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Abstract

Identifying the “right” dose is one of the most critical and difficult steps in the clin-
ical development process of any medicinal drug. Its importance cannot be understated:
selecting too high a dose can result in unacceptable toxicity and associated safety prob-
lems, while choosing too low a dose leads to smaller chances of showing sufficient efficacy
in confirmatory trials, thus reducing the chance of approval for the drug. In this paper
we investigate the problem of deriving efficient designs for the estimation of the minimum
effective dose (MED) by determining the appropriate number and actual levels of the doses
to be administered to patients, as well as their relative sample size allocations. More specif-
ically, we derive local optimal designs that minimize the asymptotic variance of the MED
estimate under a particular dose response model. The small sample properties of these
designs are investigated via simulation, together with their sensitivity to misspecification
of the true parameter values and of the underlying dose response model. Finally, robust
optimal designs are constructed, which take into account a set of potential dose response
profiles within classes of models commonly used in practice.
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1 Introduction

Understanding and properly characterizing the dose response relationship is a fundamental step

in the investigation of a compound, be it a new molecular entity, an environmental toxin, or an

industrial chemical (Ruberg, 1995). Poor understanding of the dose response profile may have a

direct impact on the estimation of a designated target dose level. In the context of pharmaceutical

drug development, for example, selecting too high a dose can result in unacceptable toxicity,

while choosing too low a dose decreases the chance of showing efficacy in the confirmatory

phase, thus reducing the chance of getting regulatory approval for the drug. There are varying

degrees of consequences associated with selecting a “wrong” dose level for a new compound.

For example, it may be that only after having marketed a specified dose of a drug it becomes

apparent that the level was set too high. This phenomenon has been documented by the U.S.

Food and Drug Administration (FDA), who reported that approximately 10% of drugs approved

between 1980-1989 have incurred dose changes - mostly decreases - of greater than 33% (Ruberg,

1995). Alternatively, the compound may fail regulatory approval due to an unacceptably high

risk/benefit ratio. In such a setting two losses will result: (i) patients will never receive the

incremental (or potentially ground-breaking) advancement in medical treatment and (ii) the

missed opportunity will result in substantial financial losses for the pharmaceutical company

who has developed the drug. The selection of the dose level(s) to be brought into the final

confirmatory clinical studies, and hence for potential release on the market, is thus a key decision

step involving inherent serious ethical and financial consequences.

In this paper we focus on the design of clinical dose finding studies aimed at estimating, efficiently

and reliably, target dose(s) of interest within a dose range under investigation. For this purpose

we will derive efficient designs for estimating the minimum effective dose (MED) which are robust

with respect to the assumed dose response profile. Following Ruberg (1995), the MED is defined

here as the “the smallest dose producing a clinically important response that can be declared

statistically significantly different from the placebo response”. This definition is consistent with

international regulatory guidance documents, such as the ICH-E4 guideline (ICH, 1994), which

describes one purpose of dose response information as identifying “the smallest dose with a

discernible useful effect”.

The rest of the paper is organized as follows. Section 2 introduces a motivating example from

a real clinical dose finding study. Next, in Section 3, it is demonstrated that optimal design

problems for MED-estimation are closely related to c-optimal design problems, which have been

considered by several authors in the statistical literature (see Wu, 1988, Ford, Torsney and

Wu, 1992, Pukelsheim, 1993, Chapter 2, Krewski, Smythe and Fung, 2002, Biedermann, Dette

and Pepelyshev, 2006, among many others). Despite their limited practical applicability, we

focus initially on local optimal designs (Chernoff, 1953), because they provide the foundation

of the efficient robust designs described later in the text. In Section 4, we present local MED-

optimal designs for commonly used dose response models. For many of those models, the optimal

designs can be found explicitly using Elfving’s (1952) well-known geometric characterization. The
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sensitivity of local MED-optimal designs with respect to modeling assumptions is investigated

in Section 5 and it shows that the performance of these designs is highly dependent on the

agreement between the true and assumed dose response profiles. Because the true underlying

dose response profile is typically unknown in practice, we derive, in Section 6, efficient designs

which are robust to the model specification, using compound optimality criteria as introduced by

Läuter (1974). It is shown that the derived designs have good properties for each of the models

considered in our dose finding study. Finally, the Appendix contains some technical proofs of

the theoretical results.

2 A motivating example

To illustrate and motivate the methods described in this paper we consider a real clinical dose

finding study for an anti-anxiety drug (Pinheiro et al., 2006). The primary endpoint is the

change in an anxiety scale score from baseline to the end of the study. A homoscedastic normal

model is assumed. Without loss of generality it is also assumed that the average placebo effect

is f0 = 0 and the maximum treatment effect within the dose range [x, x] = [0mg, 150mg] under

investigation is fmax = 0.4. Furthermore, we assume that all dose levels within the investigated

dose range are safe, so that efficacy is the primary interest. The main goal of the study is to

estimate the smallest dose level which produces at least the clinically relevant effect of ∆ = 0.2.

Based on discussions with the clinical team prior to the start of the study, different candidate

models were identified to potentially represent the true underlying dose response profile. These

models characterize the prior uncertainty about the correct dose response shape. Table 1 shows

these candidate models with guesstimates taken from previous studies as described in Pinheiro

et al. (2006). The general expressions for these dose response models are given later in Section

3. Five of the models in Table 1 correspond to monotonically increasing dose response profiles,

while the remaining models assume an umbrella shape allowing for a downturn in effect at higher

dose levels. The corresponding curves are depicted in Figure 1.

The remaining key questions at the design stage involve the determination of the necessary

number of different dose levels, the location of the dose levels within the dose range, and the

proportions of patients to be allocated to each of the dose levels, such that the MED can be

estimated efficiently for any of the candidate models. The original considerations for the example

study led to a design with dose levels 0, 10, 25, 50, 100, and 150mg and a total sample size of

300 patients equally allocated to each of the six parallel treatment groups. Throughout this

paper we call this the “standard design”. Designs of this type will be improved substantially in

this paper. For example, if the clinical team decides to have a design which is efficient for all

models of Table 1, the resulting design using the methods described in this article would lead to

10% shorter confidence intervals for the MED as compared to the “standard design”. This result

holds for all models under consideration, except for the linear model, where there is essentially

no difference in efficiency between the two designs. Furthermore, if the beta and the exponential

models can be ruled out prior to the start of the study (because one believes in a monotonic
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Table 1: Dose response models with estimated parameters. All models are normalized such that

the maximum effect is 0.4. For the first five models the maximum effect within the dose range

under investigation is attained at the maximum dose level x̄ = 150mg, while for the beta models

it is attained at xmax = 25mg and 100mg, respectively.

Model f(x, ϑ)

linear (0.4/150)x

Emax (7/15)x/(25 + x)

exponential 0.08265(exp(x/85)− 1)

log-linear 0.0797 log(x + 1)

logistic −0.004041 + 0.404082/{1 + exp((50− x)/10.88111)}
beta1 1.082(x/200)0.33(1− x/200)2.31

beta2 2.747(x/200)1.39(1− x/200)1.39

increase of effect characterized through a non-convex response curve, for example), the reduction

of the confidence interval length is about 14% (for the Emax) to 18% (for the logistic model).

The gain in precision of the MED estimate can also be expressed in terms of sample sizes. In the

last example, the standard design would require up to 44% more patients in order to estimate

the MED with the same precision as the design proposed in this paper.

Figure 1: The dose response curves corresponding to the models in Table 1.
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3 Optimal designs for the estimation of the MED

Consider the nonlinear regression model

Yij = f(xi, ϑ) + εij = ϑ0 + ϑ1f
0(xi, ϑ

0) + εij, i = 1, . . . , k, j = 1, . . . , ni, (3.1)

where ϑ = (ϑ0, ϑ1, ϑ
0T

)T = (ϑ0, . . . , ϑp)
T denotes the unknown parameters, ϑ0T

= (ϑ2, . . . , ϑp),

x1 < x2 < . . . < xk denote the different dose levels and ni denotes the number of patients treated

with dose level xi, i = 1, . . . , k. If x denotes the placebo and x the maximum dose level, then

the minimum effective dose (MED) is defined by

MED = inf{x ∈ (x, x] | f(x, ϑ) < f(x, ϑ)−∆},

where ∆ > 0 is the clinically relevant difference. Following Bretz et al. (2005), several possible

estimates are available for evaluating the MED defined above, such as

M̂ED1 = inf{x ∈ (x, x] | Ux > f(x, ϑ̂) + ∆ ; Lx > f(x, ϑ̂)},
M̂ED2 = inf{x ∈ (x, x] | f(x, ϑ̂) > f(x, ϑ̂) + ∆ ; Lx > f(x, ϑ̂)},
M̂ED3 = inf{x ∈ (x, x] | Lx > f(x, ϑ̂) + ∆},

where ϑ̂ is the least squares estimate of the parameter ϑ and Lx (Ux) is the lower (upper) bound

of the confidence interval for f(x, ϑ). It is worthwhile to mention that for some values of ∆ the

estimates may not exist.

As shown below, for large sample sizes the variances of all three estimates have the same first

order approximation used for the construction of “good” designs. Consequently, a MED-optimal

design minimizes this approximation with respect to the choice of k (the number of different

dose levels), x1, . . . , xk (the location of the dose levels) and w1, . . . , wk (the proportion of patients

allocated to each dose level). Throughout this paper we consider approximate designs, which are

defined as probability measures ξ = {xi, wi}k
i=1 with finite support (Silvey, 1980; Pukelsheim,

1993). For a given design ξ and total sample size n the number of observations at each dose level

is obtained by rounding the quantities nwj to integers, such that
∑k

j=1 nj = n (Pukelsheim and

Rieder, 1992).

From Seber and Wild (1989, p. 193) we obtain

Lx = f(x, ϑ̂)− u1−α/2
σ̂√
n
{gT M−1(ξ, ϑ)g}1/2 + oP

( 1√
n

)
, (3.2)

Ux = f(x, ϑ̂) + u1−α/2
σ̂√
n
{gT M−1(ξ, ϑ)g}1/2 + oP

( 1√
n

)
, (3.3)

for the upper and lower bound of the confidence interval for f(x, ϑ), where uβ denotes the β

quantile of the standard normal distribution,

gT = gT (x, ϑ) =
∂f(x, ϑ)

∂ϑ
=

(
1, f 0(x, ϑ0), ϑ1

∂f 0(x, ϑ0)

∂ϑ2

, . . . , ϑ1
∂f 0(x, ϑ0)

∂ϑp

)
∈ Rp+1 (3.4)
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is the gradient of the response function with respect to the parameter ϑ ∈ Rp+1, and

M(ξ, ϑ) =
k∑

j=1

wjg(xj, ϑ)gT (xj, ϑ) ∈ Rp+1×p+1

denotes the information matrix of the design ξ in the nonlinear regression model (3.1). In (3.2)

and (3.3) the quantities σ̂2 and ϑ̂ are the common least squares estimates of σ2 and ϑ, respectively

(note that these estimates are asymptotically independent and normally distributed; see Seber

and Wild, 1989, Theorem 2.1). Consequently, for a sufficiently large sample size we obtain as

first order approximation for M̂EDj (j = 1, 2, 3)

ap(ϑ̂0, . . . , ϑ̂p) := h0
(
f 0(x, ϑ̂0) +

∆

ϑ̂1

)

where ϑ̂0 = (ϑ̂2, . . . , ϑ̂p)
T and h0 denotes the inverse of the function f 0 with respect to the

variable x. The δ-method (Van der Vaart, 1988) leads to

Var(M̂EDj) = Var(ap(ϑ̂0, . . . , ϑ̂p)) + oP (
1

n
) (3.5)

=
σ2

n
bT (ϑ̂0, . . . , ϑ̂p)M

−(ξ, ϑ̂)b(ϑ̂0, . . . , ϑ̂p) + oP (
1

n
)

for the asymptotic variance of the estimates for the MEDj, j = 1, 2, 3, where

b(ϑ) = b(ϑ0, . . . , ϑp) =
∂

∂ϑ
a(ϑ0, . . . , ϑp) =

∂

∂ϑ
h0

(
f 0(x, ϑ0) +

∆

ϑ1

)
(3.6)

denotes the gradient of the function a with respect to ϑ. In (3.5) the matrix M−(ξ, ϑ) denotes

a generalized inverse of the matrix M(ξ, ϑ) and it is assumed that the MED is estimable by the

design ξ, that is Range(b(ϑ)) ⊂ Range(M(ξ, ϑ)) (Pukelsheim, 1993, Chapter 3). Consequently,

we call a design ξ∗(ϑ) local MED-optimal if it minimizes

Ψ(ξ) = bT (ϑ0, . . . , ϑp)M
−(ξ, ϑ)b(ϑ0, . . . , ϑp), (3.7)

among all designs for which the MED is estimable. Boundaries for an (asymptotic) confidence

interval for the MED are given by M̂EDj ± u1−α/2σ̂Ψ(ξ)/
√

n and consequently the local MED-

optimal design minimizes the (first order approximation of the) length of this interval. Note that

the estimation of the MED does not require the estimation of all parameters in the model and

as a consequence designs with singular information matrix are also of interest, which explains

the use of a generalized inverse in (3.7). In fact many of the local MED-optimal designs derived

in the following section will have a singular information matrix. Note also that the local MED-

optimal design depends on the response function (more precisely on the function f 0) and on the

unknown parameter ϑ. As discussed in Section 1, prior information for ϑ is often available in
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pharmaceutical development. In the following we derive local MED-optimal designs for classes

of dose response models commonly used in practice (Ratkowsky, 1989; Pinheiro et al., 2006):

f(x, ϑ) = ϑ0 + ϑ1x linear (3.8)

f(x, ϑ) = ϑ0 + ϑ1x
x+ϑ2

Emax (3.9)

f(x, ϑ) = ϑ0 + ϑ1 exp(x/ϑ2) exponential (3.10)

f(x, ϑ) = ϑ0 + ϑ1 log(x + ϑ2) log-linear (3.11)

f(x, ϑ) = ϑ0 + ϑ1(1 + exp((ϑ2 − x)/ϑ3))
−1 logistic (3.12)

f(x, ϑ) = ϑ0 + ϑ1B(ϑ2, ϑ3)(x/ϑ4)
ϑ2(1− x/ϑ4)

ϑ3 beta (3.13)

where B(ϑ2, ϑ3) = (ϑ2/(ϑ2 + ϑ3))
−ϑ2(ϑ3/(ϑ2 + ϑ3))

−ϑ3 . Note that the function f in the beta

model (3.13) is normalized such that the value ϑ0 + ϑ1 corresponds to the maximum of the dose

response function (which is attained at ϑ∗ = ϑ2ϑ4/(ϑ2 + ϑ3)). The parameter ϑ4 corresponds to

the dose level above which there is no beneficial effect of the drug and we assume it to be fixed.

Note that ϑ4 can also be treated as a parameter to be estimated. For the sake of brevity we

do not consider optimal designs for this alternative model. Instead, we derive in Section 4 local

MED-optimal design for the dose response models (3.8) - (3.13) and apply those to the parameter

values listed in Table 1. In Section 5 we investigate the sensitivity of the local MED-optimal

designs with respect to misspecification of the parameter ϑ and the underlying function f in

(3.1).

4 Local MED-optimal designs for a given functional form

We start considering the simpler models (3.8) - (3.11) and derive a theoretical result, which gives

some insight into the general structure of the optimal designs for these models. The proof is

given in the Appendix.

Theorem 4.1. For the models (3.8) - (3.11) the local MED-optimal design depends only on the

parameters ∆/ϑ1 and ϑ2. The local MED-optimal design is either (i) a two point design with

equal weights at placebo x1 = x and a second dose level x2 depending on ∆/ϑ1 and ϑ2, or (ii) a

three point design with weights w, 0.5−w, 0.5 at placebo x1 = x, the maximum dose level x3 = x̄

and a third dose x2 ∈ (x, x) depending only on ϑ2. Moreover, the weight w ∈ (0, 0.5) depends on

∆/ϑ1 and ϑ2.

Remark 4.2. Theorem 4.1 shows that local MED-optimal designs for the models (3.8) - (3.11)

advise the experimenter to take observations at only 2 or 3 different dose levels. Moreover, it

follows from the results of Section 8.3 in Pukelsheim (1993) that there always exists a local

MED-optimal design for the models (3.12) and (3.13) with at most 4 different dose levels. Our

numerical results indicate that for the logistic model (3.12) and for the beta model (3.13) local

MED-optimal designs advise the experimenter to take observations at either 2 or 4 different dose

levels.
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4.1 Explicit solutions

For the response functions (3.8) - (3.11) the local MED-optimal designs can be determined

explicitly and the results are summarized in the following two theorems.

Theorem 4.3.

(a) For the linear model (3.8) the local MED-optimal design has equal weights at placebo x1 = x

and the maximum dose level x2 = x̄.

(b) Define r = ∆/ϑ1 and ∆∗ = ϑ1ϑ2(x− x)/{2(x + ϑ2)(x + ϑ2)}. If ∆ > ∆∗, then the local

MED-optimal design for the Emax model (3.9) is a two-point design with equal weights at

placebo x1 = x and the dose level

x2 = a2(ϑ0, ϑ1, ϑ2) =
ϑ2(rϑ2 + (r + 1)x)

ϑ2 − r(x + ϑ2)
.

If ∆ < ∆∗, then the local MED-optimal design is a three-point design with weights w, 0.5−w

and 0.5 at placebo x1 = x, the maximum dose level x3 = x̄ and the dose level

x2 =
x(x + ϑ2) + x(x + ϑ2)

(x + ϑ2) + (x + ϑ2)
, (4.1)

where the weight w is defined by

w =
1

4
− 1

8

(x− x)ϑ2

(x− x)ϑ2 + (x + x)rϑ2 + (xx + ϑ2
2)r

. (4.2)

Example 4.4. In Table 2 we display some local MED-optimal designs for the Emax model

based on the information from Section 2. The dose range is given by [x, x̄] = [0mg, 150mg],

the clinically relevant difference is ∆ = 0.2, and the guesstimates for the parameter ϑ are given

by ϑ1 = 0.4667, ϑ2 = 25. We also calculate local MED-optimal designs for other values of the

parameters ∆, ϑ1, and ϑ2 in order to study their influence on the optimal design. For example,

if ∆ = 0.1, ϑ1 = 0.4667, and ϑ2 = 25 the local MED-optimal designs has weights 0.417, 0.5,

and 0.083 at the points 0, 18.75, and 150mg, respectively. That is, one is advised to consider

the three dose levels 0, 18.75, and 150mg, and allocate 41.7%, 50%, and 8.3% of the patients at

these dose levels.

Let ξ∗(ϑ) denote the local MED-optimal design for given ∆ and ϑ. Let ξs further denote the

standard design actually being used in the example study with the six dose levels 0, 10, 25, 50, 100,

and 150mg. The last column of Table 2 shows the efficiency

eff(ξs) =
Ψ(ξ∗(ϑ))

Ψ(ξs)
. (4.3)

of the standard design ξs relative to the local MED-optimal designs ξ∗, where Ψ(ξ) is defined

in (3.7). We observe, that the standard design has approximately 45% − 50% efficiency in all
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cases. That is, if the Emax model with the assumed parameter values was the true dose response

model, then the use of the local MED-optimal design would need only about half of the number

of patients required for the standard design to estimate the MED with the same precision. In

other words, the local MED-optimal design would lead to 30% shorter confidence intervals for

the MED as compared to the intervals obtained from the standard ξs actually being used in the

study.

Table 2: Local MED-optimal designs for the Emax model for various parameters. The dose

range is the interval [0mg, 150mg]. The table also shows the efficiency of the standard design ξs.

∆ ϑ1 ϑ2 x1 x2 x3 w1 w2 w3 eff(ξs)

0.2 0.4667 15 0 11.25 0.5 0.5 0.4714

0.2 0.4667 25 0 18.75 0.5 0.5 0.4545

0.2 0.4667 35 0 26.25 0.5 0.5 0.4400

0.1 0.4667 25 0 18.75 150 0.417 0.5 0.083 0.5341

0.3 0.4667 25 0 45.00 0.5 0.5 0.4595

0.2 0.2667 25 0 74.96 0.5 0.5 0.5078

0.2 0.6667 25 0 18.75 150 0.442 0.5 0.058 0.5099

Theorem 4.5.

(a) Define r = ∆/ϑ1,

x∗ =
(x− ϑ2)e

x/ϑ2 − (x− ϑ2)e
x/ϑ2

ex/ϑ2 − ex/ϑ2
,

(4.4)

w =
1

2

r(xex/ϑ2 − x∗ex∗/ϑ2)− (ex/ϑ2 − ex∗/ϑ2)(xex/ϑ2 − ϑ2(e
x/ϑ2 + r) log(ex/ϑ2 + r))

r(xex/ϑ2 − xex/ϑ2)− (ex/ϑ2 − ex/ϑ2)(xex/ϑ2 − ϑ2(ex/ϑ2 + r) log(ex/ϑ2 + r))
.

If w ≥ 0.5, then the local MED-optimal design for the exponential model (3.10) is a two-

point design with equal weights at placebo x1 = x and the dose level

x2 = a2(ϑ0, ϑ1, ϑ2) = ϑ2 log
{

exp
( x

ϑ2

)
+ r

}
.

If w < 0.5, then the local MED-optimal design ξ∗ is a three-point design with weights w,

0.5 − w and 0.5 at placebo x1 = x, the maximum dose level x3 = x̄ and the dose level

x2 = x∗, where w and x∗ are defined in (4.4).

(b) Define r = ∆/ϑ1,

x∗ = (x + ϑ2)(x + ϑ2)
log(x + ϑ2)− log(x + ϑ2)

x− x
+ ϑ2,

9



(4.5)

w =
1

2
− 1

2

(er − 1) log x∗+ϑ2

x+ϑ2
+ rer

(
x+ϑ2

x∗+ϑ2
− 1

)

(er − 1) log x+ϑ2

x+ϑ2
+ rer

(
x+ϑ2

x+ϑ2
− 1

) .

If w ≥ 0.5, then the local MED-optimal design for the log-linear model (3.11) is a two-point

design with equal weights at placebo x1 = x and the dose level

x2 = a2(ϑ0, ϑ1, ϑ2) = (x + ϑ2)e
r − ϑ2.

If w < 0.5, then the local MED-optimal design has three points with weights w, 0.5−w and

0.5 at placebo x1 = x, the maximum dose level x3 = x̄ and the dose level x2 = x∗, where w

and x∗ are defined in (4.5).

Example 4.6. In Table 3 we display several local MED-optimal designs for the exponential

model and the log-linear model based on the information from Section 2. In most cases the local

optimal designs are two point designs and the efficiency of the standard design ξs is about 50%

or less. The standard design would thus again require the double number of patients than the

local optimal designs to estimate the MED with the same precision.

4.2 Numerical solutions

For the logistic model (3.12) and the beta model (3.13) analytical solutions for the local MED-

optimal design problem are not available and numerical methods have to be used for the calcu-

lation of the optimal designs. We assume that the parameter ϑ4 in the beta model is fixed and

given by 200, with the interpretation that this is the dose level above which no beneficial effect

of the drug over placebo is expected. Local MED-optimal designs in the situation, where ϑ4 is

also estimated from the data, lead to similar results and are available from the authors.

For the logistic and the beta model our numerical results indicate two types of local MED-optimal

designs. The designs are either equally supported at placebo x1 = x and a second dose level,

say x2, which depends on the parameters ∆/ϑ1, ϑ2, and ϑ3, or the local MED-optimal designs

have weight w1, w2, 0.5 − w1 and 0.5 − w2 at the points x, x2, x3 and x̄, respectively, where

the points x2 and x3 depend on the parameters ϑ2 and ϑ3, while the weights w1 and w2 depend

on the parameters ∆/ϑ1, ϑ2, and ϑ3. These results also indicate the existence of thresholds

such that the local MED-optimal designs are supported at two or four points. Some numerical

examples are presented in Table 4 for the logistic model. We observe that in most cases the

local MED-optimal design for the logistic model requires only two dose levels. Moreover, the

efficiency of the standard design is very small. The results for the two beta models show a very

similar picture and are depicted in Table 5. It is interesting to note that the performance of the

standard design is substantially better for the beta2 model, which attains its maximum at the

dose level xmax = 100mg. Here the efficiencies vary between 40% and 56%. The efficiencies for
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Table 3: Local MED-optimal designs for the exponential model (3.10) and the log-linear model

(3.11) for various parameters. The dose range is the interval [0mg, 150mg]. The table also shows

the efficiency of the standard design ξs.

Model ∆ ϑ1 ϑ2 x1 x2 x3 w1 w2 w3 eff(ξs)

0.2 0.083 65 0 101.57 150 0.440 0.5 0.060 0.4663

0.2 0.083 85 0 104.52 0.5 0.5 0.4286

0.2 0.083 105 0 129.11 0.5 0.5 0.5156

exponential 0.1 0.083 85 0 95.99 150 0.430 0.5 0.070 0.4876

0.3 0.083 85 0 130.26 0.5 0.5 0.5083

0.2 0.063 85 0 121.83 0.5 0.5 0.4636

0.2 0.103 85 0 95.99 150 0.486 0.5 0.014 0.4513

0.2 0.08 1 0 11.30 0.5 0.5 0.4269

0.2 0.08 0.6 0 6.78 0.5 0.5 0.3760

0.2 0.08 1.4 0 15.82 0.5 0.5 0.4550

log-linear 0.1 0.08 1 0 4.05 150 0.468 0.5 0.032 0.4171

0.3 0.08 1 0 42.13 0.5 0.5 0.5384

0.2 0.06 1 0 27.51 0.5 0.5 0.5107

0.2 0.1 1 0 6.43 0.5 0.5 0.3970

the beta1 model with the maximum response attained at the dose level xmax = 25mg are always

smaller than 20%.

5 Finite sample properties and robustness

The present section serves several purposes. First, note that the optimality criteria proposed and

applied in Sections 3 and 4 for the determination of MED-optimal design are based on asymp-

totic arguments using a first order expansion for the covariance matrix of the MED estimate.

We therefore investigate the finite sample properties of the designs derived from the asymptotic

optimality criteria by means of a simulation study. Second, we study the behavior of the opti-

mal designs, if the initial model parameters have been misspecified. Third, we investigate the

robustness of the optimal designs if the underlying dose response model has been misspecified.
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Table 4: Local MED-optimal designs for the logistic model for various parameters. The dose

range is the interval [0mg, 150mg]. The table also shows the efficiency of the design ξs.

∆ ϑ1 ϑ2 ϑ3 x1 x2 x3 x4 w1 w2 w3 w4 eff(ξs)

0.2 0.404 50 7.881 0 49.90 0.5 0.5 0.4124

0.2 0.404 50 10.881 0 50.22 0.5 0.5 0.4094

0.2 0.404 50 13.881 0 51.19 0.5 0.5 0.3998

0.2 0.404 30 10.881 0 32.39 0.5 0.5 0.3202

0.2 0.404 70 10.881 0 69.85 0.5 0.5 0.0879

0.2 0.304 50 10.881 0 57.59 0.5 0.5 0.3116

0.2 0.504 50 10.881 0 45.89 0.5 0.5 0.3064

0.05 0.404 50 10.881 0 37.29 64.44 150 0.401 0.453 0.099 0.047 0.1853

0.1 0.404 50 10.881 0 38.48 0.5 0.5 0.1978

0.3 0.404 50 10.881 0 62.10 0.5 0.5 0.2555

5.1 Finite sample properties

Note that the optimal designs derived in the previous sections are obtained by minimizing the

asymptotic variance of the MED estimate for a particular model. For this reason it is important to

investigate whether and for which sample sizes the superiority of the optimal designs minimizing

the asymptotic variance can be observed in practice. For this purpose we consider as an example

the estimate M̂ED2 for the Emax and the exponential model. The results for the alternative MED

estimates and the other models are very similar and, therefore, not included here.

For the dose range [x, x̄] = [0mg, 150mg] we simulated data from the model

Y = ϑ0 + ϑ1f
0(x, ϑ0) + ε

where f 0(x, ϑ0) = x/(x + ϑ2), ϑ0 = 0, ϑ1 = 0.466, ϑ2 = 25 for the Emax model and f 0(x, ϑ) =

exp(x/ϑ2), ϑ0 = −0.08265, ϑ1 = 0.08265, ϑ3 = 85 for the exponential model (see Table 1). The

clinically relevant effect is ∆ = 0.2 and the errors are assumed to be independent and normally

distributed with mean 0 and variance σ2 = 0.01. Note that in many cases the local MED-optimal

designs advise the experimenter to take observations at a smaller number of different dose levels

than the number of parameters in the regression model. For this reason there are situations

where local MED-optimal designs do not allow the estimation of all parameters in the model (3.1).

Moreover, it is possible that a local MED-optimal design for a particular value of ϑ may not allow

the estimation of the MED for another value of the parameter, say ρ. In order to address such

problems we investigate a slight modification of the local MED-optimal design with 11·n
24

, n
2
, n

24

observations at dose levels 0, 18.75 and 150mg for the Emax model and 11
24

n, n
2
, n

24
observations

at dose levels 0, 104.5, 150mg for the exponential model, respectively. This modification will be
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Table 5: Local MED-optimal designs for the beta1 and the beta2-model, where the parameter

ϑ4 = 200 is fixed. The dose range is the interval [0mg, 150mg]. The table also shows the efficiency

of the standard design ξs.

model ∆ ϑ1 ϑ2 ϑ3 x1 x2 x3 x4 w1 w2 w3 w4 eff(ξs)

0.2 0.4 0.33 2.31 0 1.26 0.5 0.5 0.120

0.2 0.4 0.23 2.31 0 0.35 0.5 0.5 0.056

0.2 0.4 0.43 2.31 0 2.69 0.5 0.5 0.198

beta1 0.2 0.4 0.33 1.71 0 1.66 0.5 0.5 0.167

0.2 0.4 0.33 2.91 0 1.01 0.5 0.5 0.089

.05 0.4 0.33 2.31 0 0.49 25.21 106.99 .40 .45 .10 .05 0.140

0.1 0.4 0.33 2.31 0 0.49 25.20 108.07 .45 .48 .05 .02 0.130

0.3 0.4 0.33 2.31 0 4.88 0.5 0.5 0.193

0.2 0.4 1.39 1.39 0 37.34 0.5 0.5 0.399

0.2 0.4 1.09 1.39 0 26.70 0.5 0.5 0.405

0.2 0.4 1.69 1.39 0 47.24 0.5 0.5 0.401

beta2 0.2 0.4 1.39 1.09 0 43.26 0.5 0.5 0.398

0.2 0.4 1.39 1.69 0 32.87 0.5 0.5 0.396

.05 0.4 1.39 1.39 0 27.00 94.89 150 .39 .45 .11 .05 0.563

0.1 0.4 1.39 1.39 0 27.00 94.89 150 .45 .48 .05 .02 0.501

0.3 0.4 1.39 1.39 0 56.76 0.5 0.5 0.420

Table 6: Simulated standard deviations of the estimate M̂ED2 for the Emax and the exponential

model for the standard design ξs and a slight modification ξ̃(ϑ) of the local MED-optimal design.

The standard deviation is σ = 0.1.

Emax exponential

n 24 48 96 192 24 48 96 192

ξs 10.6 7.5 5.4 3.8 17.1 12.5 9.4 6.7

ξ̃(ϑ) 8.4 5.6 3.8 2.7 12.4 8.9 6.5 4.5

denoted by ξ̃(ϑ) and advises the experimenter to take a small proportion of total observations at

the maximum dose level x̄ in order to obtain a design, which can be used to estimate all model

parameters. In this study we thus compare ξ̃(ϑ) with the standard design ξs, which places n/6
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observations at the dose levels 0, 10, 25, 50, 100, and 150mg.

In the left part of Table 6 we show the simulated standard deviation of the MED estimate

obtained from the two designs for the sample sizes n = 24, 48, 96, and 192. The results are based

on 300 simulation runs. For both models it follows that the advantages of the local optimal MED-

optimal designs derived from the asymptotic theory are also valid for realistic sample sizes. For

example, if a clinical team uses 48 patients and allocates the dose levels according to the local

MED-optimal design, it obtains the same precision as if it would have used the standard design

and 96 patients. The (asymptotic) efficiency defined in (4.3) is also nicely reflected for realistic

sample sizes. More precisely, the (asymptotic) efficiency of the standard design ξs for the Emax

model is 0.46, while the ratio of the finite variances is given by 0.63, 0.56, 0.50, 0.50 for the

sample size n = 24, 48, 96, 192, respectively. Thus, the conclusions from Section 4 regarding the

advantages of local MED-optimal designs obtained from the asymptotic theory hold at least for

sample sizes larger than 25.

5.2 Misspecification of the parameters

In this section we study the robustness of local MED-optimal designs with respect to the mis-

specification of the parameter ϑ. Again, we used the slightly modified local MED-optimal design

ξ̃(ϑ) described in the previous section, where 4% of the observations are taken at the maximal

dose level x̄ = 150mg, while the remaining 96% patients are treated according to the optimal

design. In Table 7 we consider the Emax and the exponential model and display the efficiency

eff(ξ̃(ϑ), ρ) =
Ψ(ξ̃(ϑ))

Ψ(ξ∗(ρ))

for various values of ρ, where ξ∗(ρ) is the local MED-optimal design for the specific value ρ

under consideration. Here, ξ̃(ϑ) is the (modified) local MED-optimal design for the Emax and

the exponential model, respectively, where the parameters are chosen as ϑ1 = 0.467, ϑ2 = 25

(Emax) and ϑ1 = 0.082625, ϑ2 = 85 (exponential). For example, if the true parameter values

are given by ρ1 = 0.44 and ρ2 = 15, the design ξ̃(ϑ) calculated under the assumption that the

parameters are given by ϑ1 = 0.467, ϑ2 = 25 has an efficiency of 88% for estimating the MED

for the Emax model. We observe that the local MED-optimal design ξ̃(ϑ) for the exponential

model remains very efficient for a broad range of values for ρ1 and ρ2. The loss of efficiency

caused by a misspecification of the parameters in the Emax model is slightly larger, but the local

MED-optimal design ξ̃(ϑ) remains reasonably efficient.

5.3 Misspecification of the model

In this section we briefly investigate how local MED-optimal designs derived for a specific model

perform if any of the other models considered in Table 1 is the ”true” one. We again use the

(slightly) modified local MED-optimal designs ξ̃(ϑ) described in Section 5.1, where now 4% of

the observations are taken at two additional dose levels. The modified designs are displayed in
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Table 7: The efficiency of the design ξ̃(ϑ) = {0, 18.75, 150; 0.48, 0.48, 0.04} for the Emax model

and the design ξ̃(ϑ) = {0, 104.5, 150; 0.48, 0.48, 0.04} for the exponential model with respect to

misspecification of the initial parameters.

Emax exponential

ρ1 0.432 0.44 7/15 0.48 0.496 0.52 0.0148 0.0442 0.08265 0.126 0.22 0.32

ρ2 12 15 25 30 36 45 45 65 85 105 145 185

eff 0.72 0.88 0.96 0.91 0.84 0.75 0.74 0.91 0.96 0.95 0.89 0.83

the top part of Table 8, while the corresponding efficiencies for the different models are shown in

the bottom part. For example, if the local MED-optimal design ξ̃[LOG] (more precisely, its slight

modification) for the log-linear model is used for the logistic model, its (asymptotic) variance is

100 times larger than the variance, which could be obtained from the local MED-optimal design

ξ̃[logistic] for the logistic model. We observe that the local MED-optimal designs are very sensitive

with respect to a misspecification of the dose response model. Note that the efficiencies of the

standard design ξs vary between 40% and 50% for all models except for the beta1 model. In the

following section we will improve the standard design and construct robust and efficient designs

with respect to the class of models investigated in this paper.

6 Robust designs with respect to model misspecification

In this section we construct efficient designs for the estimation of the MED, which are robust

with respect to the choice of the dose response profile. For this purpose, we assume that there

are m candidate models for the dose response curve, say f1(x, ϑ(1)), . . . , fm(x, ϑ(m)), which are of

interest to the experimenter. In the example considered in Section 2 we have m = 7 candidate

dose response models, see Table 1. We denote by ξ∗j (ϑ
(j)) the local MED-optimal design (for

a given value of the unknown parameter ϑ(j)) for the j-th regression model. The efficiency for

estimating the MED for the j-th model and a given design ξ is defined as

effj(ξ) =
Ψj(ξ

∗
j (ϑ

(j)))

Ψj(ξ, ϑ(j))
,

where Ψj is the quantity introduced in (3.7) for the j-th model. The following concept of

determining robust designs is a modification of a criterion introduced by Läuter (1974) (see also

Pukelsheim and Rosenberger, 1993, Cook and Wong, 1994, Zhu and Wong, 2000, 2001, among

many others).

Definition 6.1. A design is called (local) maximin MED-optimal for the class F = {f1, . . . , fm}
of candidate dose response models, if it allows the estimation of the MED for all models under

consideration and maximizes min{effj(ξ) | j = 1, . . . , m}.
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Table 8: Slightly modified local MED-optimal designs ξ̃(ϑ) for the regression models (3.8) -

(3.12) (top part) and their efficiencies for the different models (bottom part).

Model x1 x2 x3 x4 w1 w2 w3 w4

linear 0 50 100 150 0.48 0.02 0.02 0.48

Emax 0 18.75 75 150 0.48 0.48 0.02 0.02

exponential 0 104.5 75 150 0.48 0.48 0.02 0.02

log-linear 0 11.3 75 150 0.48 0.48 0.02 0.02

logistic 0 50.2 75 150 0.48 0.48 0.02 0.02

beta1 0 1.26 75 150 0.48 0.48 0.02 0.02

beta2 0 37.3 75 150 0.48 0.48 0.02 0.02

Model ξ̃[LIN ] ξ̃[Emax] ξ̃[EXP ] ξ̃[LOG] ξ̃[logistic] ξ̃[beta1] ξ̃[beta2] ξu

linear 0.96 0.10 0.50 0.09 0.17 0.10 0.13 0.50

Emax 0.04 0.96 0.01 0.72 0.17 0.05 0.44 0.45

exponential 0.11 0.10 0.97 0.07 0.30 0.06 0.21 0.43

log-linear 0.02 0.62 0.01 0.96 0.06 0.43 0.14 0.43

logistic 0.08 0.02 0.00 0.01 0.96 0.00 0.05 0.41

beta1 0.00 0.00 0.00 0.01 0.00 0.96 0.00 0.12

beta2 0.05 0.33 0.01 0.19 0.20 0.01 0.96 0.40
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Let (α1, . . . , αm) denote a vector of nonnegative weights with
∑m

j=1 αj = 1. A design is called

Bayesian MED-optimal for the class F = {f1, . . . , fm} with respect to the prior (α1, . . . , αm), if it

allows the estimation of the MED for all models under consideration and maximizes
∑m

j=1 αj log effj(ξ).

Robust designs in the sense of Definition 6.1 have to be found numerically in all cases of practical

interest. We have calculated the optimal designs for the linear, Emax, exponential, log-linear, and

logistic models considered in Table 1, where a uniform prior is used in the Bayesian criterion.

The results are depicted in Table 9, while Table 10 shows the corresponding efficiencies. Note

that the maximin criterion leads to a design, which has equal efficiencies for all five models.

Moreover, the maximin MED-optimal design has larger efficiencies than the standard design ξs

for all models under consideration. This is also true for the Bayesian MED-optimal design except

for the linear model.

Table 9: Optimal designs with respect to the maximin and Bayesian optimality criterion (local

w.r.t. parameters). The models under consideration are (3.8) -(3.12).

x1 x2 x3 x4 x5 w1 w2 w3 w4 w5

maximin 0 11.2 49.5 115.0 150 0.33 0.19 0.19 0.19 0.11

Bayes 0 9.9 49.5 115.4 150 0.33 0.20 0.23 0.17 0.07

Table 10: Efficiencies of the optimal designs from Table 9 for the different models (3.8) -(3.12).

linear Emax exponential log-linear logistic

maximin 0.53 0.53 0.53 0.53 0.53

Bayes 0.45 0.53 0.52 0.58 0.60

If we extend the model class F and include the two beta models from Table 1 in the calculation

of the robust designs, we observe the maximin and Bayesian optimal designs and their efficiencies

in Table 11 and 12, respectively. A comparison of the results from the Tables 10 and 12 shows

that the efficiencies are decreasing if the two beta models are included in the robust optimality

criteria, which is quite intuitive. The more robustness is required for the design, the less efficient

it becomes for the individual dose response model. For example, if we investigate the situation

where only concave and increasing dose response models are of interest, the model class F can

be reduced to the linear, Emax, log-linear, and logistic models (see Figure 1). The maximin

and Bayesian optimal designs are depicted in Table 13. Both criteria lead to designs having

approximately 60% efficiency for the four models, while the efficiency of the standard design ξs

actually being used in the study varies between 40% and 50%.
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Table 11: Optimal designs with respect to the maximin and Bayesian optimality criterion (local

w.r.t. parameters). The models under consideration are (3.8) -(3.13).

x1 x2 x3 x4 x5 x6 w1 w2 w3 w4 w5 w6

maximin 0 3.4 16.1 49.6 112 150 0.35 0.05 0.14 0.18 0.18 0.10

Bayes 0 2.4 16.7 49.4 104 150 0.35 0.04 0.16 0.20 0.20 0.05

Table 12: Efficiencies of the optimal designs from Table 11 for the different models (3.8) -(3.13).

linear Emax exponential log-linear logistic beta1 beta2

maximin 0.50 0.54 0.55 0.50 0.50 0.50 0.50

Bayes 0.37 0.57 0.58 0.50 0.55 0.53 0.55

Table 13: Optimal designs with respect to the maximin and Bayesian optimality criterion (local

w.r.t. parameters) with their corresponding efficiencies for the different models. The models

under consideration are (3.8),(3.9), (3.11), and (3.12).

x1 x2 x3 x4 w1 w2 w3 w4 linear Emax log-linear logistic

maximin 0 11.4 49.4 150 0.33 0.23 0.22 0.22 0.59 0.59 0.59 0.59

Bayes 0 11.2 49.4 150 0.34 0.23 0.24 0.19 0.54 0.60 0.60 0.64
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Appendix A: Proofs

A1: Proof of Theorem 4.1: Note that the function b(ϑ) defined in (3.6) does not depend on

the parameter ϑ0 and as a consequence the first coordinate of the gradient b(ϑ) = ∂
∂ϑ

a(ϑ0, . . . , ϑp)

equals 0. Moreover, for the models (3.8) - (3.11) the gradient b(ϑ) is proportional to a vector of

the form (0, 1, ϑ1γ(∆, ϑ))T , where the function γ(∆, ϑ) depends only on ∆/ϑ1 and ϑ2. Observing
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the definition of the gradient g in (3.4) the statement of Theorem 4.1 is now a consequence of

Elfving’s theorem (see Elfving, 1952). More precisely, from this result it follows that a design

ξ = {xi, wi}k
i=1 is local MED-optimal if and only if there exist numbers ε1, . . . , εk ∈ {−1, 1} such

that for some λ ∈ R the point

λ (0, 1, ϑ1γ(∆, ϑ))T =
k∑

j=1

εjwj

(
1, f 0(xj, ϑ2), ϑ1

∂

∂ϑ2

f 0(xj, ϑ2)
)T

(A .1)

is a boundary point of the Elfving set

R = conv
({

ε
(
1, f 0(x, ϑ), ϑ1

∂

∂ϑ2

f 0(x, ϑ2)
)T ∣∣∣x ∈ [x, x̄], ε ∈ {−1, 1}

})
, (A .2)

where conv(A) denotes the convex hull of a set A ⊂ R3. From the first equation in (A .1) it

follows that k ≥ 2, while the geometry of R shows k ≤ 3 and that the placebo x must be a

support point of the local MED-optimal design (see also Figure 2 where the situation is displayed

for the Emax model). If the number of support points equals two, the first equation in (A .1)

implies w1 = w2 = 0.5 (note that in this case εj = ε(−1)j, j = 1, 2 for some ε ∈ {−1, 1}).
Similarly, if the MED-optimal design is supported at three points the maximal dose x̄ has to be

a support point and εj = (−1)jε, (j = 1, 2, 3) where ε ∈ {−1, 1}. Now the first equation in (A

.1) yields w1−w2 + w3 = 0, which gives in combination with the equation w1 + w2 + w3 = 1 the

claimed representation for the weights, i.e. w2 = 0.5, w3 = 0.5− w1.

2

A2: Proof of Theorem 4.3 and 4.5: Because all results are proved similarly we restrict

ourselves to a proof of Theorem 4.3 (b), which corresponds to the local MED-optimal design

problem for the Emax model. For the sake of brevity we use the notation

g(x) = (g1(x), g2(x), g3(x))T = g(x, ϑ) =
(
1, f 0(x, ϑ), ϑ1

∂

∂ϑ2

f 0(x, ϑ)
)T

,

where g(x, ϑ) is the gradient defined in (3.4). From Theorem 4.1 it follows that the local MED-

optimal design has either two or three support points. Assume first that the local MED-optimal

design ξ∗ is supported at three points. By Theorem 4.1 we have x1 = x, x3 = x̄ and Elfving’s

Theorem (see Elfving, 1952) shows that there exists a constant v and a weight w such that the

representation

−vb(ϑ) = wg(x)− 1

2
g(x2) + (w − 1

2
)g(x)

holds and that the point vb(ϑ) is a boundary point of the corresponding Elfving set defined in

(A .2) (see Figure 2). Moreover, the variance in (3.7) of the corresponding design ξ∗ is given by

bT (ϑ)M−1(ξ∗, ϑ)b(ϑ) = 1/v2. Putting b(ϑ) = (b1(ϑ), b2(ϑ), b3(ϑ))T , w = (1−u)/2 and considering

the second and third coordinate of this system yields the equation
(

g2(x)− g2(x) b2(ϑ)

g3(x)− g3(x) b3(ϑ)

)(
u

−2v

)
=

(
g2(x2)− g2(x)

g3(x2)− g3(x)

)
,
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A

B

C

vP

Figure 2: The Elfving set for the model (3.9) with [x, x̄] = [0, 3], ϑ1 = 1, ϑ2 = 0.5. The points

g(x1), −g(x2), and g(x3) are denoted by A, B, and C, respectively, while P denotes the point

b(ϑ).

which gives for u and v

u =

∣∣∣∣
g2(x2)− g2(x) b2(ϑ)

g3(x2)− g3(x) b3(ϑ)

∣∣∣∣
∣∣∣∣
g2(x)− g2(x) b2(ϑ)

g3(x)− g3(x) b3(ϑ)

∣∣∣∣
, − 2v =

∣∣∣∣
g2(x)− g2(x) g2(x2)− g2(x)

g3(x)− g3(x) g3(x2)− g3(x)

∣∣∣∣
∣∣∣∣
g2(x)− g2(x1) b2(ϑ)

g3(x)− g3(x) b3(ϑ)

∣∣∣∣
.

Maximizing the expression for v with respect to the point x2 gives the optimal point x2. For this

we determine the point x2 as a solution of the equation v′ = 0 and note that this equation can

be rewritten as
g′2(x2)

g′3(x2)
=

g2(x)− g2(x1)

g3(x)− g3(x)
.

Solving with respect to x2 yields the representation (4.1) for the remaining support point of the

optimal design, while the weight in (4.2) is obtained from the equation w = (1− u)/2.

From this representation it follows that the local MED-optimal design in the Emax model has

three support points if and only if the weight w of the point x1 = x in (4.2) satisfies w < 0.5. In

particular the weight is a strictly increasing function with respect to the parameter ∆ and there

exists a point ∆∗ such that the local MED-optimal is supported at three points if and only if

∆ < ∆∗. This threshold can be determined considering the weight w in (4.2) as a function of ∆

and solving the equation w(∆) = 0.5, which yields the representation for ∆∗.
Now assume that w > 0.5 such that the local MED-optimal design is supported at two points.
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In this case we have x1 = x by Theorem 4.1 and Elfving’s Theorem yields the representation

vb(ϑ) =
1

2
g(x)− 1

2
g(x2),

which gives the equations g2(x2) − g2(x) = 2vb2(ϑ), g3(x2) − g3(x) = 2vb3(ϑ). Solving with

respect to v and x2 yields the first assertion of Theorem 4.3 (b) for two point designs. 2
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