actions snd, rcv are coupled to media’s actions in, out respectively.
Inside the node, the packet processing is structured into layers. A valid packet that
is received from media by an interface is stored in the interface’s receive buffer and
then processed through the layers (action rpcs). A packet which shall be sent is
processed (action spcs) the other way around, down the layers until it has reached
the interface level. The exact layers and processing steps required depend on the
protocols occuring in a scenario model.

If media does not already contain a packet from this zone, it can be sent to the
media. A successful send will move the packet to media’s packet buffer for the zone
and mark the buffer as used (flag usd). The exact layer and address types used in
a node vary depending on the specific node and scenario.

7.4 Packages & Elements

The framework is structured into the three packages Enumerations & Functions,
Data Types, and Process Types (cf. Figure [7.5). In this section, we describe these
packages and their elements.

83

7 Computer Network Modeling Framework

Enumerations & Functions

«enumeration» «enumeration» «enumeration» «enumeration» «enumeration» «enumeration» «enumeration»
ZoneldT NodeldT Interfaceld T IpAddressT HardwareAddressT)| ProtocolT RpaActionT
+UNKNOWN_ZONE +UNKNOWN_NODE +UNKNOWN_IF +INVALID_IA +UNKNOWN_HA +PT_IP +RPA_NONE_EMPTY
+Z1_ID +H1_ID +11_1D +BC_IA +BC_HA +PT_RIP +RPA_RPCS
+... +... +2_ID +H1 11 1A +H1_11_HA +... +..
+R1_ID +... +... +... -
. +R1_I11_IA +R1_11_HA «enumeration
.. . SpaActionT
«function» +SPA_NONE_EMPTY
fSrcTola +SPA_SPCS
+map(in n : NodeldT, in i : InterfaceldT) : IpAddressT «function» il
et fSrcToZone
«function» . N . .
fSreToHa +map(in n : NodeldT, in i : InterfaceldT) : ZoneldT

+map(in n : NodeldT, in i : InterfaceldT) : HardwareAddressT

Data Types «type»
«type» InterfaceT
PacketT «type» «type» «type» +usd : bool
+pt PacketBufT | | RpaSystemBufT| | SpaSystemBufT| |+rpa: RpaSystemBufT
+... +usd : bool +pkt : PacketT +pkt : PacketT +spa : SpaSystemBufT
+dat[n] +pkt : PacketT | [+act : RpaActionT [[+act : SpaActionT | |+ia : IpAddressT

Process Types

HostlpNode(NID: NodeldT) RouterlpNode(NID: NodeldT, Mll: InterfaceldT)

+itf : InterfaceT

+ou(in kL PacketT) +ifs[n] : Interface T
i : —— - -
+rbe(in zid : ZoneldT, in pkt : PacketT) ::E‘(’:(('I’; "Z?d-_'2?;23?1}[;&?%5&22%”)
+1pes() +snd(in iid : InterfaceldT, in pkt : PacketT)
+rpes(in iid : InterfaceldT)

+spcs(in iid : InterfaceldT)
‘ +fwd(in iid : InterfaceldT)

ActiveHostIpNo&e(NID: NodeldT)

NonPromHostlpNode(NID: NodeldT)

+snd(in pkt : PacketT)

+rev(in pkt : PacketT) +spes()
Media
ActiveNonPromHostlpNodgNID: NodeldT) +buf - PacketBurT
+in(in zid : ZoneldT, in pkt : PacketT)
+snd_ip(in dia : IpAddressT) +out(in zid : ZoneldT, in pkt : PacketT)

Figure 7.5: Framework overview

7.4.1 Package Enumerations & Functions

The package enumerations & functions is used to define the network topology, initial
address assignment and protocols desired for a model. For example, the enume-
ration ZoneIdT contains the model’s zones; the function £SrcToIa assigns the
initial addresses and the enumeration ProtocolT lists the required protocols.

In the following paragraphs, we describe each element of the enumerations &
functions package in more detail. We begin with the Enumerations.

84

7.4 Packages & Elements

7.4.1.1 Enumerations

Enumerations define symbolic names. Specific models built on the framework usu-
ally extend these enumerations depending on the scenario.

«enumeration»
ZoneldT
+UNKNOWN_ZONE
+71_ID
+...

Enumeration ZoneldT
As described in section zones are used to group sets of nodes which can com-
municate directly with each other. Thus, typically, a physical subnet is equivalent
to a zone.

The ZoneIdT enumeration provides symbolic names for zones. A special name,
UNKNOWN_ZONE, is used to denote an invalid or unknown zone. The first regular
zone is commonly named Z1_1ID. Like all enumerations, these symbolic names are
internally represented by integers (cf. section[5.2.1).

The ZoneIdT enumeration is used throughout the framework. Particularly, the
fSrcToZone topology function maps to the ZoneIdT enumeration.

«enumeration»
NodeldT
+UNKNOWN_NODE
+H1_ID
+...
+R1_ID
+...

Enumeration NodeldT
In our framework, all active network elements are nodes (cf. section[7.3).

The NodeIdT enumeration is used to assign symbolic names to nodes. An in-
valid or unknown node is assigned the reserved symbolic name UNKNOWN_NODE.
As anaming scheme, we suggest to use Hx_ID, Rx_ID (where x is a unique integer
for each node), for host, router nodes, respectively.

Together with the InterfaceIdT enumeration, the NodeIdT enumeration is
used as the source in the £SrcToHa and £SrcToZone topology functions. A source
is a pair (n,1) of a node and interface identifier.

«enumeration»
InterfaceldT
+UNKNOWN _IF
+11 1D
+12_ID
+...

Enumeration InterfaceldT
Nodes transmit and receive packets with their interfaces. Host nodes have one
interface; transfer nodes have multiple interfaces.

85

7 Computer Network Modeling Framework

The InterfaceIdT enumeration provides local symbolic names for interfaces.
These names are unique only in the context of a node identifier (cf. enumeration
NodeIdT). Unknown or invalid interfaces are represented by the symbolic name
UNKNOWN_IF. The first regular interface of a node is generally named I1_1ID.

As described above, elements from the InterfaceIdT enumeration are typi-
cally used together with node identifiers to represent a source (n,i). The topology
function £SrcToZone maps sources to zones. Further functions (e.g., £SrcToHa
and fSrcToIa) are used to assign attributes like hardware and IP addresses to
interfaces.

«enumeration»
IpAddressT

+INVALID_IA

+BC_IA

+HL 11 IA

+...

+R1_I11_IA

+...

Enumeration IpAddressT
A key element of TCP/IP based computer networks is the logical Internet protocol
(IP) address. Logical addresses may span different physical networks with different
physical addressing schemes. Each interface is assigned an IP address.

The IpAddressT enumeration provides symbolic names for IP addresses as-
signed to the interfaces used in a model. Two symbolic names are reserved. First,
INVALID_IA is used to denote an invalid IP address. Second, BC_IA is reserved
for the broadcast IP address. It i